WO2023000562A1 - 一种led贴膜屏及其制作方法 - Google Patents
一种led贴膜屏及其制作方法 Download PDFInfo
- Publication number
- WO2023000562A1 WO2023000562A1 PCT/CN2021/131605 CN2021131605W WO2023000562A1 WO 2023000562 A1 WO2023000562 A1 WO 2023000562A1 CN 2021131605 W CN2021131605 W CN 2021131605W WO 2023000562 A1 WO2023000562 A1 WO 2023000562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- led chip
- liquid metal
- pins
- pad electrodes
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 96
- 239000011159 matrix material Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 27
- 238000009736 wetting Methods 0.000 claims description 23
- 230000004907 flux Effects 0.000 claims description 18
- 238000005538 encapsulation Methods 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 239000012790 adhesive layer Substances 0.000 claims description 9
- 238000007639 printing Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005275 alloying Methods 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000003486 chemical etching Methods 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 238000010147 laser engraving Methods 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims description 3
- 238000007650 screen-printing Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000011231 conductive filler Substances 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000002923 metal particle Substances 0.000 claims description 2
- 239000002070 nanowire Substances 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 238000004070 electrodeposition Methods 0.000 claims 1
- 230000008595 infiltration Effects 0.000 abstract description 4
- 238000001764 infiltration Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 51
- 230000008569 process Effects 0.000 description 14
- 239000003292 glue Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 229910001128 Sn alloy Inorganic materials 0.000 description 5
- 239000013039 cover film Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 229910001432 tin ion Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000846 In alloy Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Definitions
- the application belongs to the technical field of flexible display, and in particular relates to an LED film-attached screen and a manufacturing method thereof.
- LED film screen is applied to the target glass or curtain wall by the way of integral mounting, so as to endow it with the function of electronic display, while LED glass screen is a direct substitute for the target
- LED film screen is a direct substitute for the target
- the use of glass or curtain wall has certain differences in structure, use and production process.
- manufacturers of LED film screens have proposed the concept of LED soft film screens. Due to their good flexible deformation ability, they can meet the mounting requirements of special-shaped surfaces.
- LED surface mount technology is an indispensable link in the production of LED products, and its mounting efficiency has a great impact on the production of the entire LED product; at present, the chip technology in the production process of LED film screens mainly adopts First, print solder paste on the circuit pad by stencil printing, then use a dispenser to apply an adhesive to the center of the pad, and then use a placement machine to mount the LED chip based on the adhesive, and finally place it Send it into the reflow soldering equipment to melt the solder paste and connect and fix the LED chip pins and circuit pads.
- the above-mentioned process can achieve a relatively stable connection between the LED chip and the pad, there are still many problems; first, substrates such as PET expand and shrink irregularly during the stencil printing process, and the cumulative deviation of the long length is relatively large, which is easy to Affect the printing accuracy of solder paste, resulting in the stencils used in different batches or even the same batch of substrates cannot be used universally; moreover, the reflow soldering process has high requirements for the selectivity of the substrate temperature resistance, which is not suitable for PET, etc. Substrates with poor temperature resistance are likely to cause deformation of the substrate and poor transparency. Although some manufacturers have proposed a low-temperature SMT process, the structural strength of the LED chip is poor in the actual production process, and it is easy to cause solder joints, peeling, etc. The problem is that the yield is low.
- one purpose of this application is to propose a method for manufacturing LED film screens, so as to solve the problem that the production process of LED film screens in the prior art has high requirements on the selectivity of the substrate, and it is easy to cause deformation of the substrate and changes in transparency. bad question.
- the manufacturing method of the LED film screen includes: forming LED matrix conductive lines on the surface of the transparent film substrate; wherein, the LED matrix conductive lines include several groups to cooperate with LED chips to realize Electrically connected pad electrodes; LED chips are pasted at each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the immersion connection between the pins of the LED chip and the pad electrodes; wherein , the liquid metal is in a molten state at room temperature, and the wettability of the liquid metal to the metal provides binding force and electrical conduction between the pins of the LED chip and the pad electrodes.
- the LED chip is pasted at each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the connection between the pins of the LED chip and the pad electrodes.
- the wetting connection specifically includes: attaching the liquid metal to the pins of the LED chip, and then attaching the LED chip to the pad electrode, so that the pins of the LED chip are in contact with the pad electrode, and the liquid metal self-wetting and bonding The pad electrodes contacted by the pins of the LED chip realize the wetting connection between the pins of the LED chip and the pad electrodes.
- the method before mounting the LED chip, the method further includes: dipping the pins and/or pad electrodes of the LED chip in flux to remove metal oxide on the surface.
- the liquid metal contains metal components in the leads of the LED chip and/or the pad electrodes.
- the liquid metal has an alloying reaction with the lead of the LED chip and/or the metal component in the pad electrode.
- the conductive lines of the LED matrix are processed by sputtering, chemical etching, mechanical engraving, laser engraving, evaporation, chemical vapor deposition, physical vapor deposition, direct writing, printing, printing, or coating. formed in one or more ways.
- an adhesive layer is formed on the transparent film substrate to adhere to the bottom surface of the LED chip.
- an LED chip is pasted at each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the wetting connection between the pins of the LED chip and the pad electrodes Afterwards, the method further includes: encapsulating and strengthening between the pins of the LED chip and the pad electrodes.
- Another object of the present application is to provide an LED film screen to solve the problems in the prior art.
- the LED film screen includes: a transparent film substrate, and LED matrix conductive circuits formed on the surface of the transparent film substrate; wherein, the LED matrix conductive circuits include several groups of A pad electrode to cooperate with the LED chip to realize electrical connection; an LED chip mounted on the pad electrode of the conductive circuit of the LED matrix; wherein, a liquid metal is used between the pin of the LED chip and the pad electrode Wetting connection, the binding force and electrical conduction between the pins of the LED chip and the pad electrodes are provided by the wettability of the liquid metal to the metal.
- the LED film screen further includes: a packaging structure for packaging and strengthening between the pins of the LED chip and the pad electrodes.
- liquid metal is selected as the connection material between the LED chip and the pad, and the wettability of the liquid metal to the metal is used to generate a binding force on the LED chip and the pad, thereby ensuring the connection between the LED chip and the pad to a certain extent.
- this application does not need to open steel mesh, saves cost, is conducive to the promotion of efficiency.
- Fig. 1 is the flow chart of the manufacturing method of the LED stick film screen in the embodiment of the present application
- Fig. 2 is the schematic diagram of the manufacturing method of the LED stick film screen in the embodiment of the present application.
- Fig. 3 is a structural example 1 of the LED film-mounted screen in the embodiment of the present application.
- Fig. 4 is the structure example 2 of the LED film sticking screen in the embodiment of the present application.
- Fig. 5 is a third structural example of the LED film-mounted screen in the embodiment of the present application.
- the embodiment of the present application discloses a method for manufacturing an LED film screen, specifically, as shown in Figure 1-2,
- Figure 1 is a flow chart of the method for manufacturing an LED film screen in the embodiment of the application;
- Figure 2 is the Schematic diagram of the manufacturing method of the LED film screen in the application example.
- the manufacturing method of the LED film screen includes:
- Step S11 forming LED matrix conductive lines 2 on the surface of the transparent film substrate 1; wherein, the LED matrix conductive lines 2 include several groups of pad electrodes 6 for matching with the LED chips 3 to realize electrical connection;
- Step S12 mount the LED chip 3 at each group of pad electrodes 6 of the LED matrix conductive circuit 2, and use liquid metal 5 to achieve wetting between the pins 4 of the LED chip 3 and the pad electrodes 6 Connection; wherein, the binding force and electrical conduction between the pin 4 of the LED chip 3 and the pad electrode 6 are provided by the wettability of the metal by the liquid metal 5 .
- liquid metal is selected as the connection material between the LED chip and the pad, and the wettability of the liquid metal to the metal is used to generate binding force and electrical conduction on the LED chip and the pad, thereby to a certain extent Ensure the connection between the LED chip and the pad.
- the liquid metal can be in a molten state at room temperature, it can meet the use requirements of most substrates. It does not need to go through the reflow process, and can avoid deformation and transparency of the substrate. The problem of deterioration; moreover, this application does not need to open the stencil, which saves costs and is conducive to the improvement of efficiency.
- the transparent film substrate in the embodiment of the present application can be selected from transparent materials with good or poor temperature resistance, especially suitable for transparent substrates with poor temperature resistance; transparent film substrates are not limited to soft or hard ones. Film/sheet. Specifically, the transparent film substrate in the embodiment of the present application is not limited to PET, PVC, PU, PC, PP, PA, CPI (transparent PI), PMMA (Acrylic) and the like.
- the conductive lines of the LED matrix in the embodiment of the present application can be formed by one or more of sputtering, chemical etching, mechanical engraving, laser engraving, evaporation, chemical vapor deposition, physical vapor deposition, direct writing, printing, printing, and coating.
- the material of the LED matrix conductive circuit is not limited to the simple substance or alloy of copper, silver, gold, nickel, tin, aluminum, etc., conductive metal oxides (such as ITO indium tin oxide), and metal nanowires, metal particles Conductive inks that are conductive fillers.
- the conductive circuit of the LED matrix realizes the requirement of transparency through the hollow design, and the specific line width and spacing can refer to the conventional design in the prior art.
- the placement of the LED chip in the embodiment of the present application can use the CCD alignment placement equipment in the prior art, so as to realize the precise alignment placement between the LED chip and the pad electrode.
- the liquid metal in the embodiment of the present application can be selected from liquid metal at room temperature.
- Liquid metal at room temperature refers to a low melting point metal element or alloy in a molten state at room temperature, that is, the melting point of a low melting point metal element or alloy is not higher than room temperature, and is not limited to Gallium-based alloys such as simple gallium, gallium-indium alloy, gallium-tin alloy, gallium-indium-tin alloy, gallium-indium-tin-zinc alloy, etc.
- the liquid metal may also contain trace amounts of other metal components, such as copper, silver, gold, nickel, copper, tin, etc., to further enhance the affinity of the liquid metal to the relevant metal surface.
- the liquid metal can also be a metal paste that can be doped with micro-nano conductive particles in the liquid metal.
- the micro-nano conductive particles are not limited to gold, silver, copper, nickel, tin, graphene, carbon nanotubes, and conductive carbon. Black and so on.
- step S12 LED chips are attached to each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the wetting connection between the pins of the LED chip and the pad electrodes.
- liquid metal is used to realize the wetting connection between the pins of the LED chip and the pad electrodes.
- it may include: attaching the liquid metal to the pins of the LED chip, and then attaching the LED chip to the pad electrode, so that the pins of the LED chip are in contact with the pad electrode, and the liquid metal self-wets and contacts the LED chip.
- the pad electrodes contacted by the pins of the chip realize the wetting connection between the pins of the LED chip and the pad electrodes.
- the liquid metal can be attached to the pins of the LED chip by immersing the pins of the LED chip in the liquid metal.
- This process can be completed by the placement equipment. After the pin is attached, it is directly mounted on the pad electrode of the LED matrix conductive circuit. This process does not require the assistance of other equipment/tooling, which simplifies the process flow, reduces equipment requirements, and improves production efficiency.
- the LED chip is mounted at each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the wetting between the pins of the LED chip and the pad electrodes.
- the connection may specifically include: attaching liquid metal to the pad electrode, and then mounting the LED chip on the pad electrode, so that the pins of the LED chip are in contact with the pad electrode, and the liquid metal is infiltrated by itself and contacts the pad electrode. The pins of the LED chip realize the wetting connection between the pins of the LED chip and the pad electrodes.
- the liquid metal can be printed on the pad electrodes by screen printing.
- the LED chips before mounting the LED chips in step S12, it may further include: dipping the pins and/or pad electrodes of the LED chips in flux to remove metal oxides on the surface .
- the metal oxide on the surface of the pin and/or pad electrode of the LED chip is removed by flux, thereby improving the adhesion of the surface to the liquid metal and ensuring the wetting and adhesion of the liquid metal; in addition, it also helps to remove the LED chip. Impurities in the non-pin area of the chip prevent liquid metal from sticking to the surface of the LED chip shell. After the LED chip pins and pad electrodes are connected through liquid metal, they have a certain connection strength. Therefore, the residual flux on the surface can be cleaned by water flow to ensure that the product will not be affected by it during subsequent processing.
- the flux in the embodiment of the present application can be a flux liquid or a solder paste, and its main function is to eliminate the metal oxide film formed on the pins and pad electrodes of the LED chip due to long-term exposure to the air.
- the metal oxide film formed is mainly tin oxide, and copper oxide may also exist in other cases, so organic acid can be used as the flux Or use flux containing organic acid, the organic salt and water obtained through the reaction can be easily removed, and the residual organic acid can be eliminated by natural evaporation or heat drying.
- the liquid metal contains metal components in the leads of the LED chip and/or the pad electrodes.
- the affinity of the liquid metal on the pins and/or pad electrodes of the LED chip can be further strengthened, so that The liquid metal is easier to wet, thereby improving the connection strength between the pins of the LED chip and the pad electrodes.
- the liquid metal has an alloying reaction with the lead of the LED chip and/or the metal component in the pad electrode.
- its adhesion is stronger than that of pure metal infiltration, which can make The connection strength between the pins of the LED chip and the pad electrodes is further improved.
- the alloying reaction between the metals it can be transformed from the wetting force connection of the liquid metal to the solid connection of the alloyed product. , which greatly improves the stable structure between the pins of the LED chip and the pad electrodes.
- tin ions can also be included in the soldering flux used in the present application; first, tin ions can undergo substitution reactions with metal elements/metal alloys that are more active in low melting point metals, such as gallium, indium, etc. , sodium, potassium, etc. In this way, tin ions are attached to the pins and/or pad electrodes of the LED chip, and the tin element (melted state/free state) melted in the low-melting point metal is extracted from the flux during the process of contacting with the liquid metal.
- gallium-indium alloy can be selected as the liquid metal, so that the simple substance of tin will spontaneously react with the gallium-indium alloy to obtain gallium-tin alloy, gallium-indium-tin alloy, indium-tin alloy, etc.
- tin ions can be obtained from any soluble tin salt, such as tin chloride.
- the LED chip before mounting the LED chip in step S12 may also include: using alcohol to remove excess flux (that is, not covered by liquid metal, exposed flux), to avoid causing damage to subsequent processing.
- alcohol is also beneficial to remove metal oxides on the surface of liquid metal, thereby improving the wetting effect of liquid metal.
- alcohol is used to remove excess flux and oxides on the surface of the liquid metal, and the residual alcohol will evaporate quickly without affecting subsequent processing.
- an adhesive layer 7 is formed on the transparent film substrate 1 (for example, the central position of the pad region) to adhere to the bottom surface of the LED chip 3 , thereby further improving the structural stability of the LED chip 3 on the transparent film substrate 1 .
- the adhesive layer 7 can be formed by dispensing glue through a glue dispensing machine (not limited to single-point dispensing or simultaneous dispensing of multiple heads side by side). In other embodiments, it can also be formed by screen printing. .
- the LED matrix conductive lines 2 formed on the transparent film substrate 1 in the embodiment of the present application are in a regular arrangement structure, and some of the pad electrodes 6 on it are connected to each other.
- the intervals are in rows/columns, etc. on a straight line, so in the process of dispensing glue, you can directly dispense glue on the pad electrodes in the form of dots and dashes to form a linear adhesive layer 7, which can meet the needs of multiple LEDs.
- the patching of chip 3 avoids the problem of low efficiency caused by one-by-one dispensing.
- an LED chip is pasted at each group of pad electrodes of the LED matrix conductive circuit, and liquid metal is used to realize the connection between the pins of the LED chip and the pad electrodes.
- liquid metal is used to realize the connection between the pins of the LED chip and the pad electrodes.
- it may also include: encapsulation and reinforcement between the pin 4 of the LED chip 3 and the pad electrode 6, so as to form the packaging structure 8 of the LED chip 3 and the pad electrode 6, thereby Ensure the connection strength between the LED chip 3 and the pad electrode 6 .
- encapsulation and reinforcement between the pins of the LED chip and the pad electrodes is not limited to individual dispensing and encapsulation of each LED chip and the corresponding pad electrodes, and the encapsulation glue can only cover the LED chip.
- the connection between the pins and the pad electrodes can also cover the LED chips and the pad electrodes as a whole;
- the disc electrode is integrated package.
- the cover film can be made of a flexible and stretchable material, so as to meet the attachment to multiple sides of the LED chip.
- the LED chip and the pad electrode have established a good structural strength through the liquid metal, it is not easy to cause looseness between the LED chip and the pad electrode during the above-mentioned dispensing, glue filling, and film pressing processes, ensuring Normal connection between LED chip and pad electrode.
- LED matrix conductive circuit on the surface of transparent film substrate; Wherein, described LED matrix conductive circuit comprises several groups of pad electrodes for matching LED chip to realize electric connection;
- LED matrix conductive circuit on the surface of transparent film substrate; Wherein, described LED matrix conductive circuit comprises several groups of pad electrodes for matching LED chip to realize electric connection;
- LED matrix conductive circuit on the surface of transparent film substrate; Wherein, described LED matrix conductive circuit comprises several groups of pad electrodes for matching LED chip to realize electric connection;
- FIG. 5 is the third structural example of the LED film screen in the embodiment of the present application.
- the LED film screen can be obtained through the manufacturing method of the LED film screen in the embodiment of the present application.
- the LED film screen includes: a transparent film substrate 1; an LED matrix conductive circuit 2 formed on the surface of the transparent film substrate 1; wherein, the LED matrix conductive circuit 2 includes several groups to cooperate with the LED chip 3 to realize electrical Connected pad electrode 6; LED chip 3 mounted on pad electrode 6 of LED matrix conductive circuit 2; wherein, liquid metal 5 is wrapped between pin 4 of LED chip 3 and pad electrode 6; The liquid metal 5 realizes the wetting connection between the pin 4 of the LED chip 3 and the pad electrode 6, and the wettability of the liquid metal 5 to the metal provides a connection between the pin 4 of the LED chip 3 and the pad electrode 6. binding force and electrical continuity.
- the liquid metal has the same metal composition as the lead and/or pad electrode of the LED chip, so as to improve the wettability of the liquid metal thereon;
- an alloying reaction can be performed between the liquid metal and the pins and/or pad electrodes of the LED chip, thereby improving the wettability and structural strength of the liquid metal on it;
- the LED film screen further includes: the transparent film substrate 1 (such as the central position of the pad area) formed at the position of the non-pad electrode 6 in the pad area of the LED matrix conductive circuit 2
- the adhesive layer 7 is used to provide adhesion between the LED chip 3 and the transparent film substrate 1 , so as to ensure a stable structure between the LED chip 3 and the pad electrode 6 .
- the adhesive layer 7 can have a linear structure, so as to meet the mounting of multiple LED chips 3 .
- the LED film screen further includes: an encapsulation structure 8 formed between the LED chip 3 and the pad electrode 6 , so as to strengthen the connection between the LED chip 3 and the pad electrode 6 .
- the encapsulation structure is not limited to single-point encapsulation structure and full-cover encapsulation structure; encapsulation material is not limited to cured glue or cover film.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Led Device Packages (AREA)
Abstract
本申请涉及一种LED贴膜屏及其制作方法,涉及柔性显示技术领域;该LED贴膜屏的制作方法,包括:在透明薄膜基材的表面上形成LED矩阵导电线路;LED矩阵导电线路包含若干组焊盘电极;在LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现LED引脚与焊盘电极之间的浸润连接;由熔融的液态金属对金属的浸润性提供LED引脚与焊盘电极之间的束缚力和电气导通。本申请实施例中通过选用液态金属作为LED芯片与焊盘之间的连接材料,利用液态金属对金属的浸润性而产生对LED芯片与焊盘的束缚力,保证LED芯片与焊盘之间的连接,同时由于液态金属在室温环境下即可呈现熔融状态,因此可以满足绝大多数基材的使用要求,可以避免基材变形与透明度变差的问题。
Description
本申请要求于2021年07月17日提交中国专利局,申请号为202110809395.X,申请名称为“一种LED贴膜屏及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于柔性显示技术领域,尤其涉及一种LED贴膜屏及其制作方法。
随着人们日常水平的不断提高,科学技术的不断发展,近些年在透明基板上阵列分布LED灯的透明LED显示屏技术开始出现,并在近两年的市场中逐步得到广泛的应用,发展出各种产品形态,例如LED贴膜屏和LED玻璃屏,LED贴膜屏是通过整体贴装的方式施加在目标玻璃或幕墙上,从而赋予其电子显示的功能,而LED玻璃屏则是直接替代目标玻璃或幕墙使用,两者从结构、用途、制作工艺上均有一定的差异。并且,最近LED贴膜屏方面厂商提出了LED软膜屏的概念,由于具有良好的柔性变形能力,使其可满足异型面的贴装。
LED表面贴装工艺作为LED产品生产中必不可缺的一个环节,其装贴效率对于整个LED产品的生产具有较大的影响;目前,LED贴膜屏生产过程中的贴片工艺,主要采取的是首先通过钢网印刷的方式在线路焊盘上印刷锡膏,然后利用点胶机在焊盘中心施加粘接剂,再基于该粘接剂利用贴片机实现LED芯片的贴装,最后将其送入回流焊设备中,使锡膏熔融并连接固定LED芯片引脚与线路焊盘。
上述工艺虽然可以实现LED芯片与焊盘之间较为稳固的连接,但也存在诸多问题;首先,PET等基材在钢网印刷加工过程中涨缩不规则,长尺幅累积偏差较大,容易影响锡膏的印刷精度,造成不同批次甚至同一批次基材所采用的钢网无法通用;再有,回流焊工艺对于基材耐温性的选择性要求较高,不适用于如PET等耐温性较 差的基材,容易引起基材的变形,透明度变差等问题,虽然有厂商提出低温SMT工艺,但实际生产过程中LED芯片的结构强度较差,容易产生虚焊、剥落等问题,良率较低。
申请内容
有鉴于此,本申请的一个目的是提出一种LED贴膜屏的制作方法,以解决现有技术中LED贴膜屏的制作工艺,对基材的选择性要求高、容易引起基材变形、透明度变差的问题。
在一些说明性实施例中,所述LED贴膜屏的制作方法,包括:在透明薄膜基材的表面上形成LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接;其中,所述液态金属在室温环境下呈熔融状态,由液态金属对金属的浸润性提供所述LED芯片的引脚与所述焊盘电极之间的束缚力和电气导通。
在一些可选地实施例中,所述在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接,具体包括:在LED芯片的引脚上附着所述液态金属,再将该LED芯片贴装在焊盘电极处,使LED芯片的引脚与焊盘电极接触,由液态金属自行浸润与LED芯片的引脚接触的焊盘电极,实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接。
在一些可选地实施例中,在贴装所述LED芯片之前,还包括:将所述LED芯片的引脚和/或焊盘电极浸渍在助焊剂中,去除表面上的金属氧化物。
在一些可选地实施例中,所述液态金属含有所述LED芯片的引脚和/或所述焊盘电极中的金属成分。
在一些可选地实施例中,所述液态金属与所述LED芯片的引脚和/或所述焊盘电极中的金属成分产生合金化反应。
在一些可选地实施例中,所述LED矩阵导电线路通过溅射、化学蚀刻、机械雕刻、激光雕刻、蒸镀、化学气相沉积、物理气相沉积、直写、打印、印刷、涂布中的一种或多种方式形成。
在一些可选地实施例中,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片之前,还包括:在LED矩阵导电线路的焊盘区域内的非焊盘电极位置处的透明薄膜基材上形成粘接层,用以粘附LED芯片的底面。
在一些可选地实施例中,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接之后,还包括:对所述LED芯片的引脚与所述焊盘电极之间进行封装加固。
本申请的另一个目的在于提供一种LED贴膜屏,以解决现有技术中的问题。
在一些说明性实施例中,所述LED贴膜屏,包括:透明薄膜基材、以及形成在所述透明薄膜基材表面上的LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;贴装在所述LED矩阵导电线路的焊盘电极上的LED芯片;其中,所述LED芯片的引脚与所述焊盘电极之间利用液态金属浸润连接,由液态金属对金属的浸润性提供所述LED芯片的引脚与所述焊盘电极之间的束缚力和电气导通。
在一些可选地实施例中,所述LED贴膜屏,还包括:对所述LED芯片的引脚与所述焊盘电极之间进行封装加固的封装结构。
与现有技术相比,本申请具有如下优势:
本申请实施例中通过选用液态金属作为LED芯片与焊盘之间的连接材料,利用液态金属对金属的浸润性而产生对LED芯片与焊盘的束缚力,从而在一定程度上保证LED芯片与焊盘之间的连接,同时由于液态金属在室温环境下即可呈现熔融状态,因此可以满足绝大多数基材的使用要求,无需经过回流焊工艺,可以避免基材变形与透明度变差的问题;再有,本申请不需要开钢网,节省成本、有利于效率的提升。
图1为本申请实施例中的LED贴膜屏的制作方法的流程图;
图2为本申请实施例中的LED贴膜屏的制作方法的示意图;
图3为本申请实施例中的LED贴膜屏的结构示例一;
图4为本申请实施例中的LED贴膜屏的结构示例二;
图5为本申请实施例中的LED贴膜屏的结构示例三。
以下描述和附图充分地示出本申请的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本申请的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本申请的这些实施方案可以被单独地或总地用术语“申请”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的申请,不是要自动地限制该应用的范围为任何单个申请或申请构思。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
本申请实施例中公开了一种LED贴膜屏的制作方法,具体地,如图1-2所示,图1为本申请实施例中的LED贴膜屏的制作方法的流程图;图2为本申请实施例中的LED贴膜屏的制作方法的示意图。该LED贴膜屏的制作方法,包括:
步骤S11、在透明薄膜基材1的表面上形成LED矩阵导电线路2;其中,所述LED矩阵导电线路2包含若干组用以配合LED芯片3实现电连接的焊盘电极6;
步骤S12、在所述LED矩阵导电线路2的每组焊盘电极6处贴装LED芯片3,利用液态金属5实现所述LED芯片3的引脚4与所述焊盘电极6之间的浸润连接;其中,由液态金属5对金属的浸润性提供所述LED芯片3的引脚4与所述焊盘电极6之间的束缚力和电气导通。
本申请实施例中通过选用液态金属作为LED芯片与焊盘之间的连接材料,利用液态金属对金属的浸润性而产生对LED芯片与焊盘的束缚力和电气导通,从而在一定程度上保证LED芯片与焊盘之间的连接,同时由于液态金属在室温环境下即可呈现熔融状态,因此可以满足绝大多数基材的使用要求,无需经过回流焊工艺,可以避免基材变形与透明度变差的问题;再有,本申请不需要开钢网,节省成本、有利 于效率的提升。
本申请实施例中的透明薄膜基材可以选用耐温性良好或耐温性较差的透明材料,尤其适用于温性较差的透明基材;透明薄膜基材不限于柔质或硬质的膜材/片材。具体地,本申请实施例中的透明薄膜基材不限于PET、PVC、PU、PC、PP、PA、CPI(透明PI)、PMMA(亚力克)等。
本申请实施例中的LED矩阵导电线路可通过溅射、化学蚀刻、机械雕刻、激光雕刻、蒸镀、化学气相沉积、物理气相沉积、直写、打印、印刷、涂布中的一种或多种方式形成;LED矩阵导电线路的材质不限于铜、银、金、镍、锡、铝等的单质或合金、导电的金属氧化物(如ITO氧化铟锡)、以及以金属纳米线、金属颗粒为导电填料的导电油墨。该LED矩阵导电线路通过镂空设计实现透明度的要求,具体线宽及间距可参照现有技术中的常规设计。
本申请实施例中的LED芯片的贴装可以使用现有技术中CCD对位贴片设备,以此实现LED芯片与焊盘电极之间的精准对位贴装。
本申请实施例中的液态金属可以选用室温液态金属,室温液态金属是指在室温环境下呈现熔融状态的低熔点金属单质或合金,即低熔点金属单质或合金的熔点不高于室温,不限于镓单质、镓铟合金、镓锡合金、镓铟锡合金、镓铟锡锌合金等镓基合金。除此之外,液态金属中还可以包含微量的其它金属成分,用以进一步提升液态金属对相关金属表面的亲和性,金属成分例如铜、银、金、镍、铜、锡等。在一些实施例中,液态金属亦可选用液态金属中可掺杂微纳米导电颗粒的金属膏,微纳米导电颗粒不限于金、银、铜、镍、锡、石墨烯、碳纳米管、导电炭黑等。
在一些实施例中,步骤S12的在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接,具体可包括:在LED芯片的引脚上附着所述液态金属,再将该LED芯片贴装在焊盘电极处,使LED芯片的引脚与焊盘电极接触,由液态金属自行浸润与LED芯片的引脚接触的焊盘电极,实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接。
该实施例中可以通过将LED芯片的引脚浸渍在液态金属中,从而使液态金属附着在LED芯片的引脚上,该工艺可由贴片设备完成,贴片设备在完成液态金属在LED 芯片的引脚上的附着后,直接将其贴装在LED矩阵导电线路的焊盘电极处,该过程无需其它设备/工装的辅助,简化了工艺流程,降低了设备要求,提高了制作效率。
在另一些实施例中,步骤S12的在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接,具体可包括:在焊盘电极上附着液态金属,再在该焊盘电极上贴装LED芯片,使LED芯片的引脚与焊盘电极接触,由液态金属自行浸润与焊盘电极接触的LED芯片的引脚,实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接。
该实施例中可以通过丝网印刷的方式将液态金属印刷在焊盘电极上,在另一些实施例中,亦可通过在LED矩阵导电线路的非焊盘电极处形成覆盖膜,然后利用喷涂或浸渍的方式使液态金属附着在焊盘电极上,该工艺通过一次性大范围的实现液态金属附着,无需对每个LED芯片进行一次浸渍操作,提升了制作效率,尤其适用于多LED芯片、大范围的同时贴装。
在一些实施例中,在步骤S12的在贴装所述LED芯片之前,还可包括:将所述LED芯片的引脚和/或焊盘电极浸渍在助焊剂中,去除表面上的金属氧化物。该实施例中通过助焊剂去除LED芯片的引脚和/或焊盘电极表面的金属氧化物,从而提升其表面对液态金属的附着力,保证液态金属的浸润附着;另外,也有助于去除LED芯片非引脚区域的杂质,避免液态金属粘连LED芯片壳体表面。在LED芯片的引脚和焊盘电极通过液态金属建立连接后,具有一定的连接强度,因此可利用水流清洗表面残留的助焊剂,保证产品在后续加工的过程中不受其影响。
本申请实施例中的助焊剂可采用助焊液,亦可采用助焊膏,其主要功能是用于消除LED芯片的引脚和焊盘电极上由于长期暴露空气中形成的金属氧化膜。优选地,鉴于目前LED芯片的引脚主要是以锡包铜为主,所形成的金属氧化膜主要是氧化锡,在其他情况下可能还会存在氧化铜,因此可通过以有机酸作为助焊剂或使用包含有机酸的助焊剂,通过反应得到的有机盐和水,易于排除,残余的有机酸则可通过自然蒸发或热烘的方式消除。
在一些实施例中,所述液态金属含有所述LED芯片的引脚和/或所述焊盘电极中的金属成分。该实施例中由于液态金属中含有与LED芯片的引脚和/或焊盘电极中相 同的金属成分,可进一步加强液态金属在LED芯片的引脚和/或焊盘电极的亲和性,使液态金属更易浸润,从而提升LED芯片的引脚与焊盘电极的连接强度。
在一些实施例中,所述液态金属与所述LED芯片的引脚和/或所述焊盘电极中的金属成分产生合金化反应。该实施例中基于液态金属与LED芯片的引脚和/或所述焊盘电极中的金属成分的合金化反应,一方面相比于单纯的金属浸润而言,其附着力更强,可使LED芯片的引脚与焊盘电极之间的连接强度进一步的提升,另一方面,由于金属间的合金化反应,可使其从利用液态金属的浸润力连接,转变为合金化产品的固态连接,极大的提升LED芯片的引脚与焊盘电极之间的稳固结构。
在一些实施例中,本申请所使用的助焊剂中还可包括锡离子;首先,锡离子可与低熔点金属中比其活性更靠前的金属单质/金属合金发生置换反应,如镓、铟、钠、钾等。从而使LED芯片的引脚和/或焊盘电极上附着锡离子,在与液态金属接触的过程中,从助焊剂中提取融于低熔点金属中的锡单质(熔融态/游离态)。优选地,液态金属可选用镓铟合金,使锡单质又会自发的与镓铟合金产生合金反应,得到的如镓锡合金、镓铟锡合金、铟锡合金等。其中,锡离子可通过任何可溶锡盐中获得,如氯化锡。
在一些实施例中,在步骤S12的在贴装所述LED芯片之前,还可包括:利用酒精去除多余的助焊剂(即未被液态金属遮盖,暴露在外的助焊剂),避免对后续加工造成影响;除此之外,酒精还有利于去除液态金属表面上的金属氧化物,从而提升液态金属的浸润效果。该实施例中采用酒精去除多余助焊剂和液态金属表面氧化物,残留的酒精会快速挥发,不会对后续加工造成影响。
如图3所示,在一些实施例中,在步骤S12的在贴装所述LED芯片3之前,还可包括:在LED矩阵导电线路2的焊盘区域内的非焊盘电极6位置处的透明薄膜基材1(例如焊盘区域的中心位置)上形成粘接层7,用以粘附LED芯片3的底面,从而可以进一步提升LED芯片3在透明薄膜基材1上的结构稳定。该粘接层7可以利用胶粘剂通过点胶机以点胶的方式形成(不限于单点式点胶或多头并排同时点胶),在另一些实施例中,亦可采用丝网印刷的方式形成。
如图4所示,优选地,本申请实施例中形成在透明薄膜基材1上的LED矩阵导 电线路2为规整排布结构,其上的所有焊盘电极6中的部分焊盘电极相互之间为成行/成列等在一条直线上,因此在点胶的过程中可以直接以点划线的方式在焊盘电极上点胶,形成直线形的粘接层7,从而可以满足多个LED芯片3的贴片,避免逐个式点胶造成的效率低的问题。
如图5所示,在一些实施例中,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接之后,还可包括:对所述LED芯片3的引脚4与所述焊盘电极6之间进行封装加固,从而在形成LED芯片3和焊盘电极6的封装结构8,以此保证LED芯片3与焊盘电极6之间的连接强度。
该实施例中对所述LED芯片的引脚与所述焊盘电极之间进行封装加固,不限于对每个LED芯片与相应的焊盘电极进行单独点胶封装,封装胶可仅覆盖LED芯片的引脚与焊盘电极的连接处,也可以整体覆盖LED芯片与焊盘电极;在另一些实施例中,亦可通过在透明薄膜基材上浇筑流化胶,从而对所有LED芯片与焊盘电极进行一体化封装。再有,也可以通过对覆盖膜的方式对所有LED芯片与焊盘电极进行一体化封装,利用抽真空的方式使覆盖膜对紧密的贴附在暴露在外的透明薄膜基材、LED芯片、焊盘电极上。优选地,该覆盖膜可选用柔性可拉伸材料,以此满足对LED芯片多个面的贴附。
该实施例中由于LED芯片与焊盘电极通过液态金属建立了良好的结构强度,因此在上述点胶、灌胶、压膜的过程中,不易造成LED芯片与焊盘电极之间的松动,保证LED芯片与焊盘电极之间的正常连接。
实施例1
a.在透明薄膜基材的表面上形成LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;
b.利用CCD贴片机抓取LED芯片,并将LED芯片的引脚浸渍在液态金属池中,从而使LED芯片的引脚附着液态金属;
c.将LED芯片贴装在焊盘电极上,使液态金属浸润与LED芯片的引脚接触的焊盘电极,利用液态金属建立LED芯片的引脚与焊盘电极的浸润连接;
d.重复步骤b和c,直至LED芯片的全部贴装完成。
实施例2
a.在透明薄膜基材的表面上形成LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;
b.利用CCD贴片机抓取LED芯片,将LED芯片的引脚浸渍在助焊剂中;
c.将LED芯片的引脚浸渍在液态金属池中,从而使LED芯片的引脚附着液态金属;
d.将LED芯片贴装在焊盘电极上,使液态金属浸润与LED芯片的引脚接触的焊盘电极,利用液态金属建立LED芯片的引脚与焊盘电极的浸润连接;
d.重复步骤b、c和d,直至LED芯片的全部贴装完成。
实施例3
a.在透明薄膜基材的表面上形成LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;
b.利用CCD贴片机抓取LED芯片,将LED芯片的引脚浸渍在助焊剂中;
c.将LED芯片的引脚浸渍在液态金属池中,从而使LED芯片的引脚附着液态金属;
d.将LED芯片的引脚浸渍在酒精中;
e.将LED芯片贴装在焊盘电极上,使液态金属浸润与LED芯片的引脚接触的焊盘电极,利用液态金属建立LED芯片的引脚与焊盘电极的浸润连接;
f.重复步骤b、c、d和e,直至LED芯片的全部贴装完成。
本申请实施例中还公开了一种LED贴膜屏,具体的,如图3-5所示,图3为本申请实施例中的LED贴膜屏的结构示例一;图4为本申请实施例中的LED贴膜屏的结构示例二;图5为本申请实施例中的LED贴膜屏的结构示例三。该LED贴膜屏可通过本申请实施例的LED贴膜屏的制作方法获得。具体地,该LED贴膜屏,包括:透明薄膜基材1;形成在透明薄膜基材1表面上的LED矩阵导电线路2;其中,LED矩阵导电线路2包含若干组用以配合LED芯片3实现电连接的焊盘电极6;贴装在 LED矩阵导电线路2的焊盘电极6上的LED芯片3;其中,LED芯片3的引脚4与焊盘电极6之间包绕有液态金属5;利用液态金属5实现LED芯片3的引脚4与焊盘电极6之间的浸润连接,由液态金属5对金属的浸润性提供所述LED芯片3的引脚4与所述焊盘电极6之间的束缚力和电气导通。
在一些实施例中,液态金属与LED芯片的引脚和/或焊盘电极之间具有相同的金属成分,以此提升液态金属在其上的浸润性;
在一些实施例中,液态金属与LED芯片的引脚和/或焊盘电极之间可进行合金化反应,从而提升液态金属在其上的浸润性及结构强度;
在一些实施例中,LED贴膜屏,还包括:形成在LED矩阵导电线路2的焊盘区域内的非焊盘电极6位置处的透明薄膜基材1(例如焊盘区域的中心位置)上的粘接层7,用以提供LED芯片3与透明薄膜基材1之间的粘附力,从而保证LED芯片3与焊盘电极6之间的稳定结构。优选地,粘接层7可为直线形结构,以此满足多个LED芯片3的贴装。
在一些实施例中,LED贴膜屏,还包括:形成在LED芯片3和焊盘电极6之间的封装结构8,以此实现对LED芯片3与焊盘电极6之间连接的加固。该封装结构不限于单点式封装结构、全覆式封装结构;封装材料不限于固化胶或覆盖膜。
本领域技术人员还应当理解,结合本文的实施例描述的各种说明性的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或其组合。为了清楚地说明硬件和软件之间的可交换性,上面对各种说明性的部件、框、模块、电路和步骤均围绕其功能进行了一般地描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开的保护范围。
Claims (18)
- 一种LED贴膜屏的制作方法,其特征在于,包括:在透明薄膜基材的表面上形成LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接;其中,所述液态金属在室温环境下呈熔融状态,由液态金属对金属的浸润性提供所述LED芯片的引脚与所述焊盘电极之间的束缚力和电气导通。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接,具体包括:在LED芯片的引脚上附着所述液态金属,再将该LED芯片贴装在焊盘电极处,使LED芯片的引脚与焊盘电极接触,由液态金属自行浸润与LED芯片的引脚接触的焊盘电极,实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接,具体包括:在所述焊盘电极上附着液态金属,再在该焊盘电极上贴装LED芯片,使LED芯片的引脚与焊盘电极接触,由液态金属自行浸润与焊盘电极接触的LED芯片的引脚,实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接。
- 根据权利要求3所述的LED贴膜屏的制作方法,其特征在于,通过丝网印刷的方式在所述焊盘电极上附着液态金属。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,在贴装所述LED芯片之前,还包括:将所述LED芯片的引脚和/或焊盘电极浸渍在助焊剂中,去除表面上的金属氧化 物。
- 根据权利要求5所述的LED贴膜屏的制作方法,其特征在于,在所述将所述LED芯片的引脚和/或焊盘电极浸渍在助焊剂中,去除表面上的金属氧化物之后,还包括:利用酒精去除残余的助焊剂。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述液态金属含有所述LED芯片的引脚和/或所述焊盘电极中的金属成分。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述液态金属与所述LED芯片的引脚和/或所述焊盘电极中的金属成分产生合金化反应。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述LED矩阵导电线路通过溅射、化学蚀刻、机械雕刻、激光雕刻、蒸镀、化学气相沉积、物理气相沉积、直写、打印、印刷、涂布中的一种或多种方式形成。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述LED矩阵导电线路的材质为以下之一:以金属颗粒为导电填料的导电油墨;金属单质;金属合金;金属氧化物;和,金属纳米线。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片之前,还包括:在LED矩阵导电线路的焊盘区域内的非焊盘电极位置处的透明薄膜基材上形成粘接层,用以粘附LED芯片的底面。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,在所述LED矩阵导电线路的每组焊盘电极处贴装LED芯片,利用液态金属实现所述LED芯片的引脚与所述焊盘电极之间的浸润连接之后,还包括:对所述LED芯片的引脚与所述焊盘电极之间进行封装加固。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述透明薄膜 基材选用PET、PVC、PU、PC、PP、PA、CPI或PMMA。
- 根据权利要求1所述的LED贴膜屏的制作方法,其特征在于,所述液态金属中至少包含镓单质或镓基合金。
- 一种LED贴膜屏,其特征在于,包括:透明薄膜基材、以及形成在所述透明薄膜基材表面上的LED矩阵导电线路;其中,所述LED矩阵导电线路包含若干组用以配合LED芯片实现电连接的焊盘电极;贴装在所述LED矩阵导电线路的焊盘电极上的LED芯片;其中,所述LED芯片的引脚与所述焊盘电极之间利用液态金属浸润连接,由液态金属对金属的浸润性提供所述LED芯片的引脚与所述焊盘电极之间的束缚力和电气导通。
- 根据权利要求15所述的LED贴膜屏,其特征在于,还包括:形成在所述透明导电基材非焊盘电极位置处的粘接层,与所述LED芯片粘接。
- 根据权利要求16所述的LED贴膜屏,其特征在于,所述粘接层为满足多个所述LED芯片贴装的直线形结构。
- 根据权利要求15所述的LED贴膜屏,其特征在于,还包括:对所述LED芯片的引脚与所述焊盘电极之间进行封装加固的封装结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110809395.XA CN113410219A (zh) | 2021-07-17 | 2021-07-17 | 一种led贴膜屏及其制作方法 |
CN202110809395.X | 2021-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023000562A1 true WO2023000562A1 (zh) | 2023-01-26 |
Family
ID=77686765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/131605 WO2023000562A1 (zh) | 2021-07-17 | 2021-11-19 | 一种led贴膜屏及其制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113410219A (zh) |
WO (1) | WO2023000562A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118377389A (zh) * | 2023-03-10 | 2024-07-23 | 深圳市中佑光学科技有限公司 | Led屏幕贴合膜片及其制造方法 |
CN118588825A (zh) * | 2024-08-05 | 2024-09-03 | 汕头超声显示器技术有限公司 | 一种led阵列装置的制造方法及制造设备 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113410219A (zh) * | 2021-07-17 | 2021-09-17 | 北京梦之墨科技有限公司 | 一种led贴膜屏及其制作方法 |
CN118156398B (zh) * | 2024-05-10 | 2024-07-12 | 汕头超声显示器技术有限公司 | 一种led阵列装置的制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060083655A1 (en) * | 2004-10-20 | 2006-04-20 | Dai Nippon Printing Co., Ltd. | Ga-base alloy and organic function element using the same |
CN102779923A (zh) * | 2012-07-09 | 2012-11-14 | 厦门飞德利照明科技有限公司 | 一种贴片式led模组的制造方法 |
CN108112188A (zh) * | 2017-12-20 | 2018-06-01 | 深圳大学 | 一种基于液态金属的焊接方法 |
CN110972409A (zh) * | 2018-09-29 | 2020-04-07 | 北京梦之墨科技有限公司 | 一种元件装配方法及装置 |
CN113410219A (zh) * | 2021-07-17 | 2021-09-17 | 北京梦之墨科技有限公司 | 一种led贴膜屏及其制作方法 |
-
2021
- 2021-07-17 CN CN202110809395.XA patent/CN113410219A/zh active Pending
- 2021-11-19 WO PCT/CN2021/131605 patent/WO2023000562A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060083655A1 (en) * | 2004-10-20 | 2006-04-20 | Dai Nippon Printing Co., Ltd. | Ga-base alloy and organic function element using the same |
CN102779923A (zh) * | 2012-07-09 | 2012-11-14 | 厦门飞德利照明科技有限公司 | 一种贴片式led模组的制造方法 |
CN108112188A (zh) * | 2017-12-20 | 2018-06-01 | 深圳大学 | 一种基于液态金属的焊接方法 |
CN110972409A (zh) * | 2018-09-29 | 2020-04-07 | 北京梦之墨科技有限公司 | 一种元件装配方法及装置 |
CN113410219A (zh) * | 2021-07-17 | 2021-09-17 | 北京梦之墨科技有限公司 | 一种led贴膜屏及其制作方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118377389A (zh) * | 2023-03-10 | 2024-07-23 | 深圳市中佑光学科技有限公司 | Led屏幕贴合膜片及其制造方法 |
CN118588825A (zh) * | 2024-08-05 | 2024-09-03 | 汕头超声显示器技术有限公司 | 一种led阵列装置的制造方法及制造设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113410219A (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023000562A1 (zh) | 一种led贴膜屏及其制作方法 | |
US5019944A (en) | Mounting substrate and its production method, and printed wiring board having connector function and its connection method | |
WO2022047913A1 (zh) | 显示装置及其制备方法 | |
CN1855405A (zh) | 一种倒装芯片方法 | |
WO2023000563A1 (zh) | 一种led玻璃屏及其制作方法 | |
JPH04263433A (ja) | 電気的接続接点の形成方法および電子部品の実装方法 | |
CN215680688U (zh) | 一种led玻璃屏 | |
CN215377409U (zh) | 一种led贴膜屏 | |
CN100534263C (zh) | 电路板导电凸块结构及其制法 | |
CN110931627B (zh) | 一种微型发光二极管显示背板及其制造方法 | |
WO2004056162A1 (ja) | フリップチップ実装用電子部品及びその製造法、回路板及びその製造法、実装体の製造法 | |
JPH04264731A (ja) | 電気的接続接点の形成方法および電子部品の実装方法 | |
CN115119410A (zh) | 一种高精密单面电路互联制作miniLED背光板的方法 | |
JPH04263434A (ja) | 電気的接続接点の形成方法および電子部品の実装方法 | |
CN114937661A (zh) | 一种背光模组及其制造方法 | |
JPH01132138A (ja) | Icチップの電気的接続方法、樹脂バンプ形成材料および液晶表示器 | |
CN101553091A (zh) | 提升无铅工艺合格率的印刷电路板及工艺 | |
CN111162158A (zh) | 一种rgb芯片倒装封装结构及制备方法 | |
CN113130727B (zh) | Led芯片装贴方法 | |
CN218679462U (zh) | Pcb板及显示模组 | |
TWI793164B (zh) | 批量接合微半導體結構與目標基板之方法及目標基板 | |
CN111849252A (zh) | 电子油墨、导电连接结构、多层电路及对应制作方法 | |
KR100808108B1 (ko) | 반도체 칩에 형성한 박막히터를 이용한 반도체 칩의 플립칩실장 방법과 탈착 방법 | |
CN114613724B (zh) | 导电结构及其制造方法 | |
CN117239046A (zh) | Micro–LED的固晶方法及显示基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21950800 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.04.2024) |