WO2023000138A1 - 锥形离合器及变速器 - Google Patents

锥形离合器及变速器 Download PDF

Info

Publication number
WO2023000138A1
WO2023000138A1 PCT/CN2021/107125 CN2021107125W WO2023000138A1 WO 2023000138 A1 WO2023000138 A1 WO 2023000138A1 CN 2021107125 W CN2021107125 W CN 2021107125W WO 2023000138 A1 WO2023000138 A1 WO 2023000138A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
transmission
cone
outer ring
thrust bearing
Prior art date
Application number
PCT/CN2021/107125
Other languages
English (en)
French (fr)
Inventor
邱志凌
孙艳
付军
谭艳军
林霄喆
王瑞平
肖逸阁
Original Assignee
宁波吉利罗佑发动机零部件有限公司
浙江吉利动力总成有限公司
宁波上中下自动变速器有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波吉利罗佑发动机零部件有限公司, 浙江吉利动力总成有限公司, 宁波上中下自动变速器有限公司, 浙江吉利控股集团有限公司 filed Critical 宁波吉利罗佑发动机零部件有限公司
Priority to PCT/CN2021/107125 priority Critical patent/WO2023000138A1/zh
Priority to EP21950404.0A priority patent/EP4246007A4/en
Priority to CN202180075453.9A priority patent/CN116635641A/zh
Publication of WO2023000138A1 publication Critical patent/WO2023000138A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/04Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways with a shaft carrying a number of rotatable transmission members, e.g. gears, each of which can be connected to the shaft by a clutching member or members between the shaft and the hub of the transmission member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/24Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/24Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches
    • F16D13/32Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches in which two or more axially-movable members are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0681Double cone synchromesh clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches

Definitions

  • the invention relates to the field of vehicle transmissions, in particular to a cone clutch and a transmission.
  • multi-speed transmissions are far more complex than single-speed reduction gears.
  • Commonly used multi-speed transmissions require clutches, brakes or synchronizers to change gears, and these traditional transmission elements require complex actuators to control.
  • Commonly used clutch actuators include electro-hydraulic controlled hydraulic cylinders and motor-controlled drum fork mechanisms.
  • the electro-hydraulic proportional control hydraulic cylinder can accurately control the torque of the clutch or brake, so that the driving torque of the vehicle will not be interrupted when shifting gears, and the shifting will be smooth.
  • this hydraulic actuator requires a hydraulic pump, a proportional pressure solenoid valve, a valve plate, and a hydraulic cylinder to provide actuation force. These components have high cost and high power consumption, and are more suitable for occasions where multiple clutches can share an oil pump. For electric vehicle transmissions with only one or two clutches or brakes, such hydraulic actuators are not suitable because the cost and power consumption of the hydraulic pump cannot be shared.
  • the motor-controlled drum shifting fork mechanism is realized by controlling the motor, drum, shifting fork and synchronizer.
  • the present invention is proposed to provide a cone clutch and a transmission that overcome the above problems or at least partially solve the above problems.
  • An object of the first aspect of the present invention is to provide a cone clutch capable of reducing clutch control force and enhancing clutch torque capacity.
  • Another object of the second aspect of the invention is to increase the efficiency of the transmission and reduce the manufacturing cost of the actuator.
  • a cone clutch including:
  • the inner ring surface and the outer ring surface are both tapered surfaces
  • the inner cone ring is arranged inside the middle cone ring, and the outer ring surface of the inner cone ring is a tapered surface matching the inner ring surface of the middle cone ring;
  • the outer ring has a tapered ring surface matched with the outer ring surface of the middle cone ring, the outer ring can move along the axial direction of the tapered ring surface relative to the inner cone ring, and the middle cone ring and the outer ring are respectively used to be connected with two parts to be combined, and the cone clutch is configured to make the outer ring and the middle cone ring be connected when the outer ring is pushed to push itself close to the middle cone ring.
  • a close-contact friction pair is formed between the cone rings and between the middle cone ring and the inner cone ring, thereby combining the two parts to be combined.
  • the cone clutch also includes:
  • the return spring is fixed at one end and connected with the outer ring at the other end.
  • a transmission including a rotating shaft, a target gear and the above-mentioned cone clutch, the target gear is sleeved on the rotating shaft and can be positioned relative to the rotating shaft rotation, the cone clutch is used to engage or disengage the shaft and the target gear.
  • the target gear is arranged at the rotating shaft through a supporting bearing.
  • the transmission also includes:
  • a gear coupling plate which is fixedly connected with the target gear and connected with the middle cone ring to prevent relative rotation
  • the outer ring is sleeved on the rotating shaft and the two form a relative rotation-proof connection.
  • the side of the middle bevel ring close to the gear coupling disc is provided with teeth protruding in the axial direction thereof, and the gear coupling disc is provided with a first slot cooperating with the locking teeth.
  • the outer ring is connected to the rotating shaft through a spline.
  • the cone clutch includes a return spring
  • the transmission further includes:
  • a retaining ring is sheathed on the rotating shaft, one side of which is in contact with the target gear, and the other side is in contact with the return spring.
  • the transmission also includes:
  • a snap ring is sheathed on the rotating shaft and located on a side of the outer ring away from the return spring, for limiting the axial displacement of the outer ring.
  • the transmission further includes an actuator, and the actuator includes:
  • a screw forming a screw pair with the inner wall of the nut, the screw is fixedly connected to the housing of the transmission, so that when the motor drives the second gear and the nut rotates relative to the screw, the nut Axial displacement is generated to generate a thrust acting directly or indirectly on the outer ring.
  • the transmission further includes a first buffer assembly arranged between the nut of the actuator and the outer ring;
  • the first buffer assembly includes a radial positioning ring, a first thrust bearing, and a first spring diaphragm that are sequentially abutted against, and the side of the radial positioning ring away from the first thrust bearing is in contact with the nut. connected to limit the radial displacement of the first thrust bearing, the side of the first spring diaphragm away from the first thrust bearing and the outer ring of the cone clutch on its own side Abut.
  • the number of the cone clutches, the actuators and the first buffer assembly is multiple and the same, and each cone clutch is connected to one actuator and one cushion assembly.
  • the above-mentioned first buffer component is set correspondingly.
  • the number of the cone clutches is 2, the outer rings of the 2 cone clutches are respectively located on both sides of the nut, and the motor is used to output forward and reverse torque, so that the two The cone clutches share one actuator.
  • the transmission also includes:
  • the first buffer assembly and the second buffer assembly are respectively located on both sides in the axial direction of the nut;
  • the anti-loosening spring is passed through the axial through hole of the nut, and the two ends of the anti-loosening spring abut against the first buffer assembly and the second buffer assembly respectively.
  • the first buffer assembly includes a radial positioning ring, a first thrust bearing, and a first spring diaphragm that sequentially abut against each other, and the side of the radial positioning ring that is far away from the first thrust bearing is in contact with the The nut abuts and is simultaneously connected with one end of the anti-loosening spring for limiting the radial displacement of the first thrust bearing, and the first spring diaphragm is away from the side of the first thrust bearing abuts against the outer ring of the cone clutch on its own side.
  • the second buffer assembly includes a second thrust bearing, a washer, a transition ring, a third thrust bearing, and a second spring diaphragm that abut in sequence along the axial direction of the rotating shaft, and the second thrust bearing
  • the end surface of the push bearing away from the washer is connected to the anti-loosening spring, and the side of the second spring diaphragm away from the transition ring abuts against the outer ring of the cone clutch on the same side as itself .
  • a second slot is provided on the end surface of the nut away from the first buffer assembly, and the second slot also radially penetrates the outer ring surface of the nut;
  • Both the second thrust bearing and the washer are sleeved at the second slot and are matched with the bottom surface of the second slot in the radial direction.
  • both sides of the transition ring in the axial direction are respectively provided with a first boss and a second boss, and the first boss cooperates with the peripheral surface of the gasket to limit the diameter of the transition ring.
  • the second boss cooperates with the peripheral surface of the third thrust bearing to limit the radial displacement of the third thrust bearing.
  • the screw rod includes a plurality of connecting arms, each of which is fixedly connected to the transmission case.
  • a plurality of the connecting arms are evenly arranged along the circumferential direction of the screw, and each of the connecting arms protrudes along the radial direction of the screw.
  • the rotating shaft includes a transmission input shaft and/or a transmission output shaft.
  • the present invention constructs a clutch with two friction pairs of conical ring surfaces through the arrangement of the middle cone ring, the inner cone ring and the outer ring, and the combination and separation of the cone clutch can be controlled by controlling the axial movement of the outer ring. So as to achieve the purpose of combining or separating the parts to be combined.
  • the arrangement of the two sets of friction pairs of the conical annulus can reduce the control force of the clutch and enhance the torque capacity of the clutch.
  • the cone clutch of this embodiment is particularly suitable for transmissions with fewer gears and low-to-medium power.
  • the transmission of the present invention includes an actuator, which is transmitted through a gear pair and a helical pair. Since the gear pair, the helical pair and the conical surface friction pair can all amplify the driving force, a small motor can be used Just can control the combination of cone clutch.
  • the helical pair between the nut and the screw has a self-locking function, it can be locked in the combined position after the conical clutch is combined. At this time, the motor can be powered off and no longer consumes electric energy, that is, in this embodiment. Compared with the existing hydraulic actuator, the actuator saves power consumption, thereby improving the efficiency of the transmission.
  • the power source of the actuator of the present invention may only need one motor, thus reducing the manufacturing cost of the actuator.
  • FIG. 1 is a sectional view of a cone clutch according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a transmission according to an embodiment of the present invention.
  • Fig. 3 is a partial enlarged view of place A in Fig. 2;
  • Fig. 4 is the sectional view of B-B place among Fig. 2;
  • Fig. 5 is a schematic diagram of the principle of a transmission according to an embodiment of the present invention.
  • Fig. 6 is a radial arrangement diagram of the transmission in Fig. 5;
  • Fig. 7 is a schematic diagram of a transmission according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a cone clutch 50 according to one embodiment of the present invention.
  • the cone clutch 50 includes a middle cone ring 53 , an inner cone ring 52 and an outer ring 61 . Both the inner ring surface and the outer ring surface of the middle cone ring 53 are tapered surfaces.
  • the inner cone ring 52 is disposed inside the middle cone ring 53
  • the outer ring surface of the inner cone ring 52 is a tapered surface matching the inner ring surface of the middle cone ring 53 .
  • the outer ring 61 has a tapered ring surface matched with the outer ring surface of the middle cone ring 53.
  • the outer ring 61 can move along the axial direction of the tapered ring surface relative to the inner cone ring 52.
  • the middle cone ring 53 and the outer ring 61 are respectively used
  • the cone clutch 50 is configured to make the gap between the outer ring 61 and the middle cone ring 53 as well as between the middle cone ring 53 and the inner cone when the outer ring 61 is urged to push itself close to the middle cone ring 53 .
  • a friction pair in close contact is formed between the rings 52, thereby joining the two pieces to be joined.
  • the two parts to be joined are a shaft and a gear on the shaft,
  • a clutch with two friction pairs of conical ring surfaces is constructed, and the conical shape can be controlled by controlling the axial movement of the outer ring 61.
  • the clutch 50 is combined and disengaged, so as to achieve the purpose of combining or disengaging the parts to be coupled.
  • the arrangement of the two sets of friction pairs of the conical annulus can reduce the control force of the clutch and enhance the torque capacity of the clutch.
  • the cone clutch 50 of this embodiment is especially suitable for transmissions with fewer gears and low-to-medium power.
  • the cone clutch 50 further includes a return spring 55 , one end of which is fixedly arranged, and the other end is connected to the outer ring 61 .
  • the setting of the back-moving spring 55 can realize the automatic reset of the outer ring 61, that is, after the force on the outer ring 61 for urging it to approach the middle cone ring 53 disappears, the back-moving spring 55 will impel the outer ring 61 to return to the non-combination The original state of the cone ring 53.
  • FIG. 2 is a cross-sectional view of a transmission according to one embodiment of the present invention.
  • the transmission includes a rotating shaft, a target gear, and the cone clutch 50 of any of the above-mentioned embodiments.
  • the target gear is sheathed on the rotating shaft and can rotate relative to the rotating shaft.
  • the cone clutch 50 is used to connect or separate the rotating shaft and the target gear, that is, the rotating shaft and the target gear are the aforementioned two parts to be connected.
  • the rotating shaft here can be any one or a combination of the transmission input shaft 2, the intermediate shaft and the transmission output shaft 84 in the transmission, as long as it is a rotating shaft with a clutch requirement.
  • the transmission of this embodiment includes a clutch with two friction pairs of conical ring surfaces.
  • the coupling and disengagement of the conical clutch 50 can be controlled, so as to achieve the purpose of coupling or disengaging the parts to be coupled.
  • the arrangement of the two sets of friction pairs of the conical annulus can reduce the control force of the clutch and enhance the torque capacity of the clutch.
  • the target gear is disposed on the shaft through a support bearing 32, so that the target gear can rotate relative to the shaft.
  • the transmission also includes a gear coupling disc 51, which is fixedly connected to the target gear, and the middle bevel ring 53 and the coupling disc 51 are connected to prevent relative rotation through locking teeth, but can slide relative to each other in the axial direction.
  • the inner ring 52 and the outer ring 61 are also connected to prevent relative rotation through bayonet teeth, and one end of the inner ring 52 abuts against the coupling disc 51 to prevent the inner ring 52 from moving axially when the clutch is engaged.
  • the outer ring 61 is sleeved at the rotating shaft and the two form an anti-rotational connection, that is, a cone clutch 50 is provided between the rotating shaft and the target gear. Such setting makes the rotating shaft and the outer ring 61 rotate synchronously. When the conical clutch 50 is engaged, the rotating shaft can synchronously drive the target gear to rotate through the conical clutch 50 .
  • the side of the middle bevel ring 53 close to the gear coupling disc 51 is provided with locking teeth protruding along its axial direction, and the gear coupling disc 51 is provided with a first slot cooperating with the locking teeth. The relative rotation between the middle bevel ring 53 and the gear coupling disc 51 is prevented by the setting of the locking teeth and the first slot.
  • the outer ring 61 is connected to the rotating shaft through a spline 22, so as to prevent relative rotation between the two, and at the same time, the outer ring 61 can move axially relative to the rotating shaft.
  • the cone clutch 50 includes a return spring 55
  • the transmission further includes a retaining ring 56 sleeved on the rotating shaft.
  • One side of the retaining ring 56 is in contact with the target gear, and the other side is abutted against the return spring 55 .
  • the retaining ring 56 is used to limit the axial displacement of the target gear on the one hand, and also provides an abutment surface for one end of the return spring 55 .
  • the setting of the return spring 55 enables the cone clutch 50 to be automatically reset.
  • the transmission further includes a snap ring 23 sleeved on the rotating shaft and located on the side of the outer ring 61 away from the return spring 55 for limiting the axial displacement of the outer ring 61 .
  • Fig. 3 is a partial enlarged view of A in Fig. 2 .
  • the transmission further includes an actuator.
  • the actuator comprises a motor 10 , a second gear 62 , a nut 63 and a screw 64 .
  • the output shaft of the motor 10 is provided with a first gear 101
  • the first gear 101 may be a gear sleeved on the output shaft of the motor 10 , or a gear machined on the output shaft of the motor 10 .
  • the second gear 62 meshes with the first gear 101 .
  • the outer surface of the nut 63 is covered with the second gear 62 .
  • the screw rod 64 forms a screw pair with the inner wall of the nut 63 .
  • the screw rod 64 is fixedly connected with the casing of the transmission, so that the motor 10 drives the second gear 62 and the nut 63 to rotate relative to the screw rod 64 to produce an axial displacement of the nut 63 to generate a thrust directly or indirectly acting on the outer ring 61 .
  • the speed ratio of the first gear 101 and the second gear 62 is any value in 10-20, for example, the speed ratio is 10, 15 or 20. If the speed ratio of the first gear 101 and the second gear 62 is 15, when the output torque of the motor 10 is 0.8 Nm, it is enough to generate an axial force of more than 3 kN to make the clutch engage.
  • the motor 10 After the motor 10 outputs torque, the power is transmitted to the nut 63 through the gear pair. Since the screw rod 64 is fixed, the nut 63 rotates relative to the screw rod 64 and produces an axial displacement, thereby pushing the conical clutch 50 to engage or disengage. Of course, in other embodiments, the nut 63 may also be fixed, and the motor 10 drives the screw 64 through a gear pair, which can also output axial driving force.
  • the transmission of the present embodiment also includes an actuator, which is transmitted through a gear pair and a helical pair. Since the gear pair, the helical pair and the conical surface friction pair can amplify the driving force, a small motor 10 can be used. Just can control the combination of cone clutch 50. For example, a helical pair can transform the driving torque of 10Nm into an axial force of 2500N, and a pair of simple gear reducers can amplify the output torque of the motor 10 more than ten times.
  • a two-hundred-watt small motor 10 can transmit a torque of 300Nm through a simple gear reducer, a pair of screw pairs and two friction cones, which meets the driving power requirements of general electric vehicles, making a motor with a working torque of less than 1Nm
  • the motor 10 is sufficient to drive a cone clutch 50 of 350 Nm.
  • the actuator in the embodiment saves power consumption, thereby improving the efficiency of the transmission.
  • the traditional automobile transmission clutch is generally multi-plate and wet type
  • its actuator is an electro-hydraulic controlled hydraulic cylinder, which includes the costs of hydraulic pump, hydraulic cylinder, proportional pressure solenoid valve and valve plate.
  • the power source of the actuator in this embodiment only needs the motor 10, thus reducing the manufacturing cost of the actuator.
  • the helical pair formed by the nut 63 and the screw 64 in the actuator can be replaced by a ball screw (not shown in the figure), thereby reducing frictional resistance and saving control power.
  • the transmission further includes a first buffer assembly arranged between the nut 63 of the actuator and the outer ring 61 .
  • the first buffer assembly includes a radial positioning ring 661 , a first thrust bearing 331 and a first spring diaphragm 541 which are sequentially abutted against.
  • the side of the radial positioning ring 661 far away from the first thrust bearing 331 abuts against the nut 63 to limit the radial displacement of the first thrust bearing 331
  • the first spring diaphragm 541 is far away from one side of the first thrust bearing 331
  • the side abuts against the outer ring 61 of the cone clutch 50 on its own side.
  • the first spring diaphragm 541 is arranged between the first thrust bearing 331 and the outer ring 61 to play the role of buffering the impact force of the nut 63 and avoiding the impact of clutch engagement.
  • each cone clutch 50 is provided corresponding to one actuator and one first buffer assembly. That is, one actuator only drives one conical clutch correspondingly, and a first buffer assembly is arranged between the two.
  • the number of cone clutches is 2, and the outer rings 61 of the 2 cone clutches 50 are respectively located on both sides of the nut 63, and the motor 10 is used to output forward and reverse torque, so as to This allows two cone clutches 50 to share one actuator.
  • the transmission further includes a first buffer assembly, a second buffer assembly and an anti-loosening spring 65 .
  • the first buffer assembly and the second buffer assembly are respectively located on two axial sides of the nut 63 .
  • the anti-loosening spring 65 is passed through the axial through hole of the nut 63 , and the two ends of the anti-loosening spring 65 abut against the first buffer assembly and the second buffer assembly respectively.
  • the first buffer assembly includes a radial positioning ring 661 , a first thrust bearing 331 and a first spring diaphragm 541 that abut against each other in sequence.
  • the first spring diaphragm The side of 541 away from the first thrust bearing 331 abuts against the outer ring 61 of the cone clutch 50 on its own side.
  • the radial positioning ring 661 is roughly in the shape of a "Z", and its two radial planes overlap with the first thrust bearing 331 and the nut 63 respectively, so as to radially position the first thrust bearing 331 .
  • the second buffer assembly includes a second thrust bearing 332 , a washer 662 , a transition ring 67 , a third thrust bearing 333 and a second spring film that abut in sequence along the axial direction of the rotating shaft.
  • Sheet 542 The end surface of the second thrust bearing 332 away from the washer 662 is connected to the anti-loosening spring 65 , and the side of the second spring diaphragm 542 away from the transition ring 67 abuts against the outer ring 61 of the cone clutch 50 on the same side.
  • the setting of the relaxation spring makes there always be a certain pre-tightening force between the various parts of the second buffer assembly, thereby reducing shifting noise.
  • a second slot 651 is provided on the end surface of the nut 63 away from the first buffer component, and the second slot 651 also radially penetrates the outer ring surface of the nut 63 .
  • Both the second thrust bearing 332 and the washer 662 are sleeved at the second slot 651 and cooperate with the bottom surface of the second slot 651 in the radial direction, so as to constrain the radial displacement of the second thrust bearing 332 and the washer 662 .
  • a first boss 672 and a second boss 673 are respectively provided on both sides of the transition ring 67 in the axial direction, and the first boss 672 cooperates with the peripheral surface of the washer 662 , To limit the radial displacement of the transition ring 67 .
  • the second boss 673 cooperates with the peripheral surface of the third thrust bearing 333 to limit the radial displacement of the third thrust bearing 333 .
  • the radial displacement of the second thrust bearing 332 , the washer 662 , the transition ring 67 and the third thrust bearing 333 is sequentially constrained by using the nut 63 as a basis for radial positioning.
  • other radial positioning methods can also be used, for example, by providing radial matching features on the screw rod 64 and the transition ring 67, the screw rod 64 is used to radially position the transition ring 67, and the transition ring 67 then positions the second thrust bearing 332 and a third thrust bearing 333 .
  • Fig. 4 is a cross-sectional view at B-B in Fig. 2 .
  • the screw rod 64 includes a plurality of connecting arms 641 , and each connecting arm 641 is fixedly connected with the casing of the transmission.
  • a plurality of connecting arms 641 are evenly arranged along the circumferential direction of the screw rod 64 , and each connecting arm 641 protrudes along the radial direction of the screw rod 64 .
  • the transition ring 67 needs to be provided with a plurality of radial through slots 671 so that each force arm can pass through.
  • the through groove 671 should also pass through the axial side of the transition ring 67, so that the axial assembly between the transition ring 67 and the screw rod 64, at this time, the axial side of the transition ring 67
  • Fig. 5 is a schematic diagram of a transmission according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of radial arrangement of the transmission in Fig. 5 .
  • Fig. 7 is a schematic diagram of a transmission according to another embodiment of the present invention. Referring to Fig. 5 and Fig. 7, it can be seen that in the present invention, an actuator can individually control the action of a cone clutch 50 (see Fig. 7), and an actuator can simultaneously give two adjacent cone clutches 50 Clutch 50 provides braking force (see FIG. 5 ).
  • the number of the cone clutch 50, the actuator and the first buffer assembly is 2, and each cone clutch 50 is set corresponding to an actuator and a first buffer assembly, so that It is realized that one actuator alone controls the action of one cone clutch 50 .
  • the two cone clutches 50 share one actuator, there will be a short (tens of milliseconds) power interruption when shifting gears, and this interruption will not be felt by ordinary people.
  • one actuator alone controls one cone clutch 50 no power interruption can be achieved, and the gear shifting is smoother.
  • the shafts include transmission input shaft 2 and/or transmission output shaft 84 . That is to say, the cone clutch 50 can only be set on the transmission input shaft 2 (see FIG. 5 ) or the transmission output shaft 84, and the cone clutch 50 can also be set respectively on the transmission input shaft 2 and the transmission output shaft 84 ( Referring to FIG. 7 ), it can be set according to requirements, for example, according to the space layout requirements, different rotating shafts are respectively provided with respective cone clutches 50 . Of course, in some transmissions with intermediate shafts, the cone clutch 50 can also be arranged on the intermediate shafts.
  • the transmission input shaft 2 and the transmission output shaft 84 are provided with at least two groups of transmission gears, and the target gears are all driving gears of the transmission input shaft 2 or all driven gears of the transmission output shaft 84; At least one driving gear and a driven gear on the transmission output shaft 84 that does not mesh with the at least one driving gear.
  • the transmission input shaft 2 is connected with the output shaft of the prime mover 1, for example, through a spline 12, and the two ends of the transmission input shaft 2 can be respectively connected by the first bearing 31 and the second bearing 31.
  • the bearing 34 is supported on the front case 41 and the rear case 42 .
  • the transmission input shaft 2 and the transmission output shaft 84 are provided with two groups of transmission gears, and the transmission output shaft 84 is also provided with an output gear 83 connected with the differential 9 .
  • the transmission input shaft 2 is provided with a first driving gear 7 and a second driving gear 5
  • the transmission output shaft 84 is provided with a first driven gear 81 meshing with the first driving gear 7 and the second driving gear 5 respectively.
  • the first driving gear 7 and the first driven gear form a low speed gear pair
  • the second driving gear 5 and the second driven gear form a high speed gear pair
  • a conical clutch 50 is connected in series between the first driving gear 7 and the transmission input shaft 2
  • a conical clutch 50 is connected in series between the second driving gear 5 and the transmission input shaft 2.
  • An output gear 83 is also provided on the transmission output shaft 84, and the output gear 83 (equivalent to the driving gear of the differential 9) meshes with the differential gear 91 of the differential 9 to pass power through the differential 9 and the half The shaft is transmitted to the wheels.
  • This two-speed transmission is particularly suitable as a transmission for an electric vehicle whose power is not too high.
  • the motor 10 After the conical clutch 50 is combined, the motor 10 is controlled to be de-energized, and the screw pair is self-locked.
  • the control motor 10 outputs reverse torque, and the nut 63 retreats to the neutral position earlier, and the cone clutch 50 on the left side is disengaged under the action of its own back-moving spring 55 . Then continue to control the motor 10 to output reverse torque, so that the nut 63 moves to the right, combined with the cone clutch 50 on the right side, the power of the transmission input shaft 2 is transmitted to the second driving gear 5, and then output.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种锥形离合器(50)及变速器,锥形离合器(50)包括:中锥环(53),其内环面和外环面均为锥面;内锥环(52),设置于中锥环(53)的内部,内锥环(52)的外环面为与中锥环(53)的内环面相匹配的锥面;以及外环(61),具有与中锥环(53)的外环面配合的锥形环面,外环(61)可相对于内锥环(52)沿锥形环面的轴向移动,中锥环(53)和外环(61)分别用于与两个待结合件相连,锥形离合器(50)配置成在外环(61)受到促使其自身靠近中锥环(53)的推力时,使得外环(61)与中锥环(53)之间以及中锥环(53)和内锥环(52)之间形成紧密接触的摩擦副,从而结合两个待结合件。

Description

锥形离合器及变速器 技术领域
本发明涉及车辆变速器领域,特别是涉及一种锥形离合器及变速器。
背景技术
近年来电动汽车因较少环境污染而得以快速发展。目前电动汽车大多由电机经单速减速器驱动。由于车速变化范围较大,要求电机工作范围很大,一般为0-14000rpm。受现有制造技术限制,高速电机成本较高,电机和电池的功率也较大,使得目前电动汽车的成本高于传统燃油车的成本。
如果采用多档变速器在低速时用大减速比来增加变速器输出扭矩,高速时用小减速比来降低电机转速,这既可以增加车辆动力加速性、又降低电机工作转速、从而降低电机成本。但对电动汽车制造商来说,多档变速器远比单速减速器复杂。常用多档变速器需要离合器、制动器或同步器来换档,这些传统的传动元件均要求复杂的致动器来控制。常用的离合器致动器有电液控制的液压油缸、电机控制的转鼓拨叉机构。
电液比例控制的液压油缸能精准控制离合器或制动器的扭矩,使换档时汽车驱动扭矩不致中断,换档平顺。但是这种液压式致动器需要液压泵、比例压力电磁阀、阀板和液压油缸来提供致动力,这些零部件成本高、功耗大,比较适合多个离合器可共用油泵的场合。对于只有一、二个离合器或制动器的电动汽车变速器,由于液压泵的成本和功耗无法分摊,这种液压式致动器就不太合适。电机控制的转鼓拨叉机构采用控制电机、转鼓、拨叉和同步器实现,其成本和功耗都低于液压式致动器,但它换档时有动力中断,换档平顺性不好。因此,如何降低电动汽车变速器换档机构的成本和能耗、保证换档平顺性是个亟待解决的技术问题。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分 地解决上述问题的锥形离合器及变速器。
本发明第一方面的一个目的是提供一种锥形离合器,能够降低离合器的控制力,增强离合器的扭矩能力。
本发明第二方面的一个目的是提供一种包括上述锥形离合器的变速器,能够降低对致动器的动力源的要求。
本发明第二方面的另一个目的是要提高变速器效率,降低致动器的制造成本。
特别地,根据本发明实施例的第一方面,提供了一种锥形离合器,包括:
中锥环,其内环面和外环面均为锥面;
内锥环,设置于所述中锥环的内部,所述内锥环的外环面为与所述中锥环的内环面相匹配的锥面;以及
外环,具有与所述中锥环的外环面配合的锥形环面,所述外环可相对于所述内锥环沿所述锥形环面的轴向移动,所述中锥环和所述外环分别用于与两个待结合件相连,所述锥形离合器配置成在所述外环受到促使其自身靠近所述中锥环的推力时使得所述外环与所述中锥环之间以及所述中锥环和所述内锥环之间形成紧密接触的摩擦副,从而结合所述两个待结合件。
可选地,锥形离合器还包括:
复位弹簧,其一端固定设置,另一端与所述外环连接。
特别地,根据本发明实施例的第二方面,还提供了一种变速器,包括转轴、目标齿轮和上述的锥形离合器,所述目标齿轮套设于所述转轴上且可相对于所述转轴转动,所述锥形离合器用于结合或分离所述转轴和所述目标齿轮。
可选地,所述目标齿轮通过支撑轴承设置于所述转轴处。
可选地,变速器还包括:
齿轮联结盘,与所述目标齿轮固连并和所述中锥环防相对转动连接;
所述外环套设于所述转轴处且二者形成防相对转动连接。
可选地,所述中锥环靠近所述齿轮联结盘的一侧设有沿其轴向伸出的卡齿,且所述齿轮联结盘设有与所述卡齿配合的第一开槽。
可选地,所述外环与所述转轴通过花键连接。
可选地,所述锥形离合器包括复位弹簧,所述变速器还包括:
挡圈,套设于所述转轴上,其一侧与所述目标齿轮接触,另一侧抵接所 述复位弹簧。
可选地,变速器还包括:
卡簧,套设于所述转轴上且位于所述外环远离所述复位弹簧的一侧,用于限制所述外环的轴向位移。
可选地,变速器还包括致动器,所述致动器包括:
电机,其输出轴上设有第一齿轮;
第二齿轮,与所述第一齿轮啮合;
螺母,其外表面套设有所述第二齿轮;以及
螺杆,与所述螺母的内壁形成螺旋副,所述螺杆与所述变速器的壳体固定连接,使得所述电机带动所述第二齿轮和所述螺母相对于所述螺杆转动时,所述螺母产生轴向的位移以产生直接或间接作用于所述外环的推力。
可选地,变速器还包括设置在所述致动器的所述螺母与所述外环之间的第一缓冲组件;
所述第一缓冲组件包括依次抵接的径向定位圈、第一止推轴承和第一弹簧膜片,所述径向定位圈远离所述第一止推轴承的一侧与所述螺母抵接,用于限制所述第一止推轴承的径向位移,所述第一弹簧膜片远离所述第一止推轴承的一侧与其自身所在侧的所述锥形离合器的所述外环抵接。
可选地,所述锥形离合器、所述致动器和所述第一缓冲组件的数量均为多个且数量相同,且每一所述锥形离合器与一个所述致动器和一个所述第一缓冲组件对应设置。
可选地,所述锥形离合器的数量为2个,2个所述锥形离合器的所述外环分别位于所述螺母的两侧,所述电机用于输出正反转扭矩,以使得两个所述锥形离合器共用一个所述致动器。
可选地,变速器还包括:
第一缓冲组件和第二缓冲组件,分别位于所述螺母的轴向的两侧;以及
防松弹簧,穿设于所述螺母的轴向通孔内,所述防松弹簧的两端分别与所述第一缓冲组件和所述第二缓冲组件抵接。
可选地,所述第一缓冲组件包括依次抵接的径向定位圈、第一止推轴承和第一弹簧膜片,所述径向定位圈远离所述第一止推轴承的一侧与所述螺母抵接且同时与所述防松弹簧的一端相连,用于限制所述第一止推轴承的径向位移,所述第一弹簧膜片远离所述第一止推轴承的一侧与其自身所在侧的所 述锥形离合器的所述外环抵接。
可选地,所述第二缓冲组件包括沿所述转轴的轴向依次抵接的第二止推轴承、垫圈、过渡圈、第三止推轴承和第二弹簧膜片,所述第二止推轴承远离所述垫圈的一侧端面与所述防松弹簧相连,所述第二弹簧膜片远离所述过渡圈的一侧与其自身同侧的所述锥形离合器的所述外环抵接。
可选地,所述螺母远离所述第一缓冲组件的端面处设置有第二开槽,所述第二开槽还径向地贯穿所述螺母的外环面;
所述第二止推轴承和所述垫圈均套设于所述第二开槽处且均与所述第二开槽径向上的底面配合。
可选地,所述过渡圈轴向上的两侧分别设有第一凸台和第二凸台,所述第一凸台与所述垫圈的周面配合,以限制所述过渡圈的径向位移,所述第二凸台与所述第三止推轴承的周面配合,以限制所述第三止推轴承的径向位移。
可选地,所述螺杆包括多个连接臂,每一所述连接臂均与所述变速器的壳体固定连接。
可选地,多个所述连接臂沿所述螺杆的周向均匀布置,且每一所述连接臂均沿所述螺杆的径向伸出。
可选地,所述转轴包括变速器输入轴和/或变速器输出轴。
本发明通过中锥环、内锥环和外环的设置,构建了一种具有两个锥形环面的摩擦副的离合器,通过控制外环的轴向移动可以控制锥形离合器的结合分离,从而达到结合或分离待结合件的目的。两组锥形环面的摩擦副的设置可以降低离合器的控制力,增强离合器的扭矩能力。本实施例的锥形离合器特别适用于挡位较少、中小功率的变速器。
进一步地,本发明的变速器包括致动器,该致动器通过齿轮副和螺旋副进行传动,由于齿轮副、螺旋副还有锥面摩擦副都能放大驱动力,因此可以采用一个小型的电机就可以控制锥形离合器的结合。
进一步地,由于螺母和螺杆之间的螺旋副自带自锁功能,在锥形离合器结合后可以将其锁定在结合位置,此时电机可以断电,不再耗费电能,即本实施例中的致动器相对于现有的液压式致动器节约了功耗,从而提高了变速器的效率。
进一步地,本发明的致动器的动力源可只需要一个电机,因此降低了致动器的制造成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的锥形离合器的剖面图;
图2是根据本发明一个实施例的变速器的剖面图;
图3是图2中A处的局部放大图;
图4是图2中B-B处的剖视图;
图5是根据本发明一个实施例的变速器的原理示意图;
图6是图5中的变速器的径向布置示意图;
图7是根据本发明另一个实施例的变速器的原理示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1是根据本发明一个实施例的锥形离合器50的剖面图。如图1所示,一个实施例中,锥形离合器50包括中锥环53、内锥环52和外环61。中锥环53的内环面和外环面均为锥面。内锥环52设置于中锥环53的内部,内锥环52的外环面为与中锥环53的内环面相匹配的锥面。外环61具有与中锥环53的外环面配合的锥形环面,外环61可相对于内锥环52沿锥形环面的轴向移动,中锥环53和外环61分别用于与两个待结合件相连,锥形离合器50配置成在外环61受到促使其自身靠近中锥环53的推力时使得外环61与中锥环53之间以及中锥环53和内锥环52之间形成紧密接触的摩擦副,从而结合两个待结合件。例如,两个待结合件为轴和该轴上的齿轮,
本实施例通过中锥环53、内锥环52和外环61的设置,构建了一种具有两个锥形环面的摩擦副的离合器,通过控制外环61的轴向移动可以控制锥形离合器50的结合分离,从而达到结合或分离待结合件的目的。两组锥形环面的摩擦副的设置可以降低离合器的控制力,增强离合器的扭矩能力。本实施例的锥形离合器50特别适用于挡位较少、中小功率的变速器。
进一步地,通过合理选取中锥环53、内锥环52和外环61的锥角可以起到较好的放大离合器轴向力的作用。例如,设锥角为α,离合器轴向力为Fa,那么锥面上的正压力为Fn=Fa/tan(α).如果锥角α取7°,则Fn=8.14*Fa,相当于将离合器轴向力放大8倍多。对于一个半径为60mm的锥环,3kN轴向力就可产生300Nm的摩擦扭矩。
如图1所示,在一个实施例中,锥形离合器50还包括复位弹簧55,其一端固定设置,另一端与外环61连接。复位弹簧55的设置可以实现外环61的自动复位,也就是当外环61上的用于促使其靠近中锥环53的作用力消失后,复位弹簧55会促使外环61恢复到不结合中锥环53的原始状态。
本发明还提供了一种变速器。图2是根据本发明一个实施例的变速器的剖面图。如图2所示,一个实施例中,该变速器包括转轴、目标齿轮和上述任一实施例的锥形离合器50。目标齿轮套设于转轴上且可相对于转轴转动,锥形离合器50用于结合或分离转轴和目标齿轮,即,转轴和目标齿轮为前述的两个待结合件。这里的转轴可以是变速器中的变速器输入轴2、中间轴和变速器输出轴84等中的任一个或它们的组合,只要是有设置离合器需求的转轴都可以。
本实施例的变速器包括具有两个锥形环面的摩擦副的离合器,通过控制外环61的轴向移动可以控制锥形离合器50的结合分离,从而达到结合或分离待结合件的目的。两组锥形环面的摩擦副的设置可以降低离合器的控制力,增强离合器的扭矩能力。
一个实施例中,目标齿轮通过支撑轴承32设置于转轴处,使得目标齿轮可相对于转轴转动。
如图2所示,变速器还包括齿轮联结盘51,该齿轮联结盘51与目标齿轮固连,中锥环53与联结盘51经卡齿防相对转动连接,但可轴向相对滑动。内环52与外环61也经卡齿防相对转动连接,内环52一端与联结盘51抵接,防止离合器接合时内环52轴向移动。外环61套设于转轴处且二者形成防相 对转动连接,即在转轴和目标齿轮之间设置了锥形离合器50。如此设置,使得转轴与外环61同步转动,当锥形离合器50结合时,转轴能够通过该锥形离合器50同步带动目标齿轮转动。
一个实施例中,中锥环53靠近齿轮联结盘51的一侧设有沿其轴向伸出的卡齿,且齿轮联结盘51设有与卡齿配合的第一开槽。通过卡齿和第一开槽的设置防止中锥环53和齿轮联结盘51之间的相对转动。
一个实施例中,外环61与转轴通过花键22连接,从而防止二者的相对转动,同时外环61还能相对于转轴进行轴向移动。
进一步的一个实施例中,锥形离合器50包括复位弹簧55,此时,变速器还包括挡圈56,套设于转轴上。挡圈56的一侧与目标齿轮接触,另一侧抵接复位弹簧55。这里的挡圈56一方面用于限制目标齿轮的轴向位移,另外还为复位弹簧55的一端提供抵接面。通过复位弹簧55的设置使得锥形离合器50能够自动复位。
进一步的一个实施例中,如图2所示,变速器还包括卡簧23,套设于转轴上且位于外环61远离复位弹簧55的一侧,用于限制外环61的轴向位移。
图3是图2中A处的局部放大图。如2和图3所示,在一个实施例中,变速器还包括致动器。该致动器包括电机10、第二齿轮62、螺母63和螺杆64。电机10的输出轴上设有第一齿轮101,第一齿轮101可以是套设在电机10的输出轴上的齿轮,也可以是在电机10的输出轴上加工出的齿轮。第二齿轮62与第一齿轮101啮合。螺母63的外表面套设有第二齿轮62。螺杆64与螺母63的内壁形成螺旋副。螺杆64与变速器的壳体固定连接,使得电机10带动第二齿轮62和螺母63相对于螺杆64转动时螺母63产生轴向的位移,以产生直接或间接作用于外环61的推力。可选地,第一齿轮101和第二齿轮62的速比为10-20中的任一值,例如速比为10、15或20。若第一齿轮101和第二齿轮62的速比为15,电机10的输出扭矩为0.8Nm时就足以产生3kN以上的轴向力,使离合器结合。
当电机10输出扭矩后,通过齿轮副将动力传递给螺母63,由于螺杆64是固定的,此时螺母63相对于螺杆64转动并产生轴向的位移,从而推动锥形离合器50结合或脱开。当然,在其他实施例中,也可以将螺母63固定,电机10通过齿轮副驱动螺杆64,同样能够输出轴向的推动力。
本实施例的变速器还包括致动器,该致动器通过齿轮副和螺旋副进行传 动,由于齿轮副、螺旋副还有锥面摩擦副都能放大驱动力,因此可以采用一个小型的电机10就可以控制锥形离合器50的结合。例如,一个螺旋副可将10Nm的驱动扭矩转变为2500N的轴向力,一对简单的齿轮减速器可将电机10的输出扭矩放大十余倍。一个两百瓦的小型电机10,经过一个简单的齿轮减速器、一对螺旋副和两个摩擦锥面就可传输300Nm的扭矩,满足一般电动汽车驱动功率要求,使得一个工作扭矩不到1Nm的电机10足以驱动一个350Nm的锥形离合器50。
进一步地,由于螺母63和螺杆64之间的螺旋副自带自锁功能,在锥形离合器50结合后可以将其锁定在结合位置,此时电机10可以断电,不再耗费电能,即本实施例中的致动器相对于现有的液压式致动器节约了功耗,从而提高了变速器的效率。
进一步地,由于传统汽车变速器离合器一般为多片、湿式,其致动器为电液控制的液压油缸,这种致动器包括液压泵、液压油缸、比例压力电磁阀和阀板的成本。本实施例中的致动器的动力源只需要电机10,因此降低了致动器的制造成本。
在其他一些实施例中,致动器中的螺母63和螺杆64组成的螺旋副可以替换为滚珠丝杆(图中未示出),进而减小摩擦阻力、节省控制功率。
进一步的一个实施例中,变速器还包括设置在致动器的螺母63和外环61之间的第一缓冲组件。第一缓冲组件包括依次抵接的径向定位圈661、第一止推轴承331和第一弹簧膜片541。径向定位圈661远离第一止推轴承331的一侧与螺母63抵接,用于限制第一止推轴承331的径向位移,第一弹簧膜片541远离第一止推轴承331的一侧与其自身所在侧的锥形离合器50的外环61抵接。第一弹簧膜片541设置于第一止推轴承331和外环61之间,起到缓冲螺母63冲击力的作用,避免离合器结合冲击。
一个实施例中,锥形离合器50、致动器和第一缓冲组件的数量均为多个且数量相同,且每一锥形离合器50与一个致动器和一个第一缓冲组件对应设置。即一个致动器只对应驱动一个锥形离合器,且二者之间设置一个第一缓冲组件。
如图2所示,在一个实施例中,锥形离合器的数量为2个,2个锥形离合器50的外环61分别位于螺母63的两侧,电机10用于输出正反转扭矩,以使得两个锥形离合器50共用一个致动器。
另一个实施例中,如图3所示,变速器还包括第一缓冲组件、第二缓冲组件和防松弹簧65。第一缓冲组件和第二缓冲组件分别位于螺母63的轴向的两侧。防松弹簧65穿设于螺母63的轴向通孔内,防松弹簧65的两端分别与第一缓冲组件和第二缓冲组件抵接。
一个实施例中,如图3所示,第一缓冲组件包括依次抵接的径向定位圈661、第一止推轴承331和第一弹簧膜片541。径向定位圈661远离第一止推轴承331的一侧与螺母63抵接且同时与防松弹簧65的一端相连,用于限制第一止推轴承331的径向位移,第一弹簧膜片541远离第一止推轴承331的一侧与其自身所在侧的锥形离合器50的外环61抵接。一个实施例中,径向定位圈661大致呈“Z”字形,其径向的两个平面分别与第一止推轴承331和螺母63搭接,从而径向定位第一止推轴承331。
一个实施例中,如图3所示,第二缓冲组件包括沿转轴的轴向依次抵接的第二止推轴承332、垫圈662、过渡圈67、第三止推轴承333和第二弹簧膜片542。第二止推轴承332远离垫圈662的一侧端面与防松弹簧65相连,第二弹簧膜片542远离过渡圈67的一侧与其自身同侧的锥形离合器50的外环61抵接。
放松弹簧的设置使得第二缓冲组件的各个件之间总是存在一定的预紧力,从而降低换挡噪音。
进一步的一个实施例中,如图3所示,螺母63远离第一缓冲组件的端面处设置有第二开槽651,第二开槽651还径向地贯穿螺母63的外环面。第二止推轴承332和垫圈662均套设于第二开槽651处且均与第二开槽651径向上的底面配合,从而约束第二止推轴承332和垫圈662的径向位移。
如图3所示,进一步的一个实施例中,过渡圈67轴向上的两侧分别设有第一凸台672和第二凸台673,第一凸台672与垫圈662的周面配合,以限制过渡圈67的径向位移。第二凸台673与第三止推轴承333的周面配合,以限制第三止推轴承333的径向位移。
本实施例中,是通过螺母63作为径向定位的依据,依次约束第二止推轴承332、垫圈662、过渡圈67和第三止推轴承333的径向位移。在其他实施例中,也可以采用其他径向定位方式,例如通过在螺杆64和过渡圈67上设置径向配合特征,利用螺杆64径向定位过渡圈67,过渡圈67再定位第二止推轴承332和第三止推轴承333。
图4是图2中B-B处的剖视图。如图2和图4所示,本实施例中,螺杆64包括多个连接臂641,每一连接臂641均与变速器的壳体固定连接。
进一步的一个实施例中,多个连接臂641沿螺杆64的周向均匀布置,且每一连接臂641均沿螺杆64的径向伸出。相应地,过渡圈67需要设置多个径向的通槽671,以便各个力臂穿出。
需要说明的是,由于装配的需要,通槽671还应贯穿过渡圈67轴向的一侧,以便过渡圈67和螺杆64之间的轴向装配,此时过渡圈67的轴向的一侧端面会有多个开槽,通过在该端面处设置垫圈662就可以遮盖这些开槽,方便止推轴承(图2的实施例中为第二止推轴承332)的抵接,使得力的传递更平稳。
图5是根据本发明一个实施例的变速器的原理示意图。图6是图5中的变速器的径向布置示意图。图7是根据本发明另一个实施例的变速器的原理示意图。参见图5和图7可见,本发明中既可以由一个致动器单独地控制一个锥形离合器50的动作(参见图7),也可以由一个致动器同时给两个相邻的锥形离合器50提供制动力(参见图5)。例如,在一些实施例中,锥形离合器50、致动器和第一缓冲组件的数量均为2个,且每一锥形离合器50与一个致动器和一个第一缓冲组件对应设置,以实现一个致动器单独地控制一个锥形离合器50的动作。当两个锥形离合器50共用一个致动器时,换挡时会有短暂(数十毫秒)的动力中断,这种中断一般人感觉不到。当一个致动器单独控制一个锥形离合器50时,就可以做到无动力中断,换挡更加平顺。
一个实施例中,转轴包括变速器输入轴2和/或变速器输出轴84。也就是说,既可以只在变速器输入轴2(参见图5)或变速器输出轴84上设置锥形离合器50,也可以在变速器输入轴2和变速器输出轴84上分别都设置锥形离合器50(参见图7),按需求进行设置即可,例如根据空间布置要求,不同转轴分别设置各自的锥形离合器50。当然在一些存在中间轴的变速器中,锥形离合器50也可以设置在中间轴上。变速器输入轴2和变速器输出轴84上设有至少两组变速齿轮,目标齿轮为变速器输入轴2的所有主动齿轮或变速器输出轴84的所有从动齿轮;或目标齿轮为变速器输入轴2上的至少一个主动齿轮以及变速器输出轴84上不与至少一个主动齿轮啮合的从动齿轮。
一个实施例中,如图2或图5所示,变速器输入轴2与原动机1的输出轴相连,例如通过花键12,变速器输入轴2的两端可以分别由第一轴承31 和第二轴承34支撑在前壳体41和后壳体42上。变速器输入轴2和变速器输出轴84上设有两组变速齿轮,变速器输出轴84上还设有与差速器9相连的输出齿轮83。具体地,变速器输入轴2上设有第一主动齿轮7和第二主动齿轮5,变速器输出轴84上设置有分别与第一主动齿轮7和第二主动齿轮5啮合的第一从动齿轮81和第二从动齿轮82。第一主动齿轮7和第一被动齿轮形成低速挡齿轮副,第二主动齿轮5和第二被动齿轮形成高速挡齿轮副。第一主动齿轮7和变速器输入轴2之间串联一个锥形离合器50,第二主动齿轮5和变速器输入轴2之间串联一个锥形离合器50,通过两个锥形离合器50的开合,变速器输入轴2的动力被传递至第一主动齿轮7或第二主动齿轮5。两个锥形离合器50之间设有一个共用的致动器。变速器输出轴84上还设有输出齿轮83,该输出齿轮83(相当于差速器9的驱动齿轮)与差速器9的差速器齿轮91啮合,以将动力通过差速器9和半轴传递至车轮。这种两档变速器特别适合做功率不是太大的电动汽车的变速器。
工作时,电机10在其工作转角中位时,螺母63也处于其行程中位,此时两侧的锥形离合器50的外环61均处于与中锥环53脱开的状态,整个变速器处于空挡。当电机10输出正向转矩,使得螺母63左移时,螺母63经径向定位圈661、第一止推轴承331和第一弹簧膜片541将轴向压力施加到左侧的锥形离合器50的外环61处,由于齿轮联结盘51阻止了内锥环52的轴向移动,外环61推动中锥环53压紧内锥环52,在中锥环53的内环面和外环61面处均产生摩擦扭矩,进而结合锥形离合器50,变速器输入轴2的动力传递至致动器左侧的第一主动齿轮7,使得变速器在低速挡运行。锥形离合器50结合后控制电机10断电,通过螺旋副自锁。当车辆需要切换为高速挡时,控制电机10输出反向扭矩,螺母63先退到中位,左侧的锥形离合器50在其自身的复位弹簧55作用下脱开。然后继续控制电机10输出反向扭矩,使得螺母63右移,结合右侧的锥形离合器50,将变速器输入轴2的动力传递至第二主动齿轮5,再进行输出。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (21)

  1. 一种锥形离合器,包括:
    中锥环,其内环面和外环面均为锥面;
    内锥环,设置于所述中锥环的内部,所述内锥环的外环面为与所述中锥环的内环面相匹配的锥面;以及
    外环,具有与所述中锥环的外环面配合的锥形环面,所述外环可相对于所述内锥环沿所述锥形环面的轴向移动,所述中锥环和所述外环分别用于与两个待结合件相连,所述锥形离合器配置成在所述外环受到促使其自身靠近所述中锥环的推力时使得所述外环与所述中锥环之间以及所述中锥环和所述内锥环之间形成紧密接触的摩擦副,从而结合所述两个待结合件。
  2. 根据权利要求1所述的锥形离合器,还包括:
    复位弹簧,其一端固定设置,另一端与所述外环连接。
  3. 一种变速器,包括转轴、目标齿轮和权利要求1或2所述的锥形离合器,所述目标齿轮套设于所述转轴上且可相对于所述转轴转动,所述锥形离合器用于结合或分离所述转轴和所述目标齿轮。
  4. 根据权利要求3所述的变速器,其中,
    所述目标齿轮通过支撑轴承设置于所述转轴处。
  5. 根据权利要求3所述的变速器,还包括:
    齿轮联结盘,与所述目标齿轮固连并和所述中锥环防相对转动连接;
    所述外环套设于所述转轴处且二者形成防相对转动连接。
  6. 根据权利要求5所述的变速器,其中,
    所述中锥环靠近所述齿轮联结盘的一侧设有沿其轴向伸出的卡齿,且所述齿轮联结盘设有与所述卡齿配合的第一开槽。
  7. 根据权利要求5所述的变速器,其中,
    所述外环与所述转轴通过花键连接。
  8. 根据权利要求5所述的变速器,所述锥形离合器包括复位弹簧,其中,所述变速器还包括:
    挡圈,套设于所述转轴上,其一侧与所述目标齿轮接触,另一侧抵接所述复位弹簧。
  9. 根据权利要求8所述的变速器,还包括:
    卡簧,套设于所述转轴上且位于所述外环远离所述复位弹簧的一侧,用于限制所述外环的轴向位移。
  10. 根据权利要求4-8中任一项所述的变速器,还包括致动器,所述致动器包括:
    电机,其输出轴上设有第一齿轮;
    第二齿轮,与所述第一齿轮啮合;
    螺母,其外表面套设有所述第二齿轮;以及
    螺杆,与所述螺母的内壁形成螺旋副,所述螺杆与所述变速器的壳体固定连接,使得所述电机带动所述第二齿轮和所述螺母相对于所述螺杆转动时,所述螺母产生轴向的位移以产生直接或间接作用于所述外环的推力。
  11. 根据权利要求10所述的变速器,还包括设置在所述致动器的所述螺母与所述外环之间的第一缓冲组件;
    所述第一缓冲组件包括依次抵接的径向定位圈、第一止推轴承和第一弹簧膜片,所述径向定位圈远离所述第一止推轴承的一侧与所述螺母抵接,用于限制所述第一止推轴承的径向位移,所述第一弹簧膜片远离所述第一止推轴承的一侧与其自身所在侧的所述锥形离合器的所述外环抵接。
  12. 根据权利要求11所述的变速器,其中,
    所述锥形离合器、所述致动器和所述第一缓冲组件的数量均为多个且数量相同,且每一所述锥形离合器与一个所述致动器和一个所述第一缓冲组件对应设置。
  13. 根据权利要求10所述的变速器,其中,
    所述锥形离合器的数量为2个,2个所述锥形离合器的所述外环分别位 于所述螺母的两侧,所述电机用于输出正反转扭矩,以使得两个所述锥形离合器共用一个所述致动器。
  14. 根据权利要求13所述的变速器,还包括:
    第一缓冲组件和第二缓冲组件,分别位于所述螺母的轴向的两侧;以及
    防松弹簧,穿设于所述螺母的轴向通孔内,所述防松弹簧的两端分别与所述第一缓冲组件和所述第二缓冲组件抵接。
  15. 根据权利要求14所述的变速器,其中,
    所述第一缓冲组件包括依次抵接的径向定位圈、第一止推轴承和第一弹簧膜片,所述径向定位圈远离所述第一止推轴承的一侧与所述螺母抵接且同时与所述防松弹簧的一端相连,用于限制所述第一止推轴承的径向位移,所述第一弹簧膜片远离所述第一止推轴承的一侧与其自身所在侧的所述锥形离合器的所述外环抵接。
  16. 根据权利要求14所述的变速器,其中,
    所述第二缓冲组件包括沿所述转轴的轴向依次抵接的第二止推轴承、垫圈、过渡圈、第三止推轴承和第二弹簧膜片,所述第二止推轴承远离所述垫圈的一侧端面与所述防松弹簧相连,所述第二弹簧膜片远离所述过渡圈的一侧与其自身同侧的所述锥形离合器的所述外环抵接。
  17. 根据权利要求16所述的变速器,其中,
    所述螺母远离所述第一缓冲组件的端面处设置有第二开槽,所述第二开槽还径向地贯穿所述螺母的外环面;
    所述第二止推轴承和所述垫圈均套设于所述第二开槽处且均与所述第二开槽径向上的底面配合。
  18. 根据权利要求17所述的变速器,其中,
    所述过渡圈轴向上的两侧分别设有第一凸台和第二凸台,所述第一凸台与所述垫圈的周面配合,以限制所述过渡圈的径向位移,所述第二凸台与所述第三止推轴承的周面配合,以限制所述第三止推轴承的径向位移。
  19. 根据权利要求10所述的变速器,其中,
    所述螺杆包括多个连接臂,每一所述连接臂均与所述变速器的壳体固定连接。
  20. 根据权利要求19所述的变速器,其中,
    多个所述连接臂沿所述螺杆的周向均匀布置,且每一所述连接臂均沿所述螺杆的径向伸出。
  21. 根据权利要求10所述的变速器,其中,
    所述转轴包括变速器输入轴和/或变速器输出轴。
PCT/CN2021/107125 2021-07-19 2021-07-19 锥形离合器及变速器 WO2023000138A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/107125 WO2023000138A1 (zh) 2021-07-19 2021-07-19 锥形离合器及变速器
EP21950404.0A EP4246007A4 (en) 2021-07-19 2021-07-19 CONE CLUTCH AND GEARBOX
CN202180075453.9A CN116635641A (zh) 2021-07-19 2021-07-19 锥形离合器及变速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107125 WO2023000138A1 (zh) 2021-07-19 2021-07-19 锥形离合器及变速器

Publications (1)

Publication Number Publication Date
WO2023000138A1 true WO2023000138A1 (zh) 2023-01-26

Family

ID=84979643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107125 WO2023000138A1 (zh) 2021-07-19 2021-07-19 锥形离合器及变速器

Country Status (3)

Country Link
EP (1) EP4246007A4 (zh)
CN (1) CN116635641A (zh)
WO (1) WO2023000138A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483111A (zh) * 2000-11-03 2004-03-17 精选图案技术有限公司 锥体选择器与有关的传动组件
US20080017470A1 (en) * 2004-01-15 2008-01-24 Friedrich Stockl Synchronization Device for a Change Speed Gear
CN103388656A (zh) * 2013-08-08 2013-11-13 中国重汽集团济南动力有限公司 一种新型10档双中间轴同步器变速箱
DE102012220563A1 (de) * 2012-11-12 2014-05-15 Zf Friedrichshafen Ag Reibschlüssiges Schaltelement
CN107975544A (zh) * 2016-10-21 2018-05-01 现代自动车株式会社 用于车辆的离合器
CN110816261A (zh) * 2018-08-07 2020-02-21 贺尔碧格传动技术控股有限公司 电动车的动力总成和电动车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826701B1 (fr) * 2001-06-29 2003-09-26 Renault Boite de vitesses a arbres paralleles et procede de commande des changements de rapports correspondants
DE102009012961B3 (de) * 2009-03-12 2010-01-21 Ab Skf Verfahren zur Herstellung eines Ringes einer Synchronisationseinrichtung und Ring einer Synchronisationseinrichtung
DE102018111248A1 (de) * 2018-05-09 2019-11-14 Hoerbiger Antriebstechnik Holding Gmbh Synchronkupplung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483111A (zh) * 2000-11-03 2004-03-17 精选图案技术有限公司 锥体选择器与有关的传动组件
US20080017470A1 (en) * 2004-01-15 2008-01-24 Friedrich Stockl Synchronization Device for a Change Speed Gear
DE102012220563A1 (de) * 2012-11-12 2014-05-15 Zf Friedrichshafen Ag Reibschlüssiges Schaltelement
CN103388656A (zh) * 2013-08-08 2013-11-13 中国重汽集团济南动力有限公司 一种新型10档双中间轴同步器变速箱
CN107975544A (zh) * 2016-10-21 2018-05-01 现代自动车株式会社 用于车辆的离合器
CN110816261A (zh) * 2018-08-07 2020-02-21 贺尔碧格传动技术控股有限公司 电动车的动力总成和电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246007A4 *

Also Published As

Publication number Publication date
EP4246007A4 (en) 2024-04-10
CN116635641A (zh) 2023-08-22
EP4246007A1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP6028507B2 (ja) 電気自動車用駆動装置
US3508450A (en) Mechanical drive transmission
CN108443433B (zh) 一种电动车用单作动器式二挡变速器
JP2013108619A5 (zh)
CN108443434B (zh) 电动汽车变速器用单作动器换挡执行机构及变速器
US20110167957A1 (en) Automatic dual-clutch transmission
CN107763153B (zh) 用于电动车辆的行星齿轮型两挡变速器
WO2023185518A1 (zh) 行星排变速器、动力总成和车辆
CN110131327B (zh) 一种汽车离合器的螺旋式致动器
US3978742A (en) Epicyclic gear assemblies
CN112128324A (zh) 轮内两挡自动变速器及无动力中断换挡控制方法
SE1350121A1 (sv) Växellåda för fordon samt fordon, som innefattar en sådan växellåda
CN109826947B (zh) 变速装置、换挡控制方法、电动车驱动系以及电动车
JP2007071382A (ja) 駆動力伝達装置
CN110107613A (zh) 动力传递设备
WO2023000138A1 (zh) 锥形离合器及变速器
US2302312A (en) Transmission
WO2023236231A1 (zh) 一种带有可控多态超越离合器的变速器
JPH10331869A (ja) クラッチの潤滑装置
WO2014132980A1 (ja) 自動変速機
JP5658246B2 (ja) 車両用駆動ユニット
JP2922084B2 (ja) 変速ギヤの同期装置
JPH1037977A (ja) 伝動装置の連回り防止装置
US2791771A (en) Fluid operated yieldable shifter for positive clutches
US2399568A (en) Transmission mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180075453.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021950404

Country of ref document: EP

Effective date: 20230614

NENP Non-entry into the national phase

Ref country code: DE