WO2023000115A1 - Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal - Google Patents

Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal Download PDF

Info

Publication number
WO2023000115A1
WO2023000115A1 PCT/CL2021/050064 CL2021050064W WO2023000115A1 WO 2023000115 A1 WO2023000115 A1 WO 2023000115A1 CL 2021050064 W CL2021050064 W CL 2021050064W WO 2023000115 A1 WO2023000115 A1 WO 2023000115A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
process according
protein
reaction
enzyme
Prior art date
Application number
PCT/CL2021/050064
Other languages
English (en)
French (fr)
Inventor
María Angélica FELLENBERG PLAZA
Marie Celine Veronique PESLERBES
Rodrigo Ignacio IBÁÑEZ ALFARO
Original Assignee
Pontificia Universidad Catolica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Catolica De Chile filed Critical Pontificia Universidad Catolica De Chile
Priority to EP21950383.6A priority Critical patent/EP4374709A1/en
Priority to PCT/CL2021/050064 priority patent/WO2023000115A1/es
Publication of WO2023000115A1 publication Critical patent/WO2023000115A1/es
Priority to CL2023003988A priority patent/CL2023003988A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/343Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Definitions

  • the present invention is framed within the food sector, specifically in the field of bioactive compounds obtained from food products, and is related to providing a new process for the production of peptides with antihypertensive activity that comprises treating cow's milk whey. with plant proteases.
  • the present invention is related to a product that contains said bioactive peptides and with uses of said product in the formulation of foods that allow maintaining blood pressure at acceptable levels with the aim of reducing the risk of suffering diseases related to blood pressure. augmented.
  • Functional foods are defined as products that can provide benefits beyond basic nutrition and consist of a variety of components that can reduce disease and promote health.
  • Functional ingredients provide specific properties to foods, such as antioxidants, anti-inflammatory, antihypertensive, antimicrobial, anticancer, among others.
  • Milk whey, or whey is a co-product of the cheese industry that is obtained from the enzymatic coagulation of caseins (CN), containing approximately 50% of the nutrients in milk, and is considered a potential source of products and ingredients with high added value. It is estimated that approximately 50% of the whey is eliminated during the production process, generating potential environmental contamination due to its high organic matter content, which can cause eutrophication problems in bodies of water where it is discharged. Therefore, there is a current need in the industry to be able to treat said waste or convert it into value-added transformed products.
  • CN caseins
  • whey-derived products on the market, such as powdered products, which are directly transformed from whey, which can be purchased by the animal industry, food industry, and end consumers to be used as nutritional supplements.
  • whey-derived products are products obtained through biotechnology, where whey is used as a raw material in order to transform the active compounds of milk whey into other value-added molecules.
  • the serum is rich in a series of substances, presenting a great diversity of proteins, such as b-lactoglobulin, a-lactalbumin, immunoglobulin, bovine serum albumin, lactoferrin and lactoperoxidase (Prathamesh Bharat Helkar, AK Sahoo and NJ Patil. 2016.
  • bioactive peptides consists of a controlled enzymatic hydrolysis of the proteins present in the serum using protease enzyme(s).
  • proteases available in the state of the art, those of animal origin such as pepsin, trypsin and chymotrypsin have been described as the most used enzymes in various studies (Korhonen and Pihlanto. 2006. Food-derived Bioactive Peptides - Opportunities for Designing Future Foods.Current Pharmaceutical Design 9(16):1297-308).
  • bioactive peptides that can be produced from whey using conventional enzymes such as pepsin, trypsin, and chymotrypsin (Tavares and Malcata. 2013, Whey Proteins as Source of Bioactive Peptides against Hypertension. DOI: 10.5772/52680).
  • bioactive peptides obtained from whey hydrolysates have been described.
  • antimicrobial, anticancer and also antihypertensive activities can be mentioned.
  • Cardiovascular diseases heart attacks and cerebrovascular attacks among others
  • hypertension being the leading risk factor (WHO, 2018).
  • Hypertension also known as high blood pressure, is defined as the condition in which the force of the blood against the arterial walls is high enough to cause long-term health problems. It causes damage to the arteries and other organs, such as the heart, kidneys, retina and brain, among others.
  • ACE angiotensin-converting enzyme-1
  • ACE angiotensin-converting enzyme-1
  • This enzyme participates in the renin-angiotensin system.
  • ACE exerts an activity on blood pressure by activating angiotensin I into angiotensin II.
  • Angiotensin II acts as a vasoconstrictor and increases blood pressure.
  • ACE also plays another role in the renin-angiotensin system by inactivating bradykinin. Without ACE, bradykinin acts as a vasodilator and contributes to lowering blood pressure. In the presence of ACE, bradykinin is inactivated: inactive fragments are generated and bradykinin does not perform its regulatory role.
  • ACE inhibitors and angiotensin receptor blockers are generally used to control hypertension.
  • a combination of drugs is usually used to optimize treatment and also to minimize side effects, such as fatigue, nausea, dizziness or congenital malformations in case of pregnancy (Torruco-Uco et al., 2009; Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes. Food Science and Technology. Volume 42 (10): 1597-1604).
  • the complexity of the treatment and the associated risks gave rise to the need to find alternatives, one of these alternatives being the use of functional foods with antihypertensive activity.
  • ACE inhibitory activity is estimated by IC 5 o, defined as the minimum peptide concentration required to inhibit 50% of ACE activity (Ben Henda et al., 2013, Measuring Angiotensin-I Converting Enzyme Inhibitory Activity by Micro P ⁇ ate Assays: Comparison Using Marine Cryptides and Tentative Threshold Determinations with Captopril and Losartan. J. Agrie. Food Chem. 2013, 61, 45, 10685-10690).
  • the first peptide with antihypertensive activity was isolated from the venom of the Brazilian cobra in 1965. Over the years Several raw materials have been investigated for years as possible sources to produce antihypertensive peptides, such as fish, spinach, wines or milk (Torruco-Uco et al., 2009; Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes. Food Science and Technology. Volume 42 (10): 1597-1604).
  • the most potent inhibitor known and described in the literature is the peptide f (142-148) derived from b-lactoglobulin, obtained with digestive enzymes (pepsin, trypsin and chymotrypsin).
  • pepsin, trypsin and chymotrypsin digestive enzymes
  • ACE inhibitor peptides Several other ACE inhibitor peptides have been reported; however, the exact molecular mechanisms by which the peptides exert their antihypertensive activity are not well understood.
  • the processes by which said peptides with antihypertensive activity have been obtained have mainly used animal digestive proteases such as pepsin and trypsin, and there are not many precedents regarding the use of plant proteases such as bromelain and ficin in the production. of peptides with antihypertensive activity.
  • CN111944009A describes an antihypertensive composition derived from Salicornia bigelovii. This document first describes a method for obtaining a protein composition derived from this plant. Then a process is described where said protein composition is treated with bromelain to produce a composition with antihypertensive activity.
  • the reaction conditions for bromelain were as follows: (1) 20 mM PBS buffer; (2) reaction pH of 6.5; (3) 10 mg/mL enzyme concentration; (4) The reaction time was 12 hours.
  • JP2020097535A describes new compositions for lowering blood pressure.
  • the composition is indicated to be an enzymatic degradation product as the active ingredient, which is preferably an enzymatic degradation product obtained from whey. It is described that the active ingredient would be the peptide of sequence GTWY.
  • the proteolytic enzyme used to produce this bioactive peptide is not specifically described, but general reaction conditions are indicated: (1) temperature between 30°C and 70°C; (2) reaction time between 1 and 12 hours; (3) step of stopping the reaction between 80°C and 90°C for 5 to 30 min; (4) ultrafiltration by membranes; (5) Lyophilization of the product; and (6) the pH of the reaction is described as being between 4 and 9.
  • CN108178785A describes peptides obtained from sheep milk serum, which have antihypertensive activity.
  • a production process is described that has the following steps: (1) adding water to sheep whey protein powder; (2) treating said mixture with ultrasonic waves; (3) adding proteases to the mixture to perform enzymatic hydrolysis; (4) heat the mixture at a certain temperature (between 50°C and 60°C) for between 0.5 and 2 hours; (5) stop the reaction by heating the reaction at 90°C-100°C for 10-20 min; (6) cool, filter, and separate the liquid; (7) two-step ultrafiltration to purify the peptides using 5 kDa membranes, and (8) lyophilize the sample.
  • KR20110089705A describes a whey peptide hydrolyzate having antihypertensive activity.
  • the production process of said hydrolyzate comprises the following stages: (1) mixing the whey protein powder with the commercial enzyme protamex (Novozymes); (2) react this mixture at pH 6.5 at 45°C for 6 hours; (3) heat the mixture to stop the reaction at 100°C for 15 min; (4) centrifuge for 20 min at 3,000 RPM; (5) lyophilize the samples.
  • JP2002238462A describes whey protein hydrolysates that have good aroma, high thermal stability in the acidic region, reduced buffering capacity and do not inhibit gelation.
  • GB966857A describes a pasteurized whey hydrolyzate obtained by enzymatic hydrolysis. It is described that the method of obtaining involves the use of pancreatic enzymes, trypsin, pepsin, ficin, papain and proteins derived from Aspergillus oryzae.
  • bromelain has been used to produce bioactive peptides from whey
  • the use of bromelain and ficin generates a synergistic effect in terms of the production of antihypertensive activity that is more than the technical effects of the enzyme hydrolysates. separately that were evaluated.
  • this technical effect is unexpected and surprising, and no previous state of the art document alone or in combination anticipates the present application.
  • the present invention describes a new process for the production of bioactive peptides with antihypertensive activity that comprises the use of bromelain and ficin plant proteases.
  • the stages of the production process generally correspond to the following steps: a) Prepare a whey solution, b) Adjust the pH (with 1 N NaOH or with 1 N HCI) c) Prepare the enzyme solution d) Bring the whey solution to the desired temperature e) Add the required amount of enzyme solution and incubate f) Stop the enzymatic reaction with a heat shock g) Centrifuge the sample and remove the precipitate h) Ultrafilter the sample, recovering the fraction under 5 kDa; and i) Lyophilize the permeate.
  • the invention further relates to food compositions comprising said peptides and also relates to the uses of these compositions to prevent the development of cardiovascular and cerebrovascular diseases.
  • Figure 6 Peptide profile of the fraction under 5 kDa obtained from hydrolysis with a mixture of bromelain and ficin with heat.
  • Figure 7. Peptide profile of the fraction under 5 kDa obtained from hydrolysis with a mixture of bromelain and ficin at room temperature.
  • the production process of a composition comprising bioactive peptides with antihypertensive activity from whey consists of the following steps: (a) preparing a whey solution; (b) adjusting the pH to the objective of the reaction; (c) preparing the enzyme solution; (d) bringing the whey solution to the desired temperature; (e) add the required amount of enzyme solution and incubate at reaction temperature; (f) stopping the enzymatic reaction with a heat shock (g) centrifuging the sample and removing debris; (h) Ultrafilter the sample, recovering the fraction below 5 kDa; and (i) lyophilizing the permeate.
  • the whey can be concentrated in order to obtain a whey protein concentrate, such as WPC80.
  • WPC80 refers to a whey protein concentrate (80%), which results from the elimination of the non-protein fractions of the whey.
  • the sweet whey must go through several processes. The first step is clarification, which consists of removing residual curd and fat that is generally lost during cheese making. The clarified whey is then subjected to HTST pasteurization, with the aim of eliminating the presence of potential pathogens and deactivating the bacteria used for cheese making. The whey proteins are then concentrated, which can be done for example by vacuum evaporation, membrane technology such as ultrafiltration and nanofiltration, and reverse osmosis. WPC can be marketed as a liquid product or a dry powder, after spray drying. WPC is widely used as an ingredient in animal and human feed.
  • the pH adjustment step can be performed with any strong acid and strong base, whether the goal is to lower or increase the pH of the reaction.
  • the pH values that are reached in this stage of the process can be between 3 and 10, preferably between 4 and 9.
  • the enzyme preparation step refers to the preparation of the working solution (concentrated enzyme) that will be added to the reaction. At this stage it is important to determine the enzymatic units that must be added to the reaction considering the amount of protein to be hydrolyzed.
  • units of enzyme activity (U) corresponds to the catalytic activity responsible for the transformation of one pmol of substrate per minute under optimal conditions of the enzyme.
  • the catalytic activity depends on each enzyme, and this must be determined experimentally for each enzyme with which one works or the supplier of the enzyme indicates such information in the use protocol and/or specific data sheet. Accordingly, one skilled in the art will understand that it is not necessary to describe each working volume of the reaction solutions, but it is necessary to maintain the U/mg whey protein ratio as reaction volumes are changed. .
  • the used enzyme activity units of bromelain and ficin were between 0.200 U/mg to 0.400 U/mg and between 0.150/mg and 0.310 U/mg, respectively.
  • the bromelain and ficin values when used mixed were 0.397 U/mg and 0.309 U/mg respectively, when they were tested at 50°C.
  • the WPC80 or whey solution equilibration step at enzyme reaction temperature must be performed so that the temperature of the substrate solution has reached reaction temperature prior to enzyme addition.
  • the equilibration times may be different. In a preferred embodiment of the invention the equilibration times can vary between 10 and 60 minutes.
  • the step of adding a solution that comprises an amount of units of enzymatic activity suitable for the enzymes to work well at a certain temperature corresponds to the start of the enzymatic reaction.
  • a solution that comprises an amount of units of enzymatic activity suitable for the enzymes to work well at a certain temperature corresponds to the start of the enzymatic reaction.
  • the enzymatic reaction temperature is between 15°C and 60°C, preferably between 18°C and 55°C.
  • reaction temperature is 20°C or 50°C.
  • reaction times are different depending on the temperature at which the reaction is carried out. This is why the reaction times of the present invention can vary between 3 and 70 minutes, preferably between 5 and 60 minutes.
  • the reactions carried out at 20°C have a duration of approximately at least 60 min.
  • the enzymatic reactions carried out at 50°C have a duration of approximately at least 5 min.
  • Proteins, and of course enzymes, are inactivated at high temperatures, losing their catalytic activity. Therefore, it is a common procedure to stop enzymatic reactions by heating the solutions at a temperature equal to or greater than 90°C for a period of at least 5 minutes.
  • the incubation temperature is 90°C and the incubation is at least 5 minutes.
  • the centrifugation step of the sample once the reaction is finished corresponds to a physical separation step where the particulate material, residues present in the whey or WPC80 and non-hydrolyzed proteins, are eliminated from the subsequent stages, and the supernatant that contains The bioactive peptides obtained are stored in a biochemical or molecular biology grade container suitable for containing them.
  • centrifugation at high speeds is a fast process that allows residues present in the reaction to be removed in order not to drag them into subsequent stages, passive precipitation of the sample could also be carried out in order to eliminate unwanted material.
  • the ultrafiltration step uses 5 kDa cutoff membrane technologies as an additional purification step.
  • peptides smaller than 5 kDa pass through the pores present in this membrane, constituting the permeate of the samples, while peptides or polypeptides are retained in the upper part of this membrane and do not pass through the pores.
  • the time allocated to ultrafiltration depends on the concentration of the protein sample being purified and will also depend on the volume of the sample to be passed through this ultrafiltration system.
  • the lyophilization step is necessary to eliminate the water in the peptide solution, this step being essential for the transport of the bioactive peptides obtained at room temperature from the product production facilities to the facilities where they are going to be stored and/or market. Lyophilization protocols for protein extracts are well known in the state of the art.
  • the bioactive peptides production process consists of the following steps: a) Prepare a 4% WPC80 powder solution (3.2% protein) b) Adjust the pH of the solution obtained in ( a) to 4 or 9 c) Prepare the enzyme mixture solution where the amount of bromelain and ficin are 0.397 U/mg and 0.309 U/mg, respectively d) Bring the WPC80 solution to 20°C or 50° C e) Add the required amount of the enzyme mixture and incubate for 5 min at 60°C or 60 min at 20°C f) Stop the enzymatic reaction at 90°C for 5 min.
  • bioactive peptides of the present application can be used as functional ingredients for the preparation of different types of foods, such as dairy products, juices, cereal bars, baked goods, and specialized foods for athletes.
  • Example 1 Production protocols for bioactive peptides at 50°C and room temperature
  • each enzyme was tested separately and as a mixture.
  • an important characteristic that the enzymes used in the production of this type of peptides must have is that they are able to work well at room temperature. This is why during this example the activity of each enzyme was evaluated separately or as a mixture, at 50°C and at 20°C.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared w/w with WPC80 and distilled water.
  • the pH of the solution is measured, which should be close to 6.1 -6.3 and is adjusted to pH 9.0 with 1 N NaOH or NaOH in beads or flakes.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • the two enzyme solutions are prepared, with a concentration of 26U/mL of enzyme for each one.
  • the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26U/mL.
  • the container with the WPC80 solution is then placed in a thermoregulated bath equilibrated at 50°C, which is the reaction temperature for the bromelain/ficin mixture.
  • the corresponding volume of bromelain solution is added first.
  • the protein-enzyme ratio should be 0.397% (Unit of enzyme/mg protein).
  • the volume to be added corresponds to 4.88 mL of bromelain solution at 26U/mL.
  • the stopwatch is started. After 5 minutes, the corresponding volume of ficin solution is added.
  • the enzyme:protein ratio should be 0.155% (Unit of enzyme/mg protein).
  • the volume to be added corresponds to 1.9 mL of bromelain solution at 26U/mL. Shake the container with WPC80 and leave in a water bath at 50°C.
  • the container is removed and placed in another thermoregulated bath equilibrated at 90 °C.
  • the container is kept in this water bath until its content reaches the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared w/w with WPC80 and distilled water.
  • the pH of the solution is measured, which should be close to 6.1 -6.3 and is adjusted to pH 9.0 with 1 N NaOH or NaOH in beads or flakes.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • the two enzyme solutions are prepared, with a concentration of 26U/mL of enzyme for each one.
  • the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26U/mL.
  • the container with the WPC80 solution is placed on the counter or in a thermoregulated bath equilibrated at 20°C, which is the reaction temperature for the bromelain/ficin mixture. You can use the air conditioning and a thermometer to measure the temperature of the laboratory. Always measure the temperature of the WPC80 solution before starting any reaction.
  • the protein-enzyme ratio for bromelain should be 0.397% (Enzyme unit/mg protein).
  • the volume to be added corresponds to 4.88 mL of bromelain solution at 26 U/m.
  • the protein-enzyme ratio for ficin should be 0.155% (Enzyme unit/mg protein).
  • the volume to be added corresponds to 1.9 mL of bromelain solution at 26 U/mL. Shake the vessel with WPC80 and leave in the 20°C thermoregulated bath.
  • the container is removed and placed in another equilibrated thermoregulated bath at 90 °C.
  • the container is kept in this water bath until its content reaches the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared w/w with WPC80 and distilled water.
  • Example for a final weight of 1 L of WPC solution • Weigh 40g of WPC80 into a beaker with a magnet for stirring. Between 800g and 900g of distilled water are added and the WPC80 is dissolved under stirring for one hour at room temperature.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • the enzyme solution is prepared, with a concentration of 26 U/mL of enzyme.
  • the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26 U/mL.
  • the container with WPC80 is shaken and left in the thermoregulated bath at 50°C.
  • the stopwatch is started. After 5 minutes, the container is removed and placed in another thermoregulated bath equilibrated at 90°C. The container is kept in this water bath until its content reaches the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared w/w with WPC80 and distilled water.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • Example for a hydrolysis of 1 liter of WPC80 solution Example for a hydrolysis of 1 liter of WPC80 solution. • The enzyme solution is prepared, with a concentration of 26U/mL of enzyme. When changing the enzyme batch, the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26U/mL.
  • the container with the WPC80 solution is placed on the counter or in a thermoregulated bath balanced at 20°C, which is the reaction temperature for the ficin. You can use the air conditioning and a thermometer to measure the temperature of the laboratory. Always measure the temperature of the WPC80 solution before starting any reaction.
  • the container with WPC80 is shaken and left in the thermoregulated bath at 50°C.
  • the stopwatch is started. After 5 minutes, the container is removed and placed in another thermoregulated bath equilibrated at 90°C. The container is kept in this water bath until its content reaches the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared w/w with WPC80 and distilled water.
  • the pH of the solution is measured, which should be close to 6.1 -6.3 and is adjusted to pH 9.0 with 1 N NaOH or NaOH in beads or flakes.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • the two enzyme solutions are prepared, with a concentration of 26 U/mL of enzyme for each one.
  • the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26 U/mL.
  • the container with the WPC80 solution is then placed in a thermoregulated bath equilibrated at 50°C, which is the reaction temperature for the bromelain/ficin mixture.
  • the protein-enzyme ratio should be 0.397% (Unit of enzyme/mg protein).
  • the volume to be added corresponds to 4.88 mL of bromelain solution at 26 U/mL.
  • the stopwatch is started. After 5 minutes, the corresponding volume of ficin solution is added.
  • the protein-enzyme ratio should be 0.155% (Unit of enzyme/mg protein).
  • the volume to be added corresponds to 1.9 mL of bromelain solution at 26 U/mL. Shake the container with WPC80 and leave in a water bath at 50°C.
  • the container is removed and placed in another thermoregulated bath equilibrated at 90 °C.
  • the container is kept in this thermoregulated bath until its contents reach the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • a 3.2% protein WPC80 solution is prepared and its pH is adjusted.
  • the solution is prepared WT/WT with WPC80 and distilled water.
  • the pH of the solution is measured, which should be close to 6.1 -6.3 and is adjusted to pH 9.0 with 1 N NaOH or NaOH in beads or flakes.
  • the weight is adjusted with distilled water until reaching a final weight of 1000 g.
  • the WPC solution remains with a concentration of 3.2% protein.
  • the two enzyme solutions are prepared, with a concentration of 26 U/mL of enzyme for each one.
  • the enzyme activity must be verified on the container or on the supplier's certificate of analysis to ensure the mass concentration of the solution, which must always be 26 U/mL.
  • the container with the WPC80 solution is placed on the counter or in a thermoregulated bath equilibrated at 20°C, which is the reaction temperature for the bromelain/ficin mixture. You can use the air conditioning and a thermometer to measure the temperature of the laboratory. Always measure the temperature of the WPC80 solution before starting any reaction.
  • the protein-enzyme ratio for bromelain should be 0.397% (Enzyme unit/mg protein).
  • the volume to be added corresponds to 4.88 mL of bromelain solution at 26 U/m.
  • the protein-enzyme ratio for ficin should be 0.155% (Enzyme unit/mg protein).
  • the volume to be added corresponds to 1.9 mL of bromelain solution at 26 U/mL. Shake the container with WPC80 and leave in a water bath at 50°C.
  • the container is removed and placed in another equilibrated thermoregulated bath at 90 °C.
  • the container is kept in this thermoregulated bath until its contents reach the desired temperature, for at least 5 minutes, to ensure that the enzymatic reaction has stopped.
  • the lyophilization protocol consisted of the following steps: 1) Freeze the samples at -34°C for at least 8 hours and 2) Lyophilize the samples using the parameters described in Table 1.
  • the method for determining antihypertensive activity by spectrophotometry is based on the release of hippuric acid from hippuryl-histidyl-leucine (HHL), a reaction catalyzed by the angiotensin-converting enzyme ⁇ CE).
  • HHL hippuryl-histidyl-leucine
  • ⁇ CE angiotensin-converting enzyme
  • a borate buffer ideally fresh. However, 50 mL of buffer can be prepared and dispensed 200 pL into Eppendorf tubes and kept frozen until the day of analysis.
  • a buffer is prepared at 0.1 M sodium borate, 0.3M NaCl and 5 mM Hippuryl-Histidyl-Leucine.
  • To prepare 50 mL of buffer weigh 1.91 g of sodium borate, 0.877 g of NaCl, and 0.107 g of HHL. Dissolve in 50 mL of miliQ water, using a stopper flask. Heat can be applied for a few minutes if the buffer is difficult to solubilize. Once dissolved, the pH is adjusted to 8.3 with 1N HCI.
  • a 0.25 Units/mL ACE solution is prepared: Refer to the ACE analysis certificates to make the dilution. Separate the diluted ACE solution into 0.5 mL aliquots and freeze until used.
  • Eppendorf tubes containing 200 ml_ of borate buffer are removed from the freezer. They are recorded as follows: a single tube A, a single tube B, and a tube C and a tube D for each sample. Tubes A and B serve as references for the entire analysis, while tubes C and D serve to measure the antihypertensive capacity of each sample. The table below details the contents of each tube. When no sample or ACE solution is to be added, the same volume of milliQ water is added to the corresponding tubes.
  • thermoregulated bath • It is allowed to react in the thermoregulated bath at 37 oC for 30 minutes.
  • the tubes are centrifuged at 729 g x 10 minutes (2,500 rpm).
  • the values of A, B, C and D are the absorbance values determined for each tube. Since there is only one tube A and one tube B, the same values are used for all samples. To calculate the IC 5 o, the value of the concentration in peptides/amino acids of the fraction less than 3 kDa is used, as well as the inhibition percentage calculated for each sample.
  • Captopril is a drug that has an inhibitory effect on ACE. It deals in human medicine as a treatment for people with hypertension. In order to have a reference point to compare the antihypertensive effects of the different extracts, a Captopril calibration curve was made, with the objective of associating a percentage of ACE inhibition with a Captopril concentration. Results were obtained that reflect the high inhibitory power of Captopril on ACE, with a logarithmic curve with an asymptote at 100% inhibition. I know obtained the equation of the calibration curve, which is used to obtain the Captopril equivalents for the extracts tested in this project ( Figure 1).
  • Example 3 Characterization of peptide extracts obtained and comparison with Captopril.
  • Example 1 The peptide fractions obtained in Example 1 were evaluated for their antihypertensive capacity according to the protocol described in the previous example, and the antihypertensive capacity of the samples obtained with different treatments was evaluated: (1) bromelain with heat, (2) bromelain at room temperature, (3) cook with heat, (4) cook at room temperature, (5) enzyme mix with heat, and (6) enzyme mix at room temperature.
  • the results obtained are shown in the following tables 2-7:
  • results shown in this table demonstrate that the enzymes, when mixed, generate peptide extracts with greater antihypertensive activity than when each enzyme is used separately. These results demonstrate the synergy of both enzymes, and these results cannot be expected or derived from the state of the art. Additionally, the antihypertensive activity of the peptide extract obtained by a production process that uses a mixture of enzymes and carried out at room temperature is higher than the same production process carried out at 50°C. It should be noted that a production process carried out at room temperature generates economic advantages by not having to heat the solution to carry out the enzymatic reaction.
  • Fractions less than 5 kDa obtained with the protocols described in the previous examples were analyzed.
  • Samples were prepared by mixing 400uL of the fraction below 5kDa and adjusting with 1.6mL of milliQ water with 0.1% trifluoroactic acid (TFA) to reach a total volume of 2mL.
  • the samples were filtered with a pinwheel filter of 0.45mhi directly in the vials to be analyzed by HPLC.
  • Peptides were analyzed at a wavelength of 214 nm.
  • the phase consists of two solvents: A, milliQ water with 0.1% TFA, and B, acetonitrile with 0.1% TFA.
  • the elution is monitored for 60 minutes, with a mobile phase flow of 0.75mL/min, with the oven equilibrated at 40°C.
  • Two blanks (milliQ water) are run prior to running samples to remove any residue from previous samples, and one blank (milliQ water) is run every third sample to clean the system.
  • the analysis batch is finished with two other blanks to clean the system and make it operational for subsequent samples.
  • the present invention has a wide application in the food industry, specifically in the field of functional and nutraceutical ingredients that can be used as ingredients in different foods with the aim of preventing the development of cardiovascular problems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

La presente invención se enmarca dentro del sector de la alimentación, específicamente en el campo de los compuestos bioactivos obtenidos desde productos alimenticios, y está relacionada con proveer un nuevo proceso de producción de péptidos con actividad antihipertensiva que comprende tratar el suero de la leche de vaca con proteasas vegetales. Además, la presente invención se relaciona con un producto que contiene dichos péptidos bioactivos y con usos de dicho producto en la formulación de alimentos que permitan mantener la presión arterial a niveles aceptables con el objetivo de disminuir el riesgo de sufrir enfermedades relacionadas con una presión arterial aumentada.

Description

PROCESO DE PRODUCCIÓN DE PÉPTIDOS BIOACTIVOS OBTENIDOS DESDE LACTOSUERO MEDIANTE LA UTILIZACIÓN DE ENZIMAS DE ORIGEN VEGETAL
CAMPO TÉCNICO
La presente invención se enmarca dentro del sector de la alimentación, específicamente en el campo de los compuestos bioactivos obtenidos desde productos alimenticios, y está relacionada con proveer un nuevo proceso de producción de péptidos con actividad antihipertensiva que comprende tratar el suero de la leche de vaca con proteasas vegetales. Además, la presente invención se relaciona con un producto que contiene dichos péptidos bioactivos y con usos de dicho producto en la formulación de alimentos que permitan mantener la presión arterial a niveles aceptables con el objetivo de disminuir el riesgo de sufrir enfermedades relacionadas con una presión arterial aumentada.
ANTECEDENTES Y ARTE PREVIO
Los alimentos funcionales se definen como productos que pueden proporcionar beneficios más allá de la nutrición básica y consisten en una variedad de componentes que pueden reducir las enfermedades y promover la salud. Los ingredientes funcionales les aportan a los alimentos propiedades específicas, tales como antioxidantes, antiinflamatorias, antihipertensivas, antimicrobianas, anticancerígenas, entre otras.
Una de las principales motivaciones de la industria que está permitiendo la aparición de una serie de ingredientes funcionales en el último tiempo, es el aprovechar subproductos de diferentes procesos productivos. Se han descrito ingredientes funcionales con diferentes propiedades obtenidos desde desechos de la industria de: frutas y vegetales, procesamiento de granos, cervecera y vitivinícola, carne y láctea (Prathamesh Bharat Helkar, AK Sahoo y NJ Patil. 2016. Review: Food Industry By-Products used as a Functional Food Ingredients. Int J Waste Resour 2016, 6:3, DOI: 10.4172/2252-5211.1000248).
El suero de la leche, o lactosuero, es un coproducto de la industria del queso que se obtiene de la coagulación enzimática de las caseínas (CN), conteniendo aproximadamente el 50% de los nutrientes de la leche, y se considera una fuente potencial de productos e ingredientes de alto valor agregado. Se estima que aproximadamente el 50% del suero es eliminado durante el proceso productivo, generando una potencial contaminación ambiental debido a su alto contenido de materia orgánica la cuál puede generar problemas de eutrofización en cuerpos de agua en donde se descargan. Por lo tanto, existe una necesidad actual en la industria en poder tratar dichos desechos o convertirlos en productos transformados con valor agregado. En el mercado existen productos derivados de suero, como los productos en polvo, los cuales son transformados de forma directa desde el suero, los que pueden ser adquirido por la industria animal, industria de alimentos y consumidores finales para ser utilizados como suplementos nutricionales. Otro tipo de productos derivados del lactosuero son los productos obtenidos mediante biotecnología, en donde el lactosuero es utilizado como materia prima de modo de transformar los compuestos activos del suero de leche, en otras moléculas con valor agregado. El suero es rico en una serie de sustancias, presentando una gran diversidad de proteínas, tales como la b-lactoglobulina, a-lactalbumina, immunoglobulina, albúmina sérica bovina, lactoferrina y lactoperoxidasa (Prathamesh Bharat Helkar, AK Sahoo y NJ Patil. 2016. Review: Food Industry By-Products used as a Functional Food Ingredients. Int J Waste Resour 2016, 6:3, DOI: 10.4172/2252-5211 .1000248), las cuales son susceptibles de ser utilizadas como materia prima para producir compuestos bioactivos derivados de las proteínas, o péptidos bioactivos.
La producción de péptidos bioactivos consiste en una hidrólisis enzimática controlada de las proteínas presentes en el suero utilizando enzima(s) proteasa(s). Dentro de las proteasas disponibles en el estado del arte aquellas de origen animal como la pepsina, la tripsina y la quimotripsina se han descrito como las enzimas más utilizadas en varios estudios (Korhonen y Pihlanto. 2006. Food-derived Bioactive Peptides - Opportunities for Designing Future Foods. Current Pharmaceutical Design 9(16):1297-308). Si bien, estas enzimas han sido utilizadas para producir péptidos bioactivos, existe una cantidad limitada de péptidos bioactivos que se pueden producir desde el lactosuero, al utilizar enzimas convencionales como la pepsina, la tripsina y la quimotripsina (Tavares y Malcata. 2013, Whey Proteins as Source of Bioactive Peptides Against Hypertension. DOI: 10.5772/52680).
Es por esta razón que existe una necesidad actual en este campo técnico de desarrollar nuevos procesos de hidrólisis enzimática que comprendan la utilización de proteasas microbianas o vegetales, con el objetivo de encontrar péptidos bioactivos que sean novedosos. Ambos tipos de enzimas poseen una serie de características diferentes a las proteasas digestivas de animales, ofreciendo otros rangos óptimos de temperatura, de pH y de estabilidad. Adicionalmente se ha descrito que las enzimas vegetales tienen diferentes preferencias por sustratos, lo que las hace interesantes para ser evaluadas en la generación de péptidos bioactivos.
Se han descrito una serie de actividades biológicas producidas por péptidos bioactivos obtenidos desde hidrolizados de lactosuero. Entre las actividades biológicas que se han descrito que poseen estos péptidos bioactivos se pueden mencionar actividades antimicrobianas, anticancerígenas y también antihipertensivas. Las enfermedades cardiovasculares (infartos y ataques cerebrovasculares entre otros) son la primera causa de muerte en el mundo, siendo la hipertensión el primer factor de riesgo (OMS, 2018). La hipertensión, también conocida como alta presión sanguínea, se define como la condición en la cual la fuerza de la sangre contra las paredes arteriales es lo suficientemente alta como para causar problemas de salud a largo plazo. Provoca daños en las arterias y en otros órganos, como el corazón, los riñones, la retina y el cerebro, entre otros. Su prevalencia ha aumentado en las últimas décadas, especialmente en los países desarrollados, principalmente debido a un estilo de vida inadecuado, que incluye sedentarismo, tabaco, alcohol o dietas inadecuadas (OMS, 2018). Aunque existen tratamientos químicos, el estado del arte enseña que los tratamientos en este campo técnico se enfocan en el desarrollo de tratamientos alternativos en base a ingredientes naturales.
La presión arterial está controlada y regulada por la enzima convertidora de angiotensina-l (ECA). Esta enzima participa en el sistema renina-angiotensina. La ECA ejerce una actividad sobre la presión arterial al activar la angiotensina I en angiotensina II. La angiotensina II actúa como un vasoconstrictor y hace aumentar la presión arterial. La ECA también desempeña otra función en el sistema renina-angiotensina al desactivar la bradicinina. Sin ECA, la bradicinina actúa como un vasodilatador y contribuye a reducir la presión arterial. En presencia de ECA, la bradicinina se desactiva: se generan fragmentos inactivos y la bradicinina no desempeña su función reguladora. En general se utilizan inhibidores de la ECA y bloqueadores de los receptores de la angiotensina para controlar la hipertensión. Se suele utilizar una combinación de fármacos para optimizar el tratamiento y también para minimizar los efectos secundarios, tales como cansancio, náuseas, vértigos o malformaciones congénitas en caso de embarazo (Torruco-Uco et al., 2009; Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes. Food Science and Technology. Volumen 42 (10): 1597-1604). La complejidad del tratamiento y los riesgos asociados hicieron surgir la necesidad de encontrar alternativas, siendo una de estas alternativas el uso de alimentos funcionales con actividad antihipertensiva.
A lo largo de los años, algunos estudios han demostrado que los péptidos derivados del suero ejercen una actividad inhibidora de la ECA. Al inhibir la actividad de la ECA, la angiotensina I no se convierte en angiotensina II y la bradicinina se mantiene biológicamente activa, por lo que se regula la hipertensión. La actividad inhibidora de la ECA se estima por la IC5o, definida como la concentración mínima del péptido necesaria para inhibir el 50% de la actividad de la ECA (Ben Henda et al., 2013, Measuring Angiotensin-I Converting Enzyme Inhibitory Activity by Micro Píate Assays: Comparison Using Marine Cryptides and Tentative Threshold Determinations with Captopril and Losartan. J. Agrie. Food Chem. 2013, 61, 45, 10685-10690). El primer péptido con actividad antihipertensiva fue aislado del veneno de la cobra brasileña en 1965. A lo largo de los años se investigaron varias materias primas como posibles fuentes para producir péptidos antihipertensivos, tales como pescado, espinaca, vinos o leche (Torruco-Uco et al., 2009; Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes. Food Science and Technology. Volumen 42 (10): 1597-1604). En cuanto al suero de leche, el inhibidor más potente conocido y descrito en la literatura es el péptido f (142-148) derivado de la b-lactoglobulina, obtenido con enzimas digestivas (pepsina, tripsina y quimotripsina). Se han registrado varios otros péptidos inhibidores de la ECA; sin embargo, los mecanismos moleculares exactos por los cuales los péptidos ejercen su actividad antihipertensiva no se conocen bien. Además, los procesos por los cuales se han obtenido dichos péptidos con actividad antihipertensiva han utilizado principalmente proteasas digestivas de animales tales como pepsina y tripsina, y no existen numerosos antecedentes en cuanto a la utilización de las proteasas vegetales tales como bromelina y ficina en la producción de péptidos con actividad antihipertensiva.
Para evaluar los méritos de la invención descrita en este documento, se presenta un breve resumen de los documentos más relevantes presentes en la técnica.
CN111944009A describe una composición antihipertensiva derivada de Salicornia bigelovii. Este documento en primer lugar describe un método para obtener una composición proteica derivada de esta planta. Luego se describe un proceso en donde dicha composición proteica es tratada con bromelina para producir una composición con actividad antihipertensiva. Las condiciones de reacción para la bromelina fueron las siguientes: (1) buffer PBS 20 mM; (2) pH de reacción de 6,5; (3) concentración de la enzima 10 mg/mL; (4) el tiempo de reacción fue 12 horas.
JP2020097535A describe nuevas composiciones para bajar la presión arterial. Se indica que la composición es un producto de degradación enzimático como ingrediente activo, el cual es preferentemente un producto de degradación enzimático obtenido desde el suero de la leche. Se describe que el ingrediente activo sería el péptido de secuencia GTWY. No se describe específicamente la enzima proteolítica que se utiliza para producir ese péptido bioactivo, pero si se indican condiciones generales de reacción: (1) temperatura entre 30°C y 70°C; (2) tiempo de reacción entre 1 y 12 horas; (3) etapa de detención de la reacción la reacción entre 80°C y 90°C por 5 a 30 min; (4) ultrafiltración por membranas; (5) Liofilización del producto; y (6) el pH de la reacción se describe que puede ser entre 4 y 9.
CN108178785A describe péptidos obtenidos desde suero de leche de oveja, los cuales tienen actividad antihipertensiva. Se describe un proceso de producción que tiene las siguientes etapas: (1) agregar agua al polvo de proteínas de suero de leche de oveja; (2) tratar dicha mezcla con ondas ultrasónicas; (3) agregar proteasas a la mezcla para realizar la hidrólisis enzimática; (4) calentar la mezcla a cierta temperatura (entre 50°C y 60°C) por entre 0,5 y 2 horas; (5) detener la reacción calentando la reacción a 90°C-100°C por 10-20 min; (6) enfriar, filtrar y separar el líquido; (7) ultrafiltración de dos etapas para purificar los péptidos utilizando membranas de 5 kDa, y (8) liofilizar la muestra.
KR20110089705A describe un hidrolizado de péptidos de suero de leche que tiene actividad antihipertensiva. El proceso de producción de dicho hidrolizado comprende las siguientes etapas: (1 ) mezcla el polvo de proteína de suero con la enzima comercial protamex (Novozymes); (2) reaccionar esta mezcla a pH 6,5 a 45°C por 6 horas; (3) calentar la mezcla para detener la reacción a 100°C por 15 mins; (4) centrifugrar por 20 mins a 3,000 RPM; (5) liofilizar las muestras.
JP2002238462A describe hidrolizados de proteínas del suero que tiene buen aroma, alta estabilidad térmica en la región acídica, capacidad amortiguadora reducida y que no inhibe la gelificación.
GB966857A describe un hidrolizado pasteurizado de suero obtenido mediante hidrólisis enzimática. Se describe que el método de obtención involucra la utilización de enzimas pancreáticas, tripsina, pepsina, ficina, papaína y proteínas derivas de Aspergillus oryzae.
Mazorra-Manzano, M., et al. 2016 en “Production of whey protein hydrolysates with angiotensin- converting enzyme-inhibitory activity using three new sources of plant proteases” describe un hidrolizado con actividad antihipertensiva producido a partir de tres extractos proteasas de plantas (melón, flores de cítricos y desde la planta Solanum elaeagnifolium.
Si bien existen algunos estudios en donde se ha utilizado la bromelina para producir péptidos bioactivos desde lactosuero, no existe ningún proceso que enseñe la utilización de bromelina y ficina que tenga las mismas etapas que el proceso de la presente invención. Adicionalmente, y como es evidente a lo largo de la descripción de la presente invención, la utilización de bromelina v ficina, generan un efecto sinérgico en cuanto a la producción de la actividad antihipertensiva que es más que los efectos técnicos de los hidrolizados de las enzimas por separado que fueron evaluados. Como un experto en la materia entenderá este efecto técnico es inesperado y sorprendente, y ningún documento del estado del arte previo por si solo o en combinación anticipa la presente solicitud. BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un nuevo proceso de producción de péptidos bioactivos con actividad antihipertensiva que comprende la utilización de las proteasas vegetales bromelina y ficina. Las etapas del proceso de producción corresponden forma general a los siguientes pasos: a) Preparar una solución de suero de leche, b) Ajustar el pH (con NaOH 1 N o con HCI 1 N) c) Preparar la solución de la enzima d) Llevar la solución de suero lácteo a la temperatura deseada e) Agregar la cantidad requerida de solución de enzima e incubar f) Detener la reacción enzimática con un golpe de calor g) Centrifugar la muestra y eliminar el precipitado h) Ultrafiltrar la muestra, recuperando la fracción bajo 5 kDa; y i) Liofilizar el permeado.
La invención se relaciona además con composiciones alimenticias que comprenden dichos péptidos y también se relaciona con los usos de estas composiciones para prevenir el desarrollo de enfermedades cardiovasculares y cerebrovasculares.
DESCRIPCIÓN DE FIGURAS
Figura 1. Se realizó una curva de calibración utilizando diferentes concentraciones de Captopril (eje x) y se evaluó el porcentaje de inhibición de ACE.
Figura 2. Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con bromelina con calor.
Figura 3, Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con bromelina a temperatura ambiente.
Figura 4. Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con ficina con calor.
Figura 5. Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con ficina a temperatura ambiente.
Figura 6. Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con mezcla de bromelina y ficina con calor. Figura 7. Perfil de péptidos de la fracción bajo 5 kDa obtenida a partir de una hidrólisis con mezcla de bromelina y ficina a temperatura ambiente.
DESCRIPCIÓN DETALLADA DEL INVENTO
El proceso de producción de una composición que comprende péptidos bioactivos con actividad antihipertensiva desde lactosuero de leche consiste de las siguientes etapas: (a) preparar una solución de suero de leche; (b) ajustar el pH al objetivo de la reacción; (c) preparar la solución de enzima; (d) llevar la solución de suero de leche a la temperatura deseada; (e) agregar la cantidad requerida de solución de enzima e incubar a la temperatura de la reacción; (f) detener la reacción enzimática con un golpe de calor (g) centrifugar la muestra y eliminación de residuos; (h) Ultrafiltrar la muestra, recuperando la fracción bajo 5 kDa; e (i) liofilizar el permeado.
En una realización preferida el suero lácteo se puede concentrar con el objetivo de obtener un concentrado de proteína del suero de la leche, tal como el WPC80. El término WPC80 se refiere a un concentrado de proteína de suero (80%), el cual resulta de la eliminación de las fracciones no proteicas del suero. Para obtener WPC, el suero dulce debe pasar por varios procesamientos. El primer paso es la clarificación, que consiste en eliminar la cuajada residual y la grasa que generalmente se pierde durante la fabricación del queso. El suero de leche clarificado se somete luego a pasteurización HTST, con el objetivo de eliminar la presencia de patógenos potenciales y desactivar las bacterias utilizadas para la fabricación de queso. Luego se concentran las proteínas del suero, lo cual se puede hacer por ejemplo por evaporación al vacío, tecnología de membrana tales como la ultrafiltración y la nanofiltración, y osmosis inversa. El WPC se puede comercializar como un producto líquido o un polvo seco, después de realizar un secado por pulverización. El WPC es ampliamente utilizado como ingrediente en la alimentación animal y humana.
Un experto en la materia entenderá que la etapa de ajuste de pH se puede realizar con cualquier ácido fuerte y base fuerte, si el objetivo es disminuir o aumentar el pH de la reacción. En una realización preferida de la invención los valores de pH que se alcanzan en esta etapa del proceso pueden estar entre 3 y 10, preferentemente entre 4 y 9.
La etapa de preparación de la enzima se refiere a la preparación de la solución de trabajo (enzima concentrada) que será agregada a la reacción. En esta etapa es importante determinar las unidades enzimáticas que se deben agregar a la reacción considerando la cantidad proteína a ser hidrolizada. Un experto en la materia entenderá que las unidades de actividad enzimática (U) corresponde a la actividad catalítica responsable de la transformación de un pmol de sustrato por minuto en condiciones óptimas de la enzima. La actividad catalítica depende de cada enzima, y esto debe ser determinado experimentalmente para cada enzima con la que se trabaje o el proveedor de la enzima indica dicha información en el protocolo de uso y/o ficha técnica especifica. En consecuencia, un experto en la materia entenderá que no es necesario describir cada uno de los volúmenes de trabajo de las soluciones de la reacción, sino que es necesario mantener la razón U/mg proteína de lactosuero a medida que se cambian los volúmenes de reacción.
En una realización preferida las unidades de actividad enzimática utilizadas de bromelina y ficina fueron entre 0,200 U/mg a 0,400 U/mg y entre 0,150/mg y 0,310 U/mg, respectivamente. En una realización preferida más específica los valores de bromelina y ficina cuando se utilizaron mezcladas fueron de 0,397 U/mg y 0,309 U/mg respectivamente, cuando estas fueron ensayadas a 50°C.
La etapa de equilibrio de la solución de suero de leche o WPC80 a la temperatura de reacción enzimática, se debe realizar para que la temperatura de la solución de sustrato haya alcanzado la temperatura de reacción de forma previa a la adición de la enzima. Dependiendo de la temperatura de la reacción enzimática, los tiempos de equilibrio pueden ser distintos. En una realización preferida de la invención los tiempos de equilibrio pueden variar entre 10 y 60 minutos.
La etapa de agregar una solución que comprende una cantidad de unidades de actividad enzimática adecuada para que las enzimas actúen bien a una determinada temperatura, corresponde al inicio de la reacción enzimática. Tal como se ha descrito a lo largo de este documento no es necesario explicitar los volúmenes utilizados, sino que es necesario entender que la cantidad de unidades enzimáticas por mg de proteína deben ser las óptimas de acuerdo a las instrucciones del proveedor.
Un experto en la materia también entenderá que las enzimas tienen diferentes rendimientos a diferentes temperaturas, existiendo para algunas enzimas un rango amplio de temperatura en donde pueden hidrolizar su sustrato respectivo, pero existe un rango estrecho de temperatura en el cuál ejercen su actividad enzimática óptima. En una realización preferida de la invención la temperatura de la reacción enzimática se encuentra entre 15°C y 60°C, preferentemente entre 18°C y 55°C.
En otra realización preferida la temperatura de la reacción es 20°C o 50°C. Los expertos en la materia también entenderán que los tiempos de reacción son diferentes dependiendo de la temperatura a la cual se lleve a cabo la reacción. Es por esto que los tiempos de reacción de la presente invención pueden variar entre 3 y 70 minutos, preferentemente entre 5 y 60 minutos.
En una realización preferida más específica las reacciones realizadas a 20°C tienen una duración de aproximadamente al menos 60 min.
En otra realización preferida las reacciones enzimáticas realizadas a 50°C tienen una duración de aproximadamente al menos 5 min.
Las proteínas, y por supuesto las enzimas, se inactivan a altas temperaturas, perdiendo su actividad catalítica. Por lo tanto, es un procedimiento común para la detención de las reacciones enzimáticas el calentar las soluciones a una temperatura igual o mayor a 90°C por un tiempo de al menos 5 minutos. En una realización preferida específica la temperatura de incubación es de 90°C y la incubación es de al menos 5 minutos.
Aunque el protocolo estándar para detener las reacciones enzimáticas un experto en la materia comprenderá que existen otras formas para detener las reacciones enzimáticas, tales como exponerlas a rangos extremos de pH usando ácidos fuertes tales como el ácido clorhídrico, o exponiéndolo a bases fuertes tales como el hidróxido de sodio. Por lo tanto, no debe tomarse como limitante a la detención por calor de la reacción enzimática, para el proceso descrito en la presente invención.
La etapa de centrifugación de la muestra una vez finalizada la reacción corresponde un paso de separación física en donde el material particulado, residuos presentes en el suero de leche o WPC80 y proteínas no hidrolizadas, son eliminados de las etapas posteriores, y el sobrenadante que contiene los péptidos bioactivos obtenidos son almacenados en un recipiente de grado bioquímico o biología molecular aptas para contenerlos. Si bien la centrifugación a altas velocidades es un proceso rápido que permite eliminar residuos presentes en la reacción con el objetivo de no arrastrarlos en etapas posteriores, también se podría realizar precipitación pasiva de la muestra, para poder eliminar el material no deseado.
La etapa de ultrafiltración utiliza tecnologías de membranas con un tamaño de corte de 5 kDa como paso de purificación adicional. A través de esta tecnología los péptidos menores a 5 kDa pasan a través de los poros presentes en esta membrana, constituyendo el permeado de las muestras mientras que los péptidos o polipéptidos quedan retenidos en la parte superior de esta membrana y no pasan por los poros. El tiempo destinado a la ultrafiltración depende de la concentración de la muestra de proteína que se está purificando y dependerá también del volumen de la muestra a pasar a través de este sistema de ultrafiltración.
La etapa de liofilización es necesaria para eliminar el agua en la solución de péptidos, siendo este paso esencial para el transporte de los péptidos bioactivos obtenidos a temperatura ambiente desde las instalaciones de producción del producto hacia las instalaciones en donde se van a almacenar y/o comercializar. Los protocolos de liofilización de extractos proteicos son bien conocidos en el estado de la técnica.
En una realización aún más específica el proceso de producción de los péptidos bioactivos consiste de las siguientes etapas: a) Preparar una solución de WPC80 al 4% de polvo (3,2% de proteína) b) Ajustar el pH de solución obtenida en (a) a 4 o 9 c) Preparar la solución de la mezcla de enzimas en donde la cantidad de bromelina y ficina son 0,397 U/mg y 0,309 U/mg, respectivamente d) Llevar la solución de WPC80 a 20°C o 50°C e) Agregar la cantidad requerida de la mezcla de enzimas e incubar por 5 min a 60°c o 60 min a 20°C f) Detener la reacción enzimática a 90°C por 5 min. g) Centrifugar la muestra entre 1.000 a 15.000 RMP, preferiblemente a 3,500 RPM, y guardar el sobrenadante en un tubo nuevo h) Ultrafiltrar la muestra, recuperando la fracción bajo 5 kDa; y i) Liofilizar el permeado.
En una realización preferida los péptidos bioactivos de la presente solicitud pueden utilizarse como ingredientes funcionales para la elaboración de diferentes tipos de alimentos, tales como lácteos, jugos, barras de cereal, productos horneados, y alimentos especializados para deportistas.
Ejemplos
Ejemplo 1: Protocolos de producción de péptidos bioactivos a 50°C y temperatura ambiente
Para evaluar la capacidad de las enzimas bromelina y ficina de producir nuevos péptidos bioactivos, se ensayó cada enzima por separado y como mezcla. Además, una característica importante que deben tener las enzimas que se utilizan en la producción de este tipo de péptidos es que sean capaces de trabajar bien a temperatura ambiente. Es por esto que durante este ejemplo se evaluó la actividad de cada enzima por separado o como mezcla, a 50°C y a 20°C.
Los protocolos utilizados fueron los siguientes:
Protocolo a 50°C con bromelina
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara p/p con WPC80 y agua destilada.
Ejemplo para un peso final de 1 L de solución de WPC
• Se pesan 40g de WPC80 en un vaso precipitado con agitación. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 9.0 con NaOH 1 N o NaOH en perlas o flakes.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80.
• Se preparan las dos soluciones de enzima, con una concentración de 26U/mL de enzima para cada una. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26U/mL.
• Se coloca el recipiente con la solución de WPC80 luego en baño termorregulado equilibrado a 50°C, que es la temperatura de reacción para la mezcla bromelina/ficina.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agrega primero el volumen correspondiente de solución de bromelina. La relación enzima proteína debe ser de 0,397% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 4,88 mL de solución de bromelina a 26U/mL. Se agita el recipiente con WPC80 y se deja en el baño María a 50°C. Se hace partir el cronómetro. A los 5 minutos, se agrega el volumen correspondiente de solución de ficina. La relación enzima:proteína debe ser de 0,155% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 1 ,9 mL de solución de bromelina a 26U/mL. Se agita el recipiente con WPC80 y se deja en el baño María a 50°C.
• A los 30 segundos de reacción con la ficina, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño maría hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa. Protocolo a temperatura ambiente com bromelina
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara peso/peso con WPC80 y agua destilada. Ejemplo para un peso final de 1 L de solución de WPC:
• Se pesan 40g de WPC80 en un vaso precipitado con magneto para agitador. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 9.0 con NaOH 1 N o NaOH en perlas o flakes.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80.
• Se preparan las dos soluciones de enzima, con una concentración de 26U/mL de enzima para cada una. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26U/mL.
• Se coloca el recipiente con la solución de WPC80 en el mesón o en un baño termorregulado equilibrado a 20°C, que es la temperatura de reacción para la mezcla bromelina/ficina. Se puede ocupar el aire acondicionado y un termómetro para medir la temperatura del laboratorio. Siempre se debe medir la temperatura de la solución de WPC80 antes de empezar cualquier reacción.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agregan al mismo tiempo los volúmenes correspondientes de solución de bromelina y de ficina. La relación enzima proteína para la bromelina debe ser de 0,397% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 4,88 mL de solución de bromelina a 26 U/m. La relación enzima proteína para la ficina debe ser de 0,155% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 1 ,9 mL de solución de bromelina a 26 U/mL. Se agita el recipiente con WPC80 y se deja en el baño termorregulado a 20°C.
• A los 40 minutos de reacción, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño maría hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa.
Protocolo a 50°C con ficina
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara p/p con WPC80 y agua destilada.
Ejemplo para un peso final de 1 L de solución de WPC • Se pesan 40g de WPC80 en un vaso precipitado con magneto para agitador. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 4,0 con HCI 1 N.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80.
• Se prepara la solución de enzima, con una concentración de 26 U/mL de enzima. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26 U/mL.
• Se coloca el recipiente con la solución de WPC80 luego en baño termorregulado equilibrado a 50°C, que es la temperatura de reacción para la ficina.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agrega el volumen correspondiente de solución de enzima. La relación enzima proteína de ser de 0,3095% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 3,8 mL de solución de bromelina a 26 U/mL.
• Se agita el recipiente con WPC80 y se deja en el baño termorregulado a 50°C. Se hace partir el cronómetro. A los 5 minutos, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño maría hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3,500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa
Protocolo a temperatura ambiente con ficina
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara peso/peso con WPC80 y agua destilada. Ejemplo para un peso final de 1 L de solución de WPC:
• Se pesan 40g de WPC80 en un vaso precipitado con magneto para agitador. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 4,0 con HCI 1 N.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80. • Se prepara la solución de enzima, con una concentración de 26U/mL de enzima. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26U/mL.
• Se coloca el recipiente con la solución de WPC80 en el mesón o en un baño termorregulado equilibrado a 20°C, que es la temperatura de reacción para la ficina. Se puede ocupar el aire acondicionado y un termómetro para medir la temperatura del laboratorio. Siempre se debe medir la temperatura de la solución de WPC80 antes de empezar cualquier reacción.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agrega el volumen correspondiente de solución de enzima. La relación enzima proteína de ser de 0,155% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 1 ,9 mL de solución de bromelina a 26 U/mL.
• Se agita el recipiente con WPC80 y se deja en el baño termorregulado a 50°C. Se hace partir el cronómetro. A los 5 minutos, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño maría hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3,500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa
Protocolo con calor mezcla de enzimas
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara peso/peso con WPC80 y agua destilada. Ejemplo para un peso final de 1 L de solución de WPC:
• Se pesan 40g de WPC80 en un vaso precipitado con pescado. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 9,0 con NaOH 1 N o NaOH en perlas o flakes.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80.
• Se preparan las dos soluciones de enzima, con una concentración de 26 U/mL de enzima para cada una. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26 U/mL.
• Se coloca el recipiente con la solución de WPC80 luego en baño termorregulado equilibrado a 50°C, que es la temperatura de reacción para la mezcla bromelina/ficina.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agrega primero el volumen correspondiente de solución de bromelina. La relación enzima proteína debe ser de 0,397% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 4,88 mL de solución de bromelina a 26 U/mL. Se agita el recipiente con WPC80 y se deja en el baño María a 50°C. Se hace partir el cronómetro. A los 5 minutos, se agrega el volumen correspondiente de solución de ficina. La relación enzima proteína debe ser de 0,155% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 1,9 mL de solución de bromelina a 26 U/mL. Se agita el recipiente con WPC80 y se deja en el baño María a 50°C.
• A los 30 segundos de reacción con la ficina, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño termorregulado hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3,500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa.
Protocolo a temperatura ambiente con mezcla de enzimas
Se prepara una solución de WPC80 al 3,2% de proteína y se ajusta su pH. La solución se prepara PESO/PESO con WPC80 y agua destilada. Ejemplo para un peso final de 1 L de solución de WPC:
• Se pesan 40g de WPC80 en un vaso precipitado con pescado. Se agrega entre 800g y 900g de agua destilada y se disuelve el WPC80 bajo agitación durante una hora a temperatura ambiente.
• Se mide el pH de la solución, que debe estar cercano a 6,1 -6,3 y se ajusta a pH 9,0 con NaOH 1 N o NaOH en perlas o flakes.
• Se ajusta el peso con agua destilada hasta llegar a un peso final de 1000 g. La solución de WPC queda con una concentración de 3,2% de proteína.
• Se deja la solución agitando a temperatura ambiente durante una hora, para solubilizar toda la proteína. Se mide nuevamente el pH antes de realizar la hidrólisis.
Hidrólisis: Ejemplo para una hidrólisis de 1 litro de solución de WPC80.
• Se preparan las dos soluciones de enzima, con una concentración de 26 U/mL de enzima para cada una. Al cambiar de batch de enzima, se debe verificar la actividad de la enzima en el envase o en el certificado de análisis del proveedor para asegurarse de la concentración másica de la solución, la cual debe estar siempre de 26 U/mL.
• Se coloca el recipiente con la solución de WPC80 en el mesón o en un baño termorregulado equilibrado a 20°C, que es la temperatura de reacción para la mezcla bromelina/ficina. Se puede ocupar el aire acondicionado y un termómetro para medir la temperatura del laboratorio. Siempre se debe medir la temperatura de la solución de WPC80 antes de empezar cualquier reacción.
• Una vez la solución de WPC equilibrada a la temperatura de reacción, se agregan al mismo tiempo los volúmenes correspondientes de solución de bromelina y de ficina. La relación enzima proteína para la bromelina debe ser de 0,397% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 4,88 mL de solución de bromelina a 26 U/m. La relación enzima proteína para la ficina debe ser de 0,155% (Unidad de enzima/mg proteína). Para un litro de solución de WPC, el volumen a agregar corresponde a 1 ,9 mL de solución de bromelina a 26 U/mL. Se agita el recipiente con WPC80 y se deja en el baño María a 50°C.
• A los 40 minutos de reacción, se saca el recipiente y se coloca en otro baño termorregulado equilibrado a 90 °C. Se mantiene el recipiente en este baño termorregulado hasta que su contenido llegue a la temperatura deseado, por lo menos 5 minutos, para asegurarse que se haya detenido la reacción enzimática.
• Se centrifuga 15 minutos a 3,500 rpm, a 4 °C y se recupera el sobrenadante. Esa fracción centrifugada será llamada “hidrolizado” en los siguientes protocolos.
• El hidrolizado se procesa posteriormente con el equipo TFF para obtener la fracción bajo 5 kDa.
Luego, las muestras fueron liofilizadas para ser almacenadas a temperatura ambiente. El protocolo de liofilización consistió en los siguientes pasos: 1) Congelar las muestras a -34°C por al menos 8 horas y 2) Liofilizar las muestras utilizando los parámetros descritos en la tabla 1.
Tabla 1 . Parámetros de liofilización de los péptidos
Figure imgf000017_0001
Ejemplo 2: Determinación de actividad antihipertensiva y curva de equivalencia con Captopril (gold estándar)
El método de determinación de la actividad antihipertensiva por espectrofotometría está basado en la liberación de ácido hipúrico desde la hipuril-histidil- leucina (HHL), reacción catalizada por la enzima convertidora de la angiotensina^CE). La presencia de péptidos bioactivos inhibidores de la angiotensina, como aquellos esperados encontrar en productos lácteos, se espera inhiban esta vía enzimática (Lu et al., 2016). Al inhibir la actividad de la ACE se inhibe la liberación de ácido hipúrico, analito que es detectado por absorbancia a 228nm.
Reactivos
- Se prepara un buffer de borato, idealmente fresco. Sin embargo, se puede preparar 50mL de buffer y repartir 200 pL en tubos Eppendorf y mantener congelado hasta el día del análisis. Se prepara un buffer a 0,1 M de borato de sodio, 0,3M de NaCI y 5 mM de Hippuryl-Histidyl-Leucina. Para preparar 50mL de buffer, se pesa 1 ,91 g de borato de sodio, 0,877 g de NaCI y 0,107 g de HHL. Se disuelve en 50 mL de agua miliQ, utilizando un matraz de aforro. Se puede aplicar calor durante unos minutos si cuesta solubilizar el buffer. Una vez disuelto, se ajusta el pH a 8,3 con HCI 1 N.
- Se prepara una solución de ACE 0,25 Unidades/mL: Referirse a los certificados de análisis de la ACE para hacer la dilución. Se separa la solución de ACE diluida en alícuotas de 0,5 mL y se congela hasta utilizarla.
Protocolo
• Se colocan las muestras en un baño María a 37°C durante una hora para descongelarlas.
• Se sacan del congelador tubos Eppendorf conteniendo 200 mI_ de buffer de borato. Se anotan tal como sigue: un solo tubo A, un solo tubo B y un tubo C y un tubo D para cada muestra. Los tubos A y B sirven como referencias para todo el análisis, mientras los tubos C y D sirven para medir la capacidad antihipertensiva de cada muestra. La tabla siguiente detalla el contenido de cada tubo. Cuando no se tiene que agregar muestra o solución de ACE, se agrega el mismo volumen de agua milliQ a los tubos correspondientes.
Figure imgf000018_0001
• Se agrega 50 pL de muestra a cada tubo C y D, mientras se agrega 50 pL de agua milliQ al tubo A y al tubo B. Se pasa por Vortex.
• Se dejan los tubos en baño María a 37eC por 5 minutos para equilibrar a la temperatura de reacción
• Se agregan 20 pL de agua miliQ en los tubos D y en el tubo B: Se cierran los tubos y se pasan por Vortex • Se agregan 20 mI_ de solución de ACE a los tubos C y al tubo A. Se cierran y se pasan por Vortex, verificando que no quede gotas en las paredes del tubo. Todo el líquido debe estar en el fondo del tubo para asegurar una buena reacción.
• Se deja reaccionar en el baño termorregulado a 37eC por 30 minutos.
• Para detener la reacción, se agregan 250 mI_ de HC1 1 N. Los tubos se pasan por Vortex.
• Bajo campana, se agrega 1 ,4 mL de acetato de etilo. Se agitan los tubos. Al ser un solvente orgánico, el etilo de acetato permite separar el ácido hipúrico del agua. Este acido, liberado durante la reacción, se medirá después para determinar la capacidad antihipertensiva de las muestras.
• Se centrifugan los tubos a 729 g x 10 minutos (2.500 rpm).
• Bajo campana, se saca 1 mL del sobrenadante y se traspasa a nuevos tubos Eppendorf anotados de la misma forma.
• Se deja evaporar por completo el sobrenadante poniendo los tubos Eppendorf abiertos en una olla con agua hirviendo. En general el proceso de evaporación completa se demora 15-20 minutos. Todo el proceso se debe realizar bajo campana por los vapores de etilo que se liberan.
• Una vez los tubos completamente evaporados, se sacan de la olla y se les agrega 1 mL de agua miliQ. Se pasan por Vortex.
• Se traspasa el contenido de los tubos a cubetas UV y se mide la absorbancia a 228 nm.
Cálculos
Los valores de A, B, C y D son los valores de absorbancia determinadas para cada tubo. Como hay un solo tubo A y un solo tubo B, se utilizan los mismos valores para todas las muestras. Para calcular el IC5o, se utiliza el valor de la concentración en péptidos/aminoácidos de la fracción inferior a 3 kDa así que el porcentaje de inhibición calculado para cada muestra.
Valor inhibición (%) = 100
Figure imgf000019_0001
Figure imgf000019_0002
El Captopril es una droga que tiene un efecto inhibidor sobre la ACE. Se ocupa en medicina humana como tratamiento para las personas con hipertensión. Para tener un punto de referencia para comparar los efectos antihipertensivos de los distintos extractos, se realizó una curva de calibración de Captopril, con el objetivo de asociar un porcentaje de inhibición de la ACE a una concentración en Captopril. Se obtuvieron resultados que traducen el alto poder inhibidor del Captopril sobre la ACE, con una curva logarítmica con una asíntota a 100% de inhibición. Se obtuvo la ecuación de la curva de calibración, la cual se ocupa para obtener los equivalentes de Captopril para los extractos testeados en este proyecto (Figura 1).
Ejemplo 3: Caracterización de extractos peptídicos obtenidos y comparación con Captopril.
Las fracciones peptídicas obtenidas en el ejemplo 1 fueron evaluadas en cuanto a su capacidad antihipertensiva según el protocolo descrito en el ejemplo anterior, y se evaluó la capacidad antihipertensiva de las muestras obtenidas con diferentes tratamientos: (1) bromelina con calor, (2) bromelina a temperatura ambiente, (3) ficina con calor, (4) ficina a temperatura ambiente, (5) mezcla de enzimas con calor, y (6) mezcla de enzimas a temperatura ambiente. Los resultados obtenidos se muestran en las siguientes tablas 2-7:
Tabla 2: Bromelina con calor
Figure imgf000020_0001
Tabla 3. Bromelina temperatura ambiente
Figure imgf000020_0002
Figure imgf000021_0001
Tabla 4. Ficina con calor
Figure imgf000021_0002
Tabla 5. Ficina a temperatura ambiente
Figure imgf000021_0003
Figure imgf000022_0001
Tabla 6: Mezcla de enzimas con calor
Figure imgf000022_0002
Tabla 7. Mezcla de enzimas a temperatura ambiente
Figure imgf000022_0003
Figure imgf000023_0001
Los resultados que se muestran en esta tabla demuestran que las enzimas al ser mezcladas generan extractos peptídicos con una mayor actividad antihipertensiva que al utilizar cada enzima por separado. Estos resultados demuestran la sinergia de ambas enzimas, siendo estos resultados no esperables ni derivables del estado de la técnica. Adicionalmente la actividad antihipertensiva del extracto peptídico obtenido por un proceso productivo que emplea mezcla de enzimas y realizado a temperatura ambiente es superior al mismo proceso productivo realizado a 50°C. Cabe destacar que un proceso productivo realizado a temperatura ambiente genera ventajas económicas al no tener que calentar la solución para realizar la reacción enzimática.
Ejemplo 4: Perfil de péptidos de las muestras - HPLC
Se analizaron las fracciones inferior a 5 kDa obtenidas con los protocolos descritos en los ejemplos anteriores. Se prepararon las muestras mezclando 400uL de la fracción inferior a 5 kDa y ajustando con 1 ,6 mL con agua milliQ con acido trifluoroactico (TFA) al 0,1% para llegar a un volumen total de 2 mL Se filtraron las muestras con filtro pirinola de 0,45mhi directamente en los viales para ser analizados por HPLC. Los péptidos fueron analizados a una longitud de onda de 214 nm. La fase consiste en dos solventes: el A, agua milliQ con 0,1% de TFA, y el B, acetonitrilo con 0,1% de TFA. La elución se controla durante 60 minutos, con un flujo de fase móvil de 0,75mL/min, con el horno equilibrado a 40°C. Se pasan dos blancos (agua milliQ) antes de analizar muestras, con el objetivo de eliminar los posibles residuos de las muestras anteriores, y se pasa un blanco (agua milliQ) cada tres muestras para limpiar el sistema. Se termina el batch de análisis con dos otros blancos para limpiar el sistema y dejarlo operativo para muestras posteriores.
Para analizar los ero mato gramas, se estandarizan todos los cromatogramas con la herramienta “ Background’ (Shimadzu Corporation, Ciudad, País), que sirve para alisar la línea de base con un cromatograma de referencia obtenido analizando un blanco de agua milliQ, idealmente un blanco que no haya pasado como primera muestra en el sistema. Se obtuvieron los perfiles peptídicos para las fracciones bajo 5 kDa de cada muestra. Los cromatogramas se muestran en las Figuras 2-7, en donde en cada uno de dichos cromatogramas se destacaron los peaks los más altos. Esos cromatogramas sirven como referencia y control de calidad para todas fracciones obtenidas en el proyecto.
Tal como se puede observar de los cromatogramas de las Figuras 2-7, las muestras obtenidas mediante un proceso que utiliza las enzimas bromelina y ficina, que fueron ensayas a temperatura ambiente muestra la mayor diversidad de péptidos (evidenciado por la cantidad de peaks que posee el cromatograma) y también muestra la mayor abundancia de los mismos.
Este es el primer reporte de un extracto peptídico derivado de lactosuero que posee estas propiedades antihipertensivas como se ha demostrado a lo largo de la presente solicitud, que utiliza las enzimas bromelina v ficina, v que es realizado a temperatura ambiente.
APLICACIÓN INDUSTRIAL
La presente invención tiene una gran aplicación en la industria alimenticia, específicamente en el campo de los ingredientes funcionales y nutracéuticos que pueden ser utilizados como ingredientes en diferentes alimentos con el objetivo de prevenir el desarrollo de problemas cardiovasculares.

Claims

REIVINDICACIONES
1 . Un proceso de producción de péptidos bioactivos con actividad antihipertensiva, CARACTERIZADO porque comprende los siguientes pasos: a) Preparar una solución de suero de leche b) Ajustar el pH de solución obtenida c) Preparar una solución que comprenda una mezcla de las enzimas bromelina y ficina d) Llevar la solución de suero de leche a una temperatura de al menos 15°C e) Agregar la cantidad requerida de la mezcla de enzimas obtenida en c) e incubar por 5 min a 50°c o 60 min a 20°C f) Detener la reacción enzimática con un golpe de calor a una temperatura de al menos 90°C g) Opcionalmente centrifugar la muestra y guardar el sobrenadante en un tubo nuevo h) Ultrafiltrar la muestra, recuperando la fracción bajo 5 kDa; y i) Liofilizar el permeado.
2. El proceso de acuerdo con la reivindicación 1 , CARACTERIZADO porque la solución de suero lácteo corresponde a un concentrado de proteínas de suero, en donde dicho concentro de proteína de suero es seleccionado de WPC10, WPC20, WPC30, WPC40, WPC50, WPC60, WPC70, WPC80 o WPC90.
3. El proceso de acuerdo con la reivindicación 1 o 2, CARACTERIZADO porque el pH de la solución se ajusta entre un valor de al menos 4 y 9.
4. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 3, CARACTERIZADO porque la bromelina se agrega en una cantidad de entre 0,200 U/mg de proteína a 0,400 U/mg de proteína.
5. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 4, CARACTERIZADO porque la ficina se agrega en una cantidad de entre 0,150/mg de proteína y 0,310 U/mg de proteína.
6. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 5, CARACTERIZADO porque la bromelina se agrega a 0,400 U/mg de proteína.
7. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 6, CARACTERIZADO porque la ficina se agrega a 0,309 U/mg de proteína.
8. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 7, CARACTERIZADO porque la etapa (d) se lleva a cabo a una temperatura entre 15°C y 60°C.
9. El proceso de acuerdo con la reivindicación 8, CARACTERIZADO porque la etapa (d) se lleva a cabo a una temperatura entre 20°C y 50°C.
10. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 9, CARACTERIZADO porque la reacción de la etapa e) se realiza por al menos 3 minutos.
11. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 10, CARACTERIZADO porque la reacción de la etapa (e) se realiza por entre 3 minutos y 60 minutos.
12. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 11 , CARACTERIZADO porque la detención de la reacción por calor de la etapa (f) se realiza mediante una incubación a una temperatura de al menos 90°C por los menos por 3 min.
13. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 12, CARACTERIZADO porque la detención de la reacción por calor de la etapa (f) se realiza mediante una incubación a una temperatura de al menos 90°C por entre 3 minutos y 15 minutos.
14. El proceso de acuerdo con cualquiera de las reivindicaciones 1 a 13, CARACTERIZADO porque la centrifugación de la etapa (g) se realiza a una velocidad entre 1.000 RPM y 15.000 RPM.
15. Un ingrediente funcional CARACTERIZADO porque comprende los péptidos bioactivos obtenidos por el proceso de acuerdo con cualquiera de las reivindicaciones 1 a 14, y excipientes aceptables en la industria alimenticia.
16. El ingrediente funcional de acuerdo con la reivindicación 15, CARACTERIZDO porque este puede ser utilizado en la elaboración de diferentes tipos de alimentos, tales como lácteos, jugos, barras de cereal, productos horneados, y alimentos especializados para deportistas.
PCT/CL2021/050064 2021-07-20 2021-07-20 Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal WO2023000115A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21950383.6A EP4374709A1 (en) 2021-07-20 2021-07-20 Method for producing bioactive peptides obtained from whey using enzymes of plant origin
PCT/CL2021/050064 WO2023000115A1 (es) 2021-07-20 2021-07-20 Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal
CL2023003988A CL2023003988A1 (es) 2021-07-20 2023-12-29 Proceso producción de péptidos bioactivos obtenidos desde lactosuero mediante utilización de enzimas de origen vegetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050064 WO2023000115A1 (es) 2021-07-20 2021-07-20 Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal

Publications (1)

Publication Number Publication Date
WO2023000115A1 true WO2023000115A1 (es) 2023-01-26

Family

ID=84979659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050064 WO2023000115A1 (es) 2021-07-20 2021-07-20 Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal

Country Status (3)

Country Link
EP (1) EP4374709A1 (es)
CL (1) CL2023003988A1 (es)
WO (1) WO2023000115A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB966857A (en) 1960-10-11 1964-08-19 Howard Lloyd & Company Ltd Improvements in or relating to nutrient food bases
JP2002238462A (ja) 2001-02-14 2002-08-27 Morinaga Milk Ind Co Ltd 乳清蛋白質加水分解物及びその製造方法
KR20110089705A (ko) 2010-02-01 2011-08-09 건국대학교 산학협력단 유청단백질의 Protamex 효소 가수분해물 및 그 제조방법
CN108178785A (zh) 2017-12-28 2018-06-19 澳优乳业(中国)有限公司 一种具有ace抑制功能的羊乳清蛋白肽及其应用
JP2020097535A (ja) 2018-12-18 2020-06-25 キリンホールディングス株式会社 血圧を降下させるための組成物
CN111944009A (zh) 2020-08-14 2020-11-17 盐城工学院 一种海蓬子降血压肽的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB966857A (en) 1960-10-11 1964-08-19 Howard Lloyd & Company Ltd Improvements in or relating to nutrient food bases
JP2002238462A (ja) 2001-02-14 2002-08-27 Morinaga Milk Ind Co Ltd 乳清蛋白質加水分解物及びその製造方法
KR20110089705A (ko) 2010-02-01 2011-08-09 건국대학교 산학협력단 유청단백질의 Protamex 효소 가수분해물 및 그 제조방법
CN108178785A (zh) 2017-12-28 2018-06-19 澳优乳业(中国)有限公司 一种具有ace抑制功能的羊乳清蛋白肽及其应用
JP2020097535A (ja) 2018-12-18 2020-06-25 キリンホールディングス株式会社 血圧を降下させるための組成物
CN111944009A (zh) 2020-08-14 2020-11-17 盐城工学院 一种海蓬子降血压肽的制备方法及应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BEN HENDA ET AL.: "Measuring Angiotensin-I Converting Enzyme Inhibitory Activity by Micro Plate Assays: Comparison Using Marine Cryptides and Tentative Threshold Determinations with Captopril and Losartan.", J. AGRIC. FOOD CHEM., vol. 61, no. 45, 2013, pages 10685 - 10690
CHEUNG LENNIE K.Y., ALUKO ROTIMI E., CLIFF MARGARET A., LI-CHAN EUNICE C.Y.: "Effects of exopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates", JOURNAL OF FUNCTIONAL FOODS, ELSEVIER BV, NL, vol. 13, 1 March 2015 (2015-03-01), NL , pages 262 - 275, XP093027505, ISSN: 1756-4646, DOI: 10.1016/j.jff.2014.12.036 *
IWANIAK ANNA, MINKIEWICZ PIOTR, HRYNKIEWICZ MONIKA, BUCHOLSKA JUSTYNA, DAREWICZ MAŁGORZATA: "Hybrid Approach in the Analysis of Bovine Milk Protein Hydrolysates as a Source of Peptides Containing Di- and Tripeptide Bitterness Indicators", POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES, POLSKA AKADEMIA NAUK, OLSZTYN-KORTOWO, PL, vol. 70, 1 January 2020 (2020-01-01), PL , pages 139 - 150, XP093027504, ISSN: 1230-0322, DOI: 10.31883/pjfns/113532 *
JEEWANTHI RENDA KANKANAMGE CHATURIKA, LEE NA-KYOUNG, PAIK HYUN-DONG: "Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry", HAN-GUG CHUGSAN SIGPUM HAG-HOEJI - KOREAN SOCIETY FOR FOOD SCIENCE OF ANIMAL RESOURCES, HAN-GUG CHUGSAN SIGPUM HAG-HOEJI, KR, vol. 35, no. 3, 30 June 2015 (2015-06-30), KR , pages 350 - 359, XP093027507, ISSN: 1225-8563, DOI: 10.5851/kosfa.2015.35.3.350 *
KORHONENPIHLANTO: "Food-derived Bioactive Peptides - Opportunities for Designing Future Foods", CURRENT PHARMACEUTICAL DESIGN, vol. 9, no. 16, 2006, pages 1297 - 308, XP008180588
MAZORRA-MANZANO, M. ET AL., PRODUCTION OF WHEY PROTEIN HYDROLYSATES WITH ANGIOTENSIN-CONVERTING ENZYME-INHIBITORY ACTIVITY USING THREE NEW SOURCES OF VEGETABLE PROTEASES, 2016
MEDEIROS, V. ET AL.: "Bovine milk formula based on partial hydrolysis of caseins by bromelain enzyme: Better digestibility and angiotensin-converting enzyme-inhibitory properties", INTERNATIONAL JOURNAL OF FOOD PROPERTIES, vol. 17, no. 4, 2014, pages 806 - 817, XP055834224, DOI: 10.1080/10942912.2012.675607 *
PRATHAMESH BHARAT HELKARAK SAHOONJ PATIL.: "Review: Food Industry By-Products used as a Functional Food Ingredients", INT J WASTE RESOUR, vol. 6, 2016, pages 3
TAVARESMALCATA, WHEY PROTEINS AS SOURCE OF BIOACTIVE PEPTIDES AGAINST HYPERTENSION, 2013
TONDO ANNA RITA, CAPUTO LEONARDO, MANGIATORDI GIUSEPPE FELICE, MONACI LINDA, LENTINI GIOVANNI, LOGRIECO ANTONIO FRANCESCO, MONTARU: "Structure-Based Identification and Design of Angiotensin Converting Enzyme-Inhibitory Peptides from Whey Proteins", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 68, no. 2, 15 January 2020 (2020-01-15), US , pages 541 - 548, XP093027503, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.9b06237 *
TORRUCO-UCO ET AL.: "Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes", FOOD SCIENCE AND TECHNOLOGY, vol. 42, no. 10, 2009, pages 1597 - 1604, XP026502415, DOI: 10.1016/j.lwt.2009.06.006
TORRUCO-UCO ET AL.: "Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris sedes", FOOD SCIENCE AND TECHNOLOGY., vol. 42, no. 10, 2009, pages 1597 - 1604, XP026502415, DOI: 10.1016/j.lwt.2009.06.006

Also Published As

Publication number Publication date
EP4374709A1 (en) 2024-05-29
CL2023003988A1 (es) 2024-03-08

Similar Documents

Publication Publication Date Title
Kheeree et al. ACE inhibitory peptides derived from de-fatted lemon basil seeds: Optimization, purification, identification, structure–activity relationship and molecular docking analysis
Shanmugam et al. Antioxidative peptide derived from enzymatic digestion of buffalo casein
O'Keeffe et al. Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semi‐pilot scale
Petrat-Melin et al. In vitro digestion of purified β-casein variants A1, A2, B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity
CN101305017B (zh) 奶酪蛋白的酶水解产物中鉴定的生物活性肽及其生产方法
ES2374854T3 (es) Hidrolizado proteico de lactosuero.
Cian et al. Antithrombotic activity of brewers’ spent grain peptides and their effects on blood coagulation pathways
Memarpoor-Yazdi et al. Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme
Nurdiani et al. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products
WO2011152330A1 (ja) 大豆蛋白質加水分解物含有抗酸化剤及びその利用
Lisak et al. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: Potential for native α-lactalbumin purification
Jiménez-Escrig et al. Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase
JP2007523045A (ja) 酵素加水分解による卵白タンパク質由来の生理活性ペプチド
Wang et al. Purification and identification of an ACE-inhibitory peptide from walnut protein hydrolysate
WO2004069265A1 (en) Use of tryptophan rich peptides
RU2366294C1 (ru) Способ получения биологически активной добавки "мобелиз" и полученная этим способом бад "мобелиз"
WO2023000115A1 (es) Proceso de producción de péptidos bioactivos obtenidos desde lactosuero mediante la utilización de enzimas de origen vegetal
ES2945869T3 (es) Composición que contiene aminoácidos
CN111349676A (zh) 一种羊乳乳清高f值寡肽的制备方法
Kelly et al. Applications of novel technologies in processing of functional foods
EP2880997B1 (en) Beverage, and method for producing same
Budiari et al. Angiotensin Converting Enzyme (ACE) Inhibitory Activity of Crude and Fractionated Snakehead Fish (Channa striata) Fillet Extract
Oussaief et al. Antioxidant, lipase and ACE‐inhibitory properties of camel lactoferrin and its enzymatic hydrolysates
DK178743B1 (en) Process for producing a shrimp hydrolysate using electrodialysis.
Sergius-Ronot et al. Development of a human milk protein concentrate from donor milk: Impact of the pasteurization method on static in vitro digestion in a preterm newborn model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021950383

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021950383

Country of ref document: EP

Effective date: 20240220