WO2022270911A1 - 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2022270911A1
WO2022270911A1 PCT/KR2022/008886 KR2022008886W WO2022270911A1 WO 2022270911 A1 WO2022270911 A1 WO 2022270911A1 KR 2022008886 W KR2022008886 W KR 2022008886W WO 2022270911 A1 WO2022270911 A1 WO 2022270911A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
composition
parts
hexanoic acid
Prior art date
Application number
PCT/KR2022/008886
Other languages
English (en)
French (fr)
Inventor
김현규
문정주
김은석
김주호
우승택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023521785A priority Critical patent/JP2023545116A/ja
Priority to MX2023005087A priority patent/MX2023005087A/es
Priority to CN202280006842.0A priority patent/CN116368184A/zh
Priority to EP22828758.7A priority patent/EP4209543A4/en
Priority to US18/030,484 priority patent/US20230374262A1/en
Priority to BR112023008147A priority patent/BR112023008147A2/pt
Publication of WO2022270911A1 publication Critical patent/WO2022270911A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/30Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with trihydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to a plasticizer composition containing at least one triester and a resin composition containing the plasticizer composition.
  • plasticizers react with alcohols with polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plasticizers continues.
  • additives such as plasticizers, fillers, stabilizers, viscosity lowering agents, dispersants, antifoaming agents, and foaming agents are mixed with PVC resin according to the characteristics required by industry, such as tensile strength, elongation, light resistance, transferability, gelling property, or absorption rate.
  • plasticizer compositions applicable to PVC when relatively inexpensive and most commonly used di(2-ethylhexyl) terephthalate (DEHTP) is applied, hardness or sol viscosity is high and plasticizer absorption rate is high. was relatively slow, and transitivity and stress transitivity were not good.
  • DEHTP di(2-ethylhexyl) terephthalate
  • the present invention is a plasticizer composition, which contains a mixture of hexanoic acid isomers and a carboxylic acid composition containing benzoic acid and triesters, which are products derived from esterification of trihydric alcohols, so that migration resistance and heating loss are equivalent to those of conventional plasticizers. It is an object of the present invention to provide a plasticizer composition capable of maintaining the level and remarkably improving mechanical properties, water absorption rate, stress transferability and plasticization efficiency.
  • the present invention provides a plasticizer composition and a resin composition.
  • the present invention includes at least one triester of the following formula (1), and R 1 to R 3 of the following formula (1) are derived from a carboxylic acid composition including a mixture of isomers of hexanoic acid and benzoic acid
  • a triester-based plasticizer composition is provided:
  • R 1 to R 3 are each independently an n-pentyl group, a branched pentyl group, a cyclopentyl group, or a phenyl group;
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • the present invention provides the plasticizer composition according to (1) above, wherein the carboxylic acid composition contains a mixture of isomers of hexanoic acid and benzoic acid in a weight ratio of 99:1 to 50:50.
  • the present invention provides the plasticizer composition according to (1) or (2) above, wherein the hexanoic acid isomer mixture has a degree of branching of 2.0 or less.
  • the present invention provides the plasticizer composition according to any one of (1) to (3) above, wherein the hexanoic acid isomer mixture contains 2-methyl pentanoic acid and 3-methyl pentanoic acid.
  • hexanoic acid isomer mixture comprises 1-hexanoic acid, 2-methyl pentanoic acid, 3-methylpentanoic acid and cyclopentyl methanoic acid. It provides a plasticizer composition that is.
  • hexanoic acid isomer mixture contains 20 to 95 parts by weight of branched hexanoic acid based on 100 parts by weight of the mixture
  • a plasticizer composition is provided.
  • the present invention is the plasticizer according to any one of (1) to (6) above, wherein the hexanoic acid isomer mixture contains 30 parts by weight or less of cyclopentyl methanoic acid based on 100 parts by weight of the total mixture. composition is provided.
  • the present invention provides the plasticizer composition according to any one of (1) to (7) above, wherein R 4 and R 5 are hydrogen.
  • the present invention provides a resin composition comprising 100 parts by weight of a resin and 5 to 150 parts by weight of the plasticizer composition according to any one of (1) to (8) above.
  • plasticizer composition according to an embodiment of the present invention When the plasticizer composition according to an embodiment of the present invention is used in a resin composition, migration resistance and heating loss compared to conventional plasticizers can be maintained at the same level, and mechanical properties, water absorption rate, stress transferability and plasticization efficiency are remarkably improved. can be improved
  • composition includes mixtures of materials comprising the composition as well as reaction products and decomposition products formed from the materials of the composition.
  • isomer is not intended to distinguish isomers in all meanings, but is intended to distinguish between structural isomers, that is, a relationship in which the number of carbon atoms is the same but the bonding structures are different, and optical isomers It does not mean that even stereoisomers, such as diastereomers, are distinct substances.
  • the term "straight vinyl chloride polymer” is one of the types of vinyl chloride polymers, which may mean polymerized through suspension polymerization or bulk polymerization, and has a size of tens to hundreds of micrometers. It refers to a polymer having a form of porous particles in which a large number of pores are distributed, no cohesiveness, and excellent flowability.
  • the term "paste vinyl chloride polymer” is one of a kind of vinyl chloride polymer, and may mean one polymerized through microsuspension polymerization, microseed polymerization, emulsion polymerization, or the like, It refers to a polymer having cohesiveness and poor flowability as fine and dense void-free particles having a size of several thousand nanometers.
  • compositions claimed through use of the term 'comprising' will, unless stated to the contrary, contain any additional additives, adjuvants, or compounds, whether polymeric or otherwise. can include
  • the term 'consisting essentially of' excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those not essential to operability.
  • the term 'consisting of' excludes any ingredient, step or procedure not specifically delineated or listed.
  • the content analysis of components in the composition is performed through gas chromatography measurement, and Agilent's gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4mL / min) , detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, final value: 280°C/7.8min, program rate: 15°C/min).
  • Agilent's gas chromatography instrument product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4mL / min) , detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, final value: 280°C/7.8min, program rate: 15°C/min).
  • 'hardness' means Shore hardness (Shore "A” and / or Shore “D”) at 25 ° C., measured under the condition of 3T 10s, using ASTM D2240, and plasticized It can be an index for evaluating efficiency, and the lower the value, the better the plasticization efficiency.
  • 'tensile strength' refers to a crosshead speed of 200 mm/min (1T) using a test device, U.T.M (manufacturer; Instron, model name: 4466) according to the ASTM D638 method. ) After pulling, the point where the specimen is cut is measured and calculated by Equation 1 below.
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • 'elongation rate' is measured by the ASTM D638 method, after pulling the cross head speed to 200 mm / min (1T) using the U.T.M., and then measuring the point where the specimen is cut After that, it is calculated by Equation 2 below.
  • Elongation (%) length after extension / initial length x 100
  • 'migration loss' refers to obtaining a test piece having a thickness of 2 mm or more in accordance with KSM-3156, attaching glass plates to both sides of the test piece, and then applying a load of 1 kgf/cm 2 . After the test piece is left in a hot air circulation oven (80° C.) for 72 hours, it is taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight of the glass plate and the specimen plate before and after being left in the oven is measured to calculate the transfer loss amount by Equation 3 below.
  • Transition loss (%) ⁇ (initial specimen weight - specimen weight after leaving the oven) / initial specimen weight ⁇ x 100
  • 'volatile loss' refers to measuring the weight of a specimen after working the specimen at 80 ° C for 72 hours.
  • Heating loss (wt%) ⁇ (initial specimen weight - specimen weight after operation) / initial specimen weight ⁇ x 100
  • the plasticizer composition includes at least one triester of Formula 1, wherein the alkyl group of the triester is derived from a carboxylic acid composition including a mixture of isomers of hexanoic acid and benzoic acid. It became.
  • R 1 to R 3 are each independently an n-pentyl group, a branched pentyl group, a cyclopentyl group or a phenyl group, and R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms to be.
  • the plasticizer composition may be a reaction product produced by an esterification reaction between a carboxylic acid composition including a mixture of hexanoic acid isomers and benzoic acid and a trihydric alcohol, and thus has 6 carbon atoms including the central carbon of the carbonyl group.
  • R 1 to R 3 in Formula 1 may be a linear, branched or alicyclic alkyl group having 5 carbon atoms, and derived from benzoic acid, of Formula 1 A phenyl group may be applied to R 1 to R 3 .
  • the plasticizer composition according to an embodiment of the present invention includes one or more triesters represented by Formula 1, and depending on the number of hexanoic acids and benzoic acid included in the hexanoic acid isomer mixture applied to the esterification reaction, the final product The number of triesters can be determined. For example, if the hexanoic acid isomer mixture contains two isomers, the plasticizer composition may contain at least 15 triesters because there are three carboxylic acids in the carboxylic acid composition.
  • the carboxylic acid composition may include the hexanoic acid isomer mixture and benzoic acid in a weight ratio of 99:1 to 50:50, preferably 95:5 as an upper limit, more preferably 90:10, 85:15 or 80:20 can be applied, preferably 55:45 as the lower limit, more preferably 60:40, 65:35 or 70:30 can be applied.
  • plasticization efficiency and elongation can be maintained at the level of existing high-performance plasticizers.
  • plasticization efficiency and mechanical properties can be simultaneously improved compared to the case where a different carbon number is applied.
  • an alkyl carboxylic acid having 5 or less carbon atoms is applied, mechanical properties, heating loss and absorption rate are poor, and when an alkyl carboxylic acid having 7 or more carbon atoms is applied, plasticization efficiency is poor and the absorption rate is very slow, resulting in poor processability. can be significantly aggravated.
  • the plasticizer composition is a compound having three ester groups as a triester, it has excellent compatibility with resins and excellent miscibility with other additives, and has many ester groups so that molecules can be fixed in the polymer chain. As a result, the plasticization efficiency and mechanical properties can be excellent while maintaining the transition resistance and heating loss at an appropriate level.
  • the alkyl group of the triester included in the plasticizer composition according to an embodiment of the present invention is derived from a hexanoic acid isomer mixture having a branching degree of 2.0 or less, and preferably, the branching degree may be 1.5 or less, 1.3 or less, and 1.2 or less. or 1.0 or less. Also, it may be 0.1 or more, 0.2 or more, or 0.3 or more.
  • the degree of branching may mean how many branching carbon atoms are attached to alkyl groups bound to materials included in the composition, and the degree may be determined according to the weight ratio of the material. For example, assuming that the hexanoic acid mixture contains 60% by weight of 1-hexanoic acid, 30% by weight of 2-methylpentanoic acid, and 10% by weight of 2-ethyl butanoic acid, the number of branch carbon atoms of each carboxylic acid is Since each is 0, 1 and 2, the degree of branching may be 0.5 calculated as [(60x0) + (30x1) + (10x2)] / 100. Meanwhile, in the present invention, the number of branched carbon atoms of cyclopentyl methanoic acid is considered to be 0.
  • plasticization efficiency and migration resistance / Physical properties of weight loss properties can be further balanced and processability can be optimized, and significant improvements in mechanical properties such as tensile strength and elongation and stress resistance can be achieved due to the interaction of multiple triesters included in the composition.
  • a carboxylic acid composition in which the weight ratio range of the hexanoic acid isomer mixture and benzoic acid is controlled is applied, and at the same time, hexanoic acid isomers It is also possible to control the type and content of isomers included in the mixture.
  • the hexanoic acid isomer mixture may essentially include 2-methyl pentanoic acid and 3-methyl pentanoic acid.
  • the hexanoic acid isomer mixture may further include 1-hexanoic acid and cyclopentyl methanoic acid in addition to 2-methyl pentanoic acid and 3-methyl pentanoic acid.
  • 1-hexanoic acid specific physical properties tend to improve as it is included, but it is necessary to adjust the content in consideration of the processability of absorption rate or plasticization efficiency, and cyclopentyl methanonic acid may also be the same.
  • the hexanoic acid isomer mixture may include 20 parts by weight or more of branched hexanoic acid, 30 parts by weight or more, 40 parts by weight or more, 50 parts by weight or more, based on a total of 100 parts by weight of the mixture. part or more, may be 95 parts by weight or less, may be 90 parts by weight or less, may be 85 parts by weight or less, 80 parts by weight or less, or 70 parts by weight or less.
  • hexanoic acid isomer mixture 80 parts by weight or less of 1-hexanoic acid may be included, 70 parts by weight or less, 60 parts by weight or less, 50 parts by weight or less, 40 parts by weight or less, or 30 parts by weight or less It may be included in less than, 1 part by weight or more, 2 parts by weight or more, 5 parts by weight or more, or 10 parts by weight or more.
  • the amounts of the branched and linear plasticizers may be appropriately adjusted according to the intended use of the triester-based plasticizer, and desired physical properties may be achieved by adjusting the ratio thereof.
  • the isomer mixture may further include cyclopentyl methanoic acid, in which case it may be included in an amount of 30 parts by weight or less based on 100 parts by weight of the total isomer mixture. Preferably, it may be 20 parts by weight or less, and may be included in 15 parts by weight or less.
  • cyclopentyl methanoic acid as long as it is substantially included, processability and mechanical properties can be improved, and its content can be adjusted in consideration of the decrease in physical properties due to the decrease in the relative content of other isomers.
  • isomers may be included in the isomer mixture of hexanoic acid, which determines the degree of branching of the plasticizer composition according to an embodiment of the present invention, and four isomers are typically mentioned, but the presence of other isomers is not excluded, For example, there may be 4-methylpentanoic acid, 2-ethylbutanoic acid, or 2,3-dimethylbutanoic acid, and other structural isomers of C6 alkylcarboxylic acids may exist.
  • the plasticizer composition according to an embodiment of the present invention is derived from the reaction of a carboxylic acid composition including the above-described hexanoic acid isomer mixture and benzoic acid with a trihydric alcohol
  • the trihydric alcohol may be a glycerol-based compound, ,
  • it may be represented by Formula 2 below.
  • R 4 and R 5 are as defined in Formula 1 above.
  • the R 4 and R 5 may each independently be hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably hydrogen, a methyl group, or an ethyl group, more preferably hydrogen or a methyl group, and most preferably It may be glycerol in which both R 4 and R 5 are hydrogen.
  • glycerol it can greatly contribute to improving the price competitiveness of plasticizers in that it is a material that can be easily obtained by supply and demand, can be synthesized from natural products, and can be easily obtained by other synthetic methods.
  • a method for preparing a plasticizer composition according to an embodiment of the present invention is a method known in the art, and may be applied without particular limitation as long as the plasticizer composition described above can be prepared.
  • the plasticizer composition according to the present invention can be prepared by appropriately controlling the esterification reaction.
  • a carboxylic acid composition containing a mixture of isomers of hexanoic acid and benzoic acid and a glycerol-based compound represented by Formula 2 For example, the composition may be prepared by directly esterifying glycerol.
  • the plasticizer composition according to an embodiment of the present invention is a material prepared by appropriately performing the esterification reaction, and meets the above conditions, in particular, the weight ratio of the hexanoic acid isomer mixture and benzoic acid in the carboxylic acid composition is controlled , As long as the ratio of the branched hexanoic acid in the isomer mixture is controlled, the preparation method is not particularly limited.
  • the direct esterification reaction may include adding a carboxylic acid composition and a glycerol-based compound represented by Formula 2, adding a catalyst, and reacting under a nitrogen atmosphere; removing unreacted alcohol and neutralizing unreacted acid; And dehydrating and filtering by distillation under reduced pressure; it may be performed.
  • the carboxylic acid composition it can perform the main function of determining the component ratio in the plasticizer composition to be prepared, and the glycerol-based compound and theoretically a molar ratio of 3: 1 can be applied, and the carboxylic acid composition than this molar ratio Additional input can contribute to improving the reaction rate.
  • the additional amount of the carboxylic acid composition added may be 400 mol% or less, or 300 mol% or less, preferably 200 mol% or less or 100 mol% or less, based on the equivalent weight of the carboxylic acid composition.
  • the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactate, lithium fluoride, potassium chloride, cesium chloride, calcium chloride, It may be at least one selected from metal salts such as iron chloride and aluminum phosphate, metal oxides such as heteropolyacids, natural/synthetic zeolites, cation and anion exchange resins, organometallics such as tetraalkyl titanates and polymers thereof.
  • acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid,
  • tetraalkyl titanate may be used as the catalyst.
  • p-toluenesulfonic acid, methanesulfonic acid, and the like may be suitable as an acid catalyst having a low activation temperature.
  • the amount of catalyst used may vary depending on the type, and for example, in the case of a homogeneous catalyst, the range is 0.01 to 5.00% by weight, 0.01 to 3.00% by weight, 0.1 to 3.0% by weight, or 0.1 to 2.0% by weight based on 100% by weight of the total reactant. and in the case of a heterogeneous catalyst may be within the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • reaction temperature may be within the range of 100 to 280 °C 100 to 250 °C or 100 to 230 °C.
  • a resin composition including the plasticizer composition and the resin described above is provided.
  • Resins known in the art may be used as the resin.
  • at least one selected from the group consisting of straight vinyl chloride polymer, paste vinyl chloride polymer, ethylene vinyl acetate copolymer, ethylene polymer, propylene polymer, polyketone, polystyrene, polyurethane, natural rubber, synthetic rubber, and thermoplastic elastomer Mixtures and the like may be used, but are not limited thereto.
  • the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, or 10 to 120 parts by weight based on 100 parts by weight of the resin.
  • the resin used in the plasticizer composition may be manufactured into a resin product through melt processing or plastisol processing, and the melt processing resin and plastisol processing resin may be produced differently according to each polymerization method.
  • a vinyl chloride polymer when used for melt processing, it is produced by suspension polymerization and the like, and solid resin particles having a large average particle diameter are used.
  • a vinyl chloride polymer is called a straight vinyl chloride polymer and is used for plastisol processing.
  • a resin in a sol state as fine resin particles produced by emulsion polymerization or the like is used, and such a vinyl chloride polymer is called a paste vinyl chloride resin.
  • the plasticizer is preferably included within the range of 5 to 80 parts by weight based on 100 parts by weight of the polymer, and in the case of the paste vinyl chloride polymer, 40 to 120 parts by weight based on 100 parts by weight of the polymer It is preferable to be included in
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may use a filler known in the art, and is not particularly limited.
  • a filler known in the art, and is not particularly limited.
  • it may be a mixture of at least one selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate, and barium sulfate.
  • the resin composition may further include other additives such as a stabilizer, if necessary.
  • additives such as the stabilizer may be 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin, for example.
  • the stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer or a barium-zinc (Ba-Zn-based) stabilizer such as a calcium-zinc composite stearate, but is not particularly limited thereto. no.
  • the resin composition can be applied to both melt processing and plastisol processing.
  • melt processing can be applied to calendering processing, extrusion processing, or injection processing
  • plastisol processing can be applied to coating processing, etc. this may apply.
  • Example 1 about 20% by weight of 1-hexanoic acid, about 30% by weight of 2-methylpentanoic acid, about 35% by weight of 3-methylpentanoic acid, about 5% by weight of 4-methylpentanoic acid in the mixture of isomers of hexanoic acid
  • a triester-based plasticizer composition was obtained in the same manner, except that a mixture containing nonic acid and about 10% by weight of cyclopentyl methanoic acid was used.
  • Example 1 about 2% by weight of 1-hexanoic acid, about 40% by weight of 2-methylpentanoic acid, about 50% by weight of 3-methylpentanoic acid, about 2% by weight of 4-methylpentanoic acid in the mixture of isomers of hexanoic acid
  • a triester-based plasticizer composition was obtained in the same manner, except that a mixture containing nonic acid and about 6% by weight of cyclopentyl methanoic acid was used.
  • the hexanoic acid isomer mixture in Example 1 was about 5% by weight of 1-hexanoic acid, about 50% by weight of 2-methylpentanoic acid, about 30% by weight of 3-methylpentanoic acid and about 15% by weight of cyclopentyl methanonic acid
  • a triester-based plasticizer composition was obtained in the same manner except that the mixture containing this was used.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that 1360 g of a carboxylic acid composition containing an isomer mixture of hexanoic acid and benzoic acid in a weight ratio of 90:10 was used.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that 1360 g of a carboxylic acid composition containing a mixture of isomers of hexanoic acid and benzoic acid in a weight ratio of 80:20 was used.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that 1360 g of a carboxylic acid composition containing a mixture of isomers of hexanoic acid and benzoic acid in a weight ratio of 60:40 was used.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that 1360 g of a carboxylic acid composition containing a mixture of isomers of hexanoic acid and benzoic acid in a weight ratio of 50:50 was used.
  • Dioctyl phthalate (DOP, LG Chem) was applied as a plasticizer.
  • Diisononyl phthalate (DINP, LG Chem) was applied as a plasticizer.
  • GL300 a dioctyl terephthalate product from LG Chem, was used as a plasticizer.
  • GL500 a mixture of dibutyl terephthalate, butyloctyl terephthalate and dioctyl terephthalate, manufactured by LG Chem, was used as a plasticizer.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that an acid mixture in which n-butanoic acid and benzoic acid were mixed in a weight ratio of 7:3 was applied instead of the hexanoic acid isomer mixture.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that a carboxylic acid composition containing only hexanoic acid isomer mixture was used without using benzoic acid.
  • a triester-based plasticizer composition was obtained in the same manner as in Example 1, except that 2-ethylhexanoic acid was used instead of the hexanoic acid isomer mixture.
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • Elongation (%) length after extension / initial length x 100
  • a test piece having a thickness of 2 mm or more was obtained according to KSM-3156, and a load of 1 kgf/cm 2 was applied after attaching glass plates to both sides of the 1T sample.
  • the specimen was left in a hot air circulation oven (80° C.) for 72 hours, then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight of the glass plate and the specimen plate before and after being left in the oven was measured, and the transition loss was calculated by Equation 3 below.
  • Transition loss (%) [ ⁇ (initial specimen weight) - (specimen weight after leaving the oven) ⁇ / (initial specimen weight)] x 100
  • Heating loss (wt%) [ ⁇ (initial specimen weight) - (specimen weight after operation) ⁇ / (initial specimen weight)] x 100
  • Stress test stress resistance: After leaving a specimen with a thickness of 2 mm in a bent state at 23 ° C. for 168 hours, the degree of transition (degree of oozing) was observed, and the result was recorded as a numerical value. The closer it was, the better the characteristics were.
  • the absorption rate was measured by using a Planatary mixer (Brabender, P600) under the conditions of 73 ° C. and 60 rpm until the resin and the ester compound were mixed with each other and the torque of the mixer was stabilized. For reference, if the absorption rate is measured for less than 4 minutes, it can be seen that the absorption and transfer of plasticizer during processing occurs repeatedly, and if it exceeds 9 minutes, it can be regarded as a phenomenon in which absorption itself does not work well, If the value was not measured between 4 and 9 minutes, it was evaluated as unprocessable.
  • Example 1 82.3 37.6 212.1 325.3 1.70 1.85 0.5 4:00 Example 2 82.2 37.4 215.4 330.2 1.60 1.62 0.5 3:55 Example 3 82.1 37.2 211.9 335.1 1.80 1.88 0.5 3:58
  • Example 4 82.2 37.0 217.8 334.6 1.50 1.54 0.5 4:05
  • Example 5 81.2 36.8 224.7 337.9 3.34 2.02 0.5 4:10
  • Example 6 81.8 37.0 218.7 334.0 2.38 1.95 0.5 4:05
  • Example 7 82.5 37.8 211.5 321.2 1.32 1.54 0 3:57
  • Comparative Examples 1 and 2 which are conventional phthalate-based products, the tensile strength was excellent and the plasticization efficiency was evaluated to be compliant even though the elongation was at the same level, and it was confirmed that the absorption rate was noticeably improved.
  • Comparative Examples 3 and 4 which are eco-friendly products, great improvement was observed in tensile strength, water absorption rate, plasticization efficiency, transfer loss and heating loss, and furthermore, stress resistance.
  • the product is suitable for mass production and has stable performance in that neither physical property is evaluated as poor and excellent at the same time.
  • Comparative Example 5 in which an esterification product of glycerol and an acid was used, but a mixture of n-butanoic acid and benzoic acid, rather than a mixture of hexanoic acid isomer mixture and benzoic acid, was applied as the acid, showed a significantly lower elongation than the Example of the present invention. In addition, in terms of heating loss, it showed significantly inferior results compared to the examples of the present invention. Furthermore, in the case of Comparative Example 5, the absorption rate measurement experiment also showed unprocessable results.
  • Comparative Example 6 in which only the hexanoic acid isomer mixture was applied without benzoic acid as the acid, was inferior to Example in terms of tensile strength, migration loss, and heating loss. From this, it can be confirmed that the plasticizer composition of the present invention can achieve an improved effect compared to the case where only one of them is applied by simultaneously applying benzoic acid and hexanoic acid.
  • Comparative Example 7 using 2-ethylhexanoic acid an acid having 8 carbon atoms instead of hexanoic acid, was inferior to the examples in terms of plasticization efficiency, elongation, migration loss and stress resistance. From this, in order to have excellent balance in various physical properties such as plasticization efficiency, mechanical properties, stress resistance, and processability, as in the embodiment of the present invention, hexanoic acid having 6 carbon atoms is applied in the form of an isomer mixture, and benzoic acid and It was confirmed that they should be applied together.
  • Viscosity Brookfield viscosity, measured using a Brookfield (LV type) viscometer, #64 was used as a spindle, measurement speed was 6 rpm and 60 rpm, measurement temperature was 25 °C And 40 °C was measured.
  • Example 8 1600 1800 200 1300 1750 450 1300 2400 1100 1100 1800 700 Comparative Example 1 1700 2700 1000 1930 2340 410 1500 2500 1000 1180 2060 880 Comparative
  • Comparative Examples 5 and 7 which were prepared through esterification of glycerol similarly to the plasticizer composition of the present invention, but using acids different from the present invention, also showed poor performance in plastisol processing compared to the examples of the present invention. You can check. Specifically, in the case of Comparative Example 5 using a mixture of n-butanoic acid and benzoic acid, the initial viscosity is higher than that of the examples of the present invention, so processing itself is disadvantageous, and the change in viscosity over time is also high, so it can be confirmed that the viscosity stability is also poor.
  • the plasticizer composition of the present invention is applied together with a mixture of hexanoic acid isomers having 6 carbon atoms and benzoic acid, thereby maintaining excellent physical properties at the time of existing sheet formulation, and also achieving excellent processability and viscosity stability in plastisol processing. confirmed that there is

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 트라이에스터계 가소제 조성물로서, 헥사논산 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물과 3가 알코올의 에스터화 반응 유래 생성물을 포함하는 것을 특징으로 한다. 상기 가소제 조성물을 수지에 적용할 경우, 기존 가소제를 적용한 것 대비 내이행성과 가열 감량은 동등 수준을 유지할 수 있고, 기계적 물성, 흡수속도, 스트레스 이행성 및 가소화 효율을 현저하게 개선할 수 있다.

Description

트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
관련 출원과의 상호 인용
본 출원은 2021년 6월 22일자 한국 특허 출원 제 10-2021-0080756호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 트라이에스터가 1 이상 포함된 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실) 테레프탈레이트(DEHTP)를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 DEHTP를 포함하는 조성물로서, 부탄올과의 트랜스 에스터화 반응의 생성물을 가소제로 적용하는 것을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 가열감량이나 열안정성 등이 열악하고, 기계적 물성이 다소 저하되는 등 물성의 개선이 요구되어 일반적으로 다른 2차 가소제와의 혼용을 통해서 이를 보완하는 방식을 채용하는 것 외에는 현재로써 해결책이 없는 상황이다.
그러나, 2차 가소제를 적용하는 경우에는 물성 변화에 대한 예측이 어렵고, 제품 단가가 상승하는 요인으로 작용할 수 있으며, 특정한 경우 이외에는 물성의 개선이 뚜렷하게 나타나지 않으며, 수지와의 상용성에 문제를 일으키는 등 예상치 못한 문제점이 발생한다는 단점이 있다.
또한, 상기 DEHTP 제품의 열악한 이행성과 감량 특성을 개선하기 위해 트리멜리테이트 계열의 제품으로서 트리(2-에틸헥실) 트리멜리테이트나 트리이소노닐 트리멜리테이트와 같은 물질을 적용하는 경우, 이행성이나 감량 특성은 개선되는 반면에, 가소화 효율이 열악해져, 수지에 적절한 가소화 효과를 부여하기 위해서는 상당량 투입하여야 하는 문제가 있고, 이에 비교적 단가가 높은 제품들이라는 점에서, 상용화가 불가능한 실정에 있다.
이에, 기존 제품으로써 프탈레이트계 제품의 환경적 이슈를 해결하기 위한 제품 또는 프탈레이트계 제품의 환경 이슈를 개선하기 위한 친환경 제품들의 열악한 물성을 개선한 제품 등의 개발이 요구되는 실정이다.
본 발명은 가소제 조성물로, 헥사논산 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물과 3가 알코올의 에스터화 유래 생성물인 트라이에스터를 포함함으로써, 기존 가소제를 적용한 것 대비, 내이행성과 가열 감량은 동등 수준을 유지할 수 있고, 기계적 물성, 흡수속도, 스트레스 이행성 및 가소화 효율을 현저하게 개선할 수 있는 가소제 조성물을 제공하고자 하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 가소제 조성물과 수지 조성물을 제공한다.
(1) 본 발명은 하기 화학식 1의 트라이에스터를 1 이상 포함하고, 하기 화학식 1의 R1 내지 R3는, 헥사논산(hexanoic acid) 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물로부터 유래된 것인 트라이에스터계 가소제 조성물을 제공한다:
[화학식 1]
Figure PCTKR2022008886-appb-I000001
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로, n-펜틸기, 분지형 펜틸기, 사이클로펜틸기, 또는 페닐기이며,
R4 및 R5는 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 알킬기이다.
(2) 본 발명은 상기 (1)에 있어서, 상기 카르복실산 조성물은, 헥사논산 이성질체 혼합물 및 벤조산이 99:1 내지 50:50의 중량비로 포함된 것인 가소제 조성물을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 헥사논산 이성질체 혼합물은 분지화도가 2.0 이하인 것인 가소제 조성물을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 헥사논산 이성질체 혼합물은 2-메틸 펜타논산 및 3-메틸 펜타논산을 포함하는 것인 가소제 조성물을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 헥사논산 이성질체 혼합물은 1-헥사논산, 2-메틸 펜타논산, 3-메틸펜타논산 및 사이클로펜틸 메타논산을 포함하는 것인 가소제 조성물을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 헥사논산 이성질체 혼합물은, 혼합물 총 100 중량부에 대하여, 분지형의 헥사논산이 20 내지 95 중량부로 포함되는 것인 가소제 조성물을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 헥사논산 이성질체 혼합물은, 혼합물 총 100 중량부에 대하여, 사이클로펜틸 메타논산이 30 중량부 이하로 포함되는 것인 가소제 조성물을 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 R4 및 R5는 수소인 것인 가소제 조성물을 제공한다.
(9) 본 발명은 수지 100 중량부 및 상기 (1) 내지 (8) 중 어느 하나에 따른 가소제 조성물 5 내지 150 중량부를 포함하는 수지 조성물을 제공한다.
(10) 본 발명은 상기 (9)에 있어서, 상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 기존 가소제 대비 내이행성과 가열 감량은 동등 수준을 유지할 수 있고, 기계적 물성, 흡수속도, 스트레스 이행성 및 가소화 효율을 현저하게 개선할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 "이성질체"란 용어는 모든 의미의 이성질체를 구별하고자 하는 것은 아니고, 구조 이성질체, 즉 탄소수는 동일하나 결합 구조가 상이한 경우의 관계를 의미하여 이를 구별하고자 하는 것이며, 광학 이성질체나 부분입체 이성질체와 같은 입체 이성질체까지 구별되는 물질임을 의미하는 것은 아니다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수백 마이크로미터 크기를 가지는 다량의 기공이 분포된 다공성 입자의 형태를 갖고 응집성이 없으며 흐름성이 우수한중합체를 말한다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수천 나노미터 크기를 가지는 미세하고 치밀한 공극이 없는 입자로서 응집성을 갖고 흐름성이 열악한 중합체를 말한다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4.2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '경도(hardness)'는 ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및/또는 Shore "D")를 의미하며, 3T 10s의 조건에서 측정하고, 가소화 효율을 평가하는 지표가 될 수 있으며 낮을수록 가소화 효율이 우수함을 의미한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻고, 시험편 양면에 Glass Plate를 붙인 후 1 kgf/cm2 의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다.
[수학식 3]
이행손실량(%) = {(초기 시편 중량 - 오븐 방치 후 시편 중량) / 초기 시편 중량} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량 (중량%) = {(초기 시편 중량 - 작업 후 시편 중량) / 초기 시편 중량} x 100
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시한다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 발명의 일 실시예에 따르면, 가소제 조성물은, 하기 화학식 1의 트라이에스터를 1 이상 포함하고, 상기 트라이에스터의 알킬기는 헥사논산(hexanoic acid) 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물로부터 유래된 것이다.
[화학식 1]
Figure PCTKR2022008886-appb-I000002
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로, n-펜틸기, 분지형 펜틸기, 사이클로펜틸기 또는 페닐기이며, R4 및 R5는 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 알킬기이다.
상기 가소제 조성물은 헥사논산 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물과 3가 알코올과의 에스터화 반응에 의해 생성되는 반응 생성물일 수 있고, 이에 따라, 카보닐기의 중심 탄소를 포함하여 탄소수가 6인 탄소 사슬을 가지는 카르복실산으로부터 유래되는 것으로서, 상기 화학식 1의 R1 내지 R3은 탄소수 5의 선형, 분지형 또는 지환형의 알킬기가 적용될 수 있고, 벤조산으로부터 유래되는 것으로서, 상기 화학식 1의 R1 내지 R3은 페닐기가 적용될 수도 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 상기 화학식 1로 표시되는 트라이에스터를 1 이상 포함하되, 에스터화 반응에 적용되는 헥사논산 이성질체 혼합물에 포함된 헥사논산의 개수와 벤조산에 따라, 최종 생성되는 트라이에스터의 개수가 결정될 수 있다. 예를 들면, 헥사논산 이성질체 혼합물에 2종의 이성질체가 포함된 경우, 카르복실산 조성물은 3종의 카르복실산이 존재하므로 가소제 조성물에는 최소 15종의 트라이에스터가 포함될 수 있다.
본 발명의 일 실시예에 따른 상기 가소제 조성물은 특히 탄소수가 6인 알킬 카르복실산, 즉 헥사논산과 벤조산이 동시에 적용됨으로써, 수지와의 결합력을 더욱 우수하게 할 수 있어, 가열감량과 내이행성이 향상될 수 있다. 이 때 상기 카르복실산 조성물에는 헥사논산 이성질체 혼합물과 벤조산이 99:1 내지 50:50의 중량비로 포함될 수 있고, 상한으로 바람직하게는 95:5, 더 바람직하게는 90:10, 85:15 또는 80:20이 적용될 수 있고, 하한으로 바람직하게는 55:45, 더 바람직하게는 60:40, 65:35 또는 70:30이 적용될 수 있다. 상기 범위를 만족시키는 경우에는 가소화 효율과 신율이 기존 고성능 가소제의 수준으로 유지될 수 있다.
또한, 상기 헥사논산 이성질체 혼합물을 적용하면, 다른 탄소수가 적용된 경우 대비하여 가소화 효율과 기계적 물성이 동시에 향상될 수 있다. 탄소수가 5 이하인 알킬 카르복실산을 적용할 경우 기계적 물성과 가열감량 및 흡수속도가 열악하며, 탄소수가 7 이상인 알킬 카르복실산을 적용할 경우에는 가소화 효율이 열악하고 흡수속도가 매우 느려 가공성이 현저히 악화될 수 있다.
또한, 상기 가소제 조성물은 트라이에스터로서 에스터기가 3개 존재하는 화합물이라는 점에서, 수지와의 상용성이 우수하고 다른 첨가제와의 혼화성이 우수하며, 에스터기가 많아 고분자 사슬 내에서 분자가 고정될 수 있어 내이행성과 가열 감량이 적정 수준을 유지하면서도 가소화 효율과 기계적 물성이 우수할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물에 포함되는 트라이에스터의 알킬기는, 분지화도가 2.0 이하인 헥사논산 이성질체 혼합물로부터 유래되며, 바람직하게 상기 분지화도는 1.5 이하일 수 있고, 1.3 이하일 수 있으며, 1.2 이하 또는 1.0 이하일 수 있다. 또한, 0.1 이상일 수 있고, 0.2 이상일 수 있으며, 0.3 이상일 수 있다.
여기서 분지화도란 조성물 내 포함된 물질에 결합된 알킬기들이 몇 개의 분지 탄소를 갖는지를 의미하는 것일 수 있고, 해당 물질의 중량비에 따라 그 정도가 결정될 수 있다. 예컨대, 헥사논산 혼합물에 1-헥사논산이 60 중량%, 2-메틸 펜타논산이 30 중량%, 그리고 2-에틸 부타논산이 10 중량% 포함되어 있다고 가정하면, 상기 각 카르복실산의 분지 탄소수는 각각 0, 1 및 2인바, 분지화도는 [(60x0)+(30x1)+(10x2)] / 100으로 계산되어 0.5인 것일 수 있다. 한편, 본 발명에 있어서, 사이클로펜틸 메타논산의 분지 탄소수는 0인 것으로 간주한다.
구체적으로, 분지형 알킬기가 전체 알킬 라디칼 중 어느 정도의 비율로 존재하는지, 더 나아가서는 분지형 알킬기 중 특정 분지 알킬 라디칼이 어느 비율로 존재하는지 등의 특징들로 인해서, 가소화 효율과 내이행성/감량 특성의 물성에 더욱 더 균형을 맞출 수 있고 가공성이 최적화될 수 있으며, 조성물 내 포함된 다수의 트라이에스터의 상호 작용으로 인하여 인장강도와 신율과 같은 기계적 물성 및 내스트레스성에 있어서 현저한 개선을 달성할 수 있다.
이를 통해 환경적인 이슈에서 자유로운 물질임과 동시에, 기존의 프탈레이트계 제품의 인장강도를 현저히 개선한 제품의 구현이 가능하며, 기존 테레프탈레이트계 제품의 내이행성 및 내스트레스성을 현저히 개선할 수 있고, 기존 상용 제품들 대비하여 물성간 균형뿐만 아니라, 그 수준이 크게 상향된 제품의 구현이 가능할 수 있으며, 이는 탄소수가 6인 알킬 카르복실산과 방향족 카르복실산의 기본 단위인 벤조산을 조합함으로써 나타나는 현상으로 파악할 수 있다.
본 발명의 일 실시예에 따라, 상기와 같은 효과의 구현을 보다 최적으로, 바람직하게 하기 위해서는, 헥사논산 이성질체 혼합물과 벤조산의 중량비 범위를 제어한 카르복실산 조성물을 적용함과 동시에, 헥사논산 이성질체 혼합물에 포함되는 이성질체의 종류 및 함량을 제어할 수도 있다.
상기 헥사논산 이성질체 혼합물은 2-메틸 펜타논산과 3-메틸 펜타논산을 필수적으로 포함할 수 있다. 이성질체 혼합물에 여러가지 이성질체들 중에서 상기 두 이성질체를 필수 포함함으로써, 전술한 효과를 보다 더 재현성 높게 구현할 수 있다.
또, 상기 헥사논산 이성질체 혼합물을 2-메틸 펜타논산 및 3-메틸 펜타논산에 1-헥사논산과 사이클로펜틸 메타논산을 더 포함할 수 있다. 1-헥사논산의 경우 포함될수록 특정 물성이 개선되는 경향이 있으나, 흡수속도나 가소화 효율의 가공성 측면을 고려하여 그 함량을 조절할 필요가 있고, 사이클로펜틸 메타논산 역시 동일할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 상기 헥사논산 이성질체 혼합물에는 혼합물 총 100 중량부에 대하여 분지형의 헥사논산이 20 중량부 이상 포함될 수 있고, 30 중량부 이상, 40 중량부 이상, 50 중량부 이상 포함될 수 있으며, 95 중량부 이하일 수 있고, 90 중량부 이하일 수 있으며, 85 중량부 이하, 80 중량부 이하, 또는 70 중량부 이하일 수 있다.
또한, 상기 헥사논산 이성질체 혼합물 총 100 중량부에 대하여 1-헥사논산은 80 중량부 이하 포함될 수 있고, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하, 40 중량부 이하, 또는 30 중량부 이하로 포함될 수 있으며, 1 중량부 이상일 수 있고, 2 중량부 이상, 5 중량부 이상 또는 10 중량부 이상 포함될 수 있다.
상기 분지형과 선형의 포함량은 트라이에스터계 가소제의 적용 용도에 따라서 적절하게 조절할 수 있고, 이의 비율 조절을 통해 구현하고자 하는 물성을 달성할 수 있다.
나아가, 상기 이성질체 혼합물은 사이클로펜틸 메타논산을 더 포함할 수 있으며, 이 경우 이성질체 혼합물 총 100 중량부 대비 30 중량부 이하로 포함될 수 있다. 바람직하게는 20 중량부 이하일 수 있고, 15 중량부 이하로 포함되는 것일 수 있다. 사이클로펜틸 메타논산의 경우, 실질적으로 포함되기만 하면 가공성의 개선과 기계적 물성의 개선이 가능할 수 있고, 그 함량은 다른 이성질체의 상대적 함량 감소에 따른 물성 저하를 고려하여 조절할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물의 분지화도를 결정하는 헥사논산 이성질체 혼합물에는 다양한 이성질체가 포함될 수 있으며, 대표적으로 4 종의 이성질체를 언급하였지만, 이 외 다른 이성질체의 존재를 배제하는 것은 아니며, 예컨대, 4-메틸 펜타논산, 2-에틸부타논산 또는 2,3-디메틸부타논산 등이 있을 수 있고, 이 외에도 C6의 알킬 카르복실산의 구조 이성질체들이 존재할 수 있다.
또한, 본 발명의 일 실시예에 따른 가소제 조성물은 전술한 헥사논산 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물과 3가 알코올의 반응으로부터 유래되는 것으로, 상기 3가 알코올은 글리세롤계 화합물일 수 있고, 예컨대, 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2022008886-appb-I000003
상기 화학식 2에서, R4 및 R5는 상기 화학식 1에서 정의한 것과 같다.
상기 R4 및 R5는 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 알킬기일 수 있고, 바람직하게는 수소, 메틸기 또는 에틸기일 수 있으며, 더 바람직하게는 수소 또는 메틸기 일 수 있고, 가장 바람직하게는 R4 및 R5가 모두 수소인 글리세롤일 수 있다. 글리세롤의 경우, 수급이 용이하고 천연물로부터 합성이 가능하며, 다른 합성법으로도 쉽게 얻어질 수 있는 물질인 점에서, 가소제의 가격 경쟁력 향상에 큰 기여를 할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물을 제조하는 방법은 당업계에 알려진 방법으로서, 전술한 가소제 조성물을 제조할 수 있는 경우라면 특별히 제한되지 않고 적용될 수 있다.
즉, 에스터화 반응을 적절히 제어함으로써, 본 발명에 따른 가소제 조성물을 제조할 수 있으며, 예를 들면, 헥사논산 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물과 상기 화학식 2로 표시되는 글리세롤계 화합물, 예컨대 글리세롤을 직접 에스터화 반응시켜 상기 조성물을 제조할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 상기 에스터화 반응을 적절하게 수행하여 제조된 물질로서, 전술한 조건에 부합하는 것, 특히 카르복실산 조성물 내 헥사논산 이성질체 혼합물 및 벤조산의 중량비가 제어되고, 상기 이성질체 혼합물 내 분지형 헥사논산의 비율 제어가 된 것이라면, 제조방법에 특별히 제한되는 바는 없다.
일례로, 상기 직접 에스터화 반응은, 카르복실산 조성물과 상기 화학식 2로 표시되는 글리세롤계 화합물을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 수행될 수 있다.
상기 카르복실산 조성물의 경우, 제조되는 가소제 조성물 내 성분비를 결정하는 주요 기능을 수행할 수 있고, 상기 글리세롤계 화합물과 이론적으로 3:1의 몰비가 적용될 수 있으며, 이 몰비보다 카르복실산 조성물을 추가 투입할 경우 반응 속도 개선에 기여할 수 있다. 이 때, 카르복실산 조성물의 추가 투입량은, 카르복실산 조성물의 당량에 대하여 400 몰% 이하, 또는 300 몰% 이하일 수 있고, 바람직하게 200 몰% 이하 또는 100 몰% 이하의 양일 수 있다.
상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다. 바람직하게는 활성 온도가 낮은 산촉매로서 파라톨루엔술폰산, 메탄술폰산 등이 적절할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5.00 중량%, 0.01 내지 3.00 중량%, 0.1 내지 3.0 중량% 혹은 0.1 내지 2.0 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 100 내지 280℃100 내지 250℃혹은 100 내지 230℃범위 내일 수 있다.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부, 또는 10 내지 120 중량부로 포함될 수 있다.
일반적으로, 가소제 조성물이 사용되는 수지는 용융 가공 또는 플라스티졸 가공을 통해 수지 제품으로 제조될 수 있으며, 용융 가공 수지와 플라스티졸 가공 수지는 각 중합 방법에 따라 다르게 생산되는 것일 수 있다.
예를 들어, 염화비닐 중합체는 용융 가공에 사용되는 경우 현탁 중합 등으로 제조되어 평균 입경이 큰 고체상의 수지 입자가 사용되며 이러한 염화비닐 중합체는 스트레이트 염화비닐 중합체로 불리우며, 플라스티졸 가공에 사용되는 경우 유화 중합 등으로 제조되어 미세한 수지 입자로서 졸 상태의 수지가 사용되며 이러한 염화비닐 중합체는 페이스트 염화비닐 수지로 불리운다.
이 때, 상기 스트레이트 염화비닐 중합체의 경우, 가소제는 중합체 100 중량부 대비 5 내지 80 중량부의 범위 내에서 포함되는 것이 바람직하며, 페이스트 염화비닐 중합체의 경우 중합체 100 중량부 대비 40 내지 120 중량부의 범위 내에서 포함되는 것이 바람직하다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제 또는 바륨-아연(Ba-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 수지 조성물은 전술한 것과 같이 용융 가공 및 플라스티졸 가공에 모두 적용될 수 있고, 예를 들어 용융 가공은 카렌더링 가공, 압출 가공, 또는 사출 가공이 적용될 수 있고, 플라스티졸 가공은 코팅 가공 등이 적용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
교반기, 응축기 및 데칸터가 설치된 반응기에 약 9 중량%의 1-헥사논산, 약 35 중량%의 2-메틸펜타논산, 약 44 중량%의 3-메틸펜타논산, 약 7 중량%의 4-메틸펜타논산 및 약 5 중량%의 사이클로펜틸 메타논산이 포함된 헥사논산 이성질체 혼합물 및 벤조산이 70:30의 중량비로 포함된 카르복실산 조성물 1360g과 글리세롤 276g 및 메탄술폰산 5g을 투입한 다음, 100 내지 140℃의 반응온도와 질소 분위기 하에서 에스터화 반응시켜 반응을 종료하고, 미반응 산을 제거한 후, 촉매 및 제품을 알칼리 수용액으로 중화 및 수세하고 미반응 원료 및 수분을 정제하여 최종적으로 트라이에스터계 가소제 조성물을 얻었다.
실시예 2
실시예 1에서 헥사논산 이성질체 혼합물로 약 20 중량%의 1-헥사논산, 약 30 중량%의 2-메틸펜타논산, 약 35 중량%의 3-메틸펜타논산, 약 5 중량%의 4-메틸펜타논산 및 약 10 중량%의 사이클로펜틸 메타논산이 포함된 혼합물을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 3
실시예 1에서 헥사논산 이성질체 혼합물로 약 2 중량%의 1-헥사논산, 약 40 중량%의 2-메틸펜타논산, 약 50 중량%의 3-메틸펜타논산, 약 2 중량%의 4-메틸펜타논산 및 약 6 중량%의 사이클로펜틸 메타논산이 포함된 혼합물을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 4
실시예 1에서 헥사논산 이성질체 혼합물로 약 5 중량%의 1-헥사논산, 약 50 중량%의 2-메틸펜타논산, 약 30 중량%의 3-메틸펜타논산 및 약 15 중량%의 사이클로펜틸 메타논산이 포함된 혼합물을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 5
실시예 1에서 헥사논산 이성질체 혼합물과 벤조산이 90:10의 중량비로 포함된 카르복실산 조성물 1360g을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 6
실시예 1에서 헥사논산 이성질체 혼합물과 벤조산이 80:20의 중량비로 포함된 카르복실산 조성물 1360g을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 7
실시예 1에서 헥사논산 이성질체 혼합물과 벤조산이 60:40의 중량비로 포함된 카르복실산 조성물 1360g을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
실시예 8
실시예 1에서 헥사논산 이성질체 혼합물과 벤조산이 50:50의 중량비로 포함된 카르복실산 조성물 1360g을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
비교예 1
가소제로 디옥틸 프탈레이트(DOP, LG화학)를 적용하였다.
비교예 2
가소제로 디이소노닐 프탈레이트(DINP, LG화학)를 적용하였다.
비교예 3
가소제로 디옥틸 테레프탈레이트인 LG화학사 제품 GL300을 적용하였다.
비교예 4
가소제로 디부틸 테레프탈레이트, 부틸옥틸 테레프탈레이트 및 디옥틸 테레프탈레이트의 혼합물인 LG화학사 제품 GL500을 적용하였다.
비교예 5
상기 실시예 1에서 헥사논산 이성질체 혼합물 대신 n-부타논산과 벤조산이 7:3의 중량비로 혼합된 산 혼합물을 적용한 것을 제외하고는 동일한 방법으로 트라이에스터계 가소제 조성물을 얻었다.
비교예 6
상기 실시예 1에서 벤조산을 사용하지 않고 헥사논산 이성질체 혼합물만을 포함하는 카르복실산 조성물을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
비교예 7
상기 실시예 1에서 헥사논산 이성질체 혼합물 대신 2-에틸헥사논산을 사용하였다는 점을 제외하고는 동일하게 실시하여 트라이에스터계 가소제 조성물을 얻었다.
상기 실시예 및 비교예에서 사용된 산의 종류와 함량을 아래 표 1로 정리하였다.
알킬 카르복실산 종류 및 각 함량(%) 벤조산 사용 여부 알킬 카르복시산 : 벤조산 중량비
1-헥사논산 2-메틸펜타논산 3-메틸펜타논산 4-메틸펜타논산 사이클로펜틸 메타논산
실시예 1 9 35 44 7 5 O 70:30
실시예 2 20 30 35 5 10 O 70:30
실시예 3 2 40 50 2 6 O 70:30
실시예 4 5 50 30 0 15 O 70:30
실시예 5 9 35 44 7 5 O 90:10
실시예 6 9 35 44 7 5 O 80:20
실시예 7 9 35 44 7 5 O 60:40
실시예 8 9 35 44 7 5 O 50:50
비교예 1 - X -
비교예 2 - X -
비교예 3 - X -
비교예 4 - X -
비교예 5 n-부타논산 단독 사용 O 70:30
비교예 6 9 35 44 7 5 X -
비교예 7 2-에틸 헥사논산 단독 사용 O 70:30
실험예 1: 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100) 100 중량부, 가소제 50 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T, 2T 및 3T 시트를 제작
(4) 평가 항목
1) 경도(hardness): ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및 “D”를 3T 시편으로 10초 동안 측정하였다. 수치가 작을수록 가소화 효율이 우수한 것으로 평가된다.
2) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음 수학식 1로 계산하였다:
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate) 측정: ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산하였다:
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
4) 이행 손실(migration loss) 측정: KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 1T 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래 수학식 3에 의하여 계산하였다.
[수학식 3]
이행손실량(%) = [{(초기 시편 중량) - (오븐 방치 후 시편 중량)} / (초기 시편 중량)] x 100
5) 가열 감량(volatile loss) 측정: 상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하여 하기 수학식 4로 계산하였다.
[수학식 4]
가열 감량 (중량%) = [{(초기 시편 중량) - (작업 후 시편 중량)} / (초기 시편 중량)] x 100
6) 스트레스 테스트(내스트레스성): 두께 2 ㎜인 시편을 구부린 상태로 23 ℃에서 168 시간 동안 방치한 후, 이행 정도(배어나오는 정도)를 관찰하고, 그 결과를 수치로 기재하였으며, 0에 가까울 수록 우수한 특성을 나타내었다.
7) 흡수 속도 측정
흡수속도는 73℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하였다. 참고로, 흡수속도가 4분 미만으로 측정되는 경우에는 가공 중 가소제의 흡수 및 이행이 반복적으로 일어나는 것으로 볼 수 있고, 9분을 초과하는 경우에는 흡수 자체가 잘 되지 않는 현상으로 간주할 수 있으므로, 4분 내지 9분 사이 값으로 측정되지 않는 경우에 대해서는 가공 불능으로 평가하였다.
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 2에 나타내었다.
경도 인장강도
(kgf/cm2)
신율
(%)
이행손실
(%)
가열감량
(%)
내스트레스성 흡수속도
(mm:ss)
(Shore A) (Shore D)
실시예 1 82.3 37.6 212.1 325.3 1.70 1.85 0.5 4:00
실시예 2 82.2 37.4 215.4 330.2 1.60 1.62 0.5 3:55
실시예 3 82.1 37.2 211.9 335.1 1.80 1.88 0.5 3:58
실시예 4 82.2 37.0 217.8 334.6 1.50 1.54 0.5 4:05
실시예 5 81.2 36.8 224.7 337.9 3.34 2.02 0.5 4:10
실시예 6 81.8 37.0 218.7 334.0 2.38 1.95 0.5 4:05
실시예 7 82.5 37.8 211.5 321.2 1.32 1.54 0 3:57
실시예 8 83.0 38.0 211.6 320.7 1.02 1.13 0 3:55
비교예 1 83.9 38.4 195.1 323.4 1.53 1.57 0.5 5:30
비교예 2 85.9 40.l 203.7 323.4 2.47 0.73 0.5 6:46
비교예 3 87.7 41.6 206.0 335.8 6.26 0.82 3.0 7:30
비교예 4 84.2 38.8 207.7 330.4 5.36 3.03 1.5 5:20
비교예 5 80.8 36.8 202.5 318.6 0.23 6.01 0.5 가공불능
비교예 6 80.6 34.1 201.8 336.4 4.54 2.50 0.5 4:18
비교예 7 86.4 39.5 220.3 302.1 4.52 0.89 2.0 4:45
상기 표 2의 결과를 참조하면, 기존의 프탈레이트계 제품인 비교예 1 및 2와 비교하여 인장강도가 우수하고 신율이 동등한 수준임에도 가소화 효율도 준수하게 평가되었고, 흡수속도가 눈에 띄게 향상되었음을 확인할 수 있으며, 친환경 제품인 비교예 3과 4의 경우와 비교하여도, 인장강도, 흡수속도, 가소화 효율, 이행손실과 가열감량, 나아가 내스트레스성에 있어서 큰 향상이 관찰되었다. 또, 어느 하나의 물성도 열악하게 평가되지 않고, 동시에 우수한 것이 확인된 점에서, 양산에 적합하며, 성능이 안정적인 제품이라는 점을 확인할 수 있다.
또한, 기존의 프탈레이트계 가소제로 고성능이기는 하나 치명적인 환경 문제를 야기하는 비교예 1 및 2의 가소제와 동등 이상의 수준을 구현하였음이 확인된바, 대체 가소제로써 매우 적절하다는 것을 확인할 수 있다.
그리고, 글리세롤과 산의 에스터화 생성물을 이용하되, 산으로 헥사논산 이성질체 혼합물과 벤조산의 혼합물이 아닌 n-부타논산과 벤조산의 혼합물을 적용한 비교예 5는 본 발명의 실시예 대비 현저히 낮은 신율을 나타내었으며, 가열감량 측면에서도 본 발명의 실시예 대비 크게 열위한 결과를 나타내었다. 나아가, 비교예 5의 경우, 흡수속도 측정 실험에서도 가공불능 결과를 나타내었다.
또한, 산으로 벤조산 없이 헥사논산 이성질체 혼합물만 적용한 비교예 6은 인장강도, 이행손실 및 가열감량 측면에서 실시예 대비 열위하였다. 이로부터, 본 발명의 가소제 조성물은 벤조산과 헥사논산을 동시에 적용함으로써, 이들 중 하나만을 적용한 경우 대비 개선된 효과를 달성할 수 있음을 확인할 수 있다.
한편, 헥사논산 대신 탄소수 8의 산인 2-에틸헥사논산을 사용한 비교예 7은 가소화 효율, 신율, 이행손실 및 내스트레스성 측면에서 실시예 대비 열위하였다. 이로부터, 가소화 효율과 기계적 물성, 내스트레스성, 가공성 등의 여러 물성이 균형적으로 우수하기 위해서는 본 발명의 실시예에서와 같이 탄소수 6인 헥사논산을 이성질체 혼합물의 형태로 적용하고, 벤조산과 함께 적용하여야 함을 확인하였다.
실험예 2: 플라스티졸 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 페이스트 염화비닐 중합체(KH-10) 100 중량부, 가소제 70 중량부, 안정제(BZ-119) 3 중량부, 발포제(AC5000) 3 중량부 및 충진제(OMYA-10) 40 중량부
(2) 배합: 1000 rpm에서 15분 믹싱
(3) 평가 항목
1) 점도: 브룩필드(Brookfield) 점도로서, Brookfield (LV type) 점도계를 이용하여 측정되며, 스핀들(spinde)로는 #64를 사용하였으며, 측정 속도는 6 rpm 및 60 rpm으로, 측정온도는 25℃ 및 40℃로 하여 측정하였다.
(4) 평가 결과
상기 항목의 평가 결과를 하기 표 3에 나타내었다.
25℃ / 6rpm 25℃ / 60rpm 40℃ / 6rpm 40℃ / 60rpm
1hr 24hr 1hr 24hr 1hr 24hr 1hr 24hr
실시예 1 1400 1600 200 1160 1390 230 1100 2000 900 850 1590 740
실시예 2 1400 1600 200 1200 1400 200 1050 2000 950 900 1550 650
실시예 3 1350 1500 150 1180 1430 250 1100 1900 800 870 1550 680
실시예 4 1370 1570 200 1200 1400 200 1050 2000 950 880 1550 670
실시예 5 700 1100 400 600 860 250 400 1500 1100 450 1450 1000
실시예 6 850 1200 350 750 1200 450 500 1750 1250 650 1500 850
실시예 7 1500 1700 200 1200 1500 300 1100 1900 800 1000 1600 600
실시예 8 1600 1800 200 1300 1750 450 1300 2400 1100 1100 1800 700
비교예 1 1700 2700 1000 1930 2340 410 1500 2500 1000 1180 2060 880
비교예 2 2300 2400 100 2080 2570 490 1700 2700 1000 1270 1710 440
비교예 3 2200 2300 100 2020 2300 280 1300 1900 600 1220 1450 230
비교예 4 1200 1900 700 1380 1650 270 1200 1900 700 870 1390 520
비교예 5 1900 2400 500 1920 2440 520 1600 10600 9000 1520 7390 5870
비교예 6 500 800 300 470 570 100 300 1200 900 370 740 370
비교예 7 2300 3200 900 2300 2900 600 1800 3000 1200 1400 2100 700
상기 표 3의 결과를 참조하면, 실시예 1 내지 4의 경우 가소제 조성물은 플라스티졸 가공 시, 초기 점도 자체가 매우 낮아 가공에 상당히 유리하며, 점도의 경시 변화가 적어 점도 안정성이 우수하다는 점을 알 수 있으나, 기존 제품군에 해당하는 비교예 1 내지 4는 점도 자체가 높아 플라스티졸 가공이 실시예 대비 불리하다는 점을 알 수 있다. 특히, 비교예 1 및 4의 경우에는, 초기 점도뿐 아니라 점도의 변화 폭 역시 커, 플라스티졸 가공에 있어서 본 발명의 가소제 조성물 대비 성능이 크게 떨어짐을 확인할 수 있다.
한편, 본 발명의 가소제 조성물과 유사하게 글리세롤의 에스터화 반응을 통해 제조되나, 본 발명과는 다른 산을 사용한 비교예 5 및 7 역시 플라스티졸 가공에서의 성능이 본 발명의 실시예 대비 떨어짐을 확인할 수 있다. 구체적으로, n-부타논산과 벤조산을 혼합하여 사용한 비교예 5의 경우, 초기 점도가 본 발명의 실시예 대비 높아 가공 자체가 불리하며, 점도의 경시 변화 역시 높아 점도 안정성 역시 떨어짐을 확인할 수 있다. 또한, 탄소수 6의 헥사논산 대신 탄소수 8의 산을 사용한 비교예 7의 경우 역시 초기 점도가 높게 나타났으며, 점도의 경시 변화 역시 커 점도 안정성도 떨어지는 것으로 확인되었다.
한편, 본 발명의 실시예에서 사용된 헥사논산의 이성질체 혼합물 및 벤조산 중, 헥사논산의 이성질체 혼합물만을 사용한 비교예 6의 경우에는, 초기 점도 및 점도 안정성 측면에서 괜찮은 효과를 나타내었으나, 앞서 살펴본 시트 처방 결과에서 확인할 수 있는 바와 같이 시트 처방 시의 이행손실 및 가열감량이 상당 부분 열위함을 나타내었다.
이로부터, 본 발명의 가소제 조성물은 탄소수 6의 헥사논산 이성질체 혼합물과 벤조산을 함께 적용함으로써, 기존 시트 처방 시에서의 물성을 우수하게 유지하면서도, 플라스티졸 가공에 있어서도 우수한 가공성 및 점도 안정성을 구현할 수 있음을 확인하였다.

Claims (10)

  1. 하기 화학식 1의 트라이에스터를 1 이상 포함하고,
    하기 화학식 1의 R1 내지 R3는, 헥사논산(hexanoic acid) 이성질체 혼합물 및 벤조산을 포함하는 카르복실산 조성물로부터 유래된 것인 트라이에스터계 가소제 조성물:
    [화학식 1]
    Figure PCTKR2022008886-appb-I000004
    상기 화학식 1에서,
    R1 내지 R3는 각각 독립적으로, n-펜틸기, 분지형 펜틸기, 사이클로펜틸기, 또는 페닐기이며,
    R4 및 R5는 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 알킬기이다.
  2. 제1항에 있어서,
    상기 카르복실산 조성물은, 헥사논산 이성질체 혼합물 및 벤조산이 99:1 내지 50:50의 중량비로 포함된 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 헥사논산 이성질체 혼합물은 분지화도가 2.0 이하인 것인 가소제 조성물.
  4. 제1항에 있어서,
    상기 헥사논산 이성질체 혼합물은 2-메틸 펜타논산 및 3-메틸 펜타논산을 포함하는 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 헥사논산 이성질체 혼합물은 1-헥사논산, 2-메틸 펜타논산, 3-메틸펜타논산 및 사이클로펜틸 메타논산을 포함하는 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 헥사논산 이성질체 혼합물은, 혼합물 총 100 중량부에 대하여, 분지형의 헥사논산이 20 내지 95 중량부로 포함되는 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 헥사논산 이성질체 혼합물은, 혼합물 총 100 중량부에 대하여, 사이클로펜틸 메타논산이 30 중량부 이하로 포함되는 것인 가소제 조성물.
  8. 제1항에 있어서,
    상기 R4 및 R5는 수소인 것인 가소제 조성물.
  9. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  10. 제9항에 있어서,
    상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2022/008886 2021-06-22 2022-06-22 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물 WO2022270911A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023521785A JP2023545116A (ja) 2021-06-22 2022-06-22 トリエステル系可塑剤組成物およびそれを含む樹脂組成物
MX2023005087A MX2023005087A (es) 2021-06-22 2022-06-22 Composicion plastificante a base de triester y composicion de resina que comprende la misma.
CN202280006842.0A CN116368184A (zh) 2021-06-22 2022-06-22 基于三酯的增塑剂组合物和包含其的树脂组合物
EP22828758.7A EP4209543A4 (en) 2021-06-22 2022-06-22 TRIESTER-BASED PLASTICIZER COMPOSITION AND RESIN COMPOSITION COMPRISING SAID PLASTICIZER COMPOSITION
US18/030,484 US20230374262A1 (en) 2021-06-22 2022-06-22 Triester-based plasticizer composition and resin composition comprising the same
BR112023008147A BR112023008147A2 (pt) 2021-06-22 2022-06-22 Composição de plastificante à base de triéster e composição de resina que compreende a mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210080756 2021-06-22
KR10-2021-0080756 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270911A1 true WO2022270911A1 (ko) 2022-12-29

Family

ID=84539406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008886 WO2022270911A1 (ko) 2021-06-22 2022-06-22 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (9)

Country Link
US (1) US20230374262A1 (ko)
EP (1) EP4209543A4 (ko)
JP (1) JP2023545116A (ko)
KR (1) KR20220170378A (ko)
CN (1) CN116368184A (ko)
BR (1) BR112023008147A2 (ko)
MX (1) MX2023005087A (ko)
TW (1) TW202309171A (ko)
WO (1) WO2022270911A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4209542A4 (en) * 2021-06-22 2024-04-10 Lg Chemical Ltd TRIESTER-BASED PLASTICIZER COMPOSITION AND RESIN COMPOSITION THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349766A (ja) * 1998-06-11 1999-12-21 Asahi Denka Kogyo Kk 塩化ビニル系樹脂用可塑剤
KR20040071179A (ko) * 2001-12-20 2004-08-11 페로 코포레이션 글리세린 트리에스테르 가소제
WO2010027640A1 (en) * 2008-09-03 2010-03-11 Exxonmobil Chemical Patents Inc. Triglyceride plasticizers having low average levels of branching and process of making the same
US20100249299A1 (en) * 2009-03-27 2010-09-30 Jihad Mohammed Dakka Process for making triglyceride plasticizer from crude glycerol
KR20110122571A (ko) * 2010-05-04 2011-11-10 에스케이이노베이션 주식회사 가소제 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981106B (zh) * 2008-03-28 2012-12-12 埃克森美孚化学专利公司 多元醇酯增塑剂以及其制备方法
TW202309172A (zh) * 2021-06-22 2023-03-01 南韓商Lg化學股份有限公司 三酯系塑化劑組成物及含彼之樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349766A (ja) * 1998-06-11 1999-12-21 Asahi Denka Kogyo Kk 塩化ビニル系樹脂用可塑剤
KR20040071179A (ko) * 2001-12-20 2004-08-11 페로 코포레이션 글리세린 트리에스테르 가소제
WO2010027640A1 (en) * 2008-09-03 2010-03-11 Exxonmobil Chemical Patents Inc. Triglyceride plasticizers having low average levels of branching and process of making the same
US20100249299A1 (en) * 2009-03-27 2010-09-30 Jihad Mohammed Dakka Process for making triglyceride plasticizer from crude glycerol
KR20110122571A (ko) * 2010-05-04 2011-11-10 에스케이이노베이션 주식회사 가소제 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4209543A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4209542A4 (en) * 2021-06-22 2024-04-10 Lg Chemical Ltd TRIESTER-BASED PLASTICIZER COMPOSITION AND RESIN COMPOSITION THEREOF

Also Published As

Publication number Publication date
EP4209543A1 (en) 2023-07-12
KR20220170378A (ko) 2022-12-29
BR112023008147A2 (pt) 2024-02-06
US20230374262A1 (en) 2023-11-23
EP4209543A4 (en) 2024-04-10
TW202309171A (zh) 2023-03-01
MX2023005087A (es) 2023-05-19
JP2023545116A (ja) 2023-10-26
CN116368184A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020122591A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270911A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2022035138A1 (ko) 아세틸 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145642A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521785

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022828758

Country of ref document: EP

Effective date: 20230405

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008147

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023008147

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427