WO2022270356A1 - 透明導電性フィルム - Google Patents

透明導電性フィルム Download PDF

Info

Publication number
WO2022270356A1
WO2022270356A1 PCT/JP2022/023794 JP2022023794W WO2022270356A1 WO 2022270356 A1 WO2022270356 A1 WO 2022270356A1 JP 2022023794 W JP2022023794 W JP 2022023794W WO 2022270356 A1 WO2022270356 A1 WO 2022270356A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
less
average
Prior art date
Application number
PCT/JP2022/023794
Other languages
English (en)
French (fr)
Inventor
央 多々見
知大 高橋
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202280025177.XA priority Critical patent/CN117120255A/zh
Priority to KR1020237038334A priority patent/KR20240004480A/ko
Priority to JP2023530344A priority patent/JPWO2022270356A1/ja
Publication of WO2022270356A1 publication Critical patent/WO2022270356A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive film in which a transparent conductive film of indium-tin composite oxide is laminated on a transparent plastic film substrate.
  • Transparent conductive films which are made by laminating a transparent and low-resistance thin film on a transparent plastic substrate, are used in applications that make use of their conductivity, such as flat panel displays such as liquid crystal displays and electroluminescence (EL) displays. It is widely used in the electrical and electronic fields as a transparent electrode for touch panels, etc.
  • a resistive touch panel is a combination of a fixed electrode made by coating a transparent conductive thin film on a glass or plastic substrate and a movable electrode (called a film electrode) made by coating a transparent conductive thin film on a plastic film. It is used superimposed on the upper side of the display body.
  • a film electrode a movable electrode made by coating a transparent conductive thin film on a plastic film. It is used superimposed on the upper side of the display body.
  • Patent Document 1 discloses a transparent conductive laminate for a touch panel, in which a transparent conductive film mainly composed of substantially crystalline indium oxide is laminated on at least one surface of a polymer film. Writing durability is improved by crystallizing indium oxide.
  • a touch panel is required to have characteristics (pen sliding durability) that do not cause cracks, peeling, or abrasion of the transparent conductive film even when continuous input is made with a pen. Further, a touch panel requires an appropriate range of input strength (appropriate input strength). For example, in a resistive touch panel, when the film electrode is pressed with a finger or a pen to bring the transparent conductive thin films of the fixed electrode and the film electrode into contact with each other, the touch panel may be accidentally touched by a hand or sleeve. , you may accidentally touch the touch panel with a pen, etc. when you are not sure where to touch. It is desirable that the number of inputs due to such unintended touches on the touch panel is small (erroneous input prevention). However, improving erroneous input prevention tends to reduce comfortable input. “Comfortable input” means that input can be performed on a resistive touch panel with a pen or finger without consciously applying strong force. Both erroneous input prevention and comfortable input are required.
  • the touch panel is required to have excellent input stability, that is, the input to the touch panel must be stable from the time the touch panel is touched with a pen or the like until the touch panel is removed.
  • it is required to be able to reduce blurring of characters that may occur when characters are input continuously (stenographic performance), and to be excellent in not blurring the stroked portion of characters (swiping input performance).
  • pen sliding durability could not be improved when indium oxide was not crystallized.
  • conventional transparent conductive films including Patent Document 1 are not sufficient in appropriate input strength (erroneous input prevention, comfortable input) and input stability (stenography, swipe input).
  • an object of the present invention is to provide a transparent conductive film with suitable input strength and excellent input stability.
  • a preferred object of the present invention is to provide a transparent conductive film which also has pen sliding durability.
  • the present invention has been made in view of the above circumstances, and the transparent conductive film of the present invention, which has solved the above problems, has the following configuration.
  • Test method 1 A 20 nm-thick indium-tin composite oxide conductive film (tin oxide content: 10% by mass) is formed on one side of a glass substrate, and epoxy resin dot spacers (length 60 ⁇ m ⁇ width 60 ⁇ m ⁇ height 60 ⁇ m) are formed on the surface of the thin film. 5 ⁇ m) are formed in a square lattice pattern at a pitch of 4 mm to form a panel plate. On the conductive film side of this panel plate, while sandwiching an adhesive rectangular frame having a thickness of 105 ⁇ m and an inner circumference of 190 mm ⁇ 135 mm, transparent conductive films were laminated so that the conductive films face each other to prepare an evaluation panel. do.
  • the center of the four-point lattice of the dot spacer is pressed with a pen made of hemispherical polyacetal with a tip radius of 0.8 mm, and the pressure when the resistance value starts to stabilize is measured. Input starting load.
  • the evaluation panel is connected to a 6 V constant voltage power supply, and a pen whose tip is a hemisphere with a radius of 0.8 mm is used to apply a load of 50 gf to the center of the four-point lattice of the dot spacer from the transparent conductive film side 5 times / second. Press at intervals of .
  • the film bending resistance (BR) determined by test method 3 is 0.38 N cm or more and 0.90 N cm or less
  • the average (AVSp) of the maximum peak height Sp of the conductive surface determined by test method 4 satisfies the following formulas (2-1) and (2-2)
  • Bending resistance (BR (N cm)) g x a x b x L 4 / (8 x ⁇ x 10 11 )
  • g 9.81 (gravitational acceleration; m/s 2 )
  • a 20 (length of the short side of the test piece; mm)
  • b is the specific gravity of the test piece (g/cm 3 )
  • L is 230 (the length of the long side of the test piece outside the horizontal table; mm)
  • is the difference (cm) between the height of the tip of the test piece and the height of the table)
  • Test method 4 On the conductive surface of the transparent conductive film, 3 points in the MD direction at 1 cm intervals and 2 points symmetrically in the TD direction at 1 cm intervals from the center are determined, for a total of 5 measurement points.
  • the peak height Sp (according to ISO 25178) is measured, and the average value is defined as the average maximum peak height (AVSp) ( ⁇ m).
  • AVSp average maximum peak height
  • the average height Rc ( ⁇ m), the maximum peak height Rp ( ⁇ m), and the average length Rsm ( ⁇ m) of the conductive surface of the transparent conductive film are measured according to the line roughness, and the formulas (X1) and (X2) are obtained.
  • the arithmetic mean height Ra ( ⁇ m) based on the line roughness is measured at a place satisfying at least one of and formula (X3).
  • the average height Rc ( ⁇ m), maximum peak height Rp ( ⁇ m), average length Rsm ( ⁇ m), and arithmetic mean height Ra ( ⁇ m) were obtained , R5500H-M100 (measurement conditions: wave mode, measurement wavelength 560 nm, objective lens 50x)).
  • Maximum peak height Rp ( ⁇ m), average length Rsm ( ⁇ m), and arithmetic mean height Ra ( ⁇ m) are determined in accordance with JIS B 0601-2001.
  • the measurement length of the arithmetic mean height Ra ( ⁇ m) is 100 ⁇ m or more and 200 ⁇ m or less.
  • the maximum value MXSp of the maximum peak height Sp determined by the test method 4 is more than 1.0 times and 1.4 times or less than the average maximum peak height AVSp, and The transparent conductive film according to [2], wherein the minimum value MNSp of the maximum peak height Sp determined by Test Method 4 is 0.6 to 1.0 times the average maximum peak height AVSp.
  • the concentration of tin oxide contained in the transparent conductive film is 0.5% by mass or more and 40% by mass or less.
  • the transparent conductive film side of this evaluation panel is slid while applying a load of 2.5 N with a pen having a hemispherical polyacetal tip with a radius of 0.8 mm (50,000 reciprocations, sliding distance 30 mm, sliding speed 180 mm/sec). After sliding, the sliding portion is pressed with a pen load of 0.8 N to measure the resistance (ON resistance) when electrically connected.
  • the remaining area ratio of the transparent conductive film is 95% or more in an adhesion test according to JIS K5600-5-6:1999 on the surface of the transparent conductive film.
  • the present invention it is possible to provide a transparent conductive film that is excellent in suitable input strength and input stability. In addition, according to the present invention, it is possible to provide a transparent conductive film which also has durability against pen sliding, if desired.
  • FIG. 1 is a schematic side view showing an example of the transparent conductive film of the present invention.
  • FIG. 2 is a schematic side view showing another example of the transparent conductive film of the present invention.
  • FIG. 3 is a schematic side view showing still another example of the transparent conductive film of the present invention.
  • FIG. 4 is a schematic side view showing another example of the transparent conductive film of the present invention.
  • FIG. 5 is a conceptual diagram showing the relationship between voltage and time in one embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an apparatus showing an example of the film forming method of the present invention.
  • FIG. 7 is a partially enlarged schematic plan view for explaining the input start load measuring method according to the present invention.
  • FIG. 8 is a partially enlarged schematic plan view for explaining the pen sliding durability measuring method in the present invention.
  • FIG. 9 is a schematic plan view for explaining the pen sliding durability measuring method in the present invention.
  • the transparent conductive film of the present invention is obtained by laminating a transparent conductive film of indium-tin composite oxide on at least one surface of a transparent plastic film substrate.
  • a transparent conductive film By having a transparent conductive film on the surface, applications that utilize its conductivity, such as flat panel displays such as liquid crystal displays and electroluminescence (EL) displays, transparent electrodes for touch panels, etc., are used in the electric and electronic fields. It can be used for a wide range of purposes.
  • a specific layer structure of the transparent conductive film can be appropriately set, and examples thereof include the structures shown in schematic side views of FIGS. 1, 2, 3, and 4.
  • a transparent conductive film 5 is formed on one side of a transparent plastic film substrate 7 via a curable resin layer 6, and a functional layer 8 is formed on the opposite side of the transparent plastic film substrate 7. ing.
  • a curable resin layer 6 between the transparent conductive film 5 and the transparent plastic film substrate 7 , it is possible to block the precipitation of monomers and oligomers from the transparent plastic film substrate 7 onto the transparent conductive film 5 .
  • the appropriate input strength and input stability are enhanced by controlling the input start load and voltage loss time, which will be described later, and the appropriate input strength and input stability are further improved by the oligomer precipitation block. .
  • the curable resin layer 6 and the functional layer 8 by preventing deposition of monomers and oligomers by the curable resin layer 6 and the functional layer 8, the transparency and visibility of the transparent conductive film can be further improved. Further, by including the curable resin layer 6 and/or the functional layer 8, the bending resistance of the transparent conductive film, which will be described later, can be adjusted.
  • the curable resin layer 6 and/or the functional layer 8 may not necessarily be required depending on the rigidity of the transparent plastic film substrate.
  • the transparent conductive film of the present invention has an easily adhesive layer laminated on at least one side of a transparent plastic film substrate.
  • the curable resin layer 6 and the transparent plastic film substrate 7 may be adhered with an easy-adhesive layer 9 .
  • the functional layer 8 and the transparent plastic film substrate 7 may be adhered with an easy-adhesive layer 9 .
  • each of the curable resin layer 6 and the functional layer 8 and the transparent plastic film substrate 7 may be adhered with an easy adhesive layer 9 .
  • the easy-adhesive layer 9 can more effectively prevent the curable resin layer 6 and/or the functional layer 8 from peeling off from the transparent plastic film substrate 7 due to an external force.
  • the transparent conductive film of the present invention has a feature (feature 1) in that the input start load determined by test method 1 is greater than 15 g and 25 g or less. Comfortable input performance can be enhanced by setting the input start load to a predetermined value or less.
  • Test method 1 A 20 nm-thick indium-tin composite oxide conductive film (tin oxide content: 10% by mass) is formed on one side of a glass substrate, and epoxy resin dot spacers (length 60 ⁇ m ⁇ width 60 ⁇ m ⁇ height 60 ⁇ m) are formed on the surface of the thin film. 5 ⁇ m) are formed in a square lattice pattern at a pitch of 4 mm to form a panel plate. On the conductive film side of this panel plate, while sandwiching an adhesive rectangular frame having a thickness of 105 ⁇ m and an inner circumference of 190 mm ⁇ 135 mm, transparent conductive films were laminated so that the conductive films face each other to prepare an evaluation panel. do.
  • stable resistance value means a state in which the resistance value fluctuates, for example, within a range of ⁇ 5% of the average value.
  • the transparent conductive film also has a feature (feature 2) in that the voltage loss time determined by test method 2 is 0.00 milliseconds or more and 0.40 milliseconds or less.
  • feature 2 By keeping the voltage loss time within the predetermined range, the electrically stable contact time can be made longer.
  • the electrically stable contact time can be extended and the electrically unstable contact state can be further reduced. This is probably because it is possible.
  • the time during which the input is unstable can be shortened, and for example, characters can be prevented from being blurred when characters are written continuously, and characters can be reduced during stenography.
  • a touch panel it is possible to solve the problem that the characters displayed on the touch panel are blurred or not displayed when the characters are printed. Therefore, it is possible to vividly draw characters and pictures that you want to express on the resistive touch panel. For example, it is possible to express the scribbles of characters that are expressed with a brush.
  • a transparent conductive film having feature 1 (input start load) and feature 2 (voltage loss time) is extremely useful for applications such as resistive touch panels.
  • the voltage loss time is preferably 0.39 milliseconds or less, more preferably 0.35 milliseconds or less, and even more preferably 0.30 milliseconds or less, and the shorter the better. Also, the voltage loss time may be 0.01 milliseconds or more, for example, 0.02 milliseconds or more. That is, the voltage loss time is preferably 0.01 to 0.39 milliseconds, more preferably 0.01 to 0.35 milliseconds, even more preferably 0.02 to 0.30 milliseconds.
  • Test method 2 The evaluation panel is connected to a 6 V constant voltage power supply, and a pen whose tip is a hemisphere with a radius of 0.8 mm is used to apply a load of 50 gf to the center of the four-point lattice of the dot spacer from the transparent conductive film side 5 times / second. Press at intervals of . Starting when the pen begins to separate from the transparent conductive film and the voltage decreases from 6 V, the time until the voltage reaches 5 V is measured and defined as the voltage loss time.
  • FIG. 5 is a conceptual diagram showing the relationship between voltage and time in one aspect of the present invention, where the horizontal axis 13 is the time axis and the vertical axis 14 is the voltage, measuring the voltage loss time 15. .
  • the transparent conductive film preferably has an ON resistance of 10 k ⁇ or less as determined by test method 6 (feature 3). Pen sliding durability can be improved, so that ON resistance is small.
  • the ON resistance is preferably 8 k ⁇ or less, more preferably 5 k ⁇ or less, still more preferably 3 k ⁇ or less, and particularly preferably 1.0 k ⁇ or less.
  • the ON resistance may be, for example, 0.1 k ⁇ or more, 2 k ⁇ or more, or 4 k ⁇ or more. That is, the ON resistance is preferably 0.1 to 10 k ⁇ , more preferably 0.1 to 8 k ⁇ , still more preferably 0.1 to 5 k ⁇ , even more preferably 0.1 to 3 k ⁇ , and particularly preferably 0.1 to 1 k ⁇ .
  • An evaluation panel is prepared by stacking the conductive films so that they face each other.
  • the transparent conductive film side of this evaluation panel is slid while applying a load of 2.5 N with a pen having a hemispherical polyacetal tip with a radius of 0.8 mm (50,000 reciprocations, sliding distance 30 mm, sliding speed 180 mm/sec). After sliding, the sliding portion is pressed with a pen load of 0.8 N to measure the resistance (ON resistance) when electrically connected.
  • the transparent conductive film preferably has a film bending resistance (BR) determined by test method 3 of 0.38 N ⁇ cm or more and 0.90 N ⁇ cm or less.
  • BR film bending resistance
  • the input start load can be set to a predetermined value or more.
  • the film bending resistance (BR) can be set to a predetermined value or less. Reducing the film bending resistance (BR) is also useful for reducing the input starting load.
  • the film bending resistance (BR) is more preferably 0.42 N ⁇ cm or more, and still more preferably 0.46 N ⁇ cm or more.
  • the film bending resistance (BR) is more preferably 0.42 to 0.80 N ⁇ cm, still more preferably 0.42 to 0.70 N ⁇ cm, and particularly preferably 0.46 to 0.60 N ⁇ cm.
  • Test method 3 A transparent conductive film test piece of 20 mm ⁇ 250 mm is placed on a horizontal table with the transparent conductive film facing up, the test piece is protruded from the end of the table with a length of 230 mm, and the bending resistance (BR ). Note that the bending resistance value changes when the transparent conductive film is placed downward.
  • Bending resistance (BR (N cm)) g x a x b x L 4 / (8 x ⁇ x 10 11 )
  • g 9.81 (gravitational acceleration; m/s 2 )
  • a 20 (length of the short side of the test piece; mm)
  • b is the specific gravity of the test piece (g/cm 3 )
  • L is 230 (the length of the long side of the test piece outside the horizontal table; mm)
  • is the difference (cm) between the height of the tip of the test piece and the height of the table)
  • the average (AVSp) of the maximum peak height Sp of the conductive surface determined by Test Method 4 preferably satisfies the following formula (2-1).
  • the input starting load is governed by two parameters, the film bending resistance (BR) and the average maximum peak height (AVSp).
  • BR film bending resistance
  • AVSp average maximum peak height
  • the input start load can be set to a predetermined value or less.
  • the output start load can be set to a predetermined value or more, and the voltage loss time can be adjusted to a more preferable range in some cases.
  • the relationship of the inequality sign on the left side of formula (2-1) is more preferably 4.7 ⁇ BR ⁇ 3.5 ⁇ AVSp, and more preferably 4.7 ⁇ BR ⁇ 3.4 ⁇ AVSp.
  • the relation of the inequality sign on the right side of formula (2-1) is more preferably AVSp ⁇ 4.7 ⁇ BR-1.9, and even more preferably AVSp ⁇ 4.7 ⁇ BR-2.0. That is, it is more preferable that 4.7 ⁇ BR ⁇ 3.5 ⁇ AVSp ⁇ 4.7 ⁇ BR ⁇ 1.9, and 4.7 ⁇ BR ⁇ 3.4 ⁇ AVSp ⁇ 4.7 ⁇ BR ⁇ 2. 0 is more preferred.
  • the average maximum peak height (AVSp) of the transparent conductive film preferably satisfies the following formula (2-2).
  • the average maximum peak height (AVSp) is more preferably 0.010 ( ⁇ m) or more, still more preferably 0.020 ( ⁇ m) or more. Also, by setting the average maximum peak height (AVSp) to a predetermined value or less, unintended electrical contact can be more appropriately prevented.
  • AVSp is the average maximum peak height ( ⁇ m)
  • AVSp is more preferably 0.010 to 12.000 ⁇ m, still more preferably 0.020 to 12.000 ⁇ m.
  • the transparent conductive film preferably has a contact area ratio (CA) determined by test method 5 that satisfies the following formula (2-3).
  • CA contact area ratio
  • the voltage loss time can be set to a predetermined value or less. Since the greater the contact area ratio (CA), the more stable the electrical contact between the conductive layers, the electrical contact becomes unstable when the pen or finger moves away from the transparent conductive film of the resistive touch panel. It is thought that this is because it is possible to earn time until the contact area becomes equal.
  • the contact area ratio (CA) increases as the bending resistance (BR) increases.
  • CA contact area ratio
  • Maximum peak height Rp ( ⁇ m), average length Rsm ( ⁇ m), and arithmetic mean height Ra ( ⁇ m) are determined according to JIS B 0601-2001.
  • the measurement length of the arithmetic mean height Ra ( ⁇ m) is 100 ⁇ m or more and 200 ⁇ m or less.
  • the arithmetic mean roughness Ra of JIS B 0601-2001 is used as the average height of the protrusions of the transparent conductive film, the number on the transparent conductive film side of the transparent conductive film is small, but the height is very large.
  • the arithmetic mean roughness Ra is larger than the actual average height of the protrusions of the transparent conductive film due to the influence of the large coarse protrusions, which is not preferable. Therefore, in order to eliminate the influence of coarse protrusions, the arithmetic mean height Ra ( ⁇ m) was measured at a location satisfying at least one of formulas (X1) and (X2) and formula (X3).
  • CA and BR represented by formula (2-3) is more preferably CA ⁇ 32.6 ⁇ BR+17.5, and even more preferably CA ⁇ 32.6 ⁇ BR+18.0.
  • the maximum value MXSp of the maximum peak height Sp determined by the test method 4 is more than 1.0 times and 1.4 times or less (more preferably more than 1.0 times) the average maximum peak height AVSp. 1.40 times or less).
  • the maximum value MXSp is more preferably 1.3 times or less, still more preferably 1.2 times or less.
  • the minimum value MNSp of the maximum peak height Sp determined by the test method 4 is 0.6 times or more and 1.0 times or less (more preferably 0.60 times or more) the average maximum peak height AVSp. 1.0 times or less).
  • the minimum value MNSp is a predetermined value or more, the in-plane distribution of tall projections of the transparent conductive film becomes uniform, and it is possible to perform input on the touch panel with the same input start load at any location, which is preferable. It is more preferably 0.7 times or more, and still more preferably 0.8 times or more.
  • the variation in the input start load can be less than the average value ⁇ 5%. Furthermore, it is possible to prevent the input starting load from varying between products.
  • the total light transmittance of the transparent conductive film is, for example, 70% or more and 95% or less, preferably 80% or more and 95% or less, more preferably 85% or more and 90% or less.
  • the transparent conductive film of the transparent conductive film is made of indium-tin composite oxide.
  • the concentration of tin oxide contained in the transparent conductive film is preferably 0.5% by mass or more and 40% by mass or less.
  • the surface resistance of the transparent conductive film is at a practical level, which is preferable.
  • the tin oxide concentration contained in the transparent conductive film of the transparent conductive film can be brought close to the tin oxide concentration contained in the transparent conductive glass substrate for a touch panel.
  • the tin oxide concentration of the transparent conductive film is more preferably 25% by mass or less, more preferably 20% by mass or less, particularly preferably 18% by mass or less, more preferably 1% by mass or more, and still more preferably 2% by mass. That's it. That is, the tin oxide concentration is more preferably 1 to 25% by mass, even more preferably 1 to 20% by mass, and particularly preferably 2 to 18% by mass.
  • the concentration of tin oxide contained in the transparent conductive glass substrate for touch panels is generally 10% by mass.
  • the difference between the tin oxide concentration of the transparent conductive film and the tin oxide concentration of the glass substrate is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
  • the crystallinity of the transparent conductive film may be 0% or more and 100% or less, preferably 10% or more and 100% or less, more preferably 50% or more and 100% or less. The higher the degree of crystallinity, the better the pen slidability.
  • the surface resistance of the transparent conductive film is, for example, 50 ⁇ / ⁇ or more and 900 ⁇ / ⁇ or less, preferably 50 ⁇ / ⁇ or more and 700 ⁇ / ⁇ or less, and more preferably 70 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less.
  • the thickness of the transparent conductive film is preferably 10 nm or more and 100 nm or less.
  • the thickness of the transparent conductive film is 10 nm or more, the entire transparent conductive film adheres to the transparent plastic film base material or the curable resin layer described later, and the film quality of the transparent conductive film is stabilized and the surface resistance value is stabilized. It tends to be in the preferred range. It is also effective in reducing the ON resistance determined by test method 6. More preferably, the thickness of the transparent conductive film is 13 nm or more, still more preferably 16 nm or more.
  • the thickness of the transparent conductive film is 100 nm or less, the crystal grain size and crystallinity of the transparent conductive film become appropriate, and the total light transmittance becomes a practical level, which is preferable. It is more preferably 50 nm or less, still more preferably 30 nm or less, and particularly preferably 25 nm or less. That is, the thickness of the transparent conductive film is more preferably 13 to 50 nm, still more preferably 16 to 30 nm, and particularly preferably 16 to 25 nm.
  • the residual area ratio of the transparent conductive film is preferably 95% or more, more preferably 99% or more, and particularly Preferably it is 99.5% or more.
  • the transparent conductive film is transparent to layers in contact with the transparent conductive film, such as a transparent plastic film substrate and a curable resin layer described later.
  • the conductive film adheres tightly, preventing cracks, peeling, and abrasion of the transparent conductive film even when continuous input is made with a pen on the touch panel. On the other hand, it is preferable because cracks, peeling, etc. can be suppressed.
  • the method for forming the transparent conductive film is not particularly limited.
  • a method of forming a transparent conductive film of an indium-tin composite oxide by a sputtering method is preferred.
  • FIG. 6 is an apparatus schematic diagram showing an example of a film forming section in a roll type sputtering apparatus.
  • a film to be processed 1 delivered from a film roll (not shown) is traveling while partially contacting the surface of the center roll 2 .
  • An indium-tin sputtering target 4 is placed in a chimney 3 having an opening toward the contact portion of the film 1 to be processed and the center roll 2, and the indium-tin sputtering target 4 is placed on the surface of the film 1 to be processed running on the center roll 2.
  • Thin films of composite oxides are deposited and laminated.
  • the temperature of the center roll 2 can be controlled by a temperature controller (not shown).
  • the target it is preferable to use a sintered target of indium-tin composite oxide.
  • a plurality of sintering targets of indium-tin composite oxide may be placed in the direction of film flow.
  • oxygen gas such as argon gas
  • inert gas such as argon gas
  • the flow ratio (volume ratio) of oxygen gas and inert gas is, for example, 0.005 or more, preferably 0.010 or more, more preferably 0.020 or more. 0.15 or less, preferably 0.1 or less, more preferably 0.07 or less, still more preferably 0.05 or less.
  • the flow ratio (volume ratio) of oxygen gas and inert gas is, for example, 0.005 to 0.15, preferably 0.010 to 0.1, and 0.020 to 0. 0.07 is more preferred, and 0.020 to 0.05 is even more preferred.
  • the film-forming atmosphere is not particularly limited as long as it contains a hydrogen atom, such as a hydrogen atom-containing gas (hydrogen, ammonia, hydrogen + argon mixed gas, etc.), while using a mass flow controller as necessary. , except for water).
  • the median value (intermediate value between the maximum value and the minimum value) of the ratio of the water pressure to the inert gas in the film formation atmosphere is, for example, 7.00 ⁇ 10 ⁇ 3 or less, It is preferably 5.00 ⁇ 10 ⁇ 3 or less, more preferably 3.00 ⁇ 10 ⁇ 3 or less.
  • the film roll is held in a vacuum chamber, the water in the outer layer of the roll is easily removed, but the water in the inner layer of the roll is difficult to remove.
  • the film roll is held in a vacuum chamber, the water in the outer layer of the roll is easily removed, but the water in the inner layer of the roll is difficult to remove.
  • the inner layer of the film roll which contains a lot of water, is unwound. increases, and the water content increases when the ultimate vacuum is measured.
  • the film roll for forming the transparent conductive film preferably has a height difference of 10 mm or less between the most convex portion and the most concave portion on the end surface of the roll, more preferably 8 mm or less, and still more preferably 4 mm or less. be. If the thickness is 10 mm or less, water and organic components are less likely to be released from the film end surface when the film roll is put into the sputtering apparatus, and the film quality of the transparent conductive film is improved.
  • the bombardment process is to generate plasma by applying a voltage to generate a discharge while only an inert gas such as argon gas or a mixed gas of a reactive gas such as oxygen and an inert gas is flowing. .
  • an inert gas such as argon gas or a mixed gas of a reactive gas such as oxygen and an inert gas is flowing.
  • the adhesiveness of the transparent conductive film is improved, and the pen sliding durability is further improved.
  • the film 1 to be treated has a protective film with a low water absorption rate attached to the surface opposite to the surface on which the transparent conductive film is formed.
  • a protective film with a low water absorption rate attached to the surface opposite to the surface on which the transparent conductive film is formed.
  • base materials for the protective film include olefins such as polyethylene, polypropylene, and cycloolefin.
  • the film 1 to be processed is cooled to, for example, 0°C or lower, preferably -5°C or lower.
  • the release of impurities such as water and organic gas from the film can be suppressed, and the film quality of the transparent conductive film can be made appropriate.
  • the film temperature during film formation can be substituted by the set temperature of a temperature controller that adjusts the temperature of the center roll with which the running film is in contact.
  • the sputtering apparatus preferably has an exhaust device such as a rotary pump, turbomolecular pump, or cryopump.
  • the amount of water in the film-forming atmosphere can be controlled by the exhaust device.
  • heat treatment is performed at 80° C. or more and 200° C. or less for 0.1 hour or more and 12 hours or less in an atmosphere containing oxygen. is desirable.
  • the temperature By setting the temperature to 80° C. or higher, the crystallinity of the transparent conductive film can be improved, and the pen sliding durability can be further improved.
  • the temperature By setting the temperature to 200° C. or lower, the flatness of the transparent plastic film can be secured.
  • the transparent plastic film substrate used in the present invention is obtained by subjecting an organic polymer to a film by melt extrusion or solution extrusion, stretching in the longitudinal direction and/or the width direction, cooling, heating, if necessary. It is a fixed film.
  • organic polymer include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate and polybutylene terephthalate; nylon 6, nylon 4, nylon 66, nylon 12 and the like.
  • Polyamides Polyimide, polyamideimide, polyethersulfane, polyetheretherketone, polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyetherimide, polyphenylene sulfide, polyphenylene oxide, polystyrene , syndiotactic polystyrene, and norbornene-based polymers.
  • organic polymers polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene-based polymers, polycarbonate, polyarylate and the like are suitable. Further, these organic polymers may be copolymerized with a small amount of monomers of other organic polymers, or may be blended with other organic polymers.
  • the transparent plastic film substrate may be subjected to surface activation treatment such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc., within a range that does not impair the purpose of the present invention. .
  • the thickness of the transparent plastic film substrate is preferably in the range of 125 ⁇ m or more and 280 ⁇ m or less, more preferably 150 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the transparent plastic film substrate is 125 ⁇ m or more, the mechanical strength is maintained, so that when used in a touch panel, the erroneous input prevention property is improved. It is preferable because the deformation against the pen is small and the pen sliding durability is excellent.
  • the thickness is 280 ⁇ m or less, it is preferable because suitable input strength and excellent input stability can be maintained when used in a touch panel.
  • the curable resin layer is formed, for example, between the transparent plastic film substrate and the transparent conductive film, and serves as a base layer for the transparent conductive film. Moreover, since it can block the deposition of monomers and oligomers generated from the transparent plastic film base material on the transparent conductive film, it is preferable because it does not interfere with the comfortable input performance of the touch panel. Furthermore, the transparent conductive film can be strongly adhered to the curable resin layer by the easy-adhesion layer, etc., and the force applied to the transparent conductive film can be dispersed. It is preferable because peeling, wear and the like can be suppressed.
  • the resin of the curable resin layer is not particularly limited as long as it is cured by applying energy such as heating, ultraviolet irradiation, electron beam irradiation, or by a curing agent.
  • resins, melamine-based resins, polyester-based resins, urethane-based resins, etc., and these may be used alone or in combination of two or more. From the viewpoint of productivity, it is preferable to use an ultraviolet curable resin as a main component.
  • UV-curable resins examples include polyfunctional acrylate resins such as acrylic acid or methacrylic acid esters of polyhydric alcohols, diisocyanates, polyhydric alcohols, and hydroxyalkyl esters of acrylic acid or methacrylic acid. and polyfunctional urethane acrylate resins. If necessary, a monofunctional monomer such as vinylpyrrolidone, methyl methacrylate, or styrene can be added to these polyfunctional resins for copolymerization.
  • polyfunctional acrylate resins such as acrylic acid or methacrylic acid esters of polyhydric alcohols, diisocyanates, polyhydric alcohols, and hydroxyalkyl esters of acrylic acid or methacrylic acid.
  • polyfunctional urethane acrylate resins If necessary, a monofunctional monomer such as vinylpyrrolidone, methyl methacrylate, or styrene can be added to these polyfunctional resins for copolymerization.
  • the curable resin layer preferably contains a curing reaction initiator at least before curing.
  • the curing reaction initiator can be selected according to the type of curing of the curable resin, and includes radical polymerization initiators such as thermal polymerization initiators and photopolymerization initiators, curing agents, etc. Photopolymerization initiators are preferred.
  • the amount of the curing reaction initiator is, for example, 1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the curable resin.
  • any known compound that absorbs ultraviolet rays and generates radicals can be used without particular limitation.
  • examples include various benzoins, phenylketones, and benzophenones.
  • the curable resin layer preferably contains particles.
  • the particles can form unevenness on the surface of the curable resin layer. Therefore, when particles are included, the contact area ratio CA basically decreases from 100%, while the control of the average maximum peak height AVSp becomes easier. Also, increasing the amount of particles may lower the bending resistance BR, and it is possible to adjust the bending resistance BR by adjusting the amount of particles. Furthermore, the particles can more effectively exhibit various properties such as pen sliding durability, anti-Newton ring properties, and film windability.
  • the contact area ratio CA tends to increase and the average maximum peak height AVSp tends to increase compared to the addition of particles having the same particle diameter.
  • Examples of the particles include inorganic particles and organic particles, with inorganic particles being preferred.
  • examples of inorganic particles include silica particles.
  • examples of organic particles include particles made of polyester resin, polyolefin resin, polystyrene resin, polyamide resin, and the like. The particles may be of one type or two or more types.
  • the number average particle diameter of the particles is, for example, 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.03 ⁇ m or more and 5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 3 ⁇ m or less, and particularly preferably 0.05 ⁇ m or more. It is 1.8 ⁇ m or less.
  • the larger the average particle size the larger the average maximum peak height AVSp of the transparent conductive layer.
  • the average maximum peak height is obtained by increasing the resin concentration (solid content concentration) in the coating liquid of the curable resin described later, reducing the thickness of the curable resin layer, etc. But you can make it bigger.
  • the standard deviation of the particle size is, for example, 20% or less of the average particle size, preferably 10% or less of the average particle size, more preferably 5% or less of the average particle size.
  • one type of particles B having a number average particle diameter of 0.01 ⁇ m or more and less than 1.0 ⁇ m Particles A having a larger number average particle size than particles B and particles B having a number average particle size of 0.01 ⁇ m or more and less than 1.0 ⁇ m are preferably used in combination.
  • the average particle diameter of the particles B is preferably 0.05 ⁇ m or more. If the average maximum peak height AVSp is large (for example, 0.6 ⁇ m or more), the contact area ratio CA may become too small. . When the average maximum peak height AVSp is equal to or greater than (4.7 ⁇ BR-1.8) on the right side of formula (2-1), the contact area ratio CA becomes small even if two types of particles A and B are used. Therefore, it is necessary to set the average maximum peak height AVSp to be less than the right side of equation (2-1).
  • the amount of particles B in the curable resin layer is, for example, 0.1% by mass or more and 25% by mass or less with respect to 100% by mass of the solid content of the cured resin layer, preferably It is 0.5 mass % or more and 18 mass % or less.
  • the amount of particles A in the curable resin layer is, for example, 0.1% by mass or more and 5% by mass or less with respect to 100% by mass of the solid content of the cured resin layer. be.
  • the amount of particles B in the curable resin layer is preferably greater than the amount of particles A with respect to 100% by mass of the solid content of the cured resin layer, for example, more than 5% by mass and 30% by mass or less, preferably 6% by mass. % or more and 15% by mass or less.
  • the size and amount of the particles as described above, it is possible to prevent the contact area ratio CV from becoming too small while the average maximum peak height AVSp of the transparent conductive layer satisfies the formula (2-1). Also, the bending resistance BR of the film can be adjusted. Therefore, the input start load can be controlled within an appropriate range, the voltage loss time can be shortened, and appropriate input strength and input stability can be achieved.
  • the thickness of the curable resin layer is preferably in the range of 0.1 ⁇ m or more and 15 ⁇ m or less. It is more preferably in the range of 0.5 ⁇ m or more and 10 ⁇ m or less, and particularly preferably in the range of 1 ⁇ m or more and 8 ⁇ m or less.
  • the thickness of the curable resin layer is 0.1 ⁇ m or more, sufficient projections are formed, which is preferable.
  • the thickness is 15 ⁇ m or less, the productivity is good and it is preferable.
  • the curable resin layer is thick, it tends to increase the bending resistance BR of the transparent conductive film.
  • the curable resin layer may contain a resin that is incompatible with the curable resin (hereinafter sometimes simply referred to as an incompatible resin). By dispersing the incompatible resin in the curable resin layer, unevenness can be formed on the surface of the curable resin layer, and the surface roughness in a wide area can be improved.
  • non-compatible resins include polyester resins, polyolefin resins, polystyrene resins, polyamide resins, and the like.
  • the curable resin layer is formed by liquefying the curable resin before curing, applying it to the layering target (transparent plastic film substrate, easy adhesive layer, etc.) and curing.
  • the coated material includes a curing reaction initiator (a thermal polymerization initiator, a radical polymerization initiator such as a photopolymerization initiator, a curing agent, etc., preferably a photopolymerization initiator), particles, and a curable resin. It may contain incompatible resins, solvents, and the like. If necessary, other known additives such as a silicone-based leveling agent may be added to this coating liquid.
  • the solvent to be used is not particularly limited, and examples thereof include alcohol solvents such as ethyl alcohol and isopropyl alcohol, ester solvents such as ethyl acetate and butyl acetate, and dibutyl ether and ethylene glycol monoethyl ether.
  • Ether-based solvents, ketone-based solvents such as methyl isobutyl ketone and cyclohexanone, and aromatic hydrocarbon-based solvents such as toluene, xylene, solvent naphtha, and the like can be used singly or in combination.
  • the concentration of the curable resin in the coating liquid (referred to as the solid content concentration) can be appropriately selected in consideration of the viscosity, etc. according to the coating method.
  • the solid content concentration is, for example, 35% by mass or more and 58% by mass or less, preferably 42% by mass or more and 55% by mass or less.
  • the average maximum peak height of the curable resin layer increases due to the relationship of formula (2-1), or the contact
  • the area ratio CA tends to decrease.
  • the particles A and B When used in combination, the particle diameter of the particles A is 0.80 ⁇ m or less, and the amount of the particles A is 4% by mass or less with respect to 100% by mass of the solid content of the cured resin layer, the formula (2-1) It becomes easy to set the average maximum peak height and the contact area ratio CA in an appropriate range from the viewpoint of .
  • the method of coating the object to be laminated with the coating liquid is not particularly limited, and known methods such as bar coating, gravure coating, and reverse coating can be used, for example.
  • the solvent is removed by evaporation in the next drying step.
  • an incompatible resin such as a polyester resin
  • the incompatible resin becomes particles and precipitates in the ultraviolet curable resin in this drying process.
  • a curable resin layer can be formed by performing an appropriate treatment (for example, ultraviolet irradiation) according to the type of curing.
  • the coating surface to be laminated may be treated to improve the adhesion of the curable resin layer, if necessary, before the coating liquid is applied.
  • adhesion improvement treatment include discharge treatment in which glow or corona discharge is applied to increase carbonyl groups, carboxyl groups, and hydroxyl groups, and acid or alkali treatment to increase polar groups such as amino groups, hydroxyl groups, and carbonyl groups.
  • a chemical treatment method, etc., to be treated can be mentioned.
  • the functional layer is preferably the same as the curable resin layer except that it is formed on the opposite side of the transparent plastic film substrate. All apply to the functional layer, except where noted.
  • the functional layer By laminating the functional layer on the transparent plastic film substrate, precipitation of monomers and oligomers from the transparent plastic film substrate can be prevented, and deterioration of the visibility of the transparent conductive film can be suppressed.
  • the bending resistance BR of the transparent conductive film can be adjusted.
  • the transparent plastic film base material has a functional layer, because it is less likely to be scratched due to input with a pen or the like.
  • the number average particle diameter of particles C is, for example, 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 7 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m. It is below.
  • the content of the particles C is preferably 0.1 parts by mass or more and 60 parts by mass or less, more preferably 0.3 parts by mass or more and 40 parts by mass or less, and still more preferably 0 parts by mass, per 100 parts by mass of the curable resin in the functional layer. .5 mass parts or more and 30 mass parts or less.
  • the bending resistance BR of the transparent conductive film can be adjusted.
  • the particles C can form surface protrusions on the functional layer, and the film windability can be maintained.
  • the residual area ratio of the functional layer is preferably 95% or more, more preferably 99% or more, and particularly preferably 99.5% or more.
  • the residual area ratio of the functional layer is within the above range, so that the transparent conductive film adheres to the transparent plastic film base and the functional layer, and even if continuous input is made with a pen on the touch panel, the functional layer does not.
  • appearance defects such as cracks, peeling, and wear are suppressed, and even if a force stronger than expected for normal use is applied, cracks, peeling, etc. are suppressed in the functional layer, which is preferable.
  • the functional layer and the cured resin layer preferably have the same thickness, and the absolute value of the difference in thickness between the functional layer and the cured resin layer satisfies the following relationship: It is preferable to have 0.1 ⁇ m ⁇
  • the particle mass per unit volume of the cured resin layer and the particle mass per unit volume of the functional layer are different.
  • the easy-adhesive layer is preferably formed from a composition containing a urethane resin, a cross-linking agent, and a polyester resin.
  • the cross-linking agent is preferably a blocked isocyanate, more preferably a tri- or more functional blocked isocyanate, and particularly preferably a tetra- or more functional blocked isocyanate.
  • the thickness of the easy-adhesion layer is preferably 0.001 ⁇ m or more and 2.00 ⁇ m or less.
  • Measurement evaluation Average particle size of silica particles Particles in the cross section of the transparent conductive film are observed with a scanning electron microscope (manufactured by Keyence Corporation, VE-8800), and 50 particles are randomly extracted and each Particle size was observed. Next, the particle diameter of the observed 50 particles was divided into sections of 0.020 ⁇ m, and the total number of particles contained in each section was obtained. A histogram of particle sizes was created. From the histogram, the number average of observed particle diameters was taken as the average particle diameter for particles having particle diameters within ⁇ 30% of the absolute value of the central value of the particle diameter interval taking the peak value of the normal distribution. For example, when there are two peaks in the normal distribution in the histogram, it indicates that two types of particles are added, and the average particle size of the two types was calculated by the same method as described above.
  • Thickness of curable resin layer, thickness of functional layer The thickness of the curable resin layer is determined by observing the cross section of the transparent conductive film with a scanning electron microscope (manufactured by Keyence Corporation, VE-8800). The thickness was determined by observing the points and taking the average value thereof as the thickness. A similar method was adopted for the thickness of the functional layer.
  • Total light transmittance (%) Total light transmittance was measured according to JIS-K7361-1:1997 using NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. (7) Surface resistance Measured by the four-probe method in accordance with JIS-K7194:1994. Lotesta AX MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used as the measuring instrument.
  • Adhesion test It was carried out in accordance with JIS K5600-5-6:1999. The results in the table below show the adhesion as a residual area ratio (%). The maximum value of the residual area ratio is 100%. The closer the residual area ratio in the adhesion test in the table is to 100%, the smaller the peeled area.
  • Bending resistance (BR) (test method 3) A test piece of 20 mm ⁇ 250 mm was taken from the transparent conductive film, and the test piece was placed on a horizontal table with a smooth surface so that the transparent conductive film faced upward. Only a 20 mm ⁇ 20 mm portion of the test piece was placed on a horizontal table, and a 20 mm ⁇ 230 mm portion was projected horizontally from the edge of the table. A weight was placed on a 20 mm ⁇ 20 mm portion of the test piece, and the weight and size of the weight were selected so as not to create a gap between the test piece and the horizontal table. Next, the difference (.delta.) between the height of the horizontal stage and the height of the leading edge of the film was read on the scale.
  • the transparent conductive film was cut into a square of 5.0 cm on each side, and the total thickness was measured at 10 different locations using a micrometer with three significant digits, and the average value (t: ⁇ m) of the thickness was obtained.
  • the weight (w:g) of a sample cut into a square of 5.0 cm square was measured using an automatic top-pan balance with 4 significant digits, and the specific gravity was obtained from the following equation. The specific gravity was rounded to two significant digits.
  • Specific gravity b (g/cm 3 ) w/(5.0 ⁇ 5.0 ⁇ t ⁇ 10 ⁇ 4 )
  • the maximum peak height (Sp) (ISO; surface roughness) is defined in ISO25178, and is a three-dimensional surface profile measuring device Vertscan (manufactured by Ryoka Systems Co., Ltd., R5500H-M100 (measurement conditions: wave mode, measurement It was obtained using a wavelength of 560 nm and an objective lens of 10 times)). Values less than 1 nm were rounded off.
  • the average height Rc ( ⁇ m), maximum peak height Rp ( ⁇ m), average length Rsm ( ⁇ m), and arithmetic mean height Ra ( ⁇ m) were obtained , R5500H-M100 (measurement conditions: wave mode, measurement wavelength 560 nm, objective lens 50x)).
  • the maximum peak height Rp ( ⁇ m), average length Rsm ( ⁇ m), and arithmetic mean height Ra ( ⁇ m) were determined according to JIS B 0601-2001.
  • the measurement length of the arithmetic mean height Ra ( ⁇ m) was 100 ⁇ m or more and 200 ⁇ m or less.
  • Input start load measurement (test method 1) As shown in FIG. 6, a transparent conductive film was formed on the curable resin layer of the laminated film (film to be treated) 1 on the center roll 2 by sputtering from the target 4 in the chimney 3 .
  • a sintered target of indium-tin composite oxide or an indium oxide sintered target containing no tin oxide is used as the target 4, and power is supplied at a power density of 3 W/cm 2 to form a transparent conductive film by a DC magnetron sputtering method. was deposited. Film thickness was controlled by varying the speed at which the film passed over the target.
  • An indium-tin composite oxide conductive film (tin oxide content: 10% by mass) with a thickness of 20 nm was formed on one side of a glass substrate (size: 232 mm ⁇ 151 mm) by a sputtering method. Specifically, a glass substrate having a thickness of 1.1 mm (size: 232 mm ⁇ 151 mm) was placed in a vacuum chamber and evacuated to 1.5 ⁇ 10 ⁇ 4 Pa. Next, after introducing oxygen, argon was introduced to make the total pressure 0.6 Pa. The flow ratio of oxygen to argon was 0.033.
  • indium-tin composite oxide tin oxide content: 10% by mass
  • power was applied at a power density of 3 W/cm 2 , and a thickness of 20 nm was formed on one side of the glass substrate by DC magnetron sputtering.
  • indium-tin composite oxide conductive film tin oxide content: 10% by mass
  • dot spacers (length 60 ⁇ m ⁇ width 60 ⁇ m ⁇ height 5 ⁇ m) of epoxy resin (manufactured by Toyobo Co., Ltd., product name: CR-102C-23) are placed in a square grid at a 4 mm pitch. (ITO glass substrate).
  • a double-sided tape (thickness: 105 ⁇ m, width 6 mm) was attached to the transparent conductive film side so that a rectangle of 190 mm ⁇ 135 mm was formed starting from one of the four corners of the ITO glass substrate.
  • a transparent conductive film (size: 220 mm ⁇ 135 mm) of the transparent conductive film obtained in Examples or Comparative Examples was adhered onto a double-sided tape adhered to an ITO glass substrate, and laminated so that the conductive films faced each other. At this time, one short side of the transparent conductive film protruded from the ITO glass substrate (evaluation panel).
  • the ITO glass substrate and the transparent conductive film of the obtained evaluation panel were connected with a tester.
  • a load was applied from the transparent conductive film side with a polyacetal pen (manufactured by Toray Plastics Precision Co., Ltd., product name: TPS (registered trademark) POM (NC), tip shape: 0.8 mmR), and measured with a tester.
  • the load value when the resistance value stabilized was taken as the input start load.
  • the position 12 where the load was applied by the pen was the center region of four dot spacers 11 arranged in a lattice on the surface of the ITO glass substrate 10 as shown in the partial enlarged view of FIG.
  • the input start load was measured at arbitrary three points at a distance of 50 mm or more from the double-sided tape, and the average value was taken. The first decimal place was rounded off.
  • another evaluation panel was produced in the same manner as above, and the input start load was obtained. When the two input start loads coincided when rounded off to the first decimal place, the input start load was evaluated as stable, and Table 6 shows one value. On the other hand, when the two input starting loads did not match, two results are shown in Table 6.
  • Test method 2 Connect a constant voltage power supply to the evaluation panel created in the input start load measurement.
  • a recorder (GR-7000 manufactured by Keyence Corporation) capable of measuring the voltage between the ITO glass substrate and the transparent conductive film is connected.
  • the recorder is used to observe changes in voltage over time.
  • 6 V is applied to the constant-voltage power source, and the recorder starts measuring the voltage in units of 0.02 milliseconds.
  • a polyacetal pen manufactured by Toray Plastics Precision Co., Ltd., trade name: TPS (registered trademark) POM (NC), tip shape: 0.8 mmR
  • a load of 50 g is applied.
  • the position where the load is applied with the pen is near the center of the evaluation panel, which is the central region of the four dot spacers arranged in a grid.
  • Input stability (payment stability, stenography) A resistive touch panel was produced using the transparent conductive films obtained in Examples and Comparative Examples. Input stability was investigated using a polyacetal pen.
  • When characters are input, the printed portion is less likely to be blurred.
  • When characters are input, the printed portion is easily blurred.
  • Characters are less likely to be blurred when characters are input continuously.
  • x Characters are easily blurred when characters are input continuously.
  • Pen sliding durability (test method 6) A transparent conductive film was used as one panel plate, and an indium-tin composite oxide thin film (tin oxide content: 10% by mass) having a thickness of 20 nm was formed on one side of a glass substrate as the other panel plate by a sputtering method. . Specifically, in the production of the other panel plate, a 1.1 mm-thick glass substrate (size: 5 cm x 6 cm) was placed in a vacuum chamber and evacuated to 1.5 x 10 -4 Pa. Next, after introducing oxygen, argon was introduced to make the total pressure 0.6 Pa. The flow ratio of oxygen to argon was 0.033.
  • indium-tin composite oxide tin oxide content: 10% by mass
  • power was applied at a power density of 3 W/cm 2 , and a thickness of 20 nm was formed on one side of the glass substrate by DC magnetron sputtering.
  • indium-tin composite oxide conductive film tin oxide content: 10% by mass
  • One end 17 of the glass substrate 10 in the longitudinal direction protrudes from the overlapping surface 19, and the protruding portions 17 and 18 are connected to a tester.
  • a polyacetal pen manufactured by Toray Plastics Seiko Co., Ltd., trade name: TPS (registered trademark) POM (NC), tip shape: 0.8 mmR
  • TPS registered trademark
  • NC tip shape: 0.8 mmR
  • a dynamic test was performed on the touch panel.
  • the sliding distance at this time was 30 mm, and the sliding speed was 180 mm/sec.
  • the sliding position 21 is between the dot spacers 11 arranged in a lattice pattern on the surface of the ITO glass substrate 10 as shown in the partially enlarged view of FIG.
  • the ON resistance (the resistance value when the movable electrode (film electrode) and the fixed electrode are in contact) was measured when the sliding portion was pressed with a pen load of 0.8N. More preferably, the ON resistance is 10 k ⁇ or less.
  • Laminate Film In the section of Examples, a laminate film composed of the following transparent plastic film substrate, curable resin layer, and functional layer was used.
  • Substrate transparent plastic film substrate: A biaxially oriented transparent PET film (A4380 manufactured by Toyobo Co., Ltd., thickness is shown in Table 1) having easy-adhesion layers on both sides.
  • Curable resin layer Photopolymerization initiator-containing acrylic resin (manufactured by Dainichiseika Kogyo Co., Ltd., Seika Beam (registered trademark) EXF-01J) 100 parts by mass (solid content), number average particles described in Table 1 The amounts shown in Table 1 were blended with silica particles (particles A and B) each having a diameter. The amount of particles added shown in Table 1 indicates the amount based on 100% by mass of the solid content of the resin. A mixed solvent of toluene/methyl ethyl ketone (MEK) (8/2: mass ratio) was added so that the solid content concentration was the value shown in Table 1, and the mixture was stirred and uniformly dispersed to prepare a coating liquid (coating liquid A).
  • MEK toluene/methyl ethyl ketone
  • Coating solution A prepared so that the thickness of the coating film would be the value shown in Table 1 was applied to one side of a transparent plastic film substrate using a Meyer bar. After drying at 80° C. for 1 minute, the coating film was cured by irradiating ultraviolet rays (light amount: 300 mJ/cm 2 ) using an ultraviolet irradiation device (manufactured by Eye Graphics, UB042-5AM-W type). .
  • Coating solution C which was prepared so that the thickness of the coating film was the value shown in Table 2, was applied to the surface of the transparent plastic film substrate opposite to the curable resin layer using a Meyer bar. After drying at 80° C. for 1 minute, the coating film was cured by irradiating ultraviolet rays (light amount: 300 mJ/cm 2 ) using an ultraviolet irradiation device (manufactured by Eye Graphics, UB042-5AM-W type). .
  • Examples 1-8 The laminated film was placed in a vacuum chamber and evacuated to 1.5 ⁇ 10 ⁇ 4 Pa. Next, after introducing oxygen, argon was introduced to make the total pressure 0.6 Pa. Table 3 shows the flow ratios of oxygen and argon. As shown in FIG. 6, a transparent conductive film was formed on the curable resin layer of the laminated film (film to be treated) 1 on the center roll 2 by sputtering from the target 4 in the chimney 3 . A sintered target of indium-tin composite oxide or an indium oxide sintered target containing no tin oxide is used as the target 4, and power is supplied at a power density of 3 W/cm 2 to form a transparent conductive film by a DC magnetron sputtering method. was deposited.
  • Film thickness was controlled by varying the speed at which the film passed over the target.
  • the ratio of water pressure to argon in the film forming atmosphere during sputtering was measured using a gas analyzer (Transpector XPR3, manufactured by INFICON), and is shown in Table 3.
  • Table 3 the moisture ratio is determined by the presence or absence of a bombardment process, the presence or absence of a protective film, the height difference between the unevenness of the film roll end surface, and the temperature of the center roll on which the film travels in contact with the temperature controller. It was regulated by adjusting the temperature of the heating medium.
  • RF sputtering was performed using SUS (stainless steel) as a target at 0.5 W/cm 2 .
  • the amount of gas introduced in RF sputtering was the same as the amount of gas introduced into the vacuum apparatus described in the examples.
  • a polyethylene film with a thickness of 65 ⁇ m was used.
  • An acrylic adhesive was applied to one side of the protective film.
  • a protective film was attached to the surface of the laminated film opposite to the surface on which the transparent conductive film was formed.
  • the temperature of the hot medium the temperature described in Table 3 was taken as the temperature right in the middle between the maximum and minimum temperatures from the start of film formation on the film roll to the end of film formation.
  • a transparent conductive film was obtained by subjecting the film laminated with the transparent conductive film to the heat treatment shown in Table 3.
  • the thickness of the transparent conductive film Regarding the obtained transparent conductive film, the thickness of the transparent conductive film, the crystallinity, the total light transmittance (%), the surface resistance ( ⁇ / ⁇ ), the adhesion to the transparent conductive film, the adhesion to the functional layer evaluated. Table 4 shows the results.
  • BR bending resistance
  • AVSp average maximum peak height
  • CA contact area ratio
  • MXSp/AVSp maximum peak height upper displacement ratio
  • MNSp/AVSp maximum peak height lower displacement ratio
  • Comparative Examples 1-8 Transparent conductive films were prepared in the same manner as in Examples 1 to 8, except that the laminated films prepared under the conditions shown in Tables 1 and 2 were used and the transparent conductive films were formed under the conditions shown in Table 3. Various properties of the obtained films are shown in Tables 4 to 6.
  • Transparent conductive films can be widely used in electrical and electronic fields, such as flat panel displays such as liquid crystal displays and electroluminescence (EL) displays, and transparent electrodes for touch panels.
  • flat panel displays such as liquid crystal displays and electroluminescence (EL) displays
  • EL electroluminescence

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

適性入力強度及び入力安定性に優れた透明導電性フィルムを提供することを目的とする。本発明の透明導電性フィルムは、透明プラスチックフィルム基材上の少なくとも一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、入力開始荷重が15gより大きく25g以下であり、電圧ロス時間が、0.00ミリ秒以上0.40ミリ秒以下である。フィルム剛軟度(BR)が0.38N・cm以上0.90N・cm以下であり、導電面の最大山高さSpの平均(AVSp)が下記式(2-1)を満たすことが好ましい。 4.7×BR-3.6≦AVSp<4.7×BR-1.8 …式(2-1) (式中、BRはフィルム剛軟度(N・cm)であり、AVSpは平均最大山高さ(μm)である)

Description

透明導電性フィルム
 本発明は、透明プラスチックフィルム基材上にインジウム-スズ複合酸化物の透明導電膜を積層した透明導電性フィルムに関するものである。
 透明プラスチック基材上に、透明でかつ抵抗の小さい薄膜を積層した透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のようなフラットパネルディスプレイや、タッチパネルの透明電極等として、電気・電子分野の用途に広く使用されている。
 抵抗膜式タッチパネルは、ガラスやプラスチックの基板に透明導電性薄膜をコーティングした固定電極と、プラスチックフィルムに透明導電性薄膜をコーティングした可動電極(フィルム電極と称される)を組み合わせたものであり、表示体の上側に重ね合わせて使用されている。指やペンでフィルム電極を押すと(入力という)、固定電極とフィルム電極の透明導性薄膜同士が接触し、入力位置が認識される。
 特許文献1には高分子フィルムの少なくとも一方の面に、実質的に結晶質の酸化インジウムから主としてなる透明導電膜が積層されてなるタッチパネル用透明導電積層体が開示されている。酸化インジウムを結晶化することで筆記耐久性が向上するとしている。
特開2004-071171号公報
 タッチパネルでは、ペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などが生じない特性(ペン摺動耐久性)が求められる。
 またタッチパネルでは、入力強さの適度な範囲(適性入力強度)が求められる。例えば、抵抗膜式タッチパネルでは、指やペンなどでフィルム電極を押して、固定電極とフィルム電極の透明導性薄膜同士を接触させるとき、誤って手や服の袖がタッチパネルに触れてしまうことがあり、タッチする場所の選択で迷っているときにペンなどで誤ってタッチパネルに触れてしまうことがある。こうした意図しないタッチパネルへの接触による入力は少ないことが望ましい(誤入力防止性)。しかし、誤入力防止性を向上させると、快適な入力性が低下する傾向がある。快適な入力性とは、抵抗膜式タッチパネルにペンや指などで入力するときに、意識的に強い力をかけなくても入力可能なことである。誤入力防止と快適入力性の両立が求められる。
 さらにタッチパネルでは、優れた入力安定性、すなわちタッチパネルをペンなどで触ってから離れるまでの間、タッチパネルへの入力が安定していることが求められる。例えば、連続して文字を入力する際に生じ得る文字掠れを低減できること(速記性)、文字の払い部分が掠れないこと(払い入力性)などが優れていることが求められる。
 特許文献1の技術では、酸化インジウムを結晶化しない場合にはペン摺動耐久性を向上できなかった。また特許文献1を含む従来の透明導電性フィルムでは、適性入力強度(誤入力防止性、快適入力性)、入力安定性(速記性、払い入力性)なども十分ではなかった。
 従って本発明の目的は、適性入力強度及び入力安定性に優れた透明導電性フィルムを提供することにある。また本発明の好ましい目的は、さらにペン摺動耐久性をも有する透明導電性フィルムを提供することにある。
 本発明は、上記のような状況に鑑みなされたものであって、上記の課題を解決することができた本発明の透明導電性フィルムとは、以下の構成よりなる。
[1]
 透明プラスチックフィルム基材上の少なくとも一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、
 試験方法1で求まる入力開始荷重が15gより大きく25g以下であり、
 試験方法2で求まる電圧ロス時間が、0.00ミリ秒以上0.40ミリ秒以下である透明導電性フィルム。
 [試験方法1]
 ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成され、その薄膜の表面にエポキシ樹脂のドットスペーサー(縦60μm×横60μm×高さ5μm)を4mmピッチで正方格子状に形成してパネル板とする。このパネル板の導電膜側に、厚みが105μm、内周が190mm×135mmである接着性のある矩形枠を挟みながら、透明導電性フィルムを導電膜同士が対面する様に重ねて評価パネルを作製する。この評価パネルの透明導電性フィルム側から、ドットスペーサーの4点格子の中心を先端が半径0.8mmの半球のポリアセタールであるペンで押圧していき、抵抗値が安定し始めたときの圧力を入力開始荷重とする。
 [試験方法2]
 前記評価パネルを6Vの定電圧電源に接続し、先端が半径0.8mmの半球であるペンを用いて透明導電性フィルム側からドットスペーサーの4点格子の中心を50gfの荷重で5回/秒の間隔で押圧する。ペンが透明導電性フィルムから離れ始め、電圧が6Vから減少するときを起点とし、電圧が5Vになるまでの時間を測定し、電圧ロス時間とする。
[2]
 試験方法3で求まるフィルム剛軟度(BR)が0.38N・cm以上0.90N・cm以下であり、
 試験方法4で求まる導電面の最大山高さSpの平均(AVSp)が下記式(2-1)および式(2-2)を満たし、
 試験方法5で求まる接触面積率(CA)が下記式(2-3)を満たす[1]に記載の透明導電性フィルム。
 4.7×BR-3.6≦AVSp<4.7×BR-1.8
                           …式(2-1)
 0.005≦AVSp≦12.000         …式(2-2)
 CA≧32.6×BR+17.2           …式(2-3)
(式中、BRはフィルム剛軟度(N・cm)であり、AVSpは平均最大山高さ(μm)であり、CAは接触面積率(%)である)
 [試験方法3]
 20mm×250mmの透明導電性フィルム試験片を透明導電膜が上にして水平台の上に置き、台の端から試験片を230mmの長さで突き出させ、下記式に基づいて剛軟度(BR)を決定する。
 剛軟度(BR(N・cm))=g×a×b×L/(8×δ×1011
 (式中、gは9.81(重力加速度;m/s)であり、aは20(試験片の短辺の長さ;mm)であり、bは試験片の比重(g/cm)を示し、Lは230(水平台の外にでた試験片の長辺の長さ;mm)であり、δは試験片先端の高さと台の高さの差(cm)を示す)
 [試験方法4]
 透明導電性フィルムの導電面でMD方向に1cm間隔で3点、その中心から1cm間隔でTD方向に対称に2点の合計5点の測定点を決定し、それぞれの箇所で面粗さによる最大山高さSp(ISO 25178に準拠)を測定し、その平均値を平均最大山高さ(AVSp)(μm)とする。
 [試験方法5]
 透明導電性フィルムの導電面について線粗さによる、平均高さRc(μm)、最大山高さRp(μm)、及び平均長さRsm(μm)を測定し、式(X1)及び式(X2)の少なくとも一方と式(X3)とを満足する場所で、線粗さによる算術平均高さRa(μm)を測定する。なお平均高さRc(μm)、最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)は、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ50倍))を用いて決定する。最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)の決定はJIS B 0601-2001の規定に従う。算術平均高さRa(μm)の測定長は100μm以上200μm以下とする。
Rp-Rc-Ra≦0.20   …式(X1)
(Rp-Rc)/Ra≦5.0  …式(X2)
Rsm≦30          …式(X3)
 前記3次元表面形状測定装置バートスキャンの対物レンズを10倍に変更し、同測定装置にある粒子解析を使い、平均面から「算術平均高さRa(μm)-15×10-3(μm)-平均高さRc(μm)」となる高さで平面方向にスライスし、断面積の総和を求める。断面積の総和を測定視野の面積で割った値に100をかけた値を接触面積率(CA)(%)とする。
[3]
 前記試験方法4で求まる最大山高さSpの最大値MXSpが、前記平均最大山高さAVSpの1.0倍超1.4倍以下であり、かつ、
 前記試験方法4で求まる最大山高さSpの最小値MNSpが、前記平均最大山高さAVSpの0.6倍以上1.0倍以下である、[2]に記載の透明導電性フィルム。
[4]
 前記透明導電膜の厚みが、10nm以上100nm以下である[1]~[3]のいずれかに記載の透明導電性フィルム。
[5]
 前記透明導電膜に含まれる酸化スズの濃度が0.5質量%以上40質量%以下である[1]~[4]のいずれかに記載の透明導電性フィルム。
[6]
 透明導電膜と透明プラスチックフィルム基材の間に、硬化型樹脂層を有し、
 さらに透明プラスチック基材の前記透明導電膜とは反対側に、機能層を有する[1]~[5]のいずれかに記載の透明導電性フィルム。
[7]
 透明プラスチックフィルム基材の少なくとも一方の側に、易接着層を有する[1]~[6]のいずれかに記載の透明導電性フィルム。
[8]
 易接着層が、透明プラスチックフィルム基材と硬化型樹脂層との間、又は透明プラスチック基材と機能層との間の少なくとも一方の位置に配置される、[7]に記載の透明導電性フィルム。
[9]
 試験方法6で定まるON抵抗が10kΩ以下である[1]~[8]のいずれかに記載の透明導電性フィルム。
 [試験方法6]
 ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成されたパネル板と透明導電性フィルムとを、直径30μmのエポキシビーズを介して、導電膜同士が対面する様に重ねて評価パネルを作成する。この評価パネルの透明導電性フィルム側を、先端が半径0.8mmの半球のポリアセタールであるペンで2.5Nの荷重をかけながら摺動する(往復回数5万回、摺動距離30mm、摺動速度180mm/秒)。摺動後、ペン荷重0.8Nで摺動部を押さえて電気的に接続した時の抵抗(ON抵抗)を測定する。
[10]
 透明導電膜の表面における、JIS K5600-5-6:1999に準じた付着性試験において、透明導電膜の残存面積率が95%以上である、[1]~[9]のいずれかに記載の透明導電性フィルム。
 本発明によれば、適性入力強度及び入力安定性に優れた透明導電性フィルムを提供できる。また本発明によれば、好ましい場合には、さらにペン摺動耐久性をも有する透明導電性フィルムを提供できる。
図1は本発明の透明導電性フィルムの一例を示す概略側面図である。 図2は本発明の透明導電性フィルムの他の例を示す概略側面図である。 図3は本発明の透明導電性フィルムのさらに他の例を示す概略側面図である。 図4は本発明の透明導電性フィルムの別の例を示す概略側面図である。 図5は本発明の一態様における電圧と時間の関係を示す概念図である。 図6は本発明の成膜方法の一例を示す装置概略図である。 図7は本発明における入力開始荷重測定方法を説明するための概略平面部分拡大図である。 図8は本発明におけるペン摺動耐久性測定法を説明するための概略平面部分拡大図である。 図9は本発明におけるペン摺動耐久性測定法を説明するための概略平面図である。
 1.透明導電性フィルム
 本発明の透明導電性フィルムは、透明プラスチックフィルム基材上の少なくとも一方の面にインジウム-スズ複合酸化物の透明導電膜が積層されたものである。表面に透明導電膜を有することで、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のようなフラットパネルディスプレイや、タッチパネルの透明電極等として、電気・電子分野の用途に広く使用することができる。透明導電性フィルムの具体的な層構成は適宜設定でき、例えば、図1、図2、図3、図4などの概略側面図に示される構成が例示できる。
 図1の透明導電性フィルムは、透明プラスチックフィルム基材7の片面に硬化型樹脂層6を介して透明導電膜5が形成され、透明プラスチックフィルム基材7の反対面に機能層8が形成されている。透明導電膜5と透明プラスチックフィルム基材7の間に硬化型樹脂層6を形成すると、透明プラスチックフィルム基材7から透明導電膜5上にモノマーやオリゴマーが析出することをブロックできる。本発明の透明導電性フィルムは後述する入力開始荷重や電圧ロス時間の制御によって適性入力強度や入力安定性を高められており、オリゴマーの析出ブロックによって適性入力強度や入力安定性がさらに改善される。また硬化型樹脂層6や機能層8によってモノマーやオリゴマーの析出を防止することで、透明導電性フィルムの透明性や視認性をさらに高めることができる。さらに硬化型樹脂層6及び/又は機能層8を有することにより、後述する透明導電性フィルムの剛軟度を調整できる。なお透明プラスチックフィルム基材の剛性によっては、硬化型樹脂層6及び/又は機能層8は必ずしも必要ではない。
 一態様において、本発明における透明導電性フィルムは、透明プラスチックフィルム基材の少なくとも一方の側に、易接着層が積層される。例えば、図2に示す様に、硬化型樹脂層6と透明プラスチックフィルム基材7とが易接着剤層9で接着されていてもよい。図3に示す様に、機能層8と透明プラスチックフィルム基材7とが易接着剤層9で接着されていてもよい。図4に示す様に硬化型樹脂層6及び機能層8のそれぞれと透明プラスチックフィルム基材7とが易接着剤層9で接着されていてもよい。易接着剤層9があることで、透明プラスチックフィルム基材7から硬化型樹脂層6及び/又は機能層8が外力で剥れることをさらに効果的に抑制できる。
 本発明の透明導電性フィルムは、試験方法1で求まる入力開始荷重が15gより大きく25g以下である点に特徴(特徴1)がある。入力開始荷重を所定値以下にすることで快適入力性を高めることができる。
 [試験方法1]
 ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成され、その薄膜の表面にエポキシ樹脂のドットスペーサー(縦60μm×横60μm×高さ5μm)を4mmピッチで正方格子状に形成してパネル板とする。このパネル板の導電膜側に、厚みが105μm、内周が190mm×135mmである接着性のある矩形枠を挟みながら、透明導電性フィルムを導電膜同士が対面する様に重ねて評価パネルを作製する。この評価パネルの透明導電性フィルム側から、ドットスペーサーの4点格子の中心を先端が半径0.8mmの半球のポリアセタールであるペンで押圧していき、抵抗値が安定し始めたときの圧力を入力開始荷重とする。ここで「安定した抵抗値」とは、例えば平均値±5%の範囲内で抵抗値が変動する状態を意味する。
 また前記透明導電性フィルムは、試験方法2で求まる電圧ロス時間が、0.00ミリ秒以上0.40ミリ秒以下である点にも特徴(特徴2)がある。電圧ロス時間が所定範囲であることにより、電気的に安定した接触時間をより長くできる。入力開始荷重を所定値範囲にすることで誤入力防止性を高めることができ、また電圧ロス時間を所定範囲にすることで、払い安定性、速記性などの入力安定性を高めることができる。このような入力安定性の効果を奏する理由について、特定の理論に限定して解釈すべきではないが、電気的に安定した接触時間をより長くでき、電気的に不安定な接触状態をより低減できるためと考えられる。その結果、入力の不安定な時間が短くなり、例えば、連続して文字を記載した際に文字カスレを防ぐことができ、速記時の文字カスレを低減できる。また、例えば、タッチパネルにおいて、文字払いの際に、タッチパネル上に示される文字がかすれる、表示されないといった課題を解決できる。そのため抵抗膜式タッチパネル上で表現したい文字や絵などを鮮やかに描くことを可能にしている。例えば、毛筆で表現するような文字のハライも表現できる。
 特徴1(入力開始荷重)及び特徴2(電圧ロス時間)を備えた透明導電性フィルムは、抵抗膜式タッチパネル等の用途に極めて有用である。
 電圧ロス時間は、好ましくは0.39ミリ秒以下、より好ましくは0.35ミリ秒以下、よりさらに好ましくは0.30ミリ秒以下であり、短いほど好ましい。また電圧ロス時間は、0.01ミリ秒以上であってもよく、例えば、0.02ミリ秒以上であってもよい。すなわち電圧ロス時間は、0.01~0.39ミリ秒が好ましく、0.01~0.35ミリ秒がより好ましく、0.02~0.30ミリ秒がさらに好ましい。
 [試験方法2]
 前記評価パネルを6Vの定電圧電源に接続し、先端が半径0.8mmの半球であるペンを用いて透明導電性フィルム側からドットスペーサーの4点格子の中心を50gfの荷重で5回/秒の間隔で押圧する。ペンが透明導電性フィルムから離れ始め、電圧が6Vから減少するときを起点とし、電圧が5Vになるまでの時間を測定し、電圧ロス時間とする。例えば、図5は、本発明の一態様における電圧と時間の関係を示す概念図であり、横軸13は時間軸であり、縦軸14は電圧を示し、電圧ロス時間15の時間を測定する。
 前記透明導電性フィルムは、試験方法6で定まるON抵抗が10kΩ以下であることが好ましい(特徴3)。ON抵抗が小さいほど、ペン摺動耐久性を高めることができる。ON抵抗は、好ましくは8kΩ以下、より好ましくは5kΩ以下、さらに好ましくは3kΩ以下、特に好ましくは1.0kΩ以下である。なおON抵抗は、例えば、0.1kΩ以上、2kΩ以上、又は4kΩ以上であってもよい。すなわちON抵抗は、0.1~10kΩが好ましく、0.1~8kΩがより好ましく、0.1~5kΩがさらに好ましく、0.1~3kΩがよりさらに好ましく、0.1~1kΩが特に好ましい。また2~10kΩ、2~8kΩ、2~5kΩ、2~3kΩ、4~10kΩ、4~8kΩ又は4~5kΩであってもよい。
 [試験方法6]
 ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成されたパネル板と透明導電性フィルムとを、直径30μmのエポキシビーズを介して、導電膜同士が対面する様に重ねて評価パネルを作成する。この評価パネルの透明導電性フィルム側を、先端が半径0.8mmの半球のポリアセタールであるペンで2.5Nの荷重をかけながら摺動する(往復回数5万回、摺動距離30mm、摺動速度180mm/秒)。摺動後、ペン荷重0.8Nで摺動部を押さえて電気的に接続した時の抵抗(ON抵抗)を測定する。
 前記透明導電性フィルムは、試験方法3で求まるフィルム剛軟度(BR)が0.38N・cm以上0.90N・cm以下であることが好ましい。フィルム剛軟度(BR)を所定値以上にすることで、入力開始荷重を所定値以上にすることができる。またフィルム剛軟度(BR)を所定値以下にすることで、ON抵抗を所定値以下にすることができる。なおフィルム剛軟度(BR)を小さくすることは、入力開始荷重を小さくすることにも有用である。フィルム剛軟度(BR)は、より好ましくは0.42N・cm以上であり、さらに好ましくは0.46N・cm以上である。また、より好ましくは0.80N・cm以下、さらに好ましくは0.70N・cm以下、特に好ましくは0.60N・cm以下である。すなわちフィルム剛軟度(BR)は、0.42~0.80N・cmがより好ましく、0.42~0.70N・cmがさらに好ましく、0.46~0.60N・cmが特に好ましい。
 [試験方法3]
 20mm×250mmの透明導電性フィルム試験片を透明導電膜が上にして水平台の上に置き、台の端から試験片を230mmの長さで突き出させ、下記式に基づいて剛軟度(BR)を決定する。なお透明導電膜を下にすると剛軟度の値が変わるので注意が必要である。
 剛軟度(BR(N・cm))=g×a×b×L/(8×δ×1011
 (式中、gは9.81(重力加速度;m/s)であり、aは20(試験片の短辺の長さ;mm)であり、bは試験片の比重(g/cm)を示し、Lは230(水平台の外にでた試験片の長辺の長さ;mm)であり、δは試験片先端の高さと台の高さの差(cm)を示す)
 前記透明導電性フィルムは、試験方法4で求まる導電面の最大山高さSpの平均(AVSp)が下記式(2-1)を満たすことが好ましい。入力開始荷重は、フィルム剛軟度(BR)と平均最大山高さ(AVSp)の2つのパラメーターに支配されており、平均最大山高さ(AVSp)をフィルム剛軟度(BR)から求まる所定値以上にすることで、入力開始荷重を所定値以下にすることができる。また平均最大山高さ(AVSp)を所定値以下にすることで、入力開始荷重を所定値以上にすることができ、また電圧ロス時間をより好ましい範囲に調整できる場合がある。
 4.7×BR-3.6≦AVSp<4.7×BR-1.8…式(2-1)
(式中、BRはフィルム剛軟度(N・cm)であり、AVSpは平均最大山高さ(μm)である)
 [試験方法4]
 透明導電性フィルムの導電面でMD方向に1cm間隔で3点、その中心から1cm間隔でTD方向に対称に2点の合計5点の測定点を決定し、それぞれの箇所で面粗さによる最大山高さSp(ISO 25178に準拠)を測定し、その平均値を平均最大山高さ(AVSp)(μm)とする。
 式(2-1)の左側の不等号の関係は、4.7×BR-3.5≦AVSpであることがより好ましく、4.7×BR-3.4≦AVSpであることがさらに好ましい。式(2-1)の右側の不等号の関係は、AVSp<4.7×BR-1.9であることがより好ましく、AVSp<4.7×BR-2.0であることがさらに好ましい。すなわち、4.7×BR-3.5≦AVSp<4.7×BR-1.9であることがより好ましく、4.7×BR-3.4≦AVSp<4.7×BR-2.0であることがさらに好ましい。
 前記透明導電性フィルムは、前記平均最大山高さ(AVSp)が下記式(2-2)を満たすことが好ましい。平均最大山高さ(AVSp)が所定値以上であると、透明導電性フィルムをロール状に支障なく巻くことができる。平均最大山高さ(AVSp)は、より好ましくは、0.010(μm)以上であり、さらに好ましくは0.020(μm)以上である。また平均最大山高さ(AVSp)が所定値以下にすることで、意図しない電気的接触をより適切に防止できる。
  0.005≦AVSp≦12.000        …式(2-2)
(式中、AVSpは平均最大山高さ(μm)である)
 すなわちAVSpは、0.010~12.000μmがより好ましく、0.020~12.000μmがさらに好ましい。
 前記透明導電性フィルムは、試験方法5で求まる接触面積率(CA)が下記式(2-3)を満たすことが好ましい。接触面積率(CA)を所定値以上にすることで、電圧ロス時間を所定値以下にすることができる。接触面積率(CA)が大きいほど導電層間の電気的接触の安定性が高いため、ペンや指などが抵抗膜式タッチパネルの透明導電性フィルムから離れていくときに、電気的接触が不安定になる接触面積になるまでの時間を稼ぐことができるためだと考えられる。また式(2-3)で剛軟度(BR)が大きくなるほど接触面積率(CA)が大きくなる様にしたのは、剛軟度(BR)が大きいほど、ペンや指などが抵抗膜式タッチパネルの透明導電性フィルムから離れていく速度が増加するため、接触面積率(CA)が大きい透明導電性フィルムを用いる必要があるためである。
 CA≧32.6×BR+17.2     …式(2-3)
(式中、BRはフィルム剛軟度(N・cm)であり、CAは接触面積率(%)である)
 [試験方法5]
 透明導電性フィルムの導電面について線粗さによる、平均高さRc(μm)、最大山高さRp(μm)、及び平均長さRsm(μm)を測定し、式(X1)及び式(X2)の少なくとも一方と式(X3)とを満足する場所で、線粗さによる算術平均高さRa(μm)を測定する。なお平均高さRc(μm)、最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)は、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ50倍))を用いて決定する。最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)の決定は、JIS B 0601-2001の規定に従う。算術平均高さRa(μm)の測定長は100μm以上200μm以下とする。
Rp-Rc-Ra≦0.20   …式(X1)
(Rp-Rc)/Ra≦5.0  …式(X2)
Rsm≦30          …式(X3)
 前記3次元表面形状測定装置バートスキャンの対物レンズを10倍に変更し、同測定装置にある粒子解析を使い、平均面(平均線を3次元化したもの)から「算術平均高さRa(μm)-15×10-3(μm)-平均高さRc(μm)」となる高さで平面方向にスライスし、断面積の総和を求める。断面積の総和を測定視野の面積で割った値に100をかけた値を接触面積率(CA)(%)とする。
 前記試験方法5で、「算術平均高さRa(μm)-15×10-3(μm)」を考慮したのは以下の理由による。透明導電性ガラスと接触している透明導電性フィルムの大部分は、透明導電性フィルムの平均的な高さの突起である。この平均的な高さの突起との接触面積を正確に算出することは困難なので、代替指標として、前記平均的な突起の高さよりわずかに小さい高さ(=透明導電性フィルムの平均的高さより15×10-3(μm)低い高さ)における透明導電性フィルムの透明導電膜側の断面積を用いた(なお、この高さは、平均面から平均高さRc(μm)下がったところを基準とする高さである)。ここで、透明導電性フィルムの平均的な突起の高さとしてJIS B 0601-2001の算術平均粗さRaを用いると、透明導電性フィルムの透明導電膜側にある数は少ないが高さが非常に高い粗大突起の影響で、算術平均粗さRaは、透明導電性フィルムの実際の平均的な突起の高さより大きくなるため好ましくない。そこで、粗大突起の影響をなくすために、式(X1)及び式(X2)の少なくとも一方と式(X3)とを満足する場所で、算術平均高さRa(μm)を測定することとした。
 式(2-3)で示されるCAとBRの関係は、CA≧32.6×BR+17.5であることがより好ましく、CA≧32.6×BR+18.0であることがよりさらに好ましい。
 前記透明導電性フィルムは、前記試験方法4で求まる最大山高さSpの最大値MXSpが、前記平均最大山高さAVSpの1.0倍超1.4倍以下(より好ましくは、1.0倍超1.40倍以下)であることが好ましい。最大値MXSpを所定値以下にすることで、透明導電膜の高い突起の面内分布が均等になり、いずれの場所でも同等の入力開始荷重でタッチパネルの入力操作が可能となるため好ましい。より好ましくは1.3倍以下であり、さらに好ましくは1.2倍以下である。
 前記透明導電性フィルムは、前記試験方法4で求まる最大山高さSpの最小値MNSpが、前記平均最大山高さAVSpの0.6倍以上1.0倍以下(より好ましくは、0.60倍以上1.0倍以下)であることが好ましい。最小値MNSpを所定値以上にすることで、透明導電膜の高い突起の面内分布が均等になり、いずれの場所でも同等の入力開始荷重でタッチパネルの入力が可能となるため好ましい。より好ましくは0.7倍以上であり、さらに好ましくは0.8倍以上である。
 また最大値MXSp及び最小値MNSpの両方を所定範囲にすることで入力開始荷重のバラツキを平均値±5%未満にすることができる。さらには、入力開始荷重が製品間でばらつくことも防止できる。
 前記透明導電性フィルムの全光線透過率は、例えば、70%以上95%以下、好ましくは80%以上95%以下、より好ましくは85%以上90%以下である。
 2.透明導電膜
 透明導電性フィルムの透明導電膜は、インジウム-スズ複合酸化物からなる。透明導電膜に含まれる酸化スズ濃度は0.5質量%以上40質量%以下であることが好ましい。酸化スズが0.5質量%以上含有されていると、透明導電性フィルムの表面抵抗が実用的な水準となり好ましい。また酸化スズ濃度を40質量%以下にすることで、透明導電性フィルムの透明導電膜に含まれる酸化スズ濃度を、タッチパネル用透明導電性ガラス基板に含まれる酸化スズ濃度に近づけることができる。透明導電性フィルムとガラス基板の透明導電膜の酸化スズ濃度が近いほど、両透明導電膜が電気的に接触しやすくなり、適性入力強度や入力安定性がさらに良好になる。透明導電性フィルムの酸化スズ濃度は、より好ましくは25質量%以下、さらに好ましくは20質量%以下、特に好ましくは18質量%以下であり、より好ましくは1質量%以上、さらに好ましくは2質量%以上である。すなわち酸化スズ濃度は、1~25質量%がより好ましく、1~20質量%がさらに好ましく、2~18質量%が特に好ましい。
 なおタッチパネル用透明導電性ガラス基板に含まれる酸化スズ濃度は一般的には10質量%である。透明導電性フィルムの酸化スズ濃度とガラス基板の酸化スズ濃度の差は、例えば、30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下である。
 透明導電膜の結晶化度は、0%以上100%以下のいずれでもよく、好ましくは10%以上100%以下、より好ましくは50%以上100%以下である。結晶化度が高いほど、ペン摺動性に優れる。
 透明導電膜の表面抵抗は、例えば、50Ω/□以上900Ω/□以下であり、好ましくは50Ω/□以上700Ω/□以下であり、より好ましくは70Ω/□以上500Ω/□以下である。
 透明導電膜の厚みは、10nm以上100nm以下であることが好ましい。透明導電膜の厚みが10nm以上であると、透明プラスチックフィルム基材、もしくは後述する硬化型樹脂層に透明導電膜の全体が付着し、透明導電膜の膜質が安定し、表面抵抗値が安定して好ましい範囲になりやすい。また試験方法6で定まるON抵抗を小さくすることにも有効である。より好ましくは透明導電膜の厚みは13nm以上、よりさらに好ましくは16nm以上である。また、透明導電膜の厚みが100nm以下であると、透明導電膜の結晶粒径と結晶化度が適度になり、全光線透過率が実用的な水準となるため好ましい。より好ましくは50nm以下、さらに好ましくは30nm以下、特に好ましくは25nm以下である。すなわち透明導電膜の厚みは、13~50nmがより好ましく、16~30nmがさらに好ましく、16~25nmが特に好ましい。
 透明導電膜の表面における、JIS K5600-5-6:1999に準じた付着性試験において、透明導電膜の残存面積率が95%以上であることが好ましく、さらに好ましくは99%以上であり、特に好ましくは99.5%以上である。付着性試験で透明導電膜の残存面積率が上記範囲内であることにより、透明導電性フィルムは、透明プラスチックフィルム基材や後述する硬化型樹脂層などの透明導電膜に接している層と透明導電膜が密着し、タッチパネルにペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などが抑えられ、さらに、通常使用想定以上の強い力がかかったとしても、透明導電膜に対してクラック、剥離などが抑えられるため好ましい。
 前記透明導電膜の形成方法は特に限定されないが、例えば、表面に硬化型樹脂層6が形成されていてもよい透明プラスチックフィルム基材7(以下、被処理フィルムという)上の少なくとも一方の面に、インジウム-スズ複合酸化物の透明導電膜をスパッタリング法により形成する方法が好ましい。透明導電性フィルムを高い生産性で製造するためには、フィルムロールから被処理フィルムを供給し、成膜後、フィルムロールの形状に巻き上げる所謂ロール式スパッタリング装置を使用することが好ましい。
 図6はロール式スパッタリング装置における成膜部の一例を示す装置概略図である。この図示例では、図示しないフィルムロールから送り出された被処理フィルム1がセンターロール2の表面に部分的に接触しながら走行している。被処理フィルム1とセンターロール2の接触部に向けて開口部を有するチムニー3内にインジウム-スズのスパッタリングターゲット4が設置され、センターロール2上を走行する被処理フィルム1の表面にインジウム-スズ複合酸化物の薄膜が堆積して積層される。なおセンターロール2は図示しない温調機によって温度制御可能になっている。
 ターゲットとしては、インジウム-スズ複合酸化物の焼結ターゲットを用いる事が好ましい。生産効率を向上させるため、フィルムの流れ方向に対して、インジウム-スズ複合酸化物の焼結ターゲットを複数枚設置してもよい。
 成膜雰囲気の形成には、必要に応じてマスフローコントローラーを用いながら、酸素ガス、不活性ガス(アルゴンガスなど)などを流す事が好ましい。酸素ガスを添加することで、透明導電膜の表面抵抗や全光線透過率をより適切にできる。酸素ガスと不活性ガスの流量比(体積比)(酸素ガス/不活性ガス)は、例えば、0.005以上、好ましくは0.010以上、より好ましくは0.020以上であり、例えば、0.15以下、好ましくは0.1以下、より好ましくは0.07以下、さらに好ましくは0.05以下である。すなわち酸素ガスと不活性ガスの流量比(体積比)(酸素ガス/不活性ガス)は、例えば0.005~0.15であり、0.010~0.1が好ましく、0.020~0.07がより好ましく、0.020~0.05がさらに好ましい。
 また成膜雰囲気中には、必要に応じてマスフローコントローラーを用いながら、水素原子含有ガス(水素、アンモニア、水素+アルゴン混合ガスなど、水素原子が含まれているガスであれば特に限定しない。ただし、水は除く。)を流してもよい。
 成膜雰囲気での不活性ガスに対する水分圧の比(水分圧/不活性ガス分圧)の中心値(最大値と最小値の中間の値)は、例えば、7.00×10-3以下、好ましくは5.00×10-3以下、より好ましくは3.00×10-3以下である。成膜雰囲気中の水が少ないほど、透明導電膜の膜質が適切になり、表面抵抗値が好ましい値になりやすく、結晶化の確実性が向上する。ところで、水分量は到達真空度を目安に制御することも考えられるが、成膜時の水分量(水分圧)を測定する方が以下の2つの理由で好ましい。第1に、スパッタリングで、プラスチックフィルムに成膜をすると、フィルムが加熱され、フィルムから水分が放出される。到達真空度では、この放出水分量の影響が反映されない。第2に、フィルムロールから巻きだしたフィルムを成膜するときのロール中心の水分の影響が真空到達度では反映されない。フィルムロールを真空槽中で保持するとロールの外層部分の水は抜けやすいが、ロールの内層部分の水は抜けにくい。到達真空度を測定するときはフィルムの走行は停止しているが、成膜時にはフィルムが走行して水を多く含むフィルムロールの内層部分が巻き出されてくるため、成膜雰囲気中の水分量が増加し、到達真空度を測定したときの水分量より増加する。
 透明導電膜を成膜するためのフィルムロールは、ロール端面において、最も凸の箇所と最も凹の箇所の高低差が10mm以下であることが好ましく、より好ましくは8mm以下、さらに好ましくは4mm以下である。10mm以下であれば、スパッタリング装置にフィルムロールを投入した時にフィルム端面からの水や有機成分の放出がしにくくなるため、透明導電膜の膜質が良好になる。
 透明導電膜を成膜する前に、被処理フィルムをボンバード工程に通すことが望ましい。ボンバード工程とは、アルゴンガスなどの不活性ガスだけ、もしくは、酸素などの反応性ガスと不活性ガスの混合ガスを流した状態で、電圧を印加し放電を行い、プラズマを発生させることである。具体的には、SUSターゲットなどでRFスパッタリングにより、フィルムをボンバードすることが望ましい。ボンバード工程によりフィルムがプラズマにさらされるため、フィルムから水や有機成分が放出し、透明導電膜を成膜するときにフィルムから放出する水や有機成分が減少し、透明導電膜の膜質が良好になる。また、ボンバード工程により透明導電膜が接する層が活性化するため、透明導電膜の密着性が向上し、ペン摺動耐久性がさらに向上する。
 前記被処理フィルム1は、透明導電膜を成膜する面の反対面に吸水率の低い保護フィルムを貼っておくことが望ましい。保護フィルムを貼ることにより、被処理フィルム1から水などのガスが放出されにくくなり、透明導電膜の膜質が良好になる。前記保護フィルムの基材として、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンなどのオレフィン類が挙げられる。
 成膜時には、被処理フィルム1を、例えば、0℃以下、好ましくは-5℃以下に冷却する。被処理フィルム1を冷却しておくことで、フィルムからの水や有機ガスなどの不純物の放出が抑制でき、透明導電膜の膜質を適切にできる。成膜中のフィルム温度は、走行フィルムが接触するセンターロールの温度を調節する温調機の設定温度で代用することが可能である。
 スパッタリング装置は、ロータリーポンプ、ターボ分子ポンプ、クライオポンプなどの排気装置を備えていることが好ましい。排気装置によって成膜雰囲気中の水分量を制御できる。
 被処理フィルムにインジウム-スズ複合酸化物の透明導電膜を成膜積層した後、酸素を含む雰囲気下で、80℃以上200℃以下で、0.1時間以上12時間以下の加熱処理を施すことが望ましい。80℃以上にすることで透明導電膜の結晶性を高めることができ、ペン摺動耐久性をさらに向上できる。200℃以下にすることで、透明プラスチックフィルムの平面性を確保できる。
 3.透明プラスチックフィルム基材
 本発明で用いる透明プラスチックフィルム基材とは、有機高分子をフィルム状に溶融押出し又は溶液押出しをして、必要に応じ、長手方向及び/又は幅方向に延伸、冷却、熱固定を施したフィルムである。前記有機高分子としては、ポリエチレン、ポリプロピレンなどのポリオレフィン類;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル類;ナイロン6、ナイロン4、ナイロン66、ナイロン12などのポリアミド類;ポリイミド、ポリアミドイミド、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマー等が挙げられる。
 これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、シンジオタクチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレート等が好適である。また、これらの有機高分子は他の有機重合体の単量体を少量共重合したり、他の有機高分子をブレンドしてもよい。
 透明プラスチックフィルム基材に、本発明の目的を損なわない範囲で、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理等の表面活性化処理を施してもよい。
 透明プラスチックフィルム基材の厚みは、125μm以上280μm以下の範囲であることが好ましく、150μm以上250μm以下であることがより好ましい。透明プラスチックフィルム基材が厚いほど、フィルムの剛軟度(BR)が高くなりやすく、平均最大山高さ(AVSp)が式(2-1)の右辺を満足することが容易になる。また透明プラスチックフィルム基材の厚みが125μm以上であると、機械的強度が保持されるため、特にタッチパネルに用いた際に、誤入力防止性が良好となり、さらに、タッチパネルに用いた際のペン入力に対する変形が小さく、ペン摺動耐久性が優れるため好ましい。一方、厚みが280μm以下であると、タッチパネルに用いた際に、適性入力強度や優れた入力安定性を保持できるため好ましい。
 4.硬化型樹脂層
 硬化型樹脂層は、例えば、透明プラスチックフィルム基材と透明導電膜との間に形成され、透明導電膜の下地層となる。また透明プラスチックフィルム基材から発生するモノマーやオリゴマーが透明導電膜上に析出することをブロックできるため、タッチパネルの快適な入力性を阻害しないため好ましい。さらに易接着層などによって透明導電膜が硬化型樹脂層と強く密着すること、透明導電膜にかかる力を分散することができるため、ペン摺動耐久性試験での透明導電膜に対してクラック、剥離、摩耗などが抑えられるため好ましい。
 硬化型樹脂層の樹脂は、加熱、紫外線照射、電子線照射等のエネルギー印加や硬化剤により硬化する樹脂であれば特に制限はなく、例えば、シリコーン系樹脂、アクリル系樹脂、メタクリル系樹脂、エポキシ系樹脂、メラミン系樹脂、ポリエステル系樹脂、ウレタン系樹脂等が挙げられ、これらは1種であってもよく、2種以上を組み合わせてもよい。生産性の観点からは、紫外線硬化型樹脂を主成分とすることが好ましい。
 紫外線硬化型樹脂としては、例えば、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステル等から合成されるような多官能性のウレタンアクリレート樹脂等を挙げることができる。必要に応じて、これらの多官能性の樹脂に単官能性の単量体、例えば、ビニルピロリドン、メチルメタクリレート、スチレン等を加えて共重合させることができる。
 硬化型樹脂層は、少なくとも硬化前に硬化反応開始剤を含有していることが好ましい。硬化反応開始剤は、硬化型樹脂の硬化の種類に応じて選択でき、熱重合開始剤、光重合開始剤などのラジカル重合開始剤、硬化剤などが挙げられ、光重合開始剤が好ましい。硬化反応開始剤の量は、硬化型樹脂100質量部に対して、例えば、1質量部以上5質量部以下である。
 光重合開始剤としては、紫外線を吸収してラジカルを発生する公知の化合物を特に制限なく使用することができ、例えば、各種ベンゾイン類、フェニルケトン類、ベンゾフェノン類等を挙げることができる。
 硬化型樹脂層は、粒子を含んでいることが好ましい。粒子によって硬化型樹脂層の表面に凹凸を形成できる。そのため粒子を含むと基本的には接触面積率CAが100%から下がっていく一方、平均最大山高さAVSpの制御が容易になる。また粒子量を増やすことで剛軟度BRが下がることがあり、粒子量で剛軟度BRを調整することも可能である。さらに粒子によってペン摺動耐久性、アンチニュートンリング性、フィルムの巻取り性などの各種特性もより効果的に発現することができる。なお相対的に粒子径が大きい粒子(例えば、後述する粒子A)の添加量が少なく、かつ相対的に粒子径が小さい粒子(例えば、粒子Aと併用される後述の粒子B)が多い場合には、同一粒子径の粒子添加と比較して、接触面積率CAが大きくなり、平均最大山高さAVSpが大きくなる傾向がある。
 前記粒子としては、無機粒子、有機粒子などが挙げられ、無機粒子が好ましい。無機粒子としては、シリカ粒子などが例示される。有機粒子としては、ポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂等からなる粒子が例示される。粒子は1種であっても2種以上であってもよい。
 前記粒子の個数平均粒子径は、例えば、0.01μm以上10μm以下であり、好ましくは0.03μm以上5μm以下であり、より好ましくは0.05μm以上3μm以下であり、特に好ましくは0.05μm以上1.8μm以下である。平均粒子径が大きいほど、透明導電層の平均最大山高さAVSpを大きくできる。なお平均最大山高さは、平均粒子径を大きくすることの他、後述する硬化型樹脂の塗布液中の樹脂濃度(固形分濃度)を高くすること、硬化型樹脂層の厚みを薄くすることなどでも大きくできる。
 また前記粒子径の標準偏差は、例えば、平均粒子径の20%以下、好ましくは平均粒子径の10%以下、より好ましくは平均粒子径の5%以下である。粒子径の標準偏差が小さいほど、透明導電性フィルムの接触面積率CAを大きくできる。
 一態様において、個数平均粒子径が、0.01μm以上1.0μm未満の粒子Bを1種類用いることが好ましく、他の一態様において、個数平均粒子径が0.4μm以上1.8μm以下であって粒子Bよりも個数平均粒子径が大きい粒子Aと、個数平均粒子径が0.01μm以上1.0μm未満の粒子Bとを併用することが好ましい。粒子Bの平均粒径は0.05μm以上が好ましい。平均最大山高さAVSpが大きく(例えば、0.6μm以上に)なると、接触面積率CAが小さくなり過ぎることがあるが、粒子A、粒子Bの2種類を使用すると、接触面積率を適切にできる。なお平均最大山高さAVSpが式(2-1)の右辺(4.7×BR-1.8)以上になると、粒子A、粒子Bの2種類を使用しても接触面積率CAが小さくなり過ぎるため、平均最大山高さAVSpは式(2-1)の右辺未満にしておくことが必要である。
 粒子Bの1種を含む場合、硬化型樹脂層における粒子Bの量は、硬化樹脂層の固形分100質量%に対して、例えば、0.1質量%以上25質量%以下であり、好ましくは0.5質量%以上18質量%以下である。
 また粒子Aと粒子Bの2種を含む場合、硬化型樹脂層における粒子Aの量は、硬化樹脂層の固形分100質量%に対して、例えば、0.1質量%以上5質量%以下である。硬化型樹脂層における粒子Bの量は、硬化樹脂層の固形分100質量%に対して、粒子Aの量よりも多いことが好ましく、例えば、5質量%超30質量%以下、好ましくは6質量%以上15質量%以下である。
 以上のようにして粒子の大きさや量を調整することで、透明導電層の平均最大山高さAVSpが式(2-1)を満足しながら、接触面積率CVが小さくなり過ぎないようにできる。またフィルムの剛軟度BRも調整できる。そのため、入力開始荷重を適切な範囲に制御でき、電圧ロス時間を短くでき、適性入力強度と入力安定性を達成できる。
 硬化型樹脂層の厚みは0.1μm以上15μm以下の範囲であることが好ましい。より好ましくは0.5μm以上10μm以下の範囲であり、特に好ましくは1μm以上8μm以下の範囲である。硬化型樹脂層の厚みが0.1μm以上の場合には、十分な突起が形成され好ましい。一方、15μm以下であれば、生産性がよく好ましい。また、硬化型樹脂層が厚いと透明導電性フィルムの剛軟度BRを増加させる傾向にある。
 硬化型樹脂層は、硬化型樹脂と相溶しない樹脂(以下、単に非相溶樹脂という場合がある)を含有していてもよい。硬化型樹脂層中で非相溶樹脂が分散することで硬化型樹脂層の表面に凹凸を形成でき、広領域における表面粗さを向上させることができる。非相溶樹脂としてはポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂等が例示される。
 硬化型樹脂層は、硬化前の硬化型樹脂を液状にし、積層対象(透明プラスチックフィルム基材、易接着剤層など)に塗布して硬化することによって形成される。塗布物は、前記硬化型樹脂の他、硬化反応開始剤(熱重合開始剤、光重合開始剤などのラジカル重合開始剤、硬化剤など。好ましくは光重合開始剤)、粒子、硬化型樹脂と非相溶な樹脂、溶剤などを含んでいてもよい。またこの塗布液には、必要に応じて、その他の公知の添加剤、例えば、シリコーン系レベリング剤等を添加してもよい。使用する溶剤には特に制限はなく、例えば、エチルアルコール、イソプロピルアルコール等のようなアルコール系溶剤、酢酸エチル、酢酸ブチル等のようなエステル系溶剤、ジブチルエーテル、エチレングリコールモノエチルエーテル等のようなエーテル系溶剤、メチルイソブチルケトン、シクロヘキサノン等のようなケトン系溶剤、トルエン、キシレン、ソルベントナフサ等のような芳香族炭化水素系溶剤等を単独に、あるいは混合して使用することができる。
 塗布液中の硬化型樹脂の濃度(固形分濃度という)は、コーティング法に応じた粘度等を考慮して適切に選択することができる。固形分濃度は、例えば、35質量%以上58質量%以下、好ましくは42質量%以上55質量%以下である。固形分濃度が高く、硬化型樹脂層の厚みが薄い(例えば、4.0μm以下である)と、硬化型樹脂層の平均最大山高さが式(2-1)の関係で高くなったり、接触面積率CAが小さくなったりする傾向にある。なお固形分濃度が58質量%を超える場合であって(例えば、58質量%超、65質量%以下程度のとき)、硬化型樹脂層の厚みが4.0μm以下でも、粒子Aと粒子Bとを併用する場合であって粒子Aの粒子径を0.80μm以下とし、粒子Aの量を硬化樹脂層の固形分100質量%に対して4質量%以下にすれば、式(2-1)の観点での平均最大山高さと接触面積率CAとを適切な範囲にするのが容易になる。
 前記塗布液を積層対象にコーティングする方法は特に制限されず、例えば、バーコート法、グラビアコート法、リバースコート法等の公知の方法を使用できる。コーティングされた塗布液は、次の乾燥工程で溶剤が蒸発除去される。塗布液に非相溶樹脂(ポリエステル樹脂など)が溶解している場合、この乾燥工程で非相溶樹脂は粒子となって紫外線硬化型樹脂中に析出する。塗膜を乾燥した後、硬化種類に応じた適切な処理(例えば、紫外線照射)をすることにより、硬化型樹脂層を形成できる。
 積層対象の塗布面には、塗布液の塗布前に、必要に応じて硬化型樹脂層の付着力向上処理をしてもよい。付着力向上処理としては、カルボニル基、カルボキシル基、水酸基を増加するためのグロー又はコロナ放電を照射する放電処理法、アミノ基、水酸基、カルボニル基等の極性基を増加させるための酸又はアルカリで処理する化学薬品処理法等が挙げられる。
 以上の通り、平均最大山高さAVSpを所定の範囲にし、接触面積率CAを所定の範囲にするには、種々の要因を調整する必要があり、その詳細は上述した通りであるが、細かい点を省いて概略を説明すると、以下の関係を利用することで調整できる。すなわち基本的には、粒子径が大きいと、固形分濃度が高いと、又は樹脂層の厚みが薄いと、平均最大山高さAVSpの絶対値が大きくなる傾向にある。式(2-1)を満足する平均最大山高さAVSpは、剛軟度BPによって変わり、剛軟度BPが小さいほど平均最大山高さAVSpは小さくする。また基本的には平均最大山高さAVSpが高くなると、接触面積率CAは小さくなる。ただし、樹脂層に添加する平均粒子径として大小2種類用い、大粒子の粒子添加量を少なくすると、平均最大山高さAVSpが高く、接触面積率CVが高くなる。大小2種類の粒子を使う場は、大粒子の添加量が少ないほど、小粒子の平均粒子径が接触面積率CAに与える影響が大きくなる。
 5.機能層
 機能層は、透明プラスチックフィルム基材の反対面に形成される以外は、前記硬化型樹脂層と同様であることが好ましく、前記硬化型樹脂層の説明は、粒子の大きさ及び量の説明を除き、全て機能層に適用される。透明プラスチックフィルム基材に機能層を積層すると、透明プラスチックフィルム基材からのモノマーやオリゴマーの析出を防止でき、透明導電性フィルム視認性低下を抑制できる。また透明導電性フィルムの剛軟度BRを調整できる。また、透明プラスチックフィルム基材に機能層を有することにより、ペンなどで入力したことによるキズがつきにくくなるため好ましい。
 機能層に粒子(粒子C)を配合する場合、粒子Cの個数平均粒子径は、例えば、0.01μm以上10μm以下であり、好ましくは0.1μm以上7μm以下であり、より好ましくは1μm以上5μm以下である。
 粒子Cは、機能層中の硬化型樹脂100質量部当たり、0.1質量部以上60質量部以下であることが好ましく、より好ましくは0.3質量部以上40質量部以下、さらに好ましくは0.5質量部以上30質量部以下である。粒子Cの量によって透明導電性フィルムの剛軟度BRを調整できる。また粒子Cによって機能層に表面突起を形成でき、フィルム巻取り性も保持できる。
 機能層の表面における、JIS K5600-5-6:1999に準じた付着性試験において、機能層の残存面積率が95%以上であることが好ましく、さらに好ましくは99%以上であり、特に好ましくは99.5%以上である。付着性試験で機能層の残存面積率が上記範囲内であることにより、透明導電性フィルムは、透明プラスチックフィルム基材と機能層とが密着し、タッチパネルにペンで連続入力しても機能層に対してクラック、剥離、摩耗などの外観不良が抑えられ、さらに、通常使用想定以上の強い力がかかったとしても、機能層に対してクラック、剥離などが抑えられるため好ましい。
 透明導電性フィルムが機能層と硬化樹脂層を有する場合、機能層と硬化樹脂層の厚みは同一であることが好ましく、また機能層と硬化樹脂層の厚みの差の絶対値が以下の関係を有することが好ましい。
  0.1μm≦ |硬化樹脂層の厚み-機能層の厚み| ≦3μm
 機能層と硬化樹脂層に厚みの差を設けることで、透明導電性フィルムの剛軟度BRを調整できる場合がある。また、ペン摺動耐久性などの各種特性を、より効果的に発現することができる。さらに適性入力強度をより改善できる。
 また、硬化樹脂層の単位体積あたりの粒子質量と、機能層の単位体積あたりの粒子質量は、異なることが好ましい。
 6.易接着剤層
 易接着剤層は、ウレタン樹脂、架橋剤、及びポリエステル樹脂を含有する組成物から形成されることが好ましい。架橋剤としては、ブロックイソシアネートが好ましく、3官能以上のブロックイソシアネートがさらに好ましく4官能以上のブロックイソシアネートが特に好ましい。易接着層の厚みは、0.001μm以上2.00μm以下が好ましい。
 本願は、2021年6月22日に出願された日本国特許出願第2021-103501号に基づく優先権の利益を主張するものである。2021年6月22日に出願された日本国特許出願第2021-103501号の明細書の全内容が、本願に参考のため援用される。
 以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、実施例における各種測定評価は下記の方法により行った。
1.測定評価
 (1)シリカ粒子の平均粒子径
 透明導電性フィルムの断面の粒子を走査型電子顕微鏡(キーエンス社製、VE-8800)で観察を行い、無作為に粒子50個を抽出してそれぞれの粒子径を観察した。次に、観察した50個の粒子に対して、粒子径を0.020μmの区間ごとに分け、各区間に含まれる粒子の総数を求め、縦軸に粒子個数、横軸に0.020μm区間刻みの粒子径のヒストグラムを作成した。ヒストグラムから正規分布状の山の極大値を取る粒子径区間の中心値の絶対値から±30%以内の粒子径となる粒子において、観測した粒子径の個数平均を平均粒子径とした。例えば、ヒストグラムに正規分布状の山が2個ある場合は、2種類の粒子を添加していることを示していて、前記と同一の方法により、2種類の平均粒子径を算出した。
 (2)硬化型樹脂層の厚み、機能層の厚み
 硬化型樹脂層の厚みは、透明導電性フィルムの断面を走査型電子顕微鏡(キーエンス社製、VE-8800)で観察を行い、任意の5点を観察し、その平均値をもって厚みとする方法で行った。機能層の厚みについても同様の方法を採用した。
 (3)透明導電膜中に含まれる酸化スズの含有量
 試料を切りとって(約15cm)石英製三角フラスコにいれ、6mol/l塩酸20mlを加え、酸の揮発がないようにフィルムシールをした。室温で時々揺り動かしながら9日間放置し、透明導電膜を溶解させた。残フィルムを取り出し、透明導電膜が溶解した塩酸を測定液とした。溶解液中のIn、Snは、ICP発光分析装置(メーカー名;リガク、装置型式;CIROS-120 EOP)を用いて、検量線法により求めた。各元素の測定波長は、干渉のない、感度の高い波長を選択した。また、標準溶液は、市販のIn、Snの標準溶液を希釈して用いた。
 (4)透明導電膜厚み
 透明導電膜を積層したフィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM-2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
 (5)透明導電膜の結晶化度
 透明導電膜を積層したフィルム試料片を1mm×10mmの大きさに切り出し、導電性膜面を外向きにして適当な樹脂ブロックの上面に貼り付けた。これをトリミングしたのち、一般的なウルトラミクロトームの技法によってフィルム表面にほぼ平行な超薄切片を作製した。この切片を透過型電子顕微鏡(JEOL社製、JEM-2010)で観察して著しい損傷がない導電性薄膜表面部分を選び、加速電圧200kV、直接倍率40000倍で写真撮影を行った。透明導電膜の結晶性評価として、透過型電子顕微鏡下で観察される結晶粒の割合、すなわち結晶化度を観察した。
 (6)全光線透過率(%)
 JIS-K7361-1:1997に準拠し、日本電色工業(株)製NDH-2000を用いて、全光線透過率を測定した。
 (7)表面抵抗
 JIS-K7194:1994に準拠し、4端子法にて測定した。測定機は、(株)三菱化学アナリテック製 Lotesta AX MCP-T370を用いた。
 (8)付着性試験
 JIS K5600-5-6:1999に準拠して実施した。下記表における結果は、付着性を残存面積率(%)で示している。残存面積率の最高値は100%である。表中における付着性試験の残存面積率が100%に近いほど、剥離面積が少ない。
 (9)剛軟度(BR)(試験方法3)
 透明導電性フィルムから20mm×250mmの試験片を採取し、透明導電膜が上になるようにして試験片を表面の滑らかな水平台の上に配置した。試験片の20mm×20mmの部分のみ水平台の上に置き、20mm×230mmの部分を台の端から水平に突き出すようにした。なお試験片の20mm×20mmの部分の上におもりを置き、試験片と水平台の間に隙間ができないように、おもりの重量、サイズを選択した。次に、水平台の高さとフィルムの先端の高さの差(δ)をスケールによって読んだ。下記式に数値を代入して剛軟度を算出した。
  剛軟度BR(N・cm)=g×a×b×L/(8×δ×1011
 (式中、gは9.81(重力加速度;m/s)であり、aは20(試験片の短辺の長さ;mm)であり、bは試験片の比重(g/cm)を示し、Lは230(水平台の外にでた試験片の長辺の長さ;mm)であり、δは試験片先端の高さと台の高さの差(cm)を示す)
 上記の比重bは以下の方法で測定した。
 透明導電性フィルムを5.0cm四方の正方形に切り出し、マイクロメーターを用いて有効数字3桁で、総厚みを場所を変えて10点測定し、厚みの平均値(t:μm)を求めた。5.0cm四方の正方形に切り出したサンプルの重量(w:g)を有効数字4桁で自動上皿天秤を用いて測定し、次式より比重を求めた。なお、比重は有効数字2桁に丸めた。
  比重b(g/cm)=w/(5.0×5.0×t×10-4
 (10)最大山高さ(Sp)、平均最大山高さAVSp(μm)(試験方法4)
 透明導電性フィルムの導電面から5点の最大山高さ(Sp)(ISO;面粗さ)を測定し、その算術平均値を平均最大山高さ(AVSp)とした。5点の選び方は、まず任意の1点Aを選択する。次に、Aに対してフィルムの長手(MD)方向の上下流1cmに各1点、計2点を選択する。次に、Aに対してフィルムの幅(TD)方向の左右1cmに各1点、計2点を選択する。最大山高さ(Sp)(ISO;面粗さ)は、ISO25178に規定されるものであり、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ10倍))を用いて求めた。また、1nm未満の値は、四捨五入によりまるめた。
 (11)最大山高さ上側変位率(MXSp/AVSp)、最大山高さ下側変位率(MNSp/AVSp)
 前記試験方法4で求まる最大山高さSpの最大値MXSpと平均値AVSpの比を最大山高さ上側変位率(MXSp/AVSp)とした。
 また前記試験方法4で求まる最大山高さSpの最小値MNSpと平均値AVSpの比(MNSp/AVSp)を最大山高さ下側変位率とした。
 (12)接触面積率CA(%)、平均高さRc(μm)、最大山高さRp(μm)、平均長さRsm(μm)、算術平均高さRa(μm)(試験方法5)
 透明導電性フィルムの導電面について線粗さによる、平均高さRc(μm)、最大山高さRp(μm)、及び平均長さRsm(μm)を測定し、式(X1)及び式(X2)の少なくとも一方と式(X3)とを満足する場所で、線粗さによる算術平均高さRa(μm)を測定した。なお平均高さRc(μm)、最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)は、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ50倍))を用いて決定した。なお最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)の決定は、JIS B 0601-2001の規定に従った。算術平均高さRa(μm)の測定長は100μm以上200μm以下とした。
Rp-Rc-Ra≦0.20   …式(X1)
(Rp-Rc)/Ra≦5.0  …式(X2)
 前記3次元表面形状測定装置バートスキャンの対物レンズを10倍に変更し、同測定装置にある粒子解析を使い、平均面から「算術平均高さRa(μm)-15×10-3(μm)-平均高さRc(μm)」となる高さで平面方向にスライスし、断面積の総和を求めた。断面積の総和を測定視野の面積で割った値に100をかけた値を接触面積率(CA)(%)とした。
 (13)入力開始荷重測定(試験方法1)
 図6に示す様にセンターロール2上の積層フィルム(被処理フィルム)1の硬化型樹脂層に対して、チムニー3内のターゲット4からスパッタリングで透明導電膜を形成した。ターゲット4にはインジウム-スズ複合酸化物の焼結ターゲット、あるいは酸化スズを含まない酸化インジウム焼結ターゲットを用い、3W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により透明導電膜を成膜した。膜厚はフィルムがターゲット上を通過するときの速度を変えて制御した。
 ガラス基板(サイズ:232mm×151mm)の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)をスパッタリング法で形成した。具体的には、真空槽に厚み1.1mmのガラス基板(サイズ:232mm×151mm)を投入し、1.5×10-4Paまで真空引きをした。次に、酸素導入後にアルゴンを導入し全圧を0.6Paにした。アルゴンに対する酸素の流量比は0.033とした。インジウム-スズ複合酸化物(酸化スズ含有量:10質量%)の焼結ターゲットを用い、3W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により、ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)を成膜した。成膜後のガラス基板を空気中で230℃1時間加熱した。ガラス基板の片面に形成された導電膜の表面にエポキシ樹脂(東洋紡株式会社製、製品名:CR-102C-23)のドットスペーサー(縦60μm×横60μm×高さ5μm)を4mmピッチで正方格子状に形成した(ITOガラス基板)。ITOガラス基板の四隅の角のいずれか1つを起点として190mm×135mmの長方形ができるように、透明導電膜側に両面テープ(厚み:105μm、幅6mm)を貼った。ITOガラス基板に貼った両面テープ上に、実施例又は比較例で得られた透明導電性フィルム(サイズ:220mm×135mm)の透明導電膜を貼り付け、導電膜同士が対面するように積層した。このとき、透明導電性フィルムの一方の短辺側が、ITOガラス基板からはみ出るようにした(評価パネル)。
 得られた評価パネルのITOガラス基板と透明導電性フィルムをテスターでつないだ。透明導電性フィルム側からポリアセタール製のペン(東レプラスチック精工株式会社製、商品名:TPS(登録商標) POM(NC)、先端の形状:0.8mmR)で荷重をかけていき、テスターで計測した抵抗値が安定した時の荷重値を入力開始荷重とした。
 ペンで荷重をかける位置12は、図7の部分拡大図に示すようにITOガラス基板10面に格子上に並ぶ4つのドットスペーサー11の中心領域とした。また、入力開始荷重は両面テープから50mm以上離れた任意の3点を測定し平均値をとった。小数点以下第1位は四捨五入した。
 また、上記と同様の手法にて評価パネルをもう1枚作製し、入力開始荷重を求めた。小数点以下第1位を四捨五入したとき、2つの入力開始荷重が一致した場合は、入力開始荷重が安定していると評価し、表6には1つの値を示した。一方、2つの入力開始荷重が一致しなかった場合は、2つの結果を表6に示した。
 (14)電圧ロス時間測定(試験方法2)
 入力開始荷重測定で作成した評価パネルに定電圧電源を接続する。次にITOガラス基板と透明導電性フィルムとの電圧を計測できるレコーダー(キーエンス社製、GR-7000)を接続する。ここでは、レコーダーは電圧の時間変化を観測するために用いる。次に定電圧電源に6V印加し、レコーダーで電圧を0.02ミリ秒単位で計測開始する。次に、透明導電性フィルム側からポリアセタール製のペン(東レプラスチック精工株式会社製、商品名:TPS(登録商標) POM(NC)、先端の形状:0.8mmR)で1秒間に5回のペースで50gの荷重をかける。ペンで荷重をかける位置は、評価パネルの中央付近であって、格子状に並ぶ4つのドットスペーサーの中心領域である。透明導電性フィルムにペンで荷重をかけたときの電圧の時間変化のデータをレコーダーから取り出す。ペンが透明導電性フィルムから離れ始め、電圧が6Vから減少するときを起点とし、電圧が5Vになるまでの時間を測定し、電圧ロス時間として記録した(図5参照)。
 (15)適性入力強度試験(誤入力防止性、快適入力性)
 実施例及び比較例で得られた透明導電性フィルムを用いて抵抗膜方式タッチパネルを作製した。ポリアセタール性のペン(東レプラスチック精工株式会社製、商品名:TPS(登録商標) POM(NC)、先端の形状:0.8mmR)を用い、入力強度を調べた。
 (誤入力防止性)
 ○…迷いながらタッチパネルをさわった時の入力が少ない。
 ×…迷いながらタッチパネルをさわった時の入力が多い。
 (快適入力性)
 ○…意識的に強い力をかけなくても入力できる。
 △…挙動が安定しない。
 ×…意識的に強い力をかけないと、入力できない場合がある。
 (16)入力安定性(払い安定性、速記性)
 実施例及び比較例で得られた透明導電性フィルムを用いて抵抗膜方式タッチパネルを作成した。ポリアセタール性のペンを用い、入力安定性を調べた。
 (払い安定性)
 ○…文字を入力したとき、払い部分がかすれにくい。
 ×…文字を入力したとき、払い部分がかすれやすい。
 (速記性)
 ○…連続して文字を入力したとき、文字掠れが生じにくい。
 ×…連続して文字を入力したとき、文字掠れが生じやすい。
 (17)ペン摺動耐久性(試験方法6)
 透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)をスパッタリング法で形成した。前記他方のパネル板の製造では、具体的には、真空槽に厚み1.1mmのガラス基板(サイズ:5cm×6cm)を投入し、1.5×10-4Paまで真空引きをした。次に、酸素導入後にアルゴンを導入し全圧を0.6Paにした。アルゴンに対する酸素の流量比は0.033とした。インジウム-スズ複合酸化物(酸化スズ含有量:10質量%)の焼結ターゲットを用い、3W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により、ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)を成膜した。成膜後のガラス基板を空気中で230℃1時間加熱した。ガラス基板の片面に形成された導電膜の表面にエポキシ樹脂(東洋紡株式会社製、製品名:CR-102C-23)のビーズ(直径30μm)を図8に示す様に4mmピッチで正方格子状に形成した(ITOガラス基板)。実施例又は比較例で得られた透明導電性フィルム(サイズ:5cm×6cm)とITOガラス基板とを透明導電膜が対向するように重ねた。重ねるときには、図9に示す様に透明導電性フィルム20とITOガラス基板10とを長手方向が直交するようにしつつそれぞれの端16を合わせ、透明導電性フィルム20の長手方向片側端部18とITOガラス基板10の長手方向片側端部17が重なり面19からはみ出る様にして、はみ出し部17、18それぞれをテスターに接続した。次にポリアセタール製のペン(東レプラスチック精工株式会社製、商品名:TPS(登録商標) POM(NC)、先端の形状:0.8mmR)に2.5Nの荷重をかけ、5万往復の直線摺動試験をタッチパネルに行った。この時の摺動距離は30mm、摺動速度は180mm/秒とした。摺動させる位置21は、図8の部分拡大図に示すようにITOガラス基板10面に格子状に配置されたドットスペーサー11の間である。この摺動耐久性試験後に、ペン荷重0.8Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定した。ON抵抗は10kΩ以下であるのがより望ましい。
2.積層フィルム
 実施例の欄では、以下の透明プラスチックフィルム基材、硬化型樹脂層、及び機能層からなる積層フィルムを用いた。
 (1)基材(透明プラスチックフィルム基材):両面に易接着層を有する二軸配向透明PETフィルム(東洋紡社製、A4380、厚みは表1に記載)。
 (2)硬化型樹脂層:光重合開始剤含有アクリル系樹脂(大日精化工業社製、セイカビーム(登録商標)EXF-01J)100質量部(固形分)に、表1に記載の個数平均粒子径のシリカ粒子(粒子A、粒子B)を表1に記載の量を配合した。なお、表1に記載の粒子の添加量は、樹脂の固形分100質量%に対する量を示す。トルエン/メチルエチルケトン(MEK)(8/2:質量比)の混合溶媒を、固形分濃度が表1の値になるように加え、撹拌して均一に分散させ塗布液を調製した(塗布液A)。塗膜の厚みが表1に記載の値になるように調製した塗布液Aを、マイヤーバーを用いて透明プラスチックフィルム基材の片面に塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042-5AM-W型)を用いて紫外線を照射(光量:300mJ/cm)し、塗膜を硬化させた。
 (3)機能層:光重合開始剤含有アクリル系樹脂(大日精化工業社製、セイカビーム(登録商標)EXF-01J)100質量部(固形分)に、表2に記載の個数平均粒子径のシリカ粒子(粒子C)を表2に記載の量で配合した。なお、表2に記載の粒子の添加量は、樹脂の固形分100質量%に対する量を示す。溶剤としてトルエン/MEK(8/2:質量比)の混合溶媒を、固形分濃度が表2の値になるように加え、撹拌して均一に分散させ塗布液を調製した(塗布液C)。塗膜の厚みを表2に記載の値になるように調製した塗布液Cを、マイヤーバーを用いて透明プラスチックフィルム基材における上記硬化型樹脂層とは反対側の面に塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042-5AM-W型)を用いて紫外線を照射(光量:300mJ/cm)し、塗膜を硬化させた。
 実施例1~8
 真空槽に積層フィルムを投入し、1.5×10-4Paまで真空引きをした。次に、酸素導入後にアルゴンを導入し全圧を0.6Paにした。酸素とアルゴンの流量比を表3に示す。
 図6に示す様にセンターロール2上の積層フィルム(被処理フィルム)1の硬化型樹脂層に対して、チムニー3内のターゲット4からスパッタリングで透明導電膜を形成した。ターゲット4にはインジウム-スズ複合酸化物の焼結ターゲット、あるいは酸化スズを含まない酸化インジウム焼結ターゲットを用い、3W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により透明導電膜を成膜した。膜厚はフィルムがターゲット上を通過するときの速度を変えて制御した。
 また、スパッタリング時の成膜雰囲気のアルゴンに対する水分圧の比については、ガス分析装置(インフィコン社製、トランスペクターXPR3)を用いて測定し、表3に示した。該水分の比は、表3に記載するように、ボンバード工程の有無、保護フィルムの有無、フィルムロール端面の凹凸高低差、フィルムが接触走行しているセンターロールの温度を制御する温調機の温媒の温度の調節によって調節した。前記ボンバード工程ではSUS(ステンレス)をターゲットとして0.5W/cmでRFスパッタリングをした。RFスパッタリングの導入ガス量は、真空装置に導入した実施例の記載のガス量と同じとした。保護フィルム使用時には、厚みが65μmのポリエチレンフィルムを使用した。該保護フィルムの片面にアクリル系粘着剤を塗布した。積層フィルムの透明導電膜が成膜される面の反対面に保護フィルムを貼付けた。前記温媒の温度は、フィルムロールへの成膜開始時から成膜終了時までの温度の最大値と最小値の丁度真ん中に当たる温度を表3の記載値とした。
 透明導電膜を積層したフィルムに対して表3に示す熱処理を施して透明導電性フィルムを得た。
 得られた透明導電性フィルムについて、透明導電膜の膜厚、結晶化度、全光線透過率(%)、表面抵抗(Ω/□)、透明導電膜への付着性、機能層への付着性を評価した。結果を表4に示す。
 得られた透明導電性フィルムについて、剛軟度(BR)、平均最大山高さ(AVSp)、接触面積率(CA)、最大山高さ上側変位率(MXSp/AVSp)、最大山高さ下側変位率(MNSp/AVSp)を求めた。結果を表5に示す。
 得られた透明導電性フィルムについて、入力開始荷重、電圧ロス時間、適性入力強度試験(誤入力防止性、快適入力性)、入力安定性(払い安定性、速記性)、及びペン摺動耐久性を調べた。結果を表6に示す。
 比較例1~8
 表1~表2に示す条件で作成された積層フィルムを用い、表3の条件で透明導電膜を形成する以外は実施例1~8と同様にして透明導電性フィルムを作成した。得られたフィルムの諸特性を表4~表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 透明導電性フィルムは、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のようなフラットパネルディスプレイや、タッチパネルの透明電極等として、電気・電子分野の用途に広く使用できる。
  1 被処理フィルム
  2 センターロール
  3 チムニー
  4 ターゲット
  5 透明導電膜
  6 硬化型樹脂層
  7 透明プラスチックフィルム基材
  8 機能層
  9 易接着剤層
 10 ITOガラス基板
 11 ドットスペーサー
 12 ペンで荷重をかける位置
 13 時間
 14 電圧
 15 電圧ロス時間
 16 端
 17、18 はみ出し部
 19 重なり面
 20 透明導電性フィルム
 21 摺動させる位置

Claims (10)

  1.  透明プラスチックフィルム基材上の少なくとも一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、
     試験方法1で求まる入力開始荷重が15gより大きく25g以下であり、
     試験方法2で求まる電圧ロス時間が、0.00ミリ秒以上0.40ミリ秒以下である透明導電性フィルム。
     [試験方法1]
     ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成され、その薄膜の表面にエポキシ樹脂のドットスペーサー(縦60μm×横60μm×高さ5μm)を4mmピッチで正方格子状に形成してパネル板とする。このパネル板の導電膜側に、厚みが105μm、内周が190mm×135mmである接着性のある矩形枠を挟みながら、透明導電性フィルムを導電膜同士が対面する様に重ねて評価パネルを作製する。この評価パネルの透明導電性フィルム側から、ドットスペーサーの4点格子の中心を先端が半径0.8mmの半球のポリアセタールであるペンで押圧していき、抵抗値が安定し始めたときの圧力を入力開始荷重とする。
     [試験方法2]
     前記評価パネルを6Vの定電圧電源に接続し、先端が半径0.8mmの半球であるペンを用いて透明導電性フィルム側からドットスペーサーの4点格子の中心を50gfの荷重で5回/秒の間隔で押圧する。ペンが透明導電性フィルムから離れ始め、電圧が6Vから減少するときを起点とし、電圧が5Vになるまでの時間を測定し、電圧ロス時間とする。
  2.  試験方法3で求まるフィルム剛軟度(BR)が0.38N・cm以上0.90N・cm以下であり、
     試験方法4で求まる導電面の最大山高さSpの平均(AVSp)が下記式(2-1)および式(2-2)を満たし、
     試験方法5で求まる接触面積率(CA)が下記式(2-3)を満たす請求項1に記載の透明導電性フィルム。
     4.7×BR-3.6≦AVSp<4.7×BR-1.8
                            …式(2-1)
     0.005≦AVSp≦12.000      …式(2-2)
     CA≧32.6×BR+17.2        …式(2-3)
    (式中、BRはフィルム剛軟度(N・cm)であり、AVSpは平均最大山高さ(μm)であり、CAは接触面積率(%)である)
     [試験方法3]
     20mm×250mmの透明導電性フィルム試験片を透明導電膜が上にして水平台の上に置き、台の端から試験片を230mmの長さで突き出させ、下記式に基づいて剛軟度(BR)を決定する。
     剛軟度(BR(N・cm))
            =g×a×b×L/(8×δ×1011
     (式中、gは9.81(重力加速度;m/s)であり、aは20(試験片の短辺の長さ;mm)であり、bは試験片の比重(g/cm)を示し、Lは230(水平台の外にでた試験片の長辺の長さ;mm)であり、δは試験片先端の高さと台の高さの差(cm)を示す)
     [試験方法4]
     透明導電性フィルムの導電面でMD方向に1cm間隔で3点、その中心から1cm間隔でTD方向に対称に2点の合計5点の測定点を決定し、それぞれの箇所で面粗さによる最大山高さSp(ISO 25178に準拠)を測定し、その平均値を平均最大山高さ(AVSp)(μm)とする。
     [試験方法5]
     透明導電性フィルムの導電面について線粗さによる、平均高さRc(μm)、最大山高さRp(μm)、及び平均長さRsm(μm)を測定し、式(X1)及び式(X2)の少なくとも一方と式(X3)とを満足する場所で、線粗さによる算術平均高さRa(μm)を測定する。なお平均高さRc(μm)、最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)は、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ50倍))を用いて決定する。最大山高さRp(μm)、平均長さRsm(μm)、及び算術平均高さRa(μm)の決定はJIS B 0601-2001の規定に従う。算術平均高さRa(μm)の測定長は100μm以上200μm以下とする。
    Rp-Rc-Ra≦0.20   …式(X1)
    (Rp-Rc)/Ra≦5.0  …式(X2)
    Rsm≦30          …式(X3)
     前記3次元表面形状測定装置バートスキャンの対物レンズを10倍に変更し、同測定装置にある粒子解析を使い、平均面から「算術平均高さRa(μm)-15×10-3(μm)-平均高さRc(μm)」となる高さで平面方向にスライスし、断面積の総和を求める。断面積の総和を測定視野の面積で割った値に100をかけた値を接触面積率(CA)(%)とする。
  3.  前記試験方法4で求まる最大山高さSpの最大値MXSpが、前記平均最大山高さAVSpの1.0倍超1.4倍以下であり、かつ、
     前記試験方法4で求まる最大山高さSpの最小値MNSpが、前記平均最大山高さAVSpの0.6倍以上1.0倍以下である、請求項2に記載の透明導電性フィルム。
  4.  前記透明導電膜の厚みが、10nm以上100nm以下である請求項1~3のいずれかに記載の透明導電性フィルム。
  5.  前記透明導電膜に含まれる酸化スズの濃度が0.5質量%以上40質量%以下である請求項1~3のいずれかに記載の透明導電性フィルム。
  6.  透明導電膜と透明プラスチックフィルム基材の間に、硬化型樹脂層を有し、
     さらに透明プラスチック基材の前記透明導電膜とは反対側に、機能層を有する請求項1~3のいずれかに記載の透明導電性フィルム。
  7.  透明プラスチックフィルム基材の少なくとも一方の側に、易接着層を有する請求項1~3のいずれかに記載の透明導電性フィルム。
  8.  易接着層が、透明プラスチックフィルム基材と硬化型樹脂層との間、又は透明プラスチック基材と機能層との間の少なくとも一方の位置に配置される、請求項7に記載の透明導電性フィルム。
  9.  試験方法6で定まるON抵抗が10kΩ以下である請求項1~3のいずれかに記載の透明導電性フィルム。
     [試験方法6]
     ガラス基板の片面に厚みが20nmのインジウム-スズ複合酸化物導電膜(酸化スズ含有量:10質量%)が形成されたパネル板と透明導電性フィルムとを、直径30μmのエポキシビーズを介して、導電膜同士が対面する様に重ねて評価パネルを作成する。この評価パネルの透明導電性フィルム側を、先端が半径0.8mmの半球のポリアセタールであるペンで2.5Nの荷重をかけながら摺動する(往復回数5万回、摺動距離30mm、摺動速度180mm/秒)。摺動後、ペン荷重0.8Nで摺動部を押さえて電気的に接続した時の抵抗(ON抵抗)を測定する。
  10.  透明導電膜の表面における、JIS K5600-5-6:1999に準じた付着性試験において、透明導電膜の残存面積率が95%以上である、請求項1~3のいずれかに記載の透明導電性フィルム。
PCT/JP2022/023794 2021-06-22 2022-06-14 透明導電性フィルム WO2022270356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025177.XA CN117120255A (zh) 2021-06-22 2022-06-14 透明导电性膜
KR1020237038334A KR20240004480A (ko) 2021-06-22 2022-06-14 투명 도전성 필름
JP2023530344A JPWO2022270356A1 (ja) 2021-06-22 2022-06-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103501 2021-06-22
JP2021103501 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270356A1 true WO2022270356A1 (ja) 2022-12-29

Family

ID=84544534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023794 WO2022270356A1 (ja) 2021-06-22 2022-06-14 透明導電性フィルム

Country Status (5)

Country Link
JP (1) JPWO2022270356A1 (ja)
KR (1) KR20240004480A (ja)
CN (1) CN117120255A (ja)
TW (1) TW202307873A (ja)
WO (1) WO2022270356A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035195A (ja) * 2013-08-09 2015-02-19 大日本印刷株式会社 透明導電性積層体、タッチパネル及びタッチパネル用中間積層体
WO2020196015A1 (ja) * 2019-03-28 2020-10-01 東洋紡株式会社 透明導電性フィルム
WO2020262283A1 (ja) * 2019-06-27 2020-12-30 日東電工株式会社 透明導電性フィルム
WO2022004228A1 (ja) * 2020-06-30 2022-01-06 東洋紡株式会社 透明導電性フィルム
WO2022049898A1 (ja) * 2020-09-03 2022-03-10 東洋紡株式会社 透明導電性フィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167023B2 (ja) 2002-08-01 2008-10-15 帝人株式会社 タッチパネル用透明導電積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035195A (ja) * 2013-08-09 2015-02-19 大日本印刷株式会社 透明導電性積層体、タッチパネル及びタッチパネル用中間積層体
WO2020196015A1 (ja) * 2019-03-28 2020-10-01 東洋紡株式会社 透明導電性フィルム
WO2020262283A1 (ja) * 2019-06-27 2020-12-30 日東電工株式会社 透明導電性フィルム
WO2022004228A1 (ja) * 2020-06-30 2022-01-06 東洋紡株式会社 透明導電性フィルム
WO2022049898A1 (ja) * 2020-09-03 2022-03-10 東洋紡株式会社 透明導電性フィルム

Also Published As

Publication number Publication date
KR20240004480A (ko) 2024-01-11
CN117120255A (zh) 2023-11-24
JPWO2022270356A1 (ja) 2022-12-29
TW202307873A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
JP6753361B2 (ja) 透明導電性フィルム
WO2010035598A1 (ja) 透明導電性フィルム及びタッチパネル
JP6769345B2 (ja) 透明導電性フィルム
JP2023038265A (ja) 透明導電性フィルム
JP7160100B2 (ja) 透明導電性フィルム
JP5481992B2 (ja) 透明導電性フィルム
WO2022049898A1 (ja) 透明導電性フィルム
JP2011236508A (ja) 透明導電性フィルムの製造方法
JP7272488B2 (ja) 透明導電性フィルム
WO2022270356A1 (ja) 透明導電性フィルム
WO2023157563A1 (ja) 透明導電性フィルム
JP5509683B2 (ja) 透明導電性フィルム
JP6137433B1 (ja) 透明導電性フィルム
WO2022070610A1 (ja) 透明導電性フィルム
WO2022070609A1 (ja) 透明導電性フィルム
WO2021200709A1 (ja) 透明導電性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530344

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE