WO2022270186A1 - 正極活物質、被覆正極活物質、正極材料、および電池 - Google Patents

正極活物質、被覆正極活物質、正極材料、および電池 Download PDF

Info

Publication number
WO2022270186A1
WO2022270186A1 PCT/JP2022/020873 JP2022020873W WO2022270186A1 WO 2022270186 A1 WO2022270186 A1 WO 2022270186A1 JP 2022020873 W JP2022020873 W JP 2022020873W WO 2022270186 A1 WO2022270186 A1 WO 2022270186A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
solid electrolyte
battery
Prior art date
Application number
PCT/JP2022/020873
Other languages
English (en)
French (fr)
Inventor
勇祐 西尾
和弥 橋本
出 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023529701A priority Critical patent/JPWO2022270186A1/ja
Priority to EP22828105.1A priority patent/EP4362135A1/en
Priority to CN202280042949.0A priority patent/CN117561620A/zh
Publication of WO2022270186A1 publication Critical patent/WO2022270186A1/ja
Priority to US18/530,347 priority patent/US20240113294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to positive electrode active materials, coated positive electrode active materials, positive electrode materials, and batteries.
  • Patent Document 1 discloses a positive electrode comprising a positive electrode active material made of a composite oxide containing lithium, nickel, cobalt, and manganese, a positive electrode mixture containing a solid electrolyte, and an all-solid-state battery comprising the positive electrode. doing.
  • the present disclosure provides a positive electrode active material that can reduce battery resistance.
  • the full width at half maximum of the peak having the highest intensity within the range of diffraction angles 2 ⁇ of 40° or more and 50° or less
  • the ratio of the value to the value of the full width at half maximum of the peak corresponding to the (111) plane of the Si crystal powder measured under the same conditions is 2.00 or less.
  • a cathode active material is provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 3.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 according to Embodiment 4.
  • FIG. 3 is a graph showing X-ray diffraction patterns of cathode active materials according to Examples 1 to 8 and Comparative Example 1;
  • the present inventors have conducted intensive research on factors that increase the resistance of lithium ion batteries, and have found that the resistance of lithium ion batteries changes when the crystallinity of the active material changes. As a result of further studies based on this knowledge, the present inventors found that the resistance of lithium ion batteries can be reduced by increasing the crystallite size of the active material particles. At this time, the size of the crystallite size was judged from the size of the full width at half maximum of the peak in the diffraction pattern of the X-ray diffraction measurement.
  • the present inventors arrived at the following positive electrode active material of the present disclosure as a new positive electrode active material capable of reducing battery resistance.
  • the positive electrode active material according to the first aspect of the present disclosure is a positive electrode active material particle containing as a main component a composite oxide represented by the following compositional formula (1), LiNi x Me 1-x O 2 (1) here, x satisfies 0.5 ⁇ x ⁇ 1, Me is Co, Mn, Al, Mg, Ca, Sr, Ba, B, Ga, Y, Ce, Sm, Gd, Er, Ti, Zr, V, Nb, Ta, Sb, Bi, Cr, Mo, and is at least one selected from the group consisting of W,
  • the full width at half maximum of the peak having the highest intensity within the range of diffraction angles 2 ⁇ of 40° or more and 50° or less
  • the ratio of the value to the value of the full width at half maximum of the peak corresponding to the (111) plane of the Si crystal powder measured under the
  • the resistance of the battery can be lowered.
  • the full width at half maximum ratio of the peak may be 1.90 or less.
  • the resistance of the battery can be further reduced.
  • the coated positive electrode active material according to the third aspect of the present disclosure is A positive electrode active material according to the first or second aspect; a coating material that coats at least part of the surface of the positive electrode active material; including
  • the coating material is Lithium element (Li); at least one selected from the group consisting of oxygen element (O), fluorine element (F), and chlorine element (Cl); including.
  • the resistance of the battery can be reduced.
  • the positive electrode material according to the fourth aspect of the present disclosure is At least one selected from the group consisting of the positive electrode active material according to the first or second aspect and the coated positive electrode active material according to the third aspect; a solid electrolyte; including.
  • the resistance of the battery can be lowered.
  • the solid electrolyte may contain at least one selected from the group consisting of a sulfide solid electrolyte and a halide solid electrolyte.
  • the resistance of the battery can be further reduced.
  • the halide solid electrolyte is represented by the following compositional formula (2), Li ⁇ M ⁇ X ⁇ Formula (2) here, ⁇ , ⁇ , and ⁇ are each independently a value greater than 0;
  • the M is at least one selected from the group consisting of metal elements other than Li and metalloid elements,
  • the X may be at least one selected from the group consisting of F, Cl, Br and I.
  • the resistance of the battery can be further reduced.
  • M may contain yttrium.
  • the resistance of the battery can be further reduced.
  • the resistance of the battery can be further reduced.
  • the X may contain at least one selected from the group consisting of Cl and Br .
  • a positive electrode comprising a positive electrode material according to any one of the fourth to ninth aspects; a negative electrode; an electrolyte layer disposed between the positive electrode and the negative electrode.
  • the battery according to the tenth aspect can further reduce battery resistance.
  • the electrolyte layer includes a solid electrolyte having the same composition as the solid electrolyte contained in the positive electrode material. You can stay.
  • the battery according to the eleventh aspect can further improve charge-discharge efficiency.
  • the electrolyte layer may contain a halide solid electrolyte having a composition different from that of the solid electrolyte contained in the positive electrode material.
  • the battery according to the twelfth aspect can further reduce battery resistance.
  • the electrolyte layer may contain a sulfide solid electrolyte.
  • the battery according to the thirteenth aspect can further reduce battery resistance.
  • the positive electrode active material according to Embodiment 1 contains a composite oxide represented by the following compositional formula (1).
  • x satisfies 0.5 ⁇ x ⁇ 1.
  • Me is Co, Mn, Al, Mg, Ca, Sr, Ba, B, Ga, Y, Ce, Sm, Gd, Er, Ti, Zr, V, Nb, Ta, Sb, Bi, Cr, Mo , and at least one selected from the group consisting of W.
  • the ratio of the value of the full width at half maximum of to the value of the full width at half maximum of the peak corresponding to the (111) plane of the Si crystal powder measured under the same conditions is 2.00 or less.
  • the value of the full width at half maximum of the peak having the highest intensity within the range of the diffraction angle 2 ⁇ of 40° or more and 50° or less is Called “FWHM”. Furthermore, the value of the full width at half maximum of the peak corresponding to the (111) plane of the Si crystal powder measured under the same conditions is called “FWHM Si ".
  • a Si standard sample is used as the Si crystal powder measured under the same conditions as the X-ray diffraction measurement of the positive electrode active material according to the first embodiment.
  • a standard Si crystal powder "NIST640d” manufactured by NIST National Institute of Standards and Technology: US National Institute of Standards and Technology
  • the positive electrode active material according to Embodiment 1 the above condition that "the ratio of FWHM to FWHM Si is 2.00 or less" (that is, FWHM/FWHM Si ⁇ 2.00) is satisfied, so that crystallites size increases. As a result, in the positive electrode active material according to Embodiment 1, the grain boundaries can be reduced, so the grain boundary resistance is reduced. Therefore, the positive electrode active material in Embodiment 1 can reduce the resistance of the battery.
  • the peak having the highest intensity within the range of diffraction angles 2 ⁇ of 40° or more and 50° or less is derived from the diffraction of the (104) plane.
  • the (104) plane is known to be a crystal plane through which Li ions are inserted and extracted.
  • the peak with the highest intensity within the range of diffraction angles 2 ⁇ of 15° or more and 20° or less originates from the (003) plane.
  • the (003) plane is known to be a crystal plane in which Li ions are difficult to enter and exit. From the viewpoint of crystallite size, both peaks show similar trends, but considering the possibility of orientation, the peak of the (104) plane can more accurately evaluate the resistance of the battery.
  • the ratio of FWHM to FWHM Si may be 1.90 or less.
  • the positive electrode active material according to Embodiment 1 can have a larger crystallite size. Therefore, the grain boundaries are further reduced in the positive electrode active material according to Embodiment 1, and as a result, the grain boundary resistance can be further reduced. Therefore, by satisfying the condition of FWHM/FWHM Si ⁇ 1.90, the positive electrode active material according to Embodiment 1 can further reduce the resistance of the battery.
  • the positive electrode active material according to Embodiment 1 is specified not by the value of FWHM but by the ratio of FWHM to FWHM Si . Therefore, when specifying the active material according to Embodiment 1, it is not necessary to consider the measurement error caused by the measurement device.
  • the positive electrode active material according to Embodiment 1 may contain the composite oxide represented by the above compositional formula (1) as a main component.
  • the "main component” is the component that is contained most in terms of mass ratio.
  • the positive electrode active material according to Embodiment 1 may contain 75% by mass or more, or 90% by mass or more, of the composite oxide represented by the above compositional formula (1).
  • the positive electrode active material according to Embodiment 1 may consist of only the composite oxide represented by the above compositional formula (1).
  • the positive electrode active material according to Embodiment 1 may further contain, for example, a material that can be used as an active material for an all-solid-state lithium ion battery, in addition to the composite oxide represented by the above compositional formula (1).
  • LiCoO2 LiNixCo1 - xO2 ( 0 ⁇ x ⁇ 0.5), LiNi1 / 3Co1 /3Mn1/ 3 .
  • O 2 LiMnO 2
  • heteroelement-substituted Li—Mn spinels e.g., LiMn 1.5 Ni 0.5 O 4 , LiMn 1.5 Al 0.5 O 4 , LiMn 1.5 Mg 0.5 O 4 , LiMn 1.5 Co 0.5 O 4 , LiMn 1.5 Fe 0.5 O 4 , or LiMn1.5Zn0.5O4
  • LiMn 1.5 Ni 0.5 O 4 LiMn 1.5 Al 0.5 O 4
  • LiMn 1.5 Mg 0.5 O 4 LiMn 1.5 Mg 0.5 O 4
  • LiMn 1.5 Co 0.5 O 4 LiMn 1.5 Fe 0.5 O 4
  • LiMn1.5Zn0.5O4 lithium titanates
  • Li4Ti5O12 lithium metal phosphates (e.g. LiFePO4 , LiMnPO4 , LiCoPO4 , or LiNiPO4 ), transition metal oxides (e.g. V2 O5 , MoO3 ).
  • LiFePO4 lithium metal phosphates
  • LiMnPO4 LiMnPO4
  • LiCoPO4 LiCoPO4
  • LiNiPO4 transition metal oxides
  • LiCoO 2 LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 0.5), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , dissimilar element-substituted Li- At least one lithium-containing composite oxide selected from Mn spinel and lithium metal phosphate may be included.
  • the positive electrode active material according to Embodiment 1 is produced, for example, by a coprecipitation method.
  • the positive electrode active material according to Embodiment 1 can be produced by producing a precursor made of a metal oxide containing Ni and Me and sintering the precursor together with a lithium source.
  • a positive electrode active material with a small full width at half maximum that satisfies the condition that "the ratio of FWHM to FWHM Si is 2.00 or less" can be produced, for example, by controlling firing conditions such as firing temperature and firing time.
  • the firing temperature may be, for example, 760° C. or higher.
  • the positive electrode active material may be annealed in an oxygen atmosphere or the like. Moreover, when producing the positive electrode active material, the ratio of the Li raw material may be increased more than the stoichiometric ratio of the active material, and the active material may be fired. Further, annealing may be performed by adding a Li raw material.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions that duplicate those of the above-described first embodiment are omitted as appropriate.
  • a coated positive electrode active material according to Embodiment 2 of the present disclosure includes a positive electrode active material and a coating material that coats at least part of the surface of the positive electrode active material.
  • the positive electrode active material in the covering material that covers at least part of the surface is the positive electrode active material according to the first embodiment described in the first embodiment.
  • the coating material contains lithium element (Li) and at least one selected from the group consisting of oxygen element (O), fluorine element (F), and chlorine element (Cl).
  • the coated positive electrode active material according to Embodiment 2 contains the positive electrode active material according to Embodiment 1, it is possible to reduce the resistance of the battery. Furthermore, in the coated positive electrode active material according to Embodiment 2, at least part of the surface of the positive electrode active material is coated with a coating material. Therefore, the interfacial resistance between the positive electrode active material and, for example, the solid electrolyte can be reduced, so that the resistance of the battery can be further reduced. Moreover, by providing such a coating material on the surface, decomposition of the solid electrolyte due to contact between the solid electrolyte and the positive electrode active material can be suppressed.
  • the coating material may partially cover the surface of the positive electrode active material, or may cover the entire surface.
  • the coating material contains Li and at least one selected from the group consisting of O, F, and Cl.
  • the coating material may be, for example, an oxide solid electrolyte.
  • oxide solid electrolytes that can be used as coating materials include lithium niobate, lithium phosphate, lithium titanate, and lithium tungstate.
  • Oxide solid electrolytes have high ionic conductivity. Oxide solid electrolytes have excellent high potential stability. Therefore, by using the oxide solid electrolyte as the coating material, the resistance of the battery can be further reduced.
  • the coating material contains Li and at least one selected from the group consisting of F and Cl
  • the coating material may be, for example, a halide solid electrolyte.
  • the coating material may be, for example, an oxyhalide solid electrolyte.
  • the coating material may contain Li, O, and F.
  • the coating material may include at least one selected from the group consisting of lithium fluoride zirconate, lithium fluoride aluminumate, lithium fluoride titanate, and lithium fluoride magnesiumate.
  • the thickness of the coating material may be 1 nm or more and 100 nm or less.
  • the thickness of the coating material is 1 nm or more, direct contact of the positive electrode active material with, for example, the solid electrolyte can be suppressed, and reaction between the positive electrode active material and the solid electrolyte can be suppressed. Moreover, since the thickness of the coating material is 100 nm or less, the thickness of the coating material does not become too thick. Therefore, the resistance of the battery can be lowered.
  • the coated positive electrode active material according to Embodiment 2 can be produced, for example, by forming a coating material on the surfaces of particles of the positive electrode active material.
  • a known method can be used as a method for forming the coating material on the surface of the particles of the positive electrode active material.
  • a liquid phase coating method, a vapor phase coating method, a dry particle compounding method, and the like can be used.
  • a positive electrode material according to Embodiment 3 of the present disclosure includes at least one selected from the group consisting of a positive electrode active material and a coated positive electrode active material, and a solid electrolyte.
  • a positive electrode active material the positive electrode active material described in Embodiment 1 is used.
  • the coated positive electrode active material the coated positive electrode active material described in Embodiment 2 is used.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 3.
  • Cathode material 1000 includes a coated cathode active material including cathode active material 110 and coating material 120 , and solid electrolyte 100 .
  • the solid electrolyte contained in the solid electrolyte 100 may contain at least one selected from the group consisting of sulfide solid electrolytes and halide solid electrolytes.
  • the halide solid electrolyte may be a compound represented by the following compositional formula (2).
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • X is at least one selected from the group consisting of F, Cl, Br and I;
  • metal elements are B, Si, Ge, As, Sb and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and All elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • Li3YX6 Li2MgX4 , Li2FeX4 , Li ( Al, Ga, In )X4, Li3 ( Al, Ga, In ) X6 , etc.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • (A, B, C) means "at least one selected from the group consisting of A, B, and C.”
  • X may include at least one selected from the group consisting of Cl and Br.
  • M may contain yttrium (Y).
  • the Y -containing solid electrolyte may be, for example, a compound represented by the composition formula LiaM'bYcX6 .
  • M' is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • m indicates the valence of M'.
  • X is at least one selected from the group consisting of F, Cl, Br and I;
  • At least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used as M'.
  • solid electrolytes containing Y include Li3YF6 , Li3YCl6 , Li3YBr6 , Li3YI6 , Li3YBrCl5 , Li3YBr3Cl3 , Li3YBr5Cl , Li 3YBr5I , Li3YBr3I3 , Li3YBrI5 , Li3YClI5 , Li3YCl3I3 , Li3YCl5I , Li3YBr2Cl2I2 , Li3YBrCl4I , Li _ _ 2.7Y1.1Cl6 , Li2.5Y0.5Zr0.5Cl6 , Li2.5Y0.3Zr0.7Cl6 , etc. can be used .
  • the resistance of the battery can be further reduced.
  • the halide solid electrolyte does not have to contain sulfur. According to the above configuration, generation of hydrogen sulfide gas can be suppressed. Therefore, it is possible to realize a battery with improved safety.
  • the shapes of the solid electrolyte 100 and the positive electrode active material 110 in Embodiment 3 are not particularly limited, and may be acicular, spherical, oval, or the like, for example.
  • the shape of solid electrolyte 100 and positive electrode active material 110 may be particulate.
  • the median diameter may be 100 ⁇ m or less.
  • the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode material 1000 . This improves the charge/discharge characteristics of the battery.
  • the median diameter of solid electrolyte 100 may be 10 ⁇ m or less.
  • the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state.
  • the median diameter of solid electrolyte 100 may be smaller than the median diameter of positive electrode active material 110 .
  • the solid electrolyte 100 and the positive electrode active material 110 can form a better dispersed state.
  • the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material 110 When the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode material 1000 . As a result, the charge/discharge characteristics of the battery are improved.
  • the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is sufficiently ensured. Therefore, it is possible to operate the battery at a high output.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the particles of the solid electrolyte 100 and the particles of the positive electrode active material 110 may be in contact with each other as shown in FIG. At this time, the coating material 120 and the positive electrode active material 110 are in contact with each other.
  • the positive electrode material 1000 in Embodiment 3 may include a plurality of solid electrolyte 100 particles and a plurality of positive electrode active material 110 particles.
  • the content of solid electrolyte 100 and the content of positive electrode active material 110 in positive electrode material 1000 in Embodiment 3 may be the same or different.
  • Embodiment 4 will be described below. Descriptions overlapping those of the first to third embodiments described above will be omitted as appropriate.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 4.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 4.
  • a battery 2000 according to Embodiment 4 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 includes a positive electrode material 1000 .
  • the positive electrode material 1000 is the positive electrode material described in the third embodiment.
  • the electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203 .
  • the volume ratio "v1:100-v1" of the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 may satisfy 30 ⁇ v1 ⁇ 95.
  • 30 ⁇ v1 the energy density of battery 2000 is sufficiently ensured.
  • v1 ⁇ 95 high output operation is possible.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, the energy density of the battery 2000 is sufficiently ensured. When the thickness of the positive electrode 201 is 500 ⁇ m or less, high output operation is possible.
  • the electrolyte layer 202 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • the solid electrolyte the material exemplified as the material of the solid electrolyte 100 in the third embodiment may be used. That is, electrolyte layer 202 may contain a solid electrolyte having the same composition as solid electrolyte 100 contained in positive electrode material 1000 .
  • the charging and discharging efficiency of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain a halide solid electrolyte having a composition different from that of the solid electrolyte contained in the positive electrode material 1000 .
  • the electrolyte layer 202 may contain a sulfide solid electrolyte.
  • the electrolyte layer 202 may contain only one solid electrolyte selected from the group of solid electrolytes described above, or may contain two or more solid electrolytes selected from the group of solid electrolytes described above. .
  • a plurality of solid electrolytes have compositions different from each other.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of electrolyte layer 202 is 1 ⁇ m or more, short circuit between positive electrode 201 and negative electrode 203 is unlikely to occur. When the thickness of the electrolyte layer 202 is 300 ⁇ m or less, operation at high output is possible.
  • the negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used for the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal, lithium alloys, and the like.
  • carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, amorphous carbon, and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), silicon compounds, or tin compounds can be preferably used.
  • the negative electrode 203 may contain a solid electrolyte material. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and operation at high output becomes possible.
  • the solid electrolyte the materials exemplified in Embodiment 3 may be used. That is, the negative electrode 203 may contain a solid electrolyte having the same composition as the solid electrolyte contained in the positive electrode material 1000 .
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material and the solid electrolyte material can form a good dispersion state. As a result, the charge/discharge characteristics of the battery are improved.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material is sufficiently ensured. Therefore, it is possible to operate the battery at a high output.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material. Thereby, a good dispersion state of the negative electrode active material and the solid electrolyte material can be formed.
  • the volume ratio "v2:100-v2" of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
  • 30 ⁇ v2 the energy density of battery 2000 is sufficiently ensured.
  • v2 ⁇ 95 high output operation is possible.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, the energy density of the battery 2000 is sufficiently ensured. When the thickness of the negative electrode 203 is 500 ⁇ m or less, high output operation is possible.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene. Copolymers of two or more selected materials may be used. Also, two or more selected from these may be mixed and used as a binder.
  • At least one selected from the group consisting of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymeric compounds such as polyaniline, polypyrrole, polythiophene, and the like. Cost reduction can be achieved when a carbon conductive aid is used.
  • the battery in Embodiment 4 can be configured as batteries of various shapes such as coin type, cylindrical type, rectangular type, sheet type, button type, flat type, and laminated type.
  • Example 1>> [Preparation of positive electrode active material] Nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in water, and nickel, cobalt, and manganese were coprecipitated with an alkaline aqueous solution containing sodium hydroxide to prepare hydroxides of nickel, cobalt, and manganese. The hydroxide was filtered, dried and pyrolyzed to produce an oxide containing nickel, cobalt and manganese in the desired proportions. This oxide and lithium hydroxide were mixed and fired at 850° C. in an oxygen atmosphere to prepare a positive electrode active material LiNi 0.8 (Co, Mn) 0.2 O 2 . The LiNi 0.8 (Co, Mn) 0.2 O 2 thus produced is hereinafter referred to as NCM-1. Thus, the positive electrode active material of Example 1 was obtained.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of the cathode active material according to Example 1.
  • FIG. 3 is a graph showing the X-ray diffraction pattern of NCM-1 according to Example 1.
  • FIG. 3 is a graph showing the X-ray diffraction pattern of NCM-1 according to Example 1.
  • the X-ray diffraction pattern of the solid electrolyte material according to Example 1 was measured using an X-ray diffractometer (MiniFlex 600, manufactured by Rigaku) in a dry environment with a dew point of -50°C or lower. Measurements were performed by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelengths of 1.5405 ⁇ and 1.5444 ⁇ ) as the X-ray source. The measured angular interval was 0.01°. The divergence angle of the divergence slit was 0.25°. The slit width of the length limiting slit was 5 mm.
  • the value of the diffraction angle 2 ⁇ of the peak having the highest intensity within the range of the diffraction angle 2 ⁇ of 40° or more and 50° or less was defined as 2 ⁇ top , and the intensity of the peak was defined as Itop .
  • the average intensity at the diffraction angle 2 ⁇ from 40° to 41° was taken as I bg . That is, I bg represents the baseline intensity.
  • the half value I htop of I top was set to [(I top ⁇ I bg )/2+I bg ].
  • the diffraction angle 2 ⁇ at which the intensity is closest to Ihtop within the range of the diffraction angle 2 ⁇ of 40° or more and 2 ⁇ top or less was defined as 2 ⁇ L .
  • the diffraction angle 2 ⁇ at which the intensity is closest to Ihtop within the range of 2 ⁇ top or more and 50° or less was defined as 2 ⁇ H .
  • FWHM is the difference between 2 ⁇ H and 2 ⁇ L .
  • the FWHM of the positive electrode active material according to Example 1 was 0.24 deg.
  • the Si crystal powder was subjected to X-ray diffraction measurement under the same conditions as those of the positive electrode active material according to Example 1.
  • the standard sample NIST640d was used as the Si crystal powder.
  • the value of the diffraction angle 2 ⁇ of the peak having the highest intensity within the range of diffraction angles 2 ⁇ of 28.0° or more and 28.6° or less was defined as 2 ⁇ top , and the intensity of the peak was defined as Itop .
  • the intensity at the diffraction angle 2 ⁇ of 28.0° was defined as I bg .
  • the FWHM Si of the Si crystal powder was 0.16 deg.
  • metal Li thinness: 200 ⁇ m
  • this is pressure-molded at a pressure of 80 MPa, whereby the positive electrode, the solid electrolyte layer, and the negative electrode are separated from each other.
  • a laminate was produced.
  • Example 1 was produced by sealing the insulating outer cylinder with an insulating ferrule to isolate the inside of the insulating outer cylinder from the outside atmosphere.
  • the battery was placed in a constant temperature bath at 25°C and connected to a charge/discharge device.
  • Vo is the voltage before discharging for 5 seconds
  • V is the voltage after discharging for 5 seconds
  • S is the area where the positive electrode and the solid electrolyte layer are in contact
  • I is 6.5 mA.
  • the DCR of the battery of Example 1 was 58 ⁇ cm 2 .
  • Examples 2 to 8>> [Preparation of positive electrode active material]
  • a mixture of an oxide containing nickel, cobalt, and manganese and lithium hydroxide was prepared and fired at 825° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Mn). ) 0.2 O 2 was made.
  • the positive electrode active material NCM-2 of Example 2 was obtained.
  • Example 3 A mixture of an oxide containing nickel, cobalt, and manganese and lithium hydroxide was prepared in the same manner as in Example 1 and fired at 800° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Mn). 0.2 O2 was made. Thus, the positive electrode active material NCM-3 of Example 3 was obtained.
  • Example 4 A mixture of an oxide containing nickel, cobalt, and manganese and lithium hydroxide was prepared in the same manner as in Example 1 and fired at 775° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Mn). 0.2 O2 was made. Thus, the positive electrode active material NCM-4 of Example 4 was obtained.
  • Nickel sulfate, cobalt sulfate, and sodium aluminate were dissolved in water, and nickel, cobalt, and aluminum were coprecipitated with an alkaline aqueous solution containing sodium hydroxide to prepare hydroxides of nickel, cobalt, and aluminum.
  • the hydroxide was filtered, dried and pyrolyzed to produce an oxide containing the desired proportions of nickel, cobalt and aluminum.
  • This oxide and lithium hydroxide were mixed and fired at 850° C. in an oxygen atmosphere to prepare a positive electrode active material LiNi 0.8 (Co, Al) 0.2 O 2 .
  • the LiNi 0.8 (Co, Al) 0.2 O 2 thus produced is hereinafter referred to as NCA-1.
  • NCA-1 the positive electrode active material of Example 5 was obtained.
  • Example 6 A mixture of an oxide containing nickel, cobalt, and aluminum and lithium hydroxide was prepared in the same manner as in Example 5 and fired at 825° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Al). 0.2 O2 was made. Thus, the positive electrode active material NCA-2 of Example 6 was obtained.
  • Example 7 A mixture of an oxide containing nickel, cobalt, and aluminum and lithium hydroxide was prepared in the same manner as in Example 5 and fired at 800° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Al). 0.2 O2 was made. Thus, the positive electrode active material NCA-3 of Example 7 was obtained.
  • Example 8 A mixture of an oxide containing nickel, cobalt, and aluminum and lithium hydroxide was prepared in the same manner as in Example 5 and fired at 775° C. in an oxygen atmosphere to form a positive electrode active material LiNi 0.8 (Co, Al). 0.2 O2 was made. Thus, the positive electrode active material NCA-4 of Example 8 was obtained.
  • FIG. 3 is a graph showing X-ray diffraction patterns of cathode active materials according to Examples 2-8.
  • the full width at half maximum of the produced positive electrode active materials of Examples 2 to 8 was measured in the same manner as in Example 1.
  • the full widths at half maximum of the positive electrode active materials of Examples 2 to 8 are shown in Table 1 below.
  • Positive electrode materials of Examples 2 to 8 were produced in the same manner as in Example 1, except that the positive electrode active materials of Examples 2 to 8 were used as the positive electrode active materials, respectively.
  • Batteries of Examples 2 to 8 were produced in the same manner as in Example 1, except that the positive electrode materials of Examples 2 to 8 were used as positive electrode materials.
  • [Measurement of full width at half maximum] 3 is a graph showing an X-ray diffraction pattern of the positive active material according to Comparative Example 1.
  • FIG. The full width at half maximum of the produced positive electrode active material of Comparative Example 1 was measured in the same manner as in Example 1.
  • the full width at half maximum of the positive electrode active material of Comparative Example 1 is shown in Table 1 below.
  • a positive electrode material of Comparative Example 1 was produced in the same manner as in Example 1, except that the positive electrode active material of Comparative Example 1 was used as the positive electrode active material.
  • a battery of Comparative Example 1 was produced in the same manner as in Example 1, except that the positive electrode material of Comparative Example 1 was used as the positive electrode material.
  • the positive electrode active material of the present disclosure can be used, for example, for the positive electrode of batteries such as all-solid-state batteries.
  • Electrode material 100 Solid electrolyte 110 Positive electrode active material 120 Coating material 2000 Battery 201 Positive electrode 202 Electrolyte layer 203 Negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極活物質110は、組成式(1):LiNixMe1-x2により表される複合酸化物を含む。ここで、xは、0.5≦x<1を満たし、Meは、Co、Mn、Al、Mg、Ca、Sr、Ba、B、Ga、Y、Ce、Sm、Gd、Er、Ti、Zr、V、Nb、Ta、Sb、Bi、Cr、Mo、およびWからなる群より選択される少なくとも1つである。Cu-Kα線を用いた正極活物質110のX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値に対する比は、2.00以下である。

Description

正極活物質、被覆正極活物質、正極材料、および電池
 本開示は、正極活物質、被覆正極活物質、正極材料、および電池に関する。
 特許文献1は、リチウム、ニッケル、コバルト、およびマンガンを含む複合酸化物からなる正極活物質と、固体電解質とを含む正極合剤を備えた正極と、その正極を備えた全固体電池とを開示している。
特開2019-125510号公報
 本開示は、電池の抵抗を低下させることができる正極活物質を提供する。
 本開示は、
 下記の組成式(1)により表される複合酸化物を含む正極活物質であって、
 LiNixMe1-x2・・・(1)
 ここで、
  xは、0.5≦x<1を満たし、
  Meは、Co、Mn、Al、Mg、Ca、Sr、Ba、B、Ga、Y、Ce、Sm、Gd、Er、Ti、Zr、V、Nb、Ta、Sb、Bi、Cr、Mo、およびWからなる群より選択される少なくとも1つであり、
 Cu-Kα線を用いた前記正極活物質のX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値に対する比は、2.00以下である、
正極活物質を提供する。
 本開示によれば、電池の抵抗を低下させることができる正極活物質を提供できる。
図1は、実施の形態3における正極材料1000の概略構成を示す断面図である。 図2は、実施の形態4における電池2000の概略構成を示す断面図である。 図3は、実施例1から8および比較例1による正極活物質のX線回折パターンを示すグラフである。
 (本開示の基礎となった知見)
 本発明者らは、リチウムイオン電池の抵抗を増大させる要因について鋭意研究を行い、活物質の結晶性が変化すると、リチウムイオン電池の抵抗が変化することを知見した。本発明者らは、当該知見に基づきさらなる検討を進めところ、活物質粒子の結晶子サイズを大きくすることで、リチウムイオン電池の抵抗を低減できることを知見した。このとき、結晶子サイズの大きさは、X線回折測定の回折パターンによるピークの半値全幅の大きさによって判断した。
 以上の知見に基づき、本発明者らは、電池の抵抗を低下させることができる新たな正極活物質として、以下の本開示の正極活物質に到達した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る正極活物質は、下記の組成式(1)により表される複合酸化物を主成分として含む正極活物質粒子であって、
 LiNixMe1-x2・・・(1)
 ここで、
  xは、0.5≦x<1を満たし、
  Meは、Co、Mn、Al、Mg、Ca、Sr、Ba、B、Ga、Y、Ce、Sm、Gd、Er、Ti、Zr、V、Nb、Ta、Sb、Bi、Cr、Mo、およびWからなる群より選択される少なくとも1つであり、
 Cu-Kα線を用いた前記正極活物質のX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値に対する比は、2.00以下である。
 第1態様に係る正極活物質によれば、電池の抵抗を低下させることができる。
 本開示の第2態様において、例えば、第1態様に係る正極活物質では、前記ピークの半値全幅の比が、1.90以下であってもよい。
 第2態様に係る正極活物質によれば、電池の抵抗をより低下させることができる。
 本開示の第3態様に係る被覆正極活物質は、
 第1または第2態様に係る正極活物質と、
 前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、
を含み、
 前記被覆材料は、
  リチウム元素(Li)と、
  酸素元素(O)、フッ素元素(F)、および塩素元素(Cl)からなる群より選択される少なくとも1つと、
を含む。
 第3態様に係る被覆正極活物質によれば、電池の抵抗を低下させることができる。
 本開示の第4態様に係る正極材料は、
 第1または第2態様に係る正極活物質、および、第3態様に係る被覆正極活物質からなる群より選択される少なくとも1つと、
 固体電解質と、
を含む。
 第4態様に係る正極材料によれば、電池の抵抗を低下させることができる。
 本開示の第5態様において、例えば、第4態様に係る正極材料では、前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選択される少なくとも1つを含んでいてもよい。
 第5態様に係る正極材料によれば、電池の抵抗をより低下させることができる。
 本開示の第6態様において、例えば、第5態様に係る正極材料では、前記ハロゲン化物固体電解質は、下記の組成式(2)により表され、
 Liαβγ ・・・式(2)
 ここで、
 α、β、およびγは、それぞれ独立して、0より大きい値であり、
 前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであってもよい。
 第6態様に係る正極材料によれば、電池の抵抗をより低下させることができる。
 本開示の第7態様において、例えば、第6態様に係る正極材料では、前記Mは、イットリウムを含んでいてもよい。
 第7態様に係る正極材料によれば、電池の抵抗をより低下させることができる。
 本開示の8態様において、例えば、第6または第7態様に係る正極材料では、
 前記組成式(2)において、
 2.5≦α≦3、
 1≦β≦1.1、および
 γ=6、
が満たされてもよい。
 第8態様に係る正極材料によれば、電池の抵抗をより低下させることができる。
 本開示の第9態様において、例えば、第6から第8態様のいずれか1つに係る正極材料では、前記Xは、ClおよびBrからなる群より選択される少なくとも1つを含んでいてもよい。
 本開示の10態様に係る電池では、
 第4から第9態様のいずれかに1つの態様に係る正極材料を含む正極と、
 負極と、
 前記正極と前記負極との間に配置された電解質層と、を備える。
 第10態様に係る電池は、電池の抵抗をより低下させることができる。
 本開示の第11態様において、例えば、第6から第8態様のいずれか1つの態様に係る電池では、前記電解質層は、前記正極材料に含まれる前記固体電解質と同じ組成を有する固体電解質を含んでいてもよい。
 第11態様に係る電池は、充放電効率をより向上させることができる。
 本開示の第12態様において、例えば、第10または第11態様に係る電池では、前記電解質層は、前記正極材料に含まれる前記固体電解質と異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。
 第12態様に係る電池は、電池の抵抗をより低下させることができる。
 本開示の第13態様において、例えば、第10から第12態様に係る電池では、前記電解質層は、硫化物固体電解質を含んでいてもよい。
 第13態様に係る電池は、電池の抵抗をより低下させることができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。本開示は、以下の実施の形態に限定されない。
 (実施の形態1)
 実施の形態1に係る正極活物質は、下記の組成式(1)により表される複合酸化物を含む。
 LiNixMe1-x2 ・・・(1)
 ここで、上記組成式(1)において、xは、0.5≦x<1を満たす。また、Meは、Co、Mn、Al、Mg、Ca、Sr、Ba、B、Ga、Y、Ce、Sm、Gd、Er、Ti、Zr、V、Nb、Ta、Sb、Bi、Cr、Mo、およびWからなる群より選択される少なくとも1つである。
 Cu-Kα線を用いた実施の形態1による正極活物質のX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値に対する比は、2.00以下である。以下、Cu-Kα線を用いたX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値は、「FWHM」と呼ばれる。さらに、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値は、「FWHMSi」と呼ばれる。ここで、実施の形態1に係る正極活物質のX線回折測定と同一の条件で測定されるSi結晶粉末には、Si標準試料が用いられる。Si標準試料として、NIST(National Institute of Standards and Technology:米国国立標準技術研究所)製の標準Si結晶粉末「NIST640d」が用いられる。
 実施の形態1における正極活物質では、上記の「FWHMSiに対するFWHMの比が2.00以下である」という条件(すなわち、FWHM/FWHMSi≦2.00)が充足されることにより、結晶子サイズが大きくなる。その結果、実施の形態1に係る正極活物質では、結晶粒界を減少させることができるので、粒界抵抗が低減される。したがって、実施の形態1における正極活物質では、電池の抵抗を低下させることができる。
 正極活物質として一般的に用いられる層状岩塩構造のリチウム複合酸化物において、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークは、(104)面の回折に由来する。(104)面は、Liイオンが出し入れされる結晶面であることが知られている。一方、15°以上かつ20°以下の回折角2θの範囲内で最も高い強度を有するピークは、(003)面に由来する。(003)面は、Liイオンが出し入れされ難い結晶面であることが知られている。結晶子サイズの観点では、どちらのピークでも同様の傾向を示すが、配向性の可能性などを考慮すると、(104)面のピークの方が、電池の抵抗をより正確に評価できる。
 実施の形態1に係る正極活物質において、FWHMSiに対するFWHMの比は1.90以下であってもよい。これにより、実施の形態1に係る正極活物質は、より大きい結晶子サイズを有することができる。したがって、実施の形態1に係る正極活物質において結晶粒界がさらに減少し、その結果、粒界抵抗をより低減することができる。したがって、実施の形態1に係る正極活物質は、FWHM/FWHMSi≦1.90の条件を満たすことにより、電池の抵抗をより低下させることができる。
 実施の形態1に係る正極活物質は、FWHMの値ではなく、FWHMSiに対するFWHMの比によって特定される。したがって、実施の形態1に係る活物質材料を特定する際に、測定装置に起因する測定誤差を考慮しなくてもよい。
 実施の形態1に係る正極活物質は、上記組成式(1)により表される複合酸化物を主成分として含んでいてもよい。ここで、「主成分」とは、質量比で最も多く含まれる成分のことである。実施の形態1に係る正極活物質は、上記組成式(1)により表される複合酸化物を75質量%以上含んでいてもよく、90質量%以上含んでいてもよい。実施の形態1に係る正極活物質は、上記組成式(1)により表される複合酸化物のみからなっていてもよい。
 また、実施の形態1に係る正極活物質は、上記組成式(1)により表される複合酸化物以外に、例えば全固体リチウムイオン電池の活物質として使用可能な材料を、さらに含んでもよい。
 全固体リチウムイオン電池の活物質として使用可能な材料の例は、LiCoO2、LiNixCo1-x2(0<x<0.5)、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル(例えばLiMn1.5Ni0.54、LiMn1.5Al0.54、LiMn1.5Mg0.54、LiMn1.5Co0.54、LiMn1.5Fe0.54、またはLiMn1.5Zn0.54)、チタン酸リチウム(例えばLi4Ti512)、リン酸金属リチウム(例えばLiFePO4、LiMnPO4、LiCoPO4、またはLiNiPO4)、遷移金属酸化物(例えばV25、MoO3)である。
 上記の材料の中でも、LiCoO2、LiNixCo1-x2(0<x<0.5)、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル、およびリン酸金属リチウムから選ばれる少なくとも1つのリチウム含有複合酸化物が含まれていてもよい。
 実施の形態1に係る正極活物質は、例えば、共沈法によって作製される。共沈法では、例えば、NiおよびMeを含む金属酸化物からなる前駆体を作製し、その前駆体をリチウム源とともに焼成することによって、実施の形態1に係る正極活物質が作製され得る。「FWHMSiに対するFWHMの比が2.00以下である」という条件を満たすような半値全幅の小さい正極活物質は、例えば、焼成温度および焼成時間等の焼成条件を制御することによって作製され得る。一例として、MeとしてCoおよびMnを含む組成を有する正極活物質、およびMeとしてCoおよびAlを含む組成を有する正極活物質の作製においては、焼成温度を、例えば760℃以上としてもよい。
 半値全幅のより小さい正極活物質を得るために、正極活物質を酸素雰囲気などでアニールしてもよい。また、正極活物質の作製時に、活物質の化学量論比よりもLi原料の比率を多くして焼成してもよい。また、Li原料を加えてアニールしてもよい。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 本開示の実施の形態2に係る被覆正極活物質は、正極活物質と、当該正極活物質の表面の少なくとも一部を被覆する被覆材料と、を含む。表面の少なくとも一部を被覆する被覆材料における正極活物質は、実施の形態1で説明した実施の形態1に係る正極活物質である。被覆材料は、リチウム元素(Li)と、酸素元素(O)、フッ素元素(F)、および塩素元素(Cl)からなる群より選択される少なくとも1つと、を含む。
 実施の形態2に係る被覆正極活物質は、実施の形態1に係る正極活物質を含んでいるので、電池の抵抗を低下させることができる。さらに、実施の形態2に係る被覆正極活物質は、正極活物質の表面の少なくとも一部が被覆材料によって被覆されている。したがって、正極活物質と例えば固体電解質との界面抵抗を低減することができるので、電池の抵抗をより低下させることができる。また、このような被覆材料が表面に設けられることで、固体電解質と正極活物質とが接触することによる固体電解質の分解も抑制できる。
 被覆材料は、正極活物質の表面を部分的に被覆していてもよいし、表面全体を被覆していてもよい。
 上述のとおり、被覆材料は、Liと、O、F、およびClからなる群より選択される少なくとも1つと、を含んでいる。
 被覆材料がLiと、Oとを含む場合、被覆材料は、例えば酸化物固体電解質であってもよい。被覆材料として使用できる酸化物固体電解質としては、例えば、ニオブ酸リチウム、リン酸リチウム、チタン酸リチウム、タングステン酸リチウムなどである。酸化物固体電解質は、高いイオン伝導度を有する。酸化物固体電解質は、優れた高電位安定性を有する。このため、酸化物固体電解質を被覆材料として用いることで、電池の抵抗をより低下させることができる。
 被覆材料がLiと、FおよびClからなる群より選択される少なくとも1つとを含む場合、被覆材料は、例えばハロゲン化物固体電解質であってもよい。
 被覆材料がLiと、Oと、FおよびClからなる群より選択される少なくとも1つとを含む場合、被覆材料は、例えばオキシハロゲン化物固体電解質であってもよい。被覆材料は、Liと、Oと、Fとを含んでいてもよい。この場合、被覆材料は、フッ化ジルコニウム酸リチウム、フッ化アルミニウム酸リチウム、フッ化チタン酸リチウム、およびフッ化マグネシウム酸リチウムからなる群より選択される少なくとも1つを含んでもよい。
 被覆材料の厚みは、1nm以上かつ100nm以下であってもよい。
 被覆材料の厚みが1nm以上であることで、正極活物質が例えば固体電解質と直接接触することを抑制し、正極活物質と固体電解質との反応を抑制できる。また、被覆材料の厚みが100nm以下であることで、被覆材料の厚みが厚くなり過ぎない。このため、電池の抵抗を低下させることができる。
 実施の形態2に係る被覆正極活物質は、例えば、正極活物質の粒子の表面に被覆材料を形成することによって作製し得る。正極活物質の粒子の表面に被覆材料を形成する方法として、公知の方法を使用し得る。例えば、液相被覆法、気相被覆法、および乾式粒子複合化法などを用いることができる。
 (実施の形態3)
 以下、実施の形態3が説明される。上述の実施の形態1および2と重複する説明は、適宜、省略される。
 本開示の実施の形態3に係る正極材料は、正極活物質および被覆正極活物質からなる群より選択される少なくとも1つと、固体電解質とを含む。正極活物質としては、実施の形態1で説明された正極活物質が用いられる。被覆正極活物質としては、実施の形態2で説明された被覆正極活物質が用いられる。
 図1は、実施の形態3に係る正極材料1000概略構成を示す断面図である。なお、図1に示された正極材料1000では、正極活物質110および被覆材料120を含む被覆正極活物質が用いられている。正極材料1000は、正極活物質110および被覆材料120を含む被覆正極活物質と、固体電解質100とを含んでいる。
 固体電解質100に含まれる固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選択される少なくとも1つを含んでいてもよい。
 固体電解質100がハロゲン化物固体電解質を含む場合、当該ハロゲン化物固体電解質は、下記の組成式(2)により表される化合物であってもよい。
 Liαβγ ・・・式(2)
 ここで、α、β、およびγは、0より大きい値である。Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つである。Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 ここで、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く周期表13族から16族中に含まれるすべての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン元素と無機化合物を形成した際に、カチオンとなり得る元素群である。
 固体電解質100として、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al、Ga、In)X4、Li3(Al、Ga、In)X6、などが用いられ得る。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 本開示において、「(A,B,C)」は、「A、B、およびCからなる群より選択される少なくとも1つ」を意味する。
 以上の構成によれば、電池の抵抗を低下させることができる。そのため、電池の充放電特性が向上する。
 組成式(2)は、2.5≦α≦3、1≦β≦1.1、およびγ=6、を満たしてもよい。
 組成式(2)において、Xは、ClおよびBrからなる群より選択される少なくとも1つを含んでもよい。
 組成式(2)において、Mは、イットリウム(Y)を含んでもよい。
 Yを含む固体電解質として、例えば、LiaM’bc6の組成式で表される化合物であってもよい。ここで、a+mb+3c=6、かつ、c>0を満たす。M’は、LiおよびY以外の金属元素および半金属元素からなる群より選択される少なくとも1つである。mはM’の価数を示す。Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 M’として、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つを用いても良い。
 Yを含む固体電解質として具体的には、Li3YF6、Li3YCl6、Li3YBr6、Li3YI6、Li3YBrCl5、Li3YBr3Cl3、Li3YBr5Cl、Li3YBr5I、Li3YBr33、Li3YBrI5、Li3YClI5、Li3YCl33、Li3YCl5I、Li3YBr2Cl22、Li3YBrCl4I、Li2.71.1Cl6、Li2.50.5Zr0.5Cl6、Li2.50.3Zr0.7Cl6、など、が用いられ得る。
 以上の構成によれば、電池の抵抗をより低下させることができる。
 ハロゲン化物固体電解質は、硫黄を含んでいなくてもよい。以上の構成によれば、硫化水素ガスの発生を抑制できる。そのため、安全性を向上させた電池を実現することが可能となる。
 また、実施の形態3における、固体電解質100および正極活物質110の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、固体電解質100および正極活物質110の形状は、粒子状であってもよい。
 例えば、実施の形態3における固体電解質100の形状が粒子状(例えば、球状)の場合、メジアン径は、100μm以下であってもよい。
 固体電解質100のメジアン径が100μm以下である場合、正極活物質110と固体電解質100とが、正極材料1000において良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。
 また、実施の形態3においては、固体電解質100のメジアン径は10μm以下であってもよい。
 以上の構成によれば、正極材料1000において、正極活物質110と固体電解質100とが、良好な分散状態を形成できる。
 また、実施の形態3においては、固体電解質100のメジアン径は、正極活物質110のメジアン径より小さくてもよい。
 以上の構成によれば、正極材料1000において固体電解質100と正極活物質110とが、より良好な分散状態を形成できる。
 正極活物質110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 正極活物質110のメジアン径が0.1μm以上である場合、正極材料1000において、正極活物質110と固体電解質100とが、良好な分散状態を形成できる。この結果、電池の充放電特性が向上する。
 また、正極活物質110のメジアン径が100μm以下である場合、正極活物質110内のリチウムの拡散速度が十分に確保される。このため、電池の高出力での動作が可能となる。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 なお、実施の形態3における正極材料1000においては、固体電解質100の粒子と正極活物質110の粒子とは、図1に示されるように、互いに、接触していてもよい。このとき、被覆材料120と正極活物質110とは、互いに、接触する。
 また、実施の形態3における正極材料1000は、複数の固体電解質100の粒子と、複数の正極活物質110の粒子と、を含んでもよい。
 また、実施の形態3における正極材料1000における、固体電解質100の含有量と正極活物質110の含有量とは、互いに、同じであってもよいし、異なってもよい。
 (実施の形態4)
 以下、実施の形態4が説明される。上述の実施の形態1から3と重複する説明は、適宜、省略される。
 図2は、実施の形態4における電池2000の概略構成を示す断面図である。
 実施の形態4における電池2000は、正極201と、電解質層202と、負極203と、を備える。
 正極201は、正極材料1000を含む。正極材料1000は、実施の形態3で説明された正極材料である。
 電解質層202は、正極201と負極203との間に配置される。
 以上の構成によれば、電池の抵抗を低下させることができる。
 正極201に含まれる、正極活物質110および固体電解質100の体積比率「v1:100-v1」について、30≦v1≦95が満たされてもよい。30≦v1が満たされる場合、電池2000のエネルギー密度が十分に確保される。また、v1≦95が満たされる場合、高出力での動作が可能となる。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極201の厚みが10μm以上である場合、電池2000のエネルギー密度が十分に確保される。正極201の厚みが500μm以下である場合、高出力での動作が可能となる。
 電解質層202は、電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料である。すなわち、電解質層202は、固体電解質層であってもよい。固体電解質としては、実施の形態3において固体電解質100の材料として例示した材料を用いてもよい。つまり、電解質層202は、正極材料1000に含まれる固体電解質100の組成と同じ組成の固体電解質を含んでいてもよい。
 以上の構成によれば、電池2000の充放電効率をより向上させることができる。
 電解質層202は、正極材料1000に含まれた固体電解質の組成とは異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。
 電解質層202は、硫化物固体電解質を含んでもよい。
 電解質層202は、上述した固体電解質の群から選択される1種の固体電解質のみを含んでいてもよく、上述した固体電解質の群から選択される2種以上の固体電解質を含んでいてもよい。複数の固体電解質は、互いに異なる組成を有する。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでいてもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上である場合には、正極201と負極203とが短絡しにくい。電解質層202の厚みが300μm以下である場合には、高出力での動作が可能となる。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用され得る。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、または錫化合物、を好適に使用できる。
 負極203は、固体電解質材料を含んでもよい。以上の構成によれば、負極203内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。固体電解質としては、実施の形態3において例示した材料を用いてもよい。つまり、負極203は、正極材料1000に含まれた固体電解質の組成と同じ組成の固体電解質を含んでいてもよい。
 負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 負極活物質のメジアン径が0.1μm以上である場合、負極活物質と固体電解質材料とが、良好な分散状態を形成できる。この結果、電池の充放電特性が向上する。
 また、負極活物質のメジアン径が100μm以下である場合、負極活物質内のリチウムの拡散速度が十分に確保される。このため、電池の高出力での動作が可能となる。
 負極活物質のメジアン径は、固体電解質材料のメジアン径よりも、大きくてもよい。これにより、負極活物質と固体電解質材料との良好な分散状態を形成できる。
 負極203に含まれる、負極活物質および固体電解質材料の体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。30≦v2が満たされる場合、電池2000のエネルギー密度が十分に確保される。また、v2≦95が満たされる場合、高出力での動作が可能となる。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極203の厚みが10μm以上である場合、電池2000のエネルギー密度が十分に確保される。負極203の厚みが500μm以下である場合、高出力での動作が可能となる。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体が用いられ得る。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極201および負極203からなる群より選択される少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、実施の形態4における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成され得る。
 以下、実施例を参照しながら、本開示がより詳細に説明される。
 ≪実施例1≫
 [正極活物質の作製]
 硫酸ニッケル、硫酸コバルト、および硫酸マンガンを水に溶解させ、水酸化ナトリウムを含むアルカリ水溶液でニッケル、コバルト、およびマンガンを共沈させて、ニッケル、コバルト、およびマンガンの水酸化物を作製した。この水酸化物を濾過、乾燥、熱分解させ、ニッケル、コバルト、およびマンガンを所望の比率で含んだ酸化物を作製した。この酸化物と水酸化リチウムとを混合し、酸素雰囲気のもと850℃で焼成し、正極活物質LiNi0.8(Co、Mn)0.22を作製した。以下、作製したLiNi0.8(Co、Mn)0.22をNCM-1と表記する。このようにして実施例1の正極活物質を得た。
 [半値全幅の測定]
 図3は、実施例1による正極活物質のX線回折パターンを示すグラフである。すなわち、図3は、実施例1によるNCM-1のX線回折パターンを示すグラフである。
 -50℃以下の露点を有するドライ環境で、X線回折装置(Rigaku社、MiniFlex600)を用いて、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Å、および、1.5444Å)を用いて、θ-2θ法により測定が行われた。測定角度間隔は0.01°であった。発散スリットの発散角は0.25°であった。長手制限スリットのスリット幅は5mmであった。
 40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの回折角2θの値を2θtopとし、当該ピークの強度をItopとした。40°から41°の回折角2θにおける強度の平均をIbgとした。すなわち、Ibgはベースラインの強度を表す。Itopの半値Ihtopは、[(Itop-Ibg)/2+Ibg]とした。
 40°以上かつ2θtop以下の回折角2θの範囲内でIhtopに最も近い強度となる回折角2θを2θLとした。2θtop以上かつ50°以下の範囲内でIhtopに最も近い強度となる回折角2θを2θHとした。FWHMは、2θHと2θLとの差である。実施例1による正極活物質材料のFWHMは、0.24degであった。
 次に、実施例1による正極活物質と同様の条件で、Si結晶粉末に対してX線回折測定を行った。このとき、Si結晶粉末には、標準試料のNIST640dを用いた。28.0°以上かつ28.6°以下の回折角2θの範囲内で最も高い強度を有するピークの回折角2θの値を2θtopとし、当該ピークの強度をItopとした。28.0°の回折角2θにおける強度をIbgとした。その結果、Si結晶粉末のFWHMSiは、0.16degであった。
 [ハロゲン化物固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClおよびYCl3をモル比で、LiCl:YCl3=3:1となるように秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、12時間、600rpmでミリング処理した。
 以上により、Li3YCl6の組成式で表されるハロゲン化物固体電解質の粉末を得た。
 [正極材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、ハロゲン化物固体電解質Li3YCl6、および実施例1の正極活物質であるNCM-1を、Li3YCl6:NCM-1=25:75の質量比率で秤量した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。
 [硫化物固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、Li2SおよびP25を、モル比でLi2S:P25=75:25となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、270℃で、2時間熱処理した。これにより、ガラスセラミックス状の硫化物固体電解質を得た。
 [二次電池の作製]
 上述の実施例1の正極材料、および硫化物固体電解質それぞれを用いて、下記の工程を実施した。
 まず、絶縁性外筒の中で、硫化物固体電解質を120mg、実施例1の正極材料を25mgの順に積層した。これを700MPaの圧力で加圧成型することで、正極および固体電解質層を得た。
 次に、固体電解質層の正極と接する側とは反対側に、金属Li(厚さ200μm)を積層し、これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒を密閉することによって絶縁性外筒の内部を外気雰囲気から遮断することで、実施例1の電池を作製した。
 [電気化学試験]
 実施例1の電池を用いて、以下の条件で、充放電試験が実施された。
 電池を25℃の恒温槽に配置し、充放電装置に接続した。
 電池の理論容量に対して0.1Cレート(10時間率)となる電流値390μAで、電圧4.3Vまで定電流充電し、電圧4.3Vで定電圧充電をし、0.01Cレート(100時間率)となる電流値39μAで充電を終了した。その後、同様に0.1Cレートで、電圧2.5Vまで定電流放電し、電圧2.5Vで0.01Cレートまで定電圧放電を実施した。
 その後、同様の条件で再度充電を実施し、0.1Cレートで電圧3.78Vまで定電流放電し、電圧3.78Vで0.01Cレートまで定電圧放電を実施した。さらに、休止後に6.5mAで5秒間定電流放電を行った。このとき、下記式(3)より得られる電池の直流抵抗をDCRと呼ぶ。
 DCR=(Vo-V)×S/I ・・・(3)
 ここで、Voは5秒間の放電前の電圧、Vは5秒間の放電後の電圧、Sは正極と固体電解質層とが接している面積、Iは6.5mAである。
 実施例1の電池のDCRは、58Ω・cm2であった。
 ≪実施例2から8≫
 [正極活物質の作製]
 実施例1と同様の手順で、ニッケル、コバルト、およびマンガンを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと825℃で焼成し、正極活物質LiNi0.8(Co、Mn)0.22を作製した。このようにして実施例2の正極活物質NCM-2を得た。
 実施例1と同様の手順でニッケル、コバルト、およびマンガンを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと800℃で焼成し、正極活物質LiNi0.8(Co、Mn)0.22を作製した。このようにして実施例3の正極活物質NCM-3を得た。
 実施例1と同様の手順でニッケル、コバルト、およびマンガンを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと775℃で焼成し、正極活物質LiNi0.8(Co、Mn)0.22を作製した。このようにして実施例4の正極活物質NCM-4を得た。
 硫酸ニッケル、硫酸コバルト、およびアルミン酸ナトリウムを水に溶解させ、水酸化ナトリウムを含むアルカリ水溶液でニッケル、コバルト、およびアルミニウムを共沈させて、ニッケル、コバルト、およびアルミニウムの水酸化物を作製した。この水酸化物を濾過、乾燥、熱分解させ、ニッケル、コバルト、およびアルミニウムを所望の比率で含んだ酸化物を作製した。この酸化物と水酸化リチウムとを混合し、酸素雰囲気のもと850℃で焼成し、正極活物質LiNi0.8(Co、Al)0.22を作製した。以下、作製したLiNi0.8(Co、Al)0.22をNCA-1と表記する。このようにして実施例5の正極活物質を得た。
 実施例5と同様の手順でニッケル、コバルト、およびアルミニウムを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと825℃で焼成し、正極活物質LiNi0.8(Co、Al)0.22を作製した。このようにして実施例6の正極活物質NCA-2を得た。
 実施例5と同様の手順でニッケル、コバルト、およびアルミニウムを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと800℃で焼成し、正極活物質LiNi0.8(Co、Al)0.22を作製した。このようにして実施例7の正極活物質NCA-3を得た。
 実施例5と同様の手順でニッケル、コバルト、およびアルミニウムを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと775℃で焼成し、正極活物質LiNi0.8(Co、Al)0.22を作製した。このようにして実施例8の正極活物質NCA-4を得た。
 [半値全幅の測定]
 図3は、実施例2から8による正極活物質のX線回折パターンを示すグラフである。作製した実施例2から8の正極活物質の半値全幅を、実施例1と同様にして測定した。実施例2から8の正極活物質の半値全幅は下記の表1に示す。
 [正極材料の作製]
 正極活物質としてそれぞれ実施例2から8の正極活物質を用いたこと以外は、実施例1と同様にして、実施例2から8の正極材料を作製した。
 [電池の作製]
 正極材料としてそれぞれ実施例2から8の正極材料を用いたこと以外は、実施例1と同様にして、実施例2から8の電池を作製した。
 [電気化学試験]
 実施例2から8の電池を用いて、実施例1と同様にして、充放電試験が実施された。実施例2から8の電池のDCRは下記の表1に示す。
 ≪比較例1≫
 [正極活物質の作製]
 実施例1と同様の手順でニッケル、コバルト、およびマンガンを含む酸化物と水酸化リチウムとの混合物を作製し、酸素雰囲気のもと750℃で焼成し、正極活物質LiNi0.8(Co、Mn)0.22を作製した。このようにして比較例1の正極活物質NCM-Ref.を得た。
 [半値全幅の測定]
 図3は、比較例1による正極活物質のX線回折パターンを示すグラフである。作製した比較例1の正極活物質の半値全幅を、実施例1と同様にして測定した。比較例1の正極活物質の半値全幅は下記の表1に示す。
 [正極材料の作製]
 正極活物質として比較例1の正極活物質を用いたこと以外は、実施例1と同様にして比較例1の正極材料を作製した。
 [電池の作製]
 正極材料として比較例1の正極材料を用いたこと以外は、実施例1と同様にして比較例1の電池を作製した。
 [電気化学試験]
 比較例1の電池を用いて、実施例1と同様にして、充放電試験が実施された。比較例の電池のDCRは下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ≪考察≫
 表1に示す結果から、実施例1から8と比較例1とを比較すると、FWHM/FWHMSi≦2.00の条件を満たす実施例1から8の電池は、FWHM/FWHMSiが2.0を超えていた比較例1の電池よりもDCRを低減できることがわかった。さらに、表1に示す結果から、FWHM/FWHMSiが1.90以下の場合に、DCRがより低減されることもわかった。また、同じ組成を有する正極活物質NCMが用いられた実施例1から4の電池を比較すると、半値全幅の値FWHMが小さいほど、DCRが低減できることがわかった。このことは、正極活物質NCAが用いられた実施例5から8の電池でも同様であった。
 本開示の正極活物質は、例えば、全固体電池などの電池の正極に利用され得る。
1000 電極材料
100 固体電解質
110 正極活物質
120 被覆材料
2000 電池
201 正極
202 電解質層
203 負極

Claims (13)

  1.  下記の組成式(1)により表される複合酸化物を含む正極活物質であって、
     LiNixMe1-x2・・・(1)
     ここで、
      xは、0.5≦x<1を満たし、
      Meは、Co、Mn、Al、Mg、Ca、Sr、Ba、B、Ga、Y、Ce、Sm、Gd、Er、Ti、Zr、V、Nb、Ta、Sb、Bi、Cr、Mo、およびWからなる群より選択される少なくとも1つであり、
     Cu-Kα線を用いた前記正極活物質のX線回折測定によって得られるX線回折パターンにおいて、40°以上かつ50°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSi結晶粉末の(111)面に対応するピークの半値全幅の値に対する比は、2.00以下である、
    正極活物質。
  2.  前記ピークの半値全幅の比が、1.90以下である、
    請求項1に記載の正極活物質。
  3.  請求項1または2に記載の正極活物質と、
     前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、
    を含み、
     前記被覆材料は、
      リチウム元素(Li)と、
      酸素元素(O)、フッ素元素(F)、および塩素元素(Cl)からなる群より選択される少なくとも1つと、
    を含む、
    被覆正極活物質。
  4.  請求項1または2に記載の正極活物質、および、請求項3に記載の被覆正極活物質からなる群より選択される少なくとも1つと、
     固体電解質と、
    を含む、正極材料。
  5.  前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選択される少なくとも1つを含む、
    請求項4に記載の正極材料。
  6.  前記ハロゲン化物固体電解質は、下記の組成式(2)により表され、
     Liαβγ ・・・式(2)
     ここで、
     α、β、およびγは、それぞれ独立して、0より大きい値であり、
     前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、
    請求項5に記載の正極材料。
  7.  前記Mは、イットリウムを含む、
    請求項6に記載の正極材料。
  8.  前記組成式(2)において、
     2.5≦α≦3、
     1≦β≦1.1、および
     γ=6、
    が満たされる、
     請求項6または7に記載の正極材料。
  9.  前記Xは、ClおよびBrからなる群より選択される少なくとも1つを含む、
     請求項6から8のいずれか一項に記載の正極材料。
  10.  請求項4から9のいずれか一項に記載の正極材料を含む正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、を備える、
    電池。
  11.  前記電解質層は、前記正極材料に含まれる前記固体電解質と同じ組成を有する固体電解質を含む、
    請求項10に記載の電池。
  12.  前記電解質層は、前記正極材料に含まれる前記固体電解質と異なる組成を有するハロゲン化物固体電解質を含む、
    請求項10または11に記載の電池。
  13.  前記電解質層は、硫化物固体電解質を含む、
    請求項10から12のいずれか一項に記載の電池。
PCT/JP2022/020873 2021-06-24 2022-05-19 正極活物質、被覆正極活物質、正極材料、および電池 WO2022270186A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023529701A JPWO2022270186A1 (ja) 2021-06-24 2022-05-19
EP22828105.1A EP4362135A1 (en) 2021-06-24 2022-05-19 Positive electrode active substance, coated positive electrode active substance, positive electrode material, and battery
CN202280042949.0A CN117561620A (zh) 2021-06-24 2022-05-19 正极活性物质、覆盖型正极活性物质、正极材料和电池
US18/530,347 US20240113294A1 (en) 2021-06-24 2023-12-06 Positive electrode active material, coated positive electrode active material, positive electrode material, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105204 2021-06-24
JP2021105204 2021-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/530,347 Continuation US20240113294A1 (en) 2021-06-24 2023-12-06 Positive electrode active material, coated positive electrode active material, positive electrode material, and battery

Publications (1)

Publication Number Publication Date
WO2022270186A1 true WO2022270186A1 (ja) 2022-12-29

Family

ID=84544519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020873 WO2022270186A1 (ja) 2021-06-24 2022-05-19 正極活物質、被覆正極活物質、正極材料、および電池

Country Status (5)

Country Link
US (1) US20240113294A1 (ja)
EP (1) EP4362135A1 (ja)
JP (1) JPWO2022270186A1 (ja)
CN (1) CN117561620A (ja)
WO (1) WO2022270186A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018803A (ja) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極活物質、その製造方法、それを採用した正極及びリチウム二次電池
JP2018206609A (ja) * 2017-06-05 2018-12-27 株式会社Gsユアサ 非水電解質二次電池
WO2019135322A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
JP2019125510A (ja) 2018-01-17 2019-07-25 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018803A (ja) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極活物質、その製造方法、それを採用した正極及びリチウム二次電池
JP2018206609A (ja) * 2017-06-05 2018-12-27 株式会社Gsユアサ 非水電解質二次電池
WO2019135322A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
JP2019125510A (ja) 2018-01-17 2019-07-25 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法

Also Published As

Publication number Publication date
US20240113294A1 (en) 2024-04-04
EP4362135A1 (en) 2024-05-01
CN117561620A (zh) 2024-02-13
JPWO2022270186A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
JP7241306B2 (ja) 正極材料、および、電池
JP7253706B2 (ja) 固体電解質材料、および、電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7182196B2 (ja) 電池
US20200411850A1 (en) Battery
JP7253707B2 (ja) 固体電解質材料、および、電池
JP7316564B2 (ja) 電池
WO2019135322A1 (ja) 正極材料、および、電池
JP7249562B2 (ja) 電池
JP7217433B2 (ja) 正極材料およびそれを用いた電池
KR101234965B1 (ko) 비수전해질 이차전지용 양극 활물질 및 그것을 이용한 비수전해질 이차전지
JP7486092B2 (ja) 正極材料、および、電池
US20210135280A1 (en) Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound
WO2021157361A1 (ja) 正極材料および電池
JP7429869B2 (ja) 負極材料、および、電池
US11961962B2 (en) Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and preparation method thereof
WO2023286614A1 (ja) 正極材料および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2021241417A1 (ja) 正極活物質、正極材料、電池、および正極活物質の製造方法
WO2023008119A1 (ja) 正極、電池、および正極の製造方法
WO2021241416A1 (ja) 正極活物質、正極材料、電池、および正極活物質の製造方法
WO2022270186A1 (ja) 正極活物質、被覆正極活物質、正極材料、および電池
JP7507385B2 (ja) 正極材料、および、電池
WO2023002827A1 (ja) 正極材料および電池
WO2021241418A1 (ja) 正極活物質、正極材料、電池、および正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529701

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042949.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022828105

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828105

Country of ref document: EP

Effective date: 20240124