WO2022270023A1 - 光検出器及び電子機器 - Google Patents

光検出器及び電子機器 Download PDF

Info

Publication number
WO2022270023A1
WO2022270023A1 PCT/JP2022/009593 JP2022009593W WO2022270023A1 WO 2022270023 A1 WO2022270023 A1 WO 2022270023A1 JP 2022009593 W JP2022009593 W JP 2022009593W WO 2022270023 A1 WO2022270023 A1 WO 2022270023A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
pixel
photoelectric conversion
conversion layer
angle
Prior art date
Application number
PCT/JP2022/009593
Other languages
English (en)
French (fr)
Inventor
雅央 神田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022270023A1 publication Critical patent/WO2022270023A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the technology according to the present disclosure (this technology) relates to a photodetector and an electronic device including the photodetector.
  • An image sensor (solid-state imaging device) is a photodetector that uses a photoelectric conversion element such as a photodiode that constitutes each pixel to convert the amount of charge corresponding to the intensity of the light imaged on the pixel into an electrical signal. be. From the viewpoint of high utilization efficiency of incident light, a back-illuminated image sensor in which incident light reaches pixels directly has attracted attention.
  • an image sensor that combines a pixel with a photoelectric conversion layer and a wiring layer and a polarizing section.
  • the wiring layer is arranged on the surface opposite to the light incident surface of the photoelectric conversion layer, and includes metal wiring, poly electrodes, and the like.
  • the polarizing section is arranged on the light incident surface side of the photoelectric conversion layer and transmits incident light in a specific polarization direction.
  • polarizers corresponding to adjacent pixels have different polarizer angles.
  • Patent Document 1 listed below discloses a method of correcting the output of a polarized pixel using the output of a non-polarized pixel.
  • the present disclosure has been made in view of such circumstances, and aims to provide a photodetector and an electronic device capable of reducing the output difference occurring between adjacent pixels.
  • One embodiment of the present disclosure includes a plurality of pixels arranged in a matrix, each of the plurality of pixels includes a photoelectric conversion layer that photoelectrically converts incident light, and a side opposite to the light incident surface of the photoelectric conversion layer. and a pixel structure including a wiring layer for reading out signal charges generated in the photoelectric conversion layer, and a pixel structure disposed on the light incident surface side of the photoelectric conversion layer and having a different angle for each pixel in a plan view.
  • a polarizing portion that has a polarizer and transmits light in a specific polarization direction out of the light incident on the polarizer, the polarizer being perpendicular and parallel to the pixel structure in a plan view; is a photodetector with an angle that does not
  • Another aspect of the present disclosure includes a plurality of pixels arranged in a matrix, and each of the plurality of pixels includes a photoelectric conversion layer that photoelectrically converts incident light, and a light incident surface of the photoelectric conversion layer.
  • a wiring layer that is laminated on the opposite side and reads out signal charges generated in the photoelectric conversion layer, and a polarizer that is arranged on the light incident surface side of the photoelectric conversion layer and has a different angle for each pixel in plan view.
  • the polarizer arrangement pattern to be an angle value is made different for each unit.
  • each of the plurality of pixels includes a photoelectric conversion layer that photoelectrically converts incident light, and a light incident surface of the photoelectric conversion layer. is laminated on the opposite surface and includes a wiring layer for reading out signal charges generated in the photoelectric conversion layer; a polarizer having polarizers with different angles and transmitting light in a specific polarization direction out of light incident on the polarizer, wherein the polarizer is orthogonal to the pixel structure in plan view; and a non-parallel angled photodetector.
  • FIG. 1 is a schematic configuration diagram showing the entire solid-state imaging device 1 according to a first embodiment of the present disclosure
  • FIG. 2 is a diagram showing an equivalent circuit of the pixel shown in FIG. 1
  • FIG. 1 is a partial vertical cross-sectional view showing an example of a cross-sectional structure of a pixel according to the first embodiment of the present disclosure
  • FIG. It is a top view which shows the arrangement
  • 3 is a plan view showing the arrangement relationship between pixels and polarizing units of the solid-state imaging device according to the first embodiment of the present disclosure
  • FIG. 10 is a plan view showing an arrangement example of an inter-pixel isolation section, an intra-pixel isolation section, a metal wiring, and a poly electrode in the first modified example of the first embodiment of the present disclosure
  • FIG. 10 is a plan view showing the arrangement relationship between pixels and polarizing units of a solid-state imaging device in a first modification of the first embodiment of the present disclosure
  • FIG. 10 is a plan view showing an arrangement example of an inter-pixel separation section, metal wirings, and polyelectrodes in a second modification of the first embodiment of the present disclosure
  • FIG. 11 is a plan view showing the arrangement relationship between pixels and polarizing units of a solid-state imaging device according to a second modification of the first embodiment of the present disclosure
  • FIG. 7 is a partial vertical cross-sectional view showing an example of a cross-sectional structure of a pixel of a solid-state imaging device according to a second embodiment of the present disclosure
  • FIG. 10 is an example of a plan view of a light diffusion structure according to a second embodiment of the present disclosure
  • FIG. 7 is a plan view showing the arrangement relationship between pixels and polarizing units of a solid-state imaging device according to a second embodiment of the present disclosure
  • FIG. 11 is a plan view showing an example of a pixel structure of a solid-state imaging device according to a third embodiment of the present disclosure
  • FIG. 11 is a partial vertical cross-sectional view showing an example of a cross-sectional structure of a pixel of a solid-state imaging device according to a third embodiment of the present disclosure
  • FIG. 11 is a partial vertical cross-sectional view showing how flare caused by surface reflection of a polarizer is generated in the third embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining the principle of flare generation
  • FIG. 10 is a diagram for explaining an example in which a flare occurs and a ghost occurs
  • FIG. 11 is a plan view showing the arrangement relationship between pixels and polarizing units of a solid-state imaging device according to a third embodiment of the present disclosure
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • FIG. 1 is a schematic configuration diagram showing the entire solid-state imaging device 1 according to the first embodiment of the present disclosure.
  • the solid-state imaging device 1 of FIG. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the solid-state imaging device 1 takes in image light from a subject through an optical lens, converts the amount of incident light formed on an imaging surface into an electric signal on a pixel-by-pixel basis, and outputs the electric signal as a pixel signal.
  • the solid-state imaging device 1 of the first embodiment includes a substrate 2, a pixel region 3, a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, and an output circuit 7. , and a control circuit 8 .
  • the pixel region 3 has a plurality of pixels 9 regularly arranged in a two-dimensional array on the substrate 2 .
  • the pixel 9 has a photodiode as a photoelectric conversion unit and a plurality of pixel transistors.
  • the vertical drive circuit 4 is composed of, for example, a shift register, selects a desired pixel drive wiring 10, supplies a pulse for driving the pixels 9 to the selected pixel drive wiring 10, and drives each pixel 9 in units of rows. drive. That is, the vertical driving circuit 4 sequentially selectively scans each pixel 9 in the pixel region 3 in the vertical direction row by row, and generates a pixel signal based on the signal charge generated in accordance with the amount of light received by the photoelectric conversion unit of each pixel 9. It is supplied to the column signal processing circuit 5 through the vertical signal line 11 .
  • the column signal processing circuit 5 is arranged, for example, for each column of the pixels 9, and performs signal processing such as noise removal on signals output from the pixels 9 of one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
  • the horizontal driving circuit 6 is composed of, for example, a shift register, sequentially outputs horizontal scanning pulses to the column signal processing circuits 5, selects each of the column signal processing circuits 5 in order, and from each of the column signal processing circuits 5, The pixel signal subjected to the signal processing is output to the horizontal signal line 12 .
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed pixel signals.
  • signal processing for example, buffering, black level adjustment, column variation correction, and various digital signal processing can be used.
  • the control circuit 8 generates a clock signal and a control signal that serve as references for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • FIG. 2 shows an equivalent circuit of the pixel 9.
  • the pixel 9 includes a photodiode (PD) 91a, a transfer transistor (TG) 91b, a floating diffusion (FD) portion 91c as a charge storage portion, a conversion efficiency adjustment transistor (FDG) 91d, and an amplification transistor (AMP).
  • PD photodiode
  • TG transfer transistor
  • FD floating diffusion
  • AMP conversion efficiency adjustment transistor
  • AMP amplification transistor
  • 91e a select transistor (SEL) 91f
  • RST reset transistor
  • the transfer transistor 91b, the conversion efficiency adjustment transistor 91d, the amplification transistor 91e, the selection transistor 91f, and the reset transistor 91g which are pixel transistors, are composed of, for example, MOS transistors.
  • the photodiode 91a constitutes a photoelectric conversion section that photoelectrically converts incident light.
  • the anode of the photodiode 91a is grounded.
  • the source of the transfer transistor 91b is connected to the cathode of the photodiode 91a.
  • the drain of the transfer transistor 91b is connected to the FD section 91c.
  • the transfer transistor 91b transfers the signal charge from the photodiode 91a to the FD portion 91c based on the transfer signal applied to the gate.
  • the FD portion 91c accumulates signal charges transferred from the photodiode 91a via the transfer transistor 91b.
  • the potential of the FD portion 91c is modulated according to the signal charge amount accumulated in the FD portion 91c.
  • the source of the conversion efficiency adjustment transistor 91d is connected to the FD section 91c.
  • the drain of the conversion efficiency adjustment transistor 91d is connected to the source of the reset transistor 91g.
  • the conversion efficiency adjustment transistor 91d adjusts the conversion efficiency of the signal charges according to the conversion efficiency adjustment signal applied to the gate.
  • the gate of the amplification transistor 91e is connected to the FD section 91c.
  • the source of the selection transistor 91f is connected to the drain of the amplification transistor 91e.
  • a power supply potential (VDD) is applied to the source of the amplification transistor 91e.
  • the amplification transistor 91e amplifies the potential of the FD section 91c.
  • a power supply potential (VDD) is applied to the drain of the reset transistor 91g.
  • the reset transistor 91g initializes (resets) signal charges accumulated in the FD section 91c based on a reset signal applied to the gate.
  • the drain of the selection transistor 91f is connected to the vertical signal line 11.
  • the selection transistor 91f selects the pixel 9 based on the selection signal applied to the gate.
  • a pixel signal corresponding to the potential amplified by the amplification transistor 91 e is output through the vertical signal line 11 .
  • FIG. 3 is a partial vertical cross-sectional view showing an example of the cross-sectional structure of the pixel 9 according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view of a cross-section obtained by cutting a one-dot chain line passing through the pixel 9 in the vertical direction as viewed in the direction of arrows A1-A2 in FIG. 3, the surface of each member of the solid-state imaging device 1 on the side of the light incident surface (upper side in FIG. 3) is referred to as the “back surface”, and the side opposite to the light incident surface side of each member of the solid-state imaging device 1 ( 3) is called the "surface”.
  • a photoelectric conversion layer 21, an insulating film 22, and an on-chip lens 23 are laminated in this order in the direction indicated by arrow Z in FIG.
  • a wiring layer 24 is laminated on the surface of the photoelectric conversion layer 21 .
  • the photoelectric conversion layer 21 is, for example, a semiconductor substrate made of silicon (Si), and is a functional layer in which a pixel circuit group including a photodiode 91a, an FD portion 91c, etc. that constitute each pixel 9 is formed.
  • the photodiode 91a has an n-type semiconductor region 91a1 and a p-type semiconductor region 91a2.
  • signal charges corresponding to the amount of incident light are generated, and the generated signal charges are accumulated in the n-type semiconductor region 91a1. Electrons that cause dark current generated at the interface of the photoelectric conversion layer 21 are absorbed by holes that are the majority carriers of the p-type semiconductor region 91a2, thereby suppressing the dark current.
  • each pixel 9 is electrically connected by a pixel isolation layer 21a and a p-well layer 21b made of a p-type semiconductor region, and an inter-pixel isolation section 31 formed in the pixel isolation layer 21a and the p-well layer 21b. physically separated.
  • the inter-pixel separation portion 31 is formed from the rear surface side to the front surface side of the photoelectric conversion layer 21 .
  • the inter-pixel separation portion 31 prevents the light incident on the pixel 9 from entering the adjacent pixel 9 .
  • the FD portion 91c and the source/drain regions of the pixel transistor are formed in the p-well layer 21b.
  • an intra-pixel isolation portion is formed for separating the photoelectric conversion layer 21 in the horizontal direction (the direction indicated by the arrow X in FIG. 3).
  • the insulating film 22 continuously covers the entire rear surface side (the entire light incident surface side) of the photoelectric conversion layer 21 . At least one of silicon oxide, silicon nitride, and silicon oxynitride can be used as the material of the insulating film 22 .
  • the on-chip lens 23 is an optical lens for efficiently condensing light entering the solid-state imaging device 1 from the outside and forming an image on the photoelectric conversion layer 21 . An on-chip lens 23 is typically arranged for each pixel 9 .
  • the on-chip lens 23 is made of, for example, silicon oxide, silicon nitride, silicon oxynitride, organic SOG, polyimide resin, fluorine resin, or the like.
  • the wiring layer 24 is a layer in which metal wiring 241 for transmitting power and various drive signals to each pixel 9 in the photoelectric conversion layer 21 and for transmitting pixel signals read from each pixel 9 is formed. Also, the wiring layer 24 is formed with a poly electrode 242 that serves as the gate electrode of the pixel transistor. Furthermore, silicon oxide (SiO), for example, is used for the wiring layer 24 . In this example, the wiring layer 24 is formed on a semiconductor support substrate (not shown). A semiconductor support substrate, for example, is formed with logic circuitry that implements some of the various components described above.
  • each of the pixels 9 is a pixel structure including components such as the photoelectric conversion layer 21, the on-chip lens 23, the wiring layer 24, the inter-pixel separation section 31, the intra-pixel separation section 32, the metal wiring 241, the poly electrode 242, and the like. 20 are formed.
  • the solid-state imaging device 1 of the present disclosure includes a polarization section 40 .
  • the polarizer 40 has a polarizer 41 with a different angle for each pixel 9 , and the polarizer 41 transmits light in a specific polarization direction out of the incident light that has passed through the on-chip lens 23 .
  • the light incident on the light incident surface of each pixel 9 from the outside is condensed by the on-chip lens 23 and the light is condensed by the polarizer 40 in a predetermined direction corresponding to the pixel 9 . is selectively transmitted and reaches the photoelectric conversion layer 21 .
  • the photodiodes 91a of the photoelectric conversion layer 21 generate signal charges according to the intensity of incident light.
  • the generated signal charge is transferred from the photodiode 91a to the FD section 91c based on a transfer signal applied to the polyelectrode 242 serving as the gate of the transfer transistor 91b, and accumulated in the FD section 91c.
  • the potential of the FD section 91c is modulated according to the signal charge amount accumulated in the FD section 91c and amplified by the amplification transistor 91e.
  • a pixel signal corresponding to the potential amplified by the amplifying transistor 91e is output through the vertical signal line 11 shown in FIG.
  • Part of the light (for example, near-infrared light) that reaches and enters the photoelectric conversion layer 21 passes through the photoelectric conversion layer 21 , but the inter-pixel separation portion 31 , the intra-pixel separation portion 32 , the metal wiring 241 , the poly
  • the light is reflected by the electrode 242 or the like, and travels toward the photodiode 91a as reflected light.
  • FIG. 4 is a plan view showing the arrangement relationship between the pixels and the polarizing units of the solid-state imaging device B1 in the comparative example.
  • the inter-pixel separation portion B31 is formed in a lattice shape so as to surround each pixel (B9-1, B9-2, B9-3, B9-4) B9.
  • the polarizer B40 includes a polarizer B41-1 with a polarizer angle of 0 degree and a polarizer B41-1 corresponding to each of the pixels B9-1, B9-2, B9-3, and B9-4. It has a polarizer B41-2 with a polarizer angle of 45 degrees, a polarizer B41-3 with a polarizer angle of 90 degrees, and a polarizer B41-4 with a polarizer angle of 135 degrees.
  • the metal wiring 241 contributing to reflection is oriented in the same direction (the direction indicated by the arrow X in FIG. 4) for all the pixels B9-1, B9-2, B9-3, and B9-4. are often placed in Therefore, as shown in FIG. 4(c), in the case of the structure combined with the polarizer B40, the influence on diffraction and reflection changes depending on the angle of the polarizer, causing an unintended output difference.
  • the pixels B9-2 and B9-4 have the same reflection intensity, but the pixel B9-1 has a high reflection intensity because the metal wiring 241 and the polarizer B41-1 are parallel.
  • the metal wiring 241 and the polarizer B41-3 are perpendicular to each other, so the reflection intensity is weak.
  • FIG. 5 is a plan view showing the arrangement relationship between the pixels 9 and the polarizing section 40 of the solid-state imaging device 1 according to the first embodiment of the present disclosure.
  • the inter-pixel separation section 31 is formed in a lattice shape so as to surround each pixel (9-1, 9-2, 9-3, 9-4) 9.
  • FIG. 5A the inter-pixel separation section 31 is formed in a lattice shape so as to surround each pixel (9-1, 9-2, 9-3, 9-4) 9.
  • the polarizer 40 includes a polarizer 41-1 with a polarizer angle ⁇ and a polarizer It has a polarizer 41-2 with an angle of ⁇ +45 degrees, a polarizer 41-3 with a polarizer angle of ⁇ +90 degrees, and a polarizer 41-4 with a polarizer angle of ⁇ +135 degrees.
  • the solid-state imaging device 1 As shown in FIG.
  • the structure by arranging the polarizers 41-1, 41-2, 41-3, and 41-4 at an angle that is neither orthogonal nor parallel to the metal wiring 241, the polarizers 41-1, 41-2, and 41 - Reduce reflection and diffraction differences due to correlations between pixels 9-1, 9-2, 9-3 and 9-4 with 3, 41-4.
  • is an angle that is neither parallel nor perpendicular to the metal wiring 241 or the polyelectrode 242 .
  • the metal wirings 241 are often arranged in parallel in plan view, and the inter-pixel separation sections 31 are arranged orthogonally and in parallel in plan view. Therefore, the polarizers 41-1, 41-2, 41-3, and 41-4 are arranged at an angle that is neither orthogonal nor parallel to the inter-pixel separation section 31 and the metal wiring 241, so that the polarizer 41-1 , 41-2, 41-3, 41-4 and the inter-pixel separation portion 31 and the metal wiring 241 can reduce the effects of reflection and diffraction caused by the correlation between the adjacent pixels 9-1, 9-2, The output difference between 9-3 and 9-4 can be reduced, and the original signal can be output more accurately.
  • the number of polarizers arranged does not change, there is no decrease in resolution as polarized light. Furthermore, since the polarizers 41-1, 41-2, 41-3, and 41-4 can reduce the output difference caused by the pixel structure 20, the degree of freedom in pixel layout is improved.
  • FIG. 6 is a plan view showing an arrangement example of the inter-pixel isolation section 31, the intra-pixel isolation section 32, the metal wiring 241, and the poly electrode 242 in the first modified example of the first embodiment of the present disclosure.
  • the same parts as in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal wiring 241 that contributes to reflection is often arranged in the same direction (direction indicated by arrow X in FIG. 6) for each of the pixels 9-1, 9-2, 9-3, and 9-4.
  • the intra-pixel separating portion 32 that contributes to reflection may be arranged in the same direction (the direction indicated by arrow Y in FIG. 6) for each of the pixels 9-1, 9-2, 9-3, and 9-4. many.
  • poly electrodes 242 are arranged orthogonally and parallel to each pixel 9-1, 9-2, 9-3, 9-4.
  • FIG. 7 shows the arrangement relationship between the pixels 9-1, 9-2, 9-3, and 9-4 of the solid-state imaging device 1 and the polarization section 40 in the first modification of the first embodiment of the present disclosure. It is a top view.
  • the same parts as in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the polarizing unit 40 includes a polarizer 41-1 with a polarizer angle of ⁇ and a polarizer with a polarizer angle of ⁇ +45 corresponding to each of the pixels 9-1, 9-2, 9-3, and 9-4.
  • polarizer 41-3 with a polarizer angle of ⁇ +90 degrees
  • polarizer 41-4 with a polarizer angle of ⁇ +135 degrees.
  • the polarizer angle ⁇ is set with a reference angle of 22.5 degrees with respect to the pixel structure 20 .
  • the polarizers 41-1, 41-2, 41-3, and 41-4 are arranged at angles not perpendicular to or parallel to the inter-pixel separation section 31, the intra-pixel separation section 32, the metal wiring 241, and the poly electrode 242. , to reduce reflection and diffraction differences due to correlations between polarizers 41-1, 41-2, 41-3, 41-4 and pixels 9-1, 9-2, 9-3, 9-4.
  • FIG. 8 is a plan view showing an arrangement example of the inter-pixel separation section 31, the metal wiring 241 and the poly electrode 242 in the second modification of the first embodiment of the present disclosure.
  • the same parts as in FIG. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the poly electrodes 242 are arranged orthogonally and parallelly and at 45 degrees to each pixel 9-1, 9-2, 9-3, 9-4.
  • FIG. 9 shows the arrangement relationship between the pixels 9-1, 9-2, 9-3, and 9-4 of the solid-state imaging device 1 and the polarization section 40 in the second modification of the first embodiment of the present disclosure. It is a top view.
  • the same parts as in FIG. 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the polarizer 40 has a polarizer 41-1 with a polarizer angle of ⁇ and a polarizer with a polarizer angle of ⁇ +45 corresponding to each of the pixels 9-1, 9-2, 9-3, and 9-4.
  • the polarizer angle ⁇ is set with a reference angle of 22.5 degrees with respect to the pixel structure 20 .
  • a polarizer angle of 5 degrees or more with respect to parallel and perpendicular to the pixel structure 20 is likely to produce an effect, so it is considered that the reference angle ⁇ is preferably 5 degrees to 40 degrees.
  • polarizers 41-1, 41-2, 41-3, and 41-4 are arranged at an angle that is neither orthogonal nor parallel to the inter-pixel separation section 31, the metal wiring 241, and the poly electrode 242, so that the polarizer 41-1 , 41-2, 41-3, 41-4 and pixels 9-1, 9-2, 9-3, 9-4.
  • FIG. 10 is a partial vertical cross-sectional view showing an example of the cross-sectional structure of the pixel 9 of the solid-state imaging device 1A according to the second embodiment of the present disclosure.
  • a light diffusion structure 51 is formed on the light incident surface side of the photoelectric conversion layer 21 .
  • the light diffusion structure 51 diffuses incident light.
  • FIG. 11 is an example plan view of the light diffusion structure 51 according to the second embodiment of the present disclosure.
  • the same parts as in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • light diffusion structures (51-1a, 51- 2a, 51-3a, 51-4a) 51 are formed.
  • a light diffusion structure 51-1b is formed at 45 degrees with respect to the pixel 9-1.
  • a light diffusion structure 51-2b is formed at an angle of 90 degrees (the direction indicated by the arrow X in FIG. 11) with respect to the pixel 9-2.
  • a 135 degree light diffusion structure 51-3b is formed with respect to the pixel 9-3.
  • a light diffusion structure 51-4b is formed at 0 degrees (direction indicated by arrow Y in FIG. 11) with respect to pixel 9-4.
  • cross-shaped light diffusion structures (51-1c, 51-2c, 51-3c, 51-4c) are provided for each pixel 9-1, 9-2, 9-3, 9-4. 51 is formed.
  • FIG. 12 is a plan view showing the arrangement relationship between the pixels 9-1, 9-2, 9-3, 9-4 and the polarization section 40 of the solid-state imaging device 1A according to the second embodiment of the present disclosure.
  • the polarizing unit 40 provides polarized light with a polarizer angle of ⁇ corresponding to each of the pixels 9-1, 9-2, 9-3, and 9-4. It has a polarizer 41-1, a polarizer 41-2 with a polarizer angle of ⁇ +45 degrees, a polarizer 41-3 with a polarizer angle of ⁇ +90 degrees, and a polarizer 41-4 with a polarizer angle of ⁇ +135 degrees.
  • the polarizer angle ⁇ is often 0 degrees and 90 degrees for the light diffusion structure 51, and may be 45 degrees. set.
  • a polarizer angle of 5 degrees or more with respect to parallel and perpendicular to the light diffusing structure 51 is likely to produce an effect.
  • the polarizer 41-1 , 41-2, 41-3, and 41-4 are arranged at angles that are neither orthogonal nor parallel to the light diffusion structure 51, the polarizers 41-1, 41-2, 41-3, and 41-4 and the pixels Reduce output differences due to correlation with 9-1, 9-2, 9-3, 9-4.
  • FIG. 13 is a plan view showing an example of a pixel structure of a solid-state imaging device 1B according to the third embodiment of the present disclosure.
  • the same parts as in FIG. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the solid-state imaging device 1B includes four pixels 92-1(A), 92-2(B), 92-3(C), 92-3(C), 92-1(A), 92-2(B), 92-3(C), 92-1(A), 92-2(B), 92-3(C) and 92-4(D).
  • Four pixels 92-1, 92-2, 92-3, and 92-4 share FD 91c as a charge holding portion.
  • the metal wiring 241 is arranged in the same direction (the direction indicated by arrow X in FIG. 13) for each pixel 92-1, 92-2, 92-3, 92-4.
  • the intra-pixel separating section 32 is arranged in the same direction (direction indicated by arrow Y in FIG. 13) for each of the pixels 92-1, 92-2, 92-3, and 92-4.
  • the poly electrodes 242 are arranged orthogonally and parallel to each pixel 92-1, 92-2, 92-3, 92-4.
  • FIG. 14 is a partial vertical cross-sectional view showing an example of the cross-sectional structure of the pixel 92 of the solid-state imaging device 1B according to the third embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view of the cross-section taken along the dashed-dotted line passing through the pixels 92-2 and 92-4 in FIG.
  • a solid-state imaging device 1B according to the third embodiment includes a polarization section 60 .
  • the polarizer 60 has polarizers 61 with different angles for each of the pixels 92-1, 92-2, 92-3, and 92-4. polarizing direction of light is transmitted.
  • flare occurs due to surface reflection of the polarizer 61 of the polarizing section 60, which may lead to degradation of image quality.
  • FIG. 16 is a diagram for explaining the principle of flare generation.
  • the light transmitted through the on-chip lens 23 reinforces each other due to interference, which causes flare.
  • NIR near-infrared
  • FIG. 18 is a plan view showing the arrangement relationship between the pixels 92 and the polarizing section 60 of the solid-state imaging device 1B according to the third embodiment of the present disclosure.
  • a set of four pixels 92-1 (A), 92-2 (B), 92-3 (C), and 92-4 (D) having structural symmetry constitute one unit UN1.
  • a set of four pixels 92-1(A), 92-2(B), 92-3(C), 92-4(D) constitute units UN2, UN3, UN4. .
  • the polarizer 60 has a polarizer 61-1 with a polarizer angle of 0 degree and a polarizer with a polarizer angle of 45 degrees corresponding to each of the pixels 92-1, 92-2, 92-3, and 92-4. It has a polarizer 61-2, a polarizer 61-3 with a polarizer angle of 90 degrees, and a polarizer 61-4 with a polarizer angle of 135 degrees.
  • the polarizer 61-3 is arranged for the pixel 92-1
  • the polarizer 61-4 is arranged for the pixel 92-2
  • the polarizer 61-2 is arranged for the pixel 92-3
  • the polarizer arrangement pattern is such that the polarizer 61-1 is arranged with respect to 92-4.
  • the pixels 92-1, 92-2, 92-3, and 92-4 tend to produce output differences unique to pixel positions due to differences in structural symmetry. For example, when the pixel-specific outputs are A>B>C>D, and the polarizer 61-1 with the polarizer angle of 0 degree is always positioned at the position of the pixel 92-1 (A), as in the conventional arrangement, The output of pixel 92-1(A) is overestimated.
  • this polarizer arrangement pattern is changed for each unit.
  • a polarizer 61-1 with a polarizer angle of 0 degrees is arranged for the pixel 92-1
  • a polarizer 61-2 with a polarizer angle of 45 degrees is arranged for the pixel 92-2.
  • a polarizer arrangement such that a polarizer 61-4 with a polarizer angle of 135 degrees is arranged with respect to the pixel 92-3, and a polarizer 61-3 with a polarizer angle of 90 degrees is arranged with respect to the pixel 92-4. Make a pattern.
  • a polarizer 61-4 with a polarizer angle of 135 degrees is arranged with respect to the pixel 92-1
  • a polarizer 61-1 with a polarizer angle of 0 degrees is arranged with respect to the pixel 92-2
  • a polarizer arrangement pattern in which a polarizer 61-3 with a polarizer angle of 90 degrees is arranged with respect to the pixel 92-3 and a polarizer 61-2 with a polarizer angle of 45 degrees is arranged with respect to the pixel 92-4.
  • a polarizer 61-2 with a polarizer angle of 45 degrees is arranged with respect to the pixel 92-1
  • a polarizer 61-3 with a polarizer angle of 90 degrees is arranged with respect to the pixel 92-2
  • the polarizer arrangement pattern is such that the polarizer 61-1 with a polarizer angle of 0 degrees is arranged with respect to the pixel 92-3, and the polarizer 61-4 with a polarizer angle of 135 degrees is arranged with respect to the pixel 92-4.
  • the units UN1 to UN4 form one unit group, and this unit group is arranged periodically. By doing so, it is possible to reduce the output difference caused by the pixel structure 20 with respect to the polarizer angle, and also to reduce the flare by destroying the periodicity of the reflection by the polarizer 61 .
  • the polarizer arrangement pattern should have a periodicity of two or more units in which at least adjacent pixels 92 are arranged differently.
  • a unit may also be a set of, for example, eight pixels 92 having symmetry in structure.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 19 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which technology according to the present disclosure may be applied.
  • Vehicle control system 12000 comprises a plurality of electronic control units connected via communication network 12001 .
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 20 is a diagram showing an example of the installation position of the imaging unit 12031.
  • vehicle 12100 has imaging units 12101 , 12102 , 12103 , 12104 , and 12105 as imaging unit 12031 .
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 20 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device 1 in FIG. 1 can be applied to the imaging unit 12031 .
  • the present disclosure can also take the following configurations.
  • (1) comprising a plurality of pixels arranged in a matrix, each of the plurality of pixels, a pixel structure including a photoelectric conversion layer that photoelectrically converts incident light, and a wiring layer that is laminated on a surface of the photoelectric conversion layer opposite to the light incident surface and reads out signal charges generated in the photoelectric conversion layer;
  • Polarized light that is arranged on the light incident surface side of the photoelectric conversion layer, has a polarizer that has a different angle for each pixel in a plan view, and transmits light in a specific polarization direction out of the light that is incident by the polarizer.
  • the polarizer has an angle that is neither orthogonal nor parallel to the pixel structure in plan view, photodetector.
  • the pixel structure is formed to surround the photoelectric conversion layer, and includes an inter-pixel separation section that insulates and separates adjacent pixels, The polarizer has an angle that is neither orthogonal nor parallel to the inter-pixel separation section in plan view, The photodetector according to (1) above.
  • the pixel structure includes metal wiring formed in the wiring layer, The polarizer has an angle that is neither orthogonal nor parallel to the metal wiring in plan view, The photodetector according to (1) above.
  • the pixel structure includes a poly electrode formed on the wiring layer; the polarizer has an angle that is not orthogonal and parallel to the poly electrode in plan view; The photodetector according to (1) above.
  • the pixel structure includes an intra-pixel separation section that separates the photoelectric conversion layer into two, The polarizer has an angle that is neither orthogonal nor parallel to the intra-pixel separation section in plan view, The photodetector according to (1) above.
  • the pixel structure includes a light diffusion structure formed on the light incident surface side of the photoelectric conversion layer and diffusing incident light, The polarizer has an angle that is not orthogonal and parallel to the light diffusion structure in plan view, The photodetector according to (1) above.
  • (7) comprising a plurality of pixels arranged in a matrix, each of the plurality of pixels, a photoelectric conversion layer that photoelectrically converts incident light; a wiring layer laminated on the surface opposite to the light incident surface of the photoelectric conversion layer and reading out signal charges generated in the photoelectric conversion layer; Polarized light that is arranged on the light incident surface side of the photoelectric conversion layer, has a polarizer with a different angle for each pixel in a plan view, and transmits light in a specific polarization direction out of the incident light by the polarizer and forming a unit from a set of pixels having structural symmetry among the plurality of pixels;
  • the angle of the polarizer corresponding to the first pixel constituting the unit is defined as a first angle value
  • the angle of the polarizer corresponding to the second pixel having a symmetrical structure with respect to the first pixel is defined as the first angle value.
  • a polarizer arrangement pattern with an angle value of 2 is made different for each of the units; photodetector.
  • the polarizer arrangement pattern has periodicity with respect to at least two units, The photodetector according to (7) above. (9) comprising a plurality of pixels arranged in a matrix, each of the plurality of pixels, a pixel structure including a photoelectric conversion layer that photoelectrically converts incident light, and a wiring layer that is laminated on the surface of the photoelectric conversion layer opposite to the light incident surface and reads out signal charges generated in the photoelectric conversion layer; Polarized light that is arranged on the light incident surface side of the photoelectric conversion layer, has a polarizer having a different angle for each pixel in a plan view, and transmits light in a specific polarization direction out of light incident on the polarizer. and
  • the polarizer comprises a photodetector having an angle that is not orthogonal and parallel to the pixel structure in plan view, Electronics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Polarising Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

隣接する画素間で生じる出力差を低減可能な光検出器を提供する。光検出器は、行列状に配置される複数の画素を備える。複数の画素のそれぞれは、入射した光を光電変換する光電変換層、光電変換層の光入射面とは反対側の面に積層され光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、光電変換層の光入射面側に配置され、平面視において、画素ごとに角度が異なる偏光子を有し、偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部とを備える。偏光子は、平面視において、画素構造体に対して直交及び平行にならない角度を有する。

Description

光検出器及び電子機器
 本開示に係る技術(本技術)は、光検出器、及び光検出器を備える電子機器に関する。
 イメージセンサ(固体撮像装置)は、各画素を構成するフォトダイオード等の光電変換素子を用いて、該画素上に結像した光の強弱に応じた電荷量を電気信号に変換する光検出器である。入射光の利用効率の高さの観点から、入射した光が直接的に画素に到達する裏面照射型イメージセンサが注目されている。
 裏面照射型イメージセンサでは、光電変換層及び配線層を備える画素と偏光部とを組み合わせたイメージセンサがある。配線層は、光電変換層の光入射面とは反対側の面に配置され、メタル配線やポリ電極等を含む。偏光部は、光電変換層の光入射面側に配置されて入射光のうち特定の偏光方向の光を透過させる。このような裏面照射型イメージセンサは、隣接する画素に対応する偏光部どうしがそれぞれ異なる偏光子角度を有する。
 ところで、上記裏面照射型イメージセンサは、光電変換層に入射した光の一部が、光電変換層を透過して配線層まで到達し、メタル配線やポリ電極による反射の影響を受けやすいとともに、偏光子角度によって回析、反射への影響が変化し、隣接する画素間の画素出力に差分が生じやすい。
 下記特許文献1は、無偏光画素の出力を用いて偏光画素の出力を補正する方法を開示する。
国際公開2018/074064号
 上記特許文献1に開示される技術は、特定の偏光角に対して画素構造との相関による出力差が発生することが多く、このような無偏光画素による補正ではこの出力差を低減することができない。
 また、上記特許文献1に開示される技術では、無偏光画素を配置することで解像度が低下することになる。
 本開示はこのような事情に鑑みてなされたもので、隣接する画素間で生じる出力差を低減可能な光検出器及び電子機器を提供することを目的とする。
 本開示の一態様は、行列状に配置される複数の画素を備え、前記複数の画素のそれぞれは、入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部とを備え、前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する光検出器である。
 本開示の他の態様は、行列状に配置される複数の画素を備え、前記複数の画素のそれぞれは、入射した光を光電変換する光電変換層と、前記光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層と、前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに異なる角度の偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部とを備え、前記複数の画素のうち構造に対称性を有する画素の集合によりユニットを構成し、前記ユニットを構成する第1の画素に対応する前記偏光子の角度を第1の角度値とし、前記第1の画素に対し対称構造を有する第2の画素に対応する前記偏光子の角度を第2の角度値とする偏光子配置パターンを、前記ユニットごとに異ならせる光検出器である。
 さらに、本開示の他の態様は、行列状に配置される複数の画素を備え、前記複数の画素のそれぞれは、入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部とを備え、前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する、光検出器を備えた電子機器である。
本開示の第1の実施形態に係る固体撮像装置1の全体を示す概略構成図である。 図1に示した画素の等価回路を示す図である。 本開示の第1の実施形態に係る画素の断面構造の一例を示す部分縦断面図である。 比較例における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 本開示の第1の実施形態における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 本開示の第1の実施形態の第1の変形例における画素間分離部、画素内分離部、メタル配線及びポリ電極の配置例を示す平面図である。 本開示の第1の実施形態の第1の変形例における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 本開示の第1の実施形態の第2の変形例における画素間分離部、メタル配線及びポリ電極の配置例を示す平面図である。 本開示の第1の実施形態の第2の変形例における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 本開示の第2の実施形態に係る固体撮像装置の画素の断面構造の一例を示す部分縦断面図である。 本開示の第2の実施形態における光拡散構造体の平面図例である。 本開示の第2の実施形態における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 本開示の第3の実施形態における固体撮像装置の画素構造の例を示す平面図である。 本開示の第3の実施形態に係る固体撮像装置の画素の断面構造の一例を示す部分縦断面図である。 本開示の第3の実施形態において、偏光子の表面反射を要因とするフレアが発生する様子を示す部分縦断面図である。 フレア発生原理を説明するための図である。 フレア発生によりゴーストが生じる例を説明するための図である。 本開示の第3の実施形態における固体撮像装置の画素と偏光部との配置関係を示す平面図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものと異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
 なお、本明細書中に記載される効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 <第1の実施形態> 
 (固体撮像装置の全体構成) 
 本開示の第1の実施形態に係る光検出器としての固体撮像装置1について説明する。図1は、本開示の第1の実施形態に係る固体撮像装置1の全体を示す概略構成図である。
 図1の固体撮像装置1は、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。固体撮像装置1は、光学レンズを介して被写体からの像光を取り込み、撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
 図1に示すように、第1の実施形態の固体撮像装置1は、基板2と、画素領域3と、垂直駆動回路4と、カラム信号処理回路5と、水平駆動回路6と、出力回路7と、制御回路8とを備えている。
 画素領域3は、基板2上に、2次元アレイ状に規則的に配列された複数の画素9を有している。画素9は、光電変換部としてのフォトダイオード、複数の画素トランジスタとを有している。
 垂直駆動回路4は、例えば、シフトレジスタによって構成され、所望の画素駆動配線10を選択し、選択した画素駆動配線10に画素9を駆動するためのパルスを供給し、各画素9を行単位で駆動する。即ち、垂直駆動回路4は、画素領域3の各画素9を行単位で順次垂直方向に選択走査し、各画素9の光電変換部において受光量に応じて生成した信号電荷に基づく画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。
 カラム信号処理回路5は、例えば、画素9の列毎に配置されており、1行分の画素9から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。
 水平駆動回路6は、例えば、シフトレジスタによって構成され、水平走査パルスをカラム信号処理回路5に順次出して、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から、信号処理が行われた画素信号を水平信号線12に出力させる。
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して、順次に供給される画素信号に対し信号処理を行って出力する。信号処理としては、例えば、バファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。
 (画素の等価回路) 
 図2は、画素9の等価回路を示す。 
 画素9は、フォトダイオード(PD)91a、転送トランジスタ(TG)91b、電荷蓄積部としての浮遊拡散(フローティング・ディフュージョン(FD))部91c、変換効率調整トランジスタ(FDG)91d、増幅トランジスタ(AMP)91e、選択トランジスタ(SEL)91f、リセットトランジスタ(RST)91gを含む。画素トランジスタとする転送トランジスタ91b、変換効率調整トランジスタ91d、増幅トランジスタ91e、選択トランジスタ91f、リセットトランジスタ91gは、例えばMOSトランジスタで構成されている。
 フォトダイオード91aは、入射光を光電変換する光電変換部を構成する。フォトダイオード91aのアノードは接地されている。フォトダイオード91aのカソードには、転送トランジスタ91bのソースが接続されている。
 転送トランジスタ91bのドレインは、FD部91cに接続される。転送トランジスタ91bは、ゲートに印加される転送信号に基づき、フォトダイオード91aからの信号電荷をFD部91cに転送する。
 FD部91cは、フォトダイオード91aから転送トランジスタ91bを介して転送された信号電荷を蓄積する。FD部91cに蓄積された信号電荷量に応じて、FD部91cの電位は変調される。
 FD部91cには、変換効率調整トランジスタ91dのソースが接続されている。変換効率調整トランジスタ91dのドレインは、リセットトランジスタ91gのソースに接続されている。変換効率調整トランジスタ91dは、ゲートに印加される変換効率調整信号に応じて、信号電荷の変換効率を調整する。
 FD部91cには、増幅トランジスタ91eのゲートが接続されている。増幅トランジスタ91eのドレインには、選択トランジスタ91fのソースが接続されている。増幅トランジスタ91eのソースには、電源電位(VDD)が印加される。増幅トランジスタ91eは、FD部91cの電位を増幅する。
 リセットトランジスタ91gのドレインには、電源電位(VDD)が印加される。リセットトランジスタ91gは、ゲートに印加されるリセット信号に基づき、FD部91cに蓄積されていた信号電荷を初期化(リセット)する。
 選択トランジスタ91fのドレインは、垂直信号線11に接続されている。選択トランジスタ91fは、ゲートに印加される選択信号に基づき、画素9を選択する。画素9が選択された場合、増幅トランジスタ91eにより増幅された電位に応じた画素信号が垂直信号線11を介して出力される。
 (画素の断面構造) 
 図3は、本開示の第1の実施形態に係る画素9の断面構造の一例を示す部分縦断面図である。図3では、画素9を通る一点鎖線を垂直方向に切断した断面を図1中矢印A1-A2方向から見た断面図である。また、図3では、固体撮像装置1の各部材の光入射面側(図3の上側)の面を「裏面」と呼び、固体撮像装置1の各部材の光入射面側とは反対側(図3の下側)の面を「表面」と呼ぶ。
 図3に示すように、固体撮像装置1は、光電変換層21、絶縁膜22、オンチップレンズ23がこの順に図3中矢印Zで示す方向に積層される。また、光電変換層21の表面には、配線層24が積層されている。
 光電変換層21は、例えば、シリコン(Si)からなる半導体基板で、各画素9を構成するフォトダイオード91a、FD部91c等を含む画素回路群が形成された機能層である。フォトダイオード91aは、n型半導体領域91a1と、p型半導体領域91a2とを有している。フォトダイオード91aでは、入射光の光量に応じた信号電荷が生成され、生成された信号電荷がn型半導体領域91a1に蓄積される。光電変換層21の界面で発生する暗電流の原因となる電子は、p型半導体領域91a2の多数キャリアである正孔に吸収されることで、暗電流が抑制される。
 また、各画素9は、p型半導体領域で構成された画素分離層21a及びp-ウェル層21bと、画素分離層21a及びp-ウェル層21b内に形成された画素間分離部31とによって電気的に分離されている。画素間分離部31は、光電変換層21の裏面側から表面側へ形成される。画素間分離部31は、画素9に入射した光が隣接する画素9へ入り込むことを防止する。p-ウェル層21bには、FD部91cや画素トランジスタのソース・ドレイン領域が形成される。さらに、各画素9には、光電変換層21を左右方向(図3中矢印Xで示す方向)に分離する画素内分離部(STI)が形成される。
 絶縁膜22は、光電変換層21の裏面側全体(光入射面側全体)を連続的に被覆している。絶縁膜22の材料としては、酸化シリコン、窒化シリコン及び酸窒化シリコンの少なくとも1つを採用できる。
 オンチップレンズ23は、外部から固体撮像装置1に入射する光を、効率的に集光して光電変換層21に結像するための光学レンズである。オンチップレンズ23は、典型的には、画素9ごとに配置される。なお、オンチップレンズ23は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコン、有機SOG、ポリイミド系樹脂、又はフッ素系樹脂等から形成される。
 配線層24は、光電変換層21における各画素9へ電力及び各種の駆動信号を伝達し、また、各画素9から読み出される画素信号を伝達するためのメタル配線241が形成された層である。また、配線層24は、画素トランジスタのゲート電極となるポリ電極242が形成される。さらに、配線層24には、例えば、酸化シリコン(SiO)が使用される。本例では、配線層24は、図示しない半導体支持基板上に形成されている。半導体支持基板には、例えば、上述した各種のコンポーネントのいくつかを実現するロジック回路が形成される。
 ところで、画素9のそれぞれは、光電変換層21、オンチップレンズ23、配線層24、画素間分離部31、画素内分離部32、メタル配線241、ポリ電極242等の構成要素を含む画素構造体20を形成している。
 さらに、本開示の固体撮像装置1は、偏光部40を含む。偏光部40は、画素9ごとに角度が異なる偏光子41を有し、偏光子41によりオンチップレンズ23を透過した入射光のうち特定の偏光方向の光を透過する。
 以上のように構成される固体撮像装置1においては、外部から各画素9の光入射面に入射した光は、オンチップレンズ23で集光されるとともに偏光部40により該画素9に対応した所定の偏光方向の光が選択的に透過して、光電変換層21に到達する。光電変換層21のフォトダイオード91aは、入射した光の強度に応じて信号電荷を生成する。生成された信号電荷は、転送トランジスタ91bのゲートとなるポリ電極242に印加される転送信号に基づき、フォトダイオード91aからFD部91cに転送され、FD部91cに蓄積される。FD部91cに蓄積された信号電荷量に応じて、FD部91cの電位は変調され、増幅トランジスタ91eにより増幅される。増幅トランジスタ91eにより増幅された電位に応じた画素信号は、メタル配線241で形成された図1に示した垂直信号線11を介して出力される。また、光電変換層21に到達し入射した光の一部(例えば近赤外光)は、光電変換層21を透過するが、画素間分離部31、画素内分離部32、メタル配線241、ポリ電極242等で反射し、反射光として、該フォトダイオード91aに向けて進行する。
 <実施形態の比較例> 
 図4は、比較例における固体撮像装置B1の画素と偏光部との配置関係を示す平面図である。図4(a)において、画素間分離部B31は、各画素(B9-1,B9-2,B9-3,B9-4)B9を取り囲むように格子状に形成されている。図4(b)において、偏光部B40は、各画素B9-1,B9-2,B9-3,B9-4にそれぞれ対応して、偏光子角度が0度の偏光子B41-1と、偏光子角度が45度の偏光子B41-2と、偏光子角度が90度の偏光子B41-3と、偏光子角度が135度の偏光子B41-4とを有する。
 ところで、比較例における固体撮像装置B1では、反射に寄与するメタル配線241が全画素B9-1,B9-2,B9-3,B9-4に対し同じ方向(図4中矢印Xで示す方向)に配置されることが多い。このため、図4(c)に示すように、偏光部B40と組み合わせた構造の場合に、偏光子角度によって回折、反射への影響が変化し、意図しない出力差の要因となる。具体的には、画素B9-2,B9-4では、反射強度が同じになるが、画素B9-1では、メタル配線241と偏光子B41-1とが平行になるため、反射強度が強く、画素B9-3では、メタル配線241と偏光子B41-3とが直交になるため、反射強度が弱くなる。
 <第1の実施形態の解決手段> 
 図5は、本開示の第1の実施形態における固体撮像装置1の画素9と偏光部40との配置関係を示す平面図である。図5(a)において、画素間分離部31は、各画素(9-1,9-2,9-3,9-4)9を取り囲むように格子状に形成されている。図5(b)において、偏光部40は、各画素9-1,9-2,9-3,9-4にそれぞれ対応して、偏光子角度がαの偏光子41-1と、偏光子角度がα+45度の偏光子41-2と、偏光子角度がα+90度の偏光子41-3と、偏光子角度がα+135度の偏光子41-4とを有する。
 本開示の第1の実施形態における固体撮像装置1では、図5(c)に示すように、各画素9-1,9-2,9-3,9-4と偏光部40とを組み合わせた構造の場合に、偏光子41-1,41-2,41-3,41-4をメタル配線241と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と画素9-1,9-2,9-3,9-4との相関に起因する反射及び回折差を低減する。
 なお、αは、メタル配線241やポリ電極242と平行及び直交しない角度とする。
 <第1の実施形態による作用効果> 
 以上のように第1の実施形態によれば、メタル配線241は、平面視において、平行に配置されることが多く、画素間分離部31は、平面視において、直交及び平行に配置されることが多いため、偏光子41-1,41-2,41-3,41-4を、画素間分離部31及びメタル配線241と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と画素間分離部31及びメタル配線241との相関に起因する反射及び回折の影響を低減でき、これにより隣接する画素9-1,9-2,9-3,9-4間で生じる出力差を低減でき、本来のシグナルをより正確に出力できる。また、偏光子配置数は変わらないため、偏光としての解像度の低下は無くなる。さらに、偏光子41-1,41-2,41-3,41-4によって画素構造体20に起因する出力差を低減できるので、画素レイアウトの自由度が向上する。
 <第1の実施形態の第1の変形例> 
 図6は、本開示の第1の実施形態の第1の変形例における画素間分離部31、画素内分離部32、メタル配線241及びポリ電極242の配置例を示す平面図である。図6において、上記図5と同一部分には同一符号を付して詳細な説明を省略する。
 図6において、反射に寄与するメタル配線241が各画素9-1,9-2,9-3,9-4に対し同じ方向(図6中矢印Xで示す方向)に配置されることが多い。また、反射に寄与する画素内分離部32は、各画素9-1,9-2,9-3,9-4に対し同じ方向(図6中矢印Yで示す方向)に配置されることが多い。さらに、ポリ電極242は、各画素9-1,9-2,9-3,9-4に対し直交及び平行に配置される。
 図7は、本開示の第1の実施形態の第1の変形例における固体撮像装置1の画素9-1,9-2,9-3,9-4と偏光部40との配置関係を示す平面図である。図7において、上記図5と同一部分には同一符号を付して詳細な説明を省略する。
 図7において、偏光部40は、各画素9-1,9-2,9-3,9-4にそれぞれ対応して、偏光子角度がαの偏光子41-1と、偏光子角度がα+45度の偏光子41-2と、偏光子角度がα+90度の偏光子41-3と、偏光子角度がα+135度の偏光子41-4とを有する。なお、偏光子角度のαは、画素構造体20に対し22.5度を基準角度として設定される。
 本開示の第1の実施形態の第1の変形例における固体撮像装置1では、各画素9-1,9-2,9-3,9-4と偏光部40とを組み合わせた構造の場合に、偏光子41-1,41-2,41-3,41-4を画素間分離部31、画素内分離部32、メタル配線241及びポリ電極242と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と画素9-1,9-2,9-3,9-4との相関に起因する反射及び回折差を低減する。
 <第1の実施形態の第1の変形例による作用効果> 
 以上のように第1の実施形態の第1の変形例によれば、上記第1の実施形態と同様の作用効果が得られる。
 <第1の実施形態の第2の変形例> 
 図8は、本開示の第1の実施形態の第2の変形例における画素間分離部31、メタル配線241及びポリ電極242の配置例を示す平面図である。図8において、上記図6と同一部分には同一符号を付して詳細な説明を省略する。
 図8において、ポリ電極242は、各画素9-1,9-2,9-3,9-4に対し直交及び平行及び45度に配置される。
 図9は、本開示の第1の実施形態の第2の変形例における固体撮像装置1の画素9-1,9-2,9-3,9-4と偏光部40との配置関係を示す平面図である。図9において、上記図7と同一部分には同一符号を付して詳細な説明を省略する。
 図9において、偏光部40は、各画素9-1,9-2,9-3,9-4にそれぞれ対応して、偏光子角度がαの偏光子41-1と、偏光子角度がα+45度の偏光子41-2と、偏光子角度がα+90度の偏光子41-3と、偏光子角度がα+135度の偏光子41-4とを有する。なお、偏光子角度のαは、画素構造体20に対し22.5度を基準角度として設定される。偏光子角度は、画素構造体20に対して平行及び直交に対して5度以上の角度をつけることで効果が得られやすいため、基準角度αは5度から40度が良いと考える。
 本開示の第1の実施形態の第2の変形例における固体撮像装置1では、各画素9-1,9-2,9-3,9-4と偏光部40とを組み合わせた構造の場合に、偏光子41-1,41-2,41-3,41-4を画素間分離部31、メタル配線241及びポリ電極242と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と画素9-1,9-2,9-3,9-4との相関に起因する反射及び回折差を低減する。
 <第1の実施形態の第2の変形例による作用効果> 
 以上のように第1の実施形態の第2の変形例によれば、上記第1の実施形態と同様の作用効果が得られる。
 <第2の実施形態> 
 (画素の断面構造) 
 図10は、本開示の第2の実施形態に係る固体撮像装置1Aの画素9の断面構造の一例を示す部分縦断面図である。図10において、上記図3と同一部分には同一符号を付して詳細な説明を省略する。
 図10において、光電変換層21の光入射面側に光拡散構造体51が形成される。光拡散構造体51は、入射した光を拡散する。
 (光拡散構造体51の配置例) 
 図11は、本開示の第2の実施形態における光拡散構造体51の平面図例である。図11において、上記図5と同一部分には同一符号を付して詳細な説明を省略する。図11(a)において、各画素9-1,9-2,9-3,9-4に対し同じ方向(図11中矢印Yで示す方向)の光拡散構造体(51-1a,51-2a,51-3a,51-4a)51が形成される。
 図11(b)において、画素9-1に対し45度の光拡散構造体51-1bが形成される。画素9-2に対し90度(図11中矢印Xで示す方向)の光拡散構造体51-2bが形成される。画素9-3に対し135度の光拡散構造体51-3bが形成される。画素9-4に対し0度(図11中矢印Yで示す方向)の光拡散構造体51-4bが形成される。
 図11(c)において、各画素9-1,9-2,9-3,9-4に対し十字型の光拡散構造体(51-1c,51-2c,51-3c,51-4c)51が形成される。
 (光拡散構造体51と偏光部40との配置例) 
 図12は、本開示の第2の実施形態における固体撮像装置1Aの画素9-1,9-2,9-3,9-4と偏光部40との配置関係を示す平面図である。
 図12(a)、(b)、(c)において、偏光部40は、各画素9-1,9-2,9-3,9-4にそれぞれ対応して、偏光子角度がαの偏光子41-1と、偏光子角度がα+45度の偏光子41-2と、偏光子角度がα+90度の偏光子41-3と、偏光子角度がα+135度の偏光子41-4とを有する。なお、偏光子角度のαは、光拡散構造体51が0度及び90度を取ることが多く、45度を取ることもあるので、光拡散構造体51に対し22.5度を基準角度として設定される。偏光子角度は、光拡散構造体51に対して平行及び直交に対して5度以上の角度をつけることで効果が得られやすいため、基準角度αは5度から40度が良いと考える。
 本開示の第2の実施形態における固体撮像装置1Aでは、各画素9-1,9-2,9-3,9-4と偏光部40とを組み合わせた構造の場合に、偏光子41-1,41-2,41-3,41-4を光拡散構造体51と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と画素9-1,9-2,9-3,9-4との相関に起因する出力差を低減する。
 <第2の実施形態による作用効果> 
 以上のように第2の実施形態によれば、偏光子41-1,41-2,41-3,41-4を、光拡散構造体51と直交及び平行にならない角度で配置することで、偏光子41-1,41-2,41-3,41-4と光拡散構造体51との相関に起因する出力差を低減できる。
 <第3の実施形態> 
 (画素の平面構造) 
 図13は、本開示の第3の実施形態における固体撮像装置1Bの画素構造の例を示す平面図である。図13において、上記図6と同一部分には同一符号を付して詳細な説明を省略する。
 固体撮像装置1Bは、行列状に配置される複数の画素92のうち、構造に対称性を有する例えば4つの画素92-1(A),92-2(B),92-3(C),92-4(D)を有する。4つの画素92-1,92-2,92-3,92-4は、電荷保持部としてのFD91cを共有する。
 図13において、メタル配線241は、各画素92-1,92-2,92-3,92-4に対し同じ方向(図13中矢印Xで示す方向)に配置される。また、画素内分離部32は、各画素92-1,92-2,92-3,92-4に対し同じ方向(図13中矢印Yで示す方向)に配置される。さらに、ポリ電極242は、各画素92-1,92-2,92-3,92-4に対し直交及び平行に配置される。
 (画素の断面構造) 
 図14は、本開示の第3の実施形態に係る固体撮像装置1Bの画素92の断面構造の一例を示す部分縦断面図である。図14では、図13の画素92-2,92-4を通る一点鎖線を垂直方向に切断した断面を図13中矢印A3-A4方向から見た断面図である。
 図14において、上記図3と同一部分には同一符号を付して詳細な説明を省略する。画素92-2と画素92-4は、互いに対称構造を有する。
 第3の実施形態の固体撮像装置1Bは、偏光部60を含む。偏光部60は、各画素92-1,92-2,92-3,92-4ごとに角度が異なる偏光子61を有し、偏光子61によりオンチップレンズ23を透過した入射光のうち特定の偏光方向の光を透過する。
 ところで、固体撮像装置1Bでは、図15に示すように、偏光部60の偏光子61の表面反射を要因とするフレアが発生し、これにより画質の劣化を招いてしまうこともある。
 (フレア発生原理) 
 図16は、フレア発生原理を説明するための図である。固体撮像装置1Bでは、オンチップレンズ23を透過した光が干渉により強め合うことで、フレアの発生要因となる。干渉により強め合う条件は、次式で表される。
 sinθ=nλ/d
 n=0,1,2…
 λはオンチップレンズ23を透過した光の波長であり、dは偏光子61の間の距離である。
 フレアが発生すると、図17に示すように、例えば約940nmの波長を有する近赤外線(NIR)光は、偏光子61で反射して、不要光として他の画素に到達し、ゴーストとなる。
 <第3の実施形態による解決手段> 
 そこで、本開示の第3の実施形態では、dを大きくするために、偏光子角度を画素位置に対して変更する。
 図18は、本開示の第3の実施形態における固体撮像装置1Bの画素92と偏光部60との配置関係を示す平面図である。
 図18において、複数の画素92のうち、構造に対称性を有する例えば4つの画素92-1(A),92-2(B),92-3(C),92-4(D)の集合は、1つのユニットUN1を構成する。残りの画素92のうち、4つの画素92-1(A),92-2(B),92-3(C),92-4(D)の集合は、ユニットUN2,UN3,UN4を構成する。
 偏光部60は、各画素92-1,92-2,92-3,92-4にそれぞれ対応して、偏光子角度が0度の偏光子61-1と、偏光子角度が45度の偏光子61-2と、偏光子角度が90度の偏光子61-3と、偏光子角度が135度の偏光子61-4とを有する。
 ユニットUN1では、画素92-1に対し偏光子61-3を配置し、画素92-2に対し偏光子61-4を配置し、画素92-3に対し偏光子61-2を配置し、画素92-4に対し偏光子61-1を配置するといった偏光子配置パターンとする。
 画素92-1,92-2,92-3,92-4は、構造の対称性の違いから画素位置に固有の出力差が出やすい。例えば、画素固有出力がA>B>C>Dのとき、画素92-1(A)の位置に偏光子角度が0度の偏光子61-1が常に来るように従来通り配置する場合は、画素92-1(A)の出力が大きく見積もられてしまう。
 そこで、この偏光子配置パターンは、ユニットごとに変更される。具体的には、ユニットUN2では、画素92-1に対し偏光子角度が0度の偏光子61-1を配置し、画素92-2に対し偏光子角度が45度の偏光子61-2を配置し、画素92-3に対し偏光子角度が135度の偏光子61-4を配置し、画素92-4に対し偏光子角度が90度の偏光子61-3を配置するといった偏光子配置パターンとする。また、ユニットUN3では、画素92-1に対し偏光子角度が135度の偏光子61-4を配置し、画素92-2に対し偏光子角度が0度の偏光子61-1を配置し、画素92-3に対し偏光子角度が90度の偏光子61-3を配置し、画素92-4に対し偏光子角度が45度の偏光子61-2を配置するといった偏光子配置パターンとする。さらに、ユニットUN4では、画素92-1に対し偏光子角度が45度の偏光子61-2を配置し、画素92-2に対し偏光子角度が90度の偏光子61-3を配置し、画素92-3に対し偏光子角度が0度の偏光子61-1を配置し、画素92-4に対し偏光子角度が135度の偏光子61-4を配置するといった偏光子配置パターンとする。
 偏光子配置パターンは、ユニットUN1~UN4を1つのユニット群とし、このユニット群を周期的に配置する。このようにすることで、偏光子角度に対して画素構造体20に起因する出力差を低減できるとともに、偏光子61による反射の周期性を崩すことでフレア低減も可能となる。
 なお、偏光子配置パターンは、少なくとも隣の画素92同士は異なる配置となる2ユニット以上の周期性を有していればよい。また、ユニットは、構造に対称性を有する例えば8つの画素92の集合であってもよい。
 <第3の実施形態による作用効果> 
 以上のように第3の実施形態によれば、構造に対称性を有する例えば4つの画素92-1(A),92-2(B),92-3(C),92-4(D)の配置に対して偏光部60の偏光子配置パターンをユニットUN1,UN2,UN3,UN4ごとに変えることにより周期性を低減することで、偏光子61の表面反射を要因とするフレア発生を抑制できる。
 <その他の実施形態> 
 上記のように、本技術は第1から第3の実施形態及び第1の実施形態の第1の変形例及び第2の変形例によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の第1から第3の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1から第3の実施形態及び第1の実施形態の第1の変形例及び第2の変形例がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
 <移動体への応用例> 
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図19は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図19に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図19の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図20は、撮像部12031の設置位置の例を示す図である。
 図20では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図20には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。具体的には、図1の固体撮像装置1は、撮像部12031に適用することができる。
 なお、本開示は以下のような構成も取ることができる。 
(1)
 行列状に配置される複数の画素を備え、
 前記複数の画素のそれぞれは、
 入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、
 前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
を備え、
 前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する、
光検出器。
(2)
 前記画素構造体は、前記光電変換層の周囲を囲むように形成され、隣接する前記画素の間を絶縁して分離する画素間分離部を備え、
 前記偏光子は、平面視において、前記画素間分離部に対して直交及び平行にならない角度を有する、
前記(1)に記載の光検出器。
(3)
 前記画素構造体は、前記配線層に形成されるメタル配線を備え、
 前記偏光子は、平面視において、前記メタル配線に対して直交及び平行にならない角度を有する、
前記(1)に記載の光検出器。
(4)
 前記画素構造体は、前記配線層に形成されるポリ電極を備え、
 前記偏光子は、平面視において、前記ポリ電極に対して直交及び平行にならない角度を有する、
前記(1)に記載の光検出器。
(5)
 前記画素構造体は、前記光電変換層を2つに分離する画素内分離部を備え、
 前記偏光子は、平面視において、前記画素内分離部に対して直交及び平行にならない角度を有する、
前記(1)に記載の光検出器。
(6)
 前記画素構造体は、前記光電変換層の光入射面側に形成され、入射した光を拡散する光拡散構造体を備え、
 前記偏光子は、平面視において、前記光拡散構造体に対して直交及び平行にならない角度を有する、
前記(1)に記載の光検出器。
(7)
 行列状に配置される複数の画素を備え、
 前記複数の画素のそれぞれは、
 入射した光を光電変換する光電変換層と、
 前記光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層と、
 前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに異なる角度の偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
を備え、
 前記複数の画素のうち構造に対称性を有する画素の集合によりユニットを構成し、
 前記ユニットを構成する第1の画素に対応する前記偏光子の角度を第1の角度値とし、前記第1の画素に対し対称構造を有する第2の画素に対応する前記偏光子の角度を第2の角度値とする偏光子配置パターンを、前記ユニットごとに異ならせる、
光検出器。
(8)
 前記偏光子配置パターンは、少なくとも2ユニット以上に対して周期性を有する、
前記(7)に記載の光検出器。
(9)
 行列状に配置される複数の画素を備え、
 前記複数の画素のそれぞれは、
 入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、
 前記光電変換層の前記光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
を備え、
 前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する、光検出器を備えた、
電子機器。
 1,1A,1B…固体撮像装置、2…基板、3…画素領域、4…垂直駆動回路、5…カラム信号処理回路、6…水平駆動回路、7…出力回路、8…制御回路、9,9-1,9-2,9-3,9-4,92,92-1,92-2,92-3,92-4…画素、10…画素駆動配線、11…垂直信号線、12…水平信号線、20…画素構造体、21…光電変換層、21a…画素分離層、21b…p-ウェル層、22…絶縁膜、23…オンチップレンズ、24…配線層、31…画素間分離部、32…画素内分離部、40,60…偏光部、41,41-1,41-2,41-3,41-4,61,61-1,61-2,61-3,61-4…偏光子、51,51-1a,51-2a,51-3a,51-4a,51-1b,51-2b,51-3b,51-4b,51-1c,51-2c,51-3c,51-4c…光拡散構造体、91a…フォトダイオード、91a1…n型半導体領域、91a2…p型半導体領域、91b…転送トランジスタ、91c…浮遊拡散(フローティング・ディフュージョン(FD))部、91d…変換効率調整トランジスタ、91e…増幅トランジスタ、91f…選択トランジスタ、91g…リセットトランジスタ、241…メタル配線、242…ポリ電極、12000…車両制御システム、12001…通信ネットワーク、12010…駆動系制御ユニット、12020…ボディ系制御ユニット、12030…車外情報検出ユニット、12031…撮像部、12040…車内情報検出ユニット、12041…運転者状態検出部、12050…統合制御ユニット、12051…マイクロコンピュータ、12052…音声画像出力部、12061…オーディオスピーカ、12062…表示部、12063…インストルメントパネル、12100…車両、12101,12102,12103,12104,12105…撮像部、12111,12112,12113,12114…撮像範囲。

Claims (9)

  1.  行列状に配置される複数の画素を備え、
     前記複数の画素のそれぞれは、
     入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、
     前記光電変換層の光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
    を備え、
     前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する、
    光検出器。
  2.  前記画素構造体は、前記光電変換層の周囲を囲むように形成され、隣接する前記画素の間を絶縁して分離する画素間分離部を備え、
     前記偏光子は、平面視において、前記画素間分離部に対して直交及び平行にならない角度を有する、
    請求項1に記載の光検出器。
  3.  前記画素構造体は、前記配線層に形成されるメタル配線を備え、
     前記偏光子は、平面視において、前記メタル配線に対して直交及び平行にならない角度を有する、
    請求項1に記載の光検出器。
  4.  前記画素構造体は、前記配線層に形成されるポリ電極を備え、
     前記偏光子は、平面視において、前記ポリ電極に対して直交及び平行にならない角度を有する、
    請求項1に記載の光検出器。
  5.  前記画素構造体は、前記光電変換層を2つに分離する画素内分離部を備え、
     前記偏光子は、平面視において、前記画素内分離部に対して直交及び平行にならない角度を有する、
    請求項1に記載の光検出器。
  6.  前記画素構造体は、前記光電変換層の光入射面側に形成され、入射した光を拡散する光拡散構造体を備え、
     前記偏光子は、平面視において、前記光拡散構造体に対して直交及び平行にならない角度を有する、
    請求項1に記載の光検出器。
  7.  行列状に配置される複数の画素を備え、
     前記複数の画素のそれぞれは、
     入射した光を光電変換する光電変換層と、
     前記光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層と、
     前記光電変換層の光入射面側に配置され、平面視において、前記画素ごとに異なる角度の偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
    を備え、
     前記複数の画素のうち構造に対称性を有する画素の集合によりユニットを構成し、
     前記ユニットを構成する第1の画素に対応する前記偏光子の角度を第1の角度値とし、前記第1の画素に対し対称構造を有する第2の画素に対応する前記偏光子の角度を第2の角度値とする偏光子配置パターンを、前記ユニットごとに異ならせる、
    光検出器。
  8.  前記偏光子配置パターンは、少なくとも2ユニット以上に対して周期性を有する、
    請求項7に記載の光検出器。
  9.  行列状に配置される複数の画素を備え、
     前記複数の画素のそれぞれは、
     入射した光を光電変換する光電変換層、当該光電変換層の光入射面とは反対側の面に積層され当該光電変換層で発生する信号電荷を読み出す配線層を含む画素構造体と、
     前記光電変換層の光入射面側に配置され、平面視において、前記画素ごとに角度が異なる偏光子を有し、当該偏光子により入射した光のうち特定の偏光方向の光を透過する偏光部と
    を備え、
     前記偏光子は、平面視において、前記画素構造体に対して直交及び平行にならない角度を有する、光検出器を備えた、
    電子機器。
PCT/JP2022/009593 2021-06-21 2022-03-07 光検出器及び電子機器 WO2022270023A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021102202A JP2023001462A (ja) 2021-06-21 2021-06-21 光検出器及び電子機器
JP2021-102202 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022270023A1 true WO2022270023A1 (ja) 2022-12-29

Family

ID=84544866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009593 WO2022270023A1 (ja) 2021-06-21 2022-03-07 光検出器及び電子機器

Country Status (2)

Country Link
JP (1) JP2023001462A (ja)
WO (1) WO2022270023A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072097A (ja) * 2003-08-20 2005-03-17 Sony Corp 光電変換装置及びその駆動方法、並びにその製造方法、固体撮像装置及びその駆動方法、並びにその製造方法
JP2010263158A (ja) * 2009-05-11 2010-11-18 Sony Corp 2次元固体撮像装置、及び、2次元固体撮像装置における偏光光データ処理方法
JP2016001633A (ja) * 2014-06-11 2016-01-07 ソニー株式会社 固体撮像素子、および電子装置
JP2016152322A (ja) * 2015-02-18 2016-08-22 株式会社東芝 固体撮像装置
WO2017018258A1 (ja) * 2015-07-30 2017-02-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2018235416A1 (ja) * 2017-06-21 2018-12-27 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び固体撮像装置
WO2019116646A1 (ja) * 2017-12-14 2019-06-20 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
JP2021005619A (ja) * 2019-06-26 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US20210134867A1 (en) * 2019-11-04 2021-05-06 Samsung Electronics Co., Ltd. Image sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072097A (ja) * 2003-08-20 2005-03-17 Sony Corp 光電変換装置及びその駆動方法、並びにその製造方法、固体撮像装置及びその駆動方法、並びにその製造方法
JP2010263158A (ja) * 2009-05-11 2010-11-18 Sony Corp 2次元固体撮像装置、及び、2次元固体撮像装置における偏光光データ処理方法
JP2016001633A (ja) * 2014-06-11 2016-01-07 ソニー株式会社 固体撮像素子、および電子装置
JP2016152322A (ja) * 2015-02-18 2016-08-22 株式会社東芝 固体撮像装置
WO2017018258A1 (ja) * 2015-07-30 2017-02-02 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2018235416A1 (ja) * 2017-06-21 2018-12-27 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び固体撮像装置
WO2019116646A1 (ja) * 2017-12-14 2019-06-20 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
JP2021005619A (ja) * 2019-06-26 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US20210134867A1 (en) * 2019-11-04 2021-05-06 Samsung Electronics Co., Ltd. Image sensor

Also Published As

Publication number Publication date
JP2023001462A (ja) 2023-01-06

Similar Documents

Publication Publication Date Title
CN109997019B (zh) 摄像元件和摄像装置
TWI731035B (zh) 光電轉換元件及光電轉換裝置
WO2019188043A1 (ja) 撮像装置および撮像装置の製造方法
WO2019026393A1 (ja) 固体撮像装置及び電子機器
WO2020045142A1 (ja) 撮像装置および電子機器
US20230013149A1 (en) Solid-state image pickup device and electronic apparatus
WO2019078291A1 (ja) 撮像装置
US11469518B2 (en) Array antenna, solid-state imaging device, and electronic apparatus
WO2022113757A1 (ja) 固体撮像装置及びその製造方法
WO2022270023A1 (ja) 光検出器及び電子機器
JP7281895B2 (ja) 撮像素子および電子機器
CN114008783A (zh) 摄像装置
WO2023181657A1 (ja) 光検出装置及び電子機器
JPWO2019087527A1 (ja) 固体撮像装置及び電子機器
WO2020149181A1 (ja) 撮像装置
WO2023248388A1 (ja) 光検出装置及び電子機器
TWI839421B (zh) 成像元件及電子裝置
WO2023095491A1 (ja) 受光素子及び電子機器
WO2022196096A1 (ja) イベント検出素子及び電子機器
WO2024057739A1 (ja) 光検出装置、光検出装置の製造方法、及び電子機器
WO2023189130A1 (ja) 光検出装置及び電子機器
WO2023013554A1 (ja) 光検出器及び電子機器
US20240014230A1 (en) Solid-state imaging element, method of manufacturing the same, and electronic device
WO2022196141A1 (ja) 固体撮像装置および電子機器
WO2021153030A1 (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE