WO2022269666A1 - 制御装置、制御方法およびプログラム - Google Patents
制御装置、制御方法およびプログラム Download PDFInfo
- Publication number
- WO2022269666A1 WO2022269666A1 PCT/JP2021/023339 JP2021023339W WO2022269666A1 WO 2022269666 A1 WO2022269666 A1 WO 2022269666A1 JP 2021023339 W JP2021023339 W JP 2021023339W WO 2022269666 A1 WO2022269666 A1 WO 2022269666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- specific terminal
- control device
- sight
- line
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 230000033001 locomotion Effects 0.000 claims abstract description 13
- 238000012544 monitoring process Methods 0.000 claims description 37
- 238000004891 communication Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/005—Moving wireless networks
Definitions
- the present invention relates to a control device, control method and program.
- Non-Patent Document 1 shows results of outdoor experiments at 28 and 39 GHz.
- FR2 can use a wide band, and can realize ultra-high-speed communication under good radio wave quality conditions.
- radio signals in the frequency band called Above-6 such as the 28 GHz band that can be used in 5G and local 5G, have high straightness and large loss due to shielding, so there are many shields and shielding
- the disclosed technology aims to allow a specific terminal to maintain a good communication state even in environments where shields move.
- the disclosed technology is a control device for interlocking and controlling the position and direction of a base station and the position of a specific terminal that wirelessly communicates with the base station.
- a detection information acquisition unit a specific terminal position candidate calculation unit that calculates a position candidate of the specific terminal based on the information that the shielding object is detected; a line-of-sight determining unit for determining whether or not there is line-of-sight to the terminal; and base station mobility control for determining the position of the specific terminal and calculating parameters indicating the position and direction of the base station based on the determination result of the line-of-sight. and a parameter calculator.
- FIG. 3 is a diagram illustrating an example of functional configuration of a control device according to the first embodiment;
- FIG. 4 is a flowchart showing an example of the flow of control processing;
- FIG. 4 is a diagram for explaining an example of a method of calculating position candidates of a specific terminal;
- FIG. 10 is a first diagram for explaining an example of a prospect determination method according to the first embodiment;
- FIG. 10 is a second diagram for explaining an example of the outlook determination method according to the first embodiment;
- FIG. 10 is a diagram illustrating an example of the functional configuration of each device according to the second embodiment;
- FIG. 11 is a diagram for explaining an example of a prospect determination method according to the second embodiment;
- It is a figure which shows the hardware configuration example of a computer.
- a wireless communication system determines whether or not there is a line of sight from each base station of a plurality of position candidates of a surveillance camera based on a shielding map based on information on detecting a shielding object.
- a combination of the position/direction of the base station and the position of the surveillance camera that maximizes the area monitored by the surveillance camera and the coverage area quality of the base station is determined.
- FIG. 1 is a diagram illustrating a system configuration example of a wireless communication system.
- a wireless communication system 1 includes a control device 10 , a base station 20 , a shielding object detector 30 , a surveillance camera 40 and a terminal 50 .
- a communication area of the wireless communication system 1 is an area to be monitored by the monitoring camera 40, and includes the shield 60, the wall 70, and the like.
- the control device 10 is communicably connected to the base station 20 and the shielding object detector 30 by wire or wirelessly.
- the control device 10 acquires information detected by the shield detector 30 to generate a shield map, determines the position and direction of the base station 20 , and controls the base station 20 .
- the base station 20 is a wireless communication base station.
- Base station 20 is a mobile base station that can change position and orientation under the control of controller 10 .
- the range of motion of the base station 20 may be a slide-type one-dimensional range of motion, or a two-dimensional range of motion of a method in which the base station is mounted on a drone, an AGV (Automated Guided Vehicle), or the like. Also good.
- the shielding object detector 30 is a camera, a LiDAR (Light Detection And Ranging) system, or the like, and transmits information on detecting a shielding object to the control device 10 .
- LiDAR Light Detection And Ranging
- the monitoring camera 40 transmits a high-definition image of the monitored area to the base station 20 by wireless communication.
- the monitoring camera is an example of a specific terminal that should maintain a good communication state with the base station 20, and other terminals may be used.
- the specific terminal may be a repeater for relaying wireless communication.
- the terminal 50 is a terminal that uses wireless communication with the base station 20 .
- FIG. 2 is a diagram illustrating a functional configuration example of a control device according to the first embodiment
- the control device 10 includes a shield detection information acquisition unit 11 , a shield map generation unit 12 , a specific terminal position candidate calculation unit 13 , a line of sight determination unit 14 , and a base station movement control parameter calculation unit 15 .
- the shielding object detection information acquisition unit 11 acquires the information that the shielding object is detected by receiving it from the shielding object detector 30 .
- the shielding object map generation unit 12 generates a shielding object map indicating the position and size of the shielding object in the communication area based on the information that the shielding object is detected.
- the occluder map can be 3D or 2D.
- the visibility determination unit 14 determines the visibility in consideration of height.
- the specific terminal position candidate calculation unit 13 calculates position candidates for the monitoring camera 40 .
- the position candidates of the monitoring camera 40 are position candidates where the monitoring target area can be monitored according to the position and size of the shield. A specific example of the position candidate calculation method will be described later.
- the line-of-sight determination unit 14 determines whether or not there is line-of-sight to the monitoring camera 40 from the base station 20 for each position candidate of the monitoring camera 40 . When there are a plurality of base stations 20, the line-of-sight determining unit 14 determines that line-of-sight exists if there is line-of-sight to any of the base stations 20. FIG. A specific example of the method of determining whether or not there is a line of sight will be described later.
- the base station mobility control parameter calculator 15 calculates parameters for mobility control of the base station 20 .
- the calculated parameters are specifically parameters indicating the position and direction of the base station 20 .
- the control device 10 controls movement of the base station 20 based on the calculated parameters. Note that the base station 20 does not have to be mobile. In that case, the control device 10 outputs information indicating the calculation result. The user should install the base station 20 based on the calculated result. If there are multiple base stations 20, these controls may be combined. For example, among a plurality of base stations, some may be movable and some may be fixed base stations.
- FIG. 3 is a flowchart showing an example of the flow of control processing.
- the shielding object detection information acquisition unit 11 acquires information (shielding object detection information) that a shielding object has been detected (step S101).
- the shielding object map generator 12 generates a shielding object map based on the shielding object detection information (step S102).
- the specific terminal position candidate calculation unit 13 calculates a plurality of position candidates for the monitoring camera 40 (specific terminal) (step S103). Then, the base station mobility control parameter calculator 15 selects a position candidate for the surveillance camera 40 (specific terminal) (step S104).
- the base station mobility control parameter calculation unit 15 selects a combination of base station position and direction parameters (step S105). Specifically, the base station mobility control parameter calculation unit 15 stores in advance information indicating the range of possible values for the parameters of the position and direction of the base station, and selects one from a plurality of combinations within the range. to select.
- the line-of-sight determination unit 14 determines whether there is line-of-sight from the base station 20 to the position candidates of the monitoring camera 40 (specific terminal) (step S106).
- the process returns to step S105, and the base station mobility control parameter calculation unit 15 determines that the position and direction parameters of the base station 20 have already been selected as a combination of parameters. Choose a combination that is different from the combination.
- the base station movement control parameter calculation unit 15 calculates the monitoring area Ac of the monitoring camera 40 (specific terminal) (step S107).
- the base station mobility control parameter calculator 15 may calculate Ac as the coverage area of the repeater.
- the base station mobility control parameter calculator 15 calculates the coverage area quality Qe of the base station 20 (step S108).
- the controller 10 stores the calculated Ac and Qe.
- the control device 10 determines whether or not all the parameters of the position and direction of the base station 20 have been selected (step S109). If the control device 10 determines that none of the parameters of the position and direction of the base station 20 has been selected (step S109: No), the process returns to step S105, and the base station mobility control parameter calculation unit 15 A different combination of station 20 position and orientation parameters is selected than those already selected.
- step S109 When determining that all the parameters of the position and direction of the base station 20 have been selected (step S109: Yes), the control device 10 determines whether or not all the position candidates of the monitoring camera 40 (specific terminal) have been selected. (Step S110).
- step S110: No the process returns to step S104, and the base station mobility control parameter calculation unit 15 A position candidate different from the position candidates already selected as the position candidates of the monitoring camera 40 (specific terminal) is selected.
- the base station mobility control parameter calculator 15 selects the monitoring camera 40 (specific terminal) that maximizes Ac. ) and the position/direction parameters of the base station 20 (step S111). Further, the base station mobility control parameter calculator 15 selects the position/direction parameters of the base station 20 that maximize Qe from the combination of the selected position/direction parameters of the base station 20 (step S112).
- the first calculation method is a method of determining the elements of the monitoring target area that can be seen from the position candidates of each monitoring camera 40 (specific terminal) based on the shield map.
- the specific terminal position candidate calculation unit 13 calculates position candidates so as to maximize the number of elements of the monitoring target area within line of sight (or all the elements of the monitoring target area are within line of sight).
- a distance limit may be set for determination of presence/absence of line of sight.
- the first calculation method it is possible to calculate all the candidate positions of the monitoring camera 40 that maximize the number of elements that can be monitored by determining whether there is line of sight or not. In addition, if the distance limit is taken into account in the line of sight condition, more reliable monitoring can be made possible by taking into account restrictions such as camera resolution. If the specific terminal is a repeater, the number of elements that can be relayed may be used instead of the number of elements that can be monitored.
- FIG. 4 is a diagram for explaining an example of a method of calculating position candidates for a specific terminal.
- the specific terminal position candidate calculation unit 13 divides the monitoring target area into a plurality of triangles such as triangles 101-1 shown in FIG.
- the specific terminal position candidate calculation unit 13 selects combinable triangles (triangles sharing two vertices, for example, triangles 101-1 and 101-2, triangles 102-1 and 102-2, triangles 103- 1 and triangle 103-2).
- the specific terminal position candidate calculation unit 13 takes the area covered by the combined triangles as a position candidate for placing one monitoring camera 40 .
- the second calculation method it is possible to calculate the position candidate of each surveillance camera 40 (specific terminal) with a simpler calculation method.
- FIG. 5 is a first diagram for explaining an example of the outlook determination method according to the first embodiment.
- the line-of-sight determination unit 14 defines an area 111 through which a line segment 110 from the point at the center of the antenna 21 of the base station 20 until it collides with the wall 70 or the shield 60 is the line-of-sight area. do.
- the first line-of-sight determination method it is possible to easily calculate the line-of-sight area based only on the shape of the area and the position and shape of the obstructing object, regardless of the position of the surveillance camera 40 (specific terminal).
- FIG. 6 is a second diagram for explaining an example of the outlook determination method according to the first embodiment.
- the visibility determination unit 14 calculates a Fresnel zone 121 for each point 120 on a predetermined grid from the center position of the antenna 21 of the base station 20 . Then, the line-of-sight determination unit 14 defines a point in the Fresnel zone 121 where a predetermined X% is not shielded as a line-of-sight position, and defines the surrounding area as a line-of-sight area.
- the line-of-sight area can be easily determined based only on the shape of the area and the position and shape of the obstruction, regardless of the position of the surveillance camera 40 (specific terminal). can be calculated, and a determination result closer to the actual communication state than the first line-of-sight determination method can be obtained.
- d (m) The shortest distance between the transmitting side and the receiving side is d (m), the radius of the center of the spheroid (Fresnel radius) is r1 (m), the distance between the transmitting side and the center of the spheroid is d1 (m), and the receiving side and Letting d2(m) be the distance to the center of the spheroid, d3(m) be the path difference between the reflected wave reflected at the Fresnel radius and the direct wave, and ⁇ (m) be the wavelength, then d3(m ) and r1(m).
- Example 2 A second embodiment will be described below with reference to the drawings.
- the second embodiment differs from the first embodiment in that the location information of the specific terminal is used to determine the line of sight, and that the specific terminal detects a shielding object. Therefore, in the following description of the second embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
- FIG. 7 is a diagram illustrating a functional configuration example of each device according to the second embodiment.
- a control device 10 according to the present embodiment has a configuration obtained by adding a terminal location information acquisition unit 16 to the control device 10 according to the first embodiment.
- the terminal location information acquisition unit 16 acquires terminal location information indicating the location of a specific terminal from the base station 20 .
- the base station 20 includes a base station mobile mechanism 21, a radio transmission/reception section 22, and a signal demodulation section 23.
- the base station movement mechanism 21 is a mechanism (actuator) that moves the base station under the control of the control device 10 .
- the wireless transmission/reception unit 22 transmits/receives wireless communication signals to/from the monitoring camera 40 (specific terminal). Specifically, the wireless transmission/reception unit 22 receives the terminal position information and shielding object detection information indicating that the shielding object is detected from the surveillance camera 40 (specific terminal).
- the base station 20 may estimate the position of the monitoring camera 40 (specific terminal) using camera images or the like instead of receiving the terminal position information.
- the signal demodulator 23 demodulates the radio signal received by the radio transceiver 22 .
- Base station 20 transmits the demodulated signal to control device 10 .
- the monitoring camera 40 (specific terminal) includes a wireless transmission/reception unit 41, a position information acquisition unit 42, and a shield detection unit 43.
- the wireless transmission/reception unit 41 transmits/receives wireless communication signals to/from the base station 20 . Specifically, the wireless transmission/reception unit 41 transmits terminal position information and shielding object detection information to the base station 20 .
- the location information acquisition unit 42 acquires location information by specifying its own location using GPS (Global Positioning System), sensing, or the like.
- GPS Global Positioning System
- the shield detection unit 43 detects shields using a camera, lidar, or the like, and acquires shield detection information.
- FIG. 8 is a diagram for explaining an example of the outlook determination method according to the second embodiment.
- the visibility determining unit 14 calculates the Fresnel zone 130 for each monitoring camera 40 (specific terminal) from the center position of the antenna 21 of the base station 20 . Then, the line-of-sight determining unit 14 determines that the monitor camera 40 (specific terminal) in which a predetermined X% of the Fresnel zone 130 is not shielded has line-of-sight.
- the area shape, the position and shape of the shield, and the position of the monitoring camera 40 (specific terminal) are can be considered.
- each terminal 50 transmits position information via the base station 20 , and the control device 10 receives the position information of each terminal 50 .
- the base station mobility control parameter calculation unit 15 of the control device 10 determines whether there is a line of sight from the base station 20 to each terminal 50 based on the location information of each terminal 50, Calculate the number of elements in the area. Thereby, when each terminal 50 is static to some extent, the coverage area quality Qe according to the position of each terminal 50 can be calculated.
- the control device 10 can be implemented, for example, by causing a computer to execute a program describing the processing details described in the present embodiment.
- this "computer” may be a physical machine or a virtual machine on the cloud.
- the "hardware” described here is virtual hardware.
- the above program can be recorded on a computer-readable recording medium (portable memory, etc.), saved, or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
- FIG. 9 is a diagram showing a hardware configuration example of the computer.
- the computer of FIG. 9 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are interconnected by a bus B, respectively.
- a program that implements the processing in the computer is provided by a recording medium 1001 such as a CD-ROM or memory card, for example.
- a recording medium 1001 such as a CD-ROM or memory card
- the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000 .
- the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via the network.
- the auxiliary storage device 1002 stores installed programs, as well as necessary files and data.
- the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when a program activation instruction is received.
- the CPU 1004 implements functions related to the device according to programs stored in the memory device 1003 .
- the interface device 1005 is used as an interface for connecting to the network.
- a display device 1006 displays a GUI (Graphical User Interface) or the like by a program.
- An input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operational instructions.
- the output device 1008 outputs the calculation result.
- the computer may include a GPU (Graphics Processing Unit) or TPU (Tensor Processing Unit) instead of the CPU 1004, or may include a GPU or TPU in addition to the CPU 1004. In that case, the processing may be divided and executed, for example, the GPU or TPU executes processing that requires special computation, and the CPU 1004 executes other processing.
- the specific terminal is a surveillance camera
- the base station movement control parameter calculation unit calculates a monitoring area area of the monitoring camera, and determines the position of the specific terminal so as to maximize the calculated monitoring area area.
- a control device according to claim 1. (Section 3)
- the base station mobility control parameter calculation unit calculates the coverage area quality of the base station, and calculates parameters indicating the position and direction of the base station so as to maximize the calculated coverage area quality. 3.
- the line-of-sight determination unit calculates a Fresnel zone from the base station, and determines that there is line-of-sight at a point where a predetermined proportion of the calculated Fresnel zone is not blocked.
- the control device according to any one of items 1 to 3.
- (Section 5) Further comprising a terminal location information acquisition unit that acquires terminal location information indicating the location of the specific terminal, The line-of-sight determination unit determines whether or not there is line-of-sight to the specific terminal from the base station based on the terminal location information. 5.
- the control device according to any one of items 1 to 4.
- (Section 6) controlling the movement of the base station based on the calculated parameters indicating the position and direction of the base station; 6.
- the control device according to any one of items 1 to 5.
- (Section 7) A control method executed by a control device for interlocking and controlling the position and direction of a base station and the position of a specific terminal that wirelessly communicates with the base station, comprising: control method.
- (Section 8) A program for causing a computer to function as each unit in the control device according to any one of items 1 to 6.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本実施の形態に係る無線通信システムは、遮蔽物を検知した情報に基づく遮蔽物マップに基づいて、監視カメラの複数の位置候補のそれぞれの基地局からの見通しの有無を判定し、見通しのある基地局の位置・方向と監視カメラの位置のうち、監視カメラによる監視エリア面積と基地局のカバーエリア品質を最大化する組み合わせを決定する。
図1は、無線通信システムのシステム構成例を示す図である。無線通信システム1は、制御装置10と、基地局20と、遮蔽物検知器30と、監視カメラ40と、端末50と、を備える。また、無線通信システム1の通信エリアは、監視カメラ40の監視対象のエリアであって、遮蔽物60、壁70等を含む。
図2は、実施例1に係る制御装置の機能構成例を示す図である。制御装置10は、遮蔽物検知情報取得部11と、遮蔽物マップ生成部12と、特定端末位置候補算出部13と、見通し判定部14と、基地局移動制御パラメータ算出部15と、を備える。
次に、無線通信システム1の動作例について、図面を参照して説明する。遮蔽物検知器30によって検知されると、制御装置10は、制御処理を開始する。
次に、制御処理のステップS103における監視カメラ40(特定端末)の位置候補の算出方法について説明する。
次に、制御処理のステップS106における見通しの判定方法について説明する。
以下に図面を参照して、実施例2について説明する。実施例2は、見通しの判定に特定端末の位置情報を使用する点と遮蔽物の検知を特定端末が行う点が、実施例1と相違する。よって、以下の実施例2の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
図7は、実施例2に係る各装置の機能構成例を示す図である。本実施例に係る制御装置10は、実施例1に係る制御装置10に端末位置情報取得部16を追加した構成である。
次に、本実施例に係る見通しの判定方法について説明する。
制御装置10は、例えば、コンピュータに、本実施の形態で説明する処理内容を記述したプログラムを実行させることにより実現可能である。なお、この「コンピュータ」は、物理マシンであってもよいし、クラウド上の仮想マシンであってもよい。仮想マシンを使用する場合、ここで説明する「ハードウェア」は仮想的なハードウェアである。
本実施の形態に係る無線通信システム1によれば、遮蔽物を検知した情報に基づく遮蔽物マップに基づいて、特定端末の複数の位置候補のそれぞれの基地局からの見通しの有無を判定し、見通しのある基地局の位置・方向と特定端末の位置のうち、特定端末による監視エリア面積と基地局のカバーエリア品質を最大化する組み合わせを決定する。これによって、監視カメラ、中継器等の特定端末の位置と基地局の位置および方向を連動して制御することができ、カバーエリア品質を最大化しつつ、適切な特定端末の位置を決定し、効率的に配置できる。
本明細書には、少なくとも下記の各項に記載した制御装置、制御方法およびプログラムが記載されている。
(第1項)
基地局の位置および方向と、前記基地局と無線通信する特定端末の位置とを連動して制御するための制御装置であって、
遮蔽物を検知した情報を取得する遮蔽物検知情報取得部と、
前記遮蔽物を検知した情報に基づいて、前記特定端末の位置候補を算出する特定端末位置候補算出部と、
前記特定端末の位置候補ごとに、前記基地局からの前記特定端末の見通しの有無を判定する見通し判定部と、
前記見通しの有無の判定結果に基づいて、前記特定端末の位置を決定し、前記基地局の位置および方向を示すパラメータを算出する基地局移動制御パラメータ算出部と、を備える、
制御装置。
(第2項)
前記特定端末は監視カメラであって、
前記基地局移動制御パラメータ算出部は、前記監視カメラの監視エリア面積を算出し、算出された前記監視エリア面積を最大化するように、前記特定端末の位置を決定する、
第1項に記載の制御装置。
(第3項)
前記基地局移動制御パラメータ算出部は、前記基地局のカバーエリア品質を算出し、算出された前記カバーエリア品質を最大化するように、前記基地局の位置および方向を示すパラメータを算出する、
第1項または第2項に記載の制御装置。
(第4項)
前記見通し判定部は、前記基地局からのフレネルゾーンを算出して、算出されたフレネルゾーンのうち、予め定められた割合の領域が遮断されないポイントを見通し有りと判定する、
第1項から第3項のいずれか1項に記載の制御装置。
(第5項)
前記特定端末の位置を示す端末位置情報を取得する端末位置情報取得部をさらに備え、
前記見通し判定部は、前記端末位置情報に基づいて、前記基地局からの前記特定端末の見通しの有無を判定する、
第1項から第4項のいずれか1項に記載の制御装置。
(第6項)
算出された前記基地局の位置および方向を示す前記パラメータに基づいて、前記基地局の移動を制御する、
第1項から第5項のいずれか1項に記載の制御装置。
(第7項)
基地局の位置および方向と、前記基地局と無線通信する特定端末の位置とを連動して制御するための制御装置が実行する制御方法であって、
制御方法。
(第8項)
コンピュータを、第1項から第6項のいずれか1項に記載の制御装置における各部として機能させるためのプログラム。
10 制御装置
11 遮蔽物検知情報取得部
12 遮蔽物マップ生成部
13 特定端末位置候補算出部
14 見通し判定部
15 基地局移動制御パラメータ算出部
16 端末位置情報取得部
20 基地局
21 基地局移動機構
22 無線送受信部
23 信号復調部
30 遮蔽物検知器
40 監視カメラ
41 無線送受信部
42 位置情報取得部
43 遮蔽物検知部
50 端末
60 遮蔽物
70 壁
100 特徴点変化量データ
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置
Claims (8)
- 基地局の位置および方向と、前記基地局と無線通信する特定端末の位置とを連動して制御するための制御装置であって、
遮蔽物を検知した情報を取得する遮蔽物検知情報取得部と、
前記遮蔽物を検知した情報に基づいて、前記特定端末の位置候補を算出する特定端末位置候補算出部と、
前記特定端末の位置候補ごとに、前記基地局からの前記特定端末の見通しの有無を判定する見通し判定部と、
前記見通しの有無の判定結果に基づいて、前記特定端末の位置を決定し、前記基地局の位置および方向を示すパラメータを算出する基地局移動制御パラメータ算出部と、を備える、
制御装置。 - 前記特定端末は監視カメラであって、
前記基地局移動制御パラメータ算出部は、前記監視カメラの監視エリア面積を算出し、算出された前記監視エリア面積を最大化するように、前記特定端末の位置を決定する、
請求項1に記載の制御装置。 - 前記基地局移動制御パラメータ算出部は、前記基地局のカバーエリア品質を算出し、算出された前記カバーエリア品質を最大化するように、前記基地局の位置および方向を示すパラメータを算出する、
請求項1または2に記載の制御装置。 - 前記見通し判定部は、前記基地局からのフレネルゾーンを算出して、算出されたフレネルゾーンのうち、予め定められた割合の領域が遮断されないポイントを見通し有りと判定する、
請求項1から3のいずれか1項に記載の制御装置。 - 前記特定端末の位置を示す端末位置情報を取得する端末位置情報取得部をさらに備え、
前記見通し判定部は、前記端末位置情報に基づいて、前記基地局からの前記特定端末の見通しの有無を判定する、
請求項1から4のいずれか1項に記載の制御装置。 - 算出された前記基地局の位置および方向を示す前記パラメータに基づいて、前記基地局の移動を制御する、
請求項1から5のいずれか1項に記載の制御装置。 - 基地局の位置および方向と、前記基地局と無線通信する特定端末の位置とを連動して制御するための制御装置が実行する制御方法であって、
制御方法。 - コンピュータを、請求項1から6のいずれか1項に記載の制御装置における各部として機能させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023529197A JPWO2022269666A1 (ja) | 2021-06-21 | 2021-06-21 | |
PCT/JP2021/023339 WO2022269666A1 (ja) | 2021-06-21 | 2021-06-21 | 制御装置、制御方法およびプログラム |
US18/560,545 US20240259993A1 (en) | 2021-06-21 | 2021-06-21 | Control apparatus, control method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/023339 WO2022269666A1 (ja) | 2021-06-21 | 2021-06-21 | 制御装置、制御方法およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022269666A1 true WO2022269666A1 (ja) | 2022-12-29 |
Family
ID=84544321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023339 WO2022269666A1 (ja) | 2021-06-21 | 2021-06-21 | 制御装置、制御方法およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240259993A1 (ja) |
JP (1) | JPWO2022269666A1 (ja) |
WO (1) | WO2022269666A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014110577A (ja) * | 2012-12-04 | 2014-06-12 | Hitachi Kokusai Electric Inc | 無線伝送システム |
JP2019138874A (ja) * | 2018-02-15 | 2019-08-22 | 住友電気工業株式会社 | 位置検出装置、基地局装置、位置検出方法、及びコンピュータプログラム |
JP2019161464A (ja) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | 基地局の移動制御プログラム、基地局の移動制御方法及び情報処理装置 |
JP2020107955A (ja) * | 2018-12-26 | 2020-07-09 | 日本電信電話株式会社 | 置局設計方法、置局設計装置、及び置局設計プログラム |
-
2021
- 2021-06-21 US US18/560,545 patent/US20240259993A1/en active Pending
- 2021-06-21 JP JP2023529197A patent/JPWO2022269666A1/ja active Pending
- 2021-06-21 WO PCT/JP2021/023339 patent/WO2022269666A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014110577A (ja) * | 2012-12-04 | 2014-06-12 | Hitachi Kokusai Electric Inc | 無線伝送システム |
JP2019138874A (ja) * | 2018-02-15 | 2019-08-22 | 住友電気工業株式会社 | 位置検出装置、基地局装置、位置検出方法、及びコンピュータプログラム |
JP2019161464A (ja) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | 基地局の移動制御プログラム、基地局の移動制御方法及び情報処理装置 |
JP2020107955A (ja) * | 2018-12-26 | 2020-07-09 | 日本電信電話株式会社 | 置局設計方法、置局設計装置、及び置局設計プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022269666A1 (ja) | 2022-12-29 |
US20240259993A1 (en) | 2024-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11832168B2 (en) | Beamforming | |
CN114747257A (zh) | 用于估计无线通信网络中信号遮蔽障碍物和信号反射器的位置的系统和方法 | |
US20190043372A1 (en) | Systems, devices, and methods for generating routes within limited communication zones | |
JP2018165099A (ja) | 無線通信システム、制御装置、中継装置および無線通信制御方法 | |
WO2019028380A1 (en) | SYSTEMS, DEVICES AND METHODS FOR RELAYING COMMUNICATIONS USING AUTONOMOUS DRONES | |
CN110641392A (zh) | 用于车辆的天线阵列的预测对准的技术 | |
WO2019028389A1 (en) | SYSTEMS, DEVICES AND METHODS FOR GENERATING A DYNAMIC THREE-DIMENSIONAL COMMUNICATION CARD | |
JP2010147519A (ja) | 無線通信システム | |
WO2016069598A1 (en) | Communication link accessibility aware navigation | |
WO2021041161A1 (en) | Indoor positioning for mobile devices | |
CN110557741B (zh) | 终端交互的方法及终端 | |
Souli et al. | Real-time relative positioning system implementation employing signals of opportunity, inertial, and optical flow modalities | |
US10595263B2 (en) | Communication apparatus switching communication route, control method for communication apparatus and storage medium | |
JP2009225132A (ja) | 画像表示システム、画像表示方法、及び、プログラム | |
US11733344B2 (en) | Interference source searching method and interference source searching apparatus | |
WO2022269666A1 (ja) | 制御装置、制御方法およびプログラム | |
WO2022269840A1 (ja) | 制御装置、通信システム、制御方法、及びプログラム | |
KR20180081949A (ko) | 실내 측위 방법 및 이를 수행하는 장치들 | |
KR20140126600A (ko) | 3차원 객체의 교차를 이용한 통신 가능 영역 연산 방법 및 이의 저장 매체 | |
KR101494710B1 (ko) | 신호 송수신 상황에 기반한 빔 포밍 장치 및 방법 | |
US20240251253A1 (en) | Control apparatus, communication system, control method and program | |
JP2009250865A (ja) | 測位システム及び測位方法 | |
WO2022168141A1 (ja) | 制御システム、制御装置、制御方法及びプログラム | |
US20240259830A1 (en) | Control apparatus, communication system, control method and program | |
JP5872926B2 (ja) | 電波環境管理システムおよび電波環境管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946957 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529197 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18560545 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946957 Country of ref document: EP Kind code of ref document: A1 |