WO2022268106A1 - 生物基聚合油及其应用 - Google Patents

生物基聚合油及其应用 Download PDF

Info

Publication number
WO2022268106A1
WO2022268106A1 PCT/CN2022/100367 CN2022100367W WO2022268106A1 WO 2022268106 A1 WO2022268106 A1 WO 2022268106A1 CN 2022100367 W CN2022100367 W CN 2022100367W WO 2022268106 A1 WO2022268106 A1 WO 2022268106A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rubber
bio
polymerized
weight
Prior art date
Application number
PCT/CN2022/100367
Other languages
English (en)
French (fr)
Inventor
郭涛
宋文彬
陈政
杨天奎
Original Assignee
丰益油脂科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰益油脂科技有限公司 filed Critical 丰益油脂科技有限公司
Publication of WO2022268106A1 publication Critical patent/WO2022268106A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F301/00Macromolecular compounds not provided for in groups C08F10/00 - C08F299/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the application relates to bio-based polymer oil and its application, in particular to bio-based polymer oil and its application in rubber.
  • Rubber oil is a kind of softener, which requires itself to have good compatibility and affinity with rubber. In the process of improving rubber processing, it can reduce the consumption of mixing power and promote the uniform dispersion of various auxiliary materials. Improve the elongation, resilience and other technical properties of vulcanized rubber.
  • Rubber oil generally includes petroleum-based rubber oil, pine oil-based rubber oil, coal tar-based rubber oil and fatty oil-based rubber oil. Among them, petroleum-based rubber oil has the largest storage capacity, is the easiest to process, and has a good plasticizing effect. , low cost and thus widely used.
  • aromatic hydrocarbon rubber oil is the most used in the tire industry, because aromatic hydrocarbons have the best compatibility with rubber, and can enhance the ductility, stretchability and other properties of rubber.
  • the European Union has gradually begun to restrict the use of non-environmental protection aromatic oils, because non-environmental protection aromatic oils are carcinogenic.
  • TDAE polycyclic aromatic hydrocarbon removal rubber oil
  • Nap naphthenic rubber oil
  • CN104672563A discloses vegetable oils such as soybean oil, sunflower oil or cottonseed oil as rubber oil.
  • vegetable oils such as soybean oil, sunflower oil or cottonseed oil as rubber oil.
  • TDAE polycyclic aromatic hydrocarbon-removed rubber oil
  • Nap naphthenic rubber oil
  • natural oils usually have a linear structure, while natural rubber and TDAE have a ring structure, so natural oils are incompatible with rubber.
  • CN201810579291.2 discloses a rubber composition containing hydrogenated vegetable oil and its preparation method, and records the problem of using hydrogenated vegetable oil to improve vulcanization.
  • the Tg (glass transition temperature) of hydrogenated vegetable oil is relatively high, which cannot meet the most basic operating performance of rubber oil, so it also greatly affects its use.
  • CN103380163A discloses a scheme of elastomer extender oil prepared from oligomer structure obtained from vegetable oil. Although this scheme is also derived from vegetable oil, it needs to preferentially crack vegetable oil into dibasic acid and polyol, and then dibasic Acids and polyols undergo esterification reactions. The reaction process is complicated and the cost is high, and in the final test result, the elongation at break of the elastomer composition is lower than TDAE.
  • bio-based polymer oil originates from the bio-based oil that comprises vegetable oil and/or animal oil and/or microbial oil, and the glass transition temperature of described bio-based polymer oil is- In the range of 65 ⁇ -40°C.
  • the vegetable oil includes but not limited to sunflower oil, rapeseed oil, soybean oil, corn oil, rice bran oil, cottonseed oil, shea butter, peanut oil, palm oil, linseed oil one or more of .
  • the animal oil includes, but is not limited to, one or more of lard, fish oil, beef tallow and suet.
  • the microbial oil is algae oil.
  • the iodine number of the polymerized oil is 60-120.
  • the iodine number of the polymerized oil is 70-110.
  • the iodine number of the polymerized oil is 80-110.
  • the viscosity of the polymerized oil at 25°C is 150-2000, or 3000-6000.
  • the proportion of polymerized oils with a weight average molecular weight below 2000 is 20-50%, and the proportion of polymerized oils with a weight average molecular weight above 2000 is 50-80%. .
  • the polymerized oil is a polymer with a ring structure.
  • the cyclic structure is formed by a Diels-Alder addition reaction of a conjugated diene moiety and a monoolefin moiety;
  • a saturated fatty acid preforms a conjugated diene moiety to undergo a Diels-Alder addition reaction with an unsaturated fatty acid having one double bond to form a ring structure.
  • Another aspect of the present application provides a method for preparing the bio-based polymeric oil described in the present application, the method comprising the following steps:
  • bio-based fats including vegetable oils and/or animal oils
  • the glass transition temperature of the bio-based polymeric oil is in the range of -65°C to -40°C, and the bio-based polymeric oil includes an oligomer with a ring structure.
  • the overall weight average molecular weight of the bio-based polymeric oil is less than 20000, more preferably less than 15000, most preferably less than 10000.
  • the bio-based oil is natural oil (including animal oil and/or vegetable oil).
  • the bio-based oil is a mixture of several oils.
  • the bio-based oil includes vegetable oil and/or animal oil and/or microbial oil.
  • the heating temperature is 270-310°C, more preferably 270-300°C, most preferably 280-300°C.
  • the polymerization catalyst includes a Lewis acid (such as AlCl 3 , BF 3 , SnCl 4 and TiCl 4 ), anthraquinone, or a combination thereof.
  • a Lewis acid such as AlCl 3 , BF 3 , SnCl 4 and TiCl 4
  • anthraquinone or a combination thereof.
  • the amount of the polymerization catalyst used is 0.1-10% by weight, preferably 0.5-8% by weight, more preferably 1-5% by weight, based on the weight of the bio-based oil .
  • the step (2) is carried out in air, vacuum or inert atmosphere; more preferably, the step (2) is carried out in an inert atmosphere (nitrogen or inert gas).
  • the third aspect of the invention provides a rubber oil, characterized in that the rubber oil contains the polymerized grease described in the present invention.
  • the rubber oil comprises 55.5%-100% of the polymerized grease of the present invention and 0%-44.5% of additives.
  • the rubber oil based on the total mass of the rubber oil, the rubber oil comprises 56-70% of the polymerized grease.
  • the rubber oil based on the total mass of the rubber oil, contains 60-70% of the polymerized grease.
  • the additive is selected from one or more of accelerators, reinforcing fillers, crosslinking agents, and antiaging agents.
  • the crosslinking agent is sulfur
  • the accelerator includes accelerator M (2-mercaptobenzothiazole), accelerator DM (dibenzothiazole disulfide), accelerator CBS ( N-cyclohexyl-2-benzothiazole sulfenamide), accelerator TBBS (N-tert-butyl-2-benzothiazole sulfenamide), accelerator NOBS (N-oxydiethylene-2 -benzothiazole sulfenamide), accelerator DZ (N,N'-dicyclohexyl-2-benzothiazole sulfenamide, accelerator TMTD (tetramethylthiuram disulfide), accelerator TMTM ( Tetramethylthiuram monosulfide), accelerator TETD (tetraethylthiuram disulfide), accelerator DPTT (pentamethylenethiuram hexasulfide), accelerator ZDC (diethyldithioamino At least one of zinc formate), accelerator M (2-mercaptobenz
  • the crosslinking agent is a peroxide crosslinking system, preferably the crosslinking agent is dicumyl peroxide, dibenzoyl peroxide, dicumyl hydroperoxide, dicumyl peroxide, Tert-butyl peroxide, double 25, etc.
  • 1 to 6 parts of polytriallyl isocyanurate (TAIC) is added to the peroxide crosslinking system for co-vulcanization.
  • the reinforcing filler is selected from carbon black, white carbon black, barium sulfate, calcium carbonate, clay, calcium carbonate, magnesium carbonate, magnesium sulfate, talcum powder, dolomite, wollastonite, At least one of gypsum, asbestos, pyrophyllite, coal gangue, oil shale, fly ash, attapulgite, and red mud.
  • the rubber oil based on the total mass of the rubber oil, the rubber oil comprises components:
  • Zinc oxide 3%-4%
  • Stearic acid 1%-1.5%
  • Carbon black 25%-35%
  • Accelerator MBTS dibenzothiazole disulfide
  • Antiaging agent DNP N,N'-di( ⁇ -naphthyl)-p-phenylenediamine: 0.5%-1%.
  • a fourth aspect of the present invention provides a rubber composition, the composition is prepared from raw materials comprising the following components, by weight fraction:
  • the rubber raw rubber is selected from at least one of natural rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, butadiene rubber, butyl rubber, and isoprene rubber.
  • the reinforcing filler is selected from carbon black, white carbon black, barium sulfate, calcium carbonate, clay, calcium carbonate, magnesium carbonate, magnesium sulfate, talcum powder, dolomite, wollastonite, At least one of gypsum, asbestos, pyrophyllite, coal gangue, oil shale, fly ash, attapulgite, and red mud.
  • the accelerator and crosslinking agent are common rubber additives in the field, with the purpose of realizing crosslinking of rubber.
  • the crosslinking agent is sulfur
  • the accelerator includes accelerator M (2-mercaptobenzothiazole), accelerator DM (dibenzothiazole disulfide), accelerator CBS (N-cyclohexyl -2-benzothiazole sulfenamide), accelerator TBBS (N-tert-butyl-2-benzothiazole sulfenamide), accelerator NOBS (N-oxydiethylene-2-benzothiazole Sulfonamide), accelerator DZ (N,N'-dicyclohexyl-2-benzothiazole sulfenamide, accelerator TMTD (tetramethylthiuram disulfide), accelerator TMTM (tetramethyl monosulfide Thiuram), accelerator TETD (tetraethylthiuram disulfide), accelerator DPTT (pentamethylene), accelerator M2-mercaptobenzothiazole
  • the crosslinking agent is a peroxide crosslinking system, preferably the crosslinking agent is dicumyl peroxide, dibenzoyl peroxide, dicumyl hydroperoxide, dicumyl peroxide, Tert-butyl peroxide, double 25, etc.
  • 1 to 6 parts of polytriallyl isocyanurate (TAIC) is added to the peroxide crosslinking system for co-vulcanization.
  • the rubber composition further includes an anti-aging agent.
  • the rubber composition is a rubber composition for treads.
  • a fifth aspect of the present invention provides a pneumatic tire at least partially composed of the rubber composition of the present invention.
  • the leakage of the polymerized grease of the present invention is better than that of traditional rubber oil.
  • the polymerized grease of the present invention behaves normally in the vulcanization process, which is close to traditional rubber oil.
  • the tensile strength, elongation at break and resistance to winter low temperature environment of the polymerized grease of the present invention are superior to traditional rubber oil.
  • the source of the polymerized oil of the present invention is a renewable resource with low cost.
  • Figure 1 Mechanism for the polymerization of unsaturated fatty acid triglycerides into rings by opening the double bonds on the fatty acid chains.
  • Figure 2 Rubber bleed volume for different operating oils.
  • percentages (%) or parts refer to weight percentages or parts by weight relative to the composition.
  • the sum of the parts of each component in the composition may be 100 parts by weight.
  • the numerical range "a ⁇ b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • the integer value range "a ⁇ b” represents an abbreviated representation of any combination of integers between a and b, wherein a and b are both integers.
  • the integer value range "1 ⁇ N” means 1, 2...N, where N is an integer.
  • the basis of the percentages (including weight percentages) mentioned in the present invention is the total weight of the composition.
  • Ranges are disclosed herein in terms of lower limits and upper limits. There can be one or more lower bounds, and one or more upper bounds, respectively.
  • a given range is defined by selecting a lower limit and an upper limit. Selected lower and upper limits define the boundaries of a particular range. All ranges that may be defined in this manner are inclusive and combinable, ie, any lower limit may be combined with any upper limit to form a range. For example, ranges of 60-120 and 80-110 are listed for a particular parameter, with the understanding that ranges of 60-110 and 80-120 are also contemplated. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2 ⁇ 4, and 2 ⁇ 5.
  • each reaction step may or may not be performed sequentially.
  • other steps may be included between each reaction step, and the order of the reaction steps may also be reversed.
  • the reaction processes herein are performed sequentially.
  • biobased means derived from a biological source.
  • bio-based oils and similar terms mean vegetable oils, animal oils, microbial oils, or combinations thereof.
  • vegetable oil means oils and fats obtained from the fruits, seeds and/or germs of plants, such as high oleic sunflower oil, sunflower oil, high oleic rapeseed oil, rapeseed oil, soybean oil, corn oil, rice bran oil, cottonseed oil, shea butter, palm oil, linseed oil, dewaxed corn oil, etc.
  • the main components of vegetable oil are esters of fatty acids and glycerol, and fatty acids usually include palmitic acid, stearic acid, oleic acid, and unsaturated acids such as erucic acid, oleic acid, and ricinoleic acid.
  • animal oil refers to oil obtained from animal fat, generally derived from pigs, cattle, fish, sheep, etc.
  • the main components of animal oil are saturated higher fatty acid glycerides and unsaturated higher fatty acid glycerides, and the content of saturated higher fatty acid glycerides is higher.
  • microbial oil means that microorganisms such as yeast, mold, bacteria and algae use carbohydrates, hydrocarbons and ordinary oils as carbon sources, nitrogen sources, supplemented by inorganic salts under certain conditions. Produced oils and other commercially valuable lipids, including but not limited to algae, bacteria and fungi.
  • the determination of the weight average molecular weight distribution can be used to determine whether the oil has undergone ring polymerization), reducing the activity of the ring double bond and reducing the impact of the oil on vulcanization.
  • the glass transition temperature of the polymerized oil changes due to the significant change in the spatial structure.
  • the bio-based rubber oil formed from the natural oil includes an oligomer with a ring structure, which is similar to the ring structure of TDAE and Nap, thereby avoiding the compatibility problem with rubber.
  • the present application provides a bio-based polymer oil on the one hand, the bio-based polymer oil is derived from bio-based oil including vegetable oil and/or animal oil and/or microbial oil, the glass transition temperature of the bio-based polymer oil In the range of -65 to -40°C.
  • the bio-based polymerized grease of the present invention can significantly reduce rubber oil exudation compared with the Aromatic oil and Paraffin oil currently used in large quantities; compared with the naphthenic oil (Nap) currently being used in the tire industry, it has Similar Mooney viscosity and Shore hardness, but better tensile strength and elongation at break. Therefore, the bio-based polymeric grease of the present invention can be used to reduce the exudation of rubber oil in rubber, and/or improve the tensile strength and elongation at break of rubber (especially vulcanized rubber).
  • bio-based oil means that the raw material of the bio-based polymerized oil of the present invention is bio-based oil. More specifically, it means that the bio-based polymerized oil of the present invention is obtained by polymerizing the bio-based oil in the presence of a catalyst.
  • the fatty acid composition in the bio-based oil of the present invention includes at least monounsaturated fatty acid and polyunsaturated fatty acid (ie unsaturated fatty acid with two or more double bonds).
  • the vegetable oil includes but not limited to sunflower oil, rapeseed oil, soybean oil, corn oil, rice bran oil, cottonseed oil, shea butter, peanut oil, palm oil, linseed oil one or more of .
  • the vegetable oil is any one or a mixture of any of soybean oil, cottonseed oil and palm oil (preferably palm olein).
  • the animal oil includes, but is not limited to, one or more of lard, fish oil, beef tallow and suet.
  • the microbial oil is algae oil.
  • the iodine number of the polymerized oil is 60-120.
  • the iodine number of the polymerized oil is 70-110.
  • the iodine number of the polymerized oil is 80-110.
  • the viscosity of the polymerized oil at 25°C is 150-2000, or 3000-6000.
  • the proportion of polymerized oils with a weight average molecular weight below 2000 is 20-50%, and the proportion of polymerized oils with a weight average molecular weight above 2000 (excluding 2000) is 50-50%. 80%.
  • the proportion of polymerized oils with different molecular weights in the bio-based polymeric oil is the GPC molecular weight area percentage.
  • the proportion of polymerized oils with a weight average molecular weight of 2000 or less is 25-45%.
  • the proportion of polymerized oils with a weight average molecular weight above 2000 is 50-70%.
  • the proportion of polymerized oils with a weight average molecular weight of 1500 or less is 20-50%, and the proportion of polymerized oils with a weight average molecular weight of 2300 or more is 50-80%.
  • the proportion of polymerized oils with a weight average molecular weight of 1500 or less is 25-45%.
  • the polymerized oils with a weight average molecular weight of 2300 or above account for 50-70%.
  • the polymerized oil is a polymer with a ring structure.
  • the cyclic structure is formed by a Diels-Alder addition reaction of a conjugated diene moiety and a monoolefin moiety;
  • a saturated fatty acid preforms a conjugated diene moiety to undergo a Diels-Alder addition reaction with an unsaturated fatty acid having one double bond to form a ring structure.
  • the bio-based polymeric oil described in the first aspect of the present invention is the bio-based polymeric oil prepared by the method described in the second aspect of the present invention.
  • the second aspect of the application provides a method for preparing the bio-based polymerized oil described in the application, the method comprising the steps of:
  • bio-based fats including vegetable oils and/or animal oils
  • the bio-based oil In the presence of a polymerization catalyst, heat the bio-based oil at 265-315°C to obtain the bio-based polymerized oil; wherein, the glass transition temperature of the bio-based polymerized oil is from -65°C to - 40°C, and the bio-based polymeric oil includes oligomers with a ring structure.
  • the bio-based oil is natural oil (including animal oil and/or vegetable oil).
  • the bio-based oil is a mixture of several oils.
  • the bio-based oil includes vegetable oil and/or animal oil and/or microbial oil.
  • the vegetable oil includes but not limited to sunflower oil, rapeseed oil, soybean oil, corn oil, rice bran oil, cottonseed oil, shea butter, peanut oil, palm oil, linseed oil one or more of .
  • the vegetable oil is any one or a mixture of any of soybean oil, cottonseed oil and palm oil (preferably palm olein).
  • the animal oil includes, but is not limited to, one or more of lard, fish oil, beef tallow and suet.
  • the microbial oil is algae oil.
  • the iodine value of the bio-based polymeric oil is 60-120.
  • the iodine value of the bio-based polymeric oil is 70-110.
  • the iodine value of the bio-based polymeric oil is 80-110.
  • the viscosity of the bio-based polymeric oil at 25°C is 150-2000, or 3000-6000.
  • the proportion of polymerized oils with a weight average molecular weight below 2000 is 20-50%, and the proportion of polymerized oils with a weight average molecular weight above 2000 (excluding 2000) is 20-50%.
  • the ratio is 50-80%.
  • the polymeric oil with a weight average molecular weight of 2000 or less accounts for 25-45%.
  • the polymeric oil with a weight average molecular weight above 2000 accounts for 50-70%.
  • the proportion of polymerized oils with a weight average molecular weight of 1500 or less is 20-50%, and the proportion of polymerized oils with a weight average molecular weight of 2300 or more is 20-50%.
  • the ratio is 50-80%.
  • the molecular weight of the bio-based polymeric oil is 1500 or less than 1500, accounting for 25-45%.
  • the molecular weight of the bio-based polymeric oil is 2300 or above, accounting for 50-70%.
  • the bio-based polymeric oil is a polymer with a ring structure.
  • the cyclic structure is formed by a Diels-Alder addition reaction of a conjugated diene moiety and a monoolefin moiety;
  • a saturated fatty acid preforms a conjugated diene moiety to undergo a Diels-Alder addition reaction with an unsaturated fatty acid having one double bond to form a ring structure.
  • the heating temperature is 270-310°C, preferably 270-300°C, most preferably 280-300°C.
  • the reaction time of the step (2) is ⁇ 6 hours, such as ⁇ 8 hours. In some embodiments, the reaction time of the step (2) is 8-20 hours.
  • the polymerization catalyst includes a Lewis acid (such as AlCl 3 , BF 3 , SnCl 4 and TiCl 4 ), anthraquinone, or a combination thereof.
  • a Lewis acid such as AlCl 3 , BF 3 , SnCl 4 and TiCl 4
  • anthraquinone or a combination thereof.
  • the polymerization catalyst is anthraquinone.
  • the polymerization catalyst is used in an amount of 0.1-10% by weight, preferably 0.5-8% by weight, more preferably 1-5% by weight, more preferably 2-4% by weight, so The weight of the above-mentioned bio-based oil.
  • the step (2) is carried out in air, vacuum or inert atmosphere; more preferably, the step (2) is carried out in an inert atmosphere (nitrogen or inert gas).
  • the third aspect of the present invention provides a rubber oil, characterized in that the rubber oil contains the polymerized grease described in the present invention.
  • the rubber oil comprises 55.5-100% of the polymerized grease of the present invention and 0-44.5% of additives.
  • the rubber oil based on the total mass of the rubber oil, contains 56-70% of the polymerized grease.
  • the rubber oil based on the total mass of the rubber oil, contains 60-70% of the polymerized grease.
  • the rubber oil may also contain additives commonly used in the art.
  • the additive is selected from one or more of accelerators, reinforcing fillers, crosslinking agents, and antiaging agents.
  • the crosslinking agent is sulfur
  • the accelerator includes accelerator M (2-mercaptobenzothiazole), accelerator DM (dibenzothiazole disulfide), accelerator CBS ( N-cyclohexyl-2-benzothiazole sulfenamide), accelerator TBBS (N-tert-butyl-2-benzothiazole sulfenamide), accelerator NOBS (N-oxydiethylene-2 -benzothiazole sulfenamide), accelerator DZ (N,N'-dicyclohexyl-2-benzothiazole sulfenamide, accelerator TMTD (tetramethylthiuram disulfide), accelerator TMTM ( Tetramethylthiuram monosulfide), accelerator TETD (tetraethylthiuram disulfide), accelerator DPTT (pentamethylenethiuram hexasulfide), accelerator ZDC (diethyldithioamino At least one of zinc formate), accelerator M (2-mercaptobenz
  • the crosslinking agent is a peroxide crosslinking system, preferably the crosslinking agent is dicumyl peroxide, dibenzoyl peroxide, dicumyl hydroperoxide, dicumyl peroxide, Tert-butyl peroxide, double 25, etc.
  • 1 to 6 parts of polytriallyl isocyanurate (TAIC) is added to the peroxide crosslinking system for co-vulcanization.
  • the reinforcing filler is selected from carbon black, white carbon black, barium sulfate, calcium carbonate, clay, calcium carbonate, magnesium carbonate, magnesium sulfate, talcum powder, dolomite, wollastonite, At least one of gypsum, asbestos, pyrophyllite, coal gangue, oil shale, fly ash, attapulgite, and red mud.
  • the anti-aging agent is a p-phenylenediamine anti-aging agent, preferably selected from the anti-aging agent DNP (N,N'-di( ⁇ -naphthyl)-p-phenylenediamine), N,N '-bis-(1,4-dimethylpentyl)-p-phenylenediamine (77PD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), N-1,3-di Methylbutyl-N'-phenyl-p-phenylenediamine (6PPD), N-cyclohexyl-N'-phenyl-p-phenylenediamine (4010), diphenyl-xylyl- and phenylcresyl p-Phenylenediamine mixture (3100) or combinations thereof.
  • DNP N,N'-di( ⁇ -naphthyl)-p-phenylenediamine
  • the additives include, but are not limited to, sulfur, zinc oxide, stearic acid, carbon black, accelerator MBTS (dibenzothiazole disulfide) and antioxidant DNP (N,N'-bis( ⁇ - One or more of naphthyl) p-phenylenediamine).
  • the rubber oil based on the total mass of the rubber oil, the rubber oil comprises components:
  • Zinc oxide 3%-4%
  • Stearic acid 1%-1.5%
  • Carbon black 25-35%
  • Accelerator MBTS dibenzothiazole disulfide
  • Antiaging agent DNP N,N'-di( ⁇ -naphthyl)-p-phenylenediamine: 0.5%-1%.
  • the rubber oil based on the total mass of the rubber oil, contains 56-70% of the polymerized grease.
  • the rubber oil based on the total mass of the rubber oil, contains 60-70% of the polymerized grease.
  • the fourth aspect of the present invention provides a rubber composition, the rubber composition comprising the bio-based polymerized grease provided in the first aspect of the present invention or the rubber oil provided in the third aspect.
  • the rubber composition is prepared from raw materials comprising the following components, by weight fraction: 95-100 parts of raw rubber rubber; the bio-based polymeric oil provided by the first aspect of the present invention 8-10 parts; 25-30 parts of reinforcing filler; 0-2 parts of accelerator, preferably 1-2 parts; 0-2 parts of crosslinking agent, preferably 1-2 parts.
  • the raw material further includes 0-2 parts of anti-aging agent.
  • the rubber raw rubber is selected from at least one of natural rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, butadiene rubber, butyl rubber, and isoprene rubber.
  • the reinforcing filler is selected from carbon black, white carbon black, barium sulfate, calcium carbonate, clay, calcium carbonate, magnesium carbonate, magnesium sulfate, talcum powder, dolomite, wollastonite, At least one of gypsum, asbestos, pyrophyllite, coal gangue, oil shale, fly ash, attapulgite, and red mud.
  • the accelerator and crosslinking agent are common rubber additives in the field, with the purpose of realizing crosslinking of rubber.
  • the crosslinking agent is sulfur
  • the accelerator includes accelerator M (2-mercaptobenzothiazole), accelerator DM (dibenzothiazole disulfide), accelerator CBS (N-cyclohexyl -2-benzothiazole sulfenamide), accelerator TBBS (N-tert-butyl-2-benzothiazole sulfenamide), accelerator NOBS (N-oxydiethylene-2-benzothiazole Sulfonamide), accelerator DZ (N,N'-dicyclohexyl-2-benzothiazole sulfenamide, accelerator TMTD (tetramethylthiuram disulfide), accelerator TMTM (tetramethyl monosulfide Thiuram), accelerator TETD (tetraethylthiuram disulfide), accelerator DPTT (pentamethylene), accelerator M2-mercaptobenzothiazole
  • the cross-linking agent is dicumyl peroxide, dibenzoyl peroxide, dicumyl hydroperoxide, di-tert-butyl peroxide, double 25, etc., and usually 1 to 6 parts of poly Triallyl isocyanurate (TAIC) for co-vulcanization.
  • TAIC Triallyl isocyanurate
  • the anti-aging agent is a p-phenylenediamine anti-aging agent, preferably selected from the anti-aging agent DNP (N,N'-di( ⁇ -naphthyl)-p-phenylenediamine), N,N '-bis-(1,4-dimethylpentyl)-p-phenylenediamine (77PD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), N-1,3-di Methylbutyl-N'-phenyl-p-phenylenediamine (6PPD), N-cyclohexyl-N'-phenyl-p-phenylenediamine (4010), diphenyl-xylyl- and phenylcresyl p-Phenylenediamine mixture (3100) or combinations thereof.
  • DNP N,N'-di( ⁇ -naphthyl)-p-phenylenediamine
  • the rubber composition is a rubber composition for treads.
  • the rubber is vulcanized rubber, such as vulcanized isoprene rubber.
  • a fifth aspect of the present invention provides a pneumatic tire at least partially composed of the rubber composition of the present invention.
  • the sixth aspect of the present invention provides the application of the bio-based polymeric grease or rubber oil of the present invention in improving the tensile strength and elongation at break of rubber.
  • the seventh aspect of the present invention provides a method for preparing vulcanized rubber with improved tensile strength and elongation at break, the method comprising raw rubber, the bio-based polymeric grease or rubber oil according to any embodiment of the present invention,
  • the rubber is homogeneously mixed with additives and then vulcanized to produce a vulcanized rubber with improved tensile strength and elongation at break.
  • 8-10 parts by weight of the bio-based polymerized oil is used for every 95-100 parts by weight of raw rubber, and the dosages of the remaining ingredients are the conventional dosages in this field.
  • the mixing and vulcanization can also use this method. conventional technical means in the field.
  • the rubber base is isoprene rubber.
  • Soybean oil purchased from Shanghai Kerry Grain and Oil Industry Co., Ltd.;
  • Sunflower oil purchased from Shanghai Kerry Grain and Oil Industry Co., Ltd.;
  • Dewaxed corn oil purchased from Shanghai Kerry Grain and Oil Industry Co., Ltd.;
  • Palm olein purchased from Kerry Special Oils (Shanghai) Co., Ltd.;
  • Linseed oil purchased from Kerry Special Oils (Shanghai) Co., Ltd.;
  • Cottonseed oil purchased from Yihai (Changji) Grain and Oil Industry Co., Ltd.;
  • Anthraquinone purchased from Sinopharm Group;
  • TDAE environmentally friendly aromatic oil
  • Nap naphthenic aromatic oil: purchased from Sinopec.
  • the main equipment used is as follows:
  • DSC 3-differential scanning calorimeter purchased from Mettler Mettler;
  • HPLC high-performance liquid chromatography purchased from Agilent;
  • Synchronous thermogravimetric analyzer New STA & STA7000 purchased from Hitachi Analytical Instruments Co., Ltd.;
  • Fatigue testing machine purchased from Instron.
  • Tg uses the national standard method: QB/T 2957-2008 Determination of starch content in starch-based plastics by thermogravimetry (TG).
  • Mw Use the national standard method GB/T 6598-1986 small-angle laser light scattering method to measure the weight-average molecular weight of polystyrene standard samples.
  • the weight-average molecular weight was detected and calculated by referring to the relative peak table of the broad-distributed unknown sample by integrating the peaks.
  • GB/T 6344-2008 Determination of tensile strength and elongation at break of flexible foam polymeric materials.
  • GB/T 6670-2008 Determination of resilience properties of flexible foam polymer materials by falling ball method.
  • GB/T 2411-2008 Determination of indentation hardness (Shore hardness) of plastics and hard rubber using a durometer.
  • GB/T 5532-2008 Determination of iodine value of animal and vegetable fats and oils.
  • Test example 1 vulcanization test performance control test effect
  • the grease composition or aromatic hydrocarbon oil, carbon black, white carbon black of isoprene rubber, following examples and comparative examples are joined in Haake internal mixer, add coupling agent (bis-( ⁇ -triethoxy silicon propyl group) tetrasulfide), and then heated to 120 ° C for 5 minutes, cooled to 80 ° C, and then 12 parts of zinc oxide, 5 parts of anti-aging agent (anti-aging agent 124), 5 parts of accelerator (CBS: N-ring Hexyl-2-benzothiazole sulfenamide), 8 parts of sulfur were added to the internal mixer, mixed for 5 minutes and then taken out.
  • the rubber mixture was vulcanized at 145° C. for 18 minutes to obtain vulcanized isoprene rubber containing the oil compositions of different examples and comparative examples.
  • the ordinate is the exudation volume.
  • the effect of embodiment 1 and 2 is obviously better than the Aromatic oil and Paraffin oil that use in large quantities at present.
  • the results in Figure 2 also show that with different degrees of polymerization, the exudation of polymerized oil has very large differences.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

本发明提供了一种生物基聚合油脂,所述生物基聚合油脂源自包括植物油和/或动物油和/或微生物油脂的生物基油脂,所述生物基聚合油脂的玻璃化转变温度在-65~-40℃的范围内。本发明的聚合油脂的渗漏情况、拉伸强度、断裂伸长率以及耐冬季低温环境性能好于传统橡胶油。

Description

生物基聚合油及其应用 技术领域
本申请涉及生物基聚合油及其应用,具体涉及生物基聚合油及其在橡胶中应用。
背景技术
橡胶油是一种软化剂,这就要求它本身能和橡胶有着良好的相容性、亲和性,在改善橡胶加工过程中,能够减少混炼动力的消耗,促进各种辅料的均匀分散,提高硫化胶的伸长率、回弹性等工艺性能。橡胶油一般有石油系橡胶油、松油系橡胶油、煤焦油系橡胶油以及脂肪油系橡胶油四大类,其中石油系橡胶油是储存量最大、最容易加工的,而且增塑效果好,成本低,因此被广泛使用。
目前轮胎行业使用量最多的是芳烃型橡胶油,因为芳烃与橡胶的相容性最好,能够增强橡胶的延展性、拉伸性等各项性能。但是随着经济的发展,人们环保意识的加强,欧盟逐渐开始限制使用非环保芳烃油,因为非环保型芳烃油具有致癌性。
当前开发环保型橡胶油是橡胶行业中发展的一个主要趋势,其中研究较为广泛的是去除多环芳烃的橡胶油(TDAE)及环烷基橡胶油(Nap)。这两者均可作为芳烃型橡胶油的替代品,而且在各种性能方面与芳烃型橡胶油几乎没有多大差别,且环保无污染。但是TDAE及Nap依旧为石油来源,属于不可再生资源,同时加工成本高昂。
CN104672563A公开了大豆油、葵花籽油或者棉籽油等植物油作为橡胶油。但是,简单使用单一植物油去替代现有的去除多环芳烃的橡胶油(TDAE)或者环烷基橡胶油(Nap),出现了轮胎加工过程中底部温升过高,阿克隆磨耗高,湿抓性能差等诸多问题。这是因为天然油脂通常是直链状结构,而天然橡胶及TDAE等均为环状结构,因此天然油脂与橡胶不相容。
通常认为橡胶在交联过程中,需要添加硫磺进行硫化,形成空间网状结构。而植物油中的直链双键活泼型较强,容易与硫发生反应从而影响交联。
CN201810579291.2公开了一种含有氢化植物油的橡胶组合物及其制备方法, 记载了使用氢化植物油去改善硫化的问题。但是氢化植物油的Tg(玻璃化转变温度)较高,无法满足橡胶油最基本的操作性能,因此也极大影响其使用。
CN103380163A公开了一种从植物油得到的低聚体结构制备的弹性体增量油的方案,虽然该方案也是来源于植物油,但是需要优先将植物油裂解成为二元酸及多元醇,然后在将二元酸及多元醇进行酯化反应。该反应过程复杂,成本高,而且最后的测试效果中,弹性体组合物的断裂伸长率低于TDAE。
本领域急需一种生物基油脂,其能够克服上述问题。
发明内容
本申请一方面提供了一种生物基聚合油脂,所述生物基聚合油脂源自包括植物油和/或动物油和/或微生物油脂的生物基油脂,所述生物基聚合油的玻璃化转变温度在-65~-40℃的范围内。
在本申请的一个实施方案中,所述植物油包括但不限于葵花籽油、菜籽油、大豆油、玉米油、米糠油、棉籽油、乳木果油、花生油、棕榈油、亚麻籽油中的一种或多种。
在本申请的一个实施方案中,所述动物油包括但不限于猪油、鱼油、牛油和羊油中的一种或多种。
在本申请的一个实施方案中,所述微生物油为藻油。
在本申请的一个实施方案中,所述聚合油脂的碘价为60-120。
在本申请的一个实施方案中,所述聚合油脂的碘价为70-110。
在本申请的一个实施方案中,所述聚合油脂的碘价为80-110。
在本申请的一个实施方案中,所述聚合油脂在25℃下的粘度为150-2000,或3000-6000。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为2000以下的聚合油脂的占比为20-50%,重均分子量为2000以上的聚合油脂的占比为50-80%。
在本申请的一个实施方案中,所述聚合油脂为具有环状结构的聚合物。
在本申请的一个实施方案中,所述环状结构是共轭二烯部分和单烯烃部分通过狄尔斯-阿尔德加成反应形成的;优选地,具有两个或更多双键的不饱和脂肪酸 预先形成共轭二烯部分,从而与具有一个双键的不饱和脂肪酸进行狄尔斯-阿尔德加成反应形成环状结构。
本申请另一方面提供了一种制备本申请所述生物基聚合油脂的方法,所述方法包括如下步骤:
(1)提供包括植物油和/或动物油的生物基油脂;
(2)在聚合催化剂存在的条件下,在265-315℃加热所述生物基油脂,从而得到所述生物基聚合油脂。
在一些实施方案中,所述生物基聚合油脂的玻璃化转变温度在-65℃到-40℃的范围内,并且所述生物基聚合油脂包括具有环状结构的低聚物。
在一些实施方案中,所述生物基聚合油脂整体的重均分子量在20000以下,更优选15000以下,最优选10000以下。
在本申请的一个实施方案中,所述生物基油脂是天然油脂(包括动物油和/或植物油)。
在本申请的一个实施方案中,所述生物基油脂是几种油脂复配而成的混合物。
在本申请的一个实施方案中,所述生物基油脂包括植物油和/或动物油和/或微生物油脂。
在本申请的一个实施方案中,所述加热的温度270-310℃,更优选270-300℃,最优选280-300℃。
在本申请的一个实施方案中,所述聚合催化剂包括路易斯酸(例如AlCl 3、BF 3、SnCl 4和TiCl 4)、蒽醌或其组合。
实施方案在本申请的一个实施方案中,所述聚合催化剂的用量为0.1-10重量%,优选为0.5-8重量%,更优选为1-5重量%,以所述生物基油脂的重量计。
在本申请的一个实施方案中,所述步骤(2)是在空气、真空或惰性气氛中进行;更优选地,所述步骤(2)在惰性气氛(氮气或惰性气体)中进行。
发明的第三方面提供一种橡胶油,其特征在于,所述橡胶油包含本发明所述的聚合油脂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含55.5%-100%的本发明所述的聚合油脂和0%-44.5%的添加剂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含 56-70%的所述聚合油脂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含60-70%的所述聚合油脂。
在本申请的一个实施方案中,所述添加剂选自促进剂、补强填料、交联剂、防老化剂中的一种或多种。
在本申请的一个实施方案中,所述交联剂为硫磺,促进剂包括促进剂M(2-硫醇基苯并噻唑)、促进剂DM(二硫化二苯并噻唑)、促进剂CBS(N-环已基-2-苯并噻唑次磺酰胺)、促进剂TBBS(N-叔丁基-2-苯并噻唑次磺酰胺)、促进剂NOBS(N-氧联二亚乙基-2-苯并噻唑次磺酰胺)、促进剂DZ(N,N'-二环已基-2-苯并噻唑次磺酰胺、促进剂TMTD(四甲基二硫化秋兰姆)、促进剂TMTM(一硫化四甲基秋兰姆)、促进剂TETD(二硫化四乙基秋兰姆)、促进剂DPTT(六硫化五亚甲基秋兰姆)、促进剂ZDC(二乙基二硫代氨基甲酸锌)、促进剂BZ(二丁基二硫代氨基甲酸锌)、促进剂PZ(二甲基二硫代氨基甲酸锌)、促进剂D(二苯胍)中的至少一种。
在本申请的一个实施方案中,所述交联剂为过氧化物交联体系,优选交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物、双25等。在本申请的一个实施方案中,所述过氧化物交联体系中还加入1~6份的聚三烯丙基异三聚氰酸酯(TAIC),用以进行共硫化。
在本申请的一个实施方案中,所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含组分:
硫磺:1.5%-2%;
氧化锌:3%-4%;
硬脂酸:1%-1.5%;
炭黑:25%-35%;
促进剂MBTS(二硫化二苯并噻唑):0.5%-1%;和
防老剂DNP(N,N′-二(β-萘基)对苯二胺):0.5%-1%。
本发明的第四方面提供一种橡胶组合物,所述组合物由包括以下组分的原料制备得到,以重量分数计:
橡胶生胶95-100份;聚合油脂8-10份;补强填料25-30份;促进剂0-2份,优选1-2份;交联剂0-2份,优选1-2份。
在本申请的一个实施方案中,所述橡胶生胶选自天然橡胶、丁苯橡胶、乙丙橡胶、三元乙丙橡胶、顺丁橡胶、丁基橡胶、异戊橡胶中的至少一种。
在本申请的一个实施方案中,所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种。
在本申请的一个实施方案中,所述促进剂和交联剂为本领域常用橡胶添加剂,目的是实现橡胶的交联。对于硫磺交联体系,交联剂为硫磺,促进剂包括促进剂M(2-硫醇基苯并噻唑)、促进剂DM(二硫化二苯并噻唑)、促进剂CBS(N-环已基-2-苯并噻唑次磺酰胺)、促进剂TBBS(N-叔丁基-2-苯并噻唑次磺酰胺)、促进剂NOBS(N-氧联二亚乙基-2-苯并噻唑次磺酰胺)、促进剂DZ(N,N'-二环已基-2-苯并噻唑次磺酰胺、促进剂TMTD(四甲基二硫化秋兰姆)、促进剂TMTM(一硫化四甲基秋兰姆)、促进剂TETD(二硫化四乙基秋兰姆)、促进剂DPTT(六硫化五亚甲基秋兰姆)、促进剂ZDC(二乙基二硫代氨基甲酸锌)、促进剂BZ(二丁基二硫代氨基甲酸锌)、促进剂PZ(二甲基二硫代氨基甲酸锌)、促进剂D(二苯胍)中的至少一种。
在本申请的一个实施方案中,所述交联剂为过氧化物交联体系,优选交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物、双25等。在本申请的一个实施方案中,所述过氧化物交联体系中还加入1~6份的聚三烯丙基异三聚氰酸酯(TAIC),用以进行共硫化。
在本申请的一个实施方案中,所述橡胶组合物还包含防老剂。
在本申请的一个实施方案中,所述橡胶组合物为胎面用橡胶组合物。
本发明的第五方面提供一种充气轮胎,所述充气轮胎至少部分由本发明所述的橡胶组合物构成。
本发明取得了以下技术效果:
1.本发明的聚合油脂的渗漏情况好于传统橡胶油。
2.本发明的聚合油脂在硫化过程中表现正常,接近传统橡胶油。
3.本发明的聚合油脂的拉伸强度、断裂伸长率以及耐冬季低温环境性能优于传统橡胶油。
4.本发明的聚合油脂来源属于可再生资源,成本低。
附图说明
图1:不饱和脂肪酸甘三酯通过打开脂肪酸链上的双键聚合成环的机理。
图2:不同操作油的橡胶渗出体积。
具体实施方式
在本发明中,如果没有特别的说明,百分数(%)或者份都指相对于组合物的重量百分数或者重量份。
在本发明中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本发明中,如果没有相反的说明,组合物中各组分的含量之和为100%。
在本发明中,如果没有相反的说明,组合物中各组分的份数之和可以为100重量份。
在本发明中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。
在本发明中,除非有其他说明,整数数值范围“a~b”表示a到b之间的任意整数组合的缩略表示,其中a和b都是整数。例如整数数值范围“1~N”表示1、2……N,其中N是整数。
在本发明中,除非有其他说明,“其组合”表示所述各元件的多组分混合物, 例如两种、三种、四种以及直到最大可能的多组分混合物。
如果没有特别指出,本说明书所用的术语“一种”指“至少一种”。
如果没有特别指出,本发明所述的百分数(包括重量百分数)的基准都是所述组合物的总重量。
本文所公开的“范围”以下限和上限的形式。可以分别为一个或多个下限,和一个或多个上限。给定范围是通过选定一个下限和一个上限进行限定的。选定的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是包含和可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4、和2~5。
在本文中,除非另有说明,各反应都在常温常压下进行。
在本文中,除非另有说明,各个反应步骤可以顺序进行,也可以不按顺序进行。例如,各个反应步骤之间可以包含其他步骤,而且反应步骤之间也可以调换顺序。优选地,本文中的反应方法是顺序进行的。
在本文中,除非另有说明,术语“生物基”表示源自生物来源。例如,“生物基油脂”及其类似术语表示植物油、动物油、微生物油或其组合。
在本文中,除非另有说明,术语“植物油”表示从植物的果实、种子和/或胚芽中得到的油脂,如高油酸葵花籽油、葵花籽油、高油酸菜籽油、菜籽油、大豆油、玉米油、米糠油、棉籽油、乳木果油、棕榈油、亚麻籽油、脱蜡玉米油等。植物油的主要成分是脂肪酸和甘油生成的酯,而脂肪酸通常包括软脂酸、硬脂酸、油酸以及不饱和酸,如芥酸、桐油酸、蓖麻油酸等。
在本文中,除非另有说明,术语“动物油”表示从动物脂肪得到的油脂,一般来源于猪、牛、鱼、羊等。动物油的主要成分是饱和高级脂肪酸甘油酯与不饱和高级脂肪酸甘油脂组成,其中饱和高级脂肪酸甘油酯含量更高。
在本文中,除非另有说明,术语“微生物油脂”表示由酵母、霉菌、细菌和藻类等微生物在一定条件下利用碳水化合物、碳氢化合物和普通油脂为碳源、氮源、辅以无机盐生产的油脂和另一些有商业价值脂质,包括但不限于藻类、细菌和真菌。
通常,天然油脂均为链状结构。常规油脂去除双键的方式为氢化,氢化过程会显著提升玻璃化温度,不利于橡胶加工,同时氢化后的油脂依旧是链状结构,造成了底部温升过高,阿克隆磨耗高,湿抓性能差等诸多问题。本申请发现,通过使具有两个或更多双键的不饱和脂肪酸共轭化,然后与具有一个双键的不饱和脂肪酸进行狄尔斯-阿尔德加成反应形成环状结构(图1,可通过测定重均分子量分布确定油脂是否发生成环聚合),降低环状双键的活泼性,可减少油脂对硫化的影响。同时聚合后的油脂因为空间结构发生显著变化而改变了玻璃化温度。根据本申请的方法,由所述天然油脂形成的生物基橡胶油包括具有环状结构的低聚物,其与TDAE及Nap的环状结构类似,从而避免了与橡胶的相容问题。
因此,本申请一方面提供了一种生物基聚合油脂,所述生物基聚合油脂源自包括植物油和/或动物油和/或微生物油脂的生物基油脂,所述生物基聚合油的玻璃化转变温度在-65~-40℃的范围内。本发明的生物基聚合油脂在用于制备橡胶时,与目前大量使用的Aromatic oil及Paraffin oil相比能明显减少橡胶油渗出;与目前轮胎行业正在使用的环烷油(Nap)相比具有相近的门尼粘度和邵氏硬度,但更为优异的拉伸强度和断裂伸长率。因此,本发明的生物基聚合油脂可用于减少橡胶中橡胶油的渗出,和/或改善橡胶(尤其硫化橡胶)的拉伸强度和断裂伸长率。
本文所述的“源自生物基油脂”指本发明的生物基聚合油脂的原料为生物基油脂。更具体而言,其意指本发明的生物基聚合油脂由所述生物基油脂在催化剂的存在下发生聚合反应而获得。
本发明的生物基油脂中的脂肪酸组成中至少包括单不饱和脂肪酸和多不饱和脂肪酸(即具有两个或更多双键的不饱和脂肪酸)。
在本申请的一个实施方案中,所述植物油包括但不限于葵花籽油、菜籽油、大豆油、玉米油、米糠油、棉籽油、乳木果油、花生油、棕榈油、亚麻籽油中的一种或多种。在一些实施方案中,所述植物油为大豆油、棉籽油和棕榈油(优选棕榈液油)中的任意一种或任意多种的混合物。
在本申请的一个实施方案中,所述动物油包括但不限于猪油、鱼油、牛油和羊油中的一种或多种。
在本申请的一个实施方案中,所述微生物油为藻油。
在本申请的一个实施方案中,所述聚合油脂的碘价为60-120。
在本申请的一个实施方案中,所述聚合油脂的碘价为70-110。
在本申请的一个实施方案中,所述聚合油脂的碘价为80-110。
在本申请的一个实施方案中,所述聚合油脂在25℃下的粘度为150-2000,或3000-6000。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为2000以下的聚合油脂的占比为20-50%,2000以上(不包括2000)的聚合油脂的的占比为50-80%。本文中,所述生物基聚合油脂中不同分子量的聚合油脂的占比为GPC分子量面积百分比。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为2000或2000以下的聚合油脂的占比为25-45%。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为2000以上的聚合油脂的占比为50-70%。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为1500或1500以下的聚合油脂的占比为20-50%,重均分子量为2300或2300以上的聚合油脂的占比为50-80%。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为1500或1500以下的聚合油脂的占比为25-45%。
在本申请的一个实施方案中,所述聚合油脂中,重均分子量为2300或2300以上的聚合油脂的占比为50-70%。
在本申请的一个实施方案中,所述聚合油脂为具有环状结构的聚合物。
在本申请的一个实施方案中,所述环状结构是共轭二烯部分和单烯烃部分通过狄尔斯-阿尔德加成反应形成的;优选地,具有两个或更多双键的不饱和脂肪酸预先形成共轭二烯部分,从而与具有一个双键的不饱和脂肪酸进行狄尔斯-阿尔德加成反应形成环状结构。
在本申请的一个实施方案中,本发明第一方面所述的生物基聚合油脂为采用本发明第二方面所述的方法制备得到的生物基聚合油脂。
本申请第二方面提供了一种制备本申请所述生物基聚合油脂的方法,所述方 法包括如下步骤:
(1)提供包括植物油和/或动物油的生物基油脂;
(2)在聚合催化剂存在的条件下,在265-315℃加热所述生物基油脂,得到所述生物基聚合油脂;其中,所述生物基聚合油脂的玻璃化转变温度在-65℃到-40℃的范围内,并且所述生物基聚合油脂包括具有环状结构的低聚物。
在本申请的一个实施方案中,所述生物基油脂是天然油脂(包括动物油和/或植物油)。
在本申请的一个实施方案中,所述生物基油脂是几种油脂复配而成的混合物。
在本申请的一个实施方案中,所述生物基油脂包括植物油和/或动物油和/或微生物油脂。
在本申请的一个实施方案中,所述植物油包括但不限于葵花籽油、菜籽油、大豆油、玉米油、米糠油、棉籽油、乳木果油、花生油、棕榈油、亚麻籽油中的一种或多种。在一些实施方案中,所述植物油为大豆油、棉籽油和棕榈油(优选棕榈液油)中的任意一种或任意多种的混合物。
在本申请的一个实施方案中,所述动物油包括但不限于猪油、鱼油、牛油和羊油中的一种或多种。
在本申请的一个实施方案中,所述微生物油为藻油。
在本申请的一个实施方案中,所述生物基聚合油脂的碘价为60-120。
在本申请的一个实施方案中,所述生物基聚合油脂的碘价为70-110。
在本申请的一个实施方案中,所述生物基聚合油脂的碘价为80-110。
在本申请的一个实施方案中,所述生物基聚合油脂在25℃下的粘度为150-2000,或3000-6000。
在本申请的一个实施方案中,所述生物基聚合油脂中,重均分子量为2000以下的聚合油脂的占比为20-50%,重均分子量在2000以上(不包括2000)聚合油脂的占比为50-80%。
在本申请的一个实施方案中,所述生物基聚合油脂中,重均分子量为2000或2000以下的聚合油脂占比为25-45%。
在本申请的一个实施方案中,所述生物基聚合油脂中,重均分子量在2000以上的聚合油脂占比为50-70%。
在本申请的一个实施方案中,所述生物基聚合油脂中,重均分子量为1500或1500以下的聚合油脂的占比为20-50%,重均分子量为2300或2300以上的聚合油脂的占比为50-80%。
在本申请的一个实施方案中,所述生物基聚合油脂的分子量为1500或1500以下占比为25-45%。
在本申请的一个实施方案中,所述生物基聚合油脂的分子量为2300或2300以上占比为50-70%。
在本申请的一个实施方案中,所述生物基聚合油脂为具有环状结构的聚合物。
在本申请的一个实施方案中,所述环状结构是共轭二烯部分和单烯烃部分通过狄尔斯-阿尔德加成反应形成的;优选地,具有两个或更多双键的不饱和脂肪酸预先形成共轭二烯部分,从而与具有一个双键的不饱和脂肪酸进行狄尔斯-阿尔德加成反应形成环状结构。
在本申请的一个实施方案中,所述加热的温度为270-310℃,优选270-300℃,最优选280-300℃。
在本申请的一个实施方案中,所述步骤(2)的反应时间≥6小时,如≥8小时。在一些实施方案中,所述步骤(2)的反应时间为8~20小时。
在本申请的一个实施方案中,所述聚合催化剂包括路易斯酸(例如AlCl 3、BF 3、SnCl 4和TiCl 4)、蒽醌或其组合。优选地,所述聚合催化剂为蒽醌。
在本申请的一个实施方案中,所述聚合催化剂的用量为0.1-10重量%,优选为0.5-8重量%,更优选为1-5重量%,更优选为2-4%重量,以所述生物基油脂的重量计。
在本申请的一个实施方案中,所述步骤(2)是在空气、真空或惰性气氛中进行;更优选地,所述步骤(2)在惰性气氛(氮气或惰性气体)中进行。
本发明的第三方面,提供一种橡胶油,其特征在于,所述橡胶油包含本发明所述的聚合油脂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含55.5-100%的本发明所述的聚合油脂和0-44.5%的添加剂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含56-70%的所述聚合油脂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含60-70%的所述聚合油脂。
通常,所述橡胶油还可以包含本领域常用的添加剂。在本申请的一个实施方案中,所述添加剂选自促进剂、补强填料、交联剂、防老化剂中的一种或多种。
在本申请的一个实施方案中,所述交联剂为硫磺,促进剂包括促进剂M(2-硫醇基苯并噻唑)、促进剂DM(二硫化二苯并噻唑)、促进剂CBS(N-环已基-2-苯并噻唑次磺酰胺)、促进剂TBBS(N-叔丁基-2-苯并噻唑次磺酰胺)、促进剂NOBS(N-氧联二亚乙基-2-苯并噻唑次磺酰胺)、促进剂DZ(N,N'-二环已基-2-苯并噻唑次磺酰胺、促进剂TMTD(四甲基二硫化秋兰姆)、促进剂TMTM(一硫化四甲基秋兰姆)、促进剂TETD(二硫化四乙基秋兰姆)、促进剂DPTT(六硫化五亚甲基秋兰姆)、促进剂ZDC(二乙基二硫代氨基甲酸锌)、促进剂BZ(二丁基二硫代氨基甲酸锌)、促进剂PZ(二甲基二硫代氨基甲酸锌)、促进剂D(二苯胍)中的至少一种。
在本申请的一个实施方案中,所述交联剂为过氧化物交联体系,优选交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物、双25等。在本申请的一个实施方案中,所述过氧化物交联体系中还加入1~6份的聚三烯丙基异三聚氰酸酯(TAIC),用以进行共硫化。
在本申请的一个实施方案中,所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种。
在本申请的一个实施方案中,所述防老剂为对苯二胺类防老剂,优选选自防老剂DNP(N,N′-二(β-萘基)对苯二胺)、N,N’-双-(1,4-二甲基戊基)对苯二胺(77PD)、N-异丙基-N’-苯基-对苯二胺(IPPD)、N-1,3-二甲基丁基-N’-苯基-对苯二胺(6PPD)、N-环己基-N’-苯基对苯二胺(4010)、二苯基-二甲苯基-和苯基甲苯基对苯二胺混合物(3100)或其组合。
在一些实施方案中,所述添加剂包括但不限于硫磺、氧化锌、硬脂酸、炭 黑、促进剂MBTS(二硫化二苯并噻唑)和防老剂DNP(N,N′-二(β-萘基)对苯二胺)中的一种或多种。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含组分:
硫磺:1.5%-2%;
氧化锌:3%-4%;
硬脂酸:1%-1.5%;
炭黑:25-35%;
促进剂MBTS(二硫化二苯并噻唑):0.5%-1%;和
防老剂DNP(N,N′-二(β-萘基)对苯二胺):0.5%-1%。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含56-70%的所述聚合油脂。
在本申请的一个实施方案中,以所述橡胶油的总质量计,所述橡胶油包含60-70%的所述聚合油脂。
本发明的第四方面提供一种橡胶组合物,所述橡胶组合物包含本发明第一方面提供的生物基聚合油脂或者第三方面提供的橡胶油。
在本申请的一个实施方案中,所述橡胶组合物由包括以下组分的原料制备得到,以重量分数计:橡胶生胶95-100份;本发明第一方面提供的所述生物基聚合油脂8-10份;补强填料25-30份;促进剂0-2份,优选1-2份;交联剂0-2份,优选1-2份。
在本申请的一个实施方案中,所述原料还包括0-2份防老剂。
在本申请的一个实施方案中,所述橡胶生胶选自天然橡胶、丁苯橡胶、乙丙橡胶、三元乙丙橡胶、顺丁橡胶、丁基橡胶、异戊橡胶中的至少一种。
在本申请的一个实施方案中,所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种。
在本申请的一个实施方案中,所述促进剂和交联剂为本领域常用橡胶添加剂,目的是实现橡胶的交联。对于硫磺交联体系,交联剂为硫磺,促进剂包括促进 剂M(2-硫醇基苯并噻唑)、促进剂DM(二硫化二苯并噻唑)、促进剂CBS(N-环已基-2-苯并噻唑次磺酰胺)、促进剂TBBS(N-叔丁基-2-苯并噻唑次磺酰胺)、促进剂NOBS(N-氧联二亚乙基-2-苯并噻唑次磺酰胺)、促进剂DZ(N,N'-二环已基-2-苯并噻唑次磺酰胺、促进剂TMTD(四甲基二硫化秋兰姆)、促进剂TMTM(一硫化四甲基秋兰姆)、促进剂TETD(二硫化四乙基秋兰姆)、促进剂DPTT(六硫化五亚甲基秋兰姆)、促进剂ZDC(二乙基二硫代氨基甲酸锌)、促进剂BZ(二丁基二硫代氨基甲酸锌)、促进剂PZ(二甲基二硫代氨基甲酸锌)、促进剂D(二苯胍)中的至少一种。相对于过氧化物交联体系,交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物、双25等,通常还会加入1~6份的聚三烯丙基异三聚氰酸酯(TAIC)进行共硫化。
在本申请的一个实施方案中,所述防老剂为对苯二胺类防老剂,优选选自防老剂DNP(N,N′-二(β-萘基)对苯二胺)、N,N’-双-(1,4-二甲基戊基)对苯二胺(77PD)、N-异丙基-N’-苯基-对苯二胺(IPPD)、N-1,3-二甲基丁基-N’-苯基-对苯二胺(6PPD)、N-环己基-N’-苯基对苯二胺(4010)、二苯基-二甲苯基-和苯基甲苯基对苯二胺混合物(3100)或其组合。
在本申请的一个实施方案中,所述橡胶组合物为胎面用橡胶组合物。
在本申请的一个实施方案中,所述橡胶为硫化橡胶,如硫化异戊橡胶。
本发明的第五方面,提供一种充气轮胎,所述充气轮胎至少部分由本发明所述的橡胶组合物构成。
本发明第六方面提供本发明的生物基聚合油脂或橡胶油在改善橡胶拉伸强度和断裂伸长率中的应用。
本发明第七方面提供一种制备具有改善的拉伸强度和断裂伸长率的硫化橡胶的方法,该方法包括将橡胶生胶、本发明任一实施方案所述的生物基聚合油脂或橡胶油、任选地橡胶用添加剂均匀混合后硫化,从而制备得到具有改善的拉伸强度和断裂伸长率的硫化橡胶。上述方法中,每95-100重量份的橡胶生胶使用8-10重 量份的所述生物基聚合油脂,其余成分的用量均为本领域常规的用量,所述混合以及硫化也均可采用本领域常规的技术手段进行。在一些实施方案中,所述橡胶生胶为异戊橡胶。
下文将以具体实施例的方式阐述本发明。应理解,这些实施例仅仅是阐述性的,并非意图限制本发明的范围。实施例中所用到的方法、试剂和材料,除非另有说明,否则为本领域常规的方法、试剂和材料。实施例中的原料化合物均可通过市售途径购得。
实施例及对比例中所用的原料如下:
大豆油:购自上海嘉里粮油工业有限公司;
葵花籽油:购自上海嘉里粮油工业有限公司;
脱蜡玉米油:购自上海嘉里粮油工业有限公司;
棕榈液油:购自嘉里特种油脂(上海)有限公司;
亚麻籽油:购自嘉里特种油脂(上海)有限公司;
棉籽油:购自益海(昌吉)粮油工业有限公司;
蒽醌:购自国药集团;
TDAE(环保芳烃油):购自中石化;
Nap(环烷芳烃油):购自中石化。
所用主要设备如下:
DSC 3-差示扫描量热仪:购自梅特勒Mettler;
1260 HT GPC高温凝胶渗透色谱:购自安捷伦Agilent;
HPLC高效液相色谱:购自安捷伦Agilent;
同步热重分析仪New STA&STA7000:购自日立分析仪器有限公司;
拉力试验机:购自兰光Labthink;
疲劳试验机:购自英斯特朗Instron。
本文使用到以下测试方法:
Tg的测试方法
Tg使用国标方法:QB/T 2957-2008淀粉基塑料中淀粉含量的测定热重法(TG)。
分子量分布的测试方法
Mw使用国标方法GB/T 6598-1986小角激光光散射法测定聚苯乙烯标准样品的重均分子量。
HPLC进样后,通过对出峰进行积分,参照宽分布未知样相对峰表,检测并计算出重均分子量。
断裂伸长率的测试方法
GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定。
伸张疲劳的测试方法
GB/T 1688-2008硫化橡胶伸张疲劳的测定。
回弹性的测试方法
GB/T 6670-2008软质泡沫聚合材料落球法回弹性能的测定。
硬度的测试方法
GB/T 2411-2008塑料和硬橡胶使用硬度计测定压痕硬度(邵氏硬度)。
粘度测试方法
GB/T 10247-2008粘度测量方法。
碘价的测试方法
GB/T 5532-2008动植物油脂碘值的测定。
操作油橡胶渗出
GB/T 3516-1994橡胶中溶剂抽出物的测定。
检测各实施例和对比例所用原料的Tg、粘度和重均分子量,检测结果如表1所示:
表1:原料起始指标
Figure PCTCN2022100367-appb-000001
实施例1
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%蒽醌。将反应釜中的反应原料升温至280℃开始计时,测定不同时间的反应产物的玻璃化温度Tg及分子量分布,结果列在下表2中。
表2
Figure PCTCN2022100367-appb-000002
实施例2
称取2kg上述棉籽油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%蒽醌。将反应釜中的反应原料升温至280℃开始计时,分别测定不同时间的反应产物的玻璃化温度Tg及分子量分布,结果列在下表3中。
表3
Figure PCTCN2022100367-appb-000003
实施例3
称取2kg上述大豆油50%+棕榈液油50%原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%蒽醌。将反应釜中的反应原料升温至280℃开始计时,分别测定不同时间的反应产物的玻璃化温度Tg及分子量分布,结果列在下表4中。
表4
Figure PCTCN2022100367-appb-000004
实施例4
催化剂用量的影响
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入不同重量百分比的催化剂蒽醌。将反应釜中的反应原料升温至265℃开始计时。分别测定不同时间的玻璃化温度Tg及分子量分布,结果列在下表5中。
表5
Figure PCTCN2022100367-appb-000005
Figure PCTCN2022100367-appb-000006
对比例1
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。反应釜中的反应原料升温至设定温度280℃开始计时,分别测定不同时间的玻璃化温度Tg及分子量分布,结果列在下表6中。本对比例中未使用催化剂。
表6
Figure PCTCN2022100367-appb-000007
对比例2
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%蒽醌。将反应釜中的反应原料升温至220℃始计时,分别测定不同时间的玻璃化温度Tg及分子量分布,结果列在下表7中。
表7
Figure PCTCN2022100367-appb-000008
Figure PCTCN2022100367-appb-000009
对比例3
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%活性白土和0.5重量%碳酸锂。将反应釜中的反应原料升温至280℃始计时,分别测定不同时间的玻璃化温度Tg及分子量分布,结果列在下表8中。
表8
Figure PCTCN2022100367-appb-000010
对比例4
称取2kg上述大豆油原料至反应釜中,通入氮气置换其中空气。在反应釜中加入3重量%镍催化剂。将反应釜中的反应原料升温至280℃始计时,分别测定不同时间的玻璃化温度Tg及分子量分布,结果列在下表9中。
表9
Figure PCTCN2022100367-appb-000011
测试例1:硫化实验性能对照试验效果
将异戊橡胶、下述实施例以及对比例的油脂组合物或芳烃油、炭黑、白炭黑加入到哈克密炼机中,加入偶联剂(双-(γ-三乙氧基硅基丙基)四硫化物),然后升温到120℃热处理5分钟,降温至80℃,然后将12份氧化锌,5份防老剂(防老剂124),5份促进剂(CBS:N-环已基-2-苯并噻唑次磺酰胺),8份硫磺加入到密炼机中,混合5分钟后取出。橡胶混合物在145℃硫化18分钟,得到含有不同实施例、对比例的油脂组合物的硫化异戊橡胶。
进行各硫化异戊橡胶测试门尼粘度、拉伸强度、断裂伸长率和硬度。结果如表10所示。
表10
Figure PCTCN2022100367-appb-000012
表10的结果显示,从硫化性能角度来看,采用各实施例的油脂组合物获得的硫化异戊橡胶的门尼粘度和邵氏硬度更接近目前轮胎行业正在使用的环烷油(Nap),而其表现出的拉伸强度和断裂伸长率则显著的好于采用对比例的油脂组合物及目前轮胎行业正在使用的环烷油(Nap)的硫化异戊橡胶。
测试例2:渗出测试
采用上述方法测试实施例1(大豆油,8h)、实施例2(棉籽油,12h)、对比例1(大豆油,16h)、对比例3(大豆油,8h)、对比例4(大豆油,27h)、以及芳香油(Aromatic oil)、石蜡油(Paraffin oil)和大豆油(soybean oil)的橡胶渗出体积(bleeding volume),结果如图2所示。
图中,纵坐标为渗出体积。渗出体积越低,说明渗出越少,则油脂组合物与橡胶的兼容性也越好。从图2可以看出,实施例1和2的效果明显优于目前大量使用的Aromatic oil及Paraffin oil。同时,图2的结果也显示,随着聚合程度不同,聚合油的渗出具有非常大的差异。

Claims (14)

  1. 一种生物基聚合油脂,所述生物基聚合油脂源自包括植物油和/或动物油和/或微生物油脂的生物基油脂,所述生物基聚合油脂的玻璃化转变温度在-65~-40℃的范围内,且所述聚合油脂中,重均分子量为2000以下的聚合油脂的占比为20-50%,重均分子量为2000以上的聚合油脂的占比为50-80%。
  2. 如权利要求1所述的聚合油脂,其特征在于,所述聚合油脂满足以下一个或多个条件:
    (1)所述植物油选自葵花籽油、菜籽油、大豆油、玉米油、米糠油、棉籽油、乳木果油、花生油、棕榈油和亚麻籽油中的一种或多种;和/或
    (2)所述动物油包括选自猪油、鱼油、牛油和羊油中的一种或多种;和/或
    (3)所述微生物油为藻油;和/或
    (4)所述聚合油脂的碘价为60-120,优选70-110或80-110;和/或
    (5)所述聚合油脂在25℃下的粘度为150-2000或为3000-6000;和/或
    (6)所述聚合油脂为具有环状结构的聚合物。
  3. 如权利要求2所述的聚合油脂,所述聚合油脂中,
    重均分子量为2000或2000以下的聚合油脂的占比为25-45%,或重均分子量为1500或1500以下的聚合油脂的占比为25-45%;或
    重均分子量为2000以上的聚合油脂的占比为50-70%,或重均分子量为2300或2300以上的聚合油脂的占比为50-70%;或
    重均分子量为1500以下的聚合油脂的占比为20-50%,重均分子量为2300以上的占比为50-80%。
  4. 一种制备权利要求1-3中任一项所述的生物基聚合油脂的方法,所述方法包括如下步骤:
    (1)提供包括植物油和/或动物油的生物基油脂;
    (2)在聚合催化剂存在的条件下,在265-315℃加热所述生物基油脂,得到所述生物基聚合油脂。
  5. 如权利要求4所述的制备方法,其特征在于,所述方法包括以下一个或多 个特征:
    (1)所述加热的温度为270-310℃,更优选270-300℃,最优选280-300℃;和/或
    (2)所述聚合催化剂包括路易斯酸、蒽醌或其组合;和/或
    (3)所述聚合催化剂的用量为0.1-10重量%,优选为0.5-8重量%,更优选为1-5重量%,以所述生物基油脂的重量计;
    (4)所述步骤(2)是在空气、真空或惰性气氛中进行;更优选地,所述步骤(2)在惰性气氛(氮气或惰性气体)中进行;和/或
    (5)所述步骤(2)的反应时间≥6小时,优选≥8小时,优选8~20小时。
  6. 一种橡胶油,其特征在于,所述橡胶油包含如权利要求1-3中任一项所述的生物基聚合油脂;优选地,以所述橡胶油的总质量计,所述橡胶油包含55.5-100%的所述生物基聚合油脂和0-44.5%的添加剂。
  7. 如权利要求6所述橡胶油,其特征在于,
    以所述橡胶油的总质量计,所述橡胶油包含56-70%或60%-70%的所述生物基聚合油脂;和/或
    所述添加剂选自促进剂、补强填料、交联剂、防老化剂中的一种或多种;
    优选地,所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种;
    优选地,所述交联剂为硫磺,所述促进剂包括2-硫醇基苯并噻唑、二硫化二苯并噻唑、N-环已基-2-苯并噻唑次磺酰胺、N-叔丁基-2-苯并噻唑次磺酰胺、N-氧联二亚乙基-2-苯并噻唑次磺酰胺、N,N'-二环已基-2-苯并噻唑次磺酰胺、四甲基二硫化秋兰姆、一硫化四甲基秋兰姆、二硫化四乙基秋兰姆、六硫化五亚甲基秋兰姆、二乙基二硫代氨基甲酸锌、二丁基二硫代氨基甲酸锌、二甲基二硫代氨基甲酸锌、和二苯胍中的至少一种;或所述交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物和双25中的一种或多种;
    优选地,所述防老剂为对苯二胺类防老剂,优选选自防老剂DNP(N,N′-二(β-萘基)对苯二胺)、N,N’-双-(1,4-二甲基戊基)对苯二胺(77PD)、N- 异丙基-N’-苯基-对苯二胺(IPPD)、N-1,3-二甲基丁基-N’-苯基-对苯二胺(6PPD)、N-环己基-N’-苯基对苯二胺(4010)、二苯基-二甲苯基-和苯基甲苯基对苯二胺混合物(3100)或其组合;
    优选地,以所述橡胶油的总质量计,所述橡胶油包含组分:硫磺:1.5%-2%;氧化锌:3%-4%;硬脂酸:1%-1.5%;炭黑:25%-35%;促进剂MBTS(二硫化二苯并噻唑):0.5%-1%;和防老剂DNP(N,N′-二(β-萘基)对苯二胺):0.5%-1%。
  8. 一种橡胶组合物,其特征在于,所述组合物包含权利要求1-3中任一项所述的生物基聚合油脂或者权利要求6-7中任一项所述的橡胶油;优选地,所述橡胶组合物由包括以下组分的原料制备得到,以重量分数计:
    橡胶生胶95-100份;所述生物基聚合油脂8-10份;补强填料25-30份;促进剂0-2份,优选1-2份;交联剂0-2份,优选1-2份。
  9. 如权利要求8所述的橡胶组合物,其特征在于,所述橡胶组合物满足以下一个或多个特征:
    (1)所述橡胶生胶选自天然橡胶、丁苯橡胶、乙丙橡胶、三元乙丙橡胶、顺丁橡胶、丁基橡胶、异戊橡胶中的至少一种;和/或
    (2)所述补强填料选自炭黑、白炭黑、硫酸钡、碳酸钙、陶土、碳酸钙、碳酸镁、硫酸镁、滑石粉、白云石、硅灰石、石膏、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥中的至少一种;和/或
    (3)所述交联剂为硫磺,所述促进剂包括2-硫醇基苯并噻唑、二硫化二苯并噻唑、N-环已基-2-苯并噻唑次磺酰胺、N-叔丁基-2-苯并噻唑次磺酰胺、N-氧联二亚乙基-2-苯并噻唑次磺酰胺、N,N'-二环已基-2-苯并噻唑次磺酰胺、四甲基二硫化秋兰姆、一硫化四甲基秋兰姆、二硫化四乙基秋兰姆、六硫化五亚甲基秋兰姆、二乙基二硫代氨基甲酸锌、二丁基二硫代氨基甲酸锌、二甲基二硫代氨基甲酸锌、和二苯胍中的至少一种;和/或
    (4)所述交联剂为过氧化二异丙苯、过氧化二苯甲酰、过氧化氢二异丙苯、二叔丁基过氧化物和双25中的一种或多种。
  10. 如权利要求8或9所述橡胶组合物,其特征在于,所述橡胶组合物为硫化异戊橡胶,或所述橡胶组合物为胎面用橡胶组合物。
  11. 一种充气轮胎,其特征在于,所述充气轮胎至少部分由权利要求8或9所述的橡胶组合物构成;或者由包含权利要求8或9所述的橡胶组合物的原料制备而成。
  12. 权利要求1-3中任一项所述的生物基聚合油脂在改善橡胶拉伸强度和断裂伸长率中的应用,或在制备具有改善的拉伸强度和断裂伸长率的橡胶、尤其是硫化橡胶中的应用,或在减少橡胶油渗出中的应用,或在制备具有减少的橡胶油渗出的橡胶中的应用。
  13. 一种制备具有改善的拉伸强度和断裂伸长率的硫化橡胶的方法,其特征在于,所述方法包括将橡胶生胶和权利要求1-3中任一项所述的生物基聚合油脂或权利要求6-7中任一项所述的橡胶油混合均匀后进行硫化,从而制备得到所述具有改善的拉伸强度和断裂伸长率的硫化橡胶。
  14. 如权利要求13所述的方法,其特征在于,每95-100重量份的橡胶生胶使用8-10重量份的所述生物基聚合油脂。
PCT/CN2022/100367 2021-06-22 2022-06-22 生物基聚合油及其应用 WO2022268106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110694325.4A CN115505082A (zh) 2021-06-22 2021-06-22 生物基聚合油及其应用
CN202110694325.4 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022268106A1 true WO2022268106A1 (zh) 2022-12-29

Family

ID=84500272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100367 WO2022268106A1 (zh) 2021-06-22 2022-06-22 生物基聚合油及其应用

Country Status (2)

Country Link
CN (1) CN115505082A (zh)
WO (1) WO2022268106A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841554A (en) * 1955-03-18 1960-07-20 Wolf Ltd Victor Improvements in or relating to the manufacture of polymeric fatty acids
US5122188A (en) * 1990-05-03 1992-06-16 The United States Of America, As Represented By The Secretary Of Agriculture Vegetable oil-based printing ink
CN1334828A (zh) * 1998-10-30 2002-02-06 阿尔迪维亚股份有限责任公司 不饱和脂肪酸、不饱和脂肪酸酯、不饱和烃或这些化合物的不饱和衍生物的介电加热聚合方法
CN1458951A (zh) * 2001-03-12 2003-11-26 米其林技术公司 轮胎胎面用橡胶组合物
JP2006001865A (ja) * 2004-06-16 2006-01-05 Asahi Denka Kogyo Kk 重合油脂由来のヒドロキシアルコキシ化合物
CN101289585A (zh) * 2008-06-12 2008-10-22 天津科技大学 用于新闻油墨的大豆油基树脂的制备方法
CN103865656A (zh) * 2014-04-08 2014-06-18 中山职业技术学院 一种油墨用环氧基聚合大豆油的制备方法
CN106147373A (zh) * 2015-03-24 2016-11-23 宁波龙茂文教科技有限公司 一种环保印刷油墨及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841554A (en) * 1955-03-18 1960-07-20 Wolf Ltd Victor Improvements in or relating to the manufacture of polymeric fatty acids
US5122188A (en) * 1990-05-03 1992-06-16 The United States Of America, As Represented By The Secretary Of Agriculture Vegetable oil-based printing ink
CN1334828A (zh) * 1998-10-30 2002-02-06 阿尔迪维亚股份有限责任公司 不饱和脂肪酸、不饱和脂肪酸酯、不饱和烃或这些化合物的不饱和衍生物的介电加热聚合方法
CN1458951A (zh) * 2001-03-12 2003-11-26 米其林技术公司 轮胎胎面用橡胶组合物
JP2006001865A (ja) * 2004-06-16 2006-01-05 Asahi Denka Kogyo Kk 重合油脂由来のヒドロキシアルコキシ化合物
CN101289585A (zh) * 2008-06-12 2008-10-22 天津科技大学 用于新闻油墨的大豆油基树脂的制备方法
CN103865656A (zh) * 2014-04-08 2014-06-18 中山职业技术学院 一种油墨用环氧基聚合大豆油的制备方法
CN106147373A (zh) * 2015-03-24 2016-11-23 宁波龙茂文教科技有限公司 一种环保印刷油墨及其制造方法

Also Published As

Publication number Publication date
CN115505082A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
RU2662517C2 (ru) Маслонаполненный функционализированный стирол-бутадиеновый сополимер
CN106062019B (zh) 乙烯-α-烯烃-非共轭多烯共聚物、其制造方法以及用途
CA2948708A1 (en) Tire with tread for low temperature performance and wet traction
EP3305841A1 (en) Rubber composition and tire with tread for combination of low temperature performance and wet traction
CN104629126B (zh) 橡胶组合物和硫化橡胶以及硫化橡胶的应用
JP2020076055A (ja) 樹脂変性油展ゴム
JP2012021058A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
KR20240037340A (ko) 고무 조성물 및 그의 제조 방법 및 타이어 제품
FI79336B (fi) Foerfarande foer framstaellning av gummiblandningar innehaollande dekarboxylerade kolofonhartser och gummiraomaterial innehaollande dessa.
CN103788432B (zh) 橡胶组合物和硫化橡胶及其制备方法以及硫化橡胶的应用
US20210079200A1 (en) Tire tread, the crosslinking system of which is based on organic peroxide
EP0149956B1 (en) Rubber containing esters of rosin acid
CN1984953B (zh) 乙烯-丙烯酸烷基酯共聚橡胶组合物
WO2022268106A1 (zh) 生物基聚合油及其应用
US8013046B2 (en) Methods of vulcanizing elastomers using tall oil heads
CN104629124B (zh) 改性橡胶复合物及其制备方法和硫化橡胶及其应用
JP5864694B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
CN108129708B (zh) 一种共混制备橡胶复合材料的方法
CN111548540A (zh) 一种用于轮胎成型胶囊的橡胶组合物及成型胶囊
CN105754166B (zh) 一种橡胶组合物与硫化橡胶及其制备方法和应用
CN106032417B (zh) 橡胶组合物和硫化橡胶及其应用
CN105377974B (zh) 橡胶组合物和使用其的充气轮胎
TWI843861B (zh) 含有矽烷化合物及蛋白質改質劑而成之矽烷偶合劑組合物、以及含有其之橡膠組合物
CN106032416B (zh) 一种橡胶组合物和硫化橡胶及其应用
CN115386234A (zh) 橡胶油及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827599

Country of ref document: EP

Kind code of ref document: A1