WO2022267999A1 - 散热装置、电路模组、电子设备及电路模组的装配方法 - Google Patents

散热装置、电路模组、电子设备及电路模组的装配方法 Download PDF

Info

Publication number
WO2022267999A1
WO2022267999A1 PCT/CN2022/099597 CN2022099597W WO2022267999A1 WO 2022267999 A1 WO2022267999 A1 WO 2022267999A1 CN 2022099597 W CN2022099597 W CN 2022099597W WO 2022267999 A1 WO2022267999 A1 WO 2022267999A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
elastic element
heat sink
bracket
radiator
Prior art date
Application number
PCT/CN2022/099597
Other languages
English (en)
French (fr)
Inventor
陈伟
马维策
林本炜
应晓园
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22827494.0A priority Critical patent/EP4343829A1/en
Publication of WO2022267999A1 publication Critical patent/WO2022267999A1/zh
Priority to US18/389,923 priority patent/US20240121881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1401Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB

Definitions

  • This application relates to the field of communication technology.
  • it relates to a cooling device, a circuit module, electronic equipment and an assembly method of the circuit module.
  • the electronic components are installed on the surface of the circuit board, and the air-cooled heat sink is placed on the electronic components, and is installed on the circuit board through a connector with an elastic structure, so as to realize the connection between the radiator and the electronic components on the circuit board. Bonding between components.
  • a liquid-cooled heat sink is used to stick it on the surface of an electronic component (such as a chip).
  • the purpose of this application is to solve whether the fixing of the air-cooled heat sink or the liquid-cooled heat sink is not tightly bonded due to flatness tolerances and manufacturing roughness on the outer surfaces of both the electronic components and the heat sink. Fitting, there is a gap on the contact surface, there is a large amount of air in the gap, the thermal resistance is large, the thermal conductivity is poor, and the technical problem that seriously affects the heat dissipation performance.
  • the present application provides a cooling device, a circuit module, an electronic device and an assembly method of the circuit module.
  • the heat dissipation device in the present application includes at least one elastic element, a heat sink and a bracket.
  • each elastic element is a new serpentine spring, that is, each elastic element is strip-shaped and has a peak-valley structure.
  • the bracket is used to be installed on the circuit board, and the assembly opening on the supporting part of the bracket is used to accommodate the heat source on the circuit board, so that the heat conduction surface of the heat source can penetrate the assembly on the supporting board. Open your mouth.
  • the heat sink is placed on the supporting part of the bracket, and the heat conduction surface of the heat sink can pass through the assembly opening so as to fit on the heat conduction surface of the heat source.
  • the peak-valley structure in the elastic element is placed on the installation surface of the radiator as a force application part, and the two ends of the elastic element are used as installation parts to go over the edge of the radiator and assemble on the bracket.
  • the at least one elastic element can provide the heat sink with tight pressure to the heat source through the peak-valley structure.
  • the heat dissipation device in the present application can realize the floating connection between the heat sink and the bracket through the elastic element. Because the elastic element has the advantages of large design tolerance, low installation difficulty, stable mechanical properties, etc., and the installation part of the elastic element used to install to the bracket and the force application part of the elastic element used to apply elastic force to the radiator are elastic different parts of the component. Therefore, the heat sink in the present application can rationally adjust the force application part to improve the bonding tightness between the heat sink and the heat source while keeping the mounting part unchanged, thereby improving the heat dissipation effect of the heat sink on the heat source.
  • the first aspect of the present application provides a heat dissipation device, which is applied to a circuit board with a heat source to dissipate heat from the heat source.
  • the heat dissipation device includes: a bracket, the bracket includes a supporting portion provided with an assembly opening, and the supporting portion is used to be fixed on the circuit board; Placed on the supporting part, wherein the first heat-conducting surface faces the supporting part and is used to pass through the assembly opening to be attached to the second heat-conducting surface of the heat source; at least one elastic element, each elastic element is strip-shaped with peaks and valleys The elastic parts of the structure, the peak-valley structure of each elastic element is arranged on the installation surface of the radiator, and the two ends of each elastic element are respectively fixed to the bracket; at least one elastic element is used to provide the heat sink with pressure close to the heat source .
  • the heat dissipation device includes at least one elastic element, a heat sink and a bracket.
  • each elastic element is a new serpentine spring, that is, each elastic element is strip-shaped and has a peak-valley structure.
  • the supporting part in the bracket is provided with an assembly opening.
  • the heat sink includes a heat conduction surface and an installation surface facing oppositely, wherein the heat conduction surface is used to be attached to the heat conduction surface of the heat source, so that the heat sink can dissipate heat from the heat source.
  • the bracket is used to be installed on the circuit board, and the assembly opening on the supporting part of the bracket is used to accommodate the heat source on the circuit board, so that the heat conduction surface of the heat source can penetrate the assembly on the supporting board. Open your mouth.
  • the heat sink is placed on the supporting part of the bracket, and the heat conduction surface of the heat sink can pass through the assembly opening so as to fit on the heat conduction surface of the heat source.
  • the peak-valley structure in the elastic element is placed on the installation surface of the radiator as a force application part, and the two ends of the elastic element are used as installation parts to go over the edge of the radiator and assemble on the bracket.
  • the at least one elastic element can provide the heat sink with tight pressure to the heat source through the peak-valley structure.
  • the supporting part includes a frame structure, and the hollow part on the frame structure is an assembly opening.
  • the supporting part includes two or more supporting blocks, and the interval between the supporting blocks is an assembly opening on the supporting part.
  • the above-mentioned heat dissipation device can realize the floating connection between the heat sink and the bracket through the elastic element.
  • the elastic element has the advantages of large design tolerance, low installation difficulty, and stable mechanical properties.
  • the installation part of the elastic element used to be installed on the bracket and the force application part of the elastic element used to apply elastic force to the radiator are different parts of the elastic element. Therefore, the heat sink in the present application can rationally adjust the force application part to improve the bonding tightness between the heat sink and the heat source while keeping the mounting part unchanged, thereby improving the heat dissipation effect of the heat sink on the heat source.
  • the bracket When the heat dissipation device is installed on the circuit board with the heat source, the bracket is fixed on the circuit board, and the supporting part in the bracket is arranged around the heat source.
  • the bracket has the following functions: First, the supporting part of the bracket is set around the heat source to strengthen the mechanical strength of the circuit board near the heat source, avoiding the high heat consumption of the heat source, causing the circuit board to warp and deform, and increasing the distance between the circuit board and the circuit board. Stress at the connection location of the heat source reduces the stability of the connection between the circuit board and the heat source.
  • brackets on both sides of the radiator can be used to fix the two ends of the elastic element, so that the elastic recovery force of the elastic element acts directly on the bracket instead of the circuit board, reducing the load on the circuit board , improve the stability of the circuit board structure.
  • multiple heat sinks that are compatible with multiple heat sources can be installed on one bracket to reduce the installation area on the circuit board for installing the heat sink. Optimize the layout of functional elements on the board.
  • the heat sink includes a body and a heat conduction protrusion, the heat conduction protrusion protrudes from the body in a direction away from the body, and the side of the heat conduction protrusion facing away from the body is the first heat conduction surface.
  • the peak-valley structure of the elastic element is elastically abutted against the mounting surface of the radiator, and the radiator is elastically combined with the bracket.
  • the elastic contact means that the peak-valley structure in the elastic element can abut against the installation surface of the heat sink, and the force exerted by the elastic element on the heat sink is an elastic force.
  • Elastic combination means that the heat sink and the bracket can be relatively fixed, but the fixation between the two is not a simple rigid fixation.
  • the elastic element before the heat sink is installed on the circuit board, the elastic element is in a pre-deformed state, and the elastic element applies a pre-tightening force to the heat sink to elastically combine the heat sink with the bracket, avoiding the heat sink when transporting the heat sink.
  • the radiator collides with the bracket, which reduces the probability of abnormality of the cooling device caused by transportation, and improves the yield rate of the cooling device.
  • each elastic element is detachably connected to the bracket. Partial replacement of elastic elements and radiators in heat sinks.
  • each elastic element utilizes the shape change of the peak-valley structure to adjust the external size of the elastic element, for example, the length of the elastic element, the width of the elastic element, and the height of the elastic element are changed by using the shape change of the peak-valley structure to adjust the shape of the elastic element. The state of assembly of both ends with the bracket.
  • the two ends of each elastic element are detachably connected to the bracket to realize the disassembly and assembly of the heat dissipation device, so that when some components in the heat dissipation device fail, the normal function of the heat dissipation device can be restored only by replacing some parts . Therefore, the above heat dissipation device can reduce the use cost of the heat dissipation device and improve economic benefits.
  • both ends of each elastic element are non-detachably connected to the bracket, for example, both ends of each elastic element are glued or welded to the bracket.
  • the two ends of each elastic element respectively include hooking parts extending toward the bracket; the bracket is provided with two mounting ends on both sides of the radiator, and the two mounting Mounting holes adapted to the hooking portions are provided at the ends respectively; the hooking portions at both ends of each elastic element are snapped into the mounting holes of the two mounting ends respectively.
  • the bracket is provided with installation ends for installing the elastic element, and when the radiator is placed on the bracket, the installation ends on the bracket are distributed in pairs on both sides of the radiator.
  • a mounting hole is opened on the mounting end, and the end of the elastic element is a hooking portion adapted to the mounting hole.
  • the hooking portion extends from the radiator toward the bracket.
  • the hooking portion when the elastic element is installed on the bracket, the hooking portion extends from a side of the bracket facing away from the radiator to a side of the bracket close to the radiator.
  • the two ends of each elastic element are provided as hooking parts extending toward the bracket, so that the two ends of the elastic element can be clipped into the mounting holes of the mounting ends on both sides of the heat sink on the bracket, And after the elastic element is assembled on the bracket, the hooking parts at both ends of each elastic element are hooked on the two installation ends, which can effectively prevent the two ends of the elastic element from protruding from the installation hole, and then can realize the elasticity of the cooling device.
  • the integrated incoming material of components, heat sink and bracket simplifies the installation steps of the heat sink on the circuit board.
  • the installation hole on the bracket is a through hole.
  • the heat sink further includes a heat dissipation structure, and the heat dissipation structure is arranged on the side facing away from the first heat conduction surface: the heat dissipation structure includes a plurality of fins arranged in parallel, and A plurality of air passages are formed between them; each elastic element corresponds to one air passage in the plurality of air passages.
  • the radiator is an air-cooled radiator.
  • the gas in the air channel flows along the extending direction of the air channel, and the flowing gas can take away the heat on the heat dissipation structure, such as reducing the temperature of the fins and the heat dissipation structure attached to the heat dissipation surface of the substrate.
  • the air duct section of the air-cooled radiator may be a "mouth"-shaped section or a U-shaped section, wherein the air duct section refers to the cross section obtained by cutting the air duct along the vertical direction of the air duct through the cooling structure.
  • the heat dissipation structure is arranged on the side facing away from the first heat conduction surface: for example, the heat dissipation structure is arranged on the heat dissipation surface of the radiator.
  • the heat dissipation structure is arranged on a plane of the radiator (for example, on a surface parallel to the first heat conduction surface or the installation surface)
  • one of the surfaces of the air duct in the heat dissipation structure is the installation surface of the radiator, for example, the wind
  • the bottom surface of the channel is opposite to the first heat conducting surface, so the bottom surface of the air channel in the radiator can be used as the installation surface of the radiator.
  • the placement position of the elastic element in the radiator in the above-mentioned heat dissipation device first of all, there is no need to set an additional mounting surface in the radiator, and the elastic element does not need to occupy a space other than the radiator and the bracket. other spaces.
  • the elastic element occupies less air duct, which improves the flow effect of the gas in the air duct.
  • the elastic element improves the heat dissipation effect of the heat dissipation device by reducing the occupied air duct and increasing the heat dissipation area.
  • each elastic element is parallel to the extension direction of the air duct through which it passes.
  • the two ends of the elastic element are the first end and the second end of the elastic element.
  • the length direction of the elastic element refers to the direction in which the first end of the elastic element points to the second end of the elastic element.
  • the extending direction of the air duct may be the extending direction of the fins. That is, in the embodiment of the present application, the undulating direction of each elastic element in the thickness direction is parallel to the extending direction of the air duct passing through it. For example, if the elastic element has a linear structure in the thickness direction, the extending direction of the air duct is also a straight line. For another example, if the thickness direction of the elastic element is a wavy structure, the extending direction of the air duct is also a wavy line.
  • the above heat dissipation device reduces the air duct occupied by the elastic element as much as possible by setting the length direction of the elastic element to be parallel to the extending direction of the air duct through which the elastic element passes, and increases the air duct in the air duct of the radiator per unit time.
  • the air flow improves the heat dissipation efficiency of the radiator and improves the heat dissipation effect of the heat dissipation device.
  • the undulating shape of the peak-valley structure of each elastic element is in the same plane.
  • the peak-valley structure is a part of the elastic element for abutting against the mounting surface of the heat sink, and the peak-valley structure corresponds to a waveform having several wave-shaped units connected end to end.
  • the wave shape of the peak-valley structure refers to the trajectory of the waveform corresponding to the peak-valley structure fluctuating from one end to the other. That is, in the embodiment of the present application, when the thickness of the elastic element is ignored, the peak-valley structure of the elastic element is in the same thickness plane.
  • the air duct in the heat dissipation structure in the radiator extends along a straight line, that is, the length direction of the elastic element is parallel to the extending direction of the air duct.
  • the elastic element is an elastic member whose wave shape of the peak-valley structure is in the same plane.
  • the installation accuracy of the elastic element is better than that of the helical column spring, which reduces the difficulty of installation.
  • rationally arranging the extension direction of such elastic elements in the air duct can further reduce the occupied air duct, further improve the gas circulation in the air duct, and further improve the heat dissipation efficiency of the radiator.
  • the thickness of each elastic element ranges from 1.5 mm to 10 mm, wherein the thickness direction is a direction perpendicular to the undulating shape of the peak-valley structure.
  • the elastic element has a thickness of 2mm.
  • the dimension in the thickness direction of the elastic element is slightly equal to the wire diameter of the strip-shaped elastic material, so that the dimension in the thickness direction of the elastic element is smaller, thereby ensuring that the elastic element occupies less air ducts.
  • the heat dissipation device in the present application is especially suitable for a heat dissipation system where multiple independent floating heat sinks coexist, and the effect of reducing wind resistance is more obvious. Under the same volume, the cooling device in this application can increase the ventilation rate by more than 14%.
  • the bracket further includes: a limiting part, the limiting part is arranged on the supporting part, and together with the supporting part forms an accommodating space for accommodating the radiator, and the limiting part
  • the part is surrounded by the outer edge of the radiator, and the outer edge of the radiator is provided with an avoidance gap; the installation end is formed at the connection between the supporting part and the limiting part; the two ends of each elastic element are passed through the avoidance gap , and snap into the mounting hole.
  • the bracket includes a supporting part and a limiting part, wherein the supporting part and the limiting part together constitute an accommodating space for placing the radiator. It can be understood that the accommodating space is when the radiator is installed on the bracket.
  • the shelf is used to accommodate the space for the radiator.
  • the limiting part is arranged around the outer edge of the body to align the first heat conduction surface of the heat sink with the second heat conduction surface of the heat source.
  • the installation end is arranged at the junction of the limiting portion and the supporting portion, that is, the two ends of the elastic element are respectively installed at the junction of the limiting portion and the supporting portion in the bracket.
  • the height of the limiting part should ensure that the radiator will not fall out of the bracket when it floats up to the highest position under normal working conditions, and at the same time, it should affect the ventilation of the radiator as little as possible. quantity.
  • the fins located at the escape notches are provided with avoidance notches, and the avoidance notches and the avoidance notches jointly form an installation space for installing the two ends of each elastic element to the installation hole .
  • the size of the escape notch is larger than the wire diameter of the elastic material in the elastic element.
  • a fin is placed at the position where the escape notch is opened, and the fin divides the escape notch into two parts, so that the area of the escape notch located on the side of the fin away from the elastic element cannot be used normally, that is, The fins here cause the escape notch and cannot effectively reduce the installation difficulty of the elastic element.
  • an avoidance gap is provided on the fins near the avoidance gap, so as to communicate with the avoidance gaps on both sides of the fin through the avoidance gap, forming a
  • the two ends of the elastic element are installed in the installation space of the installation hole.
  • the above-mentioned heat dissipation device by providing an avoidance gap on the fin located at the avoidance gap, ensures the stability of the connection between the elastic element and the bracket, increases the installation space for installing the two ends of the elastic element, and reduces the elastic element. Difficulty in assembly, and also reduces the difficulty in forming the elastic element.
  • the bracket further includes a raised portion, the raised portion protrudes from the limiting portion in a direction away from the supporting portion, and the raised portion is used to limit the radiator from detaching from the bracket.
  • the heightening portion is formed in a local area of the limiting portion, so as to reduce the weight of the bracket when the safety performance is improved through the heightening portion, realize the lightweight design of the heat sink, and reduce the cost of raw materials at the same time. cost and improve economic efficiency.
  • the raised portion protrudes from the limiting portion formed with the installation end in a direction away from the installation end.
  • the installation end is formed between the raised portion, and the limiting portion and the supporting portion adjacent to the raised portion.
  • the mounting end increases the physical size around the mounting hole, improves the mechanical strength of the mounting end, and optimizes the overall structure of the bracket.
  • the surface facing the accommodating space on the limiting portion is a first guiding surface
  • the two ends of the elastic element are provided with a second guiding surface adapted to the first guiding surface; the first The guide surface cooperates with the second guide surface to guide the direction in which the two ends of the elastic element enter the installation hole.
  • using the first guide surface and the second guide surface to complete the installation of the elastic element specifically includes: when installing one end of the elastic element on the installation end of the bracket, firstly place the first end of the elastic element The two guide surfaces are abutted against the first guide surface of the bracket, and one end of the elastic element is driven to slide the second guide surface along the first guide surface until one end of the elastic element slides into the installation hole and abuts against the installation end, Complete the installation of one end of the elastic element and the installation end.
  • one end of the elastic element slides into the mounting hole and is accommodated in the mounting hole, but does not abut against the mounting end, and when the bracket is installed on the circuit board, one end of the elastic element abuts against the mounting end.
  • the first heat conduction surface on the limiting portion and the second guide surfaces at both ends of the elastic element can reduce the installation difficulty of the heat dissipation device and realize accurate and rapid installation of the elastic element in the heat dissipation device.
  • each elastic element for pressing against the heat sink is in the shape of a point or a line.
  • the structure of the elastic element used to press the heat sink in the above heat dissipation device is in various forms, which facilitates the tight and elastic fit between the heat sink and the heating surface.
  • At least one elastic element specifically includes two elastic elements, and when the pressing part of each elastic element for pressing the heat sink is point-shaped, the pressure between the two elastic elements The joints are not on a straight line.
  • the pressing parts of the elastic elements are not on the same straight line, so as to pass through points that are not on the same straight line, so as to realize the stability of the first heat transfer surface of the radiator and the second heat transfer surface of the heat source. fit.
  • each elastic element is distributed symmetrically with respect to the centerline of the elastic element, and the centerline is a straight line passing through the midpoint of the elastic element and perpendicular to the length direction of the elastic element.
  • the difference between the length of the elastic element and twice the distance between one end of the elastic element and the midpoint in the length direction of the elastic element is smaller than a preset value.
  • the above-mentioned heat dissipation device by setting the elastic element as a structure symmetrically distributed with respect to the center line, is convenient to balance the working state of the entire peak-valley structure in the elastic element, so as to improve the bonding effect between the heat sink and the heat source, and further facilitate the realization of the heat dissipation device.
  • the heat sink is evenly and stably crimped to the heat source, improving the bonding effect between the first heat conduction surface of the heat sink and the second heat conduction surface of the heat source, increasing the effective contact surface between the first heat conduction surface and the second heat conduction surface, and further Improve the cooling effect of the cooling device on the heat source.
  • the deflection of the peak-valley structure near the midpoint is greater than the deflection of the peak-valley structure near the two ends.
  • the peak-valley structure near the midpoint refers to the waveform unit near the midpoint
  • the peak-valley structure near the two ends refers to the waveform unit near the two ends.
  • the above heat dissipation device by reasonably setting the deflection of the peak-valley structure at different positions in the elastic element, can realize the stable and uniform crimping of the elastic element to the mounting surface of the heat sink when the heat dissipation device is installed on the circuit board, that is, Realize the stable and uniform crimping of the radiator to the heat source on the circuit board.
  • the uniform crimping means that the contact area between the elastic element and the heat sink is evenly distributed, and at the same time, the force at the contact area between the heat sink and the elastic element is basically equal.
  • the heat source is an electronic component mounted on a circuit board.
  • the heat source is a chip mounted on a circuit board with high heat consumption.
  • the second aspect of the present application provides a heat dissipation device, which is applied to a circuit board with a heat source to dissipate heat from the heat source, including: a heat sink, the heat sink includes a first opposite heat conducting surface and a mounting surface; at least one elastic element, Each elastic element is a strip-shaped elastic piece with a peak-valley structure. The peak-valley structure of each elastic element is arranged on the mounting surface of the heat sink. The two ends of each elastic element are respectively fixed on the circuit board for heat dissipation. The first heat conduction surface of the heat sink is adhered to the second heat conduction surface of the heat source; at least one elastic element is used to provide the heat sink with a pressure close to the heat source.
  • the heat source is an electronic component mounted on a circuit board.
  • the heat source is a chip mounted on a circuit board with high heat consumption.
  • the above heat dissipation device improves the bonding stability of the first heat conduction surface of the radiator and the second heat conduction surface of the heat source, improves the uniformity of stress distribution at the joint, and can also improve the stress state of the radiator and extend the heat dissipation of the radiator.
  • there is no need to open installation holes on the heat sink so as to increase the effective heat dissipation area of the heat sink and improve the heat dissipation effect of the heat sink on the heat source.
  • the third aspect of the present application provides a circuit module, including any one of the first aspect of the cooling device, a circuit board, and electronic components mounted on the circuit board; the electronic components are heat sources; the circuit board is located on the bracket The side away from the heat sink is fixed to the bracket; the second heat conducting surface of the heat source faces the assembly opening.
  • the electronic component is a chip mounted on a circuit board.
  • the first heat-conducting surface of the radiator is tightly and elastically abutted against the second heat-conducting surface of the heat source through the cooperation of the elastic element and the bracket.
  • the elastic element since the elastic element is used to be installed on the mounting part of the bracket, it is different from the force application part used to apply elastic force to the radiator, so that the elastic element can adjust the position of the force application part by adjusting the peak-valley structure, and then adjust The force point of the elastic element on the radiator improves the stress state of the radiator and heat source, improves the stability of the heat sink and heat source, improves the uniformity of stress distribution at the joint, and improves the stress state of the heat source and radiator .
  • the installation of the heat sink on the electronic components is realized by replacing the limiting pins and columnar springs in the prior art with elastic elements, which simplifies the installation method, increases the effective heat dissipation area of the heat sink, and improves the reliability of the circuit module. heat radiation.
  • the two ends of the elastic element in the heat dissipation device are installed on the bracket, so that the stress of the installation of the elastic element acts on the bracket, not directly on the circuit board, so that the deformation of the circuit board and the deformation of the circuit board can be avoided.
  • the first heat conduction surface of the radiator and the second heat conduction surface of the heat source are poorly bonded.
  • multiple radiators compatible with multiple heat sources can be installed through one bracket, reducing the area of the installation area on the circuit board for installing heat sinks, and optimizing the heat dissipation on the circuit board. Layout of functional elements.
  • the contact area between the peak-valley structure of the elastic element and the mounting surface of the heat sink is located within the orthographic projection area of the second heat conducting surface of the electronic component on the mounting surface.
  • the orthographic projection of the core force-bearing point of the heat sink on the plane where the second heat conduction surface is located is located on the second heat conduction surface of the heat source.
  • the core stress point refers to the stress area on the heat sink for receiving the elastic force of the elastic element when the heat sink is installed on the circuit board.
  • the second heat conduction surface includes positions inside the second heat conduction surface and at edges of the second heat conduction surface. That is, the orthographic projection of the core stress point of the radiator on the plane where the second heat conduction surface is located is located inside the second heat conduction surface of the heat source or at the edge of the second heat conduction surface of the heat source.
  • the elastic force exerted by the elastic element on the radiator can be stably transferred to the heat source through the heat conduction protrusion in the heat sink, and then realize the close contact between the first heat conduction surface of the heat sink and the second heat conduction surface of the heat source.
  • the stress of the radiator is optimized, and the orthographic projection of the core stress point is prevented from being distributed at a position far from the second heat transfer surface of the heat source, thereby preventing the radiator from using the edge of the heat transfer protrusion as the fulcrum and centering on the core.
  • the force is a seesaw force mode at the force end.
  • the seesaw-like force mode will affect the structural stability of the substrate, and even lead to delamination of the heat-conducting layer when the heat-conducting layer of the first heat-conducting surface is thin, affecting the heat dissipation effect and service life of the radiator.
  • the orthographic projection of the core stress point is set on the second heat conduction surface of the heat source, so that the heat sink directly exerts force on the second heat conduction surface of the heat source, which improves the tightness of the heat sink and the heat source, thereby improving heat dissipation The heat dissipation effect of the device on the heat source.
  • the distribution mode of the core stress points in this embodiment can effectively reduce the impact of traditional floating connections on the vacuum chamber vapor chamber structure.
  • the rigidity requirement helps to reduce the thickness of the vapor chamber structure of the vacuum chamber and realize the overall slimming of the radiator.
  • the orthographic projection of the core stress point of the radiator falls on the radiator support column On the projection of , that is, the core stress point of the radiator is located directly above the support column of the radiator, that is, the pressing part of the elastic element is located directly above the support column.
  • the contact area between the peak-valley structure of the elastic element and the mounting surface of the heat sink is located at the edge of the second heat conducting surface of the electronic component within the orthographic projection area of the mounting surface.
  • the orthographic projection of the core stress point of the radiator on the plane where the second heat conducting surface is located is located at the edge of the second heat conducting surface of the heat source.
  • the contact area between the peak-valley structure of the elastic element and the installation surface of the radiator is located at the edge position of the second heat conduction surface of the electronic component in the orthographic projection area of the installation surface, so that the elastic element can be enlarged as much as possible.
  • At least one elastic element specifically includes two elastic elements, and the contact areas between the peak and valley structures of the two elastic elements and the mounting surface of the heat sink are located on the second heat-conducting surface of the electronic component. The position of the edge of the surface within the orthographic projection area of the mounting surface.
  • two elastic elements are respectively press-fitted on the heat sink directly above the edge of the heat source, the structure and shape of the elastic elements are simple, the forming difficulty is relatively low, and the installation of the elastic elements is convenient.
  • the two elastic elements are sufficient to stably press the heat sink to the surface of the heat source, thereby improving the heat dissipation effect of the heat sink on the heat source.
  • the fourth aspect of the present application provides a circuit module, including the heat dissipation device in the second aspect above, a circuit board, and electronic components mounted on the circuit board; the electronic components are used as heat sources; the two ends of the elastic element are respectively fixed on the circuit board.
  • the structure of the entire circuit module is stable, and the number of components is small, which is convenient for assembly.
  • the above-mentioned circuit module can effectively improve the heat dissipation of the electronic components in the circuit module, and optimize the performance of the electronic components.
  • a mounting hole is opened on the circuit board, and two ends of the elastic element are snapped into the mounting hole respectively.
  • the electronic component is a chip mounted on a circuit board.
  • the fifth aspect of the present application provides an electronic device, and the fifth aspect of the present application provides an electronic device, including the circuit module according to any one of the above-mentioned third aspect and fourth aspect.
  • the beneficial effects of the above-mentioned electronic equipment are brought by the above-mentioned circuit module, and will not be repeated here.
  • the sixth aspect of the present application provides a circuit module assembly method.
  • the sixth aspect of the present application provides a circuit module assembly method for assembling any one of the circuit modules in the third aspect.
  • the method includes: placing the heat dissipation device on the circuit board, wherein the first heat conduction surface of the heat sink in the heat dissipation device faces the second heat conduction surface of the heat source on the circuit board; circuit board.
  • the elastic element and the heat sink are installed on the bracket first, that is, the heat dissipation device is assembled first, and then the bracket is installed on the circuit board, which can effectively avoid the installation process of the elastic element and the heat sink. Scratch the electronic components on the circuit board, improve the yield rate of the circuit module, and improve economic benefits.
  • the assembling method of the heat sink in the assembly method includes: placing the heat sink on the bracket, wherein the first heat conducting surface of the heat sink faces the bracket; One side of the device has a mounting surface; one end of the elastic element is installed on the first mounting end of the bracket; an external force is applied to the elastic element to change the shape of the peak-valley structure of the elastic element, and the other end of the elastic element is installed on the bracket the second installation end.
  • one end of the elastic element is first installed on the first installation end of the bracket, and the waveform is deformed by applying an external force, and then the distance between the two ends of the elastic element is adjusted. distance, so that the other end of the elastic element is installed on the second installation end in the bracket, the installation steps are simple, and the operation method is simple and convenient.
  • the method for assembling the circuit module includes: placing the heat sink on the bracket, wherein the first part of the heat sink The heat conduction surface faces the bracket; the elastic element is placed on the side of the radiator with the installation surface; one end of the elastic element is installed on the first installation end of the bracket; an external force is applied to the elastic element to change the shape of the peak-valley structure of the elastic element , and the other end of the elastic element is installed on the second mounting end of the bracket to form a heat sink; the heat sink is placed on the circuit board, wherein the first heat conduction surface of the heat sink in the heat sink faces the side of the heat source on the circuit board The second heat conduction surface; the bracket in the heat dissipation device is fixedly installed on the circuit board through fasteners.
  • the method for assembling the circuit module includes: installing the bracket on the circuit board through a fastener, wherein the fastening
  • the firmware can be a fastening screw
  • the radiator is placed on the bracket, wherein the first heat-conducting surface of the radiator faces the bracket
  • the elastic element is placed on the side of the radiator with the mounting surface
  • one end of the elastic element is installed On the first mounting end of the bracket; applying external force to the elastic element to change the wave shape of the elastic element, and installing the second end of the elastic element on the second mounting end of the bracket.
  • the seventh aspect of the present application provides a circuit module assembly method for assembling any one of the circuit modules in the fourth aspect.
  • the assembly method includes: placing the radiator on the circuit board, wherein the radiator The first heat conduction surface faces the second heat conduction surface of the heat source on the circuit board; the elastic element is placed on the side of the heat sink with the installation surface; one end of the elastic element is installed on the first installation end of the circuit board; an external force is applied to the elastic element In order to change the shape of the elastic element, the other end of the elastic element is installed on the second installation end of the circuit board.
  • Fig. 1 (a) is the explosion diagram of a kind of circuit module of other technical solutions
  • Fig. 1(b) is an explosion diagram of another circuit module of other technical solutions
  • Fig. 2 is an explosion diagram of a circuit module in the present application
  • FIG. 3 is a sectional perspective view of a circuit module in the present application along the position of the elastic element 100;
  • FIG. 4 is a working principle diagram of a cooling device 10 in the present application.
  • FIG. 5 is a front view of an elastic element 100 in the present application.
  • Figure 6(a) is a perspective view of a heat sink 200 along a viewing angle in the present application
  • Figure 6(b) is a three-dimensional cross-sectional view of a radiator 200 in the present application along another viewing angle;
  • FIG. 7(a) is a schematic diagram of the distribution of the core stress point CSP of a heat sink 10 in the present application.
  • Figure 7(b) is a schematic diagram of the distribution of the core stress point CSP' of a heat sink in other technical solutions
  • FIG. 7(c) is a side view of a heat sink 10 in the present application, where the bracket 300 is not shown;
  • Fig. 7(d) is a side view of a heat sink in other technical solutions, where the bracket 300 is not shown;
  • Figure 8(a) is a perspective view of a bracket 300 in the present application.
  • Figure 8(b) is an enlarged view of the mounting end 400 in Figure 8(a);
  • Figure 8(c) is a partial enlarged view of the elastic element 100 in the present application.
  • Fig. 9 (a) is a top view of a radiator 200 in the present application.
  • Figure 9(b) is a top view of a radiator 200 in the prior art
  • FIG. 10(a) is an assembly diagram of a bracket 300 and a circuit board 20 in the present application.
  • FIG. 10(b) is a sectional perspective view of a circuit module 1 including a heat sink 10 along the position of the fastening screw 50 in the present application;
  • FIG. 11(a) is a schematic diagram of a first viewing angle of one bracket 300 corresponding to multiple radiators 200 in the present application;
  • FIG. 11(b) is a schematic diagram of a second angle of view of a bracket 300 corresponding to a plurality of radiators 200 in the present application;
  • FIG. 12 is a schematic diagram of various dimensions of an elastic element 100 in the present application.
  • Figures 13(a) to 13(d) are perspective views of several elastic elements 100 in the present application.
  • FIG. 14 is an assembly schematic diagram of a heat dissipation device 10 in the present application.
  • FIG. 15 is an assembly flowchart of a heat sink 10 in the present application.
  • FIG. 16 is an assembly flowchart of a circuit module 1 in the present application.
  • FIG. 17 is an assembly flowchart of another circuit module 1 in the present application.
  • FIG 18 is an exploded view of the circuit module 1"' in this application.
  • Fig. 19 is a flowchart of assembly of the circuit module 1"' in this application.
  • 10-radiating device 100'-connector; 110'-limiting pin; 111'-limiting slot; 110a'-limiting screw; 120'-column spring; Device; 201-first heat transfer surface; 203-radiator via hole; 210-substrate; 211-body; 212-heat conduction protrusion; 220-radiation structure; 221-fin; 301-bracket hole position; 302-bracket via hole; 20-circuit board; 21-circuit board hole position; 30-heat source; 31-second heat conduction surface; Fastening screw; CSP'-core stress point;
  • the present application provides an electronic device, which includes at least one set of circuit modules.
  • the circuit module 1 includes a heat sink 10 , a circuit board 20 and a heat source 30 .
  • the heat source 30 is mounted on the circuit board 20
  • a heat conducting surface 31 is formed on the surface of the heat source 30 .
  • the heat source 30 may be an electronic component mounted on the circuit board 20 , for example, the heat source 30 is a chip mounted on the circuit board 20 with high heat consumption.
  • the heat conducting surface 31 is a side of the heat source 30 facing away from the circuit board 20 , for example, the upper surface of the heat source 30 in FIG. 1( a ) and FIG. 1( b ).
  • the heat dissipation device 10 includes a connector 100' and a heat sink 200, and the heat sink 200 is formed with a heat conduction surface of the heat sink 200 (also called a heat absorption surface of the heat sink 200) adapted to the heat conduction surface 31 of the heat source 30, for example The lower surface of the heat sink 200 in FIG. 1( a ) and FIG. 1( b ).
  • the connecting piece 100' in the heat sink 10 directly or indirectly connects the heat sink 200 and the circuit board 20, and adapts to the change of the distance between the heat sink 200 and the circuit board 20 through an elastic structure, so as to The heat sink 200 is elastically combined with the heat source 30 .
  • the connecting piece 100 ′ in the floating heat sink 10 elastically abuts the heat conducting surface of the heat sink 200 against the heat conducting surface 31 of the heat source 30 , thereby adjusting the bonding degree between the heat sink 200 and the heat source 30 .
  • the heat source 30 adopts an air-cooled heat dissipation method
  • the radiator 200 can be an air-cooled radiator.
  • the radiator 200 includes a substrate 210 and a heat sink Structure 220.
  • the substrate 210 has a heat conduction surface (not marked) and a heat dissipation surface (not marked).
  • the heat conduction surface of the heat sink 200 is used to absorb heat from the heat conduction surface 31 of the heat source 30, and the heat dissipation surface is used to absorb the heat absorbed by the heat sink 200 through the heat conduction surface. dissipated (conducted) to the heat dissipation structure 220 .
  • the heat dissipation structure 220 is disposed on the heat dissipation surface of the substrate 210 , and the heat dissipation structure 220 includes fins 221 arranged in parallel.
  • An air channel 222 is formed between adjacent fins 221, and the gas in the air channel 222 flows along the extension direction of the air channel 222, and the flowing gas can take away the heat on the heat dissipation structure 220, for example, lowering the temperature of the fins 221 , and reduce the temperature of the heat dissipation structure 220 attached to the heat dissipation surface of the substrate 210 .
  • the heat sink 200 is directly connected to the circuit board 20 through the connecting piece 100'. As shown in FIG. 130'. Wherein, the limiting pin 110' is also provided with a limiting slot 111' for engaging the limiting piece 130'.
  • the limiting pin 110' penetrates through the column spring 120' and the radiator via hole 203 on the radiator 200 sequentially from top to bottom, and the limiting pin 110'
  • the slot hole 111 ′ passes through the heat sink via hole 203 and is located under the heat sink 200 .
  • the limit piece 130' is snapped into the limit slot 111', so that the limit pin 110', the column-mounted spring 120', the radiator 200, and the limit piece 130' are integrated into one body, and the deformable force of the column-mounted spring 120'
  • the characteristic enables a floating connection of the heat sink 200 relative to the stop pin 110'.
  • the lower end of the limiting pin 110 ′ is assembled to the circuit board hole 21 on the circuit board 20 , and the post-mounted spring 120 ′ is elastically deformed, so as to realize elastic bonding between the heat sink 200 and the heat source 30 on the circuit board 20 .
  • the heat sink 200 is indirectly connected to the circuit board 20 through the connecting piece 100 ′.
  • the circuit module further includes fastening screws 50 and reinforcing plates 40
  • the heat sink 10 also includes a bracket 300.
  • the bracket 300 is fixedly connected to the circuit board 20.
  • the heat sink 200 is elastically connected to the circuit board 20 through the connecting piece 100 ′ and the bracket 300 .
  • the connecting member 100' includes a limit screw 110a' and a column spring 120'.
  • the limit screw 110a' penetrates through the column spring 120' and the radiator through hole 203 on the radiator 200 from top to bottom, and is fastened to the corresponding bracket hole 301 of the bracket 300, so that the limit The screw 110 a ′, the post mounted spring 120 ′, the radiator 200 , and the bracket 300 are integrated into one body, and realize the floating connection between the radiator 200 and the bracket 300 .
  • the fastening screw 50 passes through the bracket through hole 302 of the bracket 300 and the corresponding hole 21 of the circuit board 20 in sequence, and is fastened to the strengthening board 40 .
  • the post-mounted spring 120 ′ is elastically deformed, so as to realize the elastic fit between the heat sink 200 and the heat source 30 on the circuit board 20 .
  • connection method of the air-cooled heat sink on the circuit board it is not difficult to find that the connecting piece needs to pass through the heat sink 200 and the circuit board 20, so as to apply force to the heat sink 200 for pressing the heat source 30, Furthermore, the action point of the connector 100 ′ on the heat sink 200 cannot be directly above the heat source 30 , which may cause a slight concave on the heat transfer surface of the heat sink 200 , and eventually cause the heat transfer surface of the heat sink 200 to be in contact with the heat transfer surface 31 of the heat source 30 . The bonding effect is poor.
  • the radiator 200 may be a liquid-cooled radiator.
  • the connection mode between the heat sink 200 and the heat source 30 may be that the heat conduction surface of the heat sink 200 adheres to the heat conduction surface 31 of the heat source 30, or it may cause the heat conduction surface of the heat sink 200 to be connected to the heat conduction surface 31 of the heat source 30. The fit is poor.
  • the heat dissipation device in the present application includes at least one elastic element, a heat sink and a bracket.
  • each elastic element is a new snake spring (New Snake Spring, NSS), whose shape is similar to that of a snake during its movement.
  • the elastic element is strip-shaped, made of elastic material, and has a peak-valley structure, wherein the peak-valley structure corresponds to a wave.
  • the two ends of the elastic element are respectively installed on the corresponding two installation ends of the bracket.
  • the radiator is floatingly installed on the bracket through the elastic element, and the radiator is used to dissipate heat from the heat source on the circuit board.
  • the bracket is connected with the circuit board to limit the heat sink above the heat source, and at the same time cooperate with the heat sink to make the wave shape of the elastic element deform.
  • the elastic element utilizes the elastic force generated by the wave deformation to elastically couple and install the heat sink on the circuit board, so that the heat conduction surface in the heat sink elastically contacts closely with the heat conduction surface of the heat source.
  • the above-mentioned heat dissipation device can realize the floating connection between the radiator and the bracket through the elastic element, and the elastic element has the advantages of large design tolerance, low installation difficulty, and stable mechanical properties.
  • the mounting portion of the elastic element used to mount to the bracket and the force application portion of the elastic element used to apply elastic force to the heat sink are different parts of the elastic element. Therefore, the cooling device in the present application can maintain the mounting portion without In the case of changing conditions, adjust the force application part reasonably to improve the tightness of the heat sink and the heat source, and then improve the heat dissipation effect of the heat sink on the heat source.
  • the heat sink in the heat dissipation device of the present application may be an air-cooled heat sink, and the elastic element is passed through the air duct of the heat dissipation structure.
  • the air duct section of the air-cooled radiator may be a "mouth"-shaped section or a U-shaped section, wherein the air duct section refers to the cross section obtained by cutting the air duct along the vertical direction of the air duct through the cooling structure.
  • the radiator in the heat dissipation device of the present application may also be a liquid-cooled plate radiator, and the elastic element is placed on the side of the radiator facing away from the heat conducting surface of the radiator.
  • the cooling device includes a single radiator; for the application scenario of multiple heat sources, the cooling device can flexibly match multiple radiators through combination to meet the requirements of the application scenario of multiple heat sources.
  • the heat sink includes a bracket, and the bracket is used to surround the heat source to prevent the circuit board around the heat source from being deformed and ensure that the circuit board is in good contact with the heat source. Chip bonding strength.
  • one bracket in the heat dissipation device can correspond to multiple (for example, the same number as the number of heat sources) radiators, so that the bracket can communicate with the heat sink.
  • the circuit board is connected to avoid that each heat sink is connected to the circuit board separately, and the circuit board area occupied by the heat sink installation is reduced as much as possible, and the flexibility of the layout of the high-density single board is improved.
  • the heat sink includes a bracket and 3 radiators, and the radiator is an air-cooled radiator with a "mouth"-shaped air duct section as an example to describe the heat sink in this application in detail. structure.
  • the following description will be made by taking one of the heat sinks and the elastic elements, brackets, circuit boards, heat sources, etc. corresponding to the heat sink as examples.
  • the circuit board in the embodiment of the present application is suitable for a heat sink with a bracket.
  • the heat dissipation device uses a bracket to elastically attach the heat sink to the heat source on the circuit board, which will be described in detail below.
  • FIG. 2 is an exploded view of a circuit module 1 in the present application.
  • FIG. 2 there are three heat sources 30 that are relatively close to each other on the circuit board 20, and the three heat sources 30 all need to be dissipated through the heat sink 200, and the heat dissipation device 10 is used to heat the three heat sources 30 on the circuit board 20.
  • FIG. 3 is a cross-sectional perspective view of the circuit module 1 along the position of the elastic element 100 in the present application.
  • FIG. 4 is a working principle diagram of a circuit module 1 in the present application, wherein the force application part of the elastic element 100 is a trough in the waveform 130 .
  • the structure and working principle of the heat dissipation device 10 in the present application will be described below with reference to FIGS. 2 to 4 .
  • the heat dissipation device 10 includes at least one elastic element 100 , a heat sink 200 and a bracket 300 .
  • the number of elastic elements 100 in one set of cooling devices 10 can be one, two, three and so on. The following will take a certain elastic element 100 as an example to describe in detail the structural features of the elastic element 100 , as well as the installation position and connection method of the elastic element 100 relative to the heat sink 200 and the bracket 300 .
  • the elastic element 100 is a strip-shaped (strip-shaped) elastic structure with several peak-valley structures.
  • the elastic element 100 includes a first end 110 and a second end 120 for realizing the installation function, and the first end 110 and the second end
  • the peak-valley structure between 120 is used to realize the pressing function, wherein the peak-valley structure corresponds to the waveform 130 having several waveform units.
  • the raw material used to form the elastic element 100 is a strip-shaped elastic material
  • the material of the strip-shaped elastic material is an elastic material
  • the strip-shaped elastic material refers to a dimension in one direction (such as the axial direction of the strip-shaped material) Raw material that is much larger than the dimensions in other directions (such as the radial direction of strip material).
  • the strip-shaped elastic material is elastic thread or elastic strip.
  • the heat sink 200 includes a mounting surface (not marked) and a first heat conducting surface (not marked), and the mounting surface is located opposite to the first heat conducting surface.
  • Each elastic element 100 is placed on the mounting surface of the heat sink 200 .
  • the installation surface is the surface on the radiator 200 for placing the elastic element 100 , and the installation surface may be one of the existing surfaces of the radiator 200 .
  • the radiator 200 is an air-cooled radiator
  • the first heat conducting surface is the bottom surface of the radiator 200
  • the installation surface is the lower surface of the air duct 222 in the radiator 200 .
  • the lower surface of the air duct 222 may be the heat dissipation surface of the substrate 210 , and the lower surface of the air duct 222 may also be a surface parallel to the heat dissipation surface in the heat dissipation structure 220 .
  • the position of the installation surface and the first heat conduction surface is opposite to that means that when an external load is applied to the installation surface of the heat sink 200, the heat sink 200 can make the first heat conduction surface of the heat sink 200 abut against the heat sink 200 under the action of the external load. on the surface of other structures.
  • the elastic element 100 is disposed on one side of the radiator 200 where the mounting surface is formed.
  • the heat source 30 is installed on the circuit board 20 , the heat source 30 has a second heat conduction surface 31 , and the second heat conduction surface 31 is compatible with the first heat conduction surface.
  • the second heat conduction surface 31 and the first heat conduction surface are planes.
  • the installation surface of the radiator 200 is a side facing away from the first heat conducting surface.
  • the first heat transfer surface is the lower surface of the liquid-cooled plate radiator
  • the installation surface is the upper surface of the liquid-cooled plate radiator.
  • the bracket 300 is used for connecting the elastic element 100 and supporting the heat sink 200 , and is also used for connecting with the circuit board 20 .
  • the bracket 300 is provided with installation ends 400 , and the installation ends 400 are distributed on two sides of the radiator 200 in pairs.
  • the first end 110 and the second end 120 of the elastic element 100 are respectively connected to a pair of corresponding mounting ends 400 on the bracket 300 .
  • the bracket 300 When the bracket 300 is installed on the circuit board 20 by fastening screws 50, the bracket 300 is arranged around the heat source 30 and the heat sink 200, so as to connect the first heat conduction surface of the heat sink 200 to the second heat conduction surface of the heat source 30. 31 alignment.
  • the elastic element 100 uses the elastic force generated by the deformation of the wave 130 to press the trough of the elastic element 100 against the mounting surface of the heat sink 200, and elastically couple the heat sink 200 to the circuit board 20 to realize the first heat conduction surface in the heat sink 200
  • the second heat conducting surface 31 is tightly and elastically contacted with the heat source 30 .
  • the bracket 300 can limit the relative position of the heat sink 200 and the heat source 30 by supporting the heat sink 200;
  • the mounting end 400 on the 300 cooperates with the elastic element 100 to drive the wave deformation of the elastic element 100 , and then the elastic element 100 exerts pressure on the heat sink 200 for tightly attaching the heat sink 200 to the heat source 30 on the circuit board 20 .
  • the elastic element 100 before the heat sink 10 is installed on the circuit board 20, the elastic element 100 is in a pre-deformed state, and the elastic element 100 applies a pre-tightening force to the heat sink 200 to elastically combine the heat sink 200 and the bracket 300, The heat sink 200 is prevented from colliding with the bracket 300 when the heat sink 10 is transported, the probability of abnormality of the heat sink 10 caused by transportation is reduced, and the yield rate of the heat sink 10 is improved.
  • the first end 110 and the second end 120 of the elastic element 100 are relatively fixed to the mounting end 400 on the bracket 300, for example, the first end 110 and the second end 120 It is fixed on the installation end 400 , and for example, the first end 110 and the second end 120 are stuck on the installation end 400 .
  • the wave 130 of the elastic element 100 elastically abuts against the mounting surface of the heat sink 200 , and the heat sink 200 is elastically combined with the bracket 300 .
  • the elastic element 100 may not exert a pre-tightening force on the heat sink 200 , and the connection method between the elastic element 100 and the bracket 300 is not specifically limited.
  • the radiator 200 is placed on the supporting surface of the bracket 300 , the elastic element 100 is placed on the installation surface of the radiator 200 , and the elastic element 100 is connected to the bracket 300 around the boundary of the radiator 200 .
  • the bracket 300 can be detachably connected to the circuit board 20 , for example, the bracket 300 is connected to the circuit board 20 by screws. In other alternative implementations, the bracket 300 can be non-detachably connected to the circuit board 20 , for example, the bracket 300 is glued or welded to the circuit board 20 .
  • the elastic element 100 is deformed by the wave 130 so that both ends of the elastic element 100 are detachably mounted on the two installation ends 400 of the bracket 300 .
  • the elastic element 100 compresses the wave 130 along the length direction of the elastic element 100 by an external load, that is, shortens the distance between the first end 110 and the second end 120 , so as to install the elastic element 100 in the two mounting ends 400 .
  • the external load can be applied to the first end 110 and/or the second end 120 of the elastic element 100 through a tool.
  • the waveform 130 in the elastic element 100 includes several waveform units, wherein the shape of the waveform units is a sine wave or a sine-like wave.
  • the elastic element 100 elastically combines the heat sink 200 and the circuit board 20 through the troughs or crests of the waveform 130 .
  • the trough is the lowest point in the waveform unit
  • the peak is the highest point in the waveform unit.
  • the elastic element 100 uses the trough or the crest of the wave 130 as the force application portion, and then the heat sink 200 is elastically combined with the circuit board 20 by the elastic force at the trough or the crest when the wave is deformed.
  • the heat source 30 on the circuit board 20 is an electronic component mounted on the circuit board 20 , for example, the electronic component is a chip with high heat consumption on the circuit board.
  • FIG. 5 is a front view of an elastic element 100 in Embodiment 1 of the present application.
  • the dimensions and directions of the elastic element 100 are defined as follows in conjunction with FIG. 5:
  • Length direction of the strip-shaped elastic material the direction in which one end of the strip-shaped elastic material extends to the other end of the strip-shaped elastic material, such as l m in FIG. 5 .
  • the length of the strip-shaped elastic material is the length of the extending track from one end of the strip-shaped elastic material to the other end of the strip-shaped elastic material.
  • Cross-section of the strip-shaped elastic material before bending into the wave form 130, the cross-section of the strip-shaped elastic material perpendicular to the length direction of the strip-shaped elastic material.
  • the cross section of the strip-shaped elastic material may be any one of circle, ellipse and rectangle.
  • the cross-section of the strip-shaped elastic material can also be other shapes customized according to requirements.
  • Extending direction of the elastic element 100 the length direction of the strip-shaped elastic material after the strip-shaped elastic material is bent into a waveform 130 , as shown in FIG. 5 .
  • the length direction of the elastic element 100 the first end 110 of the elastic element 100 points to the direction of the second end 120 of the elastic element 100, as indicated by l l in FIG. 5 .
  • the length of the elastic element 100 is the dimension of the elastic element 100 along the length direction of the elastic element 100 , such as the left-right dimension of the elastic element 100 in FIG. 5 .
  • the height of the elastic element 100 is the dimension of the elastic element 100 along the wave bending direction, such as the dimension of the elastic element 100 in the vertical direction in FIG. 5 .
  • the thickness of the elastic element 100 is the dimension of the elastic element 100 perpendicular to the extending plane of the elastic element 100 , such as the dimension of the elastic element 100 along the direction perpendicular to the paper in FIG. 5 .
  • Midpoint of the elastic element 100 the center of the lengthwise dimension of the strip-shaped elastic material, such as P C in FIG. 5 .
  • the centerline of the elastic element 100 a straight line passing through the midpoint PC of the elastic element 100 and perpendicular to the length direction l l of the elastic element 100, such as l c in FIG . 5 .
  • the installation part of the elastic element 100 is the two ends of the elastic element 100
  • the force application part of the elastic element 100 to the heat sink 200 and the heat source 30 is the waveform 130 between the two ends of the elastic element 100 . Therefore, only by adjusting the waveform 130 of the elastic element 100 , the pressing position of the elastic element 100 on the heat sink 200 and the heat source 30 can be adjusted. Since the debugging process does not need to adjust the position of the installation part, it reduces the difficulty of the development process of the radiator 200 and the heat source 30 assembly plan, and then facilitates the optimization of the bonding effect between the radiator 200 and the heat source 30, so as to improve the pairing of the radiator 200. The heat dissipation effect of the heat source 30 .
  • an elastic element 100 may include a plurality of wave-shaped units. Since each wave-shaped unit can realize at least one pressing of the heat sink 200 and the heat source 30, it is possible to realize that one elastic element 100 can press the heat sink 200 and the heat source 30 in multiple places. Together, the number of connecting components in the heat sink 10 is reduced. For example, as shown in FIG. 1( a ), installing one radiator 200 requires 4 pieces of limiting pins 110 ′, 4 pieces of column springs 120 ′ and 4 pieces of limiting sheets 130 ′, totaling 12 pieces of connecting parts. As shown in FIG.
  • installing one heat sink 200 requires 4 pieces of limit screws 110 a ′, 4 pieces of column springs 120 ′ and 4 pieces of fastening screws 50 , a total of 12 pieces of connecting parts.
  • the present application can also improve the assembly efficiency of the heat sink and reduce the production cost.
  • the pressing force provided by the deformation of the waveform 130 of the elastic element 100 satisfies the direct and effective bonding between the heat sink 200 and the heat source 30 of different thicknesses, and expands the application range of the heat sink 10 .
  • the elastic element 100 has a more compact structure, takes up less space, expands the scope of application, and improves the heat dissipation capability of the heat dissipation device 10 .
  • the elastic element 100 improves the heat dissipation effect of the heat dissipation device 10 by reducing the occupation of the air duct 222 and increasing the heat dissipation area.
  • the installation stress of the two ends of the elastic element 100 in the heat sink 10 acts on the bracket 300, not directly on the circuit board 20, so it can effectively avoid the deformation of the circuit board 20, thereby avoiding the first deformation of the heat sink 200 caused by the deformation of the circuit board 20.
  • the heat conduction surface and the second heat conduction surface 31 of the heat source 30 are poorly bonded.
  • a plurality of heat sinks 200 adapted to the plurality of heat sources 30 can be installed on a bracket 300, so that the number of heat sinks 10 installed on the circuit board 20 can be reduced.
  • the mounting area is optimized to optimize the layout of functional components on the circuit board 20.
  • the radiator 200 is a liquid-cooled plate radiator.
  • the liquid-cooled plate radiator includes a mounting surface and a first heat conducting surface, and the elastic element 100 is placed on one side of the liquid-cooled plate radiator mounting surface.
  • the first heat conduction surface is the surface of the liquid-cooled plate radiator for bonding with the heat source
  • the installation surface is the surface of the radiator 200 facing away from the first heat conduction surface, for example, the installation surface is the upper surface of the liquid-cooled plate radiator
  • the first heat conducting surface is the lower surface of the liquid-cooled plate radiator.
  • the radiator 200 is an air-cooled radiator.
  • FIG. 6( a ) is a perspective view of a radiator 200 in the present application along a viewing angle.
  • FIG. 6( b ) is a three-dimensional cross-sectional view of a radiator 200 in the present application along another viewing angle. The specific structure of the heat sink 200 in the heat dissipation device 10 will be described in detail below with reference to FIG. 6(a) and FIG. 6(b).
  • the heat sink 200 includes a substrate 210 and a heat dissipation structure 220 .
  • the substrate 210 and the heat dissipation structure 220 can be integrated by welding, machining, cutting, stamping or forging.
  • the substrate 210 has a first heat conduction surface 201 and a heat dissipation surface (not shown), the first heat conduction surface 201 is used to absorb heat from the heat conduction surface 31 of the heat source 30, and the heat dissipation surface is used to pass the radiator 200 through the first heat conduction surface The heat absorbed by 201 is dissipated to the heat dissipation structure 220 .
  • the heat dissipation structure 220 is disposed on the heat dissipation surface of the substrate 210 , and the heat dissipation structure 220 includes fins 221 arranged in parallel, wherein the shape of the fins 221 is related to the type of the heat source 30 .
  • Air ducts 222 are formed between adjacent fins 221 .
  • the mounting surface of the radiator 200 is the lower surface of the air duct 222 (for example, 202 in FIG. 6( b )).
  • the height of the elastic element 100 is smaller than the height of the air duct 222 , the thickness of the elastic element 100 is less than the width of the air duct 222 , and the length of the elastic element 100 is greater than the length of the air duct 222 .
  • the elastic element 100 is installed in one of the air ducts 222 according to the length direction l l of the elastic element 100, that is, the length direction l l of the elastic element 100 is approximately the same as the extending direction of the air duct 222, and the first The end 110 and the second end 120 respectively protrude from the air outlet and the air inlet of the air duct 222 , and the wave 130 of the elastic element 100 can abut against the lower surface of the air duct 222 .
  • the extending direction of the air duct 222 is the extending direction of the fins 221 .
  • the elastic element 100 abuts against the lower surface of the air duct 222, and uses the elastic force generated by the deformation of the wave 130 to elastically press the heat sink 200 to the heat source 30, so that the first heat conducting surface 201 of the substrate 210 elastically abuts against the heat source 30.
  • the second heat conducting surface 31 is the first heat conducting surface 201 of the substrate 210 elastically abuts against the heat source 30.
  • the positions of the first heat conduction surface 201 and the heat dissipation surface are opposite and the normal direction is opposite (the opposite normal direction refers to the positive normal direction of the first heat conduction surface 201 and the positive normal direction of the heat dissipation surface
  • the direction of the first heat conduction surface 201 is opposite to that of the heat dissipation surface), and the distance from any point on the first heat conduction surface 201 to the heat dissipation surface is basically equal to achieve the consistency of heat conduction of the radiator 200.
  • uniform heat dissipation can be realized to each point on the second heat conducting surface 31 of the heat source 30 .
  • the substantially equal distance from any point on the first heat conduction surface 201 to the heat dissipation surface means that the shortest distance from any point on the first heat conduction surface 201 to the heat dissipation surface floats within a predetermined range.
  • the wind direction dw in the air duct 222 refers to the gas flow direction in the air duct 222, for example, the wind direction dw in Fig. .
  • the wind direction dw in the air duct 222 is also parallel to the extension direction dc of the air duct 222, and the air duct 222
  • the extending direction d c is parallel to the extending direction of the fins 221 .
  • the wind The wind direction dw in the duct 222 is parallel to the extension direction dc of the air duct 222 .
  • the air duct 222 occupied by the elastic element 100 refers to the projection of the part of the elastic element 100 passing through the air duct 222 in the vertical plane of the air duct direction.
  • the extending direction d c of the air duct 222 in the radiator 200 is a certain straight line direction, that is, when the fins 221 and the air duct 222 extend along a straight line
  • the peak and valley of the elastic element 100 The wave shape of the structure is in the same plane, that is, the bending tracks of the elastic element 100 are in the same plane.
  • the wave shape refers to the waveform corresponding to the peak-valley structure, which fluctuates and extends from one end to the other end.
  • the cross section of the heat dissipation structure 220 of the heat sink 200 may be a "mouth” cross section or a U-shaped cross section. Specifically, when the cross section of the heat dissipation structure 220 is "mouth” shaped, the first end 110 of the elastic element 100 penetrates from one end (air inlet or air outlet) of an air channel 222, and passes through the other end of the air channel 222. (air outlet or air inlet) through.
  • the first end 110 of the elastic element 100 penetrates from one end (air inlet or air outlet) of an air passage 222, and passes through the other end (air outlet or air outlet) of the air passage 222. or, the wave 130 of the elastic element 100 is inserted into the air channel 222 from the upper opening of the air channel 222 .
  • the thickness dimension of the elastic element 100 is reduced as much as possible, so that the undulating shape of the peak-valley structure is in the same plane.
  • the structural accuracy of the elastic element 100 is better than that of the column-mounted spring 120' of the helical structure, which reduces the difficulty of forming.
  • the installation accuracy of the elastic element 100 with the wave shape of the peak-valley structure in the same plane is better than that of the column-mounted spring 120 of the helical structure. ’, which reduces the difficulty of installation.
  • the undulating shape of the peak-valley structure is rationally arranged, and the elastic elements 100 in the same plane are distributed in the extension direction dc of the air duct 222, which can reduce the occupied air duct 222, improve the gas circulation in the air duct 222, and improve the The heat dissipation efficiency of the heat sink 200 is improved.
  • the length direction of the elastic element 100 is parallel to the extending direction d c of the air duct 222
  • the thickness direction of the elastic element 100 is parallel to the width direction of the air channel 222, so that the structure of the elastic element 100 in the thickness direction is distributed symmetrically.
  • the extension direction dc of the air duct 222 in the radiator 200 is in a wave shape, also That is, the fins 221 and the air duct 222 extend along the wavy line, and the surface where the wave shape of the peak-valley structure of the elastic element 100 is located is a wave-shaped curved surface, and the length direction of the elastic element 100 and the extending direction d of the air duct 222 c and the wind direction dw in the air duct 222 are in the same direction, so as to reduce the air duct 222 occupied by the elastic element 100 as much as possible.
  • the cross section of the heat dissipation structure 220 of the heat sink 200 is "U" shaped.
  • the wave 130 of the elastic element 100 is snapped into the air channel 222 from the upper opening of the air channel 222, the wave 130 of the elastic element 100 can abut against the lower surface of the air channel 222, and the first end 110 of the elastic element 100 is released from the air channel 222.
  • One end (air inlet or air outlet) of 222 passes through, and the second end 120 of the elastic element 100 passes through the other end (air outlet or air inlet) of the air channel 222 .
  • the substrate 210 includes a body 211 and a heat conduction protrusion 212, the heat dissipation surface is formed on the body 211, and the heat conduction protrusion 212 faces away from the side opposite to the heat dissipation surface in the body 211.
  • the direction of the body 211 protrudes outward, and the side of the heat conduction protrusion 212 facing away from the body 211 is the first heat conduction surface 201 . That is, the heat dissipation surface forms a side of the body 211 away from the heat conduction protrusion 212 , and the first heat conduction surface 201 is formed on a side of the heat conduction protrusion 212 away from the body 211 .
  • the first heat conduction surface 201 is coated with a heat conduction layer to improve the heat conduction efficiency of the first heat conduction surface 201 .
  • the size of the first heat conduction surface 201 in the substrate 210 is the same as that of the second heat conduction surface 31 of the heat source 30, and when the bracket 300 is installed on the circuit board 20, the first heat conduction surface 201 and the second heat conduction surface 31 coincident.
  • the body 211 is a vapor chamber structure. Specifically, a vacuum evaporation chamber 2112 is formed in the body 211.
  • the vacuum evaporation chamber 2112 includes an evaporation surface 2112a close to the heat conduction protrusion 212 and a condensation surface 2112b close to the heat dissipation structure 220.
  • the vacuum evaporation chamber 2112 also contains a heat transfer solution, for example, the heat conduction solution is a heat conduction working medium or water.
  • the heat conduction solution is a heat conduction working medium or water.
  • the condensation surface 2112b absorbs the heat of the gaseous substance, and conducts the heat to the heat dissipation structure 220 through the heat dissipation surface.
  • the temperature of the gaseous substance decreases, and condenses into a liquid state at the condensation surface 2112b, and then returns to the vicinity of the evaporation surface 2112a through the capillary structure, thereby completing the rapid transfer of heat from the small-area first heat-conducting surface 201 to the large-area heat dissipation surface diffusion.
  • the body 211 may also be a solid structure.
  • the position of the core stress point (Core Stress Point, CSP) of the heat sink 200 will be further defined below, so as to improve the first heat conduction surface 201 of the heat sink 200 and the second heat source 30.
  • CSP Core Stress Point
  • the bonding effect of the heat conducting surface 31 .
  • CSP is used to characterize the position of the core stress point in this application
  • Fig. 7(b) CSP is used to represent the position of the core stress point in other technical solutions.
  • the core stress point CSP refers to the stress area on the heat sink 200 for receiving the elastic force of the elastic element 100 when the heat sink 10 is installed on the circuit board 20, that is, the elastic element 100 exerts a force on the heat sink 200.
  • the location of the elastic force that is, the location where the radiator 200 contacts the peaks and valleys of the elastic element 100 .
  • the core stress point CSP of the heat sink 200 it will be described below by taking that each heat sink 200 in the heat sink 10 corresponds to two elastic elements 100 as an example.
  • 7(a) is a schematic diagram of a heat sink 200 in the present application, which shows the orthographic projection of the elastic element 100, the heat sink 200 and the core stress point CSP on the plane where the second heat conducting surface 31 is located (one of the following The orthographic projection of a component in the plane where the second heat conducting surface 31 is located is simply referred to as the orthographic projection of a certain component).
  • the heat sink 10 when the heat sink 10 is installed on the circuit board 20, the second heat conduction surface 31 of the heat source 30 coincides with the first heat conduction surface 201 on the heat conduction protrusion 212 of the heat sink 200, therefore, the heat sink 200
  • the orthographic projection of the first heat conducting surface 201 coincides with the second heat conducting surface 31 of the heat source 30 .
  • the orthographic projection of one elastic element 100 is distributed along the l l in the figure, and the other elastic element 100 The orthographic projection of is distributed along l2 in the figure.
  • the orthographic projections of the two elastic elements 100 are distributed on the second heat conduction surface 31 of the heat source 30 , wherein the second heat conduction surface 31 includes the inside of the second heat conduction surface 31 and the edge of the second heat conduction surface 31 . That is, the two elastic elements 100 are distributed directly above the heat conducting surface 31 of the heat source 30 .
  • the orthographic projection of the contact area between the peak-valley structure of the two elastic elements 100 and the mounting surface of the heat sink 200 is distributed on the second heat conducting surface 31 of the heat source 30 .
  • the contact area between the peak-valley structure of the two elastic elements 100 and the installation surface of the heat sink 200 is located within the orthographic projection area of the second heat conducting surface 31 of the heat source 30 on the installation surface of the heat sink 200 .
  • the orthographic projections of the two elastic elements 100 are distributed on the edge of the heat conducting surface 31 of the heat source 30 . That is, the elastic elements 100 are distributed directly above the edge of the heat conducting surface 31 of the heat source 30 .
  • the orthographic projection of the contact area between the peak-valley structure of the two elastic elements 100 and the mounting surface of the heat sink 200 is distributed on the edge of the second heat conducting surface 31 of the heat source 30 .
  • the contact area between the two elastic elements 100 and the installation surface of the heat sink 200 is located at the edge of the orthographic projection area of the second heat conduction surface 31 of the heat source 30 on the installation surface of the heat sink 200 .
  • the orthographic projection of the core stress point CSP of the heat sink 200 is located on the second heat conduction surface 31 of the heat source 30, wherein the second heat conduction surface 31 includes the inside of the second heat conduction surface 31 and the surface of the second heat conduction surface 31. edge.
  • the contact area between the two elastic elements 100 and the installation surface of the heat sink 200 is located at the edge of the orthographic projection area of the second heat conduction surface 31 of the heat source 30 on the installation surface of the heat sink 200 .
  • each radiator 200 in the heat dissipation device 10 corresponds to three or more elastic elements 100 .
  • the distribution positions of the two elastic elements 100 relative to the heat sink 200 and the heat source 30 are the same as in the above-mentioned embodiment, and the other elastic elements 100 are distributed between the two elastic elements 100, and the installation of the other elastic elements 100 and the heat sink 200
  • the orthographic projection of the surface contact area is distributed in the second heat conducting surface 31 of the heat source 30 . That is, other elastic elements 100 are distributed at the middle position directly above the heat source 30 .
  • each radiator 200 in the heat dissipation device 10 corresponds to three or more elastic elements 100 .
  • the distribution positions of the two elastic elements 100 relative to the heat sink 200 and the heat source 30 are the same as those in the above-mentioned embodiment, and the other elastic elements 100 are distributed in areas other than the two elastic elements 100, and the other elastic elements 100 and the radiator 200
  • the orthographic projection of the contact area of the installation surface is distributed outside the second heat conduction surface 31 of the heat source 30 . That is, other elastic elements 100 are distributed in the surrounding area right above the heat source 30 .
  • the orthographic projection of the core stress point CSP of the heat sink 200 is located at the edge of the second heat conducting surface 31 of the heat source 30 .
  • the edge position of the second heat conduction surface 31 refers to the area within the range of ⁇ 2 mm from the edge of the second heat conduction surface 31 .
  • the pressing portion on the elastic element 100 for pressing the heat sink 200 is defined.
  • the pressing portion is a portion where the elastic element 100 is used to press against the heat sink 200 .
  • the orthographic projection of the core stress point CSP is located at the edge of the orthographic projection of the first heat conduction surface 201, the elastic element The orthographic projection of the pressing portion 100 is located at the edge of the second heat conducting surface 31 of the heat source 30 .
  • the elastic element The orthographic projection of the pressing portion 100 is located in the second heat conducting surface 31 of the heat source 30 .
  • the orthographic projection of the core stress point CSP is set on the second heat conduction surface 31 of the heat source 30, so that the elastic element 100 exerts elasticity on the heat sink 200
  • the force can be stably transmitted to the heat source 30 through the main body 211 and the heat conduction protrusion 212 of the substrate 210 , thereby realizing the close contact between the first heat conduction surface 201 of the radiator 200 and the second heat conduction surface 31 of the heat source 30 .
  • the orthographic projection of the core stress point CSP' of the heat sink 200 is distributed around the second heat conduction surface 31 of the heat source 30 (the first heat conduction surface 201 of the heat sink 200), Therefore, the elastic structure in the connecting part (for example, the post-mounted spring 120 ′) elastically presses the heat sink 200 around the heat source 30 , which may easily cause a large difference in the elastic force of the post-mounted spring 120 ′, thereby causing the contact surface between the heat sink 200 and the heat source 30 to The problem of not being able to conduct heat effectively.
  • the elastic structure in the connecting part for example, the post-mounted spring 120 ′
  • this embodiment optimizes the force situation of the substrate 210 in the heat sink 200 on the one hand, and avoids that the orthographic projection of the core force point CSP is distributed on the second heat conduction surface 31 (heat conduction convex) away from the heat source 30. 212 ), thereby avoiding the seesaw force mode in which the body 211 takes the edge of the heat conduction protrusion 212 as the fulcrum and the core force point CSP as the force end.
  • the seesaw-like force mode will affect the structural stability of the substrate 210, and even lead to delamination of the heat-conducting layer when the heat-conducting layer of the first heat-conducting surface 201 is thin, affecting the heat dissipation effect of the heat sink 200 and service life.
  • the substrate 210 is a vacuum chamber vapor chamber structure
  • the CSP distribution mode of the core force points in this embodiment can effectively reduce the rigidity requirements of the traditional floating connection for the vacuum chamber chamber structure, and contribute to the vacuum chamber chamber structure Thinning, to achieve overall thinning of the radiator 200.
  • the orthographic projection of the core stress point CSP is set on the second heat conduction surface 31 of the heat source 30, so that the heat sink 200 directly exerts force on the second heat conduction surface 31 of the heat source 30, and the heat sink 200 and the heat source 30 are closely bonded.
  • the tightness of the joint can further improve the heat dissipation effect of the heat sink 200 on the heat source 30 .
  • the rigidity requirement for the vapor chamber structure of the vacuum chamber is reduced.
  • the orthographic projection of the core force point CSP of the radiator 200 falls on the projection of the support column 2111 of the radiator 200, that is, the core force point CSP of the radiator 200 is located directly above the support column 2111 of the radiator 200, That is to say, the pressing portion of the elastic element 100 is located directly above the support column 2111 .
  • the heat sink 10 uses at least two elastic elements 100 to elastically mount the heat sink 200 on the circuit board 20, so that the first heat conducting surface 201 of the heat sink 200 elastically resists
  • the pressing portion of the two elastic elements 100 (the core stress point CSP of the heat sink 200) of the at least two elastic elements 100 is located on one side of the second heat conduction surface 31 of the heat source 30. Right above the edge.
  • the floating connection between a heat sink 200 and a heat source 30 in the heat sink 10 requires at least two elastic elements 100, and the areas where the two elastic elements 100 are respectively in contact with the mounting surface of the heat sink 200 are located on the sides of the heat source 30. Directly above a pair of opposite edges of the second heat conducting surface 31 .
  • the heat sink 200 includes at least three points that are not on the same straight line for the core force point CSP of the two elastic elements 100, that is, the joint portion of the two elastic elements 100 is not covered. Three points on the same line.
  • one elastic element 100 includes two pressing portions sequentially distributed along the length direction of the elastic element 100
  • another elastic element 100 includes one pressing portion, and the three pressing portions are not on the same straight line.
  • Fig. 7(c) shows a side view of a heat sink 10 in the present application, wherein the bracket 300 is not shown;
  • Fig. 7(d) shows a side view of a heat sink 10 in other technical solutions, wherein Bracket 300 is not shown. Comparing Fig. 7(c) and Fig.
  • the thickness of the elastic element 100 ranges from 1.5mm to 10mm, for example, the minimum dimension of the elastic element 100 in the thickness direction can reach 2mm; and in other technical solutions, in order to meet the limit function of the limit pin 110', and the column spring
  • the requirement of elastic force of 120' leads to larger outer diameters of the limit pin 110' and column-mounted spring 120'.
  • the outer diameter needs to be larger than 8-12mm.
  • the radiator 200 and the heat source 30 are floatingly connected by the elastic element 100, which reduces the occupation of the air duct 222, improves the gas flow in the air duct 222, reduces the overall wind resistance, and improves the air flow in the air duct 222.
  • the amount of ventilation improves the heat dissipation effect of the heat dissipation device 10 .
  • This embodiment is especially suitable for a cooling system where multiple independent floating radiators 200 coexist, and the effect of reducing wind resistance is more obvious. Under the same volume, the cooling device 10 in the present application can increase the ventilation rate by more than 14%.
  • FIG. 8(a) is a perspective view of a bracket 300 in the present application.
  • FIG. 8( b ) is an enlarged view of the mounting end 400 in FIG. 8( a ).
  • FIG. 10( a ) is a schematic diagram of a connection method between a bracket 300 and a circuit board 20 in the present application.
  • FIG. 10( b ) is a cross-sectional view of a connection method between the bracket 300 and the circuit board 20 in the present application.
  • the specific structure of the bracket 300 in the heat dissipation device 10 will be described in detail below with reference to FIGS. 8( a ) to 10 ( b ).
  • the bracket 300 includes a supporting portion 310 and a limiting portion 320 .
  • the supporting portion 310 is a frame structure, and the hollow portion 311 on the frame structure allows the heat conduction protrusion 212 in the heat sink 200 to pass through.
  • the limiting portion 320 is disposed on the surface of the supporting portion 310 , and together with the supporting portion 310 forms an accommodating space for accommodating the radiator 200 .
  • the limiting portion 320 surrounds the outer edge of the body 211 to align the first heat conduction surface 201 of the heat sink 200 with the second heat conduction surface 31 of the heat source 30 .
  • the thickness direction of the heat sink 200 refers to the direction from the substrate 210 to the heat dissipation structure 220 .
  • the height of the limiting part 320 should ensure that the radiator 200 will not fall out of the bracket 300 when it floats up to the highest position under normal working conditions, and at the same time, it should affect the ventilation of the radiator 200 as little as possible.
  • the bracket 300 is provided with a mounting end 400 for connecting the elastic element 100 .
  • the mounting end 400 is formed at the joint between the supporting portion 310 and the limiting portion 320, and the mounting end 400 is arranged in pairs on both sides of the accommodating space, and the mounting end 400 is provided with an end for clamping the elastic element 100 The mounting holes 410.
  • mounting ends 400 are symmetrically distributed relative to the centerline of heat source 30 .
  • the mounting hole 410 is a through hole. As shown in FIG.
  • the notch 412 wherein the opening of the arc-shaped slot 411 covers the opening of the U-shaped notch 412 downwards and communicates with the U-shaped notch 412 .
  • the first opening 411 of the installation hole 410 is located on a side facing the accommodating space where the supporting portion 310 connects with the limiting portion 320 .
  • the U-shaped notch 412 of the mounting hole 410 is located at the side of the connection between the supporting portion 310 and the limiting portion 320 facing away from the accommodating space.
  • the first end 110 of the elastic element 100 is a hook 110 a adapted to the installation hole 410 .
  • the dotted line 1 b is the boundary line between the hook 110 a and the waveform 130
  • the part below the boundary line 1 b is called the hook 110 a
  • the part below the boundary line 1 b is called the waveform 130 .
  • the hook 110a includes a connecting portion 111a and a hooking portion 112a, wherein one end of the connecting portion 111a is connected to the end of the waveform 130, and the other end of the connecting portion 111a extends toward the mounting hole 410 and is connected to the hooking portion 112a.
  • the hooking portion 112a is located in the installation hole 410 and extends along the length direction of the arc-shaped slot 411 . As can be seen from FIG. 4 , the hooking portion 112 a can abut against the groove surface of the arc-shaped through groove 411 to realize the fixing of the elastic element 100 and the mounting end 400 .
  • the installation difficulty is low, the operation is convenient, and the structure of the heat sink 10 is stable; And escape from the mounting hole 410, which is convenient for maintenance and replacement of the elastic element 100, the radiator 200 and other components.
  • the limiting part 320 is arranged around the outer edge of the body 211, and the limiting part 320 cooperates with the supporting part 310 to limit the relative movement between the radiator 200 and the supporting part 310 on a plane perpendicular to the thickness direction of the radiator 200, That is, when the radiator 200 is placed on the bracket 300, the body 211 of the radiator 200 is in close contact with the supporting portion 310 and the limiting portion 320. part 320 , and pass through the installation hole 410 to abut against the installation end 400 to complete the installation of the heat sink 10 . It can be seen from FIG. The two ends of the elastic element 100 pass through the avoidance gap 230 first, and then pass through the installation hole 410. When the bracket 300 is installed on the circuit board 20, they abut against the installation end 400 to limit the two ends of the elastic element 100 and the bracket 300. relative movement between them.
  • the size of the escape notch 230 is larger than the wire diameter of the elastic material in the elastic element 100 .
  • the body 211 with the escape notch 230 is provided with a fin 221 , and the fin 221 divides the escape notch 230 into two parts, so that the avoidance notch 230 is located on the side of the fin 221 away from the elastic element 100 The region cannot be used normally, that is, the fins 221 here cause the escape notch 230 to effectively reduce the installation difficulty of the elastic element 100 .
  • the avoidance notch 240 and the avoidance notch 230 jointly form an installation space (not shown) for installing both ends of the elastic element 100 .
  • both ends of the elastic element 100 are directly fixed on the installation end 400 , for example, both ends of the elastic element 100 are glued or welded to the installation end 400 .
  • the elastic element 100 mounted on the bracket 300 can be prevented from moving or rotating, and then the stability of the elastic element 100 to the heat sink 200 can be maintained, and the heat dissipation device can be improved. 10 stability.
  • Fig. 9 (a) is a top view of a radiator 200 in the present application
  • Fig. 9 (b) is a radiator 200 in other technical solutions top view.
  • the radiator 200 is only provided with a smaller-sized escape notch 230 and an avoidance notch 240, while in other technical solutions, there is a notch area Dg for accommodating the column spring 120' and the limit pin 110' , Comparing FIG. 9( a ) with FIG. 9( b ), it is not difficult to find that the present application improves the effective heat dissipation area of the fins 221 .
  • the present application increases the area of the fins 221 by more than 5%.
  • the avoidance notch 230 and the avoidance notch 240 provided on the radiator 200 are only used for the two ends of the elastic element 100 to pass through, there is no need to limit the specific position of the elastic element 100, so the processing of the avoidance notch 230 and the avoidance notch 240 The accuracy requirement is not high, which reduces the processing difficulty of the radiator 200 .
  • the bracket 300 further includes a raised portion 330 , and the raised portion 330 protrudes from the surface of the limiting portion 320 away from the supporting portion 310 toward the direction away from the supporting portion 310 .
  • the raised portion 330 is used to limit the radiator 200 from detaching from the bracket 300 .
  • the raised portion 330 is used to ensure that the heat sink 200 does not fall out under abnormal conditions, so as to improve the safety of the heat sink 10 .
  • the raised portion 330 is formed in a local area of the limiting portion 320 .
  • the weight of the bracket 300 is reduced, so as to realize the lightweight design of the heat sink 10, reduce the cost of raw materials, and improve economic benefits.
  • the mounting hole 410 ′′ in the mounting end 400 ′′ can be adapted to two elastic elements 100 at the same time, wherein the two elastic elements 100 are used to respectively fix the two heat sinks 200 on both sides of the mounting end 400 ′′.
  • the bracket 300 reduces the number of mounting ends 400 and mounting holes 410 , simplifies the processing steps, and optimizes the overall structure.
  • the raised portion 330 protrudes from the limiting portion 320 formed with the mounting end 400 in a direction away from the mounting end 400 . That is to say, the raised portion 330 , and the limiting portion 320 and the supporting portion 310 sequentially connected to the raised portion 330 together form the mounting end 400 . That is, the installation end 400 is formed between the raised portion 330 , and the limiting portion 320 adjacent to the raised portion 330 and the supporting portion 310 .
  • the mounting end 400 increases the physical size around the mounting hole 410 , improves the mechanical strength of the mounting end 400 , and optimizes the overall structure of the bracket 300 .
  • the surface facing the accommodating space on the limiting portion 320 is set as a first guide surface 340, and the first guide surface 340 is used to guide both ends of the elastic element 100 into the installation
  • the direction of the hole 410, and the first guide surface 340 is also used to guide the direction of the heat sink 200 entering the accommodation space. Therefore, the above-mentioned first guide surface 340 can reduce the installation difficulty of the heat sink 10 .
  • the first end 110 and the second end 120 of the elastic element 100 are further provided with a second guide surface 101 adapted to the first guide surface 340 on the bracket 300 .
  • the second guide surface 101 of the first end 110 is first abutted against the first guide surface 340 on the bracket 300, and the driving The first end 110, so that the second guide surface 101 slides along the first guide surface 340 until the first end 110 slides into the installation hole 410 and abuts against the installation end 400, completing the installation of the first end 110 and the installation end 400 .
  • the first end 110 slides into the installation hole 410, it is accommodated in the installation hole 410 and does not abut against the installation end 400.
  • the first end 110 abuts against the installation end 400 .
  • the surface of the raised portion 330 facing the accommodating space is set as the first guide surface 340 .
  • the heat source 30 is a square structure.
  • the fastening screws 50 and the fastening holes (not shown) on the bracket 300 and the connecting holes (not shown) on the circuit board 20 to install the bracket 300 on the circuit board 20 , and the air duct 222 of the heat sink 200 extends along the d c direction.
  • the relative positions of the bracket 300 and the heat source 30 will be described in detail below by taking the lower part of the heat source 30 in FIG. 10( a ) and the corresponding part of the bracket 300 as an example.
  • the bracket 300 is arranged around the heat source 30, and the bracket 300 is provided with a first installation end 400a, a second installation end 400b for installing an elastic element 100, and a third installation end 400c for installing another elastic element 100 and the fourth installation end 400d, wherein, the first installation end 400a and the second installation end 400b are respectively arranged on both sides of the heat source 30 , and the third installation end 400c and the fourth installation end 400d are respectively arranged on both sides of the heat source 30 .
  • the first installation end 400 a , the heat source 30 and the heat sink 200 , and the second installation end 400 b form a three-point bending support model for the elastic element 100 .
  • the heat source 30 and the heat sink 200 limit the downward movement of the middle position of the elastic element 100
  • the first installation end 400 a and the second installation end 400 b are used to limit the upward movement of both ends of the elastic element 100 .
  • the bracket 300 drives the two ends of the elastic element 100 to move downward, so that the waveform 130 of the elastic element 100 is deformed, and the downward elastic force is generated through the deformation of the waveform 130, Furthermore, the elastic element 100 elastically combines the heat sink 200 with the circuit board 20 through elastic force, so that the first heat conduction surface 201 of the heat sink 200 elastically abuts against the second heat conduction surface 31 of the heat source 30 .
  • the mounting part 400 for mounting the end of the elastic element 100 can be adaptively adjusted according to the air duct 222 in the radiator 200 .
  • the installation end 400a and the installation end 400b that are used to install an elastic element 100 are distributed on the extension line of an air duct 222 (222 among the figure is used to illustrate that in radiator 200 is used for wearing elastic The distribution position of the air duct 222 of the element 100).
  • the size of the installation hole 410 in the installation end 400 can also be increased to fit the air duct 222 in the radiator 200 .
  • the bracket 300 is disposed between the heat sink 200 and the circuit board 20 , and is detachably mounted on the circuit board 20 by fastening screws 50 .
  • a reinforcement plate 40 is also provided below the circuit board 20. After the fastening screw 50 passes through the through hole on the circuit board 20, the lower end of the fastening screw 50 is fastened to the fastening part on the reinforcement plate 40. 41.
  • the circuit board 20 is clamped by both sides of the reinforcing plate 40 and the bracket 300 to avoid deformation of the circuit board 20 due to the height of the heat source 30 .
  • the bracket 300 has multiple sets of mounting ends 400 for mounting two or more heat sinks 200 . Furthermore, compared with the scene where the heat sink 200 is directly installed on the circuit board 20 in other technical solutions, each set of heat dissipation devices 10 requires four fastening screws 50, which occupies a larger area of the circuit board 20 and improves the heat dissipation device. 10 is difficult to place on the circuit board 20. As shown in Fig. 11(a) and Fig.
  • the heat dissipation device 10 including radiator 200a, radiator 200b and radiator 200c in this application has 9 fastening holes 350 correspondingly, that is, includes 3 radiators (200a, 200b and 200c in Fig. 11(a)) the heat sink 10 can be stably fastened on the circuit board 20 through nine fastening screws 50, and the radiator 200 and the fastening screws 50 do not need to be in accordance with 4: 1 ratio configuration, so the installation area of the circuit board 20 can be saved, and the layout of the functional components on the circuit board 20 can be optimized.
  • FIG. 12 is a schematic diagram of various dimensions of an elastic element 100 in the present application.
  • 13(a) to 13(d) are perspective views of several elastic elements 100 in the present application. The specific features of the elastic element 100 in the heat dissipation device 10 will be described in detail below with reference to FIG. 12 to FIG. 13( d ).
  • heat sinks 200 For different types of heat sinks 200, due to structural differences, such as differences in the heat conduction layer on the first heat conduction surface 201 and differences in the forming accuracy of the first heat conduction surface 201, different types of heat sinks 200 require different pressing forces to The heat sink 200 is floatingly and firmly combined with the heat source 30 .
  • the structures and relative positions of the bracket 300, the circuit board 20, and the heat source 30 are determined, by adjusting the material and size of the strip-shaped elastic material and the waveform shape of the elastic element 100, the pressing force is adapted to different types of heat dissipation.
  • the elastic element 100 of the device 200 due to structural differences, such as differences in the heat conduction layer on the first heat conduction surface 201 and differences in the forming accuracy of the first heat conduction surface 201.
  • the waveform form includes the number of waveform units in the waveform 130, the degree of bending of the waveform units, the position and shape of the pressing portion on the waveform 130, the height of the elastic element 100 (as shown in h value in Figure 12), the elastic element 100 The height difference between the two ends of the joint and the pressing part (as shown in the ⁇ h value in Figure 12).
  • the number of corrugated units is positively correlated with the length of the strip-shaped elastic material, and it is easy to understand that the length of the strip-shaped elastic material is positively correlated with the size of the second heat-conducting surface 31 on the heat source 30 .
  • the height difference ⁇ h of the elastic element 100 is rationally arranged.
  • the height dimension of the elastic element 100 so that the elastic element 100 in the heat dissipation device 10 provides the pre-tightening force to the bracket 300 to the heat sink 200, and makes the elastic element 100 in the heat dissipation device 10 provide the heat source to the heat sink 200 30 compression pressure.
  • the number of corrugated units is positively related to the force uniformity of the heat sink 200, that is, the more the number of corrugated units, the more uniform the pressing force applied by the elastic element 100 to the heat sink 200 .
  • the waveforms are distributed symmetrically with respect to the center line of the elastic element 100 . That is, the difference between the length S1 of the elastic element in FIG. 12 and twice the distance S2 between one end of the elastic element and the midpoint PC in the length direction of the elastic element is smaller than the preset value.
  • the preset value may be 2mm.
  • the waveform 130 in the elastic element 100 is several waveform units, wherein the shape of the waveform units is a sine wave or a sine-like wave.
  • the elastic element 100 elastically combines the heat sink 200 and the circuit board 20 through the troughs or crests of the waveform 130 . That is, the elastic element 100 uses the trough or crest of the wave 130 as a force application portion, and then the heat sink 200 is elastically combined with the circuit board 20 by the elastic force at the trough or the crest when the wave 130 is deformed.
  • the shape of the waveform unit may also be a cosine wave or a cosine-like wave.
  • the crest point or trough point of the elastic element 100 is crimped to the heat sink 200, that is The pressing portion of the elastic element 100 is point-shaped.
  • the number of waveform units in the waveform 130 is an even number, for example, the waveform 130 in Figure 13(a) includes two side waveforms 131, and for example, the waveform 130 in Figure 13(c) includes four side waveforms 131, and the even number The side waves 131 are symmetrically distributed on both sides of the center line lc of the elastic element 100 .
  • the waveform 130 in Figure 13(b) includes two side waveforms 131 and an intermediate waveform 132, wherein the intermediate waveform 132 is distributed in the middle of the elastic element 100 in the longitudinal direction , the side waveforms 131 are symmetrically distributed on both sides of the centerline lc of the elastic element 100.
  • the waveform 130 in the elastic element 100 includes at least two waveform units, and a pressing portion 133 between the two valleys, wherein the waveform unit is sinusoidal wave or quasi-sine wave, and the pressing portion 133 is a linear structure.
  • the elastic element 100 uses the pressing portion 133 as a force application portion, and when the wave units on both sides of the pressing portion 133 are deformed, the elastic force at the trough or crest drives the pressing portion 133 to elastically combine the heat sink 200 to the circuit board 20 .
  • the waveform unit may also be a cosine wave or a cosine-like wave.
  • the deflection of the waveform 130 near the midpoint is greater than the deflection of the waveform 130 near both ends of the elastic element 100 .
  • the present application also provides an elastic element 100, which is any elastic element 100 described above.
  • the elastic element 100 is formed by bending a strip of elastic material into a wave shape, and the two ends of the elastic element 100 are used to be respectively installed on two corresponding installation ends 400 on a component.
  • the elastic element 100 utilizes the elastic force generated by the deformation of the wave 130 to elastically couple another component to one component.
  • the shape of the above-mentioned elastic element 100 is similar to the shape presented during the moving process of the snake, and has the advantages of large design tolerance, low installation difficulty, and stable mechanical properties.
  • the present application also provides a method for assembling the heat sink 10 , which is applicable to the assembly of any heat sink 10 described above. According to FIG. 4 to FIG. 15, it can be known that the assembly method of the heat sink 10 in the present application specifically includes the following steps:
  • Step S1501 placing the heat sink 200 on the bracket 300 , wherein the first heat conducting surface 201 of the heat sink 200 faces the bracket 300 .
  • Step S1502 Place the elastic element 100 on the side of the radiator 200 having the mounting surface 202 .
  • the mounting surface 202 is the bottom surface of the air duct 222, and the elastic element 100 is passed through one of the air ducts 222 in the radiator 200, that is, the elastic element 100 is located in the radiator 200 above the substrate 210.
  • the mounting surface 202 is the upper surface of the radiator 200, and the elastic element 100 is arranged above the radiator 200.
  • Step S1503 Install the first end 110 of the elastic element 100 on the first installation end 400 a of the bracket 300 .
  • Step S1504 Apply an external force to the elastic element 100 to change the shape of the peak-valley structure (ie, the waveform 130 ) in the elastic element 100 , and install the second end 120 of the elastic element 100 on the second installation end 400 b of the bracket 300 .
  • the peak-valley structure ie, the waveform 130
  • the deformation of the wave 130 can be that the dimension of the wave 130 in the length direction is shortened, and at the same time, the second end 120 is installed with the installation of the other installation end 400.
  • the method is the same as the steps of installing an installation end 400 on the first end 110 , and will not be repeated here.
  • the radiator 200 is inclined relative to the bracket 300 .
  • the first end 110 of the elastic element 100 is used as a fulcrum to rotate the elastic element 100 and the radiator 200 to adjust the position of the radiator 200.
  • the arrangement direction is the same as the placement direction of the bracket 300 .
  • the placement direction of the heat sink 200 is the same as that of the bracket 300 , the second end 120 of the elastic element 100 begins to enter the installation hole 410 of the second installation end 400 b.
  • the present application also provides a circuit module 1, including a circuit board 20, electronic components and any heat sink 10 mentioned above; wherein, the circuit board 20 is used as a circuit board, and the electronic components are used as a heat source 30; Two heat conduction surfaces 31, the radiator 200 is provided with a first heat conduction surface 201 adapted to the second heat conduction surface 31, the second heat conduction surface 31 of the electronic component is opposite to the first heat conduction surface 201 of the radiator 200; the elastic element 100 The two ends of the bracket 300 are installed on the corresponding two installation ends 400 respectively, and the bracket 300 is installed on the circuit board 20 .
  • the heat sink 200 is elastically combined and installed on the circuit board 20 by using the elastic element 100 , so that the first heat conduction surface 201 of the heat sink 200 elastically abuts against the second heat conduction surface 31 of the electronic component.
  • the elastic element 100 is installed on the bracket 300 through both ends, and the heat sink 200 is elastically combined and mounted on the circuit board 20 through the elastic force generated by the deformation of the wave 130, so that the first heat conducting surface 201 of the heat sink 200 It is closely attached to the second heat conduction surface 31 of the electronic component.
  • the heat sink 200 in the above circuit module 1 has a good cooling effect on the electronic components, and the stress state of the heat sink 200, electronic components and circuit board 20 is good, which is especially suitable for electronic equipment with a compact structure.
  • the electronic components are chips with high heat generation and slow heat dissipation.
  • a reinforcing plate 40 is provided under the circuit board 20. After the fastening screw 50 passes through the through hole on the circuit board 20, the lower end of the fastening screw 50 is fastened to the reinforcing plate 40. .
  • the circuit board 20 is clamped by both sides of the reinforcing plate 40 and the bracket 300 to avoid deformation of the circuit board 20 due to the height of the heat source 30.
  • the connection reliability of the functional components of the circuit board 20 is ensured;
  • the heat conduction surface 31 is in close contact with the first heat conduction surface 201 of the radiator 200 .
  • the present application also provides an electronic device, including any one of the circuit modules 1 described above, which will not be repeated here.
  • the internal circuit board 20 , electronic components and heat sink 200 are in a good stress state, the overall structure is stable, and the heat dissipation effect is good.
  • the present application also provides a method for assembling the circuit module 1, which is suitable for assembling any of the above-mentioned circuit modules 1. According to FIG. 4 to FIG. 14 and FIG. 16, it can be seen that the assembly method of the circuit module 1 in the present application specifically includes the following steps:
  • Step S1601 place the heat dissipation device 10 on the circuit board 20 , wherein the first heat conduction surface 201 of the heat sink 200 in the heat dissipation device 10 faces the second heat conduction surface 31 of the heat source 30 on the circuit board 20 .
  • Step S1602 Fix the bracket 300 in the heat sink 10 to the circuit board 20 by fasteners.
  • the fastener may be a fastening screw.
  • the heat dissipation device 10 may be an assembled heat dissipation device, and its assembly method may be installed according to the steps S1501 to S1503 above.
  • the heat sink 10 may be an unassembled elastic element 100, a heat sink 200, and a bracket 300, and the installation step of the heat sink 10 is also included before step S1601, wherein the installation step of the heat sink 10 It may be the same as step S1501 to step S1503 of installing the heat sink 10 in FIG. 15 , and details are not repeated here.
  • the first end 110 of the elastic element 100 is installed on the first installation end 400a of the bracket 300, and the waveform 130 is deformed by applying an external force, and then the two ends of the elastic element 100 are adjusted ( 110 and 120), in order to install the second end 120 of the elastic element 100 on the second installation end 400b of the bracket 300, the installation steps are simple, and the operation method is simple.
  • installing the elastic element 100 and the heat sink 200 on the bracket 300 first, and then installing the bracket 300 on the circuit board 20 can effectively prevent the electronic components on the circuit board 20 from being scratched during the installation process of the elastic element 100 and the heat sink 200. devices to improve the yield rate of the circuit module 1.
  • the heat sink 10 can be an unassembled elastic element 100, heat sink 200, and bracket 300.
  • This application also provides another assembly method for the circuit module 1, which is suitable for any of the above-mentioned circuits. Assembly of module 1. According to FIG. 4 to FIG. 14 and FIG. 17, it can be seen that the assembly method of the circuit module 1 in the present application specifically includes the following steps:
  • Step S1701 Install the bracket 300 on the circuit board 20 through fasteners.
  • the fastener may be a fastening screw.
  • Step S1702 placing the heat sink 200 on the bracket 300 , wherein the first heat conducting surface 201 of the heat sink 200 faces the bracket 300 .
  • Step S1703 place the elastic element 100 on the side of the radiator 200 having the mounting surface 202 .
  • Step S1704 Install the first end 110 of the elastic element 100 on the first installation end 400 a of the bracket 300 .
  • Step S1705 Apply an external force to the elastic element 100 to change the shape of the peak-valley structure (ie, the waveform 130 ) of the elastic element 100 , and install the second end 120 of the elastic element 100 on the second installation end 400 b of the bracket 300 .
  • the peak-valley structure ie, the waveform 130
  • the cooling device 10 in the present application includes an elastic element 100 , a radiator 200 and a bracket 300 , and the mounting end 400 for installing the first end 110 and the second end 120 of the elastic element 100 is located on the bracket 300 .
  • the assembly method of the circuit module 1 of the heat sink 10 is to install the heat sink 200 on the bracket 300 through the elastic element 100 first, and then install the bracket 300 on the circuit board 20 .
  • the difference between the heat sink 10"' and the heat sink 10 in this application is that the heat sink 10"' includes the elastic element 100 and the heat sink 200, and the first part for installing the elastic element 100
  • the mounting end 400 ′′' of the end 110 and the second end 120 is directly disposed on the circuit board 20 , for example, the mounting end 400 ′′' is a mounting hole (not shown) opened in the surface of the circuit board 20 .
  • the assembly method of the circuit module 1 ′′' including the heat sink 10 ′′ is to install the heat sink 200 on the circuit board 20 directly through the elastic element 100 .
  • the present application provides a heat dissipation device 10 "', which includes a heat sink 200 and an elastic element 100.
  • the heat sink 200 is used to dissipate heat from a heat source 30 on a circuit board 20.
  • the heat source 30 is provided with a second heat conducting surface 31 to dissipate heat
  • the device 200 is provided with a first heat conduction surface (not shown) adapted to the second heat conduction surface 31.
  • the elastic element 100 elastically combines the heat sink 200 with the heat source 30 installed on the circuit board 20 , so that the first heat conduction surface of the heat sink 200 elastically abuts against the second heat conduction surface 31 of the heat sink 30 .
  • the heat sink 10"' mentioned above because the installation part (first end 110 and second end 120) of the elastic element 100 is different from the force application part (waveform 130), so that the force application part can be directly arranged directly above the heat source 30, and then Realize the crimping of the elastic element 100 to the heat sink 200 at the position directly above the heat source 30. Therefore, the above-mentioned heat sink 10"' can improve the bonding stability of the first heat conduction surface of the heat sink 200 and the heat conduction 31 of the heat source 30, and can Improve the uniformity of the stress distribution at the joint, improve the stress state of the radiator 200 at the same time, and prolong the service life of the radiator 200. In addition, there is no need to open installation holes on the radiator 10"', which increases the stress of the radiator 200. The effective heat dissipation area improves the heat dissipation effect of the heat sink 200 on the heat source 30. In addition, the number of components in the heat dissipation device 10"' is small, which facilitates the control of dimensional errors.
  • the corresponding two installation ends 400"' on the circuit board 20 specifically include the first installation end 400a"' and the second installation end 400b"' with installation holes on the circuit board 20, and the heat source 30 is installed on Electronic components on the circuit board 20.
  • the present application also provides an elastic element 100.
  • the structure of the elastic element 100 is the same as that of the elastic element 100 in the heat sink 10, but the difference in application scenarios is that the first elastic element 100 in the heat sink 10"'
  • the end 110 and the second end 120 are used to install the end 400 ′′' on the circuit board 20 , and details will not be described here.
  • the application also provides a circuit module 1"', the structure of the circuit module 1"' is basically the same as that of the circuit module 1, the difference is that the heat dissipation used in the circuit module 1"'
  • the device 10"' is any heat dissipation device provided in this application, and the circuit board 20 is provided with mounting ends 400"', and the two ends of the elastic element 100 are respectively mounted on the corresponding two mounting ends 400" on the circuit board 20 ', that is, the connection between the heat sink 10"' and the circuit board 20 is different.
  • the present application also provides an electronic device, the electronic device includes at least one set of circuit modules 1"', the structure of the electronic device is basically the same as that of the electronic device including at least one set of circuit modules 1, the difference The reason is that the circuit modules used by the two are different, and details are not described here.
  • the application also provides an assembly method of the circuit module 1"', which is applicable to the assembly of any circuit module 1"'.
  • the assembly method of the circuit module 1"' in this application specifically includes the following steps:
  • Step S1901 place the heat sink 200 on the circuit board 20 , wherein the first heat conduction surface 201 of the heat sink 200 faces the second heat conduction surface 31 of the heat source 30 on the circuit board 20 .
  • Step S1902 place the elastic element 100 on the side of the radiator 200 having the mounting surface 202 .
  • Step S1903 Install the first end 110 of the elastic element 100 on the first installation end 400a"' of the circuit board 20.
  • Step S1904 Apply an external force to the elastic element 100 to change the shape of the peak-valley structure (ie, the waveform 130 ) of the elastic element 100 , and install the second end 120 of the elastic element 100 on the second mounting end 400b"' of the circuit board 20 .
  • the peak-valley structure ie, the waveform 130
  • the heat sink 200 is elastically combined and installed on the circuit board 20 under the action of the elastic force generated by the wave deformation, so as to realize the elastic resistance between the first heat conduction surface 201 of the heat sink 200 and the second heat conduction surface 31 of the heat source 30 on the circuit board 20 catch.
  • first and second are used for descriptive purposes only, and should not be understood as indicating or implying relative importance.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.
  • intermediary Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及通信技术领域,公开了一种散热装置、电路模组、电子设备及电路模组的装配方法。散热装置中,托架用于安装于电路板,且托架中承托部上的装配开口用于容置电路板上的热源,以使得热源的导热面能够穿入承托板上的装配开口。散热器放置于托架的承托部上,且散热器的导热面能够穿入装配开口,以贴合于热源的导热面。弹性元件中的峰谷结构作为施力部安放于散热器的安装面,弹性元件的两端作为安装部越过散热器的边缘装配于托架上。至少一个弹性元件通过峰谷结构能够向散热器提供向热源紧贴的压力。本申请中的散热装置能够在保持安装部不变的情况下,合理的调整施力部以改善散热器与热源之间贴合的紧密度,进而提高散热器对热源的散热效果。

Description

散热装置、电路模组、电子设备及电路模组的装配方法
本申请要求于2021年06月22日提交中国专利局、申请号为202110693775.1、申请名称为“散热装置、电路模组、电子设备及电路模组的装配方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域。尤其涉及一种散热装置、电路模组、电子设备及电路模组的装配方法。
背景技术
伴随大数据时代的到来,数据传输速率不断提升,电子设备运算处理能力不断提高,相应的电子元器件的功耗迅速增加,使得电子元器件的热耗也越来越高。目前主要采用风冷式散热装置与液冷式散热装置对电子设备中的电子元器件进行散热。
一般来说,电子元器件安装于电路板的板面,风冷式散热装置置于电子元器件上,并通过具有弹性结构的连接件安装于电路板上,以实现散热器与电路板上电子元器件的之间的贴合。或者,采用液冷式散热装置粘贴于电子元器件(例如芯片)的表面。
但是,无论风冷式散热装置的固定还是液冷式散热装置的固定,由于电子元器件和散热器两者的外表面都存在平面度公差、制造粗糙度等,贴合不是紧密贴合,接触面存在间隙,间隙中存在大量的空气,热阻大,导热差,严重影响散热性能。因此,如何提高散热器和电子元器件的接触面的贴合紧密性成为当前亟待解决的问题。
发明内容
本申请的目的在于解决无论风冷式散热装置的固定还是液冷式散热装置的固定,由于电子元器件和散热器两者的外表面都存在平面度公差、制造粗糙度等,贴合不是紧密贴合,接触面存在间隙,间隙中存在大量的空气,热阻大,导热差,严重影响散热性能的技术问题。基于此本申请提供了一种散热装置、电路模组、电子设备及电路模组的装配方法。本申请中的散热装置包括至少一个弹性元件、散热器和托架。其中,每个弹性元件为新型蛇形弹簧,也即每个弹性元件为条状并具有峰谷结构的部件。在散热装置中,托架用于安装于电路板,且托架中承托部上的装配开口用于容置电路板上的热源,以使得热源的导热面能够穿入承托板上的装配开口。散热器放置于托架的承托部上,且散热器的导热面能够穿入装配开口,以贴合于热源的导热面。弹性元件中的峰谷结构作为施力部安放于散热器的安装面,弹性元件的两端作为安装部越过散热器的边缘装配于托架上。至少一个弹性元件通过峰谷结构能够向散热器提供向热源紧贴的压力。本申请中的散热装置通过弹性元件即能够实现散热器与托架之间的浮动连接。由于,弹性元件具有设计容差较大,安装难度低,力学性能稳定等优点,以及弹性元件用于安装至托架的安装部与弹性元件用于向散热器施加弹性力的施力部为弹性元件中的不同部位。因此,本申请中的散热装置能够在保持安装部不变的情况下,合理的调整施力部以改善散热器与热源之间贴合的紧密度,进而提高散热器对热源的散热效果。
本申请的第一方面提供了一种散热装置,该散热装置应用于具有热源的电路板,以对热源进行散热。具体地,散热装置包括:托架,托架包括开设有装配开口的承托部,承托部用于固定于电路板;散热器,散热器包括相对的第一导热面和安装面,散热器放置于承托部上,其中,第一导热面朝向承托部,并用于 穿入装配开口以贴合于热源的第二导热面;至少一个弹性元件,每个弹性元件为条状具有峰谷结构的弹性件,每个弹性元件的峰谷结构设置于散热器的安装面,每个弹性元件的两端分别固定于托架;至少一个弹性元件用于向散热器提供向热源紧贴的压力。
即在本申请的实施例中,散热装置包括至少一个弹性元件、散热器和托架。其中,每个弹性元件为新型蛇形弹簧,也即每个弹性元件为条状并具有峰谷结构的部件。托架中的承托部开设有装配开口。散热器包括朝向相反的导热面和安装面,其中导热面用于与热源的导热面贴合,以使得散热器对热源进行散热。在散热装置中,托架用于安装于电路板,且托架中承托部上的装配开口用于容置电路板上的热源,以使得热源的导热面能够穿入承托板上的装配开口。散热器放置于托架的承托部上,且散热器的导热面能够穿入装配开口,以贴合于热源的导热面。弹性元件中的峰谷结构作为施力部安放于散热器的安装面,弹性元件的两端作为安装部越过散热器的边缘装配于托架上。至少一个弹性元件通过峰谷结构能够向散热器提供向热源紧贴的压力。
在上述第一方面一种可能的实现中,承托部包括框架结构,框架结构上的镂空部即为装配开口。
在上述第一方面另一种可能的实现中,承托部包括两个或者两个以上的承托块,承托块之间的间隔为承托部上的装配开口。
上述散热装置,通过弹性元件即能够实现散热器与托架之间的浮动连接。弹性元件具有设计容差较大,安装难度低,力学性能稳定等优点。同时,弹性元件用于安装至托架的安装部与弹性元件用于向散热器施加弹性力的施力部为弹性元件中的不同部位。因此,本申请中的散热装置能够在保持安装部不变的情况下,合理的调整施力部以改善散热器与热源之间贴合的紧密度,进而提高散热器对热源的散热效果。
当将散热装置安装于带有热源的电路板上时,托架固定于电路板上,且托架中的承托部环设于热源的周围。托架具有以下作用:首先,托架的承托部环设热源四周,以加强热源附近的电路板的机械强度,避免热源热耗较高,导致电路板发生翘曲变形,增大电路板与热源的连接位置处的应力,降低电路板与热源之间的连接稳定性。其次,散热器两侧的托架能够用于固定弹性元件的两端,使得弹性元件的弹性回复力直接作用于托架上,而非直接作用于电路板上,减少了电路板上承载的载荷,提高了电路板结构的稳定性。最后,当电路板上设有多个需要进行散热的热源时,可以通过在一个托架上安装与多个热源适配的多个散热器,减少电路板上用于安装散热装置的安装面积,优化电路板上功能元件的布局。
在上述第一方面一种可能的实现中,散热器包括本体和导热凸起,导热凸起从本体向背离本体的方向突出,导热凸起背向本体的一面为第一导热面。
在上述第一方面一种可能的实现中,弹性元件的峰谷结构弹性抵接于散热器的安装面,散热器弹性结合于托架。
其中,弹性抵接是指弹性元件中峰谷结构能够抵接于散热器的安装面,且弹性元件向散热器施加的作用力为弹性力。弹性结合是指散热器与托架能够相对固定,但两者之间的固定并非简单的刚性固定,而将散热装置安装于电路板上时,散热器中的第一导热面被热源的第二导热面顶起,此时散热器能够调整与托架相对位置,而保证托架固定于电路板上,弹性元件的峰谷结构向散热器提供将散热器紧贴热源的弹性力。散热器在弹性力的作用下,散热器的第一导热面紧密贴合于热源的第二导热面。
即在本申请的实施例中,将散热装置安装于电路板之前,弹性元件处于预变形状态,弹性元件向散热器施加预紧力,以将散热器与托架弹性结合,避免运输散热装置时散热器碰撞托架,降低了运输导致散热装置异常的概率,提高了以实现散热装置的良品率。
在上述第一方面一种可能的实现中,每个弹性元件的两端与托架可拆卸连接。散热装置中的弹性元件和散热器的局部替换。具体地,每个弹性元件利用峰谷结构的形态变化调整弹性元件的外部尺寸,例如利用峰谷结构的形态变化改变弹性元件的长度、弹性元件的宽度和弹性元件的高度,以调整弹性元件的两端与托架的装配状态。
上述散热装置中,将每个弹性元件的两端与托架可拆卸连接,实现散热装置的拆卸与组装,使得散热装置中的部分部件失效时,仅更换部分部件即能够回复散热装置的正常功能。因此上述散热装置能够降低散热装置的使用成本,提高经济效益。
在可替代的其他实施方式中,每个弹性元件的两端与托架不可拆卸连接,例如每个弹性元件的两端粘贴或者焊接于托架上。
在上述第一方面一种可能的实现中,每个弹性元件的两端分别包括向着托架延伸的钩合部;托架上设有位于散热器两侧的两个安装端,且两个安装端分别开设有与钩合部适配的安装孔;每个弹性元件的两端中的钩合部分别卡接于两个安装端的安装孔内。
即在本申请的实施例中,托架上设有用于安装弹性元件的安装端,且当将散热器安放于托架上时,托架上的安装端成对分布于散热器的两侧。具体地,安装端上开设有安装孔,弹性元件的端部为与安装孔适配的钩合部。当将弹性元件安装于安装有散热器的托架上时,弹性元件两端的钩合部卡接于安装孔内,并且在上述散热装置安装于电路板上时,弹性元件的钩合部抵接于安装端,以通过弹性元件和托架实现散热器与电路板上热源的紧密弹性贴合。可以理解的是,安装孔为通孔或者盲孔。
在上述第一方面的一种可能的实现中,当弹性元件安装于托架上时,钩合部由散热器向着托架延伸。
在上述第一方面的一种可能的实现中,当弹性元件安装于托架上时,钩合部由托架背向的散热器的一侧向着托架靠近散热器的一侧延伸。
上述散热装置中,将每个弹性元件的两端设置为向着托架延伸的钩合部,使得弹性元件的两端能够卡接于托架上的位于散热器两侧的安装端的安装孔内,且在将弹性元件装配于托架上后,每个弹性元件的两端的钩合部钩在两安装端上,能够有效防止弹性元件的两端从安装孔内脱出,进而能够实现散热装置中弹性元件、散热器和托架的一体化来料,简化了散热装置在电路板上的安装步骤。
在上述第一方面一种可能的实现中,托架上的安装孔为通孔。上述散热装置通过将安装孔开设为通孔,一方面,安装难度低、操作方便且散热装置的结构稳定高,另一方面,通过安装孔朝向外的开口能够推动弹性元件的端部回缩,并从安装孔中脱出,便于检修及更换弹性元件和散热器等部件。
在上述第一方面一种可能的实现中,散热器还包括散热结构,散热结构设于背向第一导热面的一侧:散热结构包括并列排布的多个翅片,多个翅片之间形成多个风道;每个弹性元件对应穿设于多个风道中的一个风道。
即在本申请的实施例中,散热器为风冷式散热器。风道中的气体沿着风道的延伸方向流动,而流动的气体能够带走散热结构上的热量,例如降低翅片的温度,以及降低与基板的散热面相贴合的散热结构的温度。其中,风冷式散热器的风道截面可以是“口”字型截面或者U型截面,其中风道截面是指散热结构沿着风道垂直方向剖切后风道得到的截面。散热结构设于背向第一导热面的一侧:例如,散热结构设于散热器的散热面上。再例如,散热结构设于散热器的一个的平面(例如设于与第一导热面或者安装面平行的面)上,则散热结构中风道的其中一个面为散热器的安装面,例如,风道的底面与第一导热面相对,因此可将散热器中风道的底面作为散热器的安装面。
当散热器为风冷式散热器时,上述散热装置中弹性元件在散热器中的安放位置,首先,无需在散热器中设置额外的安装面,且弹性元件无需占用除散热器和托架以外的其他空间。其次,由于弹性元件的尺寸较小,弹性元件占用较少的风道,改善风道中气体的流动效果。同时,基于弹性元件与托架特殊的安装方式,无需在散热器上开设安装孔,能够增大散热器散热面积。综上,本申请中弹性元件通过减少占用的风道及增大散热面积,改善散热装置的散热效果。
在上述第一方面一种可能的实现中,每个弹性元件的长度方向与其穿设的风道的延伸方向平行。
其中,弹性元件的两端为弹性元件的第一端和第二端。弹性元件的长度方向是指弹性元件的第一端指向弹性元件的第二端的方向。风道的延伸方向可以为翅片的延伸方向。即在本申请的实施例中,每个弹性 元件在厚度方向上的波动方向与其穿设的风道的延伸方向平行。例如,弹性元件在厚度方向为直线型结构,则风道的延伸方向也为直线。再例如,弹性元件厚度方向为波浪型结构,则风道的延伸方向也为波浪线。
可以理解的是,本申请仅对单个弹性元件的长度方向,以及该弹性元件所穿过的风道的延伸方向进行限制,并不会涉及每个弹性元件与其他风道的延伸方向进行限制。
上述散热装置,通过将弹性元件的长度方向设置为与该弹性元件所穿设的风道的延伸方向平行,尽可能减少了弹性元件占用的风道,增大了散热器风道中单位时间内的气流量,提高了散热器的散热效率,改善了散热装置的散热效果。
在上述第一方面一种可能的实现中,每个弹性元件的峰谷结构的波动形状处于同一平面内。
其中,峰谷结构为弹性元件中用于抵接于散热器的安装面的部分,峰谷结构对应于具有若干个首尾相连的波形单元的波形。峰谷结构的波动形状是指峰谷结构对应的波形从一端向另一端波动延伸的轨迹。即在本申请的实施例中,在忽略弹性元件厚度的情况下,弹性元件的峰谷结构处于同一厚度平面内。进而,当弹性元件的峰谷结构的波动形状处于同一平面内时,散热器中散热结构中的风道沿着直线延伸,即能够满足弹性元件的长度方向与风道的延伸方向平行。
上述散热装置中,弹性元件为峰谷结构的波动形状处于同一平面内的弹性件。弹性元件的安装精度优于螺旋结构的柱装弹簧,降低了安装难度。此外,合理布局该类弹性元件在风道中的延伸方向,能够进一步减小占用的风道,能够进一步改善风道中气体流通,进而能够进一步提高散热器的散热效率。
在上述第一方面一种可能的实现中,每个弹性元件的厚度范围为1.5mm~10mm,其中厚度方向为垂直于峰谷结构的波动形状的方向。例如,弹性元件的厚度为2mm。
即在本申请的实施例中,弹性元件的厚度方向尺寸略等于条形弹性材料的线径,使得弹性元件的厚度方向尺寸较小,进而保证弹性元件占用较少的风道。此外,本申请中的散热装置尤其适用于多个独立浮动散热器并存的散热系统,其减小风阻的效果更为明显。同等体积下,本申请中的散热装置能够提升通风量14%以上。
在上述第一方面一种可能的实现中,托架还包括:限位部,限位部设置于承托部,并与承托部共同形成用于容置散热器的容置空间,限位部围设于散热器的外边缘,且散热器的外边缘开设有避位缺口;安装端形成于承托部与限位部的连接处;每个弹性元件的两端穿设于避位缺口,并卡接于安装孔内。
托架包括承托部和限位部,其中承托部与限位部共同构成用于安放散热器的容置空间,可以理解的是,容置空间是在散热器安装于托架时,托架用于容置散热器的空间。具体地,限位部围设于本体的外边缘,以将散热器的第一导热面与热源的第二导热面对齐。安装端设于限位部与承托部的连接处,也即将弹性元件的两端分别安装于托架中限位部与承托部的连接处。
在上述第一方面一种可能的实现中,限位部的高度应保障散热器正常工作状态下向上浮动到最高位置时不会从托架脱出,同时还要尽可能少的影响到散热器通风量。
在上述第一方面一种可能的实现中,位于避位缺口处的翅片上开设有避让缺口,避让缺口与避位缺口共同形成用于将每个弹性元件的两端安装至安装孔的安装空间。
即在本申请的实施例中,为了降低弹性元件在托架上的安装难度,避位缺口的尺寸大于弹性元件中弹性材料的线径。在一些情况下,开设避位缺口的位置处承载有翅片,而该翅片将避位缺口分割为两部分,使得避位缺口位于翅片远离弹性元件一侧的区域无法正常使用,也即此处的翅片导致避位缺口无法有效降低弹性元件的安装难度。为了不影响避位缺口的正常使用,以有效降低弹性元件的安装难度,在位于避位缺口附近的翅片上开设避让缺口,以通过避让缺口将该翅片两侧的避位缺口连通,形成用于将弹性元件的两端安装至安装孔的安装空间。
上述散热装置,通过在位于避位缺口处的翅片上开设有避让缺口,保证弹性元件与托架连接稳定性的情况下,增大了用于安装弹性元件两端的安装空间,降低了弹性元件的装配难度,同时也降低了弹性元件 的成型难度。
在上述第一方面一种可能的实现中,托架还包括增高部,增高部从限位部朝背离承托部的方向凸出,增高部用于限制散热器脱离托架。
上述散热装置中,通过在托架的限位部上增设增高部,能够在确保异常情况下散热器不致从托架上脱出,能够提高散热装置结构的稳定性,以及能够提高散热装置使用时的安全性。
在上述第一方面一种可能的实现中,增高部形成于限位部的局部区域,以在通过增高部提高安全性能时,减轻托架的重量,实现散热装置的轻量化设计,同时降低原材料成本,提高经济效益。
在上述第一方面一种可能的实现中,增高部从形成有安装端的限位部朝背离安装端的方向凸出。
即在本申请的实施例中,安装端形成于增高部、以及与增高部邻近的限位部和承托部之间。上述安装端,增大了安装孔周围的实体尺寸,提高了安装端的机械强度,优化托架的整体结构。
在上述第一方面一种可能的实现中,限位部上朝向容置空间的面为第一导向面,弹性元件的两端设有与第一导向面适配的第二导向面;第一导向面与第二导向面相配合,以引导弹性元件的两端进入安装孔的方向。
即在本申请的实施例中,利用第一导向面和第二导向面完成弹性元件的安装具体包括:在将弹性元件的一端安装于托架的安装端时,先将弹性元件的一端的第二导向面抵接至托架的第一导向面,驱动弹性元件的一端,以使第二导向面沿着第一导向面滑动,直至弹性元件的一端滑入安装孔并抵接于安装端,完成弹性元件的一端与安装端的安装。或者,弹性元件的一端滑入安装孔后,容置于安装孔内,但并未抵接于安装端,而当将托架安装于电路板上时,弹性元件的一端抵接于安装端。
上述散热装置中,限位部上的第一导热面与弹性元件的两端的第二导向面能够降低散热装置的安装难度,实现散热装置中弹性元件的精准、快速安装。
在上述第一方面一种可能的实现中,每个弹性元件用于抵压散热器的压合部为点状或者线状。上述散热装置中弹性元件用于抵压散热器的结构的形式多样,便于实现散热器与热面的紧密弹性贴合。
在上述第一方面一种可能的实现中,至少一个弹性元件具体包括两个弹性元件,每个弹性元件用于抵压散热器的压合部为点状时,两个弹性元件之间的压合部不在一条直线上。
上述散热装置中,通过合理布局弹性元件,以使弹性元件的压合部不在同一直线上,以通过不在同一直线上的点,实现散热器的第一导热面与热源的第二导热面的稳定贴合。
在上述第一方面一种可能的实现中,每个弹性元件相对于弹性元件的中心线对称分布,中心线为经过弹性元件的中点并垂直于弹性元件的长度方向的直线。
也即本申请的实施例中,弹性元件的长度与两倍的弹性元件的一端与中点在弹性元件长度方向上的距离的差异值小于预设值。
上述散热装置,通过将弹性元件设置为相对于中心线对称分布的结构,便于均衡弹性元件中整个峰谷结构的工作状态,以改善散热器与热源的贴合效果,进而便于实现散热装置中,散热器对热源的均匀地、稳定地压接,改善散热器的第一导热面与热源的第二导热面的贴合效果,增大第一导热面与第二导热面的有效接触面,进而改善散热装置对热源的散热效果。
在上述第一方面一种可能的实现中,每个弹性元件处于自然状态时,靠近中点的峰谷结构的挠度大于靠近两端的峰谷结构的挠度。其中,靠近中点的峰谷结构是指靠近中点的波形单元,靠近两端的峰谷结构是指靠近两端的波形单元。
即在本申请的实施例中,由于靠近两端的峰谷结构距离安装端较近,因此在峰谷结构微量变形的情况下,即能够实现对散热器的稳定压接。而对于靠近中点的峰谷结构而言,由于靠近中点的峰谷结构距离安装端较远,因此此处的峰谷结构较大变形的情况下,才能够实现对散热器的稳定压接。基于此,为了实现弹性元件上各个峰谷对散热器的稳定压接,还需要保证弹性元件处于自然状态时,靠近中点的峰谷结构的 挠度大于靠近两端的峰谷结构的挠度。
上述散热装置,通过合理设置弹性元件中不同位置处的峰谷结构的挠度,能够在散热装置安装于电路板时,实现弹性元件对散热器中安装面的稳定地、均匀地压接,也即实现散热器对电路板上热源的稳定地、均匀地压接。其中均匀压接是指弹性元件与散热器的接触区域分布均匀,同时,散热器与弹性元件相接触的接触区域处的受力基本相等。
在上述第一方面一种可能的实现中,热源为安装于电路板上的电子元器件。例如,热源为安装于电路板上的、热耗较高的芯片。
本申请的第二方面提供了一种散热装置,应用于具有热源的电路板,以对热源进行散热,包括:散热器,散热器包括相对的第一导热面和安装面;至少一个弹性元件,每个弹性元件为条状具有峰谷结构的弹性件,每个弹性元件的峰谷结构设置于散热器的安装面,每个弹性元件的两端用于分别固定于电路板上,以使散热器的第一导热面贴合于热源的第二导热面;至少一个弹性元件用于向散热器提供向热源紧贴的压力。
在上述第二方面一种可能的实现中,热源为安装于电路板上的电子元器件。例如,热源为安装于电路板上的、热耗较高的芯片。
上述散热装置,提高了散热器的第一导热面和热源的第二导热面贴合的稳定性,提高贴合处应力分布的均匀性,同时还能够改善散热器的受力状态,延长散热器的使用寿命,此外无需在散热装置上开设安装孔,增大散热器的有效散热面积,改善散热器对热源的散热效果。
本申请的第三方面提供了一种电路模组,包括上述第一方面任意一种的散热装置、电路板以及安装于电路板上的电子元器件;电子元器件为热源;电路板位于托架背离散热器的一侧,并与托架固定;热源的第二导热面朝向装配开口。在上述第三方面一种可能的实现中,电子元器件为安装于电路板上的芯片。
上述电路模组,首先,通过弹性元件与托架配合将散热器的第一导热面紧密地、弹性结合抵接于热源的第二导热面。具体地,由于弹性元件用于安装于托架的安装部,与用于向散热器施加弹性力的施力部不同,使得弹性元件通过调整峰谷结构即能调整施力部的位置,进而调整弹性元件在散热器上的施力点,改善散热器与热源的受力状态,提高散热器与热源贴合的稳定性,提高贴合处应力分布的均匀性,改善热源与散热器的受力状态。
其次,通过弹性元件代替现有技术中的限位销钉和柱状弹簧来实现散热器在电子元器件上的安装,简化了安装法,增大了散热器的有效散热面积,改善了电路模组的散热效果。
除此之外,该散热装置中弹性元件的两端安装于托架,使得弹性元件安装的应力作用于托架,并非直接作用于电路板上,因此能够避免电路板变形,及电路板变形导致的散热器的第一导热面与热源的第二导热面贴合较差的状况。
最后,当电路板上设有多个热源时,可以通过一个托架安装与多个热源适配的多个散热器,减少电路板上用于安装散热装置的安装区域的面积,优化电路板上功能元件的布局。
在上述第三方面一种可能的实现中,弹性元件的峰谷结构与散热器的安装面的接触区域位于电子元器件的第二导热面在安装面的正投影区域内。
也即本申请的实施例中,散热器的核心受力点在第二导热面所在平面内的正投影位于热源的第二导热面上。其中,核心受力点指的是散热装置安装于电路板上时,散热器上用于接收弹性元件弹性力的受力区域。第二导热面上包括第二导热面内和第二导热面边缘位置。也即,散热器的核心受力点在第二导热面所在平面内的正投影位于热源的第二导热面内部或者位于热源的第二导热面的边缘位置。
上述电路模组中,通过合理布局弹性元件的峰谷结构与散热器的安装面的接触区域的位置,也即通过合理布局散热器的核心受力点,使得弹性元件向散热器施加的弹性力,能够通过散热器中的导热凸起稳固地传递至热源,进而实现散热器的第一导热面与热源的第二导热面的紧密贴合。
一方面,优化了散热器的受力情况,避免了核心受力点的正投影分布于距离热源的第二导热面较远的位置,进而避免了散热器以导热凸起边缘为支点,以核心受力为受力端的跷跷板式的受力模式。其中,跷跷板式的受力模式会影响基板的结构稳定性,甚至会在第一导热面的导热层较薄的情况下导致导热层分层,影响散热器的散热效果和使用寿命。另外一方面,将核心受力点的正投影设于热源的第二导热面上,使得散热器直接施力于热源的第二导热面,提高散热器与热源贴合的紧密程度,进而提高散热器对热源散热效果。
在上述第三方面一种可能的实现中,当散热器的基板为真空腔均热板结构时,本实施方式中的核心受力点分布模式能够有效降低传统浮动连接对真空腔均热板结构的刚度需求,有助于真空腔均热板结构减薄,实现散热器整体瘦身。
在上述第三方面一种可能的实现中,为了进一步优化散热器的受力情况,以降低对真空腔均热板结构的刚度需求,散热器核心受力点的正投影落在散热器支撑柱的投影上,也即散热器核心受力点位于散热器支撑柱的正上方,也即弹性元件的压合部位于支撑柱的正上方。
在上述第三方面一种可能的实现中,弹性元件的峰谷结构与散热器的安装面的接触区域位于电子元器件的第二导热面在安装面的正投影区域内的边缘位置。
即在本申请的实施例中,散热器的核心受力点在第二导热面所在平面内的正投影位于热源的第二导热面的边缘。
上述电路模组中,通过弹性元件的峰谷结构与散热器的安装面的接触区域位于电子元器件的第二导热面在安装面的正投影区域内的边缘位置,能够尽可能扩大弹性元件的作用范围,进而实现散热器与热源的稳定贴合,进一步优化散热器对热源的散热效果。
在上述第三方面一种可能的实现中,至少一个弹性元件具体包括两个弹性元件,且两个弹性元件的峰谷结构分别与散热器的安装面的接触区域位于电子元器件的第二导热面在安装面的正投影区域内的边缘位置。
上述电路模组中,通过两个弹性元件分别压合于热源边缘正上方的散热器上,弹性元件的结构形状简单,成型难度较低,且弹性元件的安装方便。两个弹性元件足以将散热器稳定得压接于热源表面,改善散热器对热源的散热效果。
本申请的第四方面提供了一种电路模组,包括上述第二方面中的散热装置、电路板以及安装于电路板上的电子元器件;电子元器件作为热源;弹性元件的两端分别固定于电路板。
上述电路模组中,整个电路模组的结构稳定,且零部件数量较少,便于装配。同时,上述电路模组能够有效改善电路模组中电子元器件的散热,优化的电子元器件的使用性能。
在上述第四方面一种可能的实现中,电路板上开设有安装孔,弹性元件的两端分别卡接于安装孔内。
在上述第四方面一种可能的实现中,电子元器件为安装于电路板上的芯片。
本申请的第五方面提供了一种电子设备,本申请的第五方面提供了一种电子设备,包括上述第三方面和第四方面中的任意一种的电路模组。上述电子设备的有益效果由上述电路模组带来,在此不作赘述。
本申请的第六方面提供了一种电路模组的装配方法,本申请的第六方面提供了一种电路模组的装配方法,用于装配第三方面中的任意一种电路模组,装配方法包括:将散热装置放置于电路板上,其中,散热装置中散热器的第一导热面朝向电路板上的热源的第二导热面;通过紧固件将散热装置中的托架固定安装于电路板。
上述电路模组的装配方法中,先将弹性元件和散热器安装于托架,也即先将散热装置装配完成后,再将托架安装于电路板,能够有效避免弹性元件和散热器安装过程中刮伤电路板上的电子元器件,提高电路模组的良品率,提高经济效益。
在上述第六方面一种可能的实现中,装配方法中散热装置的装配方法包括:将散热器放置于托架上, 其中,散热器的第一导热面朝向托架;将弹性元件放置于散热器具有安装面的一侧;将弹性元件的一端安装于托架的第一安装端;向弹性元件施加外力以改变弹性元件的峰谷结构的形状,并将弹性元件的另一端安装于托架的第二安装端。
上述电路模组的装配方法中的散热装置的安装方法,先将弹性元件的一端安装于托架中的第一安装端,通过施加外力以使波形变形,进而调整弹性元件的两端之间的距离,以便于将弹性元件的另一端安装于托架中的第二安装端,安装步骤简单,操作方法简便。
在上述第六方面一种可能的实现中,当电路模组来料时,散热装置尚未装配,则电路模组的装配方法包括:将散热器放置于托架上,其中,散热器的第一导热面朝向托架;将弹性元件放置于散热器具有安装面的一侧;将弹性元件的一端安装于托架的第一安装端;向弹性元件施加外力以改变弹性元件的峰谷结构的形状,并将弹性元件的另一端安装于托架的第二安装端,形成散热装置;将散热装置放置于电路板上,其中,散热装置中散热器的第一导热面朝向电路板上的热源的第二导热面;通过紧固件将散热装置中的托架固定安装于电路板。
在上述第六方面另一种可能的实现中,当电路模组来料时,散热装置尚未装配,则电路模组的装配方法包括:通过紧固件将托架安装于电路板,其中,紧固件可以是紧固螺钉;将散热器放置于托架上,其中,散热器的第一导热面朝向托架;将弹性元件放置于散热器具有安装面的一侧;将弹性元件的一端安装于托架的第一安装端;向弹性元件施加外力以改变弹性元件的波形的形状,将弹性元件的第二端安装于托架的第二安装端。
本申请的第七方面提供了一种电路模组的装配方法,用于装配第四方面中的任意一种电路模组,装配方法包括:将散热器放置于电路板上,其中,散热器的第一导热面朝向电路板上的热源的第二导热面;将弹性元件放置于散热器具有安装面的一侧;将弹性元件的一端安装于电路板的第一安装端;向弹性元件施加外力以改变弹性元件的形状,将弹性元件的另一端安装于电路板的第二安装端。
上述电路模组的装配方法中,仅需要将散热器安放于电路板表面,并将弹性元件安装于电路板上的安装端即可,整个装配方法简单易操作。
附图说明
图1(a)为其他技术方案一种电路模组的爆炸图;
图1(b)为其他技术方案另一种电路模组的爆炸图;
图2为本申请中一种电路模组的爆炸图;
图3为本申请中一种电路模组沿弹性元件100所在位置处的剖视立体图;
图4为本申请中一种散热装置10的工作原理图;
图5为本申请中一种弹性元件100的主视图;
图6(a)为本申请中一种散热器200沿着一视角的立体图;
图6(b)为本申请中一种散热器200沿着另一视角的立体剖面图;
图7(a)为本申请中一种散热装置10核心受力点CSP的分布示意图;
图7(b)为其他技术方案中一种散热装置核心受力点CSP′的分布示意图;
图7(c)为本申请中一种散热装置10的侧视图,其中未图示托架300;
图7(d)为其他技术方案中一种散热装置的侧视图,其中未图示托架300;
图8(a)为本申请中一种托架300的立体图;
图8(b)为图8(a)中安装端400的放大图;
图8(c)为本申请中弹性元件100的局部放大图;
图9(a)为本申请中一种散热器200的俯视图;
图9(b)为现有技术中一种散热器200的俯视图;
图10(a)为本申请中一种托架300与电路板20的装配图;
图10(b)为本申请中一种包含散热装置10的电路模组1沿紧固螺钉50所在位置处的剖视立体图;
图11(a)为本申请中一个托架300对应多个散热器200的第一视角的示意图;
图11(b)为本申请中一个托架300对应多个散热器200的第二视角的示意图;
图12为本申请中一种弹性元件100中各个尺寸的示意图;
图13(a)~图13(d)为本申请中几种弹性元件100的立体图;
图14为本申请中一种散热装置10的装配示意图;
图15为本申请中一种散热装置10的装配流程图;
图16为本申请中一种电路模组1的装配流程图;
图17为本申请中另一种电路模组1的装配流程图;
图18为本申请中电路模组1"'的爆炸图;
图19为本申请中电路模组1"'的装配流程图。
标号说明
10-散热装置;100'-连接件;110'-限位销钉;111'-限位槽孔;110a'-限位螺钉;120'-柱装弹簧;130'-限位片;200-散热器;201-第一导热面;203-散热器过孔;210-基板;211-本体;212-导热凸起;220-散热结构;221-翅片;222-风道;300-托架;301-托架孔位;302-托架过孔;20-电路板;21-电路板孔位;30-热源;31-第二导热面;40-强化板;41-紧固部件;50-紧固螺钉;CSP'-核心受力点;
1-电路模组;1"'-电路模组;10-散热装置;100-弹性元件;101-第二导向面;110-第一端;110a-卡钩;111a-连接部;112a-钩合部;120-第二端;130-波形;131-侧部波形;132-中间波形;133-抵压部;l m-条形弹性材料的长度方向;l e-弹性元件的延伸方向;l l-弹性元件的长度方向;P C-中点;l c-弹性元件的中心线;S 1-弹性元件的长度;S 2-弹性元件的一端与中点P C在弹性元件长度方向上的距离;h-弹性元件的高度;Δh-弹性元件的一端与中点P C的高度落差;200-散热器;200a-散热器;200b-散热器;200c-散热器;210-基板;201-第一导热面;202-安装面;211-本体;2111-支撑柱;2112-真空蒸发腔;2112a-蒸发面;2112b-冷凝面;212-导热凸起;220-散热结构;221-翅片;222-风道;230-避位缺口;240-避让缺口;d w-风向;d c-风道的延伸方向;CSP-核心受力点;D g-缺口区域;300-托架;310-承托部;311-镂空部;320-限位部;330-增高部;340-第一导向面;350-紧固孔;400-安装端;400a-第一安装端;400b-第二安装端;400c-第三安装端;400d-第四安装端;400″-安装端;400"'-安装端;400a"'-第一安装端;400b"'-第二安装端;410-安装孔;411-弧形通槽;412-U型缺口;410″-安装孔;20-电路板;30-热源;31-第二导热面;40-强化板;50-紧固螺钉。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
本申请提供一种电子设备,该电子设备包括至少一组电路模组。如图1(a)和1(b)所示,电路模组1包括散热装置10、电路板20和热源30。其中,热源30安装于电路板20,热源30的表面形成有导热面31。其中,热源30可以为安装于电路板20上的电子元器件,例如,热源30为安装于电路板20上的热耗较高的芯片。导热面31为热源30背向电路板20的一侧面,例如,图1(a)和图1(b)中热源30的上表面。
具体地,散热装置10包括连接件100'和散热器200,散热器200形成有与热源30的导热面31适配的散热器200的导热面(也称散热器200的吸热面),例如图1(a)和图1(b)中的散热器200的下表面。在电路模组1中,散热装置10中的连接件100'将散热器200和电路板20直接或者间接相连,并通过弹性 结构以适配散热器200与电路板20之间的距离变化,以使散热器200弹性结合于热源30。也即,浮动式的散热装置10中的连接件100'将散热器200的导热面弹性抵接于热源30的导热面31,进而能够调整散热器200与热源30的贴合程度。
为了实现散热装置10对热源30的散热,目前主要包括以下几种散热装置10。
在一些场景下,热源30采用风冷式的散热方式,则散热器200可以是风冷式散热器,如图1(a)和图1(b)所示,散热器200包括基板210和散热结构220。基板210具有导热面(未标示)和散热面(未标示),散热器200的导热面用于从热源30的导热面31上吸收热量,散热面用于将散热器200通过导热面吸收的热量散出(传导)至散热结构220。散热结构220设置于基板210的散热面上,散热结构220包括并列排布的翅片221。相邻翅片221之间形成有风道222,风道222中的气体沿着风道222的延伸方向流动,而流动的气体能够带走散热结构220上的热量,例如降低翅片221的温度,以及降低与基板210的散热面相贴合的散热结构220的温度。
在一些技术方案中,散热器200通过连接件100'直接与电路板20相连,如图1(a)所示,连接件100'包括限位销钉110'、柱装弹簧120'和限位片130'。其中,限位销钉110'上还开设有用于卡接限位片130'的限位槽孔111'。
具体地,装配完成后的散热装置10中,限位销钉110'自上而下依次穿入柱装弹簧120'和散热器200上的散热器过孔203,且限位销钉110'上的限位槽孔111'穿过散热器过孔203位于散热器200下方。限位片130'卡入限位槽孔111',以使限位销钉110'、柱装弹簧120'、散热器200、限位片130'连成一体,通过柱装弹簧120'的可形变特性实现散热器200相对于限位销钉110'的浮动连接。限位销钉110'下端装配至电路板20上的电路板孔位21,柱装弹簧120'发生弹性形变,以实现散热器200与电路板20上热源30的弹性贴合。
在另一些技术方案中,散热器200通过连接件100'与电路板20间接相连。如图1(b)所示,电路模组还包括紧固螺钉50和强化板40,散热装置10还包括托架300,则在电路模组1中,托架300与电路板20固定连接,散热器200通过连接件100'和托架300弹性连接于电路板20。其中,连接件100'包括限位螺钉110a'和柱装弹簧120'。
具体地,限位螺钉110a'自上而下依次穿入柱装弹簧120'、散热器200上的散热器过孔203后,紧固到托架300对应托架孔位301,以使限位螺钉110a'、柱装弹簧120'、散热器200、托架300连成一体,并实现散热器200与托架300的浮动连接。紧固螺钉50依次穿过托架300的托架过孔302、电路板20对应孔位21后,紧固到强化板40。柱装弹簧120'发生弹性形变,以实现散热器200与电路板20上热源30的弹性贴合。
根据上述风冷式散热器的在电路板上的连接方式不难发现,连接件需要穿设于散热器200和电路板20,以向散热器200施加用于向热源30压合的作用力,进而使得连接件100'对散热器200的作用点无法位于热源30的正上方,可能会导致散热器200的导热面产生微小内凹,最终导致散热器200的导热面与热源30的导热面31的贴合效果较差。
在另一些场景下,热源30采用液冷式的散热方式,则散热器200可以是液冷式散热器。则该场景下,散热器200与热源30的连接方式可以是散热器200的导热面粘附于热源30的导热面31,也可能会导致散热器200的导热面与热源30的导热面31的贴合效果较差。
综上,目前的电子设备中电路模组中存在散热器的导热面和热源的导热面贴合的稳定性较差问题,为了提高散热器对热源的散热效果,需要优化散热器的导热面与热源的导热面的贴合效果。
为了解决上述问题,本申请提供一种散热装置。本申请中的散热装置包括至少一个弹性元件、散热器和托架。具体地,每个弹性元件为一种新型蛇形弹簧(New Snake Spring,NSS),形态类似蛇移动过程中呈现的形态。具体地,弹性元件为条形的、弹性材质的、具有峰谷结构的弹性件,其中,峰谷结构对应于 波形。弹性元件的两端分别安装于托架上相应的两个安装端。散热器通过弹性元件浮动安装于托架,散热器用于对电路板上热源进行散热。托架通过与电路板相连以将散热器限位于热源上方,同时与散热器配合使得弹性元件的波形变形。弹性元件利用波形变形产生的弹性力将散热器弹性结合安装于电路板,以实现散热器中的导热面紧密地弹性抵接于热源的导热面。
上述散热装置,通过弹性元件即能够实现散热器与托架之间的浮动连接,弹性元件具有设计容差较大,安装难度低,力学性能稳定等优点。同时,弹性元件用于安装至托架的安装部与弹性元件用于向散热器施加弹性力的施力部为弹性元件中的不同部位,因此,本申请中的散热装置能够在保持安装部不变的情况下,合理的调整施力部以改善散热器与热源之间贴合的紧密度,进而提高散热器对热源的散热效果。
可以理解的是,本申请散热装置中散热器可以是风冷式散热器,弹性元件穿设于散热结构的风道中。其中,风冷式散热器的风道截面可以是“口”字型截面或者U型截面,其中风道截面是指散热结构沿着风道垂直方向剖切后风道得到的截面。
在可替代的其他实施方式中,本申请散热装置中散热器还可以是液冷板式散热器,弹性元件安放于散热器背向散热器的导热面的一侧。
此外,对于单个热源的应用场景,散热装置包括单个散热器;对于多个热源的应用场景,散热装置可通过组合方式灵活搭配多个散热器,以满足多个热源的应用场景的需求。
再者,对于热源功耗较高导致电路板易翘曲变形的应用场景,散热装置包括托架,且托架用于围设于热源四周,以防止热源周围的电路板变形,保证电路板与芯片的结合强度。
进一步地,对于多个热源,且多个热源相邻较近的应用场景,散热装置中的一个托架可以对应于多个(例如与热源数量相同的个数)散热器,以通过托架与电路板相连,避免每个散热器分别与电路板相连,尽可能减少散热装置安装时占用的电路板板面,提高了高密度单板布局的灵活性。
为便于描述,下面将以散热装置包括1个托架和3个散热器,且散热器为风道截面为“口”字型的风冷式散热器为例,详细说明本申请中散热装置的结构。为使描述简洁,本申请下文将以其中一个散热器及与该散热器对应的弹性元件、托架、电路板、热源等为例进行说明。
下面详细介绍本申请公开的散热装置。
在本申请一种可能的实施例中,当电路板上具有多个相距较近的热源,且多个热源均需要通过散热器进行散热时,或者当热源功耗较大进而导致电路板翘曲变形时,本申请实施例中的电路板适用于具有托架的散热装置。该散热装置利用托架将散热器弹性贴合于电路板上的热源,下面具体说明。
图2为本申请中一种电路模组1的爆炸图。如图2所示,电路板20上具有3个相距较近的热源30,且3个热源30均需要通过散热器200进行散热,散热装置10用于对电路板20上的3个热源30进行散热。图3为本申请中电路模组1沿弹性元件100所在位置处的剖视立体图。图4为本申请中一种电路模组1的工作原理图,其中弹性元件100的施力部为波形130中的波谷。下面将结合图2至图4描述本申请中散热装置10的结构及工作原理。
具体地,结合图2至图4可知,散热装置10包括至少一个弹性元件100、散热器200和托架300。其中一套散热装置10的弹性元件100的数量可以是一个、两个、三个等等。下面将以某一个弹性元件100为例,详细说明弹性元件100的结构特征,以及弹性元件100相对于散热器200及托架300的安放位置和连接方式。
弹性元件100为条形(条状)的具有若干个峰谷结构的弹性结构,弹性元件100包括用于实现安装功能的第一端110和第二端120,以及第一端110与第二端120之间用于实现压合功能的峰谷结构,其中峰谷结构对应于具有若干个波形单元的波形130。可以理解的是,用于成型弹性元件100的原材料为条形弹性材料,条形弹性材料的材质为弹性材质,条形弹性材料是指其中一个方向(例如条形材料的轴向)上的尺寸远远大于其他方向上(例如条形材料的径向)尺寸的原材料。例如,条形弹性材料为弹性丝或者弹性 条。
散热器200包括安装面(未标示)和第一导热面(未标示),且安装面与第一导热面位置相背。每个弹性元件100安放于散热器200的安装面上。其中,安装面为散热器200上的用于安放弹性元件100的面,安装面可以为散热器200中现有的其中一个面。例如,散热器200为风冷式散热器时,第一导热面为散热器200的底面,安装面为散热器200中风道222的下表面。其中,风道222的下表面可以是基板210的散热面,风道222的下表面还可以是散热结构220中与散热面平行的表面。
其中,安装面与第一导热面位置相背是指当外界载荷施加于散热器200的安装面时,散热器200在该外界载荷的作用下,使得散热器200的第一导热面能够抵接于其他结构表面。弹性元件100设置于散热器200形成有安装面的一侧。热源30安装于电路板20上,热源30设有第二导热面31,且第二导热面31与第一导热面相适配。在本实施方式中,第二导热面31和第一导热面为平面。
在可替代的其他实现方式中,当散热器200为液冷板式散热器时,散热器200中的安装面为背向第一导热面的一侧面。例如,液冷板式散热器中,第一导热面为液冷板式散热器的下表面,则安装面为液冷板式散热器的上表面。
托架300用于连接弹性元件100和承托散热器200,同时还用于与电路板20相连。托架300上设有安装端400,且安装端400成对分布于散热器200两侧。弹性元件100的第一端110和第二端120分别连接于托架300上相应的一对安装端400。
当托架300通过紧固螺钉50安装于电路板20上时,托架300环设于热源30和散热器200的周围,以将散热器200的第一导热面与热源30的第二导热面31对齐。弹性元件100利用波形130变形产生的弹性力,将弹性元件100的波谷抵紧散热器200的安装面,将散热器200弹性结合安装于电路板20,以实现散热器200中的第一导热面紧密地弹性抵接于热源30的第二导热面31。也即,一方面,托架300通过承托散热器200,能够限制散热器200与热源30的相对位置,另一方面,当散热装置10中的托架300安装于电路板20时,托架300上的安装端400与弹性元件100配合带动弹性元件100的波形变形,进而弹性元件100向散热器200施加用于将散热器200紧贴于电路板20上的热源30的压力。
在本实施方式中,在将散热装置10安装于电路板20之前,弹性元件100处于预变形状态,弹性元件100向散热器200施加预紧力,以将散热器200与托架300弹性结合,避免运输散热装置10时散热器200碰撞托架300,降低了运输导致散热装置10异常的概率,提高了散热装置10的良品率。
具体地,在将散热装置10安装于电路板20之前,弹性元件100的第一端110和第二端120与托架300上的安装端400相对固定,例如第一端110和第二端120固定于安装端400,再例如第一端110和第二端120卡死于安装端400。弹性元件100的波形130弹性抵接于散热器200的安装面,散热器200弹性结合于托架300。
在可替代的其他实施方式中,在将散热装置安装于电路板上之前,弹性元件100还可以未向散热器200施加预紧力,弹性元件100与托架300的连接方式不作具体限定。在自然放置状态下,散热器200放置于托架300的承托面,弹性元件100放置于散热器200的安装面,且弹性元件100绕过散热器200的边界连接于托架300。
在本实施方式中,托架300能够与电路板20可拆卸地连接,例如托架300通过螺纹连接于电路板20。在可替代的其他实施方式中,托架300能够与电路板20不可拆卸地连接,例如托架300粘贴或者焊接于电路板20。
在本实施方式中,弹性元件100通过波形130变形将弹性元件100的两端可拆卸地安装于托架300上的两个安装端400。弹性元件100通过外界载荷沿着弹性元件100的长度方向压缩波形130,也即缩短第一端110与第二端120之间的距离,以便于将弹性元件100安装于两个安装端400内。其中,外界载荷可通过工装治具施加于弹性元件100的第一端110和/或第二端120。
在本实施方式中,如图4所示,弹性元件100中的波形130包括若干个波形单元,其中波形单元的形状为正弦波或类正弦波。弹性元件100通过波形130的波谷或波峰弹性结合散热器200与电路板20。其中,波谷是波形单元中的最低点,波峰是波形单元中的最高点。在本实施方式中,弹性元件100将波形130中的波谷或波峰作为施力部,进而通过波形变形时波谷或波峰处的弹性力将散热器200弹性结合于电路板20。
在本实施方式中,电路板20上的热源30为安装于电路板20上的电子元器件,例如电子元器件为电路板上热耗较高的芯片。
图5为本申请实施例1中一种弹性元件100的主视图。为了便于后续描述,现结合图5对弹性元件100的各个尺寸与方向做出如下定义:
条形弹性材料的长度方向:条形弹性材料一端延伸至条形弹性材料另一端的方向,如图5中的l m。条形弹性材料的长度为条形弹性材料一端至条形弹性材料另一端延伸轨迹的长度。
条形弹性材料的截面:在弯曲成波形130之前,条形弹性材料垂直于条形弹性材料长度方向的截面。在本实施方式中,条形弹性材料的截面可以为圆形、椭圆形和矩形中的任意一种。此外,条形弹性材料的截面还可以为根据需求定制的其他形状。
弹性元件100的延伸方向:条形弹性材料弯曲成波形130之后条形弹性材料的长度方向,如图5中的l e
弹性元件100的长度方向:弹性元件100的第一端110指向弹性元件100的第二端120的方向,如图5中的l l。弹性元件100的长度为弹性元件100沿着弹性元件100的长度方向的尺寸,如图5中弹性元件100左右方向的尺寸。
此外,弹性元件100的高度为弹性元件100沿着波形弯曲方向的尺寸,如图5中弹性元件100上下方向的尺寸。弹性元件100的厚度为弹性元件100垂直于弹性元件100延伸平面的尺寸,如图5中弹性元件100沿着垂直于纸面方向的尺寸。
弹性元件100的中点:条形弹性材料长度方向尺寸的中心,如图5中的P C
弹性元件100的中心线:经过弹性元件100的中点P C,并垂直于弹性元件100的长度方向l l的直线,如图5中的l c
上述散热装置10,首先,弹性元件100的安装部为弹性元件100的两端,而弹性元件100对散热器200和热源30的施力部为弹性元件100的两端之间的波形130。因此,仅通过调整弹性元件100的波形130即能够调整弹性元件100对散热器200和热源30的压合位置。由于调试过程无需调整安装部的位置,降低了散热器200与热源30组装方案研发过程的难度,进而便于优化散热器200和热源30贴合面之间的贴合效果,以改善散热器200对热源30的散热效果。
其次,一个弹性元件100可以包括多个波形单元,由于每个波形单元能够实现散热器200和热源30至少一处的压合,因此能够实现一个弹性元件100对散热器200和热源30多处压合,减少散热装置10中连接部件的数量。例如,如图1(a)所示,安装1个散热器200需要4件限位销钉110′、4件柱装弹簧120′和4件限位片130′,共计12件连接部件。如图1(b)所示,安装1个散热器200需要4件限位螺钉110a′、4件柱装弹簧120′和4件紧固螺钉50,共计12件连接部件。而本申请中,如图2所示,安装1个散热器200仅需要2个弹性元件100、3件或者4件紧固螺钉50,共计5件或者6件连接件。因此,本申请还能够提高散热装置装配效率,降低生产成本。同时,通过弹性元件100波形130变形提供的压合力,满足散热器200与不同厚度的热源30直接的有效贴合,扩大散热装置10的使用范围。综上,与现有技术中的柱装弹簧120′相比,弹性元件100的结构更为紧凑,占用空间更小,扩大了适用范围,提升了散热装置10的散热能力。
同时,本申请中,由于弹性元件100的尺寸较小,减少了弹性元件100对风道222的占用,由于弹性元件100可通过托架300上的安装端400进行安装,因此无需在散热器200的基板210及散热结构220上 开设安装孔,能够增大散热器200的散热面积。综上,本申请中弹性元件100通过减少占用风道222及增大散热面积,改善散热装置10的散热效果。
此外,散热装置10中弹性元件100的两端的安装应力作用于托架300,并非直接作用于电路板20,因此能够有效避免电路板20变形,进而避免电路板20变形导致散热器200的第一导热面与热源30的第二导热面31贴合较差的情况发生。
最后,当电路板20上设有多个热源30时,可以通过在一个托架300上安装与多个热源30适配的多个散热器200,减少电路板20上用于安装散热装置10的安装面积,优化电路板20上功能元件的布局。
在液冷式散热场景下,散热器200为液冷板式散热器。液冷板式散热器包括安装面与第一导热面,弹性元件100放置于液冷板式散热器安装面的一侧。其中,第一导热面为液冷板式散热器用于与热源贴合的表面,安装面为散热器200中背向第一导热面的表面,例如,安装面为液冷板式散热器的上表面,第一导热面为液冷板式散热器的下表面。
在风冷式散热场景下,散热器200为风冷式散热器。为了描述清楚散热装置10中弹性元件100如何与托架300相配合以将散热器200弹性贴合于电路板20,需要先详细描述散热器200的具体结构。图6(a)为本申请中一种散热器200沿着一视角的立体图。图6(b)为本申请中一种散热器200沿着另一视角的立体剖面图。下面将结合图6(a)和图6(b)详细描述散热装置10中的散热器200的具体结构。
如图6(a)所示,散热器200包括基板210和散热结构220。基板210和散热结构220可采用焊接、机加、切割、冲压或锻造工艺集成。其中,基板210具有第一导热面201和散热面(未图示),第一导热面201用于从热源30的导热面31上吸收热量,散热面用于将散热器200通过第一导热面201吸收的热量散出至散热结构220。散热结构220设置于基板210的散热面上,散热结构220包括并列排布的翅片221,其中,翅片221的形态与热源30的种类相关。相邻翅片221之间形成有风道222。散热器200的安装面为风道222的下表面(例如图6(b)中的202)。
具体地,弹性元件100的高度小于风道222的高度,弹性元件100的厚度小于风道222的宽度,弹性元件100的长度大于风道222的长度。弹性元件100按照弹性元件100的长度方向l l穿设于其中一风道222中,也即,弹性元件100的长度方向l l与风道222的延伸方向大致相同,且弹性元件100的第一端110和第二端120分别凸出于风道222的出风口和入风口,弹性元件100的波形130能够抵接于风道222的下表面。其中,风道222的延伸方向即为翅片221的延伸方向。弹性元件100抵接于风道222的下表面,并利用波形130变形产生的弹性力将散热器200弹性压合于热源30,以使基板210的第一导热面201弹性抵接于热源30的第二导热面31。
为了提高散热器200的散热效率,在本实施方式中,第一导热面201和散热面的位置相对且法向相反(法向相反是指第一导热面201的正法向和散热面的正法向的方向相反,也即第一导热面201和散热面的朝向相反),并尽可能保持第一导热面201上的任意一点到散热面上距离基本相等,以实现散热器200导热的一致性,进而实现对热源30的第二导热面31上各点均匀散热。其中,第一导热面201上的任意一点到散热面上距离基本相等指的是第一导热面201上的任意一点到散热面上最短距离在预定范围内浮动。
为了优化风道222中气体的流动状态,以改善散热器200的散热效果,在本实施方式中,如图6(b)所示,风道222中的风向d w与风道222的延伸方向d c平行。风道222中的风向d w指的是风道222中的气体流动方向,例如,图6(b)中的风向d w可以为从一风道222的左下端指向该风道222的右上端。在可替代的其他实施方式中,当风冷式散热器的风道截面为U型界面时,风道222中的风向d w也与风道222的延伸方向d c平行,且风道222的延伸方向d c与翅片221的延伸方向平行。
由于弹性元件100穿设于散热器200的风道222中,为了减少弹性元件100占用的风道222,以改善散热器200的散热效果,在本实施方式中,弹性元件100的长度方向、风道222中的风向d w与风道222的延伸方向d c三者平行。其中,弹性元件100占用的风道222是指弹性元件100穿设于风道222中的部分 在风道方向的垂直平面内的投影,当弹性元件100的高度较高,厚度较厚时,弹性元件100占用的风道较大,反之,则弹性元件100占用的风道222较小。
为了进一步减少弹性元件100占用的风道222,散热器200中风道222的延伸方向d c为某一直线方向时,也即翅片221和风道222沿着直线延伸时,弹性元件100的峰谷结构的波动形状处于同一平面内,也即弹性元件100的弯折轨迹处于同一平面内。其中,波动形状是指峰谷结构对应的波形,从一端向另一端波动延伸的轨迹。
可以理解的,对于翅片221和风道222沿着直线延伸的散热器200而言,散热器200的散热结构220的截面可以是“口”字形截面或者U型截面。具体地,当散热结构220的截面为“口”字形时,弹性元件100的第一端110从一风道222的一端(入风口或者出风口)穿入,并从该风道222的另一端(出风口或者入风口)穿出。当散热结构220的截面为U型截面时,弹性元件100的第一端110从一风道222的一端(入风口或者出风口)穿入,并从该风道222的另一端(出风口或者入风口)穿出;或者,弹性元件100的波形130从一风道222上部开口卡入该风道222中。
上述散热装置10中的弹性元件100,由于弹性元件100的峰谷结构的波动形状处于同一平面内,使得弹性元件100的厚度尺寸尽可能减小,使得峰谷结构的波动形状处于同一平面内的弹性元件100的结构精度优于螺旋结构的柱装弹簧120′,降低了成型难度,同时,峰谷结构的波动形状处于同一平面内的弹性元件100的安装精度优于螺旋结构的柱装弹簧120′,降低了安装难度。此外,合理布局峰谷结构的波动形状,处于同一平面内的弹性元件100在风道222中的延伸方向d c分布,能够减小占用的风道222,改善了风道222中气体流通,提高了散热器200的散热效率。
为了提高弹性元件100对散热器200压合的稳定性,以进一步提高散热器200对热源30的散热效果,在本实施方式中,弹性元件100的长度方向与风道222的延伸方向d c平行,弹性元件100的厚度方向与风道222的宽度方向平行,以使弹性元件100在厚度方向上的结构对称分布。
在其他可替代的方式中,当弹性元件100的峰谷结构的波动形状不处于同一平面内时,例如,在一些应用场景下,散热器200中风道222的延伸方向d c为波浪形态,也即,翅片221和风道222沿着波浪线延伸,则弹性元件100的峰谷结构的波动形状所处的面为波浪形态的曲面,且弹性元件100的长度方向、风道222的延伸方向d c以及风道222中的风向d w为同一方向,以尽可能减少弹性元件100占用的风道222。
可以理解的是,对于翅片221和风道222沿着波浪线延伸的散热器200而言,散热器200的散热结构220的截面为“U”字形。弹性元件100的波形130从一风道222上部开口卡入该风道222中,弹性元件100的波形130能够抵接于风道222的下表面,弹性元件100的第一端110从该风道222的一端(入风口或者出风口)穿出,弹性元件100的第二端120从该风道222的另一端(出风口或者入风口)穿出。
如图6(a)所示,在本实施方式中,基板210包括本体211和导热凸起212,散热面形成于本体211,导热凸起212从本体211中与散热面相对的一侧面朝背离本体211的方向向外突出,导热凸起212背对本体211的侧面为第一导热面201。也即,散热面形成本体211远离导热凸起212的一侧,第一导热面201形成于导热凸起212远离本体211的一侧。进一步地,第一导热面201上涂覆有导热层,以提高第一导热面201的热导效率。
为了节约成本,基板210中的第一导热面201与热源30的第二导热面31的尺寸相同,且在将托架300安装于电路板20上时,第一导热面201与第二导热面31重合。
为了改善基板210的导热效果,在本实施方式中,如图6(b)所示,本体211为真空腔均热板结构。具体地,本体211内形成有真空蒸发腔2112,真空蒸发腔2112包括靠近导热凸起212一侧的蒸发面2112a以及靠近散热结构220的冷凝面2112b,蒸发面2112a与冷凝面2112b之间设有支撑柱2111和附着于支撑柱2111周围的毛细结构(未图示),真空蒸发腔2112内还容纳有导热溶液,例如,导热溶液为导热工质或者水。当导热凸起212的第一导热面201从热源30的第二导热面31吸收热量后,蒸发面2112a周围的 导热溶液吸收热量并蒸发为气态,并在整个真空蒸发腔2112内扩散。当气态物质移动至冷凝面2112b附近时,冷凝面2112b吸收气态物质的热量,并将热量通过散热面传导至散热结构220。与此同时,气态物质温度降低,并在冷凝面2112b处凝结为液态而后通过毛细结构返回至蒸发面2112a附近,进而完成热量由小面积的第一导热面201迅速向大面积的散热面上的扩散。在可替代的其他实现方式中,本体211还可以为实体结构。
在描述完散热器200的具体结构之后,下面将进一步限定散热器200的核心受力点(Core Stress Point,CSP)的位置,以提高散热器200的第一导热面201与热源30的第二导热面31的贴合效果。图7(a)中用CSP表征本申请中核心受力点所处的位置,图7(b)中用CSP表征其他技术方案中核心受力点所处的位置。其中,核心受力点CSP指的是散热装置10安装于电路板20上时,散热器200上用于接收弹性元件100弹性力的受力区域,也就是,弹性元件100在散热器200上施加弹性力的部位,也即散热器200与弹性元件100峰谷接触的部位。对于散热器200的核心受力点CSP,下面将以散热装置10中每一个散热器200对应于两个弹性元件100为例进行说明。7(a)为本申请中一种散热器200的示意图,图中示出了弹性元件100、散热器200以及核心受力点CSP在第二导热面31所在平面内的正投影(以下某一部件在第二导热面31所在平面内的正投影简称为某一部件的正投影)。由上文可知,当将散热装置10安装于电路板20上时,热源30的第二导热面31与散热器200的导热凸起212上的第一导热面201重合,因此,散热器200的第一导热面201的正投影与热源30的第二导热面31重合。
如图7(a)所示,在本实施方式中,以图中右上角中的散热器200为例,其中一个弹性元件100的正投影沿着图中的l l分布,另一个弹性元件100的正投影沿着图中的l 2分布。其中,两个弹性元件100的正投影分布于热源30的第二导热面31上,其中第二导热面31包括第二导热面31内部和第二导热面31边缘。也即,两个弹性元件100分布于热源30的导热面31的正上方。例如,两个弹性元件100的峰谷结构与散热器200中的安装面的接触区域的正投影分布于热源30的第二导热面31上。换句话说,即两个弹性元件100的峰谷结构与散热器200中的安装面的接触区域位于热源30的第二导热面31在散热器200的安装面的正投影区域内。
进一步地,两个弹性元件100的正投影分布于热源30的导热面31的边缘。也即,弹性元件100分布于热源30的导热面31的边缘的正上方。例如,两个弹性元件100的峰谷结构与散热器200中的安装面的接触区域的正投影分布于热源30的第二导热面31的边缘位置。换句话说,即两个弹性元件100与散热器200中的安装面的接触区域位于热源30的第二导热面31在散热器200的安装面的正投影区域内的边缘位置。
在本实施方式中,散热器200的核心受力点CSP的正投影位于热源30的第二导热面31上,其中第二导热面31包括第二导热面31的内部和第二导热面31的边缘。换句话说,即两个弹性元件100与散热器200中的安装面的接触区域位于热源30的第二导热面31在散热器200的安装面的正投影区域内的边缘位置。
在可替代的其他实施方式中,散热装置10中每一个散热器200对应于三个或者三个以上的弹性元件100。其中两个弹性元件100的相对于散热器200和热源30的分布位置与上述实施例相同,其他的弹性元件100分布于两个弹性元件100之间,其他的弹性元件100与散热器200的安装面的接触区域正投影分布于热源30的第二导热面31内。也即其他的弹性元件100分布于热源30的正上方的中间位置处。
在可替代的其他实施方式中,散热装置10中每一个散热器200对应于三个或者三个以上的弹性元件100。其中两个弹性元件100的相对于散热器200和热源30的分布位置与上述实施例相同,其他的弹性元件100分布于两个弹性元件100之外的区域,其他的弹性元件100与散热器200的安装面的接触区域正投影分布于热源30的第二导热面31之外。也即其他的弹性元件100分布于热源30的正上方的周围区域。
进一步地,散热器200的核心受力点CSP的正投影位于热源30的第二导热面31的边缘位置处。其中, 第二导热面31的边缘位置指的是第二导热面31边缘±2mm范围内的区域。
下面将根据上述散热器200的核心受力点CSP的正投影与热源30的第二导热面31的位置关系,限定弹性元件100上用于压合散热器200的压合部。其中,压合部为弹性元件100用于抵压散热器200的部位。在将散热装置10安装于电路板20上时,散热器200的核心受力点CSP与弹性元件100的压合部贴合,压合部为弹性元件100上用于弹性贴合于散热器200的部位。例如,当散热器200的第一导热面201弹性抵接于热源30的第二导热面31时,如果核心受力点CSP的正投影位于第一导热面201的正投影的边缘,则弹性元件100的压合部的正投影位于热源30的第二导热面31的边缘。再例如,当散热器200的第一导热面201弹性抵接于热源30的第二导热面31时,如果核心受力点CSP的正投影位于第一导热面201的正投影内,则弹性元件100的压合部的正投影位于热源30的第二导热面31内。
上述实施方式中,通过合理布局散热器200的核心受力点CSP,例如将核心受力点CSP的正投影设于热源30的第二导热面31,使得弹性元件100向散热器200施加的弹性力,能够通过基板210中本体211和导热凸起212稳固地传递至热源30,进而实现散热器200的第一导热面201与热源30的第二导热面31的紧密贴合。如图7(b)示出的其他技术方案中,散热器200核心受力点CSP′的正投影分布于热源30的第二导热面31(散热器200的第一导热面201)的周围,因此,连接部件中的弹性结构(例如柱装弹簧120′)将散热器200弹性抵压于热源30周围,易造成柱装弹簧120′弹力差异大,进而导致散热器200与热源30的接触面无法有效传导热量的问题。
本实施方式与其他技术方案相比,一方面,优化了散热器200中基板210的受力情况,避免了核心受力点CSP的正投影分布于距离热源30的第二导热面31(导热凸起212)较远的位置,进而避免了本体211以导热凸起212边缘为支点,以核心受力点CSP为受力端的跷跷板式的受力模式。可以理解的是,跷跷板式的受力模式会影响基板210的结构稳定性,甚至会在第一导热面201的导热层较薄的情况下导致导热层分层,影响散热器200的散热效果和使用寿命。当基板210为真空腔均热板结构时,本实施方式中的核心受力点CSP分布模式能够有效降低传统浮动连接对真空腔均热板结构的刚度需求,有助于真空腔均热板结构减薄,实现散热器200整体瘦身。另外一方面,将核心受力点CSP的正投影设于热源30的第二导热面31上,使得散热器200直接施力于热源30的第二导热面31,提高散热器200与热源30贴合的紧密程度,进而提高散热器200对热源30散热效果。
为了进一步优化散热器200的受力情况,以降低对真空腔均热板结构的刚度需求。在本实施方式中,散热器200核心受力点CSP的正投影落在散热器200支撑柱2111的投影上,也即散热器200核心受力点CSP位于散热器200支撑柱2111的正上方,也即弹性元件100的压合部位于支撑柱2111的正上方。
为了保证散热装置10结构的稳定性,在本实施方式中,散热装置10利用至少两个弹性元件100将散热器200弹性结合安装于电路板20,使得散热器200的第一导热面201弹性抵接于热源30的第二导热面31时,至少两个弹性元件100中两个弹性元件100的压合部(散热器200的核心受力点CSP)位于热源30中第二导热面31的一对边缘的正上方。也就是说,散热装置10中的一个散热器200和一个热源30的浮动连接至少需要两个弹性元件100,且其中两个弹性元件100分别与散热器200的安装面接触的区域位于热源30的第二导热面31的一对相对的边缘的正上方。同时,由于三点能够确定一个平面,因此,散热器200针对两个弹性元件100的核心受力点CSP至少包括不在同一直线上的三点,也即两个弹性元件100的压合部覆盖不在同一直线上的三个点。例如,一个弹性元件100包括两个沿着弹性元件100的长度方向依次分布的压合部,另一个弹性元件100包括一个压合部,三个压合部不在同一直线上。
图7(c)示出了本申请中一种散热装置10的侧视图,其中未图示托架300;图7(d)示出了其他技术方案中一种散热装置10的侧视图,其中未图示托架300。对比图7(c)和图7(d)可知,本实施方式与其他技术方案相比:由于弹性元件100的厚度方向尺寸略等于条形弹性材料的线径,使得弹性元件100的厚度方向尺寸较小,弹性元件100的厚度范围为1.5mm~10mm,例如,弹性元件100的厚度方向尺寸最 小可达2mm;而其他技术方案中为了满足限位销钉110'的限位功能,以及柱装弹簧120'弹性力的要求,导致限位销钉110'和柱装弹簧120'的外径尺寸较大,其中,限位销钉110'的外径尺寸可达8~12mm,柱装弹簧120'的螺旋外径则需要大于8~12mm。因此,本实施方式中通过弹性元件100浮动连接散热器200和热源30,减少了对风道222的占用,改善了风道222中的气体流动,减小了整体风阻,提升了风道222中的通风量,改善了散热装置10的散热效果。本实施方式尤其适用于多个独立浮动散热器200并存的散热系统,其减小风阻的效果更为明显。同等体积下,本申请中的散热装置10能够提升通风量14%以上。
在描述散热器200的具体结构后,由于托架300用于支撑散热器200以及固定弹性元件100,因此,还需要进一步介绍托架300的具体结构。图8(a)为本申请中一种托架300的立体图。图8(b)为图8(a)中安装端400的放大图。图10(a)为本申请中一种托架300与电路板20的连接方式示意图。图10(b)为本申请中一种托架300与电路板20的连接方式剖视图。下面将结合图8(a)至图10(b)详细描述散热装置10中托架300的具体结构。
如图8(a)所示,在本实施方式中,托架300包括承托部310和限位部320。其中,承托部310为框架结构,框架结构上的镂空部311供散热器200中的导热凸起212穿过。限位部320设于承托部310的表面,与承托部310共同形成用于容置散热器200的容置空间。当将散热器200安装于托架300后,限位部320围设于本体211的外边缘,以将散热器200的第一导热面201与热源30的第二导热面31对齐。其中,散热器200厚度方向是指由基板210指向散热结构220的方向。限位部320的高度应保障散热器200正常工作状态下向上浮动到最高位置时不会从托架300脱出,同时还要尽可能少的影响到散热器200通风量。
托架300上设有用于连接弹性元件100的安装端400。具体的,安装端400形成于承托部310与限位部320连接处,且安装端400成对的分设于容置空间的两侧,安装端400开设有用于卡接弹性元件100的端部的安装孔410。进一步地,为了使得一件弹性元件100能够相对于热源30的中心线对称分布,以改善散热器200与热源30的贴合效果,安装端400相对于热源30的中心线对称分布。
在本实施方式中,安装孔410为通孔,如图8(b)所示,安装孔410包括开设于限位部320底部的弧形通槽411和开设于承托部310外侧的U型缺口412,其中,弧形通槽411开口向下覆设于U型缺口412的开口处,并与U型缺口412连通。安装孔410的第一开口411位于承托部310与限位部320连接处朝向容置空间的一侧。安装孔410的U型缺口412位于承托部310与限位部320连接处背向容置空间的一侧。
结合图8(b)和图8(c)可知,弹性元件100的第一端110为与安装孔410适配的卡钩110a。其中,虚线l b为卡钩110a和波形130的分界线,将分界线l b以下的部分称之为卡钩110a,将分界线l b以下的部分称之为波形130。卡钩110a包括连接部111a和钩合部112a,其中连接部111a一端与波形130的端部相连,连接部111a的另一端向着安装孔410延伸,并与钩合部112a相连。钩合部112a位于安装孔410内,并沿着弧形通槽411的长度方向延伸。结合图4可知,钩合部112a能够抵接至弧形通槽411的槽面,以实现弹性元件100与安装端400的固定。
通过将安装孔410开设为通孔,一方面,安装难度低、操作方便且散热装置10的结构稳定高,另一方面,通过安装孔朝向外的开口能够推动弹性元件100的端部回缩,并从安装孔410中脱出,便于检修及更换弹性元件100和散热器200等部件。
限位部320围设于本体211的外边缘,且限位部320与承托部310相配合以限制散热器200与承托部310在垂直于散热器200厚度方向的平面上的相对运动,也即,将散热器200放置于托架300上时,散热器200的本体211紧贴于承托部310和限位部320,为确保弹性元件100的两端能够顺利越过本体211和限位部320,并穿过安装孔410抵接至安装端400,以完成散热装置10的安装,结合图6(a)可知,基板210的边缘开设有避位缺口230。弹性元件100的两端先穿过避位缺口230,再穿过安装孔410,当托架300安装于电路板20时抵接至安装端400,以限制弹性元件100的两端与托架300之间的相对移动。
为了降低弹性元件100的安装难度,在本实施方式中,避位缺口230的尺寸大于弹性元件100中弹性 材料的线径。在一些情况下,开设避位缺口230的本体211上承载有翅片221,而该翅片221将避位缺口230分割为两部分,使得避位缺口230位于翅片221远离弹性元件100一侧的区域无法正常使用,也即此处的翅片221导致避位缺口230无法有效降低弹性元件100的安装难度。为了不影响避位缺口230的正常使用,以有效降低弹性元件100的安装难度,结合图6(a)可知,在本实施方式中,位于避位缺口230处的翅片221上开设有避让缺口240,避让缺口240与避位缺口230共同形成用于安装弹性元件100的两端的安装空间(未图示)。
在另外一种实现方式中,弹性元件100的两端直接固定于安装端400上,例如,弹性元件100的两端粘贴或者焊接于安装端400。通过将弹性元件100的两端固定于托架300,能够避免安装于托架300上的弹性元件100移动或转动,进而能够保持弹性元件100对散热器200压合状态的稳定性,提高散热装置10的稳定性。
为了直观的给出与其他技术方案中散热器200散热面积的影响,图9(a)为本申请中一种散热器200的俯视图,图9(b)为其他技术方案中一种散热器200的俯视图。本申请中,散热器200上仅开设有尺寸较小的避位缺口230和避让缺口240,而其他技术方案中开设有用于容置柱装弹簧120′以及限位销钉110′的缺口区域D g,对比图9(a)与图9(b)不难发现本申请提高了翅片221的有效散热面积。同等体积下,本申请增大翅片221的面积5%以上。此外,由于散热器200上开设的避位缺口230和避让缺口240仅用于弹性元件100的两端穿过,并不需要限定弹性元件100具体位置,因此避位缺口230和避让缺口240的加工精度要求不高,降低了散热器200的加工难度。
如图8(a)所示,在本实施方式中,托架300还包括增高部330,增高部330从限位部320背离承托部310的表面朝背离承托部310的方向凸出。增高部330用于限制散热器200脱离托架300。增高部330用于确保异常情况下散热器200不脱出,以提高散热装置10的安全性。
如图8(a)所示,在本实施方式中,增高部330形成于限位部320的局部区域。上述托架300在通过增高部330提高安全性能时,减轻托架300的重量,实现散热装置10的轻量化设计,同时降低原材料成本,提高经济效益。
如图8(a)所示,在本实施方式中,当一个托架300对应于两个或者两个以上散热器200时,对于位于两个散热器200之间的安装端400″而言,安装端400″中的安装孔410″可同时适配两根弹性元件100,其中两根弹性元件100用于分别固定安装端400″两侧的两个散热器200。上述托架300减少了安装端400及安装孔410的数量,简化了加工步骤,优化了整体结构。
如图8(b)所示,在本实施方式中,增高部330从形成有安装端400的限位部320朝背离安装端400的方向凸出。也即,增高部330、以及与增高部330依次相接的限位部320和承托部310共同组成安装端400。也即,安装端400形成于增高部330、以及与增高部330邻近的限位部320和承托部310之间。上述安装端400,增大了安装孔410周围的实体尺寸,提高了安装端400的机械强度,优化托架300的整体结构。
如图8(a)所示,在本实施方式中,限位部320上朝向容置空间的面设置为第一导向面340,第一导向面340用于引导弹性元件100的两端进入安装孔410的方向,同时第一导向面340还用于引导散热器200进入容置空间的方向。因此,上述第一导向面340能够降低散热装置10的安装难度。
在本实施方式中,根据图8(c)可知,弹性元件100的第一端110和第二端120上还设有与托架300上第一导向面340适配的第二导向面101。例如,在将弹性元件100的第一端110安装于托架300的安装端400时,先将第一端110的第二导向面101抵接至托架300上的第一导向面340,驱动第一端110,以使第二导向面101沿着第一导向面340滑动,直至第一端110滑入安装孔410并抵接于安装端400,完成第一端110与安装端400的安装。在其他可替代的实施方式中,第一端110滑入安装孔410后,容置于安装孔410内,并未抵接于安装端400,当将托架300安装于电路板20上时,第一端110抵接于安装端400。
在本实施方式中,如图8(b)所示,对于设有增高部330的限位部320而言,增高部330上朝向容置空间的面设置为第一导向面340。
如图10(a)所示,散热器200为风冷式散热器时,热源30为方形结构,在本实施方式中,紧固螺钉50与托架300上的紧固孔(未图示)以及电路板20上连接孔(未图示)相配合,以将托架300安装于电路板20上,散热器200的风道222沿着d c方向延伸。下面以图10(a)中下方的热源30以及与之相适应的托架300部分为例详细说明托架300与热源30的相对位置。托架300环设于热源30周围,托架300上设有用于安装一弹性元件100的第一安装端400a、第二安装端400b,以及用于安装另一弹性元件100的第三安装端400c和第四安装端400d,其中,第一安装端400a和第二安装端400b分设于热源30的两侧,第三安装端400c和第四安装端400d分设于热源30的两侧。
其中,第一安装端400a、热源30和散热器200、第二安装端400b构成对弹性元件100的三点弯曲支撑模型。热源30和散热器200限制弹性元件100中间位置处向下移动,第一安装端400a和第二安装端400b用于限制弹性元件100的两端向上移动。在将托架300安装于电路板20的过程中,托架300带动弹性元件100的两端向下移动,使得弹性元件100的波形130发生变形,并通过波形130变形产生向下的弹性力,进而弹性元件100通过弹性力将散热器200弹性结合于电路板20,以使散热器200的第一导热面201弹性抵接于热源30的第二导热面31。
在本实施方式中,用于安装弹性元件100端部的安装部400可根据散热器200中的风道222适应性调整。例如,图10(a)中,用于安装一弹性元件100的安装端400a和安装端400b分布于一风道222的延伸线上(图中222用于示意散热器200中用于穿设弹性元件100的风道222的分布位置)。
在其他可替换的实施方式中,还可以通过增大安装端400中安装孔410的尺寸以适配散热器200中的风道222。
如图10(b)所示,在本实施方式中,托架300设于散热器200与电路板20之间,并通过紧固螺钉50可拆卸地安装于电路板20。同时,为了避免电路板20变形,电路板20下方还设有强化板40,紧固螺钉50穿过电路板20上通孔后,紧固螺钉50下端紧固至强化板40上的紧固部件41。通过强化板40和托架300两面夹持电路板20,避免由于热源30较高导致电路板20变形。
在本实施方式中,对于同一电路板20上设有两个或者两个以上的热源30的情况,托架300上的具有用于安装两个或者两个以上散热器200的多组安装端400。进而与其他技术方案中直接将散热器200安装于电路板20的场景相比,每组散热装置10均需要4颗紧固螺钉50,占用了电路板20的较大面积,提高了散热装装10布局于电路板20上的难度。如图11(a)和图11(b)所示,本申请中包括散热器200a、散热器200b和散热器200c的散热装置10对应有9个紧固孔350,也即包括3个散热器(如图11(a)中的200a、200b和200c)的散热装置10通过9个紧固螺钉50即能够稳定紧固于电路板20上,散热器200和紧固螺钉50不需要按照4:1的比例配置,故可节省电路板20的安装面积占用量,优化电路板20上功能部件的布局。
图12为本申请中一种弹性元件100中各个尺寸的示意图。图13(a)~图13(d)为本申请中几种弹性元件100的立体图。下面将结合图12至图13(d)详细描述散热装置10中弹性元件100的具体特征。
对于不同类型的散热器200而言,由于结构的差异,例如第一导热面201上导热层的差异以及第一导热面201成型精度的差异,导致不同类型的散热器200需要不同的压合力来将散热器200浮动且稳固的结合在热源30上。当托架300、电路板20和热源30的结构及相对位置确定的情况下,通过调整条形弹性材料的材质和尺寸,以及弹性元件100的波形形态,以获取压合力适配于不同类型散热器200的弹性元件100。
具体地,波形形态包括波形130中波形单元的数量,波形单元的折弯程度,波形130上压合部的位置及形状,弹性元件100的高度(如图12中的h值),弹性元件100的两端与压合部的高度落差(如图12中的Δh值)。其中,波形单元的数量与条形弹性材料的长度正相关,容易理解地,条形弹性材料的长度与 热源30上第二导热面31的尺寸正相关。因此,第二导热面31的尺寸越大,则条形弹性材料长度越长,进而波形单元的数量越多;反之,第二导热面31的尺寸越小,则条形弹性材料长度越短,进而波形单元的数量越少。通过根据散热器200的安装面202与第一导热面201的相对位置、热源30的第二导热面31的位置、以及托架300上弧形槽的位置,合理布局弹性元件100的高度差Δh以及弹性元件100的高度尺寸,以使得散热装置10中弹性元件100向散热器200提供向托架300预压紧的预紧力,以及使得散热装置10中弹性元件100向散热器200提供向热源30压紧的压力。
对于同一长度尺寸的条形弹性材料,波形单元的数量与散热器200的受力均匀性正相关,也即波形单元的数量越多,则该弹性元件100施加给散热器200的压合力更均匀。
在本实施方式中,为了提高弹性元件100压合力的均匀性,如图12所示,波形相对于弹性元件100的中心线对称分布。也即图12中弹性元件的长度S 1与两倍的弹性元件的一端与中点P C在弹性元件长度方向上的距离S 2的差异值小于预设值。其中,预设值可以为2mm。
如图13(a)至图13(c)所示,在本实施方式中,弹性元件100中的波形130为若干个波形单元,其中波形单元的形状为正弦波或类正弦波。弹性元件100通过波形130的波谷或波峰弹性结合散热器200与电路板20。也即,弹性元件100将波形130中的波谷或波峰作为施力部,进而通过波形130变形时波谷或波峰处的弹性力将散热器200弹性结合于电路板20。可以理解的是,在另外一种实现方式中,波形单元的形状还可以为余弦波或类余弦波。
如图13(a)至图13(c)所示,弹性元件100通过波峰或波谷弹性抵接于散热器200时,则弹性元件100的波峰点或者波谷点压接于散热器200,也即弹性元件100的压合部为点状。当波形130中波形单元的数量为偶数个时,例如图13(a)中波形130包括两个侧部波形131,再例如图13(c)中波形130包括四个侧部波形131,偶数个侧部波形131对称分布于弹性元件100中心线l c的两侧。当波形130中波形单元的数量为奇数个时,例如图13(b)中波形130包括两个侧部波形131以及一个中间波形132,其中,中间波形132分布于弹性元件100长度方向的中间位置处,侧部波形131对称分布于弹性元件100中心线l c的两侧。
如图13(d)所示,在可替代的其他实施方式中,弹性元件100中的波形130包括至少两个波形单元,以及者两个波谷之间的抵压部133,其中波形单元为正弦波或类正弦波,抵压部133为线状结构。弹性元件100将抵压部133作为施力部,进而通过抵压部133两侧的波形单元变形时,波谷或波峰处的弹性力带动抵压部133将散热器200弹性结合于电路板20。可以理解的是,在另外一种实现方式中,波形单元还可以为余弦波或类余弦波。弹性元件100为通过抵压部133弹性抵接于散热器200的结构时,弹性元件100的压合部为线状。
在本实施方式中,弹性元件100处于自然状态时,靠近中点的波形130的挠度大于靠近弹性元件100的两端的波形130的挠度。
本申请还提供一种弹性元件100,为上述任意一种弹性元件100。弹性元件100由一根条形弹性材料弯曲成波形构成,弹性元件100的两端用于分别安装于一构件上相应的两个安装端400。弹性元件100利用波形130变形产生的弹性力,将另一构件弹性结合安装于一构件。上述弹性元件100形态类似蛇移动过程中呈现的形态,具有设计容差较大,安装难度低,力学性能稳定的优点。
本申请还提供一种散热装置10的装配方法,适用上述任意一种散热装置10的装配。根据图4至图15可知,本申请中散热装置10的装配方法具体包括以下步骤:
步骤S1501:将散热器200放置于托架300上,其中,散热器200的第一导热面201朝向托架300。
步骤S1502:将弹性元件100放置于散热器200具有安装面202的一侧。
具体地,当散热器200为风冷式散热器时,安装面202为风道222底面,弹性元件100穿设于散热器200中其中一个风道222,也即弹性元件100位于散热器200中基板210的上方。当散热器为液冷式散热 器时,安装面202为散热器200的上表面,弹性元件100设置于散热器200的上方。
步骤S1503:将弹性元件100的第一端110安装于托架300的第一安装端400a。
具体地,先将第一端110的第二导向面101抵接至托架300上的第一导向面340,驱动第一端110,以使第二导向面101沿着第一导向面340滑动,直至第一端110滑入安装孔410并抵接于第一安装端400a,完成第一端110与第一安装端400a的安装。
步骤S1504:向弹性元件100施加外力以改变弹性元件100中峰谷结构(也即波形130)的形状,并将弹性元件100的第二端120安装于托架300的第二安装端400b。
具体地,向弹性元件100施加外力以改变弹性元件100的波形130的形状中,波形130的变形可以是波形130的长度方向的尺寸缩短,同时,第二端120安装另一安装端400的安装方法与第一端110安装一安装端400的步骤相同,在此不作赘述。
在本实施方式中,为了便于安装,将弹性元件100的第一端110安装于托架300的第一安装端400a时,散热器200相对于托架300倾斜。在将弹性元件100的第二端120安装于托架300的第二安装端400b之前,以弹性元件100的第一端110为支点,旋转弹性元件100和散热器200,以调整散热器200的布置方向至托架300的放置方向相同。其中,散热器200的放置方向与托架300的放置方向相同时,弹性元件100的第二端120开始进入第二安装端400b的安装孔410。
本申请还提供一种电路模组1,包括电路板20、电子元器件和上述任意一种散热装置10;其中,电路板20作为电路板,电子元器件作为热源30;电子元器件设有第二导热面31,散热器200设有与第二导热面31适配的第一导热面201,电子元器件的第二导热面31与散热器200的第一导热面201位置相对;弹性元件100的两端分别安装于托架300上相应的两个安装端400,托架300安装于电路板20上。利用弹性元件100将散热器200弹性结合安装于电路板20,以使散热器200的第一导热面201弹性抵接于电子元器件的第二导热面31。
上述电路模组1中,弹性元件100通过两端安装于托架300,通过波形130变形产生的弹性力将散热器200弹性结合安装于电路板20,以使散热器200的第一导热面201紧密贴合于电子元器件的第二导热面31。上述电路模组1中散热器200对电子元器件的散热效果良好,且散热器200、电子元器件和电路板20的受力状态良好,尤其适用于结构紧凑的电子设备。
在本实施方式中,电子元器件为产热较高、散热较慢的芯片。
在本实施方式中,为了避免电路板20变形,电路板20下方还设有强化板40,紧固螺钉50穿过电路板20上通孔后,紧固螺钉50的下端紧固至强化板40。通过强化板40和托架300两面夹持电路板20,避免由于热源30较高导致电路板20变形,一方面保证电路板20功能元器件的连接可靠性,另一方面确保热源30的第二导热面31与散热器200的第一导热面201的紧密贴合。
本申请还提供一种电子设备,包括上述任意一种电路模组1,在此不作赘述。上述包含上述电路模组1的电子设备,其内部的电路板20、电子元器件和散热器200的受力状态良好,整体结构稳定,散热效果良好。
本申请还提供一种电路模组1的装配方法,适用上述任意一种电路模组1的装配。根据图4至图14和图16可知,本申请中电路模组1的装配方法具体包括以下步骤:
步骤S1601:将散热装置10放置于电路板20上,其中,散热装置10中散热器200的第一导热面201朝向电路板20上的热源30的第二导热面31。
步骤S1602:通过紧固件将散热装置10中的托架300固定于电路板20。其中,紧固件可以是紧固螺钉。
其中,散热装置10可以为已经装配好的散热装置,其装配方法可以根据上文中的步骤S1501至步骤S1503安装。
在可替换的其他实施方式中,散热装置10可以为尚未装配的弹性元件100、散热器200、托架300,则步骤S1601之前还包括散热装置10的安装步骤,其中,散热装置10的安装步骤可以与图15中散热装置10的安装步骤S1501至步骤S1503相同,在此不赘述。
上述电路模组1的装配方法,先将弹性元件100的第一端110安装于托架300中的第一安装端400a,通过施加外力以使波形130变形,进而调整弹性元件100的两端(110和120)之间的距离,以便于将弹性元件100的第二端120安装于托架300中的第二安装端400b,安装步骤简单,操作方法简便。此外,先将弹性元件100和散热器200安装于托架300,再将托架300安装于电路板20,能够有效避免弹性元件100和散热器200安装过程中刮伤电路板20上的电子元器件,提高电路模组1的良品率。
在可替换的其他实施方式中,散热装置10可以为尚未装配的弹性元件100、散热器200、托架300,本申请还提供另外一种电路模组1的装配方法,适用上述任意一种电路模组1的装配。根据图4至图14和图17可知,本申请中电路模组1的装配方法具体包括以下步骤:
步骤S1701:通过紧固件将托架300安装于电路板20。其中,紧固件可以是紧固螺钉。
步骤S1702:将散热器200放置于托架300上,其中,散热器200的第一导热面201朝向托架300。
步骤S1703:将弹性元件100放置于散热器200具有安装面202的一侧。
步骤S1704:将弹性元件100的第一端110安装于托架300的第一安装端400a。
步骤S1705:向弹性元件100施加外力以改变弹性元件100的峰谷结构(也即波形130)的形状,将弹性元件100的第二端120安装于托架300的第二安装端400b。
如图18所示,在本申请另一种可能的实施例中,当电路板20上具有单个电子元器件,或者电路板20上的电子元器件之间的间距较大时,或者电路板20上电子元器件的功耗较低时,与上述图2所示的实施例不同的是,本申请实施例可以适用于无托架的场景中,通过弹性元件100和电路板20上的安装端400"'实现散热器200在电路板20上的安装,下面将具体说明。
如图2所示,本申请中散热装置10包括弹性元件100、散热器200和托架300,用于安装弹性元件100的第一端110和第二端120的安装端400位于托架300上。散热装置10的电路模组1的装配方法为先通过弹性元件100将散热器200安装于托架300,而后将托架300安装于电路板20。
对比图2与图18可知,本申请中散热装置10"'与散热装置10的不同之处在于,散热装置10"'包括弹性元件100和散热器200,而用于安装弹性元件100的第一端110和第二端120的安装端400"'直接设于电路板20上,例如,安装端400"'为开设于电路板20板面内的安装孔(未标示)。包括散热装置10"'的电路模组1"'的装配方法为直接通过弹性元件100将散热器200安装于电路板20。
具体地,本申请提供一种散热装置10"',包括散热器200和弹性元件100。散热器200用于对电路板20上的热源30进行散热。热源30设有第二导热面31,散热器200设有与第二导热面31适配的第一导热面(未图示)。当将弹性元件100的两端分别安装于电路板20上相应的两个安装端400"'时,利用弹性元件100将散热器200弹性结合安装于电路板20上的热源30,以使散热器200的第一导热面弹性抵接于热30的第二导热面31。
上述散热装置10"',由于弹性元件100的安装部(第一端110和第二端120)与施力部(波形130)不同,使得施力部能够直接设于热源30的正上方,进而实现弹性元件100对散热器200在热源30正上方位置处的压接。因此,上述散热装置10"'能够提高散热器200的第一导热面和热源30的导热31贴合的稳定性,能够提高贴合处应力分布的均匀性,同时还能够改善散热器200的受力状态,能够延长散热器200的使用寿命,此外无需在散热装置10"'上开设安装孔,增大散热器200的有效散热面积,改善散热器200对热源30的散热效果。此外,散热装置10"'中的部件数量较少,便于控制尺寸误差。
本实施方式中,电路板20上相应的两个安装端400"'具体包括电路板20上开设有安装孔的第一安装端400a"'和第二安装端400b"',热源30为安装于电路板20上的电子元器件。
本申请还提供一种弹性元件100,该弹性元件100的结构与散热装置10中的弹性元件100的结构相同,但应用场景的不同之处在于,散热装置10"'中弹性元件100的第一端110与第二端120用于安装于电路板20上安装端400"',在此不作赘述。
本申请还提供了一种电路模组1"',该电路模组1"'的结构与电路模组1的结构基本相同,其不同之处在于,电路模组1"'中所采用的散热装置10"'为本申请所提供的任一种散热装置,且电路板20上设有安装端400"',弹性元件100的两端分别安装于电路板20上相应的两个安装端400"',也即散热装置10"'与电路板20之间的连接方式不同。
本申请中还提供一种电子设备,该电子设备包括至少一组电路模组1"',该电子设备的结构与包括至少一组电路模组1的电子设备的结构基本相同,其不同之处在于,两者采用的电路模组不同,在此不作赘述。
本申请中还提供电路模组1"'的装配方法,适用于任意一种电路模组1"'的装配。根据图19可知,本申请中电路模组1"'的装配方法具体包括以下步骤:
步骤S1901:将散热器200放置于电路板20上,其中,散热器200的第一导热面201朝向电路板20上的热源30的第二导热面31。
步骤S1902:将弹性元件100放置于散热器200具有安装面202的一侧。
步骤S1903:将弹性元件100的第一端110安装于电路板20的第一安装端400a"'。
步骤S1904:向弹性元件100施加外力以改变弹性元件100的峰谷结构(也即波形130)的形状,将弹性元件100的第二端120安装于电路板20的第二安装端400b"'。
进而使得散热器200在波形变形产生的弹性力的作用下弹性结合安装于电路板20,以实现散热器200的第一导热面201与电路板20上热源30的第二导热面31的弹性抵接。
以上由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以上描述中包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在上面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种散热装置(10),其特征在于,应用于具有热源(30)的电路板(20),以对所述热源(30)进行散热,所述散热装置(10)包括:
    托架(300),所述托架(300)包括开设有装配开口的承托部(310),所述承托部(310)用于固定于所述电路板(20);
    散热器(200),所述散热器(200)包括相对的第一导热面(201)和安装面(202),所述散热器(200)放置于所述承托部(310)上,其中,所述第一导热面(201)朝向所述承托部(310),并用于穿入所述装配开口以贴合于所述热源(30)的第二导热面(31);
    至少一个弹性元件(100),每个所述弹性元件(100)为条状具有峰谷结构的弹性件,每个所述弹性元件(100)的所述峰谷结构设置于所述散热器(200)的所述安装面(202),每个所述弹性元件的两端分别固定于所述托架(300);
    所述至少一个弹性元件(100)用于向所述散热器(200)提供向所述热源(30)紧贴的压力。
  2. 根据权利要求1所述的散热装置(10),其特征在于,所述弹性元件(100)的所述峰谷结构弹性抵接于所述散热器(200)的所述安装面(202),所述散热器(200)弹性结合于所述托架(300)。
  3. 根据权利要求1或2所述的散热装置(10),其特征在于,每个所述弹性元件(100)的两端与所述托架(300)可拆卸连接。
  4. 根据权利要求3所述的散热装置(10),其特征在于,每个所述弹性元件(100)的两端分别包括向着所述托架(300)延伸的钩合部(112a);
    所述托架(300)上设有位于所述散热器(200)两侧的两个安装端(400),且两个所述安装端(400)分别开设有与所述钩合部(112a)适配的安装孔(410);
    每个所述弹性元件(100)的两端中的所述钩合部(112a)分别卡接于两个所述安装端的所述安装孔(410)内。
  5. 根据权利要求4所述的散热装置(10),其特征在于,所述散热器(200)还包括散热结构(220),所述散热结构(220)设于背向所述第一导热面的一侧:
    所述散热结构(220)包括并列排布的多个翅片(221),所述多个翅片(221)之间形成多个风道(222);每个所述弹性元件(100)对应穿设于所述多个风道(222)中的一个风道(222)。
  6. 根据权利要求5所述的散热装置(10),其特征在于,每个所述弹性元件(100)的长度方向与其穿设的所述风道(222)的延伸方向平行。
  7. 根据权利要求5或6所述的散热装置(10),其特征在于,每个所述弹性元件(100)的所述峰谷结构的波动形状处于同一平面内。
  8. 根据权利要求5-7中任一项所述的散热装置(10),其特征在于,每个所述弹性元件(100)的厚度范围为1.5mm~10mm,其中厚度方向为垂直于所述峰谷结构的波动形状的方向。
  9. 根据权利要求5-8中任一项所述的散热装置(10),其特征在于,所述托架(300)还包括:
    限位部(320),所述限位部(320)设置于所述承托部(310),并与所述承托部(310)共同形成用于容置所述散热器(200)的容置空间,所述限位部(320)围设于所述散热器(200)的外边缘,且所述散热器(200)的外边缘开设有避位缺口(230);
    所述安装端(400)形成于所述承托部(310)与所述限位部(320)的连接处;
    每个所述弹性元件(100)的两端穿设于所述避位缺口(230),并卡接于所述安装孔(410)内。
  10. 根据权利要求9所述的散热装置(10),其特征在于,位于所述避位缺口(230)处的所述翅片(221)上开设有避让缺口(240),所述避让缺口(240)与所述避位缺口(230)共同形成用于将每个所述弹性元件(100)的两端安装至所述安装孔(410)的安装空间。
  11. 根据权利要求9或10所述的散热装置(10),其特征在于,所述托架(300)还包括增高部(330),所述增高部(330)从所述限位部(320)朝背离所述承托部(310)的方向凸出,所述增高部(330)用于限制所述散热器(200)脱离所述托架(300)。
  12. 根据权利要求11所述的散热装置(10),其特征在于,所述增高部(330)从形成有所述安装端的所述限位部(320)朝背离所述安装端的方向凸出。
  13. 根据权利要求9-12中任一项所述的散热装置(10),其特征在于,所述限位部(320)上朝向所述容置空间的面为第一导向面(340),所述弹性元件(100)的两端设有与所述第一导向面(340)适配的第二导向面(101);所述第一导向面(340)与所述第二导向面(101)相配合,以引导所述弹性元件(100)的两端进入所述安装孔(410)的方向。
  14. 根据权利要求1-13中任一项所述的散热装置(10),其特征在于,每个所述弹性元件(100)用于抵压所述散热器(200)的压合部为点状或者线状。
  15. 根据权利要求1-13中任一项所述的散热装置(10),其特征在于,所述至少一个弹性元件(100)具体包括两个弹性元件(100),所述每个所述弹性元件(100)用于抵压所述散热器(200)的压合部为点状时,所述两个弹性元件(100)之间的压合部不在一条直线上。
  16. 根据权利要求1-15中任一项所述的散热装置(10),其特征在于,每个所述弹性元件(100)相对于所述弹性元件(100)的中心线对称分布,所述中心线为经过所述弹性元件(100)的中点并垂直于所述弹性元件(100)的长度方向的直线。
  17. 根据权利要求16所述的散热装置(10),其特征在于,每个所述弹性元件(100)处于自然状态时,靠近所述中点的所述峰谷结构的挠度大于靠近两端的所述峰谷结构的挠度。
  18. 一种散热装置(10),其特征在于,应用于具有热源(30)的电路板(20),以对所述热源(30)进行散热,包括:
    散热器(200),所述散热器(200)包括相对的第一导热面(201)和安装面(202);
    至少一个弹性元件(100),每个所述弹性元件(100)为条状具有峰谷结构的弹性件,每个所述弹性元件(100)的所述峰谷结构设置于所述散热器(200)的所述安装面(202),每个所述弹性元件(100)的两端用于分别固定于所述电路板(20)上,以使所述散热器的所述第一导热面(201)贴合于所述热源(30)的第二导热面(31);
    所述至少一个弹性元件(100)用于向所述散热器(200)提供向所述热源(30)紧贴的压力。
  19. 一种电路模组(1),其特征在于,包括如权利要求1-17中任一项所述的散热装置(10)、电路板(20)以及安装于所述电路板(20)上的电子元器件;
    所述电子元器件为所述热源(30);
    所述电路板(20)位于所述托架(300)背离所述散热器(200)的一侧,并与所述托架(300)固定;所述热源(30)的所述第二导热面(31)朝向所述装配开口。
  20. 根据权利要求19所述的电路模组(1),其特征在于,所述弹性元件(100)的所述峰谷结构与所述散热器(200)的所述安装面(202)的接触区域位于所述电子元器件的所述第二导热面在所述安装面(202)的正投影区域内。
  21. 根据权利要求20所述的电路模组(1),其特征在于,所述弹性元件(100)的所述峰谷结构与所述散热器(200)的所述安装面(202)的接触区域位于所述电子元器件的所述第二导热面在所述安装面(202)的正投影区域内的边缘位置。
  22. 根据权利要求21所述的电路模组(1),其特征在于,所述至少一个弹性元件(100)具体包括两个弹性元件(100),且两个所述弹性元件(100)的所述峰谷结构分别与所述散热器(200)的所述安装面(202)的接触区域位于所述电子元器件的所述第二导热面在所述安装面(202)的正投影区域内的边缘位置。
  23. 一种电路模组(1),其特征在于,包括如权利要求18所述的散热装置(10)、电路板(20)以及安装于所述电路板(20)上的电子元器件;
    所述电子元器件作为所述热源(30);
    所述弹性元件(100)的两端分别固定于所述电路板(20)。
  24. 根据权利要求23所述的电路模组(1),其特征在于,所述电路板(20)上开设有安装孔(410),所述弹性元件(100)的两端分别卡接于所述安装孔(410)内。
  25. 一种电子设备,其特征在于,包括权利要求19-24中任一项所述的电路模组。
  26. 一种电路模组(1)的装配方法,其特征在于,所述电路模组(1)为如权利要求19至22中任一项所述的电路模组(1),所述装配方法包括:
    将所述散热装置(10)放置于所述电路板(20)上,其中,所述散热装置(10)中所述散热器(200)的所述第一导热面(201)朝向所述电路板(20)上的所述热源(30)的所述第二导热面(31);
    通过紧固件将所述散热装置(10)中的所述托架(300)固定安装于所述电路板(20)。
  27. 根据权利要求26所述的装配方法,其特征在于,所述装配方法中所述散热装置(10)的装配方法包括:
    将所述散热器(200)放置于所述托架(300)上,其中,所述散热器(200)的所述第一导热面(201)朝向所述托架(300);
    将所述弹性元件(100)放置于所述散热器(200)具有所述安装面(202)的一侧;
    将所述弹性元件(100)的一端安装于所述托架(300)的第一安装端(400a);
    向所述弹性元件(100)施加外力以改变所述弹性元件(100)的所述峰谷结构的形状,并将所述弹性元件(100)的另一端安装于所述托架(300)的第二安装端(400b)。
  28. 一种电路模组(1″′)的装配方法,其特征在于,所述电路模组(1″′)为如权利要求23或24所述的电路模组(1″′),所述装配方法包括:
    将所述散热器(200)放置于所述电路板(20)上,其中,所述散热器(200)的所述第一导热面(201)朝向所述电路板(20)上的所述热源(30)的所述第二导热面(31);
    将所述弹性元件(100)放置于所述散热器(200)具有所述安装面(202)的一侧;
    将所述弹性元件(100)的一端安装于所述电路板(20)的第一安装端(400a″′);
    向所述弹性元件(100)施加外力以改变所述弹性元件(100)的形状,将所述弹性元件(100)的另一端安装于所述电路板(20)的第二安装端(400b″′)。
PCT/CN2022/099597 2021-06-22 2022-06-17 散热装置、电路模组、电子设备及电路模组的装配方法 WO2022267999A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22827494.0A EP4343829A1 (en) 2021-06-22 2022-06-17 Heat dissipation apparatus, circuit module, electronic device, and method for assembling circuit module
US18/389,923 US20240121881A1 (en) 2021-06-22 2023-12-20 Heat dissipation apparatus, circuit module, electronic device, and circuit module assembly method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110693775.1A CN115515295A (zh) 2021-06-22 2021-06-22 散热装置、电路模组、电子设备及电路模组的装配方法
CN202110693775.1 2021-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/389,923 Continuation US20240121881A1 (en) 2021-06-22 2023-12-20 Heat dissipation apparatus, circuit module, electronic device, and circuit module assembly method

Publications (1)

Publication Number Publication Date
WO2022267999A1 true WO2022267999A1 (zh) 2022-12-29

Family

ID=84499573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099597 WO2022267999A1 (zh) 2021-06-22 2022-06-17 散热装置、电路模组、电子设备及电路模组的装配方法

Country Status (4)

Country Link
US (1) US20240121881A1 (zh)
EP (1) EP4343829A1 (zh)
CN (1) CN115515295A (zh)
WO (1) WO2022267999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116791029A (zh) * 2023-08-28 2023-09-22 江苏西迈科技有限公司 一种基底容纳装置及掩膜支撑与对准设备
CN117177502A (zh) * 2023-11-02 2023-12-05 博鼎精工智能科技(山东)有限公司 一种电力储能控制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709725B (zh) * 2023-04-19 2024-02-06 东莞市万亨达热传科技有限公司 高密度复合散热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239238A (zh) * 1998-06-17 1999-12-22 富准精密工业(深圳)有限公司 固定夹具
TWM247880U (en) * 2002-05-07 2004-10-21 Delta Electronics Inc Assembling fastener of heat sink
CN1592967A (zh) * 2001-09-28 2005-03-09 英特尔公司 焊接的散热器紧固件和使用方法
US20080000618A1 (en) * 2006-06-28 2008-01-03 Robert Liang Heat Dissipating Module
US20110061847A1 (en) * 2009-09-11 2011-03-17 Meng-Hsiu Hsieh Heat dissipation device
CN105684564A (zh) * 2013-09-30 2016-06-15 阿威德热合金有限公司 用于经完全组装附接至发热部件的具有框架夹的散热器组件
CN206100764U (zh) * 2016-09-12 2017-04-12 爱美达(上海)热能系统有限公司 一种散热器装配扣紧机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239238A (zh) * 1998-06-17 1999-12-22 富准精密工业(深圳)有限公司 固定夹具
CN1592967A (zh) * 2001-09-28 2005-03-09 英特尔公司 焊接的散热器紧固件和使用方法
TWM247880U (en) * 2002-05-07 2004-10-21 Delta Electronics Inc Assembling fastener of heat sink
US20080000618A1 (en) * 2006-06-28 2008-01-03 Robert Liang Heat Dissipating Module
US20110061847A1 (en) * 2009-09-11 2011-03-17 Meng-Hsiu Hsieh Heat dissipation device
CN105684564A (zh) * 2013-09-30 2016-06-15 阿威德热合金有限公司 用于经完全组装附接至发热部件的具有框架夹的散热器组件
CN206100764U (zh) * 2016-09-12 2017-04-12 爱美达(上海)热能系统有限公司 一种散热器装配扣紧机构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116791029A (zh) * 2023-08-28 2023-09-22 江苏西迈科技有限公司 一种基底容纳装置及掩膜支撑与对准设备
CN116791029B (zh) * 2023-08-28 2023-11-21 江苏西迈科技有限公司 一种基底容纳装置及掩膜支撑与对准设备
CN117177502A (zh) * 2023-11-02 2023-12-05 博鼎精工智能科技(山东)有限公司 一种电力储能控制装置
CN117177502B (zh) * 2023-11-02 2024-03-12 博鼎精工智能科技(山东)有限公司 一种电力储能控制装置

Also Published As

Publication number Publication date
US20240121881A1 (en) 2024-04-11
EP4343829A1 (en) 2024-03-27
CN115515295A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2022267999A1 (zh) 散热装置、电路模组、电子设备及电路模组的装配方法
US10477731B1 (en) Liquid-cooled radiator
US8004846B2 (en) Heat radiator
US8459343B2 (en) Thermal module assembly and heat sink assembly having at least two engageable heat sinks
US9316863B2 (en) Display system with distributed LED backlight
EP2770530A2 (en) Electronic component unit and fixing structure
JP7118186B2 (ja) 放熱装置
US20150085442A1 (en) Computer provided with cooling system
CN112004372B (zh) 散热装置
US20140182818A1 (en) Heat sink
CN218446599U (zh) 一种散热组件及服务器
CN210671051U (zh) 散热装置
CN113556916B (zh) 数据处理装置
US11460166B2 (en) Light emitting diode (LED) pad mount system
TW201100926A (en) Backlight module and display module
US12007816B2 (en) Heat dissipation module and electronic device having the same
WO2024009584A1 (ja) 半導体冷却装置、電力変換装置、半導体冷却装置の製造方法
CN218351126U (zh) 散热结构、存储器组件及计算机装置
US20110240259A1 (en) Thermal module
CN113316349B (zh) 散热装置
CN217464367U (zh) 灯具散热器和灯具
CN219961161U (zh) 底座、散热器及电子设备
US20230380103A1 (en) Systems for a heat exchanger
CN212030293U (zh) 一种带有液冷板的换热器
CN218548419U (zh) 散热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827494

Country of ref document: EP

Effective date: 20231222

NENP Non-entry into the national phase

Ref country code: DE