WO2022267871A1 - 一种随机接入方法及装置 - Google Patents

一种随机接入方法及装置 Download PDF

Info

Publication number
WO2022267871A1
WO2022267871A1 PCT/CN2022/097198 CN2022097198W WO2022267871A1 WO 2022267871 A1 WO2022267871 A1 WO 2022267871A1 CN 2022097198 W CN2022097198 W CN 2022097198W WO 2022267871 A1 WO2022267871 A1 WO 2022267871A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
random access
value
offset
rnti
Prior art date
Application number
PCT/CN2022/097198
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267871A1 publication Critical patent/WO2022267871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a random access method and device.
  • the terminal when the terminal is in the idle (idle) state or inactive (inactive) state, if the terminal has a service requirement, the terminal can select a suitable access network device, and in random access occasion (RO) Send the preamble sequence (preamble) on the Internet, perform random access, such as 4-step random access or 2-step random access, switch from the idle/inactive state to the connected (connected) state and then access the cell, and transmit uplink data to the access network equipment data.
  • random access occasion Send the preamble sequence (preamble) on the Internet, perform random access, such as 4-step random access or 2-step random access, switch from the idle/inactive state to the connected (connected) state and then access the cell, and transmit uplink data to the access network equipment data.
  • RNTI radio network temporary identity
  • DCI downlink control information
  • RO random access occasion
  • the embodiments of the present application provide a random access method and device, so as to flexibly instruct the terminal to obtain the RNTI in a manner, and save signaling overhead caused by feeding back a random access response.
  • the embodiment of the present application provides a random access method.
  • the first terminal sends a first message to the access network device on the first random access resource, and the first terminal receives a message from the access network device for Scheduling the first DCI of the response message corresponding to the first message; wherein, the RNTI used to scramble the first DCI is calculated according to the parameters of the first random access resource and an offset amount, and the offset amount is indicated to first terminal.
  • instruct the terminal to calculate its own RNTI according to the parameters and offset of the random access resource, use the calculated RNTI to descramble the received DCI, and then receive according to the indication of the successfully descrambled DCI own response message. That is, it is not limited to calculating the RNTI based on the parameters of the random access resources, but on this basis and combining an offset to calculate the RNTI.
  • the design method is different from the existing method, so that the terminal can calculate the RNTI according to the existing method or in the When the first information indicates the offset, the RNTI is calculated in combination with the offset, and the calculation manner is flexible and diverse.
  • the embodiment of the present application further provides a random access method, the method includes: the access network device receives the first message from the first terminal on the first random access resource, and sends the first message to the first terminal The first DCI of the response message used to schedule the first message; wherein, the RNTI of the first DCI used for scrambling is scrambled, and the RNTI is calculated according to the parameters and offset of the first random access resource, and the offset is obtained by The first information is indicated to the first terminal.
  • calculate your own RNTI according to the parameters of the random access resources and the offset that is, not limited to calculating the RNTI based on the parameters of the random access resources, but combine it on this basis
  • the RNTI is obtained by calculating an offset, and the design method is different from the existing method, so that the terminal calculates the RNTI according to the existing method or calculates the RNTI in combination with the offset when the first information indicates the offset, and the calculation method is flexible and diverse.
  • an offset is added to obtain the RNTI for the first terminal to perform random access, that is, the RNTI used for different
  • the random access RNTI of the terminal simplifies the system design. Especially in the case where different types of terminals share random access resources, it can be ensured that the RNTIs assigned to different types of terminals are different, so as to distinguish random access initiated by different types of terminals by setting different RNTIs for different types of terminals, and avoid random access conflicts .
  • the offset is zero.
  • the first information includes an offset; or, the first information includes RO configuration information of the first type of terminal, and when the value of the RO parameter included in the RO configuration information is the first value, it indicates the offset The amount is zero; or, the first information includes the BWP configuration information of the first type of terminal, and when the value of the BWP parameter included in the BWP configuration information is the second value, it indicates that the offset is zero; or, the first random access The resource is included in the shared random access resource, and the offset corresponding to the shared random access resource is zero, and the first information includes indication information indicating the shared random access resource.
  • the offset can be indicated flexibly and efficiently in various ways.
  • the offset is the offset of the parameter of the first random access resource
  • the RNTI is calculated according to the parameter of the first random access resource and the offset, including: the RNTI is calculated according to the parameter of the first random access resource
  • the adjusted value of the parameter of the resource is obtained, and the adjusted value is obtained according to the value of the parameter of the first random access resource plus an offset amount, that is, the starting frequency domain positions of the random access resource occupied by different terminals are different, and the parameter
  • an offset can be set to align the initial values of the random access resource parameters of different terminals, so that the RNTI calculated by different terminals based on the same calculation formula is the same.
  • the same DCI scrambled by the same RNTI is used to schedule response messages of different terminals, saving signaling overhead.
  • the first information includes the offset of the parameter; or, the offset of the parameter is calculated according to the RO configuration information of the second type of terminal, for example, according to the RO configuration information of the second type of terminal and the first type
  • the RO configuration information of the terminal is calculated, or calculated according to the RO configuration information of the second type of terminal and the BWP configuration information of the first type of terminal, the first information includes the RO configuration information of the second type of terminal; the RO configuration information of the second type of terminal
  • the information is used to indicate the RO time domain position, frequency division multiplexing coefficient and starting frequency domain position of the second type of terminal; or, the first random access resource is included in the shared random access resource, and the first information includes the first indication Information; the first indication information is used to indicate a set of random access resources and a shared random access resource in the set of random access resources.
  • the offset can be indicated flexibly and efficiently in various ways.
  • the parameters of the first random access resource include at least a frequency domain index f_id
  • the offset of the parameter includes the offset of the frequency domain index f_id
  • the RNTI is based on the parameters and offset of the first random access resource Quantities are calculated, including:
  • RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id'+Nsymbol*Nslot*Nf*ul_carrier_id;
  • RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+offset)+Nsymbol*Nslot*Nf*ul_carrier_id; s_id, t_id, f_id, ul_carrier_id, A
  • RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+offset)+Nsymbol*Nslot*Nf
  • the offset of f_id is smaller than Nf, and Nf is the preset maximum value of frequency division multiplexing coefficient for random access, that is, avoid setting an offset greater than the maximum frequency division multiplexing coefficient.
  • the first terminal belongs to the first type of terminal, and the first random access resource is included in the random access resource shared by the first type of terminal and the second type of terminal, that is, the first random access resource is initiated on the shared random access resource.
  • the method for determining the RNTI described in the embodiment of this application can be used.
  • the first type of terminals includes redcap terminals with reduced capabilities, and the second type of terminals includes non-redcap terminals; or, the first type of terminals includes terminals that support coverage enhancement, and the second type of terminals includes terminals that do not support coverage enhancement ; or, the first type of terminals includes terminals that support access network slicing, and the second type of terminals includes terminals that do not support access network slicing. That is, the method described in the embodiment of the present application can be applied to a scenario where different types of terminals share random access resources, thereby expanding the scope of application and improving application flexibility.
  • the present application provides a communication device.
  • the communication device may be a first terminal or a chip or a system-on-a-chip in the first terminal, and may also be any device used to implement the first aspect or the first aspect in the first terminal.
  • the communication device may be an access network device or a chip or a system-on-a-chip in the access network device, and may also be the device described in any possible design of the access network device for realizing the second aspect or the second aspect.
  • the function module of the method can implement the functions performed by the first terminal or the access network device in the above aspects or in each possible design, and the functions can be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more modules with corresponding functions above.
  • the communication device may include: a sending unit and a receiving unit; further, the communication device may also include a processing unit.
  • the sending unit is configured to send the first message to the access network device on the first random access resource.
  • a receiving unit configured to receive a first DCI from an access network device, wherein the first DCI is used to schedule a response message corresponding to the first message, and the first DCI is scrambled using a wireless network temporary identifier RNTI, and the RNTI is scrambled according to the first random access
  • the parameter of the incoming resource and the offset amount are calculated, and the offset amount is indicated by the first information.
  • the receiving unit is configured to receive the first message from the first terminal on the first random access resource.
  • the sending unit is configured to send the first DCI of the access network device to the first terminal, where the first DCI is used to schedule a response message corresponding to the first message, and the first DCI is scrambled using a wireless network temporary identifier RNTI, and the RNTI is scrambled according to the first A parameter and an offset of a random access resource are calculated, and the offset is indicated by the first information.
  • the execution actions of each unit of the communication device can refer to the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect, and will not be repeated.
  • a communication device may be a first terminal or a chip or a system on a chip in the first terminal.
  • the communication device may implement the above aspects or the functions performed by the first terminal in each possible design, and the functions may be implemented by hardware.
  • the communication device may be an access network device or a chip or a system on a chip in the access network device.
  • the communication device can realize the functions performed by the access network equipment in the above aspects or in each possible design, and the functions can be realized by hardware.
  • the communication device may include: a processor and a communication interface, and the processor and the communication interface may support the communication device to perform the first aspect or any possible design of the first aspect, or the second aspect or the first aspect.
  • the communication device may further include a memory, and the memory is used for storing necessary computer-executable instructions and data of the communication device.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device performs the first aspect or any possible design of the first aspect or the second aspect or the second aspect random access method described in any possible design.
  • a computer-readable storage medium may be a readable non-volatile storage medium, and instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium When the computer-readable storage medium is run on a computer, the , causing the computer to execute the random access method described in the first aspect or any possible design of the first aspect, or the second aspect or any possible design of the second aspect.
  • a computer program product containing instructions, which, when running on a computer, causes the computer to execute the first aspect or any possible design of the first aspect, or the second aspect or any of the second aspects.
  • a possible design is described in the random access method.
  • a communication device may be a first terminal or a chip or a system on a chip in the first terminal, and the communication device includes one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, when the one or more processors When executing the computer instructions, causing the first terminal to execute the random access method described in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect .
  • the technical effects brought about by any one of the design methods in the fourth aspect to the seventh aspect can refer to the above-mentioned first aspect or the technical effects brought about by any possible design method of the first aspect, and will not be repeated here.
  • the embodiment of the present application provides a communication system, and the communication system may include: a first terminal and an access network device.
  • the first terminal may implement the random access method described in the first aspect or any possible design of the first aspect
  • the access network device may implement the random access method described in the second aspect or any possible design of the second aspect. input method.
  • Figure 1 is a schematic diagram of sending SSB
  • Figure 2a is a schematic diagram of 4-step random access
  • Figure 2b is a schematic diagram of 4-step random access
  • Figure 3a is a schematic diagram of scrambling DCI
  • Figure 3b is a schematic diagram of the allocation of RA-RNTI and MsgB-RNTI
  • Figure 3c is a second schematic diagram of the distribution of RA-RNTI and MsgB-RNTI;
  • Figure 4a is a diagram 1 of RO resource allocation between redcap terminals and non-redcap terminals
  • Figure 4b is the RO resource allocation diagram 2 of redcap terminals and non-redcap terminals
  • FIG. 5 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the composition of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a flow chart of a random access method provided in an embodiment of the present application.
  • Figure 8 is a schematic diagram of MAC RAR
  • Figure 9 is a diagram 3 of RO resource allocation between redcap terminals and non-redcap terminals
  • FIG. 10 is a schematic diagram of the composition of a communication device 100 provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the composition of a communication device 110 provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the terminal can detect the synchronization signal block (synchronization signal block, SSB) sent by the surrounding access network equipment, and select the available information according to the SSB and system information sent by the access network equipment.
  • the access network device that provides network services for the terminal initiates random access (random access, RA) to the selected access network device on the RO corresponding to the SSB, and accesses the cell covered by the access network device (or the SSB corresponding cell), and perform data transmission with the access network device through a radio resource control (radio resource control, RRC) connection between the terminal and the access network device.
  • RA random access
  • RRC radio resource control
  • the SSB may include a synchronization sequence (synchronize signal, SS) and a physical layer broadcast channel (physical broadcast channel, PBCH).
  • System information may include a master information block (master information block, MIB) and a system information block (system information block, SIB).
  • the SS can be used for synchronizing the transmission between the terminal and the access network equipment.
  • the system message may include some communication parameters of the cell.
  • the system message may include configuration information of the initial bandwidth part (initial BWP) (which may be referred to as BWP configuration information for short), the size of the system bandwidth, subcarrier spacing, and frame structure configuration. one or more of.
  • one cell can correspond to one or more SSBs, one SSB corresponds to one beam, and different beams correspond to different numbers of SSBs.
  • the terminal in the cell can receive and detect the signal quality of one or more SSBs, and determine which beam corresponding to the SSB can meet the standard according to the detection results. For example, the received signal energy can be compared with the preset threshold, and the SSBs exceeding the preset threshold can be compared. The corresponding beams meet the signal quality standards.
  • the base station uses 4 SSBs: SSB0-SSB3 to cover a certain sector/cell.
  • the terminal can measure For the signal quality of these 4 SSBs, if it is determined that the beam corresponding to SSB2 can provide better signal quality, and the provided signal quality exceeds the preset threshold, it is determined that the base station corresponding to the cell can provide network services for the terminal. If the terminal determines to access the cell, it initiates random access to the base station on the RO corresponding to SSB2.
  • the random access mentioned above may refer to contention-based random access (or called contention-based random access or contention-based random access), which may include 4-step random access Access (may be called 4-step RA) or 2-step random access (may be called 2-step RA).
  • contention-based random access there is also non-contention-based random access (or called non-contention-based random access or non-competitive random access).
  • Non-contention random access can be applied to cell handover, or in scenarios where there is a need for downlink data transmission but out of synchronization.
  • Non-contention random access can refer to the terminal using the designated RO on the Random access initiated by preamble of contention random access. It should be understood that, unless otherwise specified, the random access mentioned in this application refers to contention-type random access, and this application does not discuss non-contention-type random access.
  • the following introduces 4-step random access and 2-step random access:
  • the 4-step random access may include: step (1), the terminal selects a random access occasion (random access occasion, RO), and selects the RO on the selected RO. Send a message 1 (message 1, Msg1) to the access network device to notify the access network device that there is a random access request.
  • Message 1 may include a preamble (or called a preamble or a random access preamble).
  • Step (2) after receiving Msg1, the access network device sends message 2 (message 2, Msg2) to the terminal.
  • message 2 may include scheduling information of message 3 (message 3, Msg3), and message 2 may be used to instruct the terminal how to send message 3.
  • the terminal corresponds to receiving message 2.
  • Step (3) the terminal sends message 3 to the access network device according to message 2.
  • Step (4) the access network device sends a message four (message 4, Msg4) to the terminal, the message four may include a response message determined by the access network device for Msg3, and the response message may include a contention for contention between terminals information.
  • the 2-step random access may include: step (1), the terminal selects an RO, and sends a carrying message A (message A, the physical random access channel (physical random access channel, PRACH) of MsgA), and the physical uplink shared channel (physical uplink shared channel, PUSCH), MsgA may include preamble.
  • step (2) the access network device receives the MsgA, and replies a message B (message B, MsgB) to the terminal, and the MsgB may include information for contention resolution between terminals.
  • the terminal selects the RO and sends the preamble message, the messages transmitted in other steps need to be scheduled by the access network equipment, and the access network equipment needs to instruct the The location of the time-frequency resource corresponding to the message.
  • the access network device can deliver downlink control information (DCI) and a random access response (random access response, RAR) scheduled by the DCI (such as Msg2 or MsgB), the RAR is carried in the physical downlink shared channel (physical downlink shared channel, PDSCH).
  • DCI downlink control information
  • RAR random access response
  • the terminal starts to monitor the DCI sent to itself on the downlink, and then obtains the RAR sent to itself in the PDSCH scheduled by the DCI.
  • the response message may be called a random access response (random access response, RAR) or a media access control random access response (media access control random access response, MAC RAR).
  • RAR random access response
  • MAC RAR media access control random access response
  • 4-step RA RAR can refer to Msg2
  • 2-step RA RAR can refer to MsgB.
  • the DCI for scheduling the RAR may carry the scheduling information of the RAR transmission, such as the time-frequency resource occupied by the RAR, the modulation and coding method adopted, and the like.
  • the DCI is carried in a physical downlink control channel (physical downlink control channel, PDCCH). DCI sent to different terminals will be transmitted in one PDCCH.
  • PDCCH physical downlink control channel
  • the DCI may be scrambled by utilizing/using a radio network temporary identity (RNTI).
  • RNTI can be a sequence with a length of 16 bits.
  • the terminal monitors the DCI sent in the PDCCH on the downlink, and can use the RNTI to descramble the DCI. If the descrambling is successful, the terminal determines that the DCI is sent to itself, and then obtains the RAR according to the indication of the DCI.
  • the access network device when the access network device sends DCI, it will generate a check bit (such as a cyclic redundancy check code (cyclic redundancy check, CRC)), the length of the check digit is also 16bit. Then, the access network device performs modular addition (XOR) processing on the 16-bit parity bit by using the RNTI of the terminal, and encapsulates the processed parity bit and DCI together and sends it on the PDCCH.
  • a check bit such as a cyclic redundancy check code (cyclic redundancy check, CRC)
  • the terminal After the terminal receives the DCI on the PDCCH, it generates the corresponding parity bit according to the received DCI, performs modulo two addition processing on the generated parity bit and its own RNTI, and compares the result of the modulo two addition processing with the actual received by the terminal. Check bits are compared, if the two are the same, it means that the DCI is sent to itself.
  • the RNTI used to scramble DCI in the 4-step random access process may be called RA-RNTI, and the RNTI used to scramble DCI in the 2-step random access process may be called MsgB-RNTI.
  • RA-RNTI the RNTI used to scramble DCI in the 4-step random access process
  • MsgB-RNTI the RNTI used to scramble DCI in the 2-step random access process
  • RNTI used to scramble DCI in the 2-step random access process
  • MsgB-RNTI MsgB-RNTI
  • the RNTI can be determined according to the index value s_id of the symbol occupied by the RO, the time The index value t_id of the slot, the index value f_id of the frequency domain unit occupied by the RO, and the index value ul_carrier_id of the uplink carrier occupied by the RO are determined.
  • RA-RNTI For example, for RA-RNTI, the following formula (1) can be satisfied between RA-RNTI and RO:
  • RA-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id.
  • MsgB-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+offset_1(offset_1) formula (2)
  • the offset_1 (offset_1) may be a preset integer greater than 0, for example, the value of the offset_1 (offset_1) may be 17921. That is, by introducing an offset to distinguish whether the DCI scrambled by the RNTI corresponds to a 2-step RA or a 4-step RA, so as to avoid random access conflicts between terminals that initiate different RAs.
  • the value of s_id is an index value (index) (or called number) of a symbol occupied by the RO in a time slot.
  • the index value of the symbol occupied by the RO in a slot may be referred to as the absolute index value of the symbol occupied by the RO in a slot.
  • NR new radio
  • Nsymbol symbols in a time slot can be sequentially numbered starting from 0, so that a time slot includes symbol 0 to symbol Nsymbol-1. It should be noted that the present application is not limited to sequentially numbering symbols in a time slot starting from 0, and may also start sequentially numbering symbols in a time slot starting from 1 or other numbers, without limitation. In the embodiment of the present application, only numbers starting from 0 are used for description. In the case that symbols in a time slot are numbered sequentially starting from 0, the value range of s_id is [0, Nsymbol-1].
  • the value of t_id is the index value (or number) of the time slot occupied by the RO in one system frame.
  • the index value of the time slot occupied by the RO in a system frame may be referred to as the absolute index value of the time slot occupied by the RO in a system frame.
  • the present application is not limited to sequentially numbering the time slots in a system frame starting from 0, and may also start sequentially numbering the time slots in a system frame starting from 1 or other numbers, without limitation.
  • This application only uses numbering starting from 0 for description. In the case of sequentially numbering the time slots starting from 0, the value range of t_id is [0, Nslot-1].
  • the value of f_id is the index value (or number) of the frequency domain unit occupied by RO in the Nf frequency domain units; the index value of the frequency domain unit occupied by RO in the Nf frequency domain units can be called is the absolute index value of the frequency domain unit occupied by the RO among the Nf frequency domain units.
  • the frequency domain units used for random access include: frequency domain unit 0 to frequency domain unit 7 .
  • this application is not limited to sequentially numbering the frequency domain units used for random access starting from 0, and may also start sequentially numbering the frequency domain units used for random access starting from 1 or other numbers, without limitation. In the embodiment of the present application, only numbers starting from 0 are used for description. In the case of sequentially numbering the frequency domain units starting from 0, the value range of f_id is [0, Nf-1]. It should be understood that the frequency domain unit described in the embodiment of the present application may be a bandwidth part (bandwidth part, BWP) or a physical resource block (physical resource block, PRB) or frequency domain resources of other granularity, without limitation.
  • BWP bandwidth part
  • PRB physical resource block
  • the value of ul_carrier_id is the index value of the uplink carrier occupied by RO among the Nc uplink carriers; the index value of the uplink carrier occupied by RO among the Nc uplink carriers can be called the uplink carrier occupied by RO in Nc
  • this application is not limited to sequentially numbering the uplink carriers used for random access starting from 0, and may also start sequentially numbering the uplink carriers used for random access starting from 1 or other numbers, without limitation. In the embodiment of the present application, only numbers starting from 0 are used for description. In the case of sequentially numbering uplink carriers starting from 0, the value range of ul_carrier_id may be [0, Nc-1].
  • the parameters for calculating the RNTI are all determined by the time-frequency position of the RO that sends the preamble.
  • multiple terminals such as reduced capability (reduced capability, redcap) terminals and non-redcap (non-redcap) terminals
  • the same random access resource such as RO
  • the parameters time domain position, frequency domain index
  • the calculated RNTI is the same, and the scrambled DCI is also the same , are the same DCI, and the RNTI cannot be used to distinguish which terminal's DCI it is.
  • RNTI calculation formulas can be designed for different terminals to ensure that the RNTIs of different terminals are different, and the DCI of the terminal is scrambled with the RNTI of the terminal. Because the RNTIs of different terminals are different, the DCI of which terminal can be distinguished through the RNTI.
  • the 4-step RA of non-redcap terminals can use the above formula (1) to calculate RA-RNTI
  • the 2-step RA of non-redcap terminals can use the above formula (2)
  • the 4-step RA design of redcap terminals is as follows Formula (3), the following formula (4) is designed for the 2-step RA of the redcap terminal:
  • RA-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+offset_2(offset_2) formula (3)
  • MsgB-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+offset_3(offset_3) formula (4)
  • offset_2 (offset_2)
  • offset_3 (offset_3)
  • offset_2 (offset_2)
  • offset_3 (offset_3)
  • offset_3 (offset_3)
  • offset_3 can be set to an integer greater than 0
  • the offsets in formula (2) - formula (4) can be pre-configured, and these offsets can be Used to isolate RA-RNTI and MsgB-RNTI assigned to different types of terminals.
  • RNTIs are assigned to RAs initiated by different types of terminals, and RNTIs with a value range of [0, 17920] are allocated to 4-step RAs of non-redcap terminals, with a value range of [17921, 35840] ] are allocated to 2-step RAs of non-redcap terminals, RNTIs with a value range of [35841, 53760] are allocated to 4-step RAs of redcap terminals, and RNTIs with a value range of [53761, 71680] are allocated to redcap terminals 2-step RA.
  • formula (3) and formula (4) s_id, t_id, f_id, ul_carrier_id, Nsymbol, Nslot, and Nf can be referred to above, and will not be repeated here.
  • formula (1) and formula (2) may be collectively referred to as calculation formulas corresponding to the second type of terminal, and the second type of terminal may include non-redcap terminals.
  • Formula (3) and formula (4) may be collectively referred to as calculation formulas corresponding to the first type of terminal, and the first type of terminal includes redcap terminals.
  • the system bandwidth includes an initial bandwidth part (bandwidth part, BWP) of a redcap terminal and an initial BWP of a non-redcap terminal.
  • the initial BWP of non-redcap terminals is allocated RO resources for non-redcap terminals: RO e ⁇ RO l
  • the initial BWP of redcap terminals is configured as RO resources for redcap terminals: RO a ⁇ RO d.
  • the non-redcap terminal sends Msg1 on RO e
  • redcap terminals or non-redcap terminals send Msg1 on different ROs
  • the parameters s_id, t_id, f_id, and ul_carrier_id are the same, due to the use of different calculation formulas, the RA-RNTI of the redcap terminal and the non-redcap terminal are different, and two DCIs are obtained by scrambling with different RA-RNTI. These two DCIs schedule the RARs of redcap terminals and non-redcap terminals respectively.
  • the access network device configures redcap terminals and non-redcap terminals to share RACH resources (in this application, it may be referred to as sharing RO for short), that is, redcap terminals and non-redcap terminals configure The same RO/shared RO (RO resources as shown in Figure 4b: RO a ⁇ RO d).
  • Non-redcap terminals and redcap terminals can send Msg1 on the same RO, such as sending Msg1 on RO a.
  • the values of the parameters s_id, t_id, f_id, and ul_carrier_id of non-redcap terminals and redcap terminals are the same, but
  • the RA-RNTI of a non-redcap terminal can be obtained by using formula (1), and the RA-RNTI of a redcap terminal can be obtained by using formula (3), so that the RA-RNTI of a redcap terminal and a non-redcap terminal are different.
  • Two DCIs are obtained by scrambling, and the two DCIs schedule the RARs of the redcap terminal and the non-redcap terminal respectively.
  • different RNTI calculation formulas can be designed for different types of terminals by introducing offsets to distinguish the RNTI used by different types of terminals to initiate RA, and ensure that the values of RNTI calculated by different types of terminals are different.
  • the terminal side can use the RNTI to distinguish the type of RA initiated by the terminal corresponding to the DCI delivered by the network side, so that the terminal can obtain its own RAR according to its own DCI, avoiding the problem of initiating different RAs. Random access collisions between different terminals.
  • RNTI calculation formulas can be designed to ensure that the RNTIs of different types of terminals are different, and then the RNTI can be used to distinguish which terminal's DCI the DCI delivered by the network side belongs to.
  • the RNTI can be used to distinguish which terminal's DCI the DCI delivered by the network side belongs to.
  • signaling overhead in a scenario where multiple terminals share random access resources, if different RNTIs are used to scramble to obtain different DCIs, scheduling different RARs with different DCIs will increase the signaling overhead .
  • the redcap terminal and the non-redcap terminal share the RO
  • the access network device uses formula (1) and formula (3 ) to obtain two different RA-RNTIs, and use these two different RA-RNTIs to scramble to obtain two DCIs.
  • These two DCIs can schedule two PDSCHs, one PDSCH carries the RAR of the redcap terminal, and the other PDSCH carries the non-
  • the RAR of the redcap terminal uses two DCIs to schedule the RAR of the redcap terminal and the non-redcap terminal respectively, increasing the signaling overhead.
  • an embodiment of the present application provides a random access method, which may include: the first terminal sends a first message to the access network device on the first random access resource, and the access network device receives the first message message, sending to the first terminal the first DCI of the response message corresponding to the scheduling first message; the RNTI used to scramble the first DCI is calculated according to the parameters of the first random access resource and the offset amount, and the offset amount is obtained by The first information is indicated to the first terminal. That is, the terminal is instructed to calculate its own RNTI according to the parameters and offset of the random access resource, use the calculated RNTI to descramble the received DCI, and then receive its own response message according to the indication of the successfully descrambled DCI.
  • the design method is different from the existing method, so that the terminal can calculate the RNTI according to the existing method or in the When the first information indicates the offset, the RNTI is calculated in combination with the offset, and the calculation manner is flexible and diverse.
  • the RNTI calculated by different types of terminals can be the same, and the RARs of different types of terminals can be scheduled through the same DCI to save signaling overhead.
  • the random access method provided by the embodiment of the present application can be used in a fourth generation (4th generation, 4G) system, a long term evolution (long term evolution, LTE) system, a fifth generation (5th generation, 5G) system, a new air interface (new radio) , NR) system, NR-vehicle-to-everything communication (vehicle-to-everything, V2X) system, and any system in the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • 4G fourth generation
  • LTE long term evolution
  • 5th generation, 5G fifth generation
  • new air interface new radio
  • NR NR-vehicle-to-everything communication
  • V2X NR-vehicle-to-everything
  • FIG. 5 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include an access network device and multiple terminals, such as terminal 1 and terminal 2 .
  • the terminal can be in an idle state or an inactive state.
  • FIG. 5 is an exemplary framework diagram, and the number of nodes included in FIG. 5 is not limited, and in addition to the functional nodes shown in FIG. 5, other nodes may also be included, such as: core network equipment, gateway equipment, Application servers, etc., are not limited.
  • the access network equipment is mainly used to implement functions such as terminal resource scheduling, radio resource management, and radio access control.
  • the access network device may be any one of a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the terminal may be a terminal equipment (terminal equipment), a user equipment (user equipment, UE) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
  • the terminal can be a mobile phone, a tablet computer, or a computer with a wireless transceiver function, and can also be a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, or a wireless terminal in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
  • the device for realizing the function of the terminal may be a terminal, or a device capable of supporting the terminal to realize the function, such as a chip system (for example, a chip or a processing system composed of multiple chips).
  • a chip system for example, a chip or a processing system composed of multiple chips.
  • each network element shown in FIG. 5 may adopt the composition structure shown in FIG. 6 or include the components shown in FIG. 6 .
  • Fig. 6 is a schematic diagram of the composition of a communication device 600 provided by the embodiment of the present application.
  • the communication device 600 can be a terminal or a chip in the terminal or an on-chip system.
  • the communication device 600 may be the access network device or a chip or a system on chip in the access network device.
  • the communication device 600 may include a processor 601 , a communication line 602 and a communication interface 603 . Further, the communication device 600 may further include a memory 604 . Wherein, the processor 601 , the memory 604 and the communication interface 603 may be connected through a communication line 602 .
  • the processor 601 may be a central processing unit (central processing unit, CPU), a general-purpose processor, a network processor (network processor, NP), a digital signal processor (digital signal processing, DSP), a microprocessor, a microcontroller , programmable logic device (programmable logic device, PLD) or any combination thereof.
  • the processor 601 may also be other devices with processing functions, such as circuits, devices, or software modules.
  • the communication line 602 is used to transmit information between the components included in the communication device 600 .
  • the communication interface 603 is used for communicating with other devices or other communication networks.
  • the other communication network may be an Ethernet, a radio access network (radio access network, RAN), a wireless local area network (wireless local area networks, WLAN), and the like.
  • the communication interface 603 may be a radio frequency module, a transceiver or any device capable of realizing communication.
  • the communication interface 603 is an example of a radio frequency module for illustration, where the radio frequency module may include an antenna, a radio frequency circuit, etc., and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
  • the memory 604 is used for storing instructions.
  • the instruction may be a computer program.
  • the memory 604 may be a read-only memory (read-only memory, ROM) or other types of static storage devices capable of storing static information and/or instructions, or may be a random access memory (random access memory, RAM) or may Other types of dynamic storage devices that store information and/or instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media, or other magnetic storage devices, including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • magnetic disk storage media or other magnetic storage devices, including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 604 may exist independently of the processor 601 or may be integrated with the processor 601 .
  • the memory 604 can be used to store instructions or program codes or some data, etc.
  • the memory 604 may be located in the communication device 600 or outside the communication device 600, without limitation.
  • the processor 601 is configured to execute instructions stored in the memory 604, so as to implement the random access method provided in the following embodiments of the present application.
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6 .
  • the communications apparatus 600 includes multiple processors, for example, in addition to the processor 601 in FIG. 6 , it may further include a processor 607 .
  • the communication apparatus 600 may further include an output device 605 and an input device 606 .
  • the input device 606 may be a keyboard, a mouse, a microphone, or a joystick
  • the output device 605 may be a display screen, a speaker, and the like.
  • the communication device 600 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device having a structure similar to that shown in FIG. 6 .
  • the composition structure shown in FIG. 6 does not constitute a limitation to the communication device.
  • the communication device may include more or less components than those shown in the illustration, or combine certain components , or different component arrangements.
  • system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • each device in the following embodiments may have the components shown in Figure 6, and the actions and terms involved in each embodiment may refer to each other, the name of the message or the parameter name in the message interacted between the devices in each embodiment etc. are just examples, and other names may also be used in specific implementations without limitation.
  • the terms "first" and "second” in the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • the attributes of different objects represented by " are not limited.
  • FIG. 7 is a flow chart of a random access method provided in an embodiment of the present application. As shown in FIG. 7, the method may include:
  • Step 701 the first terminal sends a first message to the access network device on the first RO.
  • the access network device receives the first message from the first terminal.
  • the first terminal may be any terminal in FIG. 5 , for example, the first terminal may be terminal 1 or terminal 2 in FIG. 5 .
  • the first terminal may be in a non-connected state (such as an idle state or an inactive state).
  • the access network device may be the access network device in FIG. 5 , and the access network device may provide network services for the first terminal.
  • the first RO may be an RO randomly selected by the first terminal for sending Msg1 or MsgB.
  • the first message may carry a preamble.
  • the first message may be Msg1.
  • the first message may be MsgA.
  • MsgA may also include a physical uplink shared channel (physical uplink shared channel, PUSCH) associated with the preamble, and the PUSCH may include uplink data and/or other information.
  • PUSCH physical uplink shared channel
  • the first terminal belongs to the first type of terminal, and the first RO may be included in random access resources shared by the first type of terminal and the second type of terminal.
  • the first type of terminals includes redcap terminals, and the second type of terminals includes non-redcap terminals; or, the first type of terminals includes terminals that support coverage enhancement, and the second type of terminals includes terminals that do not support coverage enhancement; or, the first The first type of terminals includes terminals that support access network slicing, and the second type of terminals includes terminals that do not support access network slicing.
  • the second type of terminal may be referred to as a normal (normal) terminal or as an existing (legacy) terminal.
  • the random access resource shared by the first type of terminal and the second type of terminal may be understood as a shared random access resource.
  • the shared random access resource can be used jointly by the first type of terminal and the second type of terminal.
  • RO a to RO d shown in Figure 4b are shared random access resources, which can be shared by redcap terminals and non-redcap terminals.
  • the redcap terminal can support a bandwidth of 20 megahertz (MHz), and one receiving antenna (RX) or two receiving antennas (RX).
  • Non-redcap terminals can support 100MHz bandwidth, 4 receiving antennas (4RX), etc.
  • the access network device may configure a dedicated RACH resource (for example, a dedicated RO, etc.) for the non-redcap terminal.
  • the non-redcap terminal can send Msg1 or MsgA on the RACH resource corresponding to the redcap terminal configured by the access network device, and the access network device can receive Msg1 or MsgA on the RACH resource, and can know that the terminal is a non-redcap terminal according to the RACH resource .
  • coverage enhancement may refer to increasing coverage by means of repeated transmission or the like.
  • PUSCH physical uplink shared channel
  • a terminal that supports coverage enhancement can repeatedly send multiple PUSCHs at one time, and the access network device can combine and receive multiple repeated PUSCHs when receiving signals, increasing The equivalent signal-to-noise ratio of the signal, so that the access network equipment can receive the signal of the farther terminal terminal.
  • the terminal needs to use coverage enhancement technologies such as repeated transmission when sending Msg3 or MsgA during the random access process, the access network device can configure dedicated RACH resources (such as a dedicated RO, etc.) for the "coverage enhancement" of the terminal. ).
  • the terminal can send Msg1 or MsgA on the selected RACH resource, and correspondingly, the access network device can receive Msg1 or MsgA on the RACH resource.
  • the access network device can learn from the RACH resource selected by the terminal that the terminal wants to use the coverage enhancement technology to send Msg3, then the subsequent transmission of Msg3 can be scheduled in a coverage enhancement manner.
  • the RACH resources corresponding to "coverage enhancement" include dedicated RO/preamble, and PUSCH configured as coverage enhancement mode (such as repeated transmission, etc.). When the terminal sends MsgA, it will send the "coverage enhancement" corresponding RO/preamble and PUSCH for repeated transmission.
  • a terminal that supports access network slicing may obtain/allocate better quality and more sufficient air interface resources, and a terminal that does not support access network slicing may obtain/allocate poorer air interface resources.
  • the access network device may configure dedicated RACH resources (such as a dedicated RO, etc.) for terminals supporting access network slicing.
  • a terminal that supports access network slicing can send Msg1 or MsgA on the RACH resource configured by the access network device.
  • the access network device can receive Msg1 or MsgA on the RACH resource, and the terminal can be informed according to the RACH resource It is a terminal that supports access network slicing.
  • first type of terminal and the second type of terminal introduced in the embodiment of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation to the technical solutions provided in the embodiments of the present application, except for the above-mentioned types
  • other types of terminals may also be included.
  • those skilled in the art know that with the evolution of the network architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present application can still be used for Msg1 initiated by other new types of terminals according to the above formula (1).
  • the RA-RNTI scrambles the DCI of the response message corresponding to scheduling Msg1, and can also obtain the RA-RNTI according to the new calculation formula obtained by increasing the offset, and use the obtained RA-RNTI to scramble the DCI of the response message corresponding to scheduling Msg1 . It can be understood that with the evolution of the network architecture and the emergence of new business scenarios, terminals that appear to support one or more new capabilities (functions or features) can be understood as the first type of terminals in this embodiment of the application, and do not support Existing terminals with new capabilities can be understood as the second type of terminals in this embodiment of the present application.
  • Step 702 The access network device sends the first DCI to the first terminal according to the first message.
  • the first terminal receives the first DCI from the access network device.
  • the access network device sends the response message corresponding to the first message at the time-frequency resource position indicated by the first DCI.
  • the first terminal determines the RNTI according to the first RO, descrambles the first DCI according to the RNTI, and receives the response message corresponding to the first message at the time-frequency resource position indicated by the first DCI after the descrambling of the first DCI is successful.
  • the response message corresponding to the first message may be Msg2.
  • the response message corresponding to the first message may be MsgB.
  • the method further includes: the first terminal sends Msg3 carrying uplink data to the access network device, the access network device receives Msg3, and sends the Msg3 to the first terminal Msg4.
  • the first DCI may be used to schedule a response message corresponding to the first message.
  • the first DCI may indicate the time-frequency resource location of the response message corresponding to the first message.
  • the first DCI is scrambled using the RNTI, and there is an association relationship between the RNTI and the first RO. It should be understood that when the first message is Msg1, the RNTI for scrambling the first DCI may be the RA-RNTI. When the first message is MsgA, the RNTI for scrambling the first DCI may be MsgB-RNTI.
  • the RNTI of the first DCI of the scrambled first terminal may be calculated according to formula (1)/formula (2), or may be calculated according to formula (3)/formula (4).
  • the access network device wants the first type of terminal and the second type of terminal to share the DCI scrambled by the same RNTI and the RAR scheduled by the same DCI, the The first terminal sends an instruction.
  • the first terminal uses the formula (1)/formula (2) to calculate the RNTI, or the access network device can instruct the first terminal to use the calculation formula corresponding to the second type of terminal (such as formula (1)/ Formula (2)) calculates the RNTI.
  • the access network device wants the first type of terminal and the second type of terminal to use different DCI scheduling RAR, and does not want the first type of terminal and the second type of terminal to share the same RNTI scrambled DCI, instruct the first terminal to use the first type
  • the calculation formula (formula (3)/formula (4)) corresponding to the terminal is calculated to obtain the RNTI.
  • the first type of terminal and the second type of terminal can use the same RNTI calculation formula, for example, both use formula (1) or formula (2) to calculate the RNTI corresponding to the RA mode, ensuring that the first type of terminal and the second type of terminal Shared random access resources, or when the first type of terminal and the second type of terminal send the same parameters of the random access resource of the preamble, the RNTI calculated by the first type of terminal and the second type of terminal is the same, using the RNTI
  • the DCI obtained by scrambling is also the same, which is the same DCI.
  • This DCI can be used to schedule the RAR of the first type of terminal and the second type of terminal, that is, the RAR of these multiple types of terminals is carried in the same PDSCH scheduled by the same DCI to realize Sharing of DCI and RAR of multiple types of terminals reduces signaling overhead.
  • the access network device instructs the redcap terminal to use formula (1) to calculate RA-RNTI, or the redcap terminal uses formula (1) to calculate RA-RNTI by default, and receives DCI according to the calculated RA-RNTI.
  • RAR radio access preamble identifier
  • RPID random access preamble identifier
  • the format of the MAC RAR corresponding to Msg1 initiated by multiple terminals is shown in Figure 8.
  • the MAC RAR can include RAR for multiple terminals, such as the The MAC load (playload) contains n MAC RARs, where n is an integer greater than or equal to 1.
  • a "RPID" field is included in the MAC subheader (subheader) of each RAR, and this field corresponds to the serial number of the peamble. For example, a terminal uses a preamble numbered 5 when sending Msg1.
  • the terminal After receiving the PDSCH carrying the MAC RAR in the format shown in Figure 8 according to the DCI, the terminal can check the RPID field in each RAR in the MAC RAR. If a RAR The RPID field of the RAR is the same as the number 5 of the preamble sent by itself, which means that this RAR may be sent to itself.
  • (1.1) Directly instruct the first terminal to calculate the RNTI by using the calculation formula corresponding to the second type of terminal.
  • the access network device hopes that the first type of terminal and the second type of terminal share the DCI scrambled by the same RNTI and the RAR scheduled by the same DCI, the access network device can send information a to the first terminal, and the information a indicates that the first terminal A terminal calculates the RNTI by using the calculation formula (formula (1) or formula (2)) corresponding to the second type of terminal.
  • the information a may be carried in high-level signaling, such as radio resource control (radio resource control, RRC message, and may also be carried in a media access control unit (media access control, MAC CE).
  • RRC message radio resource control
  • MAC CE media access control unit
  • Information a indicates that the first terminal
  • the RNTI calculated by using the calculation formula corresponding to the second type of terminal may include the following methods:
  • the information a includes the index of the calculation formula corresponding to the second type of terminal, that is, directly adopts the calculation formula corresponding to the second type of terminal.
  • the index corresponding to formula (1) is 1, the index corresponding to formula (2) is 2, the index corresponding to formula (3) is 3, and the index corresponding to formula (4) is 4.
  • the first message is Msg1
  • if the information a carries the index 1 corresponding to the formula (1) it indicates that the first terminal uses the formula (1) to calculate the RA-RNTI; if the information a carries the index 3, it indicates that the formula (3 ) to calculate RA-RNTI.
  • the first message is Msg2
  • information a carries index 2 corresponding to formula (2) it indicates that the first terminal uses formula (2) to calculate MsgB-RNTI; if information a carries index 4, it indicates to use formula (4 ) to calculate MsgB-RNTI.
  • the information a includes RO configuration information of the first type of terminal, and the value of the RO parameter included in the RO configuration information instructs the first terminal to calculate the RNTI using a calculation formula corresponding to the second type of terminal.
  • the RO configuration information may include RO parameters such as the initial frequency domain position of the RO resource, the frequency division multiplexing coefficient of the RO, and the time domain position of the RO, and may also include the correspondence between the RO and the SSB (for example, the The number of SSB (SSB per RO), the bandwidth of one RO, etc.
  • the starting frequency domain position of the RO resource may refer to the offset between the RO with the lowest frequency in the RO resource (which may be called the starting RO) and the starting frequency of the initial BWP of this type of terminal.
  • the frequency division multiplexing coefficient of the RO may refer to the number of ROs configured on different frequency domain units corresponding to the same time unit (such as a time slot (slot)).
  • the time domain position of the RO may refer to the time resource position occupied by the RO within one sending period.
  • the first terminal when the frequency division multiplexing coefficient of the RO is a preset value, such as 4, the first terminal is instructed to use the calculation formula corresponding to the second type of terminal to calculate the RNTI.
  • the frequency division multiplexing coefficient of the RO is other values, the first terminal is instructed not to use the calculation formula corresponding to the second type of terminal to calculate the RNTI, but to calculate the RNTI using formula (3)/formula (4).
  • the information a includes BWP configuration information of the first type of terminal, and the value of the BWP parameter included in the BWP configuration information instructs the first terminal to calculate the RNTI using a calculation formula corresponding to the second type of terminal.
  • the BWP configuration information may include BWP parameters such as the bandwidth size of the initial BWP, the initial frequency domain position, and may also include the subcarrier spacing (subcarrier spacing, SCS) of the initial BWP (may be referred to as BWP SCS).
  • BWP SCS subcarrier spacing
  • the starting frequency domain position may refer to the offset between the starting frequency domain of the initial BWP (or the frequency domain unit with the lowest frequency) and the starting frequency domain of the system bandwidth, and the offset may be an integer greater than or equal to 0.
  • the starting frequency domain of the system bandwidth may refer to the frequency domain unit with the lowest frequency in the system bandwidth.
  • the starting frequency domain of the system bandwidth is the frequency domain unit numbered 0, and the starting frequency domain position of the system bandwidth is 0PRB .
  • the starting frequency domain position in the BWP configuration information is 0PRB, that is, the starting frequency domain of the initial BWP is the same as the starting frequency domain position of the system bandwidth, instruct the first terminal to use the calculation formula corresponding to the second type of terminal to calculate the RNTI .
  • the starting frequency domain position in the BWP configuration information is other values, it indicates that the first terminal does not use the calculation formula corresponding to the second type of terminal to calculate the RNTI, and uses formula (3)/formula (4) to calculate the RNTI by default.
  • initial BWP and RO resources are configured at a granularity of terminal type.
  • the first terminal belonging to the first type of terminal its BWP configuration information and RO configuration information correspond to the first type of terminal, and the BWP configuration information and RO configuration information can be sent to the first terminal through a system message corresponding to the first type of terminal.
  • the access network device may send a system message to the first terminal, and the system message may carry BWP configuration information of the first type of terminal and RO configuration information of RO resources allocated to the first type of terminal.
  • RO configuration information may be carried in BWP configuration information.
  • the first random access resource is included in the shared RO, and the shared RO corresponds to the calculation formula (formula (1)/formula (2)) corresponding to the second type of terminal.
  • the information a may include Indicates the indication information of the shared RO.
  • binary bits may be used to indicate that all RO resources of the first terminal are shared ROs or all RO resources are non-shared ROs.
  • a binary bit "1" may be used to indicate that all RO resources of the first terminal are shared ROs
  • a binary bit "0” may be used to indicate that all RO resources of the first terminal are non-shared ROs.
  • information a carries a binary bit "1”
  • the calculation formula corresponding to the second type of terminal is used (formula (1 )/Formula (2)) to calculate the RNTI.
  • the RO resource of the first terminal corresponds to a mask (mask), and the mask may be called an RO mask.
  • the mask includes S bits, and S is equal to the frequency division multiplexing coefficient of the first terminal, that is, the mask can be a bit map, and one bit included in the mask corresponds to one RO of the first terminal, and the bit is used to indicate Whether the corresponding RO is a shared RO, the value of this bit can be "1" or "0".
  • information a may include a mask: 0011, where the first bit corresponds to the RO with the lowest frequency, the second bit corresponds to the RO with the second lowest frequency, and so on.
  • the mask 0011 means that the two ROs with lower frequency domain numbers are not shared, and the RNTI is calculated using formula (3)/formula (4), while the two ROs with higher frequency domain numbers are shared, and formula (1)/formula ( 2) Calculate RNTI.
  • information a may also be described as first information, second information, and so on.
  • the calculation formula corresponding to the first type of terminal described in this application may refer to a default or preconfigured RNTI calculation formula (formula (3) or formula (4)) for the first type of terminal.
  • RNTI calculation formula formula (3) or formula (4)
  • the default or pre-configured calculation formula for the first type of terminal is formula (3).
  • the default or pre-configured calculation formula for the first type of terminal is formula (4).
  • the information b can be carried in high-layer signaling, such as RRC message, and can also be carried in MAC CE.
  • Information b indicating that the offset is zero may include the following methods:
  • the information b includes an offset, that is, a value directly indicating the offset.
  • the information b includes RO configuration information of the first type of terminal, and the value of the RO parameter included in the RO configuration information indicates that the offset is zero. For example, when the value of the RO parameter included in the RO configuration information is the first value, the indicated offset is zero.
  • the first value may be pre-configured without limitation.
  • the RO configuration information may include RO parameters such as the starting frequency domain position of the RO resource, the frequency division multiplexing coefficient of the RO, and the time domain position of the RO.
  • the frequency division multiplexing coefficient of the RO is a preset value, such as 4, the indicated offset is zero.
  • the indicated offset value is other values, such as a default/preconfigured integer greater than 1.
  • the information b includes BWP configuration information of the first type of terminal, and the value of the BWP parameter included in the BWP configuration information indicates that the offset is zero. For example, when the value of the BWP parameter included in the BWP configuration information is the second value, the indicated offset is zero.
  • the BWP configuration information may include BWP parameters such as the initial BWP bandwidth size and the starting frequency domain position.
  • BWP parameters such as the initial BWP bandwidth size and the starting frequency domain position.
  • the starting frequency domain position in the BWP configuration information is OPRB, that is, when the starting frequency domain of the initial BWP is the same as the starting frequency domain position of the system bandwidth, the indicated offset is zero.
  • the indicated offset value is other values, such as a default/preconfigured integer greater than 1.
  • the first RO is included in the shared RO
  • the offset corresponding to the shared RO is zero
  • the information b includes indication information indicating the shared RO.
  • binary bits may be used to indicate that all RO resources of the first terminal are shared ROs or all RO resources are non-shared ROs.
  • a binary bit "1” may be used to indicate that all RO resources of the first terminal are shared ROs
  • a binary bit "0” may be used to indicate that all RO resources of the first terminal are non-shared ROs.
  • the information b carries a binary bit "1" it indicates that all RO resources of the first terminal are shared ROs, and when the first terminal initiates RA on all RO resources, the offset used for calculating the RNTI is zero.
  • the RO resource of the first terminal corresponds to a mask
  • the mask may be called an RO mask.
  • the mask includes S bits, and S is equal to the frequency division multiplexing coefficient of the first terminal, that is, the mask can be a bit map, and one bit included in the mask corresponds to one RO of the first terminal, and the bit is used to indicate Whether the corresponding RO is a shared RO, the value of this bit can be "1" or "0".
  • information b may include a mask 0011 , where the first bit corresponds to the RO with the lowest frequency, the second bit corresponds to the RO with the second lowest frequency, and so on.
  • the mask 0011 means that the two ROs with lower frequency domain numbers do not share, and the default/preconfigured offset greater than 1 is used to calculate RNTI, while the two ROs with higher frequency domain numbers share, and the offset used when calculating RNTI Set to zero.
  • information b may also be described as first information, second information, and so on.
  • the parameters of the shared RO corresponding to the first type of terminal are different from the parameters of the shared RO corresponding to the second type of terminal
  • the difference causes the two types of terminals to initiate random access on the shared RO, and the RNTI calculated according to the parameters of the shared RO and the same calculation formula is different, and the RAR of the two types of terminals cannot be scheduled based on the DCI scrambling of the same RNTI .
  • the access network device is respectively configured with a BWP for a non-redcap terminal and a BWP for a redcap terminal.
  • the initial frequency domain position of RO is 12 PRB
  • the frequency division multiplexing coefficient is 8.
  • the initial frequency domain position of the RO is 5PRB (the redcap terminal only uses RO e to RO h), and the frequency division multiplexing coefficient is 4.
  • Non-redcap terminals occupy RO a to RO h
  • redcap terminals occupy RO e to RO h
  • redcap terminals share the four ROs with higher frequency among non-redcap terminals: RO e to RO h.
  • the index values f_id of the four ROs shared by redcap terminals namely RO e to RO h
  • the index value of h is [4, 7].
  • the values of f_id corresponding to the same RO are different.
  • this embodiment of the present application provides a method: the access network device indicates the first RO parameter to the first terminal through information c After receiving the information c, the first terminal calculates the RNTI according to the parameters of the first RO and the offset of the parameters of the first RO.
  • the parameters of the first RO may at least include f_id, and may also include at least one of s_id, t_id, and ul_carrier_id.
  • s_id, t_id, f_id, and ul_carrier_id are as described above and will not be repeated here.
  • the offset of the parameter of the first RO may be used to adjust the value of the first random access parameter (or called the initial value), so that the adjusted value of the parameter of the first RO of the first terminal is different from that of the second
  • the values (or initial values) of the parameters of the first RO corresponding to similar terminals are the same/aligned to ensure that after the two initiate random access on the first RO, the RNTI calculated based on the same calculation formula is the same, Realize the RAR scheduling of different types of terminals based on the same DCI.
  • the value of the parameter of the first RO may be understood as the initial value of the parameter of the first RO.
  • the adjusted value of the parameter of the first RO may refer to a value after the initial value of the parameter of the RO is adjusted by using a parameter offset.
  • the adjusted value of the parameter of the first RO the value of the parameter of the first RO+the offset of the parameter. It should be understood that the method of determining the adjustment value of the parameter described in this application is only an exemplary description.
  • the adjustment value of the parameter of the first RO the first RO parameter
  • the value of a RO parameter-the offset of a parameter that is, any technology that can realize that the adjusted value of the parameter of the first RO of the first terminal is the same as the value of the parameter of the first RO corresponding to the second type of terminal.
  • the value of s_id of the first RO is the index value of the symbol occupied by the first RO in a time slot
  • the adjusted value of s_id of the first RO the value of s_id of the first RO+the offset of s_id
  • the value of t_id of the first RO is the index value of the time slot occupied by the first RO in a system frame
  • the adjusted value of t_id of the first RO the value of t_id of the first RO+the offset of t_id.
  • the calculation by the first terminal to obtain the RNTI according to the parameter of the first RO and the offset of the parameter of the first RO may include: obtaining the RNTI of the first RO according to the value of the parameter of the first RO plus the offset
  • the adjusted value of the parameter is calculated according to the adjusted value of the parameter of the first RO to obtain the RNTI.
  • the first message is Msg1
  • the RA-RNTI is obtained based on the formula (1) and the adjusted value of the parameter of the first RO.
  • the MsgB-RNTI is obtained based on formula (2) and the adjusted value of the parameters of the first RO.
  • the value of the frequency domain index f_id is different, and the value of f_id is adjusted as an example.
  • the offset of the parameter is ⁇ , and ⁇ is greater than or equal to An integer of 0, when the first message is Msg1, that is, when a 4-step RA is initiated, referring to the above formula (1), the first terminal calculates the RA- RNTI satisfies the following formula:
  • RA-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+ ⁇ )+Nsymbol*Nslot*Nf*
  • ul_carrier_id the value ranges of s_id, t_id, f_id, and ul_carrier_id are the same as in formula (1); or,
  • RA-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id'+Nsymbol*Nslot*Nf*ul_carrier_id, the value range of s_id, t_id and ul_carrier_id is the same as in formula (1), and the value range of f_id' It is [f_id+ ⁇ , Nf-1], and the value range of f_id is [0, Nf-1].
  • the value of the frequency domain index f_id is different, and the value of f_id is adjusted as an example, assuming that the offset of the parameter is ⁇ , ⁇ is An integer greater than or equal to 0.
  • the first message is MsgA, that is, when a 2-step RA is initiated, refer to the above formula (2), and the first terminal calculates it according to the parameters of the first RO and the offset of the parameters of the first RO.
  • the MsgB-RNTI satisfies the following formula:
  • MsgB-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+ ⁇ )+Nsymbol*Nslot*Nf*
  • MsgB-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id'+Nsymbol*Nslot*Nf*ul_carrier_id+offset_1, the value range and formula of s_id, t_id, ul_carrier_id and offset_1
  • the value range of f_id' is [f_id+ ⁇ , Nf-1]
  • the value range of f_id is [0, Nf-1].
  • redcap terminals share the four ROs with higher frequency among non-redcap terminals: RO e to RO h.
  • the index values f_id of the four ROs shared by the redcap terminal The adjusted value is [4, 7], which is the same as the index value [4, 7] of RO e to RO h occupied by non-redcap terminals.
  • the RNTI is the same as the RA-RNTI calculated by the non-redcap terminal based on the formula (1), which enables the redcap terminal and the non-redcap terminal to use the same DCI-scheduled RAR for feedback, saving signaling overhead.
  • the information c can be carried in high-layer signaling, such as RRC message, can also be carried in MAC CE, and can also be carried in the RO configuration information of the first terminal.
  • the manner in which the information c indicates the offset of the parameter of the first RO may include any of the following possible design manners:
  • the information c includes an offset of the parameter of the first RO, that is, a value directly indicating the offset of the parameter of the first RO.
  • the information c includes RO configuration information of the second type of terminal.
  • the RO configuration information of the second type of terminal is used to indicate the RO time domain position, frequency division multiplexing coefficient and starting frequency domain position of the second type of terminal.
  • the first terminal obtains the RO configuration information of the second type of terminal from the information c, and the first terminal calculates the offset of the parameter according to the RO configuration information of the second type of terminal.
  • the offset value of the parameter f_id calculated by the first terminal according to the RO configuration information of the second type of terminal may include: according to the RO configuration information of the first type of terminal and the RO configuration information of the second type of terminal RO configuration information calculates the offset of f_id. For example, according to the RO configuration information of the first type of terminal, the frequency domain position of the RO allocated to the first type of terminal is determined, and according to the RO configuration information of the second type of terminal, the frequency domain position of the RO allocated to the second type of terminal is determined.
  • the frequency domain position of the start RO in the shared RO is subtracted from the frequency domain position of the start RO in the shared RO. In this way, the offset of f_id may be determined according to the frequency domain position of the RO allocated to the second type of terminal and the frequency domain position of the RO allocated to the first type of terminal.
  • the RO configuration information of the first type of terminal may be carried in a system message and configured for the first terminal. Specifically, the relevant description of the RO configuration information of the first type of terminal is as described above, and will not be repeated here.
  • the RO configuration information of non-redcap terminals and redcap terminals is shown in Table 1 below.
  • the access network device configures an initial 40 megahertz (MHz) (equivalent to 106 PRB) bandwidth
  • the BWP is configured with an RO with a frequency division multiplexing factor of 8, and the starting RO of the non-redcap terminal is located at 12PRB (the frequency domain position of the starting RO of the non-redcap terminal relative to the starting RO of the initial BWP of the non-redcap terminal ).
  • the access network device configures an initial BWP with a bandwidth of 20MHz (equivalent to 51 PRBs).
  • the frequency domain position of the starting RO in the RO relative to the initial BWP of the redcap terminal which means that 8 ROs are outside the initial BWP of the redcap terminal. If it is stipulated that the redcap terminal can only use the ROs within the initial BWP of the redcap terminal, then the redcap terminal can calculate according to Table 1 that only the four ROs with higher frequency (RO e to RO h) are within the initial BWP of the redcap terminal , can be used by redcap terminals, that is, the initial RO that can be used by redcap terminals corresponds to the fifth RO that can be used by non-redcap terminals, and the offset of f_id is set to 4.
  • the first terminal calculates the offset of the parameter f_id according to the RO configuration information of the second type of terminal may include: according to the BWP configuration information of the first type of terminal and the second type of terminal The offset of f_id is obtained by calculating the RO configuration information.
  • the frequency domain position of the RO allocated to the second type of terminal is determined according to the RO configuration information of the second type of terminal, and the frequency domain position (or frequency domain position) of the initial BWP of the first type of terminal is determined according to the BWP configuration information of the first type terminal.
  • the frequency domain position of the start RO in the shared RO is subtracted from the frequency domain position of the start RO in the shared RO. That is, the offset of f_id is determined according to the frequency domain position of the RO allocated to the second type of terminal and the frequency domain position of the initial BWP allocated to the first type of terminal.
  • the BWP configuration information of the first type of terminal may be used to indicate the initial BWP bandwidth size, starting frequency domain position, etc. of the first type of terminal.
  • the BWP configuration information of the first type of terminal may be carried in a system message and configured for the first terminal. Specifically, the relevant description of the BWP configuration information of the first type of terminal is as described above, and will not be repeated here.
  • message c may include RO configuration information of non-redcap terminals: RO frequency reuse factor 8, starting frequency domain position 12PRB, time domain position, etc., including 8 ROs in the same time domain position (RO a ⁇ RO h), the initial frequency domain position of the initial BWP of the redcap terminal in Figure 9 is 55 PRBs, and the width of the initial BWP is 51 PRBs.
  • the redcap terminal can calculate that RO a-d is not within the initial BWP range of the redcap terminal and cannot be used by the redcap terminal, while RO e-RO h is within the initial BWP range of the redcap terminal, and these ROs can be used or shared.
  • RO Since the 4 ROs with lower frequencies cannot be used, only the 4 ROs with higher frequencies (RO e to RO h) can be used by redcap terminals, that is, the initial RO that can be used by redcap terminals corresponds to the fifth RO that can be used by non-redcap terminals.
  • RO set the offset of f_id to 4.
  • the first RO is included in the shared RO, and the information c includes the first indication information.
  • the first indication information is used to indicate the RO set and the shared RO in the RO set.
  • the first terminal may obtain the offset of f_id according to the frequency domain interval between the starting RO in the shared RO and the starting RO in the RO set.
  • the RO set may be a set of ROs allocated to the second type of terminal, and the RO set may include one or more ROs.
  • the shared ROs in the RO set may refer to the ROs allocated to the terminals of the first type and the terminals of the second type for common use.
  • the RO set corresponds to a mask, which may be called an RO mask.
  • the mask includes S bits, and S is equal to the frequency division multiplexing coefficient, that is, the mask can be a bit map, and one bit included in the mask corresponds to one RO in the RO set, and the bit is used to indicate the corresponding RO Whether to be shared, the value of this bit can be "1" or "0".
  • information c may include a mask: 00001111, wherein the first bit corresponds to the RO with the lowest frequency, the second bit corresponds to the RO with the second lowest frequency, and so on.
  • the mask 00001111 means that the 4 ROs with lower frequency domain numbers are not shared, and the 4 ROs with higher frequency are shared, and the offset of f_id is set to 4.
  • information c may also be described as first information, second information, and so on.
  • each node such as a terminal and a network device, includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the functional modules of the first device and the second device can be divided according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a structural diagram of a communication device 100.
  • the communication device 100 may be a first terminal, or a chip in the first terminal, or a system-on-chip.
  • the communication device 100 may be used to implement the The function of the first terminal.
  • the communication device 100 shown in FIG. 10 includes: a sending unit 1001 and a receiving unit 1002;
  • the sending unit 1001 is configured to send a first message to an access network device on a first RO.
  • the sending unit 1001 may be used to support the communication device 100 to execute step 701 .
  • the receiving unit 1002 is configured to receive a first DCI from an access network device, the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled using RNTI, and the RNTI is based on parameters and offsets of the first RO Sure.
  • the receiving unit 1002 may be used to support the communication device 100 to execute step 702 .
  • the communication device 100 is configured to perform the function of the first terminal in the random access method shown in the method shown in FIG. 7 , so it can achieve the same effect as the above random access method.
  • the communication device 100 shown in FIG. 10 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 100, for example, the processing module may support the communication device 100 to execute a control function.
  • the communication module can integrate the functions of the sending unit 1001 and the receiving unit 1002, and can be used to support the communication device 100 to perform steps 701, 702 and communicate with other network entities, for example, with the functional modules or network entities shown in FIG. 6 communication.
  • the communication device 100 may also include a storage module for storing program codes and data of the communication device 100 .
  • the processing module may be a processor or a controller. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication module may be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 100 involved in this embodiment of the present application may be the communication device 600 shown in FIG. 6 .
  • FIG. 11 shows a structural diagram of a communication device 110.
  • the communication device 110 may be an access network device, or a chip in an access network device, or a system-on-chip.
  • the communication device 110 may be used to implement the above-mentioned embodiment.
  • the communication device 110 shown in FIG. 11 includes: a receiving unit 1101, and a sending unit 1102;
  • the receiving unit 1101 is configured to receive a first message from a first terminal on a first RO.
  • the receiving unit 1101 may support the communication device 110 to execute step 701 .
  • the sending unit 1102 is configured to send the first DCI of the access network device to the first terminal, the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled using RNTI, and the RNTI is based on the parameters of the first RO and The offset is determined.
  • the sending unit 1102 may support the communication device 110 to perform step 702 .
  • the communication device 110 is configured to perform the function of the access network device in the random access method shown in the method shown in FIG. 7 , so it can achieve the same effect as the above random access method.
  • the communication device 110 shown in FIG. 11 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 110, for example, the processing module may support the communication device 110 to perform a management function.
  • the communication module can integrate the functions of the receiving unit 1101 and the sending unit 1102, and can be used to support the communication device 110 to perform steps 701 and 702 and communicate with other network entities, for example, with the functional modules or network entities shown in FIG. 6 communication.
  • the communication device 110 may also include a storage module for storing program codes and data of the communication device 110 .
  • the processing module may be a processor or a controller. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication module may be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 110 involved in this embodiment of the present application may be the communication device 600 shown in FIG. 6 .
  • FIG. 12 is a structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include: a terminal 120 and an access network device 121.
  • the functions of the terminal 120 are the same as those of the communication device 100 described above.
  • the function of the access network device 121 is the same as that of the above-mentioned communication device 110 , which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by computer programs to instruct related hardware, and the program can be stored in the above computer-readable storage medium. When the program is executed, it can include the processes of the above method embodiments .
  • the computer-readable storage medium may be the terminal in any of the foregoing embodiments, for example: an internal storage unit including a data sending end and/or a data receiving end, such as a hard disk or memory of the terminal.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned terminal, such as a plug-in hard disk equipped on the above-mentioned terminal, a smart memory card (smart media card, SMC), a secure digital (secure digital, SD) card, a flash memory card (flash card) etc. Further, the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned terminal and an external storage device.
  • the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program and other programs and data required by the above-mentioned terminal.
  • the computer-readable storage medium described above can also be used to temporarily store data that has been output or will be output.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and More than three
  • "and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist Three cases, where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • B corresponding to A means that B is associated with A.
  • B can be determined from A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • connection in the embodiment of the present application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present application.
  • Transmit in the embodiments of the present application refers to two-way transmission, including actions of sending and/or receiving, unless otherwise specified.
  • transmission in the embodiments of the present application includes sending data, receiving data, or sending data and receiving data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals, uplink data transmission means uplink channel and/or uplink signal transmission, and downlink data transmission means downlink channel and/or downlink signal transmission.
  • Network and “system” in the embodiments of the present application express the same concept, and the communication system is the communication network.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be Incorporation or may be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种随机接入方法及装置,以灵活地指示终端采用何种方式得到RNTI,节省反馈随机接入响应带来的信令开销。所述方法包括:第一终端在第一随机接入资源上,向接入网设备发送第一消息,接入网设备接收第一消息,并发送调度第一消息对应的响应消息的第一DCI,第一终端接收第一DCI;其中第一DCI使用RNTI加扰,RNTI根据第一随机接入资源的参数以及偏置量计算得到,偏置量通过第一信息指示。本申请方案适用于通信技术领域、人工智能、车联网、智能家居联网等领域。

Description

一种随机接入方法及装置
本申请要求于2021年6月22日提交国家知识产权局、申请号为202110688647.8、申请名称为“一种随机接入ID的生成方法”的中国专利申请的优先权,以及2021年8月27日提交国家知识产权局、申请号为202110996683.0、申请名称为“一种随机接入方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种随机接入方法及装置。
背景技术
目前,在终端处于空闲(idle)态或非激活(inactive)态时,若终端存在业务需求,则该终端可以选择一个合适的接入网设备,在随机接入机会(random access occasion,RO)上发送前导序列(preamble),执行随机接入,如4步随机接入或者2步随机接入,从idle/inactive态切换到连接(connected)态后接入小区,向接入网设备传输上行数据。
在随机接入过程中,可以采用无线网络临时标识(radio network tempory identity,RNTI)加扰调度随机接入响应的下行控制信息(downlink control information,DCI)。不同类型的终端可能共享同一随机接入时机(random access occasion,RO)。如何设计终端的RNTI的确定方式成为一直讨论的问题。
发明内容
本申请实施例提供一种随机接入方法及装置,以实现灵活地指示终端采用何种方式得到RNTI,节省反馈随机接入响应带来的信令开销。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种随机接入方法,第一终端在第一随机接入资源上,向接入网设备发送第一消息,第一终端接收来自接入网设备的用于调度第一消息对应的响应消息的第一DCI;其中,用于加扰第一DCI的RNTI根据第一随机接入资源的参数以及偏置量计算得到,该偏置量通过第一信息指示给第一终端。
基于第一方面所述的方法,指示终端根据随机接入资源的参数以及偏置量计算得到自己的RNTI,利用计算得到的RNTI解扰接收到的DCI,进而根据解扰成功的DCI的指示接收自己的响应消息。即不局限于根据随机接入资源的参数计算得到RNTI,而是在此基础之上再结合一个偏置量计算得到RNTI,设计方式与现有方式不同,以便终端根据现有方式计算RNTI或者在第一信息指示偏置量的情况下结合偏置量计算RNTI,计算方式灵活多样。
第二方面,本申请实施例还提供一种随机接入方法,所述方法包括:接入网设备在第一随机接入资源上,接收来自第一终端的第一消息,向第一终端发送用于调度第一消息的响应消息的第一DCI;其中,用于加扰的第一DCI的RNTI加扰,RNTI根据 第一随机接入资源的参数以及偏置量计算得到,偏置量通过第一信息指示给第一终端。
基于第二方面所述的方法,根据随机接入资源的参数以及偏置量计算得到自己的RNTI,即不局限于根据随机接入资源的参数计算得到RNTI,而是在此基础之上再结合一个偏置量计算得到RNTI,设计方式与现有方式不同,以便终端根据现有方式计算RNTI或者在第一信息指示偏置量的情况下结合偏置量计算RNTI,计算方式灵活多样。
一种可能的设计中,RNTI根据第一随机接入资源的参数以及偏置量计算得到,包括:RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+偏置量;其中,s_id的取值为第一随机接入资源占用的符号在一个时隙中的索引值,s_id的取值范围是[0,Nsymbol-1];t_id的取值为第一随机接入资源占用的时隙在一个系统帧中的索引值,t_id的取值范围是[0,Nslot-1];f_id的取值为第一随机接入资源占用的频域单元在Nf个频域单元中的索引值,Nf为预设的用于随机接入的频分复用系数最大值;f_id的取值范围是[0,C-1];C为小于或等于Nf的正整数,C的取值为第一终端用于随机接入的频分复用系数;ul_carrier_id的取值为第一随机接入资源占用的上行载波在Nc个上行载波中的索引值,ul_carrier_id的取值范围是[0,Nc-1];Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,Nc为预设的上行载波的数量。
基于该可能的设计,在根据随机接入资源的参数得到的RNTI的基础之上增加一个偏置量得到用于第一终端进行随机接入的RNTI,即通过增加偏置量来区分用于不同终端的随机接入的RNTI,简化系统设计。尤其是在不同类型终端共享随机接入资源的情况下,可以保证不同类型终端分配的RNTI不同,以便通过为不同类型终端设置不同的RNTI区分不同类型终端发起的随机接入,避免随机接入冲突。
一种可能的设计中,偏置量为零,基于该可能的设计,可以使第一终端基于公式:RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id计算得到RNTI,在不同终端使用的随机接入资源的参数相同的情况下,使用同一DCI调度不同终端的响应消息,节省信令开销。
一种可能的设计中,第一信息包括偏置量;或者,第一信息包括第一类终端的RO配置信息,当RO配置信息包括的RO参数的取值为第一值时,指示偏置量为零;或者,第一信息包括第一类终端的BWP配置信息,当BWP配置信息包括的BWP参数的取值为第二值时,指示偏置量为零;或者,第一随机接入资源包括在共享随机接入资源中,共享随机接入资源对应偏置量为零,第一信息包括指示共享随机接入资源的指示信息。
基于该可能的设计,可以通过多种方式灵活且有效地指示偏置量。
一种可能的设计中,偏置量为第一随机接入资源的参数的偏置量,RNTI根据第一随机接入资源的参数以及偏置量计算得到,包括:RNTI根据第一随机接入资源的参数的调整取值得到,调整取值根据第一随机接入资源的参数的取值加上偏置量得到,即在不同终端占用的随机接入资源的起始频域位置不同、参数的起始取值不同的情况下,可以通过设置一偏置量,对齐不同终端的随机接入资源的参数的起始取值,进而使得不同终端基于同一计算公式计算得到的RNTI是相同的,使用相同的RNTI加扰的同一DCI调度不同终端的响应消息,节省信令开销。
一种可能的设计中,第一信息包括参数的偏置量;或者,参数的偏置量根据第二类终端的RO配置信息计算得到,比如根据第二类终端的RO配置信息以及第一类终端的RO配置信息计算得到,或者根据第二类终端的RO配置信息以及第一类终端的BWP配置信息计算得到,第一信息包括第二类终端的RO配置信息;第二类终端的RO配置信息用于指示第二类终端的RO时域位置、频分复用系数以及起始频域位置;或者,第一随机接入资源包括在共享随机接入资源中,第一信息包括第一指示信息;第一指示信息用于指示随机接入资源集合、以及随机接入资源集合中的共享随机接入资源。基于该可能的设计,可以通过多种方式灵活且有效地指示偏置量。
一种可能的设计中,第一随机接入资源的参数至少包括频域索引f_id,参数的偏置量包括频域索引f_id的偏置量,RNTI根据第一随机接入资源的参数以及偏置量计算得到,包括:
RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id;
f_id’=f_id+所述偏置量,或者,RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+偏置量)+Nsymbol*Nslot*Nf*ul_carrier_id;s_id、t_id、f_id、ul_carrier_id、A、B、C的相关描述如上文所述,不予赘述。
一种可能的设计中,f_id的偏置量小于Nf,Nf为预设的用于随机接入的频分复用系数最大值,即避免设置的偏置量大于最大频分复用系数。
一种可能的设计中,第一终端属于第一类终端,第一随机接入资源包括在第一类终端与第二类终端共享的随机接入资源中,即在共享随机接入资源上发起随机接入的场景下可以采用本申请实施例所述的确定RNTI的方法。
一种可能的设计中,第一类终端包括能力降低redcap终端,第二类终端包括非redcap终端;或者,第一类终端包括支持覆盖增强的终端,第二类终端包括不支持覆盖增强的终端;或者,第一类终端包括支持接入网切片的终端,第二类终端包括不支持接入网切片的终端。即本申请实施例所述方法可以应用于不同类型终端共享随机接入资源的场景下,扩大适用范围,提高应用灵活性。
第三方面,本申请提供一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,还可以为第一终端中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第二方面或第二方面的任一可能的设计所述的方法的功能模块。该通信装置可以实现上述各方面或者各可能的设计中第一终端或接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:发送单元以及接收单元;进一步的,该通信装置还可以包括处理单元。
一种可能的设计,发送单元,用于在第一随机接入资源上向接入网设备发送第一消息。
接收单元,用于接收来自接入网设备的第一DCI,其中,第一DCI用于调度第一消息对应的响应消息,第一DCI使用无线网络临时标识RNTI加扰,RNTI根据第一随机接入资源的参数以及偏置量计算得到,偏置量通过第一信息指示。
又一种可能的设计,接收单元,用于在第一随机接入资源上接收来自第一终端的 第一消息。发送单元,用于向第一终端发送接入网设备的第一DCI,其中,第一DCI用于调度第一消息对应的响应消息,第一DCI使用无线网络临时标识RNTI加扰,RNTI根据第一随机接入资源的参数以及偏置量计算得到,偏置量通过第一信息指示。
具体的,根据第一随机接入资源的参数以及偏置量的确定方式可参照第一方面或第二方面或第一方面的任一可能的设计或者第二方面的任一可能的设计中所述,同时,该通信装置各个单元的执行动作可参照第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述,不予赘述。
第四方面,提供了一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中第一终端所执行的功能,所述功能可以通过硬件实现。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器与通信接口可以支持通信装置执行上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计所述的方法。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器,用于保存通信装置必要的计算机执行指令和数据。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第七方面,提供了一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,该通信装置包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述第一终端执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
其中,第四方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第八方面,本申请实施例提供一种通信系统,该通信系统可以包括:第一终端以及接入网设备。第一终端可以执行第一方面或者第一方面的任一可能的设计所述的随机接入方法,接入网设备可以执行第二方面或者第二方面的任一可能的设计所述的随机接入方法。
附图说明
图1为发送SSB示意图;
图2a为4步随机接入示意图;
图2b为4步随机接入示意图;
图3a为加扰DCI的示意图;
图3b为RA-RNTI、MsgB-RNTI分配示意图一;
图3c为RA-RNTI、MsgB-RNTI分配示意图二;
图4a为redcap终端和非redcap终端的RO资源分配图一;
图4b为redcap终端和非redcap终端的RO资源分配图二;
图5为本申请实施例提供的一种系统架构的简化示意图;
图6为本申请实施例提供的一种通信装置的组成示意图;
图7为本申请实施例提供的一种随机接入方法流程图;
图8为MAC RAR示意图;
图9为redcap终端和非redcap终端的RO资源分配图三;
图10为本申请实施例提供的一种通信装置100的组成示意图;
图11为本申请实施例提供的一种通信装置110的组成示意图;
图12为本申请实施例提供的一种通信系统组成示意图。
具体实施方式
通信系统中,在终端开机之后或者进行小区切换场景中,终端可以检测其周围接入网设备发送的同步信号块(synchronization signal block,SSB),根据接入网设备发送的SSB和系统消息选择能够为该终端提供网络服务的接入网设备,在SSB对应的RO上向选择的接入网设备发起随机接入(random access,RA),接入该接入网设备覆盖的小区(或者该SSB对应的小区),通过终端与接入网设备之间的无线资源控制(radio resource control,RRC)连接与接入网设备进行数据传输。
本申请实施例中,SSB可以包括同步序列(synchronize signal,SS)以及物理层广播信道(physical broadcast channel,PBCH)。系统消息(system information)可以包括主消息块(master information block,MIB)和系统消息块(system information block,SIB)。SS可以用于终端与接入网设备的传输进行同步。系统消息可以包括小区的一些通信参数,比如系统消息可以包括初始带宽部分(initial bandwidth part,initial BWP)的配置信息(可以简称为BWP配置信息)、系统带宽的大小、子载波间隔、帧结构配置中的一种或多种。以小区(或者称为扇区)为粒度,为了使接入网设备发出的信号可以覆盖整个小区,一个小区可以对应一个或者多个SSB,一个SSB对应一个波束,不同波束对应不同编号的SSB。该小区中的终端可以接收并检测一个或者多个SSB的信号质量,根据检测结果确定哪个SSB对应的波束可以信号质量符合标准,比如可以比较信号接收能量和预设门限,超过预设门限的SSB对应的波束符合信号质量标准。例如,以接入网设备为基站为例,如图1所示,基站使用4个SSB:SSB0-SSB3来覆盖某个扇区/小区,终端检测到基站发送的SSB0-SSB3之后,终端可以测量这4个SSB的信号质量,如果确定SSB2对应的波束能够提供较好的信号质量,且提供的信号质量超过预设门限,则确定该小区对应的基站可以为终端提供网络服务。若终端确定接入该小区,则在SSB2对应的RO上向基站发起随机接入。
本申请实施例中,上文所述的随机接入可以指竞争型的随机接入(或者称为基于竞争的随机接入或者竞争性随机接入),该随机接入可以包括4步随机接入(可以称为4-step RA)或2步随机接入(可以称为2-step RA)。与竞争型的随机接入相对的,还存在非竞争型的随机接入(或者称为基于非竞争的随机接入或者非竞争性随机接入)。非竞争型的随机接入可以应用于小区切换、或者存在下行数据传输需求但失步场景中,非竞争型的随机接入可以指终端在接入网设备指定的RO上使用指定的用于非竞争型的随机接入的preamble发起的随机接入。应理解,除特别说明外,本申请中所述的随机接入指竞争型的随机接入,对于非竞争型的随机接入本申请不做讨论。下面对4步随机接入、2步随机接入进行介绍:
参照图2a,为4步随机接入,如图2a所示,4步随机接入可以包括:步骤(1)、终端选择随机接入时机(random access occasion,RO),并在选择的RO上向接入网设备发送消息一(message 1,Msg1),通知接入网设备有一个随机接入请求。消息一可以包括前导序列(preamble)(或者称为前导码或者随机接入序列(random access preamble))。步骤(2)、接入网设备接收到Msg1后,向终端发送消息二(message 2,Msg2)。其中,消息二可以包括消息三(message 3,Msg3)的调度信息,消息二可以用于指示终端如何发送消息三。终端对应接收消息二。步骤(3)、终端根据消息二向接入网设备发送消息三。步骤(4)、接入网设备向终端发送消息四(message 4,Msg4),消息四可以包括接入网设备确定的针对Msg3的响应消息,该响应消息可以包括用于终端之间竞争解决的信息。
参照图2b,为2步随机接入,如图2b所示,2步随机接入可以包括:步骤(1)、终端选择RO,在选择的RO上向接入网设备发送携带消息A(message A,MsgA)的物理随机接入信道(physical random access channel,PRACH),以及物理上行共享信道(physical uplink shared channel,PUSCH),MsgA可以包括preamble。步骤(2)、接入网设备接收MsgA,向终端回复消息B(message B,MsgB),MsgB可以包括用于终端之间竞争解决的信息。
图2a、图2b所示随机接入过程中,除第一个步骤是终端选择RO以及preamble发送消息之外,其他步骤所传输的消息都需要接入网设备调度,需要接入网设备指示该消息对应的时频资源位置。比如接入网设备在RO上接收到终端发送的preamble之后,接入网设备可以下发下行控制信息(downlink control information,DCI)、以及DCI调度的随机接入响应(random access response,RAR)(比如Msg2或MsgB),RAR携带在物理下行共享信道(physical downlink shared channel,PDSCH)中。终端在RO上发送preamble之后,开始在下行链路上监听发送给自己的DCI,进而在DCI调度的PDSCH中获取发送给自己的RAR。
本申请实施例中,响应消息可以称为随机接入响应(random access response,RAR)或者媒体接入控制随机接入响应(media access control random access response,MAC RAR)。在4-step RA中,RAR可以指Msg2,在2-step RA中,RAR可以指MsgB。调度RAR的DCI可以携带RAR传输的调度信息,比如RAR占用的时频资源、采用的调制编码方式等。DCI携带在物理下行控制信道(physical downlink control channel,PDCCH)中。一个PDCCH中会传输发送给不同终端的DCI。
为了使终端能够区分出PDCCH中传输的哪个DCI是发送给自己,可以利用/使用无线网络临时标识(radio network tempory identity,RNTI)加扰DCI。RNTI可以是一个长度为16比特(bit)的序列。终端在下行链路上监测PDCCH中发送的DCI,可以利用RNTI解扰DCI,如果解扰成功,则确定该DCI是发送给自己的DCI,进而根据该DCI的指示获取RAR。
如图3a所示,假设RNTI是一个长度为16bit的序列,接入网设备在发送DCI时,会根据编码后的DCI的信息生成校验位(比如循环冗余校验码(cyclic redundancy check,CRC)),校验位的长度也是16bit。然后,接入网设备利用终端的RNTI对该16bit校验位进行模二加(XOR)处理,将处理后的校验位和DCI封装在一起在PDCCH上发送。终端在PDCCH上接收到DCI之后,根据接收到的DCI生成对应的校验位,将生成的校验位与自己的RNTI进行模二加处理,比较模二加处理的结果与终端实际接收到的校验位进行对比,如果二者相同,则表示该DCI是发送给自己的。
本申请实施例中,为便于描述,用于在4步随机接入过程中加扰DCI的RNTI可以称为RA-RNTI,用于在2步随机接入过程中加扰DCI的RNTI可以称为MsgB-RNTI。RNTI的取值与终端发送preamble所用的RO之间存在关联关系,RNTI可以根据终端发送preamble所用的RO的时频资源位置确定,比如RNTI可以根据RO占用的符号的索引值s_id、RO占用的时隙的索引值t_id、RO占用的频域单元的索引值f_id以及RO占用的上行载波的索引值ul_carrier_id确定。
比如,对于RA-RNTI,RA-RNTI与RO之间可以满足下述公式(1):
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carri er_id。
对于MsgB-RNTI,MsgB-RNTI与RO之间可以满足下述公式(2):
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_ca rrier_id+偏置量_1(offset_1)公式(2)
其中,偏置量_1(offset_1)可以是预设的大于0的整数,比如偏置量_1(offset_1)的取值可以是17921。即通过引入偏置量来区分RNTI所加扰的DCI对应2-step RA还是4-step RA,避免发起不同RA的终端之间的随机接入冲突。
例如,假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,offset_1等于Nsymbol*Nslot*Nf*Nc,则如图3b所示,用于4-step RA的RA-RNTI的取值范围为[1,17920],用于4-step RA的MsgB-RNTI的取值范围为[17921,35840],这二类RNTI互不重叠。
本申请实施例中,各个公式中的符号“+”表示相加计算,符号“*”表示相乘计算。其中符合“*”还可以替换为符号“×”。
本申请实施例中,s_id的取值为RO占用的符号在一个时隙中的索引值(index)(或者称为编号)。RO占用的符号在一个时隙中的索引值可以称为RO占用的符号在一个时隙中的绝对索引值。一个时隙可以包括Nsymbol个符号(symbol)。Nsymbol可以是预先配置的或者协议预先规定的,Nsymbol为大于0的整数。比如新空口(new radio,NR)系统中规定,普通循环前缀(normal cyclic prefix,NCP)的情况下Nsymbol=14,即一个时隙中可以包括14个符号。示例性的,可以从0开始对一个时隙中的Nsymbol个符号进行顺序编号,得到一个时隙中包括符号0至符号Nsymbol-1。应注意,本申 请不限于从0开始对一个时隙中的符号进行顺序编号,还可以从1或者其他数字开始对一个时隙中的符号进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在一个时隙中的符号从0开始顺序编号的情况下,s_id的取值范围为[0,Nsymbol-1]。
本申请实施例中,t_id的取值为RO占用的时隙在一个系统帧中的索引值(或者编号)。RO占用的时隙在一个系统帧中的索引值可以称为RO占用的时隙在一个系统帧中的绝对索引值。一个系统帧最多包括Nslot个时隙。Nslot可以是预先配置的或者协议预先规定的,比如NR系统中规定Nslot=80,即一个系统帧最多可以包括80个时隙。如果从0开始对这Nslot个时隙进行顺序编号,可以得到一个系统帧中包括时隙0至时隙Nslot-1。应注意,本申请不限于从0开始对一个系统帧中的时隙进行顺序编号,还可以从1或者其他数字开始对一个系统帧中的时隙进行顺序编号,不予限制。本申请仅以从0开始编号进行说明。在从0开始对时隙进行顺序编号的情况下,t_id的取值范围为[0,Nslot-1]。
本申请实施例中,f_id的取值为RO占用的频域单元在Nf个频域单元中的索引值(或者编号);RO占用的频域单元在Nf个频域单元中的索引值可以称为RO占用的频域单元在Nf个频域单元中的绝对索引值。Nf可以为预设的用于随机接入的频分复用系数最大值,Nf可以是预先配置的或者协议预先规定的,比如NR系统中规定Nf=8,即用于随机接入的频域单元最多包括8个频域单元,如果从0开始对这8个频域单元进行顺序编号,则可以得到用于随机接入的频域单元包括:频域单元0至频域单元7。应注意,本申请不限于从0开始对用于随机接入的频域单元进行顺序编号,还可以从1或者其他数字开始对用于随机接入的频域单元进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在从0开始对频域单元进行顺序编号的情况下,f_id的取值范围为[0,Nf-1]。应理解,本申请实施例所述的频域单元可以是一个带宽部分(bandwidth part,BWP)或者物理资源块(physical resource block,PRB)或者其他粒度的频域资源,不予限制。
本申请实施例中,ul_carrier_id的取值为RO占用的上行载波在Nc个上行载波中的索引值;RO占用的上行载波在Nc个上行载波中的索引值可以称为RO占用的上行载波在Nc个上行载波中的绝对索引值。Nc可以为预设的用于随机接入的上行载波的数量,Nc可以是预先配置的或者协议预先规定的。比如NR系统中规定Nc=2,即用于随机接入的上行载波为2个。如果从0开始对这Nc个上行载波进行顺序编号,则可以得到用于随机接入的上行载波包括:上行载波0至上行载波Nc-1。应注意,本申请不限于从0开始对用于随机接入的上行载波进行顺序编号,还可以从1或者其他数字开始对用于随机接入的上行载波进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在从0开始对上行载波进行顺序编号的情况下,ul_carrier_id的取值范围可以为[0,Nc-1]。
由上述公式可以看出,计算RNTI的参数都是由发送preamble的RO的时频位置决定的。在多个终端(比如降低能力(reduced capability,redcap)终端以及非redcap(non-redcap)终端)共享相同随机接入资源(比如RO)发送preamble或者多个终端发送preamble时所用的随机接入资源的参数(时域位置、频域索引)相同的场景下, 如果采用同一计算公式(上述公式(1)或者公式(2)),计算得到的RNTI是相同的,加扰得到的DCI也是相同的,是同一个DCI,无法通过RNTI区分是哪个终端的DCI。此时,为了解决该问题,可以为不同终端设计不同的RNTI计算公式,保证不同终端的RNTI是不同的,用终端的RNTI加扰终端的DCI。因不同终端的RNTI是不同的,可以通过RNTI区分出是哪个终端的DCI。
比如,非redcap终端的4-step RA可以采用上述公式(1)计算得到RA-RNTI,非redcap终端的2-step RA可以采用上述公式(2),而对redcap终端的4-step RA设计如下公式(3),对redcap终端的2-step RA设计如下公式(4):
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+偏置量_2(offset_2)  公式(3)
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+偏置量_3(offset_3)  公式(4)
其中,偏置量_2(offset_2)、偏置量_3(offset_3)可以设置为大于0的整数,公式(2)-公式(4)中的偏置量可以预先配置,这些偏置量可以用于隔离分配给不同类型终端的RA-RNTI、MsgB-RNTI。例如,如图3c所示,为不同类型终端发起的RA分配不同的RNTI,取值范围为[0,17920]的RNTI分配给非redcap终端的4-step RA,取值范围为[17921,35840]的RNTI分配给非redcap终端的2-step RA,取值范围为[35841,53760]的RNTI分配给redcap终端的4-step RA,取值范围为[53761,71680]的RNTI分配给redcap终端的2-step RA。
应理解,公式(3)、公式(4)涉及的参数:s_id、t_id,f_id、ul_carrier_id、Nsymbol、Nslot、Nf的相关描述可以参照上文,不予赘述。此外,为便于描述,公式(1)和公式(2)可以统称为第二类终端对应的计算公式,第二类终端可以包括非redcap终端。公式(3)和公式(4)可以统称为第一类终端对应的计算公式,第一类终端包括redcap终端。
例如,如图4a所示,系统带宽中包括redcap终端的初始带宽部分(bandwidth part,BWP)和非redcap终端的初始BWP。非redcap终端的初始BWP中分配有为非redcap终端使用的RO资源:RO e~RO l,redcap终端的初始BWP中配置为redcap终端的RO资源:RO a~RO d。假设非redcap终端在RO e上发送Msg1,redcap终端在RO a上发送Msg1,s_id=10,t_id=40,ul_carrier_id=0。尽管redcap终端还是非redcap终端在不同的RO上发送Msg1,对于非redcap终端、redcap终端而言,因频域单元的索引值f_id从0开始,RO e、RO a对应的f_id=0。即对于redcap和非redcap终端而言,用于计算RA-RNTI的参数s_id、t_id、f_id、ul_carrier_id都是相同的。此时,采用公式(1)得到非redcap终端的RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id=1+10+14×40+14×80×0+14×80×8×0=571。假设偏置量_2=35840,采用公式(3)得到redcap终端的RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+偏置量_2=1+10+14×40+14×80×0+14×80×8×0+35840=36411。这样尽管参数s_id,t_id,f_id,ul_carrier_id都是相同的,因采用不同的计算公式,使得redcap终端和非redcap终端的RA-RNTI是 不同的,利用不同的RA-RNTI加扰得到两个DCI,这两个DCI分别调度redcap终端和非redcap终端的RAR。
又例如,如图4b所示,为了提高RO资源利用率,接入网设备配置redcap终端和非redcap终端共享RACH资源(本申请中可以简称为共享RO),即为redcap终端和非redcap终端配置相同的RO/共享RO(如图4b中所示的RO资源:RO a~RO d)。非redcap终端和redcap终端可以在相同的RO上发送Msg1,比如在RO a上发送Msg1,此时,虽然非redcap终端和redcap终端的参数s_id,t_id,f_id,ul_carrier_id的取值是相同的,但是可以采用公式(1)得到非redcap终端的RA-RNTI,采用公式(3)得到redcap终端的RA-RNTI,使得redcap终端和非redcap终端的RA-RNTI是不同的,利用不同的RA-RNTI加扰得到两个DCI,这两个DCI分别调度redcap终端和非redcap终端的RAR。
由上可知,可以通过引入偏置量为不同类型终端设计不同的RNTI计算公式,区分不同类型终端发起RA所用的RNTI,保证不同类型终端计算出来的RNTI的取值不同,实现网络侧根据不同终端的RNTI下发该终端的DCI,终端侧可以通过RNTI区分网络侧下发的DCI对应哪种类型终端发起的哪类RA,进而使终端可以根据自己的DCI获取自己的RAR,避免发起不同RA的不同终端之间的随机接入冲突。
虽然可以通过设计不同的RNTI计算公式保证不同类型终端的RNTI是不同的,进而通过RNTI区分网络侧下发的DCI是哪个终端的DCI。但是,从信令开销这个角度来看,在多个终端共享随机接入资源的场景下,如果采用不同RNTI加扰得到不同的DCI,用不同的DCI调度不同的RAR则会加大信令开销。比如以图4b为例,redcap终端和非redcap终端共享RO,接入网设备在共享RO上接收到redcap终端和非redcap终端发送的Msg1后,接入网设备采用公式(1)、公式(3)计算得到两个不同的RA-RNTI,利用这两个不同的RA-RNTI加扰得到两个DCI,这两个DCI可以调度两个PDSCH,一个PDSCH携带redcap终端的RAR,另一个PDSCH携带非redcap终端的RAR,即利用两个DCI分别调度redcap终端和非redcap终端的RAR,加大信令开销。
为解决上述问题,本申请实施例提供一种随机接入方法,该方法可以包括:第一终端在第一随机接入资源上向接入网设备发送第一消息,接入网设备接收第一消息,向第一终端发送调度第一消息对应的响应消息的第一DCI;用于加扰第一DCI的RNTI根据第一随机接入资源的参数以及偏置量计算得到,该偏置量通过第一信息指示给第一终端。即指示终端根据随机接入资源的参数以及偏置量计算得到自己的RNTI,利用计算得到的RNTI解扰接收到的DCI,进而根据解扰成功的DCI的指示接收自己的响应消息。即不局限于根据随机接入资源的参数计算得到RNTI,而是在此基础之上再结合一个偏置量计算得到RNTI,设计方式与现有方式不同,以便终端根据现有方式计算RNTI或者在第一信息指示偏置量的情况下结合偏置量计算RNTI,计算方式灵活多样。此外,还可以在某些场景下实现不同类型终端计算得到的RNTI相同,通过同一DCI调度不同类型终端的RAR,节省信令开销。
下面结合说明书附图,对本申请实施例提供的随机接入方法进行描述。
本申请实施例提供的随机接入方法可用于第四代(4th generation,4G)系统、长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新空 口(new radio,NR)系统、NR-车与任何事物通信(vehicle-to-everything,V2X)系统、物联网系统中的任一系统,还可以适用于其他下一代通信系统等,不予限制。下面以图5所示通信系统为例,对本申请实施例提供的随机接入方法进行描述。
图5是本申请实施例提供的一种通信系统的示意图,如图5所示,该通信系统可以包括接入网设备以及多个终端,如:终端1、终端2。在图5所示系统中,终端可以处于空闲态或者非激活态。需要说明的是,图5为示例性框架图,图5中包括的节点的数量不受限制,且除图5所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
其中,接入网设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,接入网设备可以为小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的随机接入方法。
在具体实现时,图5所示各网元,如:终端、接入网设备可采用图6所示的组成结构或者包括图6所示的部件。图6为本申请实施例提供的一种通信装置600的组成示意图,当该通信装置600具有本申请实施例所述的终端的功能时,该通信装置600可以为终端或者终端中的芯片或者片上系统。当通信装置600具有本申请实施例所述的接入网设备的功能时,通信装置600可以为接入网设备或者接入网设备中的芯片或者片上系统。
如图6所示,该通信装置600可以包括处理器601,通信线路602以及通信接口603。进一步的,该通信装置600还可以包括存储器604。其中,处理器601,存储器604以及通信接口603之间可以通过通信线路602连接。
其中,处理器601可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器601还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路602,用于在通信装置600所包括的各部件之间传送信息。
通信接口603,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口603可以是射频模块、收发器或者任何能够实现通信的装置。本申请实施例以通信接口603为射频模块为例进行说明,其中,射频模块 可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器604,用于存储指令。其中,指令可以是计算机程序。
其中,存储器604可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等。
需要说明的是,存储器604可以独立于处理器601存在,也可以和处理器601集成在一起。存储器604可以用于存储指令或者程序代码或者一些数据等。存储器604可以位于通信装置600内,也可以位于通信装置600外,不予限制。处理器601,用于执行存储器604中存储的指令,以实现本申请下述实施例提供的随机接入方法。
在一种示例中,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
作为一种可选的实现方式,通信装置600包括多个处理器,例如,除图6中的处理器601之外,还可以包括处理器607。
作为一种可选的实现方式,通信装置600还可以包括输出设备605和输入设备606。输入设备606可以是键盘、鼠标、麦克风或操作杆等,输出设备605可以是显示屏、扬声器(speaker)等设备。
需要说明的是,通信装置600可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图6中类似结构的设备。此外,图6中示出的组成结构并不构成对该通信装置的限定,除图6所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下面结合图5所示通信系统,以随机接入资源为RO为例,对本申请实施例提供的随机接入方法进行描述。其中,下述实施例中各设备可以具有图6所示部件,且各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。此外,本申请实施例中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序,本申请实施例对“第一”和“第二”所表示的不同对象的属性不做限定。
图7为本申请实施例提供的一种随机接入方法流程图,如图7所示,该方法可以包括:
步骤701:第一终端在第一RO上向接入网设备发送第一消息。相应的,接入网设备接收来自第一终端的第一消息。
其中,第一终端可以是图5中的任一终端,比如第一终端可以是图5中的终端1或者终端2。第一终端可以处于非连接态(比如空闲态或者非激活态)。接入网设备可以是图5中的接入网设备,该接入网设备可以为第一终端提供网络服务。
其中,第一RO可以是第一终端随机选择的用于发送Msg1或者MsgB的RO。第 一消息可以携带preamble。第一消息可以是Msg1。或者第一消息可以是MsgA,除携带preamble之外,MsgA还可以包括与该preamble关联的物理上行共享信道(physical uplink shared channel,PUSCH),该PUSCH中可以包括上行数据和/或其他信息。
本申请实施例中,第一终端属于第一类终端,第一RO可以包括在第一类终端与第二类终端共享的随机接入资源中。示例性的,第一类终端包括redcap终端,第二类终端包括非redcap终端;或者,第一类终端包括支持覆盖增强的终端,第二类终端包括不支持覆盖增强的终端;或者,第一类终端包括支持接入网切片的终端,第二类终端包括不支持接入网切片的终端。第二类终端可以称为正常(normal)终端或者被称为现有(legacy)终端。
本申请实施例中,第一类终端与第二类终端共享的随机接入资源可以理解为共享随机接入资源。共享随机接入资源可以被第一类终端和第二类终端共同使用。比如,如图4b所示的RO a~RO d为共享随机接入资源,可以被redcap终端和非redcap终端共享。
本申请实施例中,redcap终端可以支持20兆赫兹(MHz)带宽,1个接收天线(RX)或2个接收天线(RX)。非redcap终端可以支持100MHz带宽、4个接收天线(4RX)等。执行随机接入过程时,接入网设备可以为非redcap终端配置专门的RACH资源(比如专门的RO等)。非redcap终端可以在接入网设备配置的与redcap终端对应的RACH资源上发送Msg1或MsgA,接入网设备可以在该RACH资源上接收Msg1或者MsgA,并且根据RACH资源可以获知该终端是非redcap终端。
本申请实施例中,覆盖增强可以指通过重复传输等方式增加覆盖范围。以物理上行共享信道(pysical uplink shared channel,PUSCH)为例,支持覆盖增强能力的终端可以一次性重复发送多次PUSCH,接入网设备接收信号时可以将多个重复的PUSCH进行合并接收,增加信号的等效信噪比,从而让接入网设备接收到距离更远的终端的信号。如果终端在随机接入过程中发送Msg3或者MsgA的时候,需要用到重复传输等覆盖增强技术,则接入网设备可以为该终端的“覆盖增强”配置专门的RACH资源(比如专门的RO等)。终端选择覆盖增强关联的RACH资源后,可以在选择的RACH资源上发送Msg1或MsgA,相对应的,接入网设备可以在该RACH资源上接收Msg1或者MsgA。对于4-step RA,接入网设备根据终端选择的RACH资源可以获知该终端希望使用覆盖增强技术发送Msg3,则后续可以以覆盖增强的方式调度Msg3的传输。对于2-step RA,“覆盖增强”对应的RACH资源包括专门的RO/preamble,以及配置为覆盖增强方式(如重复传输等)的PUSCH,终端发送MsgA的时候,会发送“覆盖增强”对应的RO/preamble以及重复传输的PUSCH。
本申请实施例中,支持接入网切片的终端可以获得/被分配更优质更充足的空口资源,不支持接入网切片的终端可能获得/被分配较差的空口资源。在执行随机接入过程时,接入网设备可以为支持接入网切片的终端配置专门的RACH资源(比如专门的RO等)。支持接入网切片的终端可以在接入网设备配置的RACH资源上发送Msg1或MsgA,相对应的,接入网设备可以在该RACH资源上接收Msg1或者MsgA,并且根据RACH资源可以获知该终端是支持接入网切片的终端。
应理解,本申请实施例引入的第一类终端、第二类终端是为了更加清楚的说明本 申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,除上述类型终端之外,还可以包括其他类型终端。比如,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于其他新的类型终端发起的Msg1仍可以使用根据上文公式(1)得到的RA-RNTI加扰调度Msg1对应的响应消息的DCI,也可以根据通过增加偏置量得到的新的计算公式得到RA-RNTI,利用得到的RA-RNTI加扰调度Msg1对应的响应消息的DCI。可以理解的,随着网络架构的演变和新业务场景的出现,出现的支持一种或多种新能力(功能或特性)的终端可以理解为本申请实施例的第一类终端,而不支持新能力的现有终端可以理解为本申请实施例中的第二类终端。
步骤702:接入网设备根据第一消息,向第一终端发送第一DCI。相应的,第一终端接收来自接入网设备的第一DCI。
进一步可选的,接入网设备在第一DCI所指示的时频资源位置上发送第一消息对应的响应消息。相应的,第一终端根据第一RO确定RNTI,根据RNTI解扰第一DCI,并在第一DCI解扰成功后,根据第一DCI指示的时频资源位置上接收第一消息对应的响应消息。当第一消息为Msg1时,第一消息对应的响应消息可以是Msg2。当第一消息为MsgA时,第一消息对应的响应消息可以是MsgB。
进一步可选的,如果第一消息对应的响应消息是Msg2,则所述方法还包括:第一终端向接入网设备发送携带上行数据的Msg3,接入网设备接收Msg3,向第一终端发送Msg4。
其中,第一DCI可以用于调度第一消息对应的响应消息。第一DCI可以指示第一消息对应的响应消息的时频资源位置。第一DCI使用RNTI加扰,RNTI与第一RO之间存在关联关系。应理解,当第一消息是Msg1时,加扰第一DCI的RNTI可以是RA-RNTI。当第一消息是MsgA时,加扰第一DCI的RNTI可以是MsgB-RNTI。
本申请实施例中,加扰第一终端的第一DCI的RNTI可以根据公式(1)/公式(2)计算得到,也可以根据公式(3)/公式(4)计算得到。比如在第一类终端和第二类终端共享RO的场景下,如果接入网设备希望第一类终端和第二类终端共享同一RNTI加扰的DCI,共享同一DCI调度的RAR,则不向第一终端发送指示,默认第一终端采用公式(1)/公式(2)计算得到RNTI,或者接入网设备可以指示第一终端采用第二类终端对应的计算公式(比如公式(1)/公式(2))计算得到RNTI。如果接入网设备希望第一类终端和第二类终端分别使用不同的DCI调度RAR,不希望第一类终端和第二类终端共享同一RNTI加扰的DCI,指示第一终端采用第一类终端对应的计算公式(公式(3)/公式(4))计算得到RNTI。
应理解,本申请所述的第二类终端对应的计算公式可以指默认或预配置给第二类终端的RNTI计算公式。指示第一终端采用第二类终端对应的计算公式(比如公式(1)/公式(2))计算得到RNTI可以包括:当第一消息是Msg1时,指示第一终端采用上文所述公式(1)计算得到RA-RNTI。当第一消息是MsgB时,指示第一终端采用上文所述公式(2)计算得到MsgB-RNTI。如此,第一类终端与第二类终端可以使用相同的RNTI计算公式,比如均使用公式(1)或公式(2)计算得到对应RA方式的RNTI,保证在第一类终端和第二类终端共享随机接入资源,或者第一类终端和第二类终端发 送preamble的随机接入资源的参数相同的情况下,第一类终端以及第二类终端计算出的RNTI是相同的,利用该RNTI加扰得到的DCI也是相同的,是同一个DCI,该DCI可以用于调度第一类终端以及第二类终端的RAR,即将这多类终端的RAR携带在同一DCI调度的同一PDSCH中,实现多类终端的DCI及RAR的共享,降低信令开销。
以图4b为例,假设非redcap终端和redcap终端都在RO a中发送preamble,假设s_id=10,t_id=40,ul_carrier_id=0。对于非redcap终端和redcap终端而言,f_id=0。接入网设备在共享RO上接收到redcap终端和非redcap终端发送的Msg1后,若接入网设备希望用同一DCI调度的RAR对两类终端进行反馈,则接入网设备采用公式(1)计算得到两类终端的RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id=1+10+14×40+14×80×0+14×80×8×0=571,得到同一个RA-RNTI,利用该RA-RNTI加扰得到一个DCI,这一个DCI可以调度一个PDSCH,该PDSCH可以携带redcap终端的RAR以及非redcap终端的RAR,即一个DCI可以调度redcap终端和非redcap终端的RAR,降低信令开销。同时,接入网设备指示redcap终端使用公式(1)计算RA-RNTI,或者redcap终端默认使用公式(1)计算RA-RNTI,根据计算得到的RA-RNTI接收DCI。若接入网设备希望用不同的DCI调度的RAR对于两类终端进行反馈,则指示redcap终端使用公式(3)计算得到RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+M=1+10+14×40+14×80×0+14×80×8×0+35840=36411,M=35840,这样,redcap终端计算出的RA-RNTI与非redcap终端计算出的RA-RNTI不同。因此两类终端接收不同的DCI,用两个不同的DCI调度的RAR进行Msg2的反馈。
进一步的,为了区分同一DCI调度的RAR中哪个是第一类终端的RAR、哪个是非redcap终端的RAR。一种可能的设计中,可以通过为不同类型终端分配preamble来区分哪个RAR是发送给哪个终端的。比如预先为第一类终端(比如redcap)终端、第二类终端(比如非redcap)终端分配不同的preamble。一个preamble对应一个编号,preamble的编号可以理解为preamble的标识(random access preamble identifier,RAPID)(可以简称为RPID),preamble的标识可以用于标识/识别该preamble,终端通过RAR中携带的与preamble对应的字段来区别是否是自己的RAR。
比如,以响应消息为MAC RAR为例,多个终端发起的Msg1对应的MAC RAR的格式如图8所示,可以看出,MAC RAR中可以包括针对多个终端的RAR,比如图8中的MAC负载(playload)中包含n个MAC RAR,n为大于或等于1的整数。为了区分每个RAR属于哪个终端,在每个RAR的MAC子头(subheader)中包含一个“RPID”的字段,这个字段对应peamble的编号。例如一个终端在发送Msg1时使用了编号为5的preamble,终端根据DCI接收到携带如图8所示格式的MAC RAR的PDSCH后,可以检查MAC RAR中每个RAR中的RPID字段,如果一个RAR的RPID字段与自己发送的preamble的编号5相同,则意味着这个RAR可能是发送给自己的。
下面对接入网设备指示第一终端采用第二类终端对应的计算公式(比如公式(1)/公式(2))计算得到RNTI的过程进行描述:
(1.1)直接指示第一终端采用第二类终端对应的计算公式计算得到RNTI。比如 当接入网设备希望第一类终端和第二类终端共享同一RNTI加扰的DCI,共享同一DCI调度的RAR时,接入网设备可以向第一终端发送信息a,该信息a指示第一终端使用第二类终端对应的计算公式(公式(1)或者公式(2))计算得到RNTI。
其中信息a可以携带在高层信令中,比如无线资源控制(radio resource control,RRC消息中,还可以携带在媒体接入控制控制单元(media access cotrol,MAC CE)中。信息a指示第一终端采用第二类终端对应的计算公式计算得到RNTI可以包括如下几种方式:
一种可能的设计方式中,信息a包括第二类终端对应的计算公式的索引,即直接采用第二类终端对应的计算公式。
比如以公式(1)对应的索引为1,公式(2)对应的索引为2,公式(3)对应的索引为3,公式(4)对应的索引为4。当第一消息为Msg1时,如果信息a携带公式(1)对应的索引1,则指示第一终端使用公式(1)计算得到RA-RNTI;如果信息a携带索引3,则指示使用公式(3)计算得到RA-RNTI。当第一消息为Msg2时,如果信息a携带公式(2)对应的索引2,则指示第一终端使用公式(2)计算得到MsgB-RNTI;如果信息a携带索引4,则指示使用公式(4)计算得到MsgB-RNTI。
又一种可能的设计方法中,信息a包括第一类终端的RO配置信息,通过RO配置信息包括的RO参数的取值指示第一终端采用第二类终端对应的计算公式计算RNTI。
其中,RO配置信息可以包括RO资源的起始频域位置、RO的频分复用系数、RO的时域位置等RO参数,还可以包括RO与SSB之间的对应关系(比如一个RO对应的SSB(SSB per RO)的数量)、一个RO的带宽等。RO资源的起始频域位置可以指该RO资源中排在最低频率的RO(可以称为起始RO)距离该类终端的初始BWP的起始频率之间的偏置量。RO的频分复用系数可以指对应相同时间单元(比如时隙(slot))的不同频域单元上配置的RO的数量。RO的时域位置可以指在一个发送周期内RO占用的时间资源位置。
比如当RO的频分复用系数为预设值,比如为4时,指示第一终端采用第二类终端对应的计算公式计算得到RNTI。当RO的频分复用系数为其他值时,指示第一终端不采用第二类终端对应的计算公式计算得到RNTI,使用公式(3)/公式(4)计算得到RNTI。
再一种可能的设计中,信息a包括第一类终端的BWP配置信息,通过BWP配置信息包括的BWP参数的取值指示第一终端采用第二类终端对应的计算公式计算RNTI。
其中,BWP配置信息可以包括初始BWP的带宽大小、起始频域位置等BWP参数,还可以包括初始BWP的子载波间隔(subcarrier spacing,SCS)(可以简称BWP SCS)。起始频域位置可以指初始BWP的起始频域(或者频率最低的频域单元)距离系统带宽的起始频域的偏置量,该偏置量可以是大于或者等于0的整数。其中系统带宽的起始频域可以指系统带宽中频率最低的频域单元,可选的,系统带宽的起始频域是编号为0的频域单元,系统带宽的起始频域位置是0PRB。
比如当BWP配置信息中起始频域位置为0PRB,即初始BWP的起始频域与系统带宽的起始频域位置相同时,指示第一终端采用第二类终端对应的计算公式计算得到RNTI。当BWP配置信息中起始频域位置为其他值时,指示第一终端不采用第二类终 端对应的计算公式计算得到RNTI,默认使用公式(3)/公式(4)计算得到RNTI。
应理解,本申请实施例中,以终端类型为粒度配置初始BWP、RO资源。对于属于第一类终端的第一终端,其BWP配置信息、RO配置信息对应第一类终端,BWP配置信息、RO配置信息可以通过第一类终端对应的系统消息中发送给第一终端。比如执行S701之前,接入网设备可以向第一终端发送系统消息,该系统消息可以携带第一类终端的BWP配置信息以及分配给第一类终端使用的RO资源的RO配置信息。可选的,RO配置信息可以携带在BWP配置信息中。
再一种可能的设计中,第一随机接入资源包括在共享RO中,共享RO对应第二类终端对应的计算公式(公式(1)/公式(2)),此时,信息a可以包括指示共享RO的指示信息。
一种示例中,可以采用二进制比特指示第一终端的全部RO资源为共享RO或者全部RO资源为非共享RO。比如可以用二进制比特“1”指示第一终端的全部RO资源为共享RO,用二进制比特“0”指示第一终端的全部RO资源为非共享RO。当信息a中携带二进制比特“1”时,指示第一终端的全部RO资源为共享RO,第一终端在这全部RO资源发起的RA时,采用第二类终端对应的计算公式(公式(1)/公式(2))计算得到RNTI。
又一种示例中,第一终端的RO资源对应一个掩码(mask),该掩码可以称为RO掩码。该掩码包括S个比特,S等于第一终端的频分复用系数,即该掩码可以是一个比特图,该掩码包括的一个比特对应第一终端的一个RO,该比特用于指示与其对应的RO是否是共享RO,该比特的取值可以是“1”或“0”。
以“1”指示RO是共享RO,“0”指示RO是非共享RO为例,例如第一终端的频率复用系数为4,即包括4个RO,此时信息a中可以包括一个掩码:0011,其中第一个bit对应频率最低的RO,第二个bit对应频率第二低的RO,以此类推。这样掩码0011代表频域编号较低的两个RO不共享,采用公式(3)/公式(4)计算RNTI,而频域编号较高的两个RO共享,采用公式(1)/公式(2)计算RNTI。
应理解,本申请各实施例中的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。比如信息a还可以描述为第一信息、第二信息等等。
(1.2)通过信息b向第一终端指示第一类终端对应的计算公式中的偏置量(如公式3中的偏置量_2或者公式4中的偏置量_3),该偏置量为零。即默认或预配置第一类终端使用公式(3)或公式(4)计算RNTI,只不过对于公式(3)或公式(4)中的偏置量,不再采用默认或预配置的大于1的整数,而是指示该偏置量为零,这样等效于使用公式(1)或公式(2)计算得到RNTI。
应理解,本申请所述的第一类终端对应的计算公式可以指默认或预配置给第一类终端的RNTI计算公式(公式(3)或公式(4))。比如,对应第一类终端的4-step RA,默认或预配置给第一类终端的计算公式为公式(3)。对于第二类终端的2-step RA,默认或预配置给第一类终端的计算公式为公式(4)。
其中信息b可以携带在高层信令中,比如RRC消息,还可以携带在MAC CE中。信息b指示偏置量为零可以包括如下几种方式:
一种可能的设计方式中,信息b包括偏置量,即直接指示偏置量的数值。
又一种可能的设计方法中,信息b包括第一类终端的RO配置信息,通过RO配置信息包括的RO参数的取值指示偏置量为零。如当RO配置信息包括的RO参数的取值为第一值时,指示偏置量为零。
其中第一值可以为预配置的,不予限制。如上文所述,RO配置信息可以包括RO资源的起始频域位置、RO的频分复用系数、RO的时域位置等RO参数。示例性的,当RO的频分复用系数为预设值,比如为4时,指示偏置量为零。当RO的频分复用系数为其他值时,指示偏置量为其他数值,比如为默认/预配置的大于1的整数。
再一种可能的设计中,信息b包括第一类终端的BWP配置信息,通过BWP配置信息包括的BWP参数的取值指示偏置量为零。如当BWP配置信息包括的BWP参数的取值为第二值时,指示偏置量为零。
其中第二值可以为预配置的,不予限制。如上文所述,BWP配置信息可以包括初始BWP的带宽大小、起始频域位置等BWP参数。示例性的,当BWP配置信息中起始频域位置为0PRB,即初始BWP的起始频域与系统带宽的起始频域位置相同时,指示偏置量为零。如当BWP配置信息中起始频域位置为0PRB为其他值时,指示偏置量为其他数值,比如为默认/预配置的大于1的整数。
再一种可能的设计中,第一RO包括在共享RO中,共享RO对应偏置量为零,信息b包括指示共享RO的指示信息。
一种示例中,可以采用二进制比特指示第一终端的全部RO资源为共享RO或者全部RO资源为非共享RO。比如可以用二进制比特“1”指示第一终端的全部RO资源为共享RO,用二进制比特“0”指示第一终端的全部RO资源为非共享RO。当信息b中携带二进制比特“1”时,指示第一终端的全部RO资源为共享RO,第一终端在这全部RO资源发起的RA时,计算RNTI时所用的偏置量为零。
又一种示例中,第一终端的RO资源对应一个掩码,该掩码可以称为RO掩码。该掩码包括S个比特,S等于第一终端的频分复用系数,即该掩码可以是一个比特图,该掩码包括的一个比特对应第一终端的一个RO,该比特用于指示与其对应的RO是否是共享RO,该比特的取值可以是“1”或“0”。
以“1”指示RO是共享RO,“0”指示RO是非共享RO为例,例如第一终端的频率复用系数为4,即包括4个RO,此时信息b中可以包括一个掩码0011,其中第一个bit对应频率最低的RO,第二个bit对应频率第二低的RO,以此类推。这样掩码0011代表频域编号较低的两个RO不共享,采用默认/预配置的大于1的偏置量计算RNTI,而频域编号较高的两个RO共享,计算RNTI时所用的偏置量为零。
应理解,本申请各实施例中的消息名称或消息中的参数名称等只是一个示例,具体实现中也可采用其他的名称,不予限制。比如信息b还可以描述为第一信息、第二信息等等。
在一种可能的应用场景中,可能会存在虽然第一类终端和第二类终端共享同一RO,但第一类终端对应的该共享RO的参数与第二类终端对应的该共享RO的参数不同,导致这两类终端在该共享RO上发起随机接入后,根据该共享RO的参数以及相同的计算公式计算得到RNTI不同,不能实现基于同一RNTI加扰的DCI调度这两类终端 的RAR。
以第一类终端为redcap终端,第二类终端为非redcap终端为例,例如,如图9所示,接入网设备分别配置了非redcap终端的BWP和redcap终端的BWP。在非redcap终端的BWP的系统消息中配置RO的起始频域位置是12PRB,频分复用系数为8。在redcap终端的BWP的系统消息中配置RO的起始频域位置是5PRB(redcap终端仅使用RO e至RO h),频分复用系数为4。非redcap终端占用RO a至RO h,redcap终端占用RO e至RO h,redcap终端共享非redcap终端中频率较高的4个RO:RO e至RO h。在对RO的索引值f_id从0开始进行顺序编号的情况下,redcap终端共享的4个RO即RO e至RO h的索引值f_id为[0,3],非redcap终端占用的RO e至RO h的索引值为[4,7],对于这两类终端而言,同一RO对应的f_id的取值是不同的。比如redcap终端占用的RO e对应f_id=0,非redcap终端占用的RO e的f_id=4。如果redcap终端和非redcap终端在RO e上发送Msg1,即使非redcap终端和redcap终端均通过上述方式实现基于公式(1)计算RA-RNTI,但由于二者的RO e的f_id不同,导致二者计算出来的RA-RNTI是不同的,无法实现redcap终端与非redcap终端使用相同DCI调度的RAR进行反馈。
为解决第一类终端与第二类终端基于共享RO的参数计算出的RNTI不同的问题,本申请实施例提供一种方法:接入网设备通过信息c向第一终端指示第一RO的参数的偏置量,第一终端接收到信息c后,根据第一RO的参数和第一RO的参数的偏置量计算得到RNTI。
本申请实施例中,第一RO的参数至少可以包括f_id,还可以包括s_id、t_id、ul_carrier_id中至少一个。其中s_id、t_id、f_id、ul_carrier_id的相关描述如上文中所述,不予赘述。第一RO的参数的偏置量可以用于调整第一随机接入参数的取值(或者称为初始取值),以使得第一终端的该第一RO的参数的调整取值与第二类终端对应的该第一RO的参数的取值(或者称为初始取值)相同/对齐,保证二者在该第一RO上发起随机接入后,基于相同计算公式计算得到的RNTI相同,实现基于同一DCI调度不同类型终端的RAR。
本申请实施例中,第一RO的参数的取值可以理解为第一RO的参数的初始取值。第一RO的参数的调整取值可以指利用参数的偏置量对RO的参数的初始取值调整后的取值。示例性的,第一RO的参数的调整取值=第一RO的参数的取值+参数的偏置量。应理解,本申请所述的确定参数的调整取值的方式仅为示例性说明,可选的,当参数的偏置量为小于0的负数是,第一RO的参数的调整取值=第一RO的参数的取值-参数的偏置量,即能够实现第一终端的第一RO的参数的调整取值与第二类终端对应的该第一RO的参数的取值相同的任何技术手段都在本申请的保护范围之内。
比如第一RO的s_id的取值为第一RO占用的符号在一个时隙中的索引值,第一RO的s_id的调整取值=第一RO的s_id的取值+s_id的偏置量。第一RO的t_id的取值为第一RO占用的时隙在一个系统帧中的索引值,第一RO的t_id的调整取值=第一RO的t_id的取值+t_id的偏置量。第一RO的f_id的取值为第一RO占用的频域单元在Nf个频域单元中的索引值,第一RO的f_id的调整取值=第一RO的f_id的取值+f_id的偏置量。第一RO的ul_carrier_id的取值为第一RO占用的上行载波在Nc个上行载 波中的索引值,第一RO的ul_carrier_id的调整取值=第一RO的ul_carrier_id的取值+ul_carrier_id的偏置量。
本申请实施例中,第一终端根据第一RO的参数和第一RO的参数的偏置量计算得到RNTI可以包括:根据第一RO的参数的取值加上偏置量得到第一RO的参数的调整取值,根据第一RO的参数的调整取值计算得到RNTI。比如当第一消息为Msg1时,即发起4-step RA时,基于公式(1)以及第一RO的参数的调整取值得到RA-RNTI。当第一消息为MsgA时,即发起2-step RA时,基于公式(2)以及第一RO的参数的调整取值得到MsgB-RNTI。
以第一类终端和第二类终端共享的RO的时域位置相同、频域索引f_id的取值不同,调整f_id的取值为例,假设参数的偏置量为△,△为大于或等于0的整数,当第一消息为Msg1,即发起4-step RA时,参照上述公式(1),第一终端根据第一RO的参数和第一RO的参数的偏置量计算得到的RA-RNTI满足下述公式:
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+△)+Nsymbol*Nslot*Nf*
ul_carrier_id;s_id、t_id、f_id、ul_carrier_id的取值范围与公式(1)中相同;或者,
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id,f_id’=f_id+△;s_id、t_id、f_id、ul_carrier_id的取值范围与公式(1)中相同;或者,
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id,s_id、t_id以及ul_carrier_id的取值范围与公式(1)中相同,f_id’的取值范围为[f_id+△,Nf-1],f_id的取值范围为[0,Nf-1]。
类似的,以第一类终端和第二类终端共享的RO的时域位置相同、频域索引f_id的取值不同,调整f_id的取值为例,假设参数的偏置量为△,△为大于或等于0的整数,当第一消息为MsgA,即发起2-step RA时,参照上述公式(2),第一终端根据第一RO的参数和第一RO的参数的偏置量计算得到的MsgB-RNTI满足下述公式:
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+△)+Nsymbol*Nslot*Nf*
ul_carrier_id+偏置量_1;s_id、t_id、f_id、ul_carrier_id、偏置量_1的取值范围与公式(2)中相同;或者,
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id+偏置量_1,f_id’=f_id+△;s_id、t_id、f_id、ul_carrier_id、偏置量_1的取值范围与公式(2)中相同;或者,
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id+偏置量_1,s_id、t_id、ul_carrier_id以及偏置量_1的的取值范围与公式(2)中相同,f_id’的取值范围为[f_id+△,Nf-1],f_id的取值范围为[0,Nf-1]。
以图9为例,redcap终端共享非redcap终端中频率较高的4个RO:RO e至RO h。在对RO的索引值f_id从0开始进行顺序编号的情况下,接入网设备可以指示redcap终端其f_id的偏置量Δ=4,此时,redcap终端共享的4个RO的索引值f_id的调整取值为[4,7],与非redcap终端占用的RO e至RO h的索引值[4,7]相同。如果redcap终端和非redcap终端在RO e上发送Msg1,则redcap终端基于 RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+△)+Nsymbol*Nslot*Nf*ul_carrier_id计算得到的RA-RNTI与非redcap终端基于公式(1)计算得到的RA-RNTI相同,可以实现redcap终端与非redcap终端使用相同DCI调度的RAR进行反馈,节省信令开销。
需要说明的是,f_id的偏置量可以设置为大于等于0且小于最大频分复用系数Nf。比如以f_id的偏置量为△为例,如果Nf=8,则8>△≥0。如果Nf=4,则4>△≥0。
其中信息c可以携带在高层信令中,比如RRC消息,还可以携带在MAC CE中,也可以携带在第一终端的RO配置信息中。信息c指示第一RO的参数的偏置量的方式可以包括下述任一可能的设计方式:
一种可能的设计方式中,信息c包括第一RO的参数的偏置量,即直接指示第一RO的参数的偏置量的数值。
又一种可能的设计方法中,信息c包括第二类终端的RO配置信息。第二类终端的RO配置信息用于指示第二类终端的RO时域位置、频分复用系数以及起始频域位置。第一终端从信息c中获取到第二类终端的RO配置信息,第一终端根据第二类终端的RO配置信息计算得到参数的偏置量。
一种示例中,以参数为f_id为例,第一终端根据第二类终端的RO配置信息计算得到参数f_id的偏置量可以包括:根据第一类终端的RO配置信息和第二类终端的RO配置信息计算得到f_id的偏置量。比如根据第一类终端的RO配置信息确定分配给第一类终端使用的RO的频域位置,根据第二类终端的RO配置信息确定分配给第二类终端使用的RO的频域位置,将分配给第一类终端使用的RO的频域位置和分配给第二类终端使用的RO的频域位置中的重叠频域位置确定为第一类终端和第二类终端共享的RO(可以简称为共享RO),根据共享RO中的起始RO与第二类终端的RO资源中的起始RO之间的频域间隔得到f_id的偏置量,比如f_id的偏置量=第二类终端的起始RO的频域位置减去共享RO中的起始RO的频域位置。如此,可以根据分配给第二类终端使用的RO的频域位置和分配给第一类终端使用的RO的频域位置确定f_id的偏置量。
其中第一类终端的RO配置信息可以携带在系统消息中配置给第一终端。具体的,第一类终端的RO配置信息的相关描述如上文所述,不予赘述。
例如,以图9为例,非redcap终端和redcap终端的RO配置信息如下表一所示,接入网设备为非redcap终端配置了40兆赫兹(MHz)(相当于106个PRB)带宽的初始BWP,其上配置了频分复用系数为8的RO,非redcap终端的起始RO的位于12PRB(非redcap终端的起始RO相对于非redcap终端的初始BWP的起始RO的频域位置)。对于redcap终端,接入网设备为其配置了20MHz(相当于51个PRB)带宽的初始BWP,redcap终端的RO配置信息中包括频分复用系数=8、起始RO位于-43PRB(8个RO中的起始RO相对于redcap终端的初始BWP的起始RO的频域位置),这表示8个RO处于redcap终端的初始BWP之外。如果规定redcap终端仅可以使用处于redcap终端的初始BWP之内的RO,则redcap终端可以根据表一计算出来只有频率较高的4个RO(RO e至RO h)处于redcap终端的初始BWP之内,可以被redcap终端使用,即redcap终端可以使用的起始RO对应非redcap终端可以使用的第5个RO, 设置f_id的偏置量为4。
表一
Figure PCTCN2022097198-appb-000001
又一种示例中,以参数为f_id为例,第一终端根据第二类终端的RO配置信息计算得到参数f_id的偏置量可以包括:根据第一类终端的BWP配置信息和第二类终端的RO配置信息计算得到f_id的偏置量。比如根据第二类终端的RO配置信息确定分配给第二类终端使用的RO的频域位置,根据第一类终端的BWP配置信息确定第一类终端的初始BWP的频域位置(或频域范围),如果分配给第二类终端使用的部分RO的频域位置位于第一类终端的初始BWP中,则将这部分RO确定为第一类终端和第二类终端共享的RO(可以简称为共享RO),根据共享RO中的起始RO与第二类终端的RO资源中的起始RO之间的频域间隔得到f_id的偏置量,比如f_id的偏置量=第二类终端的起始RO的频域位置减去共享RO中的起始RO的频域位置。即根据分配给第二类终端使用的RO的频域位置和分配给第一类终端的初始BWP的频域位置确定f_id的偏置量。
其中第一类终端的BWP配置信息可以用于指示第一类终端的初始BWP的带宽大小、起始频域位置等。第一类终端的BWP配置信息可以携带在系统消息中配置给第一终端。具体的,第一类终端的BWP配置信息的相关描述如上文所述,不予赘述。
例如,如图9所示,消息c中可以包括非redcap终端的RO配置信息:RO的频率复用系数8、起始频域位置12PRB、时域位置等,同一时域位置上包括8个RO(RO a~RO h),图9中redcap终端的初始BWP的起始频域位置为55PRB、初始BWP的宽度为51个PRB。此时,redcap终端可以计算出RO a-d不在redcap终端的初始BWP范围之内,无法被redcap终端使用,而RO e-RO h位于redcap终端的初始BWP范围之内,这些RO可以被使用或共享。由于频率较低的4个RO无法使用,只有频率较高的4个RO(RO e至RO h)可以被redcap终端使用,即redcap终端可以使用的起始RO对应非redcap终端可以使用的第5个RO,则设置f_id的偏置量为4。
再一种可能的设计中,第一RO包括在共享RO中,信息c包括第一指示信息。 其中,第一指示信息用于指示RO集合、以及RO集合中的共享RO。第一终端可以根据共享RO中的起始RO与RO集合中的起始RO之间的频域间隔得到f_id的偏置量。
其中RO集合可以是分配给第二类终端使用的RO的集合,RO集合可以包括一个或者多个RO。RO集合中的共享RO可以指分配给第一类终端和第二类终端共同使用的RO。
一种示例中,RO集合对应一个掩码,该掩码可以称为RO掩码。该掩码包括S个比特,S等于频分复用系数,即该掩码可以是一个比特图,该掩码包括的一个比特对应RO集合中的一个RO,该比特用于指示与其对应的RO是否被共享,该比特的取值可以是“1”或“0”。
以“1”指示RO是共享RO,“0”指示RO是非共享RO为例,如图9为例,频率复用系数为8,同一时域位置上包括8个RO(RO a~RO h),此时信息c中可以包括一个掩码:00001111,其中第一个bit对应频率最低的RO,第二个bit对应频率第二低的RO,以此类推。这样掩码00001111代表频域编号较低的4个RO不共享、频率较高的4个RO是共享的,设置f_id的偏置量为4。
应理解,本申请各实施例中的消息名称或消息中的参数名称等只是一个示例,具体实现中也可采用其他的名称,不予限制。比如信息c还可以描述为第一信息、第二信息等等。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端、网络设备为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一设备、第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10示出了一种通信装置100的结构图,该通信装置100可以为第一终端,或者第一终端中的芯片,或者片上系统,该通信装置100可以用于执行上述实施例中涉及的第一终端的功能。作为一种可实现方式,图10所示通信装置100包括:发送单元1001,接收单元1002;
发送单元1001,用于在第一RO上向接入网设备发送第一消息。例如,发送单元1001可以用于支持通信装置100执行步骤701。
接收单元1002,用于接收来自接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO的参数以及偏置量确定。例如,接收单元1002可以用于支持通信装置100执行步骤702。
具体的,上述图7所示方法实施例涉及的各步骤的所有相关内容均可以援引到对 应功能模块的功能描述,在此不再赘述。通信装置100用于执行图7所示方法所示随机接入方法中第一终端的功能,因此可以达到与上述随机接入方法相同的效果。
作为又一种可实现方式,图10所示通信装置100包括:处理模块和通信模块。处理模块用于对通信装置100的动作进行控制管理,例如,处理模块可以支持该通信装置100执行控制功能。通信模块可以集成发送单元1001以及接收单元1002的功能,可以用于支持通信装置100执行步骤701、步骤702以及与其他网络实体的通信,例如与图6示出的功能模块或网络实体之间的通信。该通信装置100还可以包括存储模块,用于存储通信装置100的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置100可以为图6所示通信装置600。
图11示出了一种通信装置110的结构图,该通信装置110可以为接入网设备,或者接入网设备中的芯片,或者片上系统,该通信装置110可以用于执行上述实施例中涉及的接入网设备的功能。作为一种可实现方式,图11所示通信装置110包括:接收单元1101,发送单元1102;
接收单元1101,用于在第一RO上接收来自第一终端的第一消息。例如,接收单元1101可以支持通信装置110执行步骤701。
发送单元1102,用于向第一终端发送接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO的参数以及偏置量确定。例如,发送单元1102可以支持通信装置110执行步骤702。
具体的,上述图7所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置110用于执行图7所示方法所示随机接入方法中接入网设备的功能,因此可以达到与上述随机接入方法相同的效果。
作为又一种可实现方式,图11所示通信装置110包括:处理模块和通信模块。处理模块用于对通信装置110的动作进行控制管理,例如,处理模块可以支持该通信装置110执行管理功能。通信模块可以集成接收单元1101以及发送单元1102的功能,可以用于支持通信装置110执行步骤701以及步骤702以及与其他网络实体的通信,例如与图6示出的功能模块或网络实体之间的通信。该通信装置110还可以包括存储模块,用于存储通信装置110的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置110可以为图6所示通信装置600。
图12为本申请实施例提供的一种通信系统的结构图,如图12所示,该通信系统 可以包括:终端120、接入网设备121。终端120的功能与上述通信装置100的功能相同。接入网设备121与上述通信装置110的功能相同,不予赘述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的终端,如:包括数据发送端和/或数据接收端的内部存储单元,例如终端的硬盘或内存。上述计算机可读存储介质也可以是上述终端的外部存储设备,例如上述终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述终端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述终端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    第一终端在第一随机接入资源上,向接入网设备发送第一消息;
    所述第一终端接收来自所述接入网设备的第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,所述偏置量通过第一信息指示。
  2. 根据权利要求1所述的方法,其特征在于,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    所述RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+所述偏置量;
    其中,所述s_id的取值为所述第一随机接入资源占用的符号在一个时隙中的索引值,所述s_id的取值范围是[0,Nsymbol-1];
    其中,所述t_id的取值为所述第一随机接入资源占用的时隙在一个系统帧中的索引值,所述t_id的取值范围是[0,Nslot-1];
    其中,所述f_id的取值为所述第一随机接入资源占用的频域单元在Nf个频域单元中的索引值,所述Nf为预设的用于随机接入的频分复用系数最大值;所述f_id的取值范围是[0,C-1];所述C为小于或等于Nf的正整数,所述C的取值为所述第一终端用于随机接入的频分复用系数;
    其中,所述ul_carrier_id的取值为所述第一随机接入资源占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围是[0,Nc-1];
    所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  3. 根据权利要求2所述的方法,其特征在于,
    所述偏置量为零。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一信息包括所述偏置量;或者,
    所述第一信息包括所述第一类终端的RO配置信息,当RO配置信息包括的RO参数的取值为第一值时,指示所述偏置量为零;或者,
    所述第一信息包括所述第一类终端的BWP配置信息,当所述BWP配置信息包括的BWP参数的取值为第二值时,指示所述偏置量为零;或者,
    所述第一随机接入资源包括在共享随机接入资源中,所述共享随机接入资源对应所述偏置量为零,所述第一信息包括指示所述共享随机接入资源的指示信息。
  5. 根据权利要求1所述的方法,其特征在于,所述偏置量为所述第一随机接入资源的参数的偏置量,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    所述RNTI根据所述第一随机接入资源的参数的调整取值得到;
    所述调整取值根据所述第一随机接入资源的参数的取值加上所述偏置量得到。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一信息包括所述参数的偏置量;或者,
    所述参数的偏置量根据第二类终端的RO配置信息计算得到,所述第一信息包括所述第二类终端的RO配置信息;其中,所述第二类终端的RO配置信息用于指示所述第二类终端的RO时域位置、频分复用系数以及起始频域位置;或者,
    所述第一随机接入资源包括在共享随机接入资源中,所述第一信息包括第一指示信息;其中,所述第一指示信息用于指示随机接入资源集合、以及所述随机接入资源集合中的所述共享随机接入资源。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一随机接入资源的参数至少包括频域索引f_id,所述参数的偏置量包括所述频域索引f_id的偏置量,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+所述偏置量)+Nsymbol*Nslot*Nf*
    ul_carrier_id;或者,
    RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id;f_id’=f_id+所述偏置量;
    其中,所述s_id的取值为所述第一随机接入资源占用的符号在一个时隙中的索引值,所述s_id的取值范围是[0,Nsymbol-1];
    其中,所述t_id的取值为所述第一随机接入资源占用的时隙在一个系统帧中的索引值,所述t_id的取值范围是[0,Nslot-1];
    其中,所述f_id的取值为所述第一随机接入资源占用的频域单元在Nf个频域单元中的索引值,所述Nf为预设的用于随机接入的频分复用系数最大值;所述f_id的取值范围是[0,C-1];所述C为小于或等于Nf的正整数,所述C的取值为所述第一终端用于随机接入的频分复用系数;
    其中,所述ul_carrier_id的取值为所述第一随机接入资源占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围是[0,Nc-1];
    所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  8. 根据权利要求7所述的方法,其特征在于,
    所述f_id的偏置量小于Nf,所述Nf为预设的用于随机接入的频分复用系数最大值。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,
    所述第一终端属于第一类终端,所述第一随机接入资源包括在所述第一类终端与第二类终端共享的随机接入资源中。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一类终端包括能力降低redcap终端,所述第二类终端包括非redcap终端;或者,
    所述第一类终端包括支持覆盖增强的终端,所述第二类终端包括不支持覆盖增强的终端;或者,
    所述第一类终端包括支持接入网切片的终端,所述第二类终端包括不支持接入网切片的终端。
  11. 一种随机接入方法,其特征在于,所述方法包括:
    接入网设备在第一随机接入资源上,接收来自第一终端的第一消息;
    所述接入网设备向所述第一终端发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,所述偏置量通过第一信息指示给所述第一终端。
  12. 根据权利要求11所述的方法,其特征在于,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    所述RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+所述偏置量;
    其中,所述s_id的取值为所述第一随机接入资源占用的符号在一个时隙中的索引值,所述s_id的取值范围是[0,Nsymbol-1];
    其中,所述t_id的取值为所述第一随机接入资源占用的时隙在一个系统帧中的索引值,所述t_id的取值范围是[0,Nslot-1];
    其中,所述f_id的取值为所述第一随机接入资源占用的频域单元在Nf个频域单元中的索引值,所述Nf为预设的用于随机接入的频分复用系数最大值;所述f_id的取值范围是[0,C-1];所述C为小于或等于Nf的正整数,所述C的取值为所述第一终端用于随机接入的频分复用系数;
    其中,所述ul_carrier_id的取值为所述第一随机接入资源占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围是[0,Nc-1];
    所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  13. 根据权利要求12所述的方法,其特征在于,
    所述偏置量为零。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一信息包括所述偏置量;或者,
    所述第一信息包括所述第一类终端的RO配置信息,当RO配置信息包括的RO参数的取值为第一值时,指示所述偏置量为零;或者,
    所述第一信息包括所述第一类终端的BWP配置信息,当所述BWP配置信息包括的BWP参数的取值为第二值时,指示所述偏置量为零;或者,
    所述第一随机接入资源包括在共享随机接入资源中,所述共享随机接入资源对应所述偏置量为零,所述第一信息包括指示所述共享随机接入资源的指示信息。
  15. 根据权利要求11所述的方法,其特征在于,所述偏置量为所述第一随机接入 资源的参数的偏置量,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    所述RNTI根据所述第一随机接入资源的参数的调整取值得到;
    所述调整取值根据所述第一随机接入资源的参数的取值加上所述偏置量得到。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一信息包括所述参数的偏置量;或者,
    所述参数的偏置量根据第一类终端的RO配置信息和第二类终端的RO配置信息计算得到,所述第一信息包括所述第二类终端的RO配置信息;其中,所述第二类终端的RO配置信息用于指示所述第二类终端的RO时域位置、频分复用系数以及起始频域位置;或者,
    所述第一随机接入资源包括在共享随机接入资源中,所述第一信息包括第一指示信息;其中,所述第一指示信息用于指示随机接入资源集合、以及所述随机接入资源集合中的所述共享随机接入资源。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一随机接入资源的参数至少包括频域索引f_id,所述参数的偏置量包括所述频域索引f_id的偏置量,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,包括:
    RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*(f_id+所述偏置量)+Nsymbol*Nslot*Nf*
    ul_carrier_id;或者,
    RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id’+Nsymbol*Nslot*Nf*ul_carrier_id;f_id’=f_id+所述偏置量;
    其中,所述s_id的取值为所述第一随机接入资源占用的符号在一个时隙中的索引值,所述s_id的取值范围是[0,Nsymbol-1];
    其中,所述t_id的取值为所述第一随机接入资源占用的时隙在一个系统帧中的索引值,所述t_id的取值范围是[0,Nslot-1];
    其中,所述f_id的取值为所述第一随机接入资源占用的频域单元在Nf个频域单元中的索引值,所述Nf为预设的用于随机接入的频分复用系数最大值;所述f_id的取值范围是[0,C-1];所述C为小于或等于Nf的正整数,所述C的取值为所述第一终端用于随机接入的频分复用系数;
    其中,所述ul_carrier_id的取值为所述第一随机接入资源占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围是[0,Nc-1];
    所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  18. 根据权利要求17所述的方法,其特征在于,
    所述f_id的偏置量小于Nf,所述Nf为预设的用于随机接入的频分复用系数最大值。
  19. 根据权利要求11-18任一项所述的方法,其特征在于,
    所述第一终端属于第一类终端,所述第一随机接入资源包括在所述第一类终端与 第二类终端共享的随机接入资源中。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一类终端包括能力降低redcap终端,所述第二类终端包括非redcap终端;或者,
    所述第一类终端包括支持覆盖增强的终端,所述第二类终端包括不支持覆盖增强的终端;或者,
    所述第一类终端包括支持接入网切片的终端,所述第二类终端包括不支持接入网切片的终端。
  21. 一种通信系统,其特征在于,所述通信系统包括:第一终端以及接入网设备;
    所述第一终端,用于在所述第一随机接入资源上向所述接入网设备发送第一消息;
    所述接入网设备,用于在所述第一随机接入资源上接收所述第一消息,向所述第一终端发送第一下行控制信息DCI,其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一随机接入资源的参数以及偏置量计算得到,所述偏置量通过第一信息指示给所述第一终端;
    所述第一终端,还用于接收所述第一DCI。
  22. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述处理器和所述通信接口用于支持所述通信装置执行如权利要求1-10任一项所述的方法或者如权利要求11-20任一项所述的方法。
  23. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的方法或者如权利要求11-20任一项所述的方法。
  24. 一种计算机程序产品,其中,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的方法或者如权利要求11-20任一项所述的方法。
  25. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-10任一项所述的方法或者如权利要求11-20任一项所述的方法。
PCT/CN2022/097198 2021-06-22 2022-06-06 一种随机接入方法及装置 WO2022267871A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110688647 2021-06-22
CN202110688647.8 2021-06-22
CN202110996683.0A CN115515249A (zh) 2021-06-22 2021-08-27 一种随机接入方法及装置
CN202110996683.0 2021-08-27

Publications (1)

Publication Number Publication Date
WO2022267871A1 true WO2022267871A1 (zh) 2022-12-29

Family

ID=84499129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097198 WO2022267871A1 (zh) 2021-06-22 2022-06-06 一种随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN115515249A (zh)
WO (1) WO2022267871A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238345A1 (en) * 2014-08-11 2017-08-17 Zte Corporation Method and apparatus for transmitting random access response message
CN111278149A (zh) * 2019-01-30 2020-06-12 维沃移动通信有限公司 信息发送方法、信息检测方法、终端设备及网络设备
WO2020124763A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 随机接入的方法和设备
US20200275491A1 (en) * 2017-09-11 2020-08-27 China Academy Of Telecommunications Technology Method and apparatus for determining ra-rnti
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
WO2021030967A1 (zh) * 2019-08-16 2021-02-25 富士通株式会社 两步随机接入中接收和发送随机接入响应的方法及装置
WO2021091461A1 (en) * 2019-11-07 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node, and methods therein for determining an identity of a wireless device during a random access procedure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238345A1 (en) * 2014-08-11 2017-08-17 Zte Corporation Method and apparatus for transmitting random access response message
US20200275491A1 (en) * 2017-09-11 2020-08-27 China Academy Of Telecommunications Technology Method and apparatus for determining ra-rnti
WO2020124763A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 随机接入的方法和设备
CN111278149A (zh) * 2019-01-30 2020-06-12 维沃移动通信有限公司 信息发送方法、信息检测方法、终端设备及网络设备
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
WO2021030967A1 (zh) * 2019-08-16 2021-02-25 富士通株式会社 两步随机接入中接收和发送随机接入响应的方法及装置
WO2021091461A1 (en) * 2019-11-07 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node, and methods therein for determining an identity of a wireless device during a random access procedure

Also Published As

Publication number Publication date
CN115515249A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US10951373B2 (en) Method for obtaining quantity of resource elements in communication process and related apparatus
US11844109B2 (en) Controlling AUL transmissions when coexisting with scheduled UEs
WO2019047599A1 (zh) 一种ra-rnti确定方法及装置
EP4192164A1 (en) Frequency domain resource determining method, device, and storage medium
US20210045042A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2023511897A (ja) 初期帯域幅部bwp及び記憶媒体を決定するための方法及び装置
EP4188013A1 (en) Communication method and apparatus
WO2021197404A1 (zh) 用于随机接入的方法、装置及系统
JP2024019399A (ja) アクセス方法および装置
US20230345230A1 (en) Communication method and apparatus
US20220369387A1 (en) Data transmission method and apparatus
US20230042274A1 (en) Enhancements for Reduced Capability New Radio Devices
WO2022267871A1 (zh) 一种随机接入方法及装置
WO2021184227A1 (zh) 一种随机接入方法及通信装置
JP2024503850A (ja) 伝送タイミング決定方法及び装置
WO2022252841A1 (zh) 一种随机接入方法及装置
WO2019129010A1 (zh) 一种通信方法及装置
WO2022206715A1 (zh) 一种随机接入方法及装置
WO2023010450A1 (en) Enhancements for reduced capability new radio devices
US20240187967A1 (en) Enhancements for Reduced Capability New Radio Devices
WO2022077470A1 (zh) 数据信道的传输方法
US20230189234A1 (en) Frequency Domain Resource Determining Method, Device, and Storage Medium
WO2023225876A1 (zh) 波束确定方法和装置
EP4258791A1 (en) Random access method, apparatus and system
WO2023000905A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE