WO2021197404A1 - 用于随机接入的方法、装置及系统 - Google Patents

用于随机接入的方法、装置及系统 Download PDF

Info

Publication number
WO2021197404A1
WO2021197404A1 PCT/CN2021/084845 CN2021084845W WO2021197404A1 WO 2021197404 A1 WO2021197404 A1 WO 2021197404A1 CN 2021084845 W CN2021084845 W CN 2021084845W WO 2021197404 A1 WO2021197404 A1 WO 2021197404A1
Authority
WO
WIPO (PCT)
Prior art keywords
rach
terminal
types
type
random access
Prior art date
Application number
PCT/CN2021/084845
Other languages
English (en)
French (fr)
Inventor
侯海龙
李超君
费永强
陈磊
郑娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227037987A priority Critical patent/KR20220162763A/ko
Priority to JP2022560382A priority patent/JP7446476B2/ja
Priority to EP21781790.7A priority patent/EP4132195A4/en
Publication of WO2021197404A1 publication Critical patent/WO2021197404A1/zh
Priority to US17/957,818 priority patent/US20230034674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the terminal usually needs to perform a random access process with the network device, complete the uplink time synchronization with the network device, and establish a wireless resource control connection with the network device, so that the terminal and the network device can exchange service data based on the wireless resource control connection.
  • the types of bandwidth of the terminal also tend to be diversified.
  • the bandwidth capability of some terminals may be 5MHz
  • the bandwidth capability of some terminals may be 10MHz
  • the bandwidth capability of some terminals may be 20MHz
  • the bandwidth capability of some terminals may be 100MHz.
  • the network device may need to be connected to terminals of multiple bandwidth types.
  • RACH random access channel
  • the embodiments of the present application provide a method, device, and system for random access, which are beneficial for terminals of various bandwidth types to connect to network equipment more efficiently.
  • a method for random access is provided.
  • the method can be executed by a network device, and can also be executed by a module, chip, or system-on-chip deployed in the network device.
  • the method includes: determining M random access channel RACH resource domains; wherein the M RACH resource domains correspond to N terminal types, and the N terminal types are determined according to the bandwidth type and/or random access type of the terminal, and M and N is a positive integer.
  • the RACH configuration information is used to indicate M RACH resource fields, and the M RACH resource fields are used for at least one terminal to send a random access request to a network device, and any one of the at least one terminal
  • the bandwidth type belongs to the bandwidth type used to determine the N terminal types.
  • the N terminal types supported by the network device can be flexibly configured according to at least one bandwidth type and/or at least one random access type, and M RACH resource domains can be configured for the N terminal types, where M and N are Positive integer.
  • Terminals of different bandwidth types can send random access requests to network devices to initiate random access procedures according to the same or different RACH resource domains, which is beneficial for terminals of various bandwidth types to connect to the network devices more efficiently.
  • the network device may determine at least one terminal type corresponding to the RACH resource domain, and determine to use the at least one terminal type for randomization. At least one terminal device in the access process, and then sends configuration information to the at least one terminal device.
  • the network equipment allocates RACH resources in consideration of the bandwidth type of the terminal and the type of random access, so that the resource configuration in the random access process is more flexible and the resource utilization rate is improved.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information is also used to indicate the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information is also used to indicate a second RACH configuration
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1.
  • the RACH configuration information is also used to indicate a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information is also used to indicate the fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration, the RACH configuration information is used to indicate the third RACH configuration, and the third RACH configuration is N terminal types corresponding to M RACH resource domains, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that the M RACH resource domains correspond to the N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate that the N terminal types correspond to at least one uplink initial bandwidth part (UL initial BWP).
  • sending RACH configuration information to at least one terminal includes: sending RACH configuration information to at least one terminal on at least one downlink initial bandwidth part (DL initial BWP).
  • DL initial BWP downlink initial bandwidth part
  • sending RACH configuration information to at least one terminal includes: sending signaling to at least one terminal, the signaling including RACH configuration information; wherein, the signaling includes at least one of the following various signaling One: media access control control element (MACCE) signaling, downlink control information (DCI) signaling, radio resource control (RRC) signaling, and system information Block type one (system information block-type1, SIB1) signaling.
  • MACCE media access control control element
  • DCI downlink control information
  • RRC radio resource control
  • SIB1 system information Block type one
  • the method further includes: receiving a random access request from a current terminal among at least one terminal; determining a target RACH resource domain corresponding to the random access request; according to the corresponding target RACH resource domain
  • the physical uplink shared channel (PUSCH) resource field responds to random access requests.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • a method for random access is provided, and the beneficial effects can be referred to the description in the first aspect.
  • the method can be executed by the terminal, and can also be executed by a module, chip, or system-on-chip deployed in the terminal.
  • the method includes: receiving RACH configuration information from a network device; wherein the RACH configuration information indicates M RACH resource domains, the M RACH resource domains correspond to N terminal types, and the N terminal types are based on the bandwidth type of the terminal and/ Or if the random access type is determined, M and N are positive integers.
  • the target RACH resource domain for the current terminal to send a random access request to the network device is determined, and the bandwidth type of the current terminal belongs to the bandwidth type used to determine N terminal types.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information also indicates the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information also indicates a second RACH configuration
  • the second RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is greater than 1.
  • the RACH configuration information also indicates a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information also indicates a fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • receiving RACH configuration information from a network device includes: receiving signaling from the network device, the signaling including configuration information; wherein, the signaling includes at least one of the following various signaling Types: MACCE signaling, DCI signaling, SIB1 signaling, and RRC signaling.
  • determining the target RACH resource domain for the current terminal to send a random access request to the network device according to the RACH configuration information includes: determining according to the RACH configuration information and the target terminal type of the current terminal The current terminal sends a random access request target RACH resource field to the network device, where the target terminal type of the current terminal is determined according to the random access type supported by the current terminal and the bandwidth type of the current terminal.
  • the RACH configuration information also indicates that the N terminal types correspond to at least one UL initial BWP; the method further includes: determining the target UL initial BWP corresponding to the target terminal type according to the configuration information; On UL initial BWP, according to the target RACH resource domain, a random access request is sent to the network device.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • the communication device may be a network device, or a module, chip, or system-on-chip deployed in the network device.
  • the communication device includes: a processing unit for determining M RACH resource domains; wherein the M RACH resource domains correspond to N terminal types, and the N terminal types are determined according to the bandwidth type and/or random access type of the terminal, M and N are positive integers.
  • the transceiver unit is used to send RACH configuration information to at least one terminal; wherein the RACH configuration information is used to indicate M RACH resource domains, and the M RACH resource domains are used for at least one terminal to send a random access request to a network device, and at least one terminal
  • the bandwidth type of any terminal in belongs to the bandwidth type used to determine N terminal types.
  • the processing unit is configured to determine at least one terminal type corresponding to the RACH resource domain for one of the RACH resource domains among the M RACH resource domains, and determine to use the at least one terminal type At least one terminal device that performs a random access process; the transceiver unit is used to send configuration information to the at least one terminal device.
  • the network equipment allocates RACH resources in consideration of the bandwidth type of the terminal and the type of random access, so that the resource configuration in the random access process is more flexible and the resource utilization rate is improved.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information is also used to indicate the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information is also used to indicate a second RACH configuration
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1.
  • the RACH configuration information is also used to indicate a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information is also used to indicate a fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration, the RACH configuration information is used to indicate the third RACH configuration, and the third RACH configuration is N terminal types corresponding to M RACH resource domains, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that the M RACH resource domains correspond to the N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate that the N terminal types correspond to at least one UL initial BWP.
  • the transceiver unit is specifically configured to send RACH configuration information to at least one terminal on at least one DL initial BWP.
  • the transceiver unit is specifically configured to send signaling to at least one terminal, and the signaling includes RACH configuration information; wherein, the signaling includes at least one of the following signaling: MACCE Signaling, DCI signaling, RRC signaling, and SIB1 signaling.
  • the transceiver unit is further configured to receive a random access request from a current terminal among at least one terminal.
  • the processing unit is further configured to determine the target RACH resource domain corresponding to the random access request; and respond to the random access request according to the PUSCH resource domain corresponding to the target RACH resource domain.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • a communication device in a fourth aspect, is provided, and the beneficial effects can be referred to the description in the first aspect.
  • the communication device may be a terminal, or it may be implemented by a module, chip, or system-on-chip deployed in the terminal.
  • the communication device includes: a transceiver unit for receiving RACH configuration information from a network device; wherein the RACH configuration information indicates M RACH resource domains, the M RACH resource domains correspond to N terminal types, and the N terminal types are based on The bandwidth type and/or random access type of the terminal are determined, and M and N are positive integers.
  • the processing unit is configured to determine, according to the configuration information, a target RACH resource domain for the current terminal to send a random access request to the network device, and the bandwidth type of the current terminal belongs to the bandwidth type used to determine N terminal types.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information also indicates the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information also indicates a second RACH configuration
  • the second RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is greater than 1.
  • the RACH configuration information also indicates a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information also indicates a fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the transceiver unit is specifically configured to receive signaling from a network device, and the signaling includes configuration information; wherein, the signaling includes at least one of the following various signaling: Command, DCI signaling, SIB1 signaling and RRC signaling.
  • the processing unit is specifically configured to determine the target RACH resource domain for the current terminal to send a random access request to the network device according to the RACH configuration information and the target terminal type of the current terminal.
  • the target terminal type is determined according to the random access type supported by the current terminal and the bandwidth type of the current terminal.
  • the RACH configuration information also indicates that the N terminal types correspond to at least one UL initial BWP.
  • the processing unit is also used to determine the target UL initial BWP corresponding to the target terminal type according to the configuration information.
  • the transceiver unit is also used to send a random access request to the network device according to the target RACH resource domain on the target UL initial BWP.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • a communication device including a memory and a processor, where instructions/codes are stored in the memory, and when the processor executes the instructions/codes stored in the memory, the method described in any one of the first aspects is implemented.
  • a communication device including a memory and a processor, where instructions/codes are stored in the memory, and when the processor executes the instructions/codes stored in the memory, the method described in any one of the second aspects is implemented.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip implements the method described in any one of the first aspects, or implements the first aspect The method of any one of the two aspects.
  • a computer-readable storage medium for storing instructions/codes.
  • the instructions/codes are executed by a processor of an electronic device, the electronic device realizes any of the instructions in the first aspect.
  • a computer program product containing instructions/code is provided.
  • the computer program product runs on an electronic device, the electronic device implements the method described in any one of the first aspect or the second aspect The method of any one of.
  • a communication system including the communication device according to any one of the third aspect and the communication device according to any one of the fourth aspect. Or, the communication device described in the fifth aspect and the communication device described in the sixth aspect are included.
  • FIG. 1 is a system architecture diagram of an exemplary wireless communication system provided in an embodiment of this application;
  • Figure 2 is a schematic diagram of a random access process of a 4-step RACH between a terminal and a network device;
  • FIG. 3 is a schematic flowchart of a method for random access provided in an embodiment of this application.
  • FIG. 4 is a schematic flowchart of another method for random access provided in an embodiment of this application.
  • Figure 5 is a schematic diagram of a network device sending signaling to terminals of at least two bandwidth types on different DL initial BWPs;
  • FIG. 6 is a schematic structural diagram of a communication device provided in an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another communication device provided in an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of another communication device provided in an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another communication device provided in an embodiment of this application.
  • the terminal refers to an electronic device with a wireless communication function.
  • the terminal can be deployed on land, such as in a designated indoor space or on a vehicle traveling on the ground; it can also be deployed on the water, such as in a ship; it can also be deployed in the air, such as in an airplane, balloon, and On the satellite.
  • the terminal may be a user equipment (UE), and the UE may be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in telemedicine, smart grid Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), and so on.
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control wireless terminal in unmanned driving
  • wireless terminal in telemedicine smart grid Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), and so on.
  • the communication device used to implement the function of the terminal may be a terminal; it may also be another device used to support the terminal to implement its function, such as a chip deployed in the terminal.
  • the chip includes a processor, which is used to call and run a computer program from the memory, so that the terminal installed with the chip implements the method executed by the terminal provided in any one of the embodiments of the present application.
  • the terminal provided in the embodiments of the present application may include a memory and a processor.
  • the memory is used to store executable codes/instructions.
  • the terminal provided in any of the embodiments of the present application is implemented. The method performed for random access.
  • the embodiment of the present application also provides a computer-readable storage medium for storing executable codes/instructions.
  • the executable codes/instructions are executed by the processor of the electronic device, the electronic device realizes any one of this application.
  • the method for random access performed by the terminal provided in the embodiment.
  • the embodiment of the application also provides a computer program product containing executable code/instructions.
  • the computer program product When the computer program product is run on an electronic device, the electronic device implements the terminal executed by any one of the embodiments of the application.
  • the method used for random access is also provided.
  • the network equipment includes a base station (BS).
  • a base station is a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
  • Base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station may be a base station in a 5G network or a base station in a long term evolution (long term evolution, LTE) network; wherein, the base station in the 5G network may also be called a transmission reception point (TRP) or gNB .
  • TRP transmission reception point
  • the device used to implement the function of the network device may be a network device; it may also be another device used to support the network device to implement its function, such as a chip deployed in the network device.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the network device installed with the chip implements the method executed by the network device provided in any one of the embodiments of the present application. .
  • the network device provided in the embodiments of the present application may include a memory and a processor.
  • the memory is used to store executable codes/instructions.
  • the executable codes/instructions are executed by the processor, the method provided in any of the embodiments of the present application is implemented. A method for random access performed by a network device.
  • the embodiments of the present application also provide a computer-readable storage medium for storing executable codes/instructions.
  • the executable codes/instructions/ are executed by the processor of an electronic device, the electronic device can realize any of the present application.
  • a method for random access performed by a network device provided in an embodiment.
  • the embodiments of the present application also provide a computer program product containing executable code/instructions.
  • the computer program product runs on an electronic device, the electronic device implements the execution of the network device provided in any of the embodiments of the present application.
  • the method used for random access is not limited to random access.
  • the technical solutions provided in the embodiments of the present application can be applied to various types of wireless communication systems such as machine-to-machine (M2M) communication systems and cellular communication systems.
  • M2M machine-to-machine
  • the wireless communication system may adopt the same or similar system architecture as the new radio (NR) system of the 5G network.
  • NR new radio
  • Fig. 1 is a system architecture diagram of an exemplary wireless communication system.
  • the wireless communication system 100 may include a network device 101 and at least one terminal 103.
  • Each terminal 103 may perform a random access process with the network device 101 respectively, complete the uplink time synchronization with the network device, and establish an RRC connection with the network device 101.
  • RRC connection After a terminal 103 establishes an RRC connection with the network device 101, service data can be transmitted between the terminal 103 and the network device 101.
  • the terminal 103 may also complete the downlink time synchronization and frequency synchronization with the network device 101 according to the downlink synchronization signal from the network device 101.
  • the downlink synchronization signal includes a primary synchronization signal (primary synchronization signal, PSS) and a secondary synchronization signal (secondary synchronization signal, SSS).
  • the terminal 103 and the network device 101 can perform a random access process with a random access type of "4-step RACH”, and can also perform a random access process with a random access type of "2-step RACH” "The random access process.
  • the NR R15 standard defines a random access procedure with a random access type of "4-step RACH”
  • the NR R16 standard defines a random access procedure with a random access type of "2-step RACH”.
  • the terminal 103 sends a preamble to the network device through a physical random access channel (PRACH), that is, the terminal 103 sends a message 1 (Message 1) including the preamble to the network device 101.
  • PRACH physical random access channel
  • the terminal 103 can also obtain the configuration information sent by the network device 101 to the terminal 103 by reading the system broadcast information from the network device 101.
  • the configuration information can indicate one or more RACH resources. Including time domain resources, frequency domain resources and orthogonal code sequence resources used by the PRACH channel.
  • the RACH resource may also be referred to as a physical random access channel (physical random access channel, PARCH) resource.
  • PARCH physical random access channel
  • the terminal 103 starts a random access response window after sending Message1, and monitors the random access response (RAR) sent by the network device 103 in the corresponding window, that is, the terminal 103 receives the RAR from the network device 101 Message 2 (Message2).
  • RAR random access response
  • Message3 is mainly used to send an RRC connection request to the network device 101, and Message3 may include a UE identification (ID).
  • the terminal 103 does not detect the RAR sent to it by the network device 101, the terminal 103 has failed random access, and can re-initiate the random access process according to the fallback parameters indicated by the network device 101 until the corresponding value is reached.
  • the maximum number of random accesses The maximum number of random accesses.
  • the terminal 103 After the terminal 103 finishes sending Message3 to the network device 101, it monitors the feedback of the network device 101 to Message3, and the message 4 (Message4) sent to it by the network device. 103 air interface parameter configuration.
  • the terminal 103 if the terminal 103 successfully monitors the Message 4 sent to it by the network device 101, the terminal 103 has a successful random access and can send message 5 (Message 5) to the network device 101.
  • Message 5 is mainly used to send RRC to the network device 101. Create complete commands or other information. If the terminal 103 does not monitor the Message4 sent to it by the network device 101, the terminal 103 has failed random access, and can re-initiate the random access process according to the fallback parameters indicated by the network device 101 until the corresponding maximum number of random access times is reached .
  • the terminal 103 can send Message1 and Message3 to the network device at the same time, and the Message1 and Message3 sent at the same time are also called Message A (Message A). A);
  • the terminal 103 can receive a message from the network device 101 and can feedback the Message A after receiving the Message A, that is, send a message B (Message B) to the terminal 103.
  • the BWP indicates the frequency domain resources for the terminal to perform data transmission.
  • the network device configures the uplink BWP and the downlink BWP for the terminal through signaling, and the terminal can only perform data transmission within the BWP configured by the base station.
  • the uplink BWP and downlink BWP that the terminal works are called UL initial BWP and DL initial BWP, respectively.
  • UL initial BWP and DL initial BWP For the random access procedure with the random access type "4-Step RACH”, Message2 and Message4 are transmitted on the DL initial BWP, and Message1 and Message3 are transmitted on the UL initial BWP.
  • For the random access procedure with the random access type "2-Step RACH” Message A is transmitted on UL initial BWP, and Message B is transmitted on DL initial BWP.
  • the terminal may also implement the random access process with the network equipment in other ways, that is, the random access type of the random access process performed by the terminal and the network equipment, and may also include other than the above-mentioned "4-step RACH” and "2 -step “RACH” other random access types.
  • the terminal and the network equipment may perform another random access type random access process, and the random access process of the other random access type is the same as the random access type "4-step RACH” random access process.
  • the access process is similar.
  • this other random access type is referred to as "4-step RACH&EDT (Early Data Transmission)" in the embodiment of this application.
  • the difference between the random access process with the random access type "4-step RACH&EDT" and the random access process with the random access type "4-step RACH” is that the message 3 sent by the terminal to the network device includes the terminal Business data sent to network devices.
  • the terminal and the network device may perform another random access process of random access type, and the random access process of the other random access type is the same as the random access process with the random access type of "2-step RACH”.
  • the access process is similar.
  • this other random access type is referred to as "2-step RACH&EDT" in the embodiment of this application.
  • the difference between the random access process with the random access type "2-step RACH&EDT” and the random access process with the random access type "2-step RACH” is that the message A sent by the terminal to the network device includes The service data sent by the terminal to the network device.
  • the two types of random access procedures "4-step RACH&EDT” and “2-step RACH&EDT” are mainly applied to terminals in the RRC inactive state.
  • the terminal in the RRC inactive state does not need to complete the random access process to enter the RRC connected (RRC connected) state, and then transmit service data, which can save network equipment air interface resources, reduce terminal power consumption and data transmission delay .
  • the two types of random access procedures "4-step RACH&EDT” and “2-step RACH&EDT” may also be applied to terminals in the RRC idle state.
  • the random access type supported by the terminal for the random access process with the network equipment is the capability of the terminal. Different terminals may support different random access types. For the same terminal, the random access types mentioned above can be supported. One or more.
  • the Y1 random access types can be determined according to the random access types supported by the terminal, and Y1 is a positive integer. If the configuration of the network device supports the random access process of the Y1 random access type, the random access type of the random access process between a terminal and the network device can be one of the Y1 random access types or Many kinds.
  • different terminals may have different bandwidth capabilities, and Y2 bandwidth types can be determined according to the bandwidth capabilities of the terminal, and Y2 is a positive integer.
  • the bandwidth capability of the terminal refers to the maximum bandwidth that can be used by a carrier used to carry data sent by the terminal to the network device/to carry data from the network device during data transmission between the terminal and the network device.
  • a terminal can support at most a carrier using frequency resources with a bandwidth of 100MHz to send data to a network device, and the terminal's uplink bandwidth capability is 100MHz; the terminal can support at most a carrier using frequency resources with a bandwidth of 100MHz to receive data Data from the network equipment, the downlink bandwidth capability of the terminal is 100MHz.
  • a terminal can support a maximum of 20MHz bandwidth on a carrier to send data to a network device, then the uplink bandwidth capability of the terminal is 20MHz; the terminal can support a maximum of 20MHz bandwidth on a carrier.
  • the resource receives data from the network device, and the downlink bandwidth capability of the terminal is 20MHz.
  • the uplink bandwidth capability and the downlink bandwidth capability of the terminal are the same, so the uplink bandwidth capability or the downlink bandwidth capability of the terminal can be used as the bandwidth capability of the terminal.
  • the bandwidth capability of a single terminal may be 5 MHz, 10 MHz, 20 MHz, or 100 MHz.
  • the bandwidth type can usually be expressed as "NR_REDCAP Type1", that is, a terminal with a bandwidth capability of 5MHz or 10MHz can usually be called a NR_REDCAP Type1 terminal.
  • terminals with bandwidth capabilities of 5MHz and 10MHz can also be defined as two different types of terminals; for terminals with bandwidth capabilities of 20MHz, the bandwidth type can usually be expressed as NR_REDCAP Type2, that is, terminals with bandwidth capabilities of 20MHz, It can usually be called NR_REDCAP Type2 terminal; for a terminal with a bandwidth capability of 100MHz, its bandwidth type can usually be expressed as NR_Legacy, that is, for a terminal with a bandwidth capability of 100MHz, it can usually be called an NR_Legacy terminal.
  • three bandwidth types, NR_REDCAP Type1, NR_REDCAP Type2, and NR_Legacy can be determined.
  • the terminal type of the terminal is related to the bandwidth type of the terminal and the random access type supported by the terminal.
  • N terminal types can be determined according to the bandwidth type and/or random access type of the terminal, and N is a positive integer. . More specifically, N terminal types can be determined according to Y2 bandwidth types and/or Y1 random access types. It should be noted that, for the same terminal, since the terminal may support one or more random access types, the same terminal may correspond to one or more of the above N terminal types.
  • the terminal type T9 can be determined according to the bandwidth type "NR_Legacy” and the random access type 4-step RACH
  • the terminal type T10 can be determined according to the bandwidth type "NR_Legacy” and the random access type 2-step RACH
  • the bandwidth corresponding to the terminal type T9 The type is the same as the bandwidth type corresponding to the terminal type T10, but the random access type corresponding to the terminal type T9 is different from the random access type corresponding to the terminal type T10.
  • any one of the N terminal types may be determined according to one of the Y2 bandwidth types. That is, the total amount of bandwidth types Y2 is the same as the total amount of terminal types N, and the Y2 bandwidth types correspond to the N terminal types in a one-to-one correspondence.
  • the terminal type determined according to the bandwidth type “NR_Legacy” is “P1"
  • the terminal type determined according to the bandwidth type “NR_REDCAP Type1” is “P2”
  • the terminal type determined according to the bandwidth type “NR_REDCAP Type2” is "P1”. P3”.
  • any terminal type among the N terminal types may be determined according to one of the Y2 bandwidth types and one of the Y1 random access types. That is, the total number of terminal types N is the product of the total number of bandwidth types Y2 and the total number of random access types Y1.
  • NR_REDCAP Type1 can be based on three types of bandwidth: "NR_REDCAP Type1”, “NR_REDCAP Type2”, and “NR_Legacy”, as well as “4-step RACH”, “4-step RACH&EDT”, "2-step There are 4 types of random access such as RACH” and “2-step RACH&EDT", and a total of 12 terminal types from T1 to T12 are determined.
  • the terminal type determined according to "NR_REDCAP Type1” and “4-step RACH” is “T1"
  • the terminal type determined according to “NR_REDCAP Type1” and “2-step RACH” is “T2”
  • the terminal type determined by NR_REDCAP Type1” and “4-step RACH&EDT” is "T3”
  • the terminal type determined by "NR_REDCAP Type1” and “2-step RACH&EDT” is "T4".
  • the terminal type determined according to "NR_REDCAP Type2" and “4-step RACH” is "T5"
  • the terminal type determined according to "NR_REDCAP Type2” and “2-step RACH” is “T6”
  • the terminal type determined according to "NR_REDCAP Type2” and “4 The terminal type determined by -step RACH&EDT is "T7”
  • the terminal type determined by "NR_REDCAP Type2” and “2-step RACH&EDT” is "T8".
  • the terminal type determined by "NR_Legacy” and “4-step RACH” is “T9"
  • the terminal type determined by “NR_Legacy” and “2-step RACH” is “T10”
  • the terminal type determined by "NR_Legacy” and “4-step RACH&EDT” "The terminal type determined by “is “T11”
  • the terminal type determined by "NR_Legacy” and “2-step RACH&EDT” is "T12".
  • the terminal type can be expressed by a combination of a bandwidth type and a random access type.
  • the terminal type "T12" in Table 2 above may include the bandwidth type “NR_Legacy” used to determine "T12" and the random access type "2-step RACH&EDT".
  • the technical solutions provided in the embodiments of this application can flexibly configure the N terminal types supported by the network device according to at least one bandwidth type and/or at least one random access type, and configure M terminal types for the N terminal types.
  • RACH resource field where M and N are positive integers.
  • Terminals of different bandwidth types can send random access requests to network equipment to initiate a random access process according to the same or different RACH resource domains, which is beneficial for terminals of various bandwidth types to connect to the network equipment more efficiently.
  • FIG. 3 is a schematic flowchart of a method for random access provided in an embodiment of the application.
  • the configuration instruction can be sent to the network device through the corresponding communication device, and/or the corresponding configuration instruction can be input to the network device through the input device, which triggers the network device to perform at least the following steps 301 and 303.
  • step 301 the network device determines M RACH resource domains.
  • N terminal types corresponding to M RACH resource domains M and N are both positive integers.
  • any one of the M RACH resource domains may include a certain resource of RACH time domain resources, frequency domain resources, orthogonal code sequence resources, or a combination thereof.
  • RACH time domain resources For the RACH resources included in any two different RACH resource domains, one or more of the frequency domain resources, time domain resources, and orthogonal code sequence resources are different.
  • the N terminal types are determined according to the bandwidth type and random access type of the terminal. More specifically, any of the N terminal types can be determined based on one of Y2 bandwidth types, or based on one of Y2 bandwidth types and Y1 random access types. A kind of jointly determined, Y1 and Y2 are positive integers.
  • step 303 the network device sends RACH configuration information to at least one terminal.
  • the RACH configuration information indicates M RACH resource fields.
  • the M RACH resource fields are used for at least one terminal to send a random access request to the network device.
  • the bandwidth type of any one of the at least one terminal is used to determine the N types The bandwidth type of the terminal type. More specifically, the bandwidth type of any one of the at least one terminal belongs to one of the Y2 bandwidth types.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • a first RACH configuration where M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1;
  • a second RACH configuration where M RACH resource domains correspond to N terminal types, M is greater than N, and M is greater than 1;
  • a third RACH configuration where M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1;
  • the fourth RACH configuration where M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the network device may determine at least one terminal type corresponding to the RACH resource domain, and determine to use the at least one terminal type for randomization. At least one terminal in the access process, and then sends configuration information to the at least one terminal.
  • the network equipment allocates RACH resources in consideration of the bandwidth type of the terminal and the type of random access, so that the resource configuration in the random access process is more flexible and the resource utilization rate is improved.
  • FIG. 4 is a schematic flowchart of another method for random access provided in an embodiment of the application.
  • step 401 the network device determines M RACH resource domains.
  • M RACH resource domains correspond to N terminal types, and both M and N are positive integers. More specifically, one RACH resource domain in the M RACH resource domains corresponds to one or more of the N terminal types.
  • the network device can flexibly configure the correspondence between M RACH resource domains and N terminal types.
  • the network equipment can connect to terminals of three types of bandwidth: "NR_REDCAP type1", “NR_REDCAP type2” and “NR_legacy”, and the network equipment supports "4-step RACH”, “4-step RACH&EDT”, and "2".
  • the random access procedures of four types of random access -step RACH” and “2-step RACH&EDT” are taken as examples, and the method for random access provided in the embodiments of the present application is exemplarily described.
  • M is equal to N, and M is greater than 1.
  • the M RACH resource domains correspond to the N terminal types in a one-to-one correspondence, and the network device may configure different RACH resource domains for at least different terminal types.
  • terminals of different bandwidth types can use different RACH resource domains to initiate random access procedures, and terminals of the same bandwidth type and network equipment can use different RACH resources when performing random access procedures of different random access types.
  • the two terminals can perform random access procedures of the same or different random access types with the network equipment without affecting each other, which is beneficial to multiple Bandwidth type terminals connect to network devices more efficiently.
  • the network device may determine 12 RACH resource domains as shown in Table 3 below, and the 12 RACH resource domains correspond to 12 terminal types.
  • the RACH resource field corresponding to the terminal type "T1" is “RACH-R1”
  • the RACH resource field corresponding to the terminal type "T2” is “RACH-R2”
  • the RACH resource field corresponding to the terminal type "T3" is “RACH-R3”
  • the RACH resource field corresponding to the terminal type "T4" is “RACH-R4"
  • the RACH resource field corresponding to the terminal type "T5" is "RACH-R5"
  • the field is “RACH-R6”
  • the RACH resource field corresponding to the terminal type "T7” is “RACH-R7”
  • the RACH resource field corresponding to the terminal type "T8” is “RACH-R8”
  • the resource field is “RACH-R9"
  • the RACH resource field corresponding to the terminal type "T10” is “RACH-R10”
  • M is less than N, and M is greater than 1.
  • terminals of different bandwidth types may use the same RACH resource domain to perform the same/different random access type random access process with network equipment; or terminals of different bandwidth types may use different RACH resource domains and network equipment to perform random access procedures. Random access procedures of the same/different random access types; or, for terminals of one of the bandwidth types, the same RACH resource domain may be used to perform random access procedures of different random access types with network equipment.
  • the utilization rate of RACH resources can be improved.
  • the network device can determine 7 RACH resource domains as shown in Table 4 below, and the 7 RACH resource domains correspond to 12 terminal types.
  • the terminal types corresponding to the RACH resource field “RACH-R1” include “T1” and “T5"
  • the terminal types corresponding to the RACH resource field “RACH-R2” include “T2" and “T6”
  • the RACH resource The terminal types corresponding to the field “RACH-R3” include “T3” and “T7”
  • the terminal types corresponding to the RACH resource field “RACH-R4" include “T4", "T8” and "T12”
  • the terminal type corresponding to R5" is “T9
  • the terminal type corresponding to the RACH resource field “RACH-R6” is "T10”
  • the terminal type corresponding to the RACH resource field “RACH-R7” is "T11".
  • the network device can configure a set of the same RACH resource domain for the terminals with the bandwidth types NR_REDCAP type1 and NR_REDCAP type2 for the same random access type, so that the terminals with the bandwidth types NR_REDCAP type1 and NR_REDCAP type2 respectively
  • the network equipment uses the RACH resources included in the same RACH resource domain.
  • the network device can determine 8 RACH resource domains as shown in Table 5 below, and the 8 RACH resource domains correspond to 12 terminal types.
  • the terminal type corresponding to the RACH resource field “RACH-R1” is “T1"
  • the terminal type corresponding to the RACH resource field “RACH-R2” is “T2”
  • the RACH resource field “RACH-R3” corresponds to The terminal type is "T3”
  • the terminal type corresponding to the RACH resource field “RACH-R4" includes “T8” and "T12”
  • the terminal type corresponding to the RACH resource field "RACH-R5" includes “T5" and "T9”
  • RACH The terminal types corresponding to the resource field “RACH-R6” include “T6” and “T10”
  • the terminal types corresponding to the RACH resource field “RACH-R7” include “T7” and “T11”
  • the RACH resource field “RACH-R8” corresponds to The terminal type is "T4".
  • the network device can configure a set of the same RACH resource domain for the terminals with the bandwidth types NR_REDCAP type2 and NR_legacy for the same random access type, so that the terminals with the bandwidth types NR_REDCAP type2 and NR_legacy connect to the network respectively.
  • the devices perform random access procedures of the same random access type, they use RACH resources in the same RACH resource domain.
  • the network device can configure two different RACH resource domains for the two random access types "2-step RACH” and "2-step RACH&EDT".
  • the RACH resource domain is associated with different PUSCH resource domains.
  • the network device may first determine the target RACH resource domain to which the RACH resource used by Message A belongs, and then relatively quickly determine the PUSCH resource domain associated with the target RACH resource domain.
  • the network device may determine 6 RACH resource domains as shown in Table 6 below, and the 6 RACH resource domains correspond to 12 terminal types.
  • terminals with bandwidth types NR_REDCAP type1, NR_REDCAP type2, and NR_legacy can use the RACH resources and network equipment included in RACH-R2 to perform random access procedures with the random access type "2-step RACH" .
  • Terminals with bandwidth types of NR_REDCAP type1, NR_REDCAP type2, and NR_legacy can use the RACH resources included in RACH-R4 and network equipment to perform random access procedures with the random access type "2-step RACH”.
  • the network device can configure the same RACH resource domain for the two random access types "2-step RACH” and "2-step RACH&EDT".
  • the RACH resource The domain is associated with two different PUSCH resource domains.
  • the network device receives Message A from the terminal, after determining the target RACH resource domain to which the RACH resource used by Message A belongs, it can perform blind detection on the two PUSCH resource domains corresponding to the target RACH resource domain, which is beneficial to reduce RACH resource overhead reduces the complexity of network statistics of RACH resources.
  • the network device may determine 5 RACH resource domains as shown in Table 7 below, and the 5 RACH resource domains correspond to 12 terminal types.
  • terminals with bandwidth types of NR_REDCAP type1, NR_REDCAP type2, and NR_legacy can use the RACH resources and network equipment included in RACH-R2 for random access.
  • the types are "2-step RACH” and “2-step” RACH&EDT” random access process.
  • M is equal to 1, and M is less than N.
  • the network device can configure exactly the same RACH resource domain for N terminal types. In this way, the signaling overhead of the network equipment can be reduced, and the network statistics complexity of the RACH resource by the network equipment can be reduced.
  • the network device may determine one RACH resource domain as shown in Table 8 below, and one RACH resource domain corresponds to 12 terminal types.
  • the terminal types T1 to T12 correspond to the RACH resource field "RACH-R1".
  • the terminals of NR_REDCAP type1, NR_REDCAP type2, and NR_legacy can use the RACH resources included in RACH-R1 to communicate with network equipment.
  • the random access types are "2-step RACH”, “2-step RACH&EDT”, 4-step RACH, and 4-step RACH&EDT random access procedures.
  • M is equal to N, and M is equal to 1.
  • the network equipment only supports one type of random access process between the terminal of one bandwidth type and the network equipment.
  • step 402 the network device determines at least one DL initial BWP and at least one UL initial BWP.
  • one DL initial BWP corresponds to one or more of the N terminal types; one UL initial BWP corresponds to one or more of the N terminal types. Since one RACH resource domain corresponds to one or more terminal types, it can also be said that one DL initial BWP corresponds to one or more RACH resource domains.
  • the number of DL initial BWPs and the bandwidth of each DL initial BWP can be flexibly configured, and the number of UL initial BWPs and the bandwidth of each UL initial BWP can be flexibly configured. And, flexibly configure the correspondence between at least one DL initial BWP and the N terminal types, and flexibly configure the correspondence between at least one UL initial BWP and the N terminal types.
  • the number of UL initial BWPs and the bandwidth of each UL initial BWP can be determined according to the Y2 bandwidth types used to determine the N terminal types, and the number of DL initial BWPs and the bandwidth of each DL initial BWP can be determined. bandwidth.
  • two DL initial BWPs may be configured, and the two DL initial BWPs include the first DL initial BWP and the second DL initial BWP.
  • the bandwidth of the first DL initial BWP may be 5 MHz corresponding to the minimum bandwidth capability of terminals of three bandwidth types: NR_REDCAP type1, NR_REDCAP type2, and NR_legacy.
  • the bandwidth of the second DL initial BWP may be a bandwidth other than 5 MHz, for example, 20 MHz.
  • three UL initial BWPs may be configured, and the three UL initial BWPs are respectively the first UL initial BWP, the second UL initial BWP, and the third UL initial BWP.
  • the bandwidth of the first UL initial BWP may be 5 MHz
  • the bandwidth of the second UL initial BWP may be 20 MHz
  • the bandwidth of the third UL initial BWP is 100 MHz.
  • the network device may also determine two DL initial BWPs as shown in Table 9 below, and the two DL initial BWPs correspond to 12 terminal types.
  • the four terminal types "T1", “T2”, “T3” and “T4" all correspond to the first DL initial BWP with a bandwidth of 5MHz, "T5", “T6", “T7”,
  • the 8 terminal types "T8”, “T9”, “T10”, “T11” and “T12” all correspond to the second DL initial BWP with a bandwidth of 20MHz.
  • the network device may also determine three UL initial BWPs as shown in Table 10 below, and the three UL initial BWPs correspond to 12 terminal types.
  • the four terminal types "T1", “T2”, “T3” and “T4" all correspond to the first UL initial BWP with a bandwidth of 5MHz
  • "T5", “T6", “T7” and Eight terminal types such as “T8” correspond to the second UL initial BWP with a bandwidth of 20MHz
  • four terminal types such as "T9”, “T10”, “T11” and “T12” correspond to the second UL initial with a bandwidth of 100MHz. BWP.
  • DL initial BWP and UL initial BWP may also have other forms of configuration
  • the correspondence between DL initial BWP and UL initial BWP and the N terminal types may also have other forms of configuration.
  • the bandwidth of the DL initial BWP is 5 MHz, and the DL initial BWP corresponds to N terminal types; in addition, the bandwidth of one UL initial BWP is 5 MHz, and the bandwidth of the other UL initial BWP is 20 MHz.
  • the 12 terminal types T1 to T12 correspond to the DL initial BWP with a bandwidth of 5MHz; the four terminal types “T1", “T2”, “T3” and “T4" all correspond to the UL with a bandwidth of 5MHz
  • Initial BWP "T5", “T6”, “T7”, “T8”, “T9”, “T10”, “T11” and “T12” and other 8 terminal types correspond to UL initial BWP with a bandwidth of 20MHz.
  • the network device also configures only one DL initial BWP and two UL initial BWPs.
  • the maximum bandwidth of the DL initial BWP is configured to be 20 MHz.
  • the maximum bandwidth of the first UL initial BWP of the two UL initial BWPs can be configured to 20 MHz; the maximum bandwidth of the second UL initial BWP of the two UL initial BWPs can be configured. Configure to be greater than 20MHz.
  • the network device may also be configured with only one DL initial BWP and one UL initial BWP, and the bandwidth of the DL initial BWP and UL initial BWP are both 5 MHz.
  • the DL initial BWP and UL initial BWP both correspond to N terminal types.
  • step 403 signaling is sent to at least one terminal on at least one DL initial BWP.
  • the signaling includes, but is not limited to, any one or more of MACCE signaling, DCI signaling, SIB1 signaling, and RRC signaling.
  • the network device may first determine various current terminal types corresponding to the DL initial BWP. Then, the current RACH resource domains corresponding to various current terminal types are determined. Then, a signaling is sent on the DL initial BWP, the signaling includes configuration information, and the configuration information includes: each current RACH resource field, various current terminal types corresponding to each current RACH resource field, and each UL initial BWP corresponding to each current terminal type.
  • a network device can broadcast signaling 1 to at least one terminal with a bandwidth type of NR_REDCAP type1 on a DL initial BWP with a bandwidth of 5MHz; And/or at least one terminal of NR_legacy broadcasts signaling 2.
  • the configuration information in signaling 1 can indicate: the current RACH resource domain RACH-R1, the current terminal type T1 corresponding to RACH-R1, the first UL initial BWP corresponding to T1; the current RACH resource domain RACH-R2, RACH-R2 The corresponding current terminal type T2, the first UL initial BWP corresponding to T2; the current RACH resource domain RACH-R3, the current terminal type T3 corresponding to RACH-R3, the first UL initial BWP corresponding to T3; the current RACH resource domain RACH-R4 , The current terminal type T4 corresponding to RACH-R4, and the first UL initial BWP corresponding to T4.
  • the signaling 1 may include the configuration information shown in Table 11 below.
  • the configuration information in signaling 2 may indicate: the current RACH resource domain RACH-R1, the current terminal type T5 corresponding to RACH-R1, the second UL initial BWP corresponding to T5; the current RACH resource domain RACH-R2, RACH-R2 The corresponding current terminal type T6, the second UL initial BWP corresponding to T6; the current RACH resource domain RACH-R3, the current terminal type T7 corresponding to RACH-R3, the second UL initial BWP corresponding to T7; the current RACH resource domain RACH-R4 , The current terminal types T8 and T12 corresponding to RACH-R4, the second UL initial BWP corresponding to T8, the third UL initial BWP corresponding to T12; the current RACH resource domain RACH-R5, the current terminal type corresponding to RACH-R5 T9, T9 Corresponding third UL initial BWP; current RACH resource domain RACH-R6, current terminal type T10 corresponding to RACH-R6, third UL initial BWP; current
  • the signaling 2 may include the configuration information shown in Table 12 below.
  • a terminal with a bandwidth type of NR_REDCAP type1 can receive signaling 1 from a network device on the first DL initial BWP with a bandwidth of 5 MHz.
  • a terminal whose bandwidth type is NR_REDCAP type2 or NR_legacy can receive signaling 2 from a network device on the second DL initial BWP with a bandwidth of 20 MHz.
  • the network device may configure part of the RACH resource domains in the M RACH resource domains into one signaling, or may configure part of the RACH resource domains in multiple signalings. That is, for one RACH resource domain, the network device may send configuration information including the RACH resource domain to terminals of one or more bandwidth types on one or more DL initial BWPs.
  • the corresponding terminal types include T1 and T5, the DL initial BWP corresponding to T1 is the first DL initial BWP, and the DL initial BWP corresponding to T5 is the second DL initial BWP.
  • the network device can configure RACH-R1 to the configuration information included in signaling 1 and signaling 2; then, the network device can broadcast signaling to terminals with bandwidth type NR_REDCAP type1 on the first DL initial BWP with a bandwidth of 5MHz 1. Broadcast signaling 2 to terminals with bandwidths of NR_REDCAP type2 and NR_legacy on the second DL initial BWP with a bandwidth of 20 MHz. In this way, it is realized that on the first DL initial BWP and the second DL initial BWP, the configuration information including RACH-R1 is sent to the terminals whose bandwidth types are NR_REDCAP type1 and NR_REDCAP type2.
  • the correspondence between M RACH resource domains, M RACH resource domains, and N terminal types determined by the network device, and the correspondence between N terminal types and at least one UL initial BWP may be configured To the same signaling; correspondingly, the network device can send the signaling to terminals of Y2 bandwidth types on the same or different DL initial BWP.
  • step 404 the terminal determines a target RACH resource domain for the terminal to send a random access request to the network device according to the RACH configuration information included in the received signaling and the target terminal type of the terminal.
  • the terminal that performs step 404 is a terminal that has received signaling from the network device and needs to perform a random access process with the network device to connect to the network device.
  • the bandwidth type of the terminal can be NR_REDCAP type1, NR_REDCAP type2 or NR_legacy, and the terminal can perform "4-step RACH", "2-step RACH”, “4-step RACH&EDT” and "2" with network equipment. -step "RACH&EDT” and other types of random access procedures.
  • the terminal may determine the RACH resource field corresponding to the target terminal type from the configuration information included in the received signaling according to its own target terminal type, and the determined RACH resource field is used for the target terminal type.
  • the terminal sends the target RACH resource domain of the random access request to the network device.
  • the terminal may select the random access type for the random access process with the network device through user configuration or other methods; then, determine its own type according to the selected random access type and its own bandwidth type. Target terminal type.
  • the configuration information received by the terminal may indicate the random access type of the random access process between the terminal and the network device, and the terminal may follow the indication of the configuration information, its own bandwidth type, and the random access supported by the terminal.
  • Incoming type which determines the target RACH resource domain for sending random access requests.
  • the bandwidth type of the terminal is NR_REDCAP type1, and can receive signaling 1 from the network device.
  • the terminal is According to its own bandwidth type "NR_REDCAP type1" and random access type "4-step RACH", the corresponding RACH resource field can be determined as "RACH-R1", that is, it is determined to be used by the terminal to send random access to the network device
  • the target RACH resource field of the request is "RACH-R1".
  • the network device may not configure the RACH resource domain for the target terminal type.
  • the terminal may not be able to determine the RACH resource domain corresponding to the target terminal type from the configuration information included in the signaling from the network device.
  • the terminal can determine the RACH resource field configured by the network device for other terminal types from the configuration information, and determine the target RACH resource for the terminal to send a random access request to the network device from the RACH resource field.
  • the RACH resource field corresponding to "T5" is determined, but the configuration information includes the RACH resource field corresponding to "T9", and the terminal can connect to "T5".
  • the RACH resource field corresponding to T9" is determined as the target RACH resource for the terminal to send a random access request to the network device.
  • Step 405 The terminal determines the target UL initial BWP corresponding to the target terminal type from the configuration information included in the signaling received by the terminal.
  • the bandwidth type of the terminal is NR_REDCAP type1, and can receive signaling 1 from the network device, and the terminal can determine the UL initial corresponding to the target terminal type "T1" from the configuration information included in the signaling 1.
  • BWP is the "first UL initial BWP”.
  • Step 406 The terminal determines a target RACH resource for the terminal to send a random access request to the network device from the target RACH resource field.
  • Step 407 The terminal sends a random access request to the network device according to the target RACH resource on the target UL initial BWP corresponding to the target terminal type.
  • the random access request is sent through Message1 or MessageA.
  • the random access request depends on the random access type supported by the terminal. Exemplarily, if the random access type supported by the terminal is "4-step RACH” or “4-step RACH&EDT”, the random access request is sent through Message1; if the random access type supported by the terminal is "2- step RACH”, the random access request is sent through Message A that does not send service data; if the random access type supported by the terminal is "2-step RACH&EDT", the random access request is sent through Message A that sends service data .
  • Message1 and Message A are transmitted on the corresponding UL initial BWP.
  • the existing communication protocol limits the maximum bandwidth of DL initial BWP to 20 MHz, and UL initial BWP may be greater than 20 MHz.
  • the bandwidth capability of the terminal may be greater than 20MHz or less than 20MHz, and the network device may configure at least two PUSCH resource domains for Message3/MessageA.
  • the terminal sends to the network device
  • the random access request may include the bandwidth type/terminal type/bandwidth capability of the terminal.
  • the random access request sent by the terminal to the network device may also include the random access type supported by the terminal.
  • the bandwidth type/terminal type/bandwidth capability of the terminal can be reported to the network device as data carried by the PUSCH.
  • the terminal when the terminal sends Message A to the network device, the terminal can send RRC signaling (such as RRCSetupRequest signaling) to the network device on the PUSCH.
  • RRC signaling such as RRCSetupRequest signaling
  • the IE includes the bandwidth type/terminal type/bandwidth capability of the terminal.
  • the terminal when the terminal sends Message A to the network device, the terminal can send MACCE signaling to the network device on the PUSCH.
  • the MACCE signaling includes the bandwidth type/terminal type/ of the terminal. Bandwidth capability.
  • Step 408 The network device detects Message 1 or Message A corresponding to the random access request from the terminal.
  • a single network device may support the "4-step RACH”/"4-step RACH&EDT” random access process, and support the "2-step RACH”/"2-step RACH&EDT” random access process.
  • the terminal sends a random access request through Message1, and the network device can detect the RACH resource used to send Message1 to obtain Message1, and obtain The bandwidth type/bandwidth capability/terminal type of the terminal reported by the PRACH for sending Message1 to complete the detection of Message1.
  • the terminal sends a random access request through Message A, and the network device needs to detect the PRACH of Message A and the PUSCH of Message A to complete the message A's detection.
  • the size of the data carried in Message A is different. If two different RACH resource domains are configured for the two random access types “2-step RACH” and “2-step RACH&EDT”, different RACH resource domains are associated with different PUSCH resource domains, and the network device receives Message A from the terminal At this time, the network device may first determine the target RACH resource domain to which the target RACH resource used to send Message A belongs, and then relatively quickly determine the PUSCH resource domain associated with the target RACH resource domain corresponding to Message A.
  • the network device configures the same RACH resource domain for the two random access types "2-step RACH” and "2-step RACH&EDT"
  • the RACH resource domain is associated with two different PUSCH resource domains.
  • the network device receives Message A from the terminal, after determining the target RACH resource domain to which the RACH resource used to send Message1 belongs, it may perform blind detection on two PUSCH resource domains corresponding to the target RACH resource domain.
  • the network device can configure different RACH resource domains for "4-step RACH”/"4-step RACH&EDT” and "2-step RACH”/"2-step RACH&EDT", so that the network device can configure different RACH resource domains according to its detection PRACH determines the random access type corresponding to the random access request it receives, and implements the subsequent corresponding random access procedure. It is helpful to reduce the complexity of detecting PUSCH by network equipment.
  • the network equipment can also configure the same PRACH resources for "4-step RACH”/"4-step RACH&EDT” and "2-step RACH”/"2-step RACH&EDT", which is beneficial to reduce PRACH resource overhead.
  • the terminal may also re-report its own bandwidth capability/bandwidth type/terminal type after it completes a random process with the network device and enters the RRC connection state.
  • Step 409 The network device responds to the random access request from the network device according to the detected Message1 or Message A.
  • the network device may obtain the bandwidth type/bandwidth capability/terminal type of the terminal carried on the PUSCH in Message A according to the PUSCH resource domain corresponding to the target RACH resource domain, or may obtain it according to the PRACH of Message A According to the bandwidth type/bandwidth capability/terminal type reported by the terminal, Message B is scheduled according to the bandwidth type/bandwidth capability/terminal type of the terminal to complete the response to the random access request from the terminal.
  • the network device can obtain the bandwidth type/bandwidth capability/terminal type of the terminal used to send the PRACH report of Message1, and schedule Message 2 and Message 3 according to the bandwidth type/bandwidth capability/terminal type of the terminal , Complete the response to the random access request from the terminal.
  • the network device can access the wireless network temporary identifier (random access-radio network temporary identifier, RA-RNTI) through random access
  • the downlink control information (DCI) of the scrambling cyclic redundancy check (cyclical redundancy check, CRC) schedules the PDSCH, and the PDSCH carries the RAR for all or part of the random access request for the RO.
  • DCI downlink control information
  • CRC cyclical redundancy check
  • RO refers to the time-frequency resource for sending and receiving RACH preamble.
  • a network device can configure multiple orthogonal preambles, and multiple terminal devices can use different or the same preamble on the same RO for random access.
  • the network device If the network device detects the preambles sent by the terminal device on the RO resource, it sends an RAR, namely Messge 2 or Messge B, to the terminal device.
  • RAR namely Messge 2 or Messge B
  • the same RO is only associated with one RA-RNTI, and different ROs are associated with different RA-RNTIs.
  • the network device configures the same RACH time domain resources and frequency domain resources for terminals of different terminal types, but configures different frequency domain resources, namely preambles, that is, different preambles on the same RO, where
  • the terminal type includes random access type and/terminal bandwidth type.
  • Network equipment can perform packet transmission for the RAR of different types of terminals described above, that is, transmit RARs of different types of terminals through multiple different PDSCHs, and different PDSCHs can be scheduled with different RA-RNTI scrambled CRC DCI, RA-RNTI It can be calculated by RACH time resource, frequency resource, carrier resource and terminal type identification.
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+UE_type_id.
  • s_id is the index of the first orthogonal frequency division multiplexing (OFDM) symbol of RO
  • t_id is the index of the first time slot of RO in a wireless data frame
  • f_id is the index of RO in frequency domain.
  • Index ul_carrier_id is the index of the uplink carrier that sends the preamble
  • UE_type_id is the terminal type identifier of the terminal that sends the preamble.
  • the process of sending PRACH or preamble in the solution of the present invention can be performed on different uplink carriers, such as NR uplink carrier and NR supplementary uplink (Supplement Uplink, SUL) carrier.
  • uplink carriers such as NR uplink carrier and NR supplementary uplink (Supplement Uplink, SUL) carrier.
  • SUL Supplemental Uplink
  • the corresponding RA-RNTI of the RAR is calculated using different uplink carrier index identifiers.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 may be a network device, or a module, a chip, or a system on a chip deployed in the network device.
  • the communication device 600 includes: a processing unit 601 for determining M RACH resource domains; wherein the M RACH resource domains correspond to N terminal types, and the N terminal types are determined according to the bandwidth type and/or random access type of the terminal , M and N are positive integers.
  • the transceiver unit 602 is configured to send RACH configuration information to at least one terminal; wherein the RACH configuration information is used to indicate M RACH resource domains, and the M RACH resource domains are used for at least one terminal to send a random access request to a network device, at least one The bandwidth type of any one of the terminals belongs to the bandwidth type used to determine N terminal types.
  • the processing unit 601 is configured to determine at least one terminal type corresponding to the RACH resource domain for one of the RACH resource domains among the M RACH resource domains, and determine to use the at least one terminal type
  • the terminal type is at least one terminal device that performs a random access process
  • the transceiver unit 602 is configured to send configuration information to the at least one terminal device.
  • the network equipment allocates RACH resources in consideration of the bandwidth type of the terminal and the type of random access, so that the resource configuration in the random access process is more flexible and the resource utilization rate is improved.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information is also used to indicate the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information is also used to indicate a second RACH configuration
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1.
  • the RACH configuration information is also used to indicate a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information is also used to indicate the fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration, the RACH configuration information is used to indicate the third RACH configuration, and the third RACH configuration is N terminal types corresponding to M RACH resource domains, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that the M RACH resource domains correspond to the N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate that the N terminal types correspond to at least one UL initial BWP.
  • the transceiver unit 602 is specifically configured to send RACH configuration information to at least one terminal on at least one DL initial BWP.
  • the transceiving unit 602 is specifically configured to send signaling to at least one terminal, and the signaling includes RACH configuration information; wherein, the signaling includes at least one of the following various signaling: MACCE signaling, DCI signaling, RRC signaling and SIB1 signaling.
  • the transceiver unit 602 is further configured to receive a random access request from a current terminal among at least one terminal.
  • the processing unit 601 is further configured to determine the target RACH resource domain corresponding to the random access request; and respond to the random access request according to the PUSCH resource domain corresponding to the target RACH resource domain.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • the communication device 700 may be a terminal, or a module, a chip, or a system on a chip deployed in the terminal.
  • the communication device 700 includes: a transceiver unit 701, configured to receive RACH configuration information from a network device; where the RACH configuration information indicates M RACH resource domains, and the M RACH resource domains correspond to N terminal types and N terminal types It is determined according to the bandwidth type and/or random access type of the terminal, and M and N are positive integers.
  • the processing unit 702 is configured to determine, according to the configuration information, a target RACH resource domain for the current terminal to send a random access request to the network device, and the bandwidth type of the current terminal belongs to the bandwidth type used to determine N terminal types.
  • any one of the N terminal types is determined according to one of the at least one bandwidth type and/or one of the at least one random access type; at least The bandwidth type of any terminal in a terminal belongs to one of at least one bandwidth type.
  • the RACH configuration information also indicates the first RACH configuration
  • the first RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is equal to 1.
  • the RACH configuration information also indicates a second RACH configuration
  • the second RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is greater than 1.
  • the RACH configuration information also indicates a third RACH configuration
  • the third RACH configuration is that M RACH resource domains correspond to N terminal types, M is less than N, and M is greater than 1.
  • the RACH configuration information also indicates a fourth RACH configuration
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the RACH configuration information is also used to indicate one of X types of RACH configurations, where X is a positive integer, and the X types of RACH configurations include at least two of the following RACH configurations:
  • the first RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is equal to 1;
  • the second RACH configuration is N terminal types corresponding to M RACH resource domains, M is equal to N, and M is greater than 1;
  • the third RACH configuration is M RACH resource domains corresponding to N terminal types, M is less than N, and M is greater than 1;
  • the fourth RACH configuration is that M RACH resource domains correspond to N terminal types, M is equal to N, and M is equal to 1.
  • the transceiver unit 701 is specifically configured to receive signaling from a network device, and the signaling includes configuration information; wherein, the signaling includes at least one of the following various signaling: MACCE Signaling, DCI signaling, SIB1 signaling, and RRC signaling.
  • the processing unit 702 is specifically configured to determine the target RACH resource domain for the current terminal to send the random access request to the network device according to the RACH configuration information and the target terminal type of the current terminal, where the current terminal The target terminal type is determined according to the random access type supported by the current terminal and the bandwidth type of the current terminal.
  • the RACH configuration information also indicates that the N terminal types correspond to at least one UL initial BWP.
  • the processing unit 702 is further configured to determine the target UL initial BWP corresponding to the target terminal type according to the configuration information.
  • the transceiver unit 701 is also configured to send a random access request to the network device according to the target RACH resource domain on the target UL initial BWP.
  • the random access request includes the bandwidth type of the current terminal, and the random access request is sent through Message1 or MessageA.
  • the bandwidth type of the current terminal is carried on the PRACH of Message1; or, the bandwidth type of the current terminal is carried on the PRACH or PUSCH of Message A.
  • the at least one bandwidth type includes at least one of the following bandwidth types: NR_legacy, NR_REDCAP type1, and NR_REDCAP type2;
  • the at least one random access type includes at least one of the following random access types: at least one of 4-step RACH, 4-step RACH&EDT, 2-step RACH, and 2-step RACH&EDT;
  • the N terminal types include at least one of the following terminal types:
  • the terminal type determined according to NR_legacy and 4-step RACH;
  • the terminal type determined according to NR_legacy and 4-step RACH&EDT;
  • the terminal type determined according to NR_legacy and 2-step RACH;
  • the terminal type determined according to NR_legacy and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type1 and 2-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 4-step RACH&EDT;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH;
  • the terminal type determined according to NR_REDCAP type2 and 2-step RACH&EDT.
  • the transceiver unit 602 and the transceiver unit 701 may be radio frequency circuits.
  • the memory is used to store computer instructions
  • the processing unit 601 is in communication connection with the memory
  • the processing unit 601 executes the computer instructions stored in the memory, so that the communication device 600 executes the instructions provided in any of the embodiments of the present application.
  • the method performed by the network device When the communication device 700 includes a memory, the memory is used to store computer instructions, and the processing unit 702 is in communication with the memory.
  • the processing unit 702 executes the computer instructions stored in the memory, so that the communication device 700 executes the instructions provided in any of the embodiments of the present application.
  • the processing unit 601 and the processing unit 702 may be a general central processing unit (CPU), a microprocessor, or an application specific integrated circuit (ASIC).
  • the transceiver unit 602 and the transceiver unit 701 may be input/output interfaces, pins or circuits.
  • the communication device 600 includes a memory
  • the memory is used to store computer instructions
  • the processing unit 601 is in communication with the memory
  • the processing unit 601 executes the computer instructions stored in the memory, so that the chip in the network device executes any one of the embodiments of the present application. Provides the method to be executed by the network device.
  • the memory is used to store computer instructions
  • the processing unit 702 is in communication connection with the memory
  • the processing unit 702 executes the computer instructions stored in the memory, so that the chip in the terminal executes any one of the embodiments provided in this application.
  • the method executed by the terminal is a storage unit in the chip, such as a register, a cache, and so on.
  • the memory can also be a storage unit located outside the chip in the network device/terminal, such as read only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory). memory, RAM) etc.
  • an embodiment of the present application also provides a communication system, including the communication device 600 provided in any embodiment of the present application, and the communication device 700 provided in any embodiment of the present application.
  • a communication device 800 is also provided in an embodiment of the present application. It should be understood that the communication device 800 may execute each step performed by the network device in the method shown in FIG. 3 or FIG.
  • the communication device 800 includes:
  • the memory 801 is used to store programs
  • the communication interface 802 is used to communicate with other devices;
  • the processor 803 is configured to execute a program in the memory 801. When the program is executed, the processor 803 is configured to determine M RACH resource domains; wherein, the M RACH resource domains correspond to N terminal types, The N terminal types are determined according to the bandwidth type and/or random access type of the terminal, and M and N are positive integers. And for sending RACH configuration information to at least one terminal through the communication interface 802; wherein the RACH configuration information is used to indicate the M RACH resource fields, and the M RACH resource fields are used for the at least one terminal Sending a random access request to the network device, and the bandwidth type of any one of the at least one terminal belongs to the bandwidth type used to determine the N terminal types.
  • the communication device 800 shown in FIG. 8 may be a chip or a circuit.
  • a chip or circuit can be installed in a network device.
  • the aforementioned communication interface 802 may also be a transceiver.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 800 may also include a bus system.
  • the processor 803, the memory 801, the receiver and the transmitter are connected by a bus system, and the processor 803 is used to execute instructions stored in the memory 801 to control the receiver to receive signals and to control the transmitter to send signals to complete any of the applications.
  • the steps performed by the network device in the method for random access provided in an embodiment.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 801 may be integrated in the processor 803, or may be provided separately from the processor 803.
  • the functions of the receiver and transmitter may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 803 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • an embodiment of the present application also provides a communication device 900.
  • the communication device 900 can execute each step executed by the terminal in the method shown in FIG. 3 or FIG.
  • the communication device 900 includes: a memory 901 for storing programs;
  • the communication interface 902 is used to communicate with other devices;
  • the processor 903 is configured to execute a program in the memory 901.
  • the processor 903 is configured to receive RACH configuration information from a network device through the communication interface 902; wherein, the RACH configuration information M RACH resource domains are indicated, and the M RACH resource domains correspond to N terminal types.
  • the N terminal types are determined according to the bandwidth type and/or random access type of the terminal, and M and N are positive integers.
  • the communication device 900 shown in FIG. 9 may be a chip or a circuit.
  • a chip or circuit can be installed in the terminal.
  • the aforementioned communication interface 902 may also be a transceiver.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 900 may also include a bus system.
  • the processor 903, the memory 901, the receiver and the transmitter are connected by a bus system, and the processor 903 is used to execute the instructions stored in the memory 901 to control the receiver to receive signals and to control the transmitter to send signals to complete any of the applications.
  • the steps used by the terminal in the method for random access provided in an embodiment.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 901 may be integrated in the processor 903, or may be provided separately from the processor 903.
  • the functions of the receiver and transmitter may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 903 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of this embodiment.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于随机接入的方法、装置及系统。方法包括:网络设备确定M个RACH资源域;其中,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。之后,向至少一个终端发送RACH配置信息;其中,RACH配置信息用于指示M个RACH资源域,M个RACH资源域用于至少一个终端向网络设备发送随机接入请求,至少一个终端中的任意一个终端的带宽类型,属于用于确定所述N种终端类型的带宽类型。根据本申请的技术方案,有利于各种带宽类型的终端加高效的连接到网络设备。

Description

用于随机接入的方法、装置及系统
本申请要求于2020年04月03日提交中国专利局、申请号为202010260718.X、申请名称为“用于随机接入的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
终端通常需要与网络设备进行随机接入过程,完成与网络设备的上行时间同步并与网络设备建立无线资源控制连接,以便终端和网络设备之间基于该无线资源控制连接交互业务数据。
随着物联网应用技术的发展,终端的带宽类型也趋于多样化。比如,部分终端的带宽能力可能为5MHz,部分终端的带宽能力可能为10MHZ,部分终端的带宽能力可能为20MHz,部分终端的带宽能力可能为100MHz。相应的,对于同一个网络设备,该网络设备可能需要连接多种带宽类型的终端。
目前,网络设备通常在20MHz的初始下行带宽上,向终端发送随机接入信道(random access channel,RACH)资源配置信息,以便终端根据其接收的RACH资源配置信息,选择相应的RACH资源与网络进行随机接入过程。如此,各种带宽类型的终端均需要使用完全相同的RACH资源配置信息,可能导致部分终端因其自身带宽能力的限制,无法高效的连接到网络设备。
发明内容
本申请实施例中提供了一种用于随机接入的方法、装置及系统,有利于各种带宽类型的终端更加高效的连接到网络设备。
第一方面,提供了一种用于随机接入的方法。该方法可以由网络设备执行,也可以由部署在网络设备内的模块、芯片或片上系统执行。该方法包括:确定M个随机接入信道RACH资源域;其中,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。向至少一个终端发送RACH配置信息;其中,RACH配置信息用于指示M个RACH资源域,M个RACH资源域用于至少一个终端向网络设备发送随机接入请求,至少一个终端中的任意一个终端的带宽类型,属于用于确定N种终端类型的带宽类型。
总而言之,可以根据至少一种带宽类型和/或至少一种随机接入类型,灵活配置网络设备所支持的N种终端类型,并针对N种终端类型配置M个RACH资源域,其中M和N为正整数。不同带宽类型的终端可以分别根据相同或不同的RACH资源域,向网络设备发送随机接入请求以发起随机接入过程,有利于各种带宽类型的终端更加高效的连接到网络设备。
在一种可能的实施方式中,针对M个RACH资源域中的其中一个RACH资源域,网络设备可以确定该RACH资源域对应的至少一种终端类型,并确定采用该至少一种 终端类型进行随机接入过程的至少一个终端设备,然后向该至少一个终端设备发送配置信息。网络设备考虑终端的带宽类型以及随机接入的类型分配RACH资源,使得随机接入过程中的资源配置更加灵活,资源利用率提升。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还用于指示第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,RACH配置信息用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示N种终端类型对应至少一个上行初始部分带宽(uplinkinitialbandwidthpart,UL initial BWP)。
在一种可能的实施方式中,向至少一个终端发送RACH配置信息,包括:在至少一个下行初始部分带宽(downlinkinitialbandwidthpart,DL initial BWP)上,向至少一个终端发送RACH配置信息。
在一种可能的实施方式中,向至少一个终端发送RACH配置信息,包括:向至少一个终端发送信令,该信令中包括RACH配置信息;其中,该信令包括以下各种信令的至少一种:媒体访问控制控制元素(media access control-controlelement,MACCE)信令、下行链路控制信息(downlink control information,DCI)信令、无线资源控制(radio resource control,RRC)信令和系统信息块类型一(system information block-type1,SIB1)信令。
在一种可能的实施方式中,该方法还包括:从至少一个终端中的一个当前终端接收随机接入请求;确定该随机接入请求对应的目标RACH资源域;根据该目标RACH资源域对应的物理上行链路共享信道(physical uplink shared channel,PUSCH)资源域,对随机接入请求进行响应。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,该随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
第二方面,提供了一种用于随机接入的方法,有益效果可参考第一方面中的描述。该方法可以由终端执行,也可以由部署在终端内的模块、芯片或片上系统执行。该方法包括:接收来自网络设备的RACH配置信息;其中,该RACH配置信息指示了M个RACH资源域,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。根据该配置信息确定用于当前终端向网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定N种终端类型的带宽类型。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还指示了第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还指示了第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,接收来自网络设备的RACH配置信息,包括:接收来自网络设备的信令,该信令中包括配置信息;其中,该信令包括以下各种信令的至少一种:MACCE信令、DCI信令、SIB1信令和RRC信令。
在一种可能的实施方式中,根据RACH配置信息,确定用于当前终端向所述网络设备发送随机接入请求的目标RACH资源域,包括:根据RACH配置信息以及当前终端的目标终端类型,确定当前终端向网络设备发送随机接入请求的目标RACH资源域,其中,当前终端的目标终端类型是根据当前终端支持的随机接入类型和当前终端的带宽类型确定。
在一种可能的实施方式中,RACH配置信息还指示了N种终端类型对应至少一种UL initial BWP;该方法还包括:根据配置信息,确定与目标终端类型对应的目标UL initial BWP;在目标UL initial BWP上,根据目标RACH资源域,向网络设备发送随机接入请求。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
第三方面,提供了一种通信装置,有益效果可参考第一方面中的描述。该通信装置可以是网络设备,也可以是部署在网络设备中的模块、芯片或片上系统。该通信装置包括:处理单元,用于确定M个RACH资源域;其中,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。收发单元,用于向至少一个终端发送RACH配置信息;其中,RACH配置信息用于指示M个RACH资源域,M个RACH资源域用于至少一个终端向网络设备发送随机接入请求,至少一个终端中的任意一个终端的带宽类型,属于用于确定N种终端类型的带宽类型。
在一种可能的实施方式中,该处理单元,用于针对M个RACH资源域中的其中一个RACH资源域,确定该RACH资源域对应的至少一种终端类型,并确定采用该至少一种终端类型进行随机接入过程的至少一个终端设备;收发单元,用于向该至少一个终端设备发送配置信息。网络设备考虑终端的带宽类型以及随机接入的类型分配RACH资源,使得随机接入过程中的资源配置更加灵活,资源利用率提升。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还用于指示第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,RACH配置信息用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示N种终端类型对应至少一 个UL initial BWP。
在一种可能的实施方式中,该收发单元,具体用于在至少一个DL initial BWP上,向至少一个终端发送RACH配置信息。
在一种可能的实施方式中,该收发单元,具体用于向至少一个终端发送信令,该信令中包括RACH配置信息;其中,该信令包括以下各种信令的至少一种:MACCE信令、DCI信令、RRC信令和SIB1信令。
在一种可能的实施方式中,该收发单元,还用于从至少一个终端中的一个当前终端接收随机接入请求。该处理单元,还用于确定该随机接入请求对应的目标RACH资源域;根据该目标RACH资源域对应的PUSCH资源域,对随机接入请求进行响应。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,该随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
第四方面,提供了一种通信装置,有益效果可参考第一方面中的描述。该通信装置可以是终端,也可以是部署在终端内的模块、芯片或片上系统执行。该通信装置包括:收发单元,用于接收来自网络设备的RACH配置信息;其中,该RACH配置信息指示了M个RACH资源域,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。处理单元,用于根据该配置信息确定用于当前终端向网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定N种终端类型的带宽类型。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的 任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还指示了第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还指示了第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,该收发单元,具体用于接收来自网络设备的信令,该信令中包括配置信息;其中,该信令包括以下各种信令的至少一种:MACCE信令、DCI信令、SIB1信令和RRC信令。
在一种可能的实施方式中,该处理单元,具体用于根据RACH配置信息以及当前终端的目标终端类型,确定当前终端向网络设备发送随机接入请求的目标RACH资源域,其中,当前终端的目标终端类型是根据当前终端支持的随机接入类型和当前终端的带宽类型确定。
在一种可能的实施方式中,RACH配置信息还指示了N种终端类型对应至少一种UL initial BWP。该处理单元,还用于根据配置信息,确定与目标终端类型对应的目标UL initial BWP。该收发单元,还用于在目标UL initial BWP上,根据目标RACH资源域,向网络设备发送随机接入请求。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
第五方面,提供了一种通信装置,包括存储器和处理器,存储器中存储有指令/代码,处理器执行存储器中存储的指令/代码时,实现第一方面中任一项所述的方法。
第六方面,提供了一种通信装置,包括存储器和处理器,存储器中存储有指令/代码,处理器执行存储器中存储的指令/代码时,实现第二方面中任一项所述的方法。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的通信装置实现第一方面中任一项所述的方法,或者实现第二方面中任一项所述的方法。
第八方面,提供了一种计算机可读存储介质,用于存储指令/代码,当所述指令/代码被电子设备的处理器执行时,使得所述电子设备实现第一方面中任一项所述的方法或者第二方面中任一项所述的方法。
第九方面,提供了一种包含指令/代码的计算机程序产品,当所述计算机程序产品在电子设备上运行时,所述电子设备实现第一方面中任一项所述的方法或者第二方面中任一项所述的方法。
第十方面,提供了一种通信系统,包括第三方面中任一项所述的通信装置、第四方面中任一项所述的通信装置。或者,包括第五方面中所述的通信装置和第六方面中所述的通信装置。
附图说明
图1为本申请实施例中提供的一种示例性的无线通信系统的系统架构图;
图2为终端与网络设备进行随机接入类型为4-step RACH的随机接入过程的示意图;
图3为本申请实施例中提供的一种用于随机接入的方法的流程示意图;
图4为本申请实施例中提供的另一种用于随机接入的方法的流程示意图;
图5为网络设备在不同的DL initial BWP上向至少两种带宽类型的终端发送信令的示意图;
图6为本申请实施例中提供的一种通信装置的结构示意图;
图7为本申请实施例中提供的另一种通信装置的结构示意图;
图8为本申请实施例中提供的另一种通信装置的结构示意图;
图9为本申请实施例中提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例中,终端是指具有无线通信功能的电子设备。其中,终端可以部署在陆地上,比如部署在指定的室内空间或者行驶于地面的车辆上;也可以部署在水面上,比如部署在轮船内;还可以部署在空中,比如部署在飞机、气球和卫星上。终端可以是用户设备(user equipment,UE),UE可以是具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性的,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请实施例中,用于实现终端的功能的通信装置可以是终端;也可以是用于支持终端实现其功能的其它装置,比如部署在终端中的芯片。在一些实施例中,芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端实现本申请任意一个实施例中提供的由终端执行的方法。
本申请实施例中提供的终端,可以包括存储器和处理器,存储器用于存储可执行代码/指令,当处理器执行该可执行代码/指令时,实现本申请任意一个实施例中提供的由终端执行的用于随机接入的方法。
本申请实施例中还提供了一种计算机可读存储介质,用于存储可执行代码/指令,在该可执行代码/指令被电子设备的处理器执行时,使得该电子设备实现本申请任意一个实施例中提供的由终端执行的用于随机接入的方法。
本申请实施例中还提供了一种包含可执行代码/指令的计算机程序产品,当该计算机程序产品在电子设备上运行时,该电子设备实现本申请任意一个实施例中提供的由终端执行的用于随机接入的方法。
本申请实施例中,网络设备包括基站(base station,BS)。其中,基站是一种部署在无线接入网中的并且能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性的,基站可以是5G网络中的基站或长期演进(long term evolution,LTE)网络中的基站;其中,5G网络中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是用于支持网络设备实现其功能的其它装置,比如部署在网络设备中的芯片。在一些实施例中,芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备实现本申请任意一个实施例中提供的由网络设备执行的方法。。
本申请实施例中提供的网络设备,可以包括存储器和处理器,存储器用于存储可执行代码/指令,当处理器执行该可执行代码/指令时,实现本申请任意一个实施例中提供的由网络设备执行的用于随机接入的方法。
本申请实施例中还提供了一种计算机可读存储介质,用于存储可执行代码/指令,在该可执行代码/指令/被电子设备的处理器执行时,使得该电子设备实现本申请任意一个实施例中提供的由网络设备执行的用于随机接入的方法。
本申请实施例中还提供了一种包含可执行代码/指令的计算机程序产品,当该计算机程序产品在电子设备上运行时,该电子设备实现本申请任意一个实施例中提供的由网络设备执行的用于随机接入的方法。
本申请实施例中提供的技术方案,可以应用于机器与机器(machine to machine,M2M)通信系统和蜂窝通信系统等多种类型的无线通信系统。其中,无线通信系统可以采用与5G网络的新空口(new radio,NR)系统相同或相似的系统架构。
图1为示例性的无线通信系统的系统架构图。如图1所示,无线通信系统100可以包括网络设备101和至少一个终端103。各终端103可以分别与网络设备101进行随机接入过程,完成与网络设备的上行时间同步,并且与网络设备101建立RRC连接。当一个终端103与网络设备101建立RRC连接之后,该终端103与网络设备101之间即可传输业务数据。
可以理解,在终端103向网络设备101发起随机接入过程之前,终端103还可以根据来自网络设备101的下行同步信号,完成与网络设备101的下行时间同步和频率同步。其中,下行同步信号包括主同步信号(primary synchronization signal,PSS)以及辅同步信号(secondary synchronization signal,SSS)。
以无线通信系统100采用NR系统架构为例,终端103与网络设备101可以进行随机接入类型为“4-step RACH”的随机接入过程,还可以进行随机接入类型为“2-step RACH”的随机接入过程。其中,NR R15标准中定义了随机接入类型为“4-step RACH”的随机接入过程,NR R16标准中定义的随机接入类型为“2-step RACH”的随机接入过程。
下面进一步结合图2,对终端103与网络设备101进行随机接入类型为“4-step RACH”的随机接入过程进行示例性描述。
首先,终端103通过物理随机接入信道(physical random access channel,PRACH)向网络设备发送前导码preamble,即终端103向网络设备101发送包括preamble的信息1(Message1)。其中,在此之前终端103还可以通过读取来自网络设备101的系统广播信息,获得网络设备101向终端103发送的配置信息,该配置信息可以指示一个或多个RACH资源,一个RACH资源中主要包括PRACH信道使用的时域资源、频域资源以及正交码序列资源等。
需要说明的是,RACH资源也可以称为物理随机接入信道(physical random access channel,PARCH)资源。
接着,终端103在发送Message1之后启动随机接入响应窗口,在相应的窗口内监听网络设备103发送的随机接入响应(random access response,RAR),即终端103接收来自网络设备101的包括RAR的信息2(Message2)。
之后,如果终端103成功检测到网络设备101向其发送的RAR,则终端103随机接入成功,可以进一步根据RAR的指示,向网网络设备101发送信息3(Message3)。其中,Message3主要用于向网络设备101发送RRC连接请求,Message3中可以包括UE标识(identification,ID)。
需要说明的是,如果终端103没有检测到网络设备101向其发送的RAR,则终端103随机接入失败,可以按照网络设备101指示的回退参数,重新发起随机接入过程,直至达到相应的最大随机接入次数。
进一步的,终端103在完成向网络设备101发送Message3之后,监听网络设备101对Message3的反馈(Feedback),网络设备向其发送的信息4(Message4),Message4中可以包括冲突解决标识及针对该终端103的空口参数配置。
需要说明的是,如果终端103成功监听到网络设备101向其发送的Message4,则终端103随机接入成功,可以向网络设备101发送信息5(Message5),Message5主要用于向网络设备101发送RRC建立完成命令或者其它信息。如果终端103未监听到网络设备101向其发送的Message4,则终端103随机接入失败,可以按照网络设备101指示的回退参数,重新发起随机接入过程,直至达到相应的最大随机接入次数。
对于NR R16标准中定义的随机接入类型为“2-step RACH”的随机接入过程,实际上是将随机接入类型为“4-step RACH”的随机接入过程所包含的4个步骤合并为两个步骤。更具体地说,在随机接入类型为“2-step RACH”的随机接入过程中,终端103可以向网络设备同时发送Message1和Message3,同时发送的Message1和Message3也被称为信息A(Message A);相应的,终端103可以接收来自网络设备101可以在接收到Message A之后,对Message A进行反馈,即向终端103发送信息B(Message B)。
其中,NR系统中引入了部分带宽(bandwidth part,BWP)。BWP指示了终端进行数据传输工作的频域资源,网络设备通过信令为终端配置上行BWP和下行BWP,终端只能在基站配置的BWP范围内进行数据传输。对于下行初始接入和上行初始接入阶段,终端工作的上行BWP和下行BWP分别称之为UL initial BWP和DL initial BWP。对于随机接入类型为“4-Step RACH”的随机接入过程,Message2和Message4在DL initial BWP上传输,Message1和Message3在UL initial BWP上传输。对于随机接入类型为“2-Step RACH”的随机接入过程,Message A在UL initial BWP上传输,Message B在DL initial BWP上传输。
可以理解,终端还可能通过其他方式实现与网络设备进行随机接入过程,即终端与网络设备所进行随机接入过程的随机接入类型,还可以包括除上述“4-step RACH”、“2-step RACH”以外的其它随机接入类型。
示例性的,终端与网络设备可以进行另一种随机接入类型的随机接入过程,该另一种随机接入类型的随机接入过程与随机接入类型为“4-step RACH”的随机接入过程相似。为了方便描述,本申请实施例中将该另一种随机接入类型称为“4-step RACH&EDT(Early Data Transmission)”。随机接入类型为“4-step RACH&EDT”的随机接入过程,相对于随机接入类型为“4-step RACH”的随机接入过程的区别,主要在于终端向网络设备发送的Message3中包括终端向网络设备发送的业务数据。
示例性的,终端与网络设备可以进行另一种随机接入类型的随机接入过程,该另一种随机接入类型的随机接入过程与随机接入类型为“2-step RACH”的随机接入过程相似。为了方便描述,本申请实施例中将该另一种随机接入类型称为“2-step RACH&EDT”。随机接入类型为“2-step RACH&EDT”的随机接入过程,相对于随机接入类型为“2-step RACH”的随机接入过程的区别,主要在于终端向网络设备发送的Message A中包括终端向网络设备发送的业务数据。
本申请实施例中,对于“4-step RACH&EDT”和“2-step RACH&EDT”两种类型的随机接入过程,主要应用于处于RRC非激活(RRC inactive)态的终端。如此,处于RRC非激活态的终端无需在完成随机接入过程以进入RRC连接(RRCconnected)态之后,再进行业务数据的传输,可以节省网络设备的空口资源,降低终端功耗以及数据传输时延。可以理解,“4-step RACH&EDT”和“2-step RACH&EDT”两种类型的随机接入过程,也可能应用于处于RRC空闲(RRC idle)态的终端。
总而言之,终端支持的与网络设备进行随机接入过程的随机接入类型是终端的能力,不同的终端可能支持不同的随机接入类型,对于同一个终端,可以支持以上所述随机接入类型的一种或者多种。可以根据终端支持的随机接入类型确定Y1种随机接入类型,Y1为正整数。如果网络设备的配置支持其进行Y1种随机接入类型的随机接入过程,一个终端与该网络设备进行随机接入过程的随机接入类型即可以为Y1种随机接入类型中的一种或者多种。
本申请实施例中,不同的终端可能具有不同的带宽能力,可以根据终端的带宽能力确定Y2种带宽类型,Y2为正整数。其中,终端的带宽能力是指终端和网络设备之间进行数据传输时,用于承载终端向网络设备发送的数据/用于承载来自网络设备的数据的一个载波所能够使用的最大带宽。比如,一个终端最大可以支持在一个载波上使用带宽为100MHz的频率资源向网络设备发送数据,该终端的上行带宽能力为100MHz;该终端最大可以支持在一个载波上使用带宽为100MHz的频率资源接收来自网络设备的数据,该终端的下行带宽能力为100MHz。又如,一个终端最大可以支持在一个载波上使用带宽为20MHz的频率资源向网络设备发送数据,则该终端的上行带宽能力为20MHz;该终端最大可以支持在一个载波上使用带宽为20MHz的频率资源接收来自网络设备的数据,则该终端的下行带宽能力为20MHz。通常的,终端的上行带宽能力和下行带宽能力相同,因此可以将终端的上行带宽能力或下行带宽能力作为终端的带宽能力。
示例性的,单个终端的带宽能力可能为5MHz、10MHz、20MHz或者100MHz。对于带宽能力为5MHz或10MHz的终端,其带宽类型通常可以被表示为“NR_REDCAP Type1”,也就是说,带宽能力为5MHz或10MHz的终端,通常可以被称为NR_REDCAP Type1终端,在另一些实施例中,带宽能力为5MHz和10MHz的终端也可以定义为两种不同类型的终端;对于带宽能力为20MHz的终端,其带宽类型通常可以被表示NR_REDCAP Type2,也就是说,带宽能力为20MHz的终端,通常可以被称为NR_REDCAP Type2终端;对于带宽能力为100MHz的终端,其带宽类型通常可以被表示为NR_Legacy,也就是说,对于带宽能力为100MHz的终端,通常可以被称为NR_Legacy终端。换而言之,可以确定出NR_REDCAP Type1、NR_REDCAP Type2以及NR_Legacy三种带宽类型。
本申请实施例中,终端的终端类型,与该终端的带宽类型和其支持的随机接入类型相关,可以根据终端的带宽类型和/或随机接入类型确定N种终端类型,N为正整数。更具体地说,可以根据Y2种带宽类型和/或Y1种随机接入类型,确定N种终端类型。需要说明的是,对于同一个终端,由于该终端可能支持一种或多种随机接入类型,因此,同一个终端可能会对应以上所述N种终端类型中的一种或者多种。例如,根据带宽类型“NR_Legacy”以及随机接入类型4-step RACH可以确定终端类型T9,根据带宽类型“NR_Legacy”以及随机接入类型2-step RACH可以确定终端类型T10,终端类型T9对应的带宽类型与终端类型 T10对应的带宽类型相同,但是终端类型T9对应的随机接入类型与终端类型T10对应的随机接入类型不同。
在一种可能的实施方式中,N种终端类型中的任一种终端类型,可以是根据Y2种带宽类型中的一种确定的。即带宽类型的总量Y2与终端类型的总量N相同,且Y2种带宽类型和N种终端类型一一对应。
示例性的,请参考如下表1,可以根据“NR_REDCAP Type1”、“NR_REDCAP Type2”以及“NR_Legacy”三种带宽类型,确定出“P1”、“P2”以及“P3”三种终端类型。
表1
带宽类型 终端类型
NR_Legacy P1
NR_REDCAP Type1 P2
NR_REDCAP Type2 P3
在上述表1中,根据带宽类型“NR_Legacy”确定的终端类型为“P1”,根据带宽类型“NR_REDCAP Type1”确定的终端类型为“P2”,根据带宽类型“NR_REDCAP Type2”确定的终端类型为“P3”。
在一种可能的实施方式中,N种终端类型中的任一终端类型,可以是根据Y2种带宽类型中的一种和Y1种随机接入类型中的一种确定的。即终端类型的总量N为带宽类型的总量Y2与随机接入类型的总量Y1的乘积。
示例性的,请参考如下表2,可以根据“NR_REDCAP Type1”、“NR_REDCAP Type2”、“NR_Legacy”等3种带宽类型,以及“4-step RACH”、“4-step RACH&EDT”、“2-step RACH”、“2-step RACH&EDT”等4种随机接入类型,确定T1~T12共12种终端类型。
表2
Figure PCTCN2021084845-appb-000001
在上述表2中,根据“NR_REDCAP Type1”和“4-step RACH”确定的终端类型为“T1”,根据“NR_REDCAP Type1”和“2-step RACH”确定的终端类型为“T2”,根据“NR_REDCAP Type1”和“4-step RACH&EDT”确定的终端类型为“T3”,根据“NR_REDCAP Type1”和“2-step RACH&EDT”确定的终端类型为“T4”。根据“NR_REDCAP Type2”和“4-step RACH”确定的终端类型为“T5”,根据“NR_REDCAP Type2”和“2-step RACH”确定的终端类型为“T6”,根据“NR_REDCAP Type2”和“4-step RACH&EDT”确定的终端类型为“T7”,根据“NR_REDCAP Type2”和“2-step RACH&EDT”确定的终端类型为“T8”。根据“NR_Legacy”和“4-step RACH”确定的终端类型为“T9”,根据“NR_Legacy”和“2-step RACH”确定的终端类 型为“T10”,根据“NR_Legacy”和“4-step RACH&EDT”确定的终端类型为“T11”,根据“NR_Legacy”和“2-step RACH&EDT”确定的终端类型为“T12”。
可以理解,终端类型可以通过带宽类型和随机接入类型的组合来表达。示例性的,上述表2中的终端类型“T12”,可以包括用于确定“T12”的带宽类型“NR_Legacy”以及随机接入类型“2-step RACH&EDT”。
接下来,针对网络设备与终端之间进行通信的具体过程进行示例性描述。
本申请实施例中提供的技术方案,可以根据至少一种带宽类型和/或至少一种随机接入类型,灵活配配置网络设备所支持的N种终端类型,并针对N种终端类型配置M个RACH资源域,其中M和N为正整数。不同带宽类型的终端可以根据相同或不同的RACH资源域,向网络设备发送随机接入请求以发起随机接入过程,有利于各种带宽类型的终端更加高效的连接到网络设备。
图3为本申请实施例中提供的一种用于随机接入的方法的流程示意图。其中,可以通过相应的通信装置向网络设备发送配置指令,和/或,通过输入设备向网络设备输入相应的配置指令,触发网络设备至少执行如下步骤301和步骤303。
在步骤301,网络设备确定M个RACH资源域。
其中,M个RACH资源域对应的N种终端类型,M和N均为正整数。
其中,所述M个RACH资源域中任意一个RACH资源域可以包括RACH的时域资源、频域资源、正交码序列资源中的某个资源或其组合。对于任意两个不同的RACH资源域所分别包括的RACH资源,其频域资源、时域资源以及正交码序列资源中的一项或多项不同。
其中,N种终端类型是根据终端的带宽类型和随机接入类型确定的。更具体地说,N种终端类型中的任一终端类型,可以是根据Y2种带宽类型中的一种确定的,还可以是根据Y2种带宽类型中的一种和Y1种随机接入类型中的一种共同确定的,Y1和Y2为正整数。
在步骤303,网络设备向至少一个终端发送RACH配置信息。
其中,RACH配置信息指示了M个RACH资源域,M个RACH资源域用于至少一个终端向网络设备发送随机接入请求,至少一个终端中的任意一个终端的带宽类型,属于用于确定N种终端类型的带宽类型。更具体地说,至少一个终端中的任意一个终端的带宽类型,属于Y2种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,该第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,该第二RACH配置为M个RACH资源域对应N种终端类型,M于N,并且M大于1;
第三RACH配置,该第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,该第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,针对M个RACH资源域中的其中一个RACH资源域,网络设备可以确定该RACH资源域对应的至少一种终端类型,并确定采用该至少一种终端类型进行随机接入过程的至少一个终端,然后向该至少一个终端发送配置信息。网络设备考虑终端的带宽类型以及随机接入的类型分配RACH资源,使得随机接入过程中的资源配置更加灵活,资源利用率提升。
图4为本申请实施例中提供的另一种用于随机接入的方法的流程示意图。
在步骤401,网络设备确定M个RACH资源域。
其中,M个RACH资源域对应N种终端类型,M和N均为正整数。更具体地说,M个RACH资源域中的一个RACH资源域,与N种终端类型中的一种或多种相对应。
这里,网络设备可以灵活配置M个RACH资源域和N种终端类型之间的对应关系。
下面将主要以网络设备可以连接“NR_REDCAP type1”、“NR_REDCAP type2”以及“NR_legacy”共3种带宽类型的终端,并且该网络设备支持“4-step RACH”、“4-step RACH&EDT”、“2-step RACH”、“2-step RACH&EDT”共4种随机接入类型的随机接入过程为例,对本申请实施例中提供的用于随机接入的方法进行示例性描述。
在一种可能的实施方式中,M等于N,且M大于1。换而言之,M个RACH资源域和N种终端类型一一对应,网络设备可以针对至少不同的终端类型配置不同的RACH资源域。如此,不同带宽类型的终端可以使用不同的RACH资源域发起随机接入过程,相同带宽类型的终端与网络设备进行不同随机接入类型的随机接入过程时,可以使用不同的RACH资源。对于任意两个终端,无论该任意两个终端的带宽类型是否相同,该任意两个终端可以互不影响的分别与网络设备进行相同或不同随机接入类型的随机接入过程,有利于多种带宽类型的终端更加高效的连接到网络设备。
示例性的,网络设备可以确定出如下表3中所示的12个RACH资源域,12个RACH资源域对应12种终端类型。
表3
Figure PCTCN2021084845-appb-000002
如上表3所示,终端类型“T1”对应的RACH资源域为“RACH-R1”,终端类型“T2”对应的RACH资源域为“RACH-R2”,终端类型“T3”对应的RACH资源域为“RACH-R3”,终端类型“T4”对应的RACH资源域为“RACH-R4”,终端类型“T5”对应的RACH资源域为“RACH-R5”,终端类型“T6”对应的RACH资源域为“RACH-R6”,终端类型“T7”对应的RACH资源域为“RACH-R7”,终端类型“T8”对应的RACH资源域为“RACH-R8”,终端类 型“T9”对应的RACH资源域为“RACH-R9”,终端类型“T10”对应的RACH资源域为“RACH-R10”,终端类型“T11”对应的RACH资源域为“RACH-R11”,终端类型“T12”对应的RACH资源域为“RACH-R12”。
在一种可能的实施方式中,M小于N,且M大于1。如此,不同带宽类型的终端,可能使用相同的RACH资源域与网络设备进行相同/不同随机接入类型的随机接入过程;或者不同带宽类型的终端,可能使用不同的RACH资源域与网络设备进行相同/不同随机接入类型的随机接入过程;或者,对于其中一种带宽类型的终端,可能使用相同的RACH资源域与网络设备进行不同随机接入类型的随机接入过程。可以提高RACH资源的利用率。
示例性的,网络设备可以确定出如下表4中所示的7个RACH资源域,7个RACH资源域对应12种终端类型。
表4
Figure PCTCN2021084845-appb-000003
如上表4所示,RACH资源域“RACH-R1”对应的终端类型包括“T1”和“T5”,RACH资源域“RACH-R2”对应的终端类型包括“T2”和“T6”,RACH资源域“RACH-R3”对应的终端类型包括“T3”和“T7”,RACH资源域“RACH-R4”对应的终端类型包括“T4”、“T8”和“T12”,RACH资源域“RACH-R5”对应的终端类型为“T9”,RACH资源域“RACH-R6”对应的终端类型为“T10”,RACH资源域“RACH-R7”对应的终端类型为“T11”。
如上表4所示,网络设备可以针对带宽类型为NR_REDCAP type1和NR_REDCAP type2的终端,对于同一种随机接入类型配置一组相同的RACH资源域,使得带宽类型为NR_REDCAP type1和NR_REDCAP type2的终端分别与网络设备进行相同随机接入类型的随机接入过程时,使用相同的RACH资源域中包括的RACH资源。
示例性的,网络设备可以确定出如下表5中所示的8个RACH资源域,8个RACH资源域对应12种终端类型。
表5
Figure PCTCN2021084845-appb-000004
Figure PCTCN2021084845-appb-000005
如上表5所示,RACH资源域“RACH-R1”对应的终端类型为“T1”,RACH资源域“RACH-R2”对应的终端类型为“T2”,RACH资源域“RACH-R3”对应的终端类型为“T3”,RACH资源域“RACH-R4”对应的终端类型包括“T8”和“T12”,RACH资源域“RACH-R5”对应的终端类型包括“T5”和“T9”,RACH资源域“RACH-R6”对应的终端类型包括“T6”和“T10”,RACH资源域“RACH-R7”对应的终端类型包括“T7”和“T11”,RACH资源域“RACH-R8”对应的终端类型为“T4”。
如上表5所示,网络设备可以针对带宽类型为NR_REDCAP type2和NR_legacy的终端,对于同一种的随机接入类型配置一组相同的RACH资源域,使得带宽类型为NR_REDCAP type2和NR_legacy的终端分别与网络设备进行相同随机接入类型的随机接入过程时,使用相同的RACH资源域中的RACH资源。
可以理解,对于“2-step RACH”和“2-step RACH&EDT”两种随机接入类型,Message A中承载于PUSCH的数据大小不同。相应的,“2-step RACH”和“2-step RACH&EDT”两种随机接入类型的随机接入过程,通常使用不同的PUSCH资源域。
在一种可能的实施方式中,对于同一种带宽类型的终端,网络设备可以针对“2-step RACH”和“2-step RACH&EDT”两种随机接入类型配置两个不同的RACH资源域,不同的RACH资源域关联不同的PUSCH资源域。如此,终端向网络设备发送Message A时,网络设备可以首先确定Message A使用的RACH资源所属的目标RACH资源域,然后较为快速的确定出目标RACH资源域所关联的PUSCH资源域。
示例性的,网络设备可以确定出如下表6中所示的6个RACH资源域,6个RACH资源域对应12种终端类型。
表6
Figure PCTCN2021084845-appb-000006
如上表6所示,带宽类型为NR_REDCAP type1、NR_REDCAP type2以及NR_legacy的终端,均可使用RACH-R2中包括的RACH资源与网络设备进行随机接入类型为“2-step RACH”的随机接入过程。带宽类型为NR_REDCAP type1、NR_REDCAP type2以及 NR_legacy的终端,均可使用RACH-R4中包括的RACH资源与网络设备进行随机接入类型为“2-step RACH”的随机接入过程。
在一种可能的实施方式中,对于同一种带宽类型的终端,网络设备可以针对“2-step RACH”和“2-step RACH&EDT”两种随机接入类型配置相同的RACH资源域,该RACH资源域关联两个不同的PUSCH资源域。如此,网络设备接收来自终端的Message A时,在确定出Message A使用的RACH资源所属的目标RACH资源域之后,可以对该目标RACH资源域对应的两个PUSCH资源域进行盲检,有利于降低RACH资源开销,降低RACH资源的网络统计复杂度。
示例性的,网络设备可以确定出如下表7中所示的5个RACH资源域,5个RACH资源域对应12种终端类型。
表7
Figure PCTCN2021084845-appb-000007
如上表7所示,带宽类型为NR_REDCAP type1、NR_REDCAP type2以及NR_legacy的终端,均可使用RACH-R2中包括的RACH资源与网络设备进行随机接入类型为“2-step RACH”以及“2-step RACH&EDT”的随机接入过程。
在一种可能的实施方式中,M等于1,且M小于N。换而言之,网络设备可以针对N种终端类型配置完全相同的RACH资源域。如此,可以降低网络设备的信令开销,降低网络设备对RACH资源的网络统计复杂度。
示例性的,网络设备可以确定出如下表8中所示的1个RACH资源域,一个RACH资源域对应12种终端类型。
表8
Figure PCTCN2021084845-appb-000008
如上表8所示,终端类型T1~T12均与RACH资源域“RACH-R1”相对应,NR_REDCAP type1、NR_REDCAP type2以及NR_legacy的终端,均可使用RACH-R1中包括的RACH资源,与网络设备进行随机接入类型为“2-step RACH”、“2-step RACH&EDT”、4-step RACH以及4-step RACH&EDT的随机接入过程。
在一种可能的实施方式中,M等于N,且M等于1。换而言之,网络设备仅支持一种带宽类型的终端与网络设备进行一种随机接入类型的随机接入过程。
接着,在步骤402,网络设备确定至少一个DL initial BWP以及至少一个UL initial BWP。
其中,一个DL initial BWP与N种终端类型中的一种或多种相对应;一个UL initial BWP与N种终端类型中的一种或多种相对应。由于一个RACH资源域对应一种或多种终端类型,因此也可以说一个DL initial BWP对应一个或多个RACH资源域。
这里,可以灵活配置DL initial BWP的数量以及各个DL initial BWP的带宽,灵活配置UL initial BWP的数量以及各个UL initial BWP的带宽。以及,灵活配置至少一个DL initial BWP与N种终端类型之间的对应关系,灵活配置至少一个UL initial BWP与N种终端类型之间的对应关系。
在一种可能的实施方式中,可以根据用于确定N种终端类型的Y2种带宽类型,确定UL initial BWP的数量和各个UL initial BWP的带宽,确定DL initial BWP的数量和各个DL initial BWP的带宽。
示例性的,可以配置两个DL initial BWP,两个DL initial BWP包括第一DL initial BWP和第二DL initial BWP。其中,第一DL initial BWP的带宽可以为NR_REDCAP type1、NR_REDCAP type2以及NR_legacy等三种带宽类型的终端对应的最小带宽能力5MHz。第二DL initial BWP的带宽可以为除5MHz以外的其它带宽,比如为20MHz。
示例性的,可以配置三个UL initial BWP,三个UL initial BWP分别为第一UL initial BWP、第二UL initial BWP和第三UL initial BWP。其中,第一UL initial BWP的带宽可以为5MHz;第二UL initial BWP的带宽可以为20MHz;第三UL initial BWP的带宽的100MHz。
示例性的,网络设备还可以确定出如下表9中所示两个DL initial BWP,两个DL initial BWP对应12种终端类型。
表9
Figure PCTCN2021084845-appb-000009
如上表9所示,“T1”、“T2”、“T3”及“T4”等4种终端类型均对应带宽为5MHz的第一DL initial BWP,“T5”、“T6”、“T7”、“T8”、“T9”、“T10”、“T11”及“T12”等8种终端类型均对应带宽为20MHz的第二DL initial BWP。
示例性的,网络设备还可以确定出如下表10所示3个UL initial BWP,3个UL initial BWP对应12种终端类型。
表10
Figure PCTCN2021084845-appb-000010
如上表10所示,“T1”、“T2”、“T3”及“T4”等4种终端类型均对应带宽为5MHz的第一UL initial BWP,“T5”、“T6”、“T7”及“T8”等8种终端类型均对应带宽为20MHz的第二UL initial BWP,“T9”、“T10”、“T11”及“T12”等4种终端类型均对应带宽为100MHz的第二UL initial BWP。
可以理解,DL initial BWP和UL initial BWP各自的数量及带宽还可以具有其它形式的配置,DL initial BWP和UL initial BWP分别与N种终端类型之间的对应关系还可以具有其它形式的配置。
示例性的,可以仅配置一个DL initial BWP,配置两个UL initial BWP。在一种可能实施方式中,该DL initial BWP的带宽为5MHz,该DL initial BWP对应N种终端类型;另外,其中一个UL initial BWP的带宽为5MHz,另一个UL initial BWP的带宽为20MHz。相应的,T1~T12等12种终端类型均与带宽为5MHz的DL initial BWP相对应;“T1”、“T2”、“T3”及“T4”等4种终端类型均对应带宽为5MHz的UL initial BWP,“T5”、“T6”、“T7”、“T8”、“T9”、“T10”、“T11”及“T12”等8种终端类型均对应带宽为20MHz的UL initial BWP。
示例性的,仅存在NR_legacy和NR_REDCAP type2两种带宽类型。相应地,存在“T1”、“T2”、“T3”、“T4”、“T9”、“T10”、“T11”及“T12”等8种终端类型。在一种可能的实施方式中,网络设备同样仅配置一个DL initial BWP,配置两个UL initial BWP。该DL initial BWP带宽最大配置为20MHz,另外,两个UL initial BWP中的第一个UL initial BWP的带宽最大可配置为20MHz;两个UL initial BWP中的第二个UL initial BWP的带宽最大可配置为大于20MHz。相应的,“T1”、“T2”、“T3”、“T4”、“T9”、“T10”、“T11”及“T12”均与该DL initial BWP相对应,“T9”、“T10”、“T11”及“T12”等4种终端类型均对应第一个UL initial BWP,“T1”、“T2”、“T3”及“T4”等4种终端类型均对应第二个UL initial BWP。
示例性的,网络设备还可以仅配置一个DL initial BWP和一个UL initial BWP,该DL initial BWP和UL initial BWP的带宽均为5MHz。该DL initial BWP和UL initial BWP均对应N种终端类型。
接着,在步骤403,在至少一个DL initial BWP上,向至少一个终端发送信令。
其中,该信令包括但不限于MACCE信令、DCI信令、SIB1信令和RRC信令中的任意一种或多种。
在一种可能的实施方式中,网络设备可以针对其确定的每个DL initial BWP,首先确定该DL initial BWP对应的各种当前终端类型。然后,确定各种当前终端类型分别对应的当前RACH资源域。接着,在该DL initial BWP上发送一个信令,该信令中包括配置信息,该配置信息中包括:各个当前RACH资源域、各个当前RACH资源域所分别对应的各种当前终端类型,以及各种当前终端类型分别对应的UL initial BWP。
下面仍然以网络设备确定的M个RACH资源域、至少一个UL initial BWP和至少一个DL initial BWP满足前述表4、表9和表10所示的配置为例,进一步结合图5对网络设备向至少一个终端发送配置信息的过程进行示例性描述。如图5所示,网络设备可以在带宽为5MHz的DL initial BWP上,向带宽类型为NR_REDCAP type1的至少一个终端广播信令1;在带宽为20MHz的DL initial BWP上,向带宽类型为NR_REDCAP type2和/或NR_legacy的至少一个终端广播信令2。
其中,信令1中的配置信息可以指示:当前RACH资源域RACH-R1,RACH-R1对应的当前终端类型T1,T1对应的第一UL initial BWP;当前RACH资源域RACH-R2,RACH-R2对应的当前终端类型T2,T2对应的第一UL initial BWP;当前RACH资源域RACH-R3,RACH-R3对应的当前终端类型T3,T3对应的第一UL initial BWP;当前RACH资源域RACH-R4,RACH-R4对应的当前终端类型T4,T4对应的第一UL initial BWP。
示例性的,信令1中可以包括如下表11所示的配置信息。
表11
Figure PCTCN2021084845-appb-000011
其中,信令2中的配置信息可以指示:当前RACH资源域RACH-R1,RACH-R1对应的当前终端类型T5,T5对应的第二UL initial BWP;当前RACH资源域RACH-R2,RACH-R2对应的当前终端类型T6,T6对应的第二UL initial BWP;当前RACH资源域RACH-R3,RACH-R3对应的当前终端类型T7,T7对应的第二UL initial BWP;当前RACH资源域RACH-R4,RACH-R4对应的当前终端类型T8、T12,T8对应的第二UL initial BWP,T12对应的第三UL initial BWP;当前RACH资源域RACH-R5,RACH-R5对应的当前终端类型T9,T9对应的第三UL initial BWP;当前RACH资源域RACH-R6,RACH-R6对 应的当前终端类型T10,T10对应的第三UL initial BWP;当前RACH资源域RACH-R6,RACH-R6对应的当前终端类型T11,T11对应的第三UL initial BWP。
示例性的,信令2中可以包括如下表12所示的配置信息。
表12
Figure PCTCN2021084845-appb-000012
相应的,带宽类型为NR_REDCAP type1的终端,可以在带宽为5MHz的第一DL initial BWP上接收到来自网络设备的信令1。带宽类型为NR_REDCAP type2或者NR_legacy的终端,可以在带宽为20MHz的第二DL initial BWP上接收到来自网络设备的信令2。
可以理解,网络设备可能将M个RACH资源域中的部分RACH资源域配置到一个信令中,也可能将部分RACH资源域配置到多个信令中。也就是说,对于一个RACH资源域,网络设备可能在一个或多个DL initial BWP上,向一种或多种带宽类型的终端发送包括该RACH资源域的配置信息。
示例性的,对于RACH-R1,其对应的终端类型包括T1和T5,T1对应的DL initial BWP为第一DL initial BWP,T5对应的DL initial BWP为第二DL initial BWP。网络设备可以将RACH-R1配置到信令1和信令2所包括的配置信息中;然后,网络设备可以在带宽为5MHz的第一DL initial BWP上向带宽类型为NR_REDCAP type1的终端广播信令1,在带宽为20MHz的第二DL initial BWP上向带宽为NR_REDCAP type2以及NR_legacy的终端广播信令2。如此,即实现在第一DL initial BWP以及第二DL initial BWP上,向带宽类型为NR_REDCAP type1以及NR_REDCAP type2的终端发送包括RACH-R1的配置信息。
在一些实施例中,网络设备确定的M个RACH资源域、M个RACH资源域和N种终端类型之间的对应关系,以及N种终端类型与至少一个UL initial BWP的对应关系,可能被配置到同一个信令中;相应的,网络设备可以在相同或不同的DL initial BWP上,向Y2种带宽类型的终端发送该信令。
在步骤404,终端根据其接收的信令所包括的RACH配置信息,以及该终端的目标终端类型,确定用于该终端向网络设备发送随机接入请求的目标RACH资源域。
可以理解,执行步骤404的终端是已经接收到来自网络设备的信令,并且需要与网络设备进行随机接入过程以连接到网络设备的终端。如前所述,该终端的带宽类型可以为NR_REDCAP type1、NR_REDCAP type2或者NR_legacy,该终端可以与网络设备进行 “4-step RACH”、“2-step RACH”、“4-step RACH&EDT”和“2-step RACH&EDT”等多种类型的随机接入过程。
示例性的,该终端可以根据其自身的目标终端类型,从其接收的信令所包括的配置信息中,确定出该目标终端类型对应的RACH资源域,所确定的RACH资源域为用于该终端向网络设备发送随机接入请求的目标RACH资源域。
在一些实施例中,该终端可以通过用户配置或者其它方式选择其与网络设备进行随机接入过程的随机接入类型;然后根据选择的随机接入类型以及其自身的带宽类型,确定其自身的目标终端类型。
在一些实施例中,该终端接收的配置信息,可以指示该终端与网络设备进行随机接入过程的随机接入类型,该终端可以根据配置信息的指示以及其自身的带宽类型和支持的随机接入类型类型,确定发送随机接请求的目标RACH资源域。示例性的,该终端的带宽类型为NR_REDCAP type1,可以接收到来自网络设备的信令1。如果选择的随机接入类型为“4-step RACH”,或者信令1所包括的配置信息指示了NR_REDCAP type1终端进行随机接入过程的随机接入类型为“4-step RACH”,该终端即可根据其自身的带宽类型“NR_REDCAP type1”和随机接入类型为“4-step RACH”,确定对应的RACH资源域为“RACH-R1”,即确定用于该终端向网络设备发送随机接入请求的目标RACH资源域为“RACH-R1”。
需要说明的是,对于终端的目标终端类型,网络设备可能并未针对该目标终端类型配置RACH资源域。换而言之,终端可能无法从来自网络设备的信令所包括的配置信息中,确定出与该目标终端类型相对应的RACH资源域。此时,终端可以从配置信息中确定网络设备为其它终端类型配置的RACH资源域,并从该RACH资源域中确定出用于该终端向网络设备发送随机接入请求的目标RACH资源。
示例性的,对于由一种随机接入类型“4-step RACH”和两种带宽类型“NR_legacy”、“NR_REDCAP type2”确定的两种终端类型“T9”和“T5”,如果终端未能从来自网络设备的信令所包括的配置信息中,确定出与“T5”相对应的RACH资源域,但是该配置信息中包括与“T9”相对应的RACH资源域,该终端即可将与“T9”相对应的RACH资源域,确定为用于该终端向网络设备发送随机接入请求的目标RACH资源。
步骤405,终端从其接收的信令所包括的配置信息中,确定出目标终端类型对应的目标UL initial BWP。
示例性的,该终端的带宽类型为NR_REDCAP type1,可以接收到来自网络设备的信令1,该终端可以从信令1所包括的配置信息中,确定出目标终端类型“T1”对应的UL initial BWP为“第一UL initial BWP”。
步骤406,终端从目标RACH资源域中确定出用于该终端向网络设备发送随机接入请求的目标RACH资源。
步骤407,终端在目标终端类型对应的目标UL initial BWP上,根据目标RACH资源向网络设备发送随机接入请求。
其中,所述随机接入请求通过Message1或者MessageA发送。
可以理解,随机接入请求依赖于该终端支持的随机接入类型。示例性的,如果该终端支持的随机接入类型为“4-step RACH”或“4-step RACH&EDT”,则随机接入请求通过 Message1发送;如果该终端支持的随机接入类型为“2-step RACH”,则随机接入请求通过未发送业务数据的Message A发送;如果该终端支持的随机接入类型为“2-step RACH&EDT”,则随机接入请求通过发送了业务数据的Message A发送。
需要说明的是,Message1和Message A在相应的UL initial BWP上传输。现有通信协议限定DL initial BWP的最大带宽为20MHz,UL initial BWP可能大于20MHz。但是终端的带宽能力可能大于20MHz,也可能小于20MHz,网络设备可能针对Message3/Message A配置至少两个PUSCH资源域。
为了确保网络设备在后续过程中对Message1/Message A进行响应时,调度Message2、Message3、Messag4、Message B的传输带宽小于该终端的带宽能力,在一种可能的实施方式中,终端向网络设备发送的随机接入请求中,可以包括该终端的带宽类型/终端类型/带宽能力。在一些实施例中,终端向网络设备发送的随机接入请求中,还可以包括该终端支持的随机接入类型。
其中,在随机接入请求通过Message A发送的情况下,终端的带宽类型/终端类型/带宽能力可以作为PUSCH承载的数据向网络设备上报。
在一个较为具体的示例中,在初始接入场景下,终端向网络设备发送Message A的过程中,终端可以在PUSCH上向网络设备发送RRC信令(比如RRCSetupRequest信令),该RRC信令中包括新增的信息要素(information element,IE),IE中包括终端的带宽类型/终端类型/带宽能力。在另一个较为具体的示例中,EDT场景下,终端向网络设备发送Message A的过程中,终端可以在PUSCH上向网络设备发送MACCE信令,MACCE信令中包括终端的带宽类型/终端类型/带宽能力。
步骤408,网络设备检测来自终端的随机接入请求所对应的Message1或Message A。
如前所述,单个网络设备可能支持“4-step RACH”/“4-step RACH&EDT”的随机接入过程,并且支持“2-step RACH”/“2-step RACH&EDT”的随机接入过程。
其中,对于“4-step RACH”和“4-step RACH&EDT”两种随机接入类型,终端通过Message1发送随机接入请求,网络设备可以对用于发送Message1的RACH资源进行检测以得到Message1,获得用于发送Message1的PRACH上报的终端的带宽类型/带宽能力/终端类型,完成对Message1的检测。
其中,对于“2-step RACH”和“2-step RACH&EDT”两种随机接入类型,终端通过Message A发送随机接入请求,网络设备需要检测Message A的PRACH和MessageA的PUSCH,从而完成对Message A的检测。
如前所述,对于“2-step RACH”和“2-step RACH&EDT”两种随机接入类型,Message A中承载的数据大小不同。如果针对“2-step RACH”和“2-step RACH&EDT”两种随机接入类型配置两个不同的RACH资源域,不同的RACH资源域关联不同的PUSCH资源域,网络设备接收来自终端的Message A时,网络设备可以首先确定用于发送Message A的目标RACH资源所属的目标RACH资源域,然后较为快速的确定出Message A对应的目标RACH资源域所关联的PUSCH资源域。如果网络设备针对“2-step RACH”和“2-step RACH&EDT”两种随机接入类型配置相同的RACH资源域,该RACH资源域关联两个不同的PUSCH资源域。网络设备接收来自终端的Message A时,可以在确定出用于发送Message1 的RACH资源所属的目标RACH资源域之后,对该目标RACH资源域对应的两个PUSCH资源域进行盲检。
为了指示当前接收的随机接入请求对应的随机接入类型是“4-step RACH”/“4-step RACH&EDT”,还是“2-step RACH”/“2-step RACH&EDT”,在一种可能的实施方式中,网络设备可以针对“4-step RACH”/“4-step RACH&EDT”和“2-step RACH”/“2-step RACH&EDT”,配置不同的RACH资源域,以便网络设备根据其检测的PRACH,确定其接收的随机接入请求所对应的随机接入类型,并实施后续相应的随机接入流程。有利于降低网络设备检测PUSCH的复杂度。
在一种可能的实施方式中,网络设备也可以针对“4-step RACH”/“4-step RACH&EDT”和“2-step RACH”/“2-step RACH&EDT”配置相同的PRACH资源,有利于降低PRACH资源开销。
在一种可能的实施方式中,终端还可以在其完成与网络设备进行随机过程,进入RRC连接态之后,重新上报其自身的带宽能力/带宽类型/终端类型。
步骤409,网络设备根据其检测的Message1或Message A,响应来自网络设备的随机接入请求。
这里,即对来自终端设备的Message1或Message A进行响应。
在一种可能的实施方式中,网络设备可以根据目标RACH资源域对应的PUSCH资源域,获得Message A中承载于PUSCH上的终端的带宽类型/带宽能力/终端类型,或者可以根据MessageA的PRACH获得终端上报的带宽类型/带宽能力/终端类型,根据该终端的带宽类型/带宽能力/终端类型调度Message B,完成对来自终端的随机接入请求的响应。
在一种可能的实施方式中,网络设备可以获得用于发送Message1的PRACH上报的终端的带宽类型/带宽能力/终端类型,根据该终端的带宽类型/带宽能力/终端类型调度Message 2和Message 3,完成对来自终端的随机接入请求的响应。
针对同一个随机接入时机(RACH occasion,RO)的随机接入响应(random access repsonse,RAR),网络设备可以通过随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰循环冗余校验码(cyclical redundancy check,CRC)的下行控制信息(downlink control information,DCI)调度PDSCH,该PDSCH中承载针对该RO的全部或者部分随机接入请求的RAR。应理解,RO是指发送和接收RACH preamble的时频资源。在同一个RO上,网络设备可配置多个相互正交的前导码preambles,多个终端设备可以在同一个RO上采用不同或相同的preamble进行随机接入。如果网络设备在RO资源上检测到终端设备发送的preambles,则向终端设备发送RAR,即Messge2或者Messge B。其中,同一个RO仅和一个RA-RNTI相关联,不同的RO和不同的RA-RNTI相关联。
在一种可能的实施方式中,网络设备给不同终端类型的终端配置相同的RACH时域资源和频域资源,但配置不同频域资源即前导码preambles,即相同的RO上的不同preamble,其中所述终端类型包括随机接入类型和/终端带宽类型。网络设备可以针对以上所述不同类型终端的RAR进行分组传输,即通过多个不同的PDSCH传输不同类型终端的RAR,其中不同的PDSCH可以不同RA-RNTI加扰CRC的DCI进行调度,RA-RNTI可通过RACH的时间资源、频率资源、载波资源和终端类型标识进行计算。一种可能的RA-RNTI计算 的方式如下:RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+UE_type_id。其中,s_id为RO的第一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号索引,t_id为RO在一个无线数据帧内的第一个时隙索引,f_id为RO在频域的索引,ul_carrier_id为发送preamble的上行载波索引,UE_type_id为发送preamble的终端的终端类型标识。需要说明的是,本发明方案中所述发送PRACH或者preamble的过程可以在不同的上行载波上进行,例如NR上行载波和NR增补上行(SupplementUplink,SUL)载波,对于在不同上行载波上发送preamble的终端,其相应的RAR的RA-RNTI采用不同的上行载波索引标识进行计算。
与前述方法实施例基于相同的构思,如图6所示,本申请实施例中还提供了一种通信装置600。该通信装置600可以是网络设备,也可以是部署在网络设备中的模块、芯片或片上系统。该通信装置600包括:处理单元601,用于确定M个RACH资源域;其中,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。收发单元602,用于向至少一个终端发送RACH配置信息;其中,RACH配置信息用于指示M个RACH资源域,M个RACH资源域用于至少一个终端向网络设备发送随机接入请求,至少一个终端中的任意一个终端的带宽类型,属于用于确定N种终端类型的带宽类型。
在一种可能的实施方式中,该处理单元601,用于针对M个RACH资源域中的其中一个RACH资源域,确定该RACH资源域对应的至少一种终端类型,并确定采用该至少一种终端类型进行随机接入过程的至少一个终端设备;收发单元602,用于向该至少一个终端设备发送配置信息。网络设备考虑终端的带宽类型以及随机接入的类型分配RACH资源,使得随机接入过程中的资源配置更加灵活,资源利用率提升。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还用于指示第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还用于指示第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,RACH配置信息用于指示第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示N种终端类型对应至少一个UL initial BWP。
在一种可能的实施方式中,该收发单元602,具体用于在至少一个DL initial BWP上,向至少一个终端发送RACH配置信息。
在一种可能的实施方式中,该收发单元602,具体用于向至少一个终端发送信令,该信令中包括RACH配置信息;其中,该信令包括以下各种信令的至少一种:MACCE信令、DCI信令、RRC信令和SIB1信令。
在一种可能的实施方式中,该收发单元602,还用于从至少一个终端中的一个当前终端接收随机接入请求。该处理单元601,还用于确定该随机接入请求对应的目标RACH资源域;根据该目标RACH资源域对应的PUSCH资源域,对随机接入请求进行响应。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,该随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
与前述方法实施例基于相同的构思,如图7所示,本申请实施例中还提供了一种通信装置700。该通信装置700可以是终端,也可以是部署在终端内的模块、芯片或片上系统。该通信装置700包括:收发单元701,用于接收来自网络设备的RACH配置信息;其中, 该RACH配置信息指示了M个RACH资源域,M个RACH资源域对应N种终端类型,N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。处理单元702,用于根据该配置信息确定用于当前终端向网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定N种终端类型的带宽类型。
在一种可能的实施方式中,N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;至少一个终端中的任意一个终端的带宽类型,属于至少一种带宽类型中的一种。
在一种可能的实施方式中,RACH配置信息还指示了第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还指示了第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1。
在一种可能的实施方式中,RACH配置信息还指示了第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,X种RACH配置包括以下各种RACH配置中的至少两种:
第一RACH配置,第一RACH配置为M个RACH资源域对应N种终端类型,M小于N,并且M等于1;
第二RACH配置,第二RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M大于1;
第三RACH配置,第三RACH配置为M个RACH资源域对应N种终端类型,M小于N,M大于1;
第四RACH配置,第四RACH配置为M个RACH资源域对应N种终端类型,M等于N,并且M等于1。
在一种可能的实施方式中,该收发单元701,具体用于接收来自网络设备的信令,该信令中包括配置信息;其中,该信令包括以下各种信令的至少一种:MACCE信令、DCI信令、SIB1信令和RRC信令。
在一种可能的实施方式中,该处理单元702,具体用于根据RACH配置信息以及当前终端的目标终端类型,确定当前终端向网络设备发送随机接入请求的目标RACH资源域,其中,当前终端的目标终端类型是根据当前终端支持的随机接入类型和当前终端的带宽类型确定。
在一种可能的实施方式中,RACH配置信息还指示了N种终端类型对应至少一种UL initial BWP。该处理单元702,还用于根据配置信息,确定与目标终端类型对应的目标UL initial BWP。该收发单元701,还用于在目标UL initial BWP上,根据目标RACH资源域,向网络设备发送随机接入请求。
在一种可能的实施方式中,随机接入请求包括当前终端的带宽类型,随机接入请求通过Message1或者Message A发送。
在一种可能的实施方式中,当前终端的带宽类型承载于Message1的PRACH上;或者,当前终端的带宽类型承载于Message A的PRACH或者PUSCH上。
在一种可能的实施方式中,至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
N种终端类型包括如下各种终端类型中的至少一种:
根据NR_legacy和4-step RACH确定的终端类型;
根据NR_legacy和4-step RACH&EDT确定的终端类型;
根据NR_legacy和2-step RACH确定的终端类型;
根据NR_legacy和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和4-step RACH确定的终端类型;
根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type1和2-step RACH确定的终端类型;
根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和4-step RACH确定的终端类型;
根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
根据NR_REDCAP type2和2-step RACH确定的终端类型;
根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
需要说明的是,当通信装置600为网络设备,通信装置700为终端时,收发单元602、收发单元701可以为射频电路。当通信装置600包括存储器时,该存储器用于存储计算机指令,该处理单元601与存储器通信连接,处理单元601执行存储器存储的计算机指令,使通信装置600执行本申请任意一个实施例中提供的由网络设备执行的方法。当通信装置700包括存储器时,该存储器用于存储计算机指令,该处理单元702与存储器通信连接,处理单元702执行存储器存储的计算机指令,使通信装置700执行本申请任意一个实施例中提供的由终端执行的方法。其中,处理单元601、处理单元702可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application specific Integrated circuit,ASIC)。
需要说明的是,当通信装置600为部署在网络设备中的芯片,通信装置700为部署在终端中的芯片时,收发单元602、收发单元701可以是输入/输出接口、管脚或电路等。当通信装置600包括存储器时,该存储器用于存储计算机指令,该处理单元601与存储器通信连接,处理单元601执行存储器存储的计算机指令,使得该网络设备中的芯片执行本申请任意一个实施例中提供的由网络设备执行的方法。当通信装置700包括存储器时,该存储器用于存储计算机指令,该处理单元702与存储器通信连接,处理单元702执行存储器存储的计算机指令,使得该终端中的芯片执行本申请任意一个实施例中提供的由终端执行的方法。可选地,存储器为芯片内的存储单元,如寄存器、缓存等。存储器还可以是网络设备/终端内的位于芯片外部的存储单元,比如只读存储器(read only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)等。
相应的,本申请实施例中还提供了一种通信系统,包括本申请任意一个实施例中提供的通信装置600,以及本申请任意一个实施例中提供的通信装置700。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述通信装置600、通信装置700,或者部署了上述通信装置600的网络设备、部署了上述通信装置700的终端的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
与前述方法实施例基于相同的构思,如图8所示,本申请实施例中还提供了一种通信装置800。应理解,通信装置800可以执行图3或图4所示的方法中由网络设备执行的各个步骤,为了避免重复,此处不再详述。通信装置800包括:
存储器801,用于存储程序;
通信接口802,用于和其他设备进行通信;
处理器803,用于执行存储器801中的程序,当所述程序被执行时,所述处理器803用于确定M个RACH资源域;其中,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。以及用于通过所述通信接口802向至少一个终端发送RACH配置信息;其中,所述RACH配置信息用于指示所述M个RACH资源域,所述M个RACH资源域用于所述至少一个终端向所述网络设备发送随机接入请求,所述至少一个终端中的任意一个终端的带宽类型,属于用于确定所述N种终端类型的带宽类型。
应理解,图8所示的通信装置800可以是芯片或电路。例如可设置在网络设备内的芯片或电路。上述通信接口802也可以是收发器。收发器包括接收器和发送器。进一步地,该通信装置800还可以包括总线系统。
其中,处理器803、存储器801、接收器和发送器通过总线系统相连,处理器803用于执行该存储器801存储的指令,以控制接收器接收信号,并控制发送器发送信号,完成本申请任意一个实施例中提供的用于随机接入的方法中由网络设备执行的步骤。其中,接收器和发送器可以为相同或不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器801可以集成在所述处理器803中,也可以与所述处理器803分开设置。
作为一种实现方式,接收器和发送器的功能可以考虑通过收发电路或者收发专用芯片实现。处理器803可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
与前述方法实施例基于相同的构思,如图9所示,本申请实施例中还提供了一种通信装置900。应理解,通信装置900可以执行图3或图4所示的方法中由终端执行的各个步骤,为了避免重复,此处不再详述。通信装置900包括:存储器901,用于存储程序;
通信接口902,用于和其他设备进行通信;
处理器903,用于执行存储器901中的程序,当所述程序被执行时,所述处理器903用于通过所述通信接口902接收来自网络设备的RACH配置信息;其中,所述RACH配置信息指示了M个RACH资源域,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数。以及,用于根据所述配置信息,确定用于当前终端向所述网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定所述N种终端类型的带宽类型。
应理解,图9所示的通信装置900可以是芯片或电路。例如可设置在终端内的芯片或电路。上述通信接口902也可以是收发器。收发器包括接收器和发送器。进一步地,该通信装置900还可以包括总线系统。
其中,处理器903、存储器901、接收器和发送器通过总线系统相连,处理器903用于执行该存储器901存储的指令,以控制接收器接收信号,并控制发送器发送信号,完成本申请任意一个实施例中提供的用于随机接入的方法中由终端的步骤。其中,接收器和发送器可以为相同或不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器901可以集成在所述处理器903中,也可以与所述处理器903分开设置。
作为一种实现方式,接收器和发送器的功能可以考虑通过收发电路或者收发专用芯片实现。处理器903可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请提供的不同实施例之间可以相互结合。在本申请所提供的实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁盘或者光盘等各种可以存储程序代码的介质。
以上仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。在本申请的各个实施例中,如果没有特殊 说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号是为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
最后需要说明的是,以上实施例仅用以说明本申请的技术方案,而未对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,依然可以对前述各个实施例中所提供的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换,并不使相应技术方案的本质脱离本申请各个实施例中所提供技术方案的精神和范围。

Claims (59)

  1. 一种用于随机接入的方法,其特征在于,包括:
    确定M个随机接入信道RACH资源域;其中,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数;
    向至少一个终端发送RACH配置信息;其中,所述RACH配置信息用于指示所述M个RACH资源域,所述M个RACH资源域用于所述至少一个终端向所述网络设备发送随机接入请求,所述至少一个终端中的任意一个终端的带宽类型,属于用于确定所述N种终端类型的带宽类型。
  2. 根据权利要求1所述的方法,其特征在于,所述N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;所述至少一个终端中的任意一个终端的带宽类型,属于所述至少一种带宽类型中的一种。
  3. 根据权利要求1所述的方法,其特征在于,所述RACH配置信息还用于指示第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1。
  4. 根据权利要求1所述的方法,其特征在于,所述RACH配置信息还用于指示第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1。
  5. 根据权利要求1所述的方法,其特征在于,所述RACH配置信息还用于指示第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1。
  6. 根据权利要求1所述的方法,其特征在于,所述RACH配置信息还用于指示第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  7. 根据权要求1所述的方法,其特征在于,所述RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,所述X种RACH配置包括以下各种RACH配置中的至少两种:
    第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1;
    第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1;
    第三RACH配置,所述RACH配置信息用于指示第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1;
    第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  8. 根据权利要求1所述的方法,其特征在于,所述RACH配置信息还用于指示所述N种终端类型对应至少一个上行初始部分带宽UL initial BWP。
  9. 根据权利要求1所述的方法,其特征在于,所述向至少一个终端发送RACH 配置信息,包括:在至少一个下行初始部分带宽DL initial BWP上,向所述至少一个终端发送RACH配置信息。
  10. 根据权利要求1所述的方法,其特征在于,所述向至少一个终端发送RACH配置信息,包括:向至少一个终端发送信令,所述信令中包括所述RACH配置信息;其中,所述信令包括以下各种信令的至少一种:媒体访问控制控制元素MACCE信令、下行链路控制信息DCI信令、系统信息块类型一SIB1信令和无线资源控制RRC信令。
  11. 根据权利要求1至10中任一所述的方法,其特征在于,所述方法还包括:
    从所述至少一个终端中的一个当前终端接收随机接入请求;
    确定所述随机接入请求对应的目标RACH资源域;
    根据所述目标RACH资源域对应的物理上行链路共享信道PUSCH资源域,对所述随机接入请求进行响应。
  12. 根据权利要求11所述的方法,其特征在于,所述随机接入请求包括当前终端的带宽类型,所述随机接入请求通过Message1或者MessageA发送。
  13. 根据权利要求1至10中任一所述的方法,其特征在于,
    所述至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
    所述至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
    所述N种终端类型包括如下各种终端类型中的至少一种:
    根据NR_legacy和4-step RACH确定的终端类型;
    根据NR_legacy和4-step RACH&EDT确定的终端类型;
    根据NR_legacy和2-step RACH确定的终端类型;
    根据NR_legacy和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和4-step RACH确定的终端类型;
    根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和2-step RACH确定的终端类型;
    根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和4-step RACH确定的终端类型;
    根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和2-step RACH确定的终端类型;
    根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
  14. 一种用于随机接入的方法,其特征在于,包括:
    接收来自网络设备的随机接入信道RACH配置信息;其中,所述RACH配置信息指示了M个RACH资源域,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数;
    根据所述配置信息,确定用于当前终端向所述网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定所述N种终端类型的带宽类型。
  15. 根据权利要求14所述的方法,其特征在于,所述N种终端类型中的任意一 种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;所述至少一个终端中的任意一个终端的带宽类型,属于所述至少一种带宽类型中的一种。
  16. 根据权利要求14所述的方法,其特征在于,所述RACH配置信息还指示了第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1。
  17. 根据权利要求14所述的方法,其特征在于,所述RACH配置信息还指示了第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1。
  18. 根据权利要求14所述的方法,其特征在于,所述RACH配置信息还指示了第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1。
  19. 根据权利要求14所述的方法,其特征在于,所述RACH配置信息还指示了第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  20. 根据权利要求14所述的方法,其特征在于,所述RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,所述X种RACH配置包括以下各种RACH配置中的至少两种:
    第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1;
    第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1;
    第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1;
    第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  21. 根据权利要求14所述的方法,其特征在于,所述接收来自网络设备的RACH配置信息,包括:接收来自网络设备的信令,所述信令中包括所述配置信息;其中,所述信令包括以下各种信令的至少一种:媒体访问控制控制元素MACCE信令、下行链路控制信息DCI信令、系统信息块类型一SIB1信令和无线资源控制RRC信令。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,
    所述根据所述RACH配置信息,确定用于当前终端向所述网络设备发送随机接入请求的目标RACH资源域,包括:
    根据所述RACH配置信息以及当前终端的目标终端类型,确定当前终端向所述网络设备发送随机接入请求的目标RACH资源域,其中,当前终端的目标终端类型是根据当前终端支持的随机接入类型和当前终端的带宽类型确定。
  23. 根据权利要求22所述的方法,其特征在于,
    所述RACH配置信息还指示了所述N种终端类型对应至少一种上行初始部分带宽UL initial BWP;
    所述方法还包括:
    根据所述配置信息,确定与所述目标终端类型对应的目标UL initial BWP;
    在所述目标UL initial BWP上,根据所述目标RACH资源域,向所述网络设备发送随机接入请求。
  24. 根据权利要求23所述的方法,其特征在于,
    所述随机接入请求包括当前终端的带宽类型,所述随机接入请求通过Message1或者Message A发送。
  25. 根据权利要求14至21中任一项所述的方法,其特征在于,
    所述至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
    所述至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
    所述N种终端类型包括如下各种终端类型中的至少一种:
    根据NR_legacy和4-step RACH确定的终端类型;
    根据NR_legacy和4-step RACH&EDT确定的终端类型;
    根据NR_legacy和2-step RACH确定的终端类型;
    根据NR_legacy和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和4-step RACH确定的终端类型;
    根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和2-step RACH确定的终端类型;
    根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和4-step RACH确定的终端类型;
    根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和2-step RACH确定的终端类型;
    根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于确定M个随机接入信道RACH资源域;其中,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数;
    收发单元,用于向至少一个终端发送RACH配置信息;其中,所述RACH配置信息用于指示所述M个RACH资源域,所述M个RACH资源域用于所述至少一个终端向所述网络设备发送随机接入请求,所述至少一个终端中的任意一个终端的带宽类型,属于用于确定所述N种终端类型的带宽类型。
  27. 根据权利要求26所述的通信装置,其特征在于,所述N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;所述至少一个终端中的任意一个终端的带宽类型,属于所述至少一种带宽类型中的一种。
  28. 根据权利要求26所述的装置,其特征在于,所述RACH配置信息还用于指示第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终 端类型,M小于N,并且M等于1。
  29. 根据权利要求26所述的装置,其特征在于,所述RACH配置信息还用于指示第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1。
  30. 根据权利要求26所述的装置,其特征在于,所述RACH配置信息还用于指示第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1。
  31. 根据权利要求26所述的装置,其特征在于,所述RACH配置信息还用于指示第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  32. 根据权要求26所述的装置,其特征在于,所述RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,所述X种RACH配置包括以下各种RACH配置中的至少两种:
    第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1;
    第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1;
    第三RACH配置,所述RACH配置信息用于指示第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1;
    第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  33. 根据权利要求26所述的装置,其特征在于,所述RACH配置信息还用于指示所述N种终端类型对应至少一个上行初始部分带宽UL initial BWP。
  34. 根据权利要求26所述的装置,其特征在于,所述收发单元,用于在至少一个下行初始部分带宽DL initial BWP上,向所述至少一个终端发送RACH配置信息。
  35. 根据权利要求26所述的装置,其特征在于,所述收发单元,用于向至少一个终端发送信令,所述信令中包括所述RACH配置信息;其中,所述信令包括以下各种信令的至少一种:媒体访问控制控制元素MACCE信令、下行链路控制信息DCI信令、系统信息块类型一SIB1信令和无线资源控制RRC信令。
  36. 根据权利要求26至35中任一所述的装置,其特征在于,
    所述收发单元,还用于从所述至少一个终端中的一个当前终端接收随机接入请求;
    所述处理单元,还用于确定所述随机接入请求对应的目标RACH资源域;根据所述目标RACH资源域对应的物理上行链路共享信道PUSCH资源域,对所述随机接入请求进行响应。
  37. 根据权利要求36所述的装置,其特征在于,所述随机接入请求包括当前终端的带宽类型,所述随机接入请求通过Message1或者MessageA发送。
  38. 根据权利要求26至35中任一所述的装置,其特征在于,
    所述至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
    所述至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
    所述N种终端类型包括如下各种终端类型中的至少一种:
    根据NR_legacy和4-step RACH确定的终端类型;
    根据NR_legacy和4-step RACH&EDT确定的终端类型;
    根据NR_legacy和2-step RACH确定的终端类型;
    根据NR_legacy和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和4-step RACH确定的终端类型;
    根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和2-step RACH确定的终端类型;
    根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和4-step RACH确定的终端类型;
    根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和2-step RACH确定的终端类型;
    根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
  39. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的随机接入信道RACH配置信息;其中,所述RACH配置信息指示了M个RACH资源域,所述M个RACH资源域对应N种终端类型,所述N种终端类型是根据终端的带宽类型和/或随机接入类型确定的,M和N为正整数;
    处理单元,用于根据所述配置信息,确定用于当前终端向所述网络设备发送随机接入请求的目标RACH资源域,当前终端的带宽类型属于用于确定所述N种终端类型的带宽类型。
  40. 根据权利要求39所述的装置,其特征在于,所述N种终端类型中的任意一种终端类型,是根据至少一种带宽类型中的一种和/或至少一种随机接入类型中的一种确定的;所述至少一个终端中的任意一个终端的带宽类型,属于所述至少一种带宽类型中的一种。
  41. 根据权利要求39所述的装置,其特征在于,所述RACH配置信息还指示了第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1。
  42. 根据权利要求39所述的装置,其特征在于,所述RACH配置信息还指示了第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1。
  43. 根据权利要求39所述的装置,其特征在于,所述RACH配置信息还指示了第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1。
  44. 根据权利要求39所述的装置,其特征在于,所述RACH配置信息还指示了第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  45. 根据权利要求39所述的装置,其特征在于,所述RACH配置信息还用于指示X种RACH配置中的一种,X为正整数,所述X种RACH配置包括以下各种RACH配置中的至少两种:
    第一RACH配置,所述第一RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,并且M等于1;
    第二RACH配置,所述第二RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M大于1;
    第三RACH配置,所述第三RACH配置为所述M个RACH资源域对应所述N种终端类型,M小于N,M大于1;
    第四RACH配置,所述第四RACH配置为所述M个RACH资源域对应所述N种终端类型,M等于N,并且M等于1。
  46. 根据权利要求39所述的装置,其特征在于,所述收发单元,还用于接收来自网络设备的信令,所述信令中包括所述配置信息;其中,所述信令包括以下各种信令的至少一种:媒体访问控制控制元素MACCE信令、下行链路控制信息DCI信令、系统信息块类型一SIB1信令和无线资源控制RRC信令。
  47. 根据权利要求39至46中任一项所述的装置,其特征在于,所述处理单元,用于根据所述RACH配置信息以及当前终端的目标终端类型,确定当前终端向所述网络设备发送随机接入请求的目标RACH资源域,其中,当前终端的目标终端类型是根据当前终端支持的随机接入类型和当前终端的带宽类型确定。
  48. 根据权利要求47所述的装置,其特征在于,所述RACH配置信息还指示了所述N种终端类型对应至少一种上行初始部分带宽UL initial BWP;
    所述处理单元,还用于根据所述配置信息,确定与所述目标终端类型对应的目标UL initial BWP;
    所述收发单元,还用于在所述目标UL initial BWP上,根据所述目标RACH资源域,向所述网络设备发送随机接入请求。
  49. 根据权利要求48所述的装置,其特征在于,所述随机接入请求包括当前终端的带宽类型,所述随机接入请求通过Message1或者Message A发送。
  50. 根据权利要求39至46中任一项所述的装置,其特征在于,
    所述至少一种带宽类型包括以下带宽类型中的至少一种:NR_legacy、NR_REDCAP type1和NR_REDCAP type2;
    所述至少一种随机接入类型包括以下随机接入类型中的至少一种:4-step RACH、4-step RACH&EDT、2-step RACH和2-step RACH&EDT中的至少一种;
    所述N种终端类型包括如下各种终端类型中的至少一种:
    根据NR_legacy和4-step RACH确定的终端类型;
    根据NR_legacy和4-step RACH&EDT确定的终端类型;
    根据NR_legacy和2-step RACH确定的终端类型;
    根据NR_legacy和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和4-step RACH确定的终端类型;
    根据NR_REDCAP type1和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type1和2-step RACH确定的终端类型;
    根据NR_REDCAP type1和2-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和4-step RACH确定的终端类型;
    根据NR_REDCAP type2和4-step RACH&EDT确定的终端类型;
    根据NR_REDCAP type2和2-step RACH确定的终端类型;
    根据NR_REDCAP type2和2-step RACH&EDT确定的终端类型。
  51. 一种通信装置,其特征在于,用于实现权利要求1至13中任一项所述的方法。
  52. 一种通信装置,其特征在于,用于实现权利要求14至25中任一项所述的方法。
  53. 一种通信装置,包括存储器和处理器,所述存储器中存储有指令/代码,所述处理器执行所述存储器中存储的指令/代码时,实现权利要求1至13中任一项所述的方法。
  54. 一种通信装置,包括存储器和处理器,所述存储器中存储有指令/代码,所述处理器执行所述存储器中存储的指令/代码时,实现权利要求14至25中任一项所述的方法。
  55. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信设备执行权利要求1至13中任一项所述的方法,或者执行权利要求14至25中任一项所述的方法。
  56. 一种计算机可读存储介质,用于存储指令/代码,当所述指令/代码被电子设备的处理器执行时,使得所述电子设备实现权利要求1至13中任一项所述的方法。
  57. 一种计算机可读存储介质,用于存储指令/代码,当所述指令/代码被电子设备的处理器执行时,使得所述电子设备实现权利要求14至25中任一项所述的方法。
  58. 一种包含指令/代码的计算机程序产品,当所述计算机程序产品在电子设备上运行时,所述电子设备实现权利要求1至13中任一项所述的方法或者权利要求14至25中任一项所述的方法。
  59. 一种通信系统,包括权利要求53中所述的通信装置以及权利要求54中所述的通信装置。
PCT/CN2021/084845 2020-04-03 2021-04-01 用于随机接入的方法、装置及系统 WO2021197404A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227037987A KR20220162763A (ko) 2020-04-03 2021-04-01 랜덤 액세스 방법, 장치, 및 시스템
JP2022560382A JP7446476B2 (ja) 2020-04-03 2021-04-01 ランダムアクセス方法、装置、およびシステム
EP21781790.7A EP4132195A4 (en) 2020-04-03 2021-04-01 METHOD, APPARATUS AND SYSTEM FOR DIRECT ACCESS
US17/957,818 US20230034674A1 (en) 2020-04-03 2022-09-30 Random Access Method, Apparatus, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010260718.X 2020-04-03
CN202010260718.XA CN113498213A (zh) 2020-04-03 2020-04-03 用于随机接入的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/957,818 Continuation US20230034674A1 (en) 2020-04-03 2022-09-30 Random Access Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2021197404A1 true WO2021197404A1 (zh) 2021-10-07

Family

ID=77929662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084845 WO2021197404A1 (zh) 2020-04-03 2021-04-01 用于随机接入的方法、装置及系统

Country Status (6)

Country Link
US (1) US20230034674A1 (zh)
EP (1) EP4132195A4 (zh)
JP (1) JP7446476B2 (zh)
KR (1) KR20220162763A (zh)
CN (2) CN113498213A (zh)
WO (1) WO2021197404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024035165A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 랜덤 억세스 절차를 수행하기 위한 장치 및 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174745A1 (en) * 2020-12-02 2022-06-02 Electronics And Telecommunications Research Institute Method and apparatus for coverage enhancement of terminal in communication system
WO2023206251A1 (zh) * 2022-04-28 2023-11-02 北京小米移动软件有限公司 随机接入资源配置方法、随机接入方法、装置及存储介质
CN117676902A (zh) * 2022-08-09 2024-03-08 华为技术有限公司 信息处理的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037530A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种随机接入方法及系统
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端
US20190215820A1 (en) * 2018-01-09 2019-07-11 Comcast Cable Communications, Llc Downlink Partial Beam Failure Recovery
CN110225598A (zh) * 2018-03-01 2019-09-10 中兴通讯股份有限公司 随机接入方法、装置及设备、计算机可读存储介质
CN111567126A (zh) * 2020-04-08 2020-08-21 北京小米移动软件有限公司 配置信息传输方法及装置、通信设备及存储介质
CN111867084A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种prach资源配置和指示配置的方法、装置及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2487907B (en) * 2011-02-04 2015-08-26 Sca Ipla Holdings Inc Telecommunications method and system
GB2530566A (en) * 2014-09-26 2016-03-30 Nec Corp Communication system
CN107889244B (zh) * 2016-09-30 2020-06-02 华为技术有限公司 通信方法、装置及计算机可读存储介质
US11089569B2 (en) * 2016-10-21 2021-08-10 Ntt Docomo, Inc. User equipment and camping-on method
CN109392026B (zh) * 2017-08-04 2022-02-25 华为技术有限公司 一种信息的处理方法和终端设备
CN108012329B (zh) * 2017-09-27 2023-11-10 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
US10728885B2 (en) * 2017-10-25 2020-07-28 Qualcomm Incorporated Techniques and apparatuses for configuring an uplink bandwidth part for a random access channel (RACH) procedure
CN109803443B (zh) * 2017-11-17 2023-02-28 华为技术有限公司 用于随机接入的方法、终端设备和网络设备
WO2020022401A1 (ja) * 2018-07-26 2020-01-30 京セラ株式会社 無線端末及び方法
CN110784934B (zh) * 2018-07-31 2022-02-01 维沃移动通信有限公司 随机接入资源的配置方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037530A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种随机接入方法及系统
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端
US20190215820A1 (en) * 2018-01-09 2019-07-11 Comcast Cable Communications, Llc Downlink Partial Beam Failure Recovery
CN110225598A (zh) * 2018-03-01 2019-09-10 中兴通讯股份有限公司 随机接入方法、装置及设备、计算机可读存储介质
CN111867084A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种prach资源配置和指示配置的方法、装置及设备
CN111567126A (zh) * 2020-04-08 2020-08-21 北京小米移动软件有限公司 配置信息传输方法及装置、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4132195A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024035165A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 랜덤 억세스 절차를 수행하기 위한 장치 및 방법

Also Published As

Publication number Publication date
CN113498213A (zh) 2021-10-12
JP7446476B2 (ja) 2024-03-08
CN116321507B (zh) 2023-11-28
JP2023520545A (ja) 2023-05-17
KR20220162763A (ko) 2022-12-08
US20230034674A1 (en) 2023-02-02
EP4132195A1 (en) 2023-02-08
CN116321507A (zh) 2023-06-23
EP4132195A4 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2021197404A1 (zh) 用于随机接入的方法、装置及系统
WO2019184956A1 (zh) 一种随机接入的方法及装置
US20210314912A1 (en) Communication method and apparatus
WO2020143617A1 (zh) 一种下行控制信道的传输方法、终端和网络侧设备
EP3661298B1 (en) Wireless communication method and apparatus
US20230309061A1 (en) Wireless communication method, terminal, and network device
WO2019158039A1 (zh) 通信方法和通信装置
EP4383773A1 (en) Pdcch monitoring method, and related device and readable storage medium
US11317395B2 (en) Grant-free resource configuration method and apparatus
EP3672341A1 (en) Wireless communication method and device
US20240155580A1 (en) Method for obtaining initial bandwidth part configuration, terminal, and network-side device
JP2024503370A (ja) ランダムアクセス方法及び装置
CN112136350B (zh) 资源配置方法及装置
US20230042274A1 (en) Enhancements for Reduced Capability New Radio Devices
EP4106475A1 (en) Random access response method and apparatus
EP4387149A1 (en) Paging method and device
EP4154604B1 (en) Enhancements for reduced capability new radio devices
WO2022267871A1 (zh) 一种随机接入方法及装置
WO2022237640A1 (zh) 一种资源确定方法及装置
US20230262724A1 (en) Communication Method and Apparatus
WO2023066028A1 (zh) 一种通信方法及装置
EP4304259A1 (en) Communication method and apparatus
US20240172286A1 (en) Method for uplink channel transmission and communication apparatus
WO2021031039A1 (zh) 一种发送随机接入消息的方法和装置
CN115696606A (zh) Prach资源的确定方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560382

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037987

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021781790

Country of ref document: EP

Effective date: 20221103