WO2021184227A1 - 一种随机接入方法及通信装置 - Google Patents

一种随机接入方法及通信装置 Download PDF

Info

Publication number
WO2021184227A1
WO2021184227A1 PCT/CN2020/079793 CN2020079793W WO2021184227A1 WO 2021184227 A1 WO2021184227 A1 WO 2021184227A1 CN 2020079793 W CN2020079793 W CN 2020079793W WO 2021184227 A1 WO2021184227 A1 WO 2021184227A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
value
scs
random access
indication information
Prior art date
Application number
PCT/CN2020/079793
Other languages
English (en)
French (fr)
Inventor
黄煌
颜矛
马千里
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/079793 priority Critical patent/WO2021184227A1/zh
Publication of WO2021184227A1 publication Critical patent/WO2021184227A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of communication technology, and in particular to a random access method and communication device.
  • the terminal device can initiate random access (random access, RA). Specifically, the terminal device may send a random access preamble (preamble) to the network device in the random access channel (RACH) occasion (RO), and receive the random access preamble within a period of time after sending the preamble. Access response (random access response, RAR). This period of time is called the RAR detection window, or RAR detection window.
  • RAR random access radio network temporary identifier
  • RA-RNTI random access radio network temporary identifier
  • RA-RNTI is mainly used to distinguish the RO occupied by the terminal sending the preamble.
  • the RO includes time domain resources and frequency domain resources to ensure that the terminal receives the corresponding RAR on the RO sending the preamble.
  • the subcarrier width of the random access signal generated by the random access preamble may be 1.25KHz, 5KHz, 15KHz, 30KHz, 60KHz, 120KHz, and the data subcarrier width may be 15KHz, 30KHz, 60KHz, 120KHz.
  • the 5th generation (5G) new radio (NR) system of the fifth generation mobile communication technology can be applied to the carrier frequency band greater than or equal to 52.6GHz. Because the carrier frequency is higher, it supports a larger subcarrier spacing. For example, the supported SCS includes 240KHz, 480KHz, 960KHz, 1920KHz, 3840KHz.
  • the same RA-RNTI may correspond to different ROs, that is, the same RAR corresponds to different ROs, which results in one terminal may receive data belonging to another terminal
  • the RAR is the RAR that caused the terminal to receive the error.
  • the present application provides a random access method and communication device, which can ensure that the terminal receives the correct RAR in an application scenario with a large subcarrier interval.
  • a random access method is provided.
  • the method can be executed by a first communication device.
  • the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as a terminal as an example.
  • the method includes:
  • the terminal sends a random access preamble to the network device
  • the terminal receives the random access response message from the network device, and descrambles the random access response message based on the radio network temporary identifier RNTI, where the RNTI is related to the subcarrier interval SCS.
  • RNTI is related to SCS. Different SCS has different RNTI design. It can be ensured that when SCS is greater than or equal to 240KHz, different ROs correspond to different RNTIs, that is, it is ensured that the terminal receives the correct RAR.
  • the RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id represents the index in the time slot of the first orthogonal frequency division multiplexing OFDM symbol where the random access opportunity RO occupied by the random access preamble is sent, and t_id is the first time when the RO is located.
  • the index of the slot in the 10ms frame, f_id is the index of the RO in the frequency domain, ul_carrier_id is the uplink carrier index; the a and the b are coefficients, the a is greater than or equal to 1, and the b is greater than or equal to 1. ;
  • the Z is a constant, and the Z is greater than or equal to zero.
  • RNTI is RA-RNTI, a and b can be equal to 1, and Z can be equal to 0; for example, RNTI is MSGB-RNTI, a and b can be equal to 1, and Z can be equal to 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the design structure of RNTI in the existing technology is conducive to compatibility with existing technologies.
  • the RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where the C and the k are integers, and the value of Y is related to the SCS.
  • the value of Y is related to SCS. For example, when the SCS is equal to 120KHz, the value of Y is 80, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2;
  • the value of Y is 2560
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the RNTI follows the design of the RNTI in the prior art, and when the SCS is greater than or equal to 240KHz, the design structure of the RNTI is not changed as much as possible.
  • the value of a is 1, the value of b is 1, and the value of Z is 0, the above possible values of Y can ensure that different ROs correspond to different RNTIs; or, in a
  • the value of is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2
  • the above possible values of Y can ensure that different ROs correspond to different RNTIs.
  • the values of a, b, and Z listed above are only examples, and the embodiments of the present application do not limit the values of a, b, and Z.
  • the method further includes:
  • the terminal receives configuration information from the network device, where the configuration information is used to indicate the length of the detection window of the random access response message, where:
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2
  • the length of the detection window is less than or equal to 5ms
  • Y is The value is 80;
  • the length of the detection window is less than or equal to 2.5 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 1.25 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.625 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.3125 ms, Y The value is 80.
  • the method further includes:
  • the terminal receives configuration information from the network device, where the configuration information is used to indicate the length of the detection window of the random access response message, where:
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 5 ms
  • the SCS is equal to 480KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 2.5 ms
  • the value of Y is The value is 320;
  • the SCS is equal to 960KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 1.25 ms
  • the value of Y is The value is 640;
  • the SCS is equal to 1920KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.625 ms
  • the value of Y is The value is 1280;
  • the SCS is equal to 3840KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.3125 ms
  • the value of Y is The value is 2560.
  • This solution configures the length of the detection window for the terminal to receive the RAR.
  • the SCS is greater than or equal to 240KHz, even if the design of the RNTI in the prior art is used, it can ensure that the terminal receives the correct RAR.
  • the length of the detection window and the possible values of Y can ensure that different ROs correspond to different RNTIs.
  • the length of the detection window and the possible values of Y can be Ensure that different ROs correspond to different RNTIs.
  • the method can be executed by a second communication device.
  • the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as a terminal as an example.
  • the method includes:
  • the terminal sends a random access preamble to the network device
  • the terminal receives a random access response message from the network device, where the random access response message includes indication information, and the indication information is used to indicate the position in the frame of the random access opportunity RO used by the terminal ;
  • the terminal descrambles the random access response message based on the radio network temporary identifier RNTI, and determines the position of the RO in the frame based on the indication information.
  • the design of the RNTI in the prior art can be used, and the compatibility with the prior art is better.
  • the SCS is greater than or equal to 240KHz, that is, when there is one RO corresponding to two RARs
  • the solution carries indication information through the random access response message to indicate the position of the RO corresponding to the random access response message in the frame. It can ensure that the terminal receives the correct RAR.
  • the position of the RO in the frame is related to the length of the detection window of the SCS and/or random access response message.
  • the random access response message is different, and the implementation of the indication information is also different.
  • the random access response message includes a random access response RAR, the indication information occupies m bits, and the value of the m bits is used to indicate that the RO is located in the i-th 10* of the 10*T ms frame. Within T/2 m ms, where T is a positive integer, and the i is greater than or equal to 1.
  • the SCS is equal to 120 ⁇ nKHz, the n is equal to 2 m , the n is greater than or equal to 1, and the m is greater than or equal to 0.
  • the indication information can be used to distinguish RO in the first 5ms or the second 5ms of the 10ms frame; when SCS is equal to 480KHz, m is equal to 2, and the indication information can be used to distinguish RO in the 10ms frame Which of the four 2.5ms of the 2.5ms; when the SCS is equal to 960KHz, m is equal to 3.
  • the indication information can be used to distinguish which of the eight 1.25ms of the 10ms frame is 1.25ms; when the SCS is equal to 1920KHz, m is equal to 4 , The indication information can be used to distinguish which of the 16 0.625ms of the RO is located in 0.625ms of the 10ms frame; when SCS is equal to 3840KHz, m is equal to 5, the indication information can be used to distinguish which of the 32 0.3125ms of the RO is located in the 10ms frame 0.3125ms Wait, and so on.
  • the indication information is valid.
  • the SCS is equal to 120 ⁇ n KHz
  • the X is equal to 10/n
  • the length of the detection window of the RAR is greater than or equal to Xms
  • the indication information is valid indication information, wherein, the n is an integer greater than or equal to 1.
  • the SCS when the SCS is less than or equal to 120KHz, the RA-RNTI in the prior art will not be used for one RO corresponding to multiple RARs. Therefore, even if the network device sends indication information to the terminal, it is useless for the terminal. It can be considered that the instruction information is invalid.
  • the SCS is greater than or equal to 240KHz, if the RAR detection window is less than Xms, there will be no one RO corresponding to multiple RARs, so the indication information can also be considered invalid at this time, and the terminal does not need to be analyzed, so The complexity of the terminal.
  • the indication information occupies k bits, said k bits for indicating the value of RO 10 ⁇ 2 kt ms located in the j-th frame 10 * T / Within 2 t ms, where T is a positive integer, the k is greater than or equal to 1.
  • the SCS is equal to 120 ⁇ n KHz, the n is equal to 2 t , and the n is an integer greater than or equal to 2.
  • n when SCS is equal to 240KHz, n is equal to 2, t is equal to 1, k can be equal to 2, this indication information can be used to distinguish RO in the first 5ms or the second 5ms of a 10ms frame; when SCS is equal to 480KHz, n is equal to 4 , T is equal to 2, and k can be equal to 2. The indication information can be used to distinguish which of the four 2.5ms of the 10ms frame the RO is located in. When SCS is equal to 960KHz, n is equal to 8, t is equal to 3, and k can be equal to 3.
  • the indication information can be used to distinguish which of the eight 1.25ms of the 10ms frame RO is located in 1.25ms; when SCS is equal to 1920KHz, n is equal to 16, t equals to 4, and k can be equal to 4. This indication information can be used to distinguish RO in the 10ms frame Which of the 16 0.625ms is 0.625ms; when SCS is equal to 3840KHz, n is equal to 32, t is equal to 5, and k can be equal to 5. This indication information can be used to distinguish which of the 32 0.3125ms of the RO is located in the 10ms frame 0.3125ms Wait, and so on.
  • the indication information is Valid indication information, wherein the n is an integer greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI transmitted by the physical downlink control channel PDCCH of the random access response message; or,
  • the indication information is carried in the physical downlink shared channel PDSCH of the random access response message.
  • a random access method is provided.
  • the method can be executed by a second communication device.
  • the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as a network device as an example.
  • the method includes:
  • the network equipment receives the random access preamble from the terminal;
  • the network device scrambles the random access response message based on the radio network temporary identifier RNTI, and sends the scrambled random access response message to the terminal, where the RNTI is related to the subcarrier interval SCS .
  • the RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where the C and the k are integers, and the value of Y is related to the SCS.
  • the RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id sends the index of the first orthogonal frequency division multiplexing OFDM symbol in the time slot where the random access opportunity RO occupied by the random access preamble is located, and t_id is the first one where the RO is located.
  • the index of the time slot in the 10ms frame f_id is the index of the RO in the frequency domain, ul_carrier_id is the uplink carrier index; the a and the b are coefficients, the a is greater than or equal to 1, and the b is greater than or equal to 1;
  • the Z is a constant, and the Z is greater than or equal to zero.
  • the value of Y is 160
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2;
  • the value of Y is 2560
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the method further includes:
  • the network device sends configuration information to the terminal, where the configuration information is used to indicate the length of the detection window of the random access response message, where:
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2
  • the length of the detection window is less than or equal to 5ms
  • Y is The value is 80;
  • the length of the detection window is less than or equal to 2.5 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 1.25 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.625 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.3125 ms, Y
  • the value of is 80;
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 5 ms
  • the SCS is equal to 480KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 2.5 ms
  • the value of Y is The value is 320;
  • the SCS is equal to 960KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 1.25 ms
  • the value of Y is The value is 640;
  • the SCS is equal to 1920KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.625 ms
  • the value of Y is The value is 1280;
  • the SCS is equal to 3840KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.3125 ms
  • the value of Y is The value is 2560.
  • the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as a network device as an example.
  • the method includes:
  • the network equipment receives the random access preamble from the terminal;
  • the network device scrambles the random access response message based on the wireless network temporary identifier RNTI, and sends the scrambled random access response message to the terminal, where the random access response message includes an indication Information, the indication information is used to indicate the position in the frame of the random access opportunity RO used by the terminal.
  • the position of the RO in the frame is related to the subcarrier SCS and/or the length of the detection window of the random access response message.
  • the random access response message includes a random access response RAR
  • the indication information occupies m bits
  • the value of the m bits is used to indicate that the RO is located at 10*T Within the i-th 10*T/2 m ms of the ms frame
  • T is a positive integer
  • the i is greater than or equal to 1.
  • the value of m and the subcarrier SCS satisfy the following relationship:
  • the SCS is equal to 120 ⁇ nKHz, the n is equal to 2 m , the n is greater than or equal to 1, and the m is greater than or equal to 0.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz
  • the X is equal to 10/n
  • the length of the detection window of the RAR is greater than or equal to Xms
  • the n is an integer greater than or equal to 1.
  • the random access response message includes message B, the indication information occupies k bits, and the value of the k bits is used to indicate that the RO is located in a 10 ⁇ 2 kt ms frame Within the j th 10*T/2 t ms, where T is a positive integer, and the k, t, and j are all integers greater than or equal to 1.
  • the value of t satisfies the following relationship with the SCS:
  • the SCS is equal to 120 ⁇ n KHz, the n is equal to 2 t , and the n is an integer greater than or equal to 2.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz, the X is equal to 10/n, the length of the detection window of the message B is greater than or equal to X ms, and the n is an integer greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI transmitted by the physical downlink control channel PDCCH of the random access response message; or,
  • the indication information is carried in the physical downlink shared channel PDSCH of the random access response message.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior in the method embodiment of the first aspect described above.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a transceiver unit and a processing unit, where:
  • the transceiver unit is configured to send a random access preamble to a network device, and receive a random access response message from the network device;
  • the processing unit is configured to descramble the random access response message based on the radio network temporary identifier RNTI, where the RNTI is related to the subcarrier interval SCS.
  • the RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where the C and the k are integers, and the value of Y is related to the SCS.
  • the RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id sends the index of the first orthogonal frequency division multiplexing OFDM symbol in the time slot where the random access opportunity RO occupied by the random access preamble is located, and t_id is the first one where the RO is located.
  • the index of the time slot in the 10ms frame f_id is the index of the RO in the frequency domain, ul_carrier_id is the uplink carrier index; the a and the b are coefficients, the a is greater than or equal to 1, and the b is greater than or equal to 1;
  • the Z is a constant, and the Z is greater than or equal to zero.
  • the value of Y is 160
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2;
  • the value of Y is 2560
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the transceiver unit is further configured to:
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2
  • the length of the detection window is less than or equal to 5ms
  • Y is The value is 80;
  • the length of the detection window is less than or equal to 2.5 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 1.25 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.625 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.3125 ms, Y
  • the value of is 80;
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 5 ms
  • the SCS is equal to 480KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 2.5 ms
  • the value of Y is The value is 320;
  • the SCS is equal to 960KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 1.25 ms
  • the value of Y is The value is 640;
  • the SCS is equal to 1920KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.625 ms
  • the value of Y is The value is 1280;
  • the SCS is equal to 3840KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.3125 ms
  • the value of Y is The value is 2560.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior in the method embodiment of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a transceiver unit and a processing unit, where:
  • the transceiver unit is configured to send a random access preamble and a random access response from the network device to a network device, the random access response message includes indication information, and the indication information is used to indicate the terminal The position of the adopted random access opportunity RO in the frame;
  • the processing unit is configured to descramble the random access response message based on the radio network temporary identifier RNTI, and determine the position of the RO in the frame based on the indication information.
  • the position of the RO in the frame is related to the subcarrier SCS and/or the length of the detection window of the random access response message.
  • the random access response message includes a random access response RAR
  • the indication information occupies m bits
  • the value of the m bits is used to indicate that the RO is located at 10*T Within the i-th 10*T/2 m ms of the ms frame
  • T is a positive integer
  • the i is greater than or equal to 1.
  • the value of m and the subcarrier SCS satisfy the following relationship:
  • the SCS is equal to 120 ⁇ nKHz, the n is equal to 2 m , the n is greater than or equal to 1, and the m is greater than or equal to 0.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz
  • the X is equal to 10/n
  • the length of the detection window of the RAR is greater than or equal to Xms
  • the n is an integer greater than or equal to 1.
  • the random access response message includes message B, the indication information occupies k bits, and the value of the k bits is used to indicate that the RO is located in a 10 ⁇ 2 kt ms frame Within the j th 10*T/2 t ms, where T is a positive integer, and the k, t, and j are all integers greater than or equal to 1.
  • the value of t satisfies the following relationship with the SCS:
  • the SCS is equal to 120 ⁇ n KHz, the n is equal to 2 t , and the n is an integer greater than or equal to 2.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz, the X is equal to 10/n, the length of the detection window of the message B is greater than or equal to X ms, and the n is an integer greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI transmitted by the physical downlink control channel PDCCH of the random access response message; or,
  • the indication information is carried in the physical downlink shared channel PDSCH of the random access response message.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior in the method embodiment of the third aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a transceiver unit and a processing unit, where:
  • the transceiver unit is configured to receive a random access preamble from a terminal
  • the processing unit is configured to scramble the random access response message based on the radio network temporary identifier RNTI, where the RNTI is related to the subcarrier interval SCS;
  • the transceiver unit is further configured to send the scrambled random access response message to the terminal.
  • the RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where the C and the k are integers, and the value of Y is related to the SCS.
  • the RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id sends the index of the first orthogonal frequency division multiplexing OFDM symbol in the time slot where the random access opportunity RO occupied by the random access preamble is located, and t_id is the first one where the RO is located.
  • the index of the time slot in the 10ms frame f_id is the index of the RO in the frequency domain, ul_carrier_id is the uplink carrier index; the a and the b are coefficients, the a is greater than or equal to 1, and the b is greater than or equal to 1;
  • the Z is a constant, and the Z is greater than or equal to zero.
  • the value of Y is 160
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2;
  • the value of Y is 2560
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the transceiver unit is further configured to:
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2
  • the length of the detection window is less than or equal to 5ms
  • Y is The value is 80;
  • the length of the detection window is less than or equal to 2.5 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 1.25 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.625 ms, Y
  • the value of is 80;
  • the length of the detection window is less than or equal to 0.3125 ms, Y
  • the value of is 80;
  • the SCS is equal to 240KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 5 ms
  • the SCS is equal to 480KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 2.5 ms
  • the value of Y is The value is 320;
  • the SCS is equal to 960KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 1.25 ms
  • the value of Y is The value is 640;
  • the SCS is equal to 1920KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.625 ms
  • the value of Y is The value is 1280;
  • the SCS is equal to 3840KHz
  • the value of a is 1
  • the value of b is 1
  • the value of Z is 0 or 14 ⁇ Y ⁇ 8 ⁇ 2
  • the length of the detection window is greater than 0.3125 ms
  • the value of Y is The value is 2560.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior in the method embodiment of the fourth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a transceiver unit and a processing unit, where:
  • the transceiver unit is configured to receive a random access preamble from a terminal
  • the processing unit is configured to scramble a random access response message based on the radio network temporary identifier RNTI, the random access response message includes indication information, and the indication information is used to indicate the random access used by the terminal The position of the opportunity RO in the frame;
  • the transceiver unit is further configured to send the scrambled random access response message to the terminal.
  • the position of the RO in the frame is related to the subcarrier SCS and/or the length of the detection window of the random access response message.
  • the random access response message includes a random access response RAR
  • the indication information occupies m bits
  • the value of the m bits is used to indicate that the RO is located at 10*T Within the i-th 10*T/2 m ms of the ms frame
  • T is a positive integer
  • the i is greater than or equal to 1.
  • the value of m and the subcarrier SCS satisfy the following relationship:
  • the SCS is equal to 120 ⁇ nKHz, the n is equal to 2 m , the n is greater than or equal to 1, and the m is greater than or equal to 0.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz
  • the X is equal to 10/n
  • the length of the detection window of the RAR is greater than or equal to Xms
  • the n is an integer greater than or equal to 1.
  • the random access response message includes message B, the indication information occupies k bits, and the value of the k bits is used to indicate that the RO is located in a 10 ⁇ 2 kt ms frame Within the j th 10*T/2 t ms, where T is a positive integer, and the k, t, and j are all integers greater than or equal to 1.
  • the value of t satisfies the following relationship with the SCS:
  • the SCS is equal to 120 ⁇ n KHz, the n is equal to 2 t , and the n is an integer greater than or equal to 2.
  • the indication information is valid indication information:
  • the SCS is equal to 120 ⁇ n KHz, the X is equal to 10/n, the length of the detection window of the message B is greater than or equal to X ms, and the n is an integer greater than or equal to 1.
  • the indication information is carried in the downlink control information DCI transmitted by the physical downlink control channel PDCCH of the random access response message; or,
  • the indication information is carried in the physical downlink shared channel PDSCH of the random access response message.
  • an embodiment of the present application provides a communication device.
  • the communication device may be the communication device in the fifth, sixth, seventh, or eighth aspect of the above-mentioned embodiments, or may be set in the fifth aspect.
  • the communication device includes a communication interface, a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions or data, and the processor is coupled with the memory and a communication interface. When the processor reads the computer programs or instructions or data, the communication device is caused to execute the above-mentioned method embodiment by the terminal or The method performed by the network device.
  • the communication interface may be a transceiver in the communication device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a chip set in a network device, the communication interface It can be the input/output interface of the chip, such as input/output pins.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is a terminal, the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the communication device in the fifth, sixth, seventh, or eighth aspect. Methods.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system.
  • the communication system includes the communication device described in the fifth aspect and the communication device described in the sixth aspect.
  • the communication system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is run, it implements the methods executed by the terminal in each of the above aspects; or implements the above Methods performed by network devices in all aspects.
  • a computer program product includes: computer program code, which when the computer program code is executed, causes the methods executed by the terminal in the above aspects to be executed, or causes the above The methods performed by the network device in each aspect are executed.
  • Figure 1A is a schematic flow diagram of a contention-based random access process
  • Figure 1B is a schematic flow diagram of a non-competition-based random access process
  • Fig. 2 is an application schematic diagram of an example of RN-RNTI in the prior art
  • FIG. 3 is a schematic diagram of another example application of RN-RNTI in the prior art
  • FIG. 4 is a schematic diagram of a network architecture to which an embodiment of the application is applicable.
  • FIG. 5 is another schematic diagram of a network structure provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a random access method provided by an embodiment of this application.
  • FIG. 7 is an application schematic diagram of an example of RN-RNTI provided by an embodiment of this application.
  • FIG. 8 is an application schematic diagram of an example of RN-RNTI provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a random access method provided by an embodiment of this application.
  • FIG. 10 is an application schematic diagram of an example of RN-RNTI provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of an example communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 15 is another schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of still another structure of another communication device provided by an embodiment of this application.
  • the terminal In order to realize data transmission between the terminal and the network device, the terminal establishes a connection with the network device through a random access process.
  • the random access process includes the contention-based random access process as shown in FIG. 1A and the non-contention-based random access process as shown in FIG. 1B.
  • the contention-based random access process mainly includes the following 4 steps, namely step1-step4:
  • Step1 The terminal sends a preamble (also called message 1 (message1, msg1)) to the network device to initiate a random access process.
  • a preamble also called message 1 (message1, msg1)
  • the terminal can independently select the preamble, select a random access resource for sending the preamble according to the received random resource configuration information, and send the preamble on the random access resource.
  • the random access resources include time and frequency resources for random access.
  • the random access resource used to send the preamble is also called an RO.
  • the random access preamble can also be referred to as a random access request, a preamble, a preamble carried by the physical random access channel PRACH, a RACH preamble, message 1 (message 1, Msg1), or message A (message A, MsgA) and so on.
  • the preamble code is the actual content sent by the terminal in the physical random access channel.
  • the preamble code is a (Zadoff-Chu, ZC) sequence (also known as Zero-correlation sequence).
  • the length of the preamble code can be 839 or 139 or other lengths, and the ZC sequence preamble is generated through different cyclic shifts for different users.
  • Step 2 The network device sends a RAR message (also called message 2 (message2, msg2)) to the terminal.
  • a RAR message also called message 2 (message2, msg2)
  • the network device Since the number of preambles is limited, and when the terminal initiates random access, it will randomly select the preamble. At this time, different terminals may choose the same preamble. If the network device detects the preamble, it sends the RAR corresponding to the preamble. In order to distinguish the RO used by different terminals to send the preamble, the RAR sent by the network device will be scrambled by RA-RNTI. That is, after receiving the preamble sent by the terminal on a specific time-frequency resource, the network device scrambles the RAR based on the RA-RNTI, and sends the scrambled RAR to the terminal.
  • Scrambling refers to the exclusive OR between the data signal and a certain sequence signal, or the modulo 2 remainder after the two are added, and the sequence signal is a scrambled signal.
  • the sequence signal may be a known binary sequence signal, or may be a sequence signal generated based on certain information, such as a cell ID, a terminal ID, and a random access wireless network temporary ID.
  • the data information can be data information after encoding the original data information bits, or uncoded data information, or sequence information, such as the preamble information of the frame header, the DCI information in the PDCCH, and the CRC correction in the PDCCH. Information, etc.
  • the terminal when it initiates random access, it needs to determine at least one or more of the RO time position, the RO frequency position, the index of the RO, and the preamble index when the random access signal is sent.
  • the terminal may determine the RA-RNTI according to at least one of the time position of the RO where the preamble is located, the frequency position of the RO, the index of the RO, and the preamble index.
  • the base station can use RA-RNTI to scramble the RAR, or it can be considered that the base station uses RA-RNTI to scramble the DCI carried in the PDCCH corresponding to message 2 or the PDCCH corresponding to the RAR.
  • the base station When detecting the preamble, can obtain one or more of the time position of the RO where the preamble is located, the frequency position of the RO, the preamble index, and the index information of the RO, and then determine the RA-RNTI and send the RAR to the terminal.
  • the terminal equipment monitors the time and frequency position of the PDCCH corresponding to the RAR according to the RA-RNTI, and receives the PDCCH and PDSCH corresponding to the RAR.
  • scrambling RAR can be considered as scrambling message 2; or scrambling RAR can be considered as scrambling the PDCCH corresponding to message 2; or scrambling RAR Scrambling can be regarded as scrambling the DCI in the PDCCH corresponding to message 2; or scrambling RAR can be regarded as the cyclic redundancy check (CRC) of the DCI in the PDCCH corresponding to message 2
  • CRC cyclic redundancy check
  • the message 2 carries a radio network temporary identifier (RNTI) allocated to the terminal.
  • the message 2 may also include a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH), where the PDCCH is used to schedule the PDSCH.
  • the PDSCH includes configuration information such as the time-frequency resource location and modulation and coding scheme used by the terminal to send message 3 (message3, msg3).
  • the terminal After sending the preamble, the terminal starts to monitor the RAR in the RAR detection window after a period of time (for example, the first time interval).
  • the first time interval is defined by the 3GPP protocol.
  • the start time of the RAR detection window monitoring is the last sub-frame (sub-frame) + 3 sub-frames (the first time interval) in which the terminal sends the preamble; in the NR system , The start time of the RAR detection window monitoring is the last symbol of the preamble sent by the terminal + a certain fixed time (the first time interval).
  • the terminal descrambles the received RAR through its own RA-RNTI to determine whether the received RAR is the RAR sent by the network device to itself. If the RAR received by the terminal belongs to itself, the terminal will send message 3 on the resource specified in message 2.
  • step3 The terminal sends message 3 to the network device according to the configuration of message 2, and this message 3 uses the RNTI in the RAR for scrambling.
  • the terminal will carry an identifier that can uniquely identify the terminal in message 3.
  • message 3 can carry a cell-radio network temporary identifier (C-RNTI), or it can also carry system architecture evolution Temporary mobile subscriber identification (system architecture evolution temporary mobile subscriber identit, S-TMSI).
  • C-RNTI cell-radio network temporary identifier
  • S-TMSI system architecture evolution temporary mobile subscriber identit
  • Step 4 The network device sends a contention resolution message (also called message 4 (message4, msg4)) to the terminal.
  • a contention resolution message also called message 4 (message4, msg4)
  • the conflict resolution message can be used to indicate the successful access of the terminal, and the conflict resolution message carries the identification of the terminal to complete the contention resolution.
  • the non-competition-based random access process mainly includes the following three steps, namely step0-step2:
  • Step0 The network device sends the preamble distribution information to the terminal.
  • the network device can determine the preamble and notify the terminal through the preamble distribution information. Since the preamble is allocated by the network equipment, there is no need for the terminal to choose independently, and competition with other terminals can be avoided.
  • Step1 The terminal sends a preamble (also called message 1 (message1, msg1)) to the network device to initiate a random access process.
  • a preamble also called message 1 (message1, msg1)
  • Step 2 The network device sends a RAR message (also called message 2 (message2, msg2)) to the terminal.
  • a RAR message also called message 2 (message2, msg2)
  • step1 in FIG. 1B is the same as step1 in FIG. 1A
  • step2 in FIG. 1B is the same as step2 in FIG. 1A, and will not be repeated here.
  • This random access process is also called 2-step random access process, including:
  • Step 1 The terminal sends a message A (message A, MSGA) to the network device, and the message A includes the preamble and the first data information.
  • a message A messages A, MSGA
  • Step 2 The network device sends a message B (messageB, MSGB) to the terminal, and the message B includes conflict resolution and uplink scheduling.
  • a message B messagesB, MSGB
  • step1 is similar to step1 and step3 of the aforementioned contention-based random access process
  • step2 is similar to step2 and step4 of the aforementioned contention-based random access process, which will not be repeated here.
  • RA-RNTI satisfies the following formula (1):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id (1)
  • s_id is the index of the first orthogonal frequency division multiplexing (OFDM) symbol in the time slot where the RO is located
  • t_id is the first time slot (slot) where the RO is located
  • f_id is the index of the RO in the frequency domain
  • ul_carrier_id is the index of the uplink carrier.
  • Figure 2 is a schematic diagram of an application of RA-RNTI.
  • Figure 2 takes a subcarrier space (SCS) of 120KHz as an example.
  • SCS subcarrier space
  • the f_id corresponding to RO2 is 1, the f_id corresponding to RO3 is 0, and the f_id corresponding to RO4 is 1.
  • the RNTI MSGB-RNTI
  • MSGB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 (2)
  • formula (2) has one more constant than formula (1), that is, "14 ⁇ 80 ⁇ 8 ⁇ 2". This constant is mainly used to distinguish from the RNTI (that is, RA-RNTI) of the contention-based 4-step random access.
  • the NR system can be applied to a carrier frequency band greater than or equal to 52.6GHz. Because the carrier frequency is higher, it supports a larger subcarrier spacing. For example, the supported SCS includes 240/480/960/1920/3840KHz. In this case, according to the design of the RA-RNTI and RAR detection window in the prior art, the RAR received by the terminal will correspond to a different RO.
  • the following takes the SCS of 240KHz as an example, and the design of the RA-RNTI and RAR detection window in the prior art is used to explain why the RAR received by the terminal corresponds to a different RO.
  • Figure 3 is a schematic diagram of an application of RA-RNTI.
  • Figure 3 takes SCS 240KHz as an example.
  • the 4 ROs are RO1, RO2, RO3, and RO4.
  • the f_id corresponding to RO2 is 1, the f_id corresponding to RO3 is 0, and the f_id corresponding to RO4 is 1.
  • the RA-RNTI corresponding to RO2 is the same as the RA-RNTI corresponding to RO3. Assuming that the length of the RO detection window is 10ms, if terminal 1 sends Msg1 on RO2, terminal 2 also sends Msg1 on RO3, and the network device sends it to terminal 1. And terminal 2 feed back RAR respectively. Since the RA-RNTI corresponding to RO2 and the RA-RNTI corresponding to RO3 are the same, the RAR fed back by the network device corresponds to RO2 and RO3, that is, one RAR corresponds to two ROs, which may cause the RAR received by the terminal to be wrong. For example, the RAR received by the terminal 1 may be the RAR fed back by the network device for the RO3, that is, the RAR received by the terminal 1 is wrong.
  • the embodiments of the present application provide two technical solutions.
  • SCS greater than 120KHz
  • it can be ensured that one RAR received by the terminal corresponds to one RO that is, it is ensured that the terminal receives the correct RAR.
  • One of the solutions is to provide a new design solution for RNTI, which can make one RAR received by the terminal in the RAR detection window correspond to one RO; the other solution is that the network device configures the location of the RO for the terminal, even if the current
  • the design of RA-RNTI in the technology can also make one RAR received by the terminal within the detection window of the RAR correspond to one RO.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • 6G next-generation communication systems
  • LTE long term evolution
  • 5G fifth generation
  • 6G next-generation communication systems
  • the technical solutions of the embodiments of the present application can also be applied to other communication systems, as long as the communication system has a requirement for beam switching.
  • the communication system includes network equipment and terminals, and the network equipment and terminals can communicate with each other.
  • the network architecture in Figure 4 is based on the communication between a network device and a terminal as an example. In practical applications, the number of network devices and terminals in the communication system can be more. And the terminal can also communicate with each other.
  • a network device can communicate with multiple terminals at the same time. Multiple network devices can also communicate with a terminal at the same time.
  • the network device can send control information to the terminal through a control channel, such as PDCCH, so as to allocate a data channel to the terminal, such as PDSCH or physical uplink shared channel (PUSCH) resources.
  • a control channel such as PDCCH
  • the control information may indicate the time domain symbol and/or resource block (resource block, RB) corresponding to the resource of the data channel, and the network device and the terminal perform data transmission through the data channel on the allocated resources.
  • resource block resource block
  • the above-mentioned data transmission may include downlink data transmission and/or uplink data transmission
  • downlink data (such as data carried in PDSCH) transmission may refer to network equipment sending data to the terminal
  • uplink data (such as data carried in PUSCH) transmission may refer to The network device sends data.
  • Data can be broadly defined, such as user data, or system information. Broadcast information or other information is not limited.
  • the network equipment involved in the embodiments of the present application may be referred to as a base station, and may also be referred to as a radio access network (RAN) node (or device).
  • the network equipment may be a next-generation Node B (gNB), a transmission reception point (TRP), an evolved Node B (evolved Node B, eNB), and a radio network controller (radio network controller).
  • network controller RNC
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B) , HNB
  • BBU baseband unit
  • Wifi wireless fidelity
  • the name of the network device in the embodiment of the present application may be a relay node (RN), a relay transmission and reception point (rTRP), an IAB node (IAB node), and so on.
  • the terminal involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals.
  • the terminal may be a device that provides voice and/or data connectivity to the user, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal) , User agent (user agent), or user equipment (user device), user station (customer premises equipment, CPE), fixed wireless access (fixed wireless access, FWA), etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle-to-everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscribe
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, computer-built mobile devices, drones, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently realize daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and Shoes etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals introduced above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). .
  • OBU on-board unit
  • the terminal 10 includes a processor 101, a memory 102, and a transceiver 103.
  • the transceiver 103 includes a transmitter 1031, a receiver 1032, and an antenna 1033.
  • the network device 20 includes a processor 201, a memory 202, and a transceiver 203.
  • the transceiver 203 includes a transmitter 2031, a receiver 2032, and an antenna 2033.
  • the receiver 1032 may be used to receive transmission control information through the antenna 1033, and the transmitter 1031 may be used to send transmission information to the network device 20 through the antenna 1033.
  • the transmitter 2031 may be used to send transmission control configuration information to the terminal 10 through the antenna 2033, and the receiver 2032 may be used to receive the transmission information sent by the terminal 10 through the antenna 2033.
  • Option 1 Provide a new design of RNTI
  • FIG. 6 is a flowchart of a random access method provided in an embodiment of this application.
  • the application of this method to the communication system shown in FIG. 4 and FIG. 5 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the method is executed by the network device and the terminal as an example, that is, the first communication device is the terminal and the second communication device is the network device as an example.
  • the terminal sends a random access preamble to the network device.
  • the terminal may send a random access preamble to the network device, as described in step 1 in FIG. 1A or FIG. 1B, which will not be repeated here.
  • the network device scrambles the random access response message based on the RNTI.
  • the network device sends the scrambled random access response message to the terminal.
  • the network device After receiving the random access preamble sent by the terminal, the network device sends a random access response message to the terminal. Since the number of random access preambles is limited, and when a terminal initiates random access, it will randomly select a random access preamble. At this time, different terminals may choose the same random access preamble. If the network device detects the random access preamble, it sends a random access response message corresponding to the random access preamble. In order to distinguish the RO used by different terminals to send the random access preamble, the random access response message sent by the network device will be scrambled with RNTI, so that the terminal will descramble the received random access response based on the RNTI to obtain the correct random access Access response message.
  • SCS is greater than 120KHz, for example, SCS is equal to 240KHz
  • following the existing RNTI design will result in one random access response message corresponding to two ROs, that is, the random access response message received by the terminal in one RO may be that the network device targets another RO The random access response message is fed back, which causes the random access response message received by the terminal to be wrong.
  • the embodiment of the present application is designed for RNTI, and the newly designed RNTI can be used to ensure that one random access response message corresponds to one RO.
  • RNTI is related to the size of SCS, where SCS can be the sub-carrier width for sending Msg1, the sub-carrier width of the random access response, or it can be used for RNTI calculation indicated by the network device.
  • the multiple subcarrier widths are ⁇ 15KHz
  • the subcarrier width for sending Msg1 can be one or more values
  • the SCS can be the maximum width in ⁇ 15KHz, the subcarrier width for sending Msg1 ⁇ .
  • multiple subcarrier widths are ⁇ subcarrier width for sending Msg1, subcarrier width for sending Msg3, subcarrier width for uplink initial access part bandwidth ⁇ , where Msg1, Msg3, and subcarriers for uplink initial access part bandwidth are sent
  • the width can be one or more values
  • the SCS can be the maximum width of ⁇ subcarrier width for sending Msg1, subcarrier width for sending Msg3, subcarrier width for uplink initial access part bandwidth ⁇ .
  • the random access response message can be RAR and RNTI is RA-RNTI; in the contention-based random access process, the random access response message can be message B, and the following It is denoted as MSGB in the text, and RNTI is MSGB-RNTI.
  • RA-RNTI satisfies formula (3):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id (3)
  • s_id sends the index of the first OFDM symbol in the slot where the RO occupied by the random access preamble is located
  • t_id is the index in the 10ms frame of the first slot where the RO is located
  • f_id is The index of the RO in the frequency domain
  • ul_carrier_id is the uplink carrier index.
  • the value of Y is related to SCS. For example, when SCS is equal to 120 ⁇ n KHz, Y is equal to 80 ⁇ n. That is, when SCS is equal to 120KHz, Y is equal to 80; when SCS is equal to 240KHz, Y is equal to 160; when SCS is equal to 480KHz, Y is equal to 320; when SCS is equal to 960KHz, Y is equal to 640; when SCS is equal to 1920KHz, Y is equal to 1280; When SCS is equal to 3840KHz, Y is equal to 2560 and so on, and so on.
  • the network device can scramble the RAR based on formula (3), so that the scrambled RAR corresponds to the RO one to one.
  • Figure 7 is a schematic diagram of an application of RA-RNTI.
  • Figure 7 takes SCS equal to 240KHz as an example.
  • the 4 ROs are RO1, RO2, RO3, and RO4.
  • the f_id corresponding to RO2 is 1, the f_id corresponding to RO3 is 0, and the f_id corresponding to RO4 is 1.
  • the network device scrambles the RAR based on formula (3), which can ensure that one RAR after scrambling corresponds to one RO, that is, to ensure that the terminal receives the correct RAR.
  • MSGB-RNTI satisfies formula (4-a):
  • MSGB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 (4-a)
  • MSGB-RNTI satisfies formula (4-b):
  • MSGB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+14 ⁇ Y ⁇ 8 ⁇ 2 (4-b)
  • s_id sends the index of the first OFDM symbol in the time slot where the RO occupied by the random access preamble is located, and t_id is the first time slot where the RO is located.
  • the index in the 10ms frame, f_id is the index of the RO in the frequency domain, and ul_carrier_id is the index of the uplink carrier.
  • the value of Y is related to SCS. For example, when SCS is equal to 120 ⁇ n KHz, Y is equal to 80 ⁇ n.
  • formula (4-a) has one more constant "14 ⁇ 80 ⁇ 8 ⁇ 2" than formula (3)
  • formula (4-b) has one more constant "14 ⁇ Y ⁇ 8 ⁇ 2" than formula (3).
  • the constant “14 ⁇ 80 ⁇ 8 ⁇ 2” or “14 ⁇ Y ⁇ 8 ⁇ 2” is mainly used to distinguish it from the contention-based 4-step random access RNTI (that is, RA-RNTI).
  • RA-RNTI contention-based 4-step random access RNTI
  • formula (3) a variation of formula (3), formula (4-a), and formula (4-b) may be formula (5):
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z (5)
  • a and b are coefficients, a is greater than or equal to 1, b is greater than or equal to 1, Z is a constant, and Z is greater than or equal to zero.
  • Y in the formula (5) is related to the SCS, such as the aforementioned formula (3) and formula (4-a). If the RNTI in formula (5) is RA-RNTI, then a is equal to 1, b is equal to 1, and Z is equal to 0; if the RNTI in formula (5) is MSGB-RNTI, then a is equal to 1, b is equal to 1, and Z is equal to 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • formula (3) and formula (4) can be formula (6):
  • C and k are integers, and the value of Y is related to SCS, that is, C is equivalent to "1+s_id+14 ⁇ t_id” in formula (3), and k is equivalent to formula (3) “14 ⁇ f_id+14 ⁇ 8 ⁇ ul_carrier_id”, or C is equivalent to “1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ 8 ⁇ 2” in formula (4-a), k is equivalent to formula (4- “14 ⁇ f_id+14 ⁇ 8 ⁇ ul_carrier_id” in a), or C is equivalent to “1+s_id+14 ⁇ t_id” in formula (4-b), and k is equivalent to “in formula (4-b) 14 ⁇ f_id+14 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 8 ⁇ 2".
  • RNTI (such as RA-RNTI or MSGB-RNTI) is related to the physical random access resource or the frequency range in which the RO is located.
  • Y is related to the physical random access resource or the frequency range where the RO is located.
  • Table 1 is a schematic table of the frequency range.
  • Table 1 takes the frequency range including 4 levels as an example.
  • the frequency ranges of these 4 levels are FR1, FR2, FRm, and FRn.
  • X1 and X2 may be less than or equal to 24,250, for example, X1 is 10,000 and X2 is 16,000.
  • Y1 and Y2 may be greater than or equal to 52,600.
  • Y1 is 52,600 and Y2 is 65,000.
  • Y1 is 65,000 and Y2 is 85,000.
  • Y when the frequency range of the physical random access resource or RO is FRm, Y is equal to 80; when the frequency range of the physical random access resource or RO is FRn, Y is equal to 160; or when the physical random access resource or the frequency range of RO is FRn, When the frequency range of the access resource or RO is FRn, Y is equal to 320; or when the frequency range of the physical random access resource or RO is FRn, Y is equal to 640; or when the frequency of the physical random access resource or RO is located When the range is FRn, Y is equal to 1280; or when the frequency range where the physical random access resource or RO is located is FRn, Y is equal to 2560. Or, in other embodiments, when the frequency range where the physical random access resource or RO is located is FRn, the value of Y may be determined by the configuration information sent by the network device.
  • the network device can use formula (1) or formula (2) to determine the value of the RNTI corresponding to each RO and preamble, and use the determined RNTI to pair message 2 Perform scrambling.
  • the network equipment can also use formula (1) or formula (2) to determine the value of the RNTI corresponding to each RO and preamble, and use the determined RNTI to perform message 2 Scrambled.
  • the network equipment can use any one of formulas (3)-(6) to determine the value of the RNTI corresponding to each RO and preamble, and use the determined RNTI scrambles message 2.
  • the network device may determine to use the specific formula in the above formula (1)-formula (6) (that is, determine the calculation method of RNTI), determine the value of the RNTI corresponding to each RO and preamble according to the determined formula, and determine The formula (determine the calculation method of RNTI, or the index corresponding to the formula) informs the terminal equipment.
  • the terminal device determines the RNTI calculation method according to the instructions of the network device (determines the calculation method of the RNTI, or the index corresponding to the formula), and determines the RNTI.
  • S604 The terminal descrambles the random access response message based on the RNTI.
  • the random access response message may be RAR, and the terminal descrambles the RAR based on RA-RNTI; in the contention-based random access process, the random access response message may be For MSGB, the terminal descrambles MSGB based on MSGB-RNTI.
  • the aforementioned formula (3)-formula (6) can be used to make the terminal know whether the received RAR or MSGB is sent to itself by the network device of.
  • formula (1) or formula (2) can be used to make the terminal know whether the received RAR or MSGB is sent to itself by the network device ;
  • the terminal can use formula (3)-formula (6) to make the terminal know whether the received RAR or MSGB is sent to itself by the network device .
  • the embodiment of the present application proposes an alternative to the solution, that is, the length of the detection window of the RAR corresponding to the RO can be configured by the network device, that is, the length of the detection window of the RAR corresponding to the RO is variable.
  • the network device indicates the length of the detection window of the random access response message for the terminal, which can ensure that when the SCS is greater than 240KHz, even if the RA-RNTI (ie formula (1)) or MSGB-RNTI (ie Formula (2)) can also ensure that one RAR or MSGB corresponds to one RO, that is, to ensure that the terminal receives the correct RAR.
  • the t_id involved in the RNTI calculation formula may be the index of the first time slot where the RO is located in time X; or it may be the index of the first time slot where the RO is located in the 10 ms frame.
  • S603a The network device sends configuration information to the terminal, where the configuration information is used to indicate the length of the detection window of the random access response message. It should be understood that S603a may be executed before S601.
  • the length of the detection window of the RAR or MSGB corresponding to the RO is denoted as X.
  • X is related to SCS, for example, SCS is equal to 120 ⁇ n KHz, and X is equal to 10/n ms.
  • the length of the detection window is less than or equal to 5ms, and the value of Y is The value is 80; when SCS is equal to 240KHz, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8 ⁇ 2, the detection window If the length of is greater than 5ms, the value of Y is 160; or, when SCS is equal to 240KHz, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2, check The length of the window is less than 5ms, and the value of Y is 80; when SCS is equal to 240KHz, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8
  • the length of the detection window is less than or equal to 0.625ms, and the value of Y is 80;
  • SCS is equal to 1920KHz
  • the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8 ⁇ 2, and the length of the detection window is greater than 0.625ms, the value of Y is 1280; or, when SCS is equal to 1920KHz, the value of a is 1, the value of b is 1, the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2, the detection window is The length is less than 0.625ms, the value of Y is 80; when SCS is 1920KHz, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8 ⁇ 2, the length of the detection
  • the length of the detection window is less than or equal to 0.3125ms, and the value of Y is 80;
  • SCS is equal to 3840KHz
  • the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8 ⁇ 2, and the length of the detection window is greater than 0.3125ms, the value of Y is 2560; or, when SCS is equal to 3840KHz, the value of a is 1, the value of b is 1, the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2, the detection window is The length is less than 0.3125ms, the value of Y is 80; when SCS is equal to 3840KHz, the value of a is 1, the value of b is 1, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ Y ⁇ 8 ⁇
  • the terminal receives the length of the detection window of the random access response message, and can monitor the random access response message sent by the network device within the length of the detection window of the received random access response message.
  • the random access response message sent by the network device can be scrambled by any of the aforementioned formulas (1)-(6), no matter which formula is used to scramble the random access response message. It can ensure that the correct RAR is received.
  • Fig. 8 takes SCS equal to 240KHz as an example.
  • the f_id corresponding to RO2 is 1, the f_id corresponding to RO3 is 0, and the f_id corresponding to RO4 is 1.
  • RO corresponds to a RAR.
  • X is related to the frequency range where RO is located. For example, when RO is located in FR1 or FR2 or FRm, X is equal to 10ms; when RO is located in FRn, X is less than 10ms. Further, X is related to the frequency range where SCS and RO are located.
  • X is equal to 5ms; when SCS is equal to 480KHz, X is equal to 2.5ms; when SCS is equal to 960KHz, X is equal to 1.25ms; when SCS is equal to 1920KHz, X is equal to 0.625ms; when SCS is equal to 3840KHz, X is equal to 0.3125ms and so on, and so on.
  • the embodiment of the present application associates the length X of the detection window with the SCS in combination with the frequency range in which the RO is located, which can reduce the number of bits required for configuration information.
  • the RA-RNTI or MSG-RNTI is related to the frequency range in which the RO is located, the subcarrier spacing, and the length of the detection window.
  • the sub-carrier spacing SCS does not exceed 240 kHz, and the value of Y is 80.
  • SCS is equal to 240KHz.
  • the length of the detection window is greater than 5ms, the value of Y is 160, and the value of Z is 0 or 14 ⁇ 160 ⁇ 8 ⁇ 2; the length of the detection window is less than or equal to 5ms, the value of Y is 80, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • SCS is less than or equal to 120KHz, the length of the detection window is equal to 10ms, the value of Y is 180, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the SCS when the frequency range of the RO is FRn, the SCS is greater than or equal to 240 KHz, and the length of the detection window is less than or equal to 5 ms.
  • the length of the detection window is equal to 5ms
  • the value of Y is 160
  • the value of Z is 0 or 14 ⁇ 160 ⁇ 8 ⁇ 2
  • the length of the detection window is less than or equal to 2.5ms
  • the value of Y is 80
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • the length of the detection window is equal to 5ms
  • the value of Y is 160
  • the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2 or 14 ⁇ 160 ⁇ 8 ⁇ 2, or, SCS is greater than or equal to At 480KHz, the length of the detection window is less than or equal to 2.5ms, the value of Y is 80, and the value of Z is 0 or 14 ⁇ 80 ⁇ 8 ⁇ 2.
  • RNTI is related to SCS.
  • SCS is less than or equal to 120KHz
  • the design of RA-RNTI or MSGB-RNTI in the prior art is used.
  • SCS is greater than or equal to 120KHz
  • the value of Y is the same as that of SCS.
  • the design structure of RA-RNTI or MSGB-RNTI in the prior art can be used as much as possible, that is, it is compatible with the existing design structure of RA-RNTI or MSGB-RNTI as much as possible to reduce complexity.
  • the following introduces the second solution provided by the embodiment of the present application, that is, the design of RA-RNTI in the prior art is used, and the network device configures the position of the RO for the terminal.
  • FIG. 9 is a flowchart of a random access method provided in an embodiment of this application.
  • the application of this method to the communication system shown in FIG. 4 and FIG. 5 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the method is executed by the network device and the terminal as an example, that is, the first communication device is the terminal and the second communication device is the network device as an example.
  • S901 The terminal sends a random access preamble to the network device.
  • S902 The network device scrambles the random access response message based on the RNTI.
  • the network device sends a random access response message to the terminal, where the random access response message includes indication information, and the indication information is used to indicate the position of the RO used by the terminal in the frame.
  • the random access response message may be RAR; in the contention-based random access process, the random access response message may be MSGB.
  • the indication information can be carried in the downlink control information (DCI) transmitted by the physical downlink control channel (PDCCH) of the RAR or MSGB; or, the indication information can be carried in the RAR or MSGB's physical downlink shared channel (physical downlink shared cHannel, PDSCH).
  • DCI downlink control information
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the position of the RO in the frame is the same as the SCS.
  • the indication information may occupy m bits, and the value of the m bits is used to indicate that the RO is located within the i-th 10*T/2 m ms of the 10*T ms frame, where T is a positive integer , I is greater than or equal to 1.
  • the value of m and SCS may satisfy: SCS is equal to 120 ⁇ nKHz, n is equal to 2 m , n is greater than or equal to 1, and m is greater than or equal to 0.
  • the indication information can be used to distinguish RO in the first 5ms or the second 5ms of a 10ms frame; when SCS is equal to 480KHz, m is equal to 2, and the indication information can be used to distinguish RO Which of the four 2.5ms of the 10ms frame is located; when SCS is equal to 960KHz, m is equal to 3.
  • the indication information can be used to distinguish which of the eight 1.25ms of the 10ms frame RO is located at 1.25ms; when SCS is equal to 1920KHz When m is equal to 4, the indication information can be used to distinguish which of the 16 0.625ms of the 10ms frame the RO is located in 0.625ms; when the SCS is equal to 3840KHz, m is equal to 5, and the indication information can be used to distinguish the RO located in the 10ms frame Which of the 32 0.3125ms is 0.3125ms and so on, and so on.
  • Figure 10 is a schematic diagram of an application of RA-RNTI.
  • Figure 10 takes SCS 240KHz as an example.
  • the f_id corresponding to RO2 is 1, the f_id corresponding to RO3 is 0, and the f_id corresponding to RO4 is 1.
  • the network equipment uses the RNTI of formula (1) to scramble the RAR, which includes:
  • the RAR sent by the network device to the terminal may include indication information that occupies 1 bit, and the indication information may indicate that the RO used by the terminal is in 10 ms frames.
  • the indication information indicates the RO used by the terminal.
  • RO2 is within the first 5ms of the 10ms frame
  • RO3 is within the second 5ms of the 10ms frame, so for the terminal, one RO corresponds to one RAR, It is guaranteed to receive a certain RAR.
  • the m bits can be reused in the DCI of the PDCCH in the 2-step random access process to indicate which of the 10 ms of the RO is in 40 ms; or the m bits can be reused in the new wireless unlicensed frequency band ( In the New Radio in Unlicensed Spectrum, NR-U) application scenario, the DCI of the PDCCH is used to indicate which of the 40ms the RO is in the 2bit of 10ms.
  • the indication information when the SCS is less than 240 KHz, the indication information is invalid, that is, even if the terminal receives the indication information, it does not determine the location of the RO according to the indication information.
  • the indication information may be valid or invalid. Specifically, it is related to the length of the RAR detection window. That is, whether the indication information is valid is related to the length of the detection window of SCS and RAR.
  • the indication information when the length of the RAR detection window is greater than or equal to X ms, the indication information is valid indication information; when the length of the RAR detection window is less than X ms, the indication information is invalid indication information; or, when the RAR detection window If the length of is greater than or equal to X ms, the indication information is valid indication information. When the length of the detection window of the RAR is less than or equal to X ms, the indication information is invalid indication information.
  • the indication information is valid indication information
  • the indication information is invalid indication information
  • the indication information when SCS is equal to 120 ⁇ n KHz, X is equal to 10/n, and the length of the RAR detection window is greater than or equal to Xms, the indication information is valid indication information; when SCS is equal to 120 ⁇ n KHz, X is equal to 10/ n, and the length of the RAR detection window is less than or equal to Xms, the indication information is invalid indication information.
  • n is an integer greater than or equal to 1. That is, when SCS is equal to 120KHz, X is equal to 10; when SCS is equal to 240KHz, X is equal to 5; when SCS is equal to 480KHz, X is equal to 2.5; when SCS is equal to 960KHz, X is equal to 1.25; when SCS is equal to 1920KHz, X is equal to 0.625; When SCS is equal to 3840KHz, X is equal to 0.3125 and so on, and so on.
  • the indication information can occupy k bits, and the value of these k bits is used to indicate that the RO used by the terminal is located within the j th 10*T/2 t ms of the 10 ⁇ 2 kt ms frame, Where T is a positive integer, k is an integer greater than or equal to 1, j is an integer greater than or equal to 1, and t is an integer greater than or equal to 1.
  • the value of k and SCS can satisfy: SCS is equal to 120 ⁇ n KHz, n is equal to 2 t , and n is an integer greater than or equal to 1.
  • the indication information can be used to distinguish RO in the first 5ms or the second 5ms of a 10ms frame; when SCS is equal to 480KHz, n is equal to 4. t is equal to 2 and k is equal to 2. The indication information can be used to distinguish which of the four 2.5ms of the 10ms frame the RO is located in.
  • SCS is equal to 960KHz, n is equal to 8, t is equal to 3, and k is equal to 3.
  • the indication information can be used to distinguish which of the eight 1.25ms of the 10ms frame RO is located in 1.25ms; when SCS is equal to 1920KHz, n is equal to 16, t is equal to 4, and k is equal to 4.
  • the indication information can be used to distinguish RO in the 10ms frame. Which of the 16 0.625ms is 0.625ms; when SCS is equal to 3840KHz, n is equal to 32, t is equal to 5, and k is equal to 5.
  • the indication information can be used to distinguish which of the 32 0.3125ms of the 10ms frame the RO is located at 0.3125ms, etc. , And so on. It should be noted that the embodiment of the present application does not limit the value of k.
  • SCS is equal to 240KHz
  • n is equal to 2
  • t is equal to 1
  • k is equal to 3.
  • the indication information can be used to distinguish that RO is located at the first of the 40ms frame. 20ms or the second 20ms.
  • the MSGB design in the prior art is used.
  • the MSGB sent by the network device to the terminal may include The indication information that occupies k bits can indicate the specific position of the RO used by the terminal in the 10ms frame. Then, for the terminal, it can be guaranteed to receive one RAR in one RO, which can guarantee the reception of a certain RAR.
  • the indication information when the SCS is less than 240KHz, the indication information is invalid.
  • the indication information may be valid or invalid. Specifically, it is related to the length of the MSGB detection window. That is, whether the indication information is valid is related to the length of the detection window of SCS and MSGB.
  • the indication information is valid indication information
  • the indication information is invalid indication information
  • the indication information is valid indication information; when SCS is equal to 120 ⁇ n KHz, X is equal to 10/n , and the length of the detection window of MSGB is greater than X ms, the indication information is valid indication information; when SCS is equal to 120 ⁇ n KHz, X is equal to 10/n , And the length of the detection window of the MSGB is less than or equal to X ms, the indication information is invalid indication information.
  • n is an integer greater than or equal to 1. That is, when SCS is equal to 120KHz, X is equal to 10; when SCS is equal to 240KHz, X is equal to 5; when SCS is equal to 480KHz, X is equal to 2.5; when SCS is equal to 960KHz, X is equal to 1.25; when SCS is equal to 1920KHz, X is equal to 0.625; When SCS is equal to 3840KHz, X is equal to 0.3125 and so on, and so on.
  • the terminal descrambles the random access response message based on the RNTI, and determines the position of the RO in the frame based on the indication information in the random access response message.
  • the terminal descrambles the received RAR based on the RA-RNTI, and determines the position of the RO in the frame based on the indication information in the RAR, so as to determine the RAR corresponding to the RO, that is, the correct RAR.
  • the terminal descrambles the received MSGB based on the MSGB-RNTI, and based on the indication information in the MSGB, determines the position of the RO in the frame, thereby determining the MSGB corresponding to the RO, that is, the correct MSGB.
  • the indication information is carried by the PDCCH or PDSCH in the RAR or MSGB to indicate the location of the RO corresponding to the RAR or MSGB.
  • the design of RA-RNTI or MSGB-RNTI in the prior art can be used, which is compatible with the prior art. better.
  • the methods provided by the embodiments of the present application are introduced from the perspective of the terminal, the network device, and the interaction between the terminal and the network device, respectively.
  • the terminal and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 can correspondingly implement the functions or steps implemented by the terminal or the network device in the foregoing method embodiments.
  • the communication device may include a sending unit 1110, a receiving unit 1120, and a processing unit 1130, which are indicated by dashed lines in FIG. 11.
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the sending unit 1110, the receiving unit 1120, and the processing unit 1130 may be coupled with the storage unit.
  • the processing unit 1130 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • Each of the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the sending unit 1110 and the receiving unit 1120 may be integrated, which is called a transceiver unit.
  • the communication device 1100 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication device 1100 may be a terminal, or a component (for example, a chip or a circuit) applied to the terminal.
  • the sending unit 1110 and the receiving unit 1120 can be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 6, such as S601 and S603, or S601, S603 and S603a in the embodiment shown in FIG. , And/or other processes used to support the technology described herein.
  • the processing unit 1130 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 6 except for receiving and sending operations, such as S604 in the embodiment shown in FIG.
  • the sending unit 1110 and the receiving unit 1120 may be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 9, such as S901 and S903 in the embodiment shown in FIG. 9, and/or used to Other processes that support the technology described in this article.
  • the processing unit 1130 is used to perform all operations performed by the terminal in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S904 in the embodiment shown in FIG. 9, and/or used to support this text.
  • Other processes of the described technique are used to perform all operations performed by the terminal in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S904 in the embodiment shown in FIG. 9, and/or used to support this text.
  • the sending unit 1110 is used to send a random access preamble to the network device; the receiving unit 1120 is used to receive a random access response message from the network device; the processing unit 1130 is used to respond to a random access response message based on RNTI Perform descrambling, where RNTI is related to the subcarrier spacing SCS.
  • RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where C and k are integers, and the value of Y is related to SCS.
  • RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id sends the index of the first OFDM symbol in the time slot where the RO occupied by the random access preamble is located
  • t_id is the index in the 10ms frame of the first time slot where the RO is located
  • f_id is the RO in frequency
  • the index of the domain, ul_carrier_id is the uplink carrier index; a and b are coefficients, a is greater than or equal to 1, b is greater than or equal to 1, and Z is a constant, and Z is greater than or equal to 0.
  • the receiving unit 1220 is further configured to:
  • the configuration information is used to indicate the length of the detection window of the random access response message, where:
  • the sending unit 1110 is configured to send a random access preamble to the network device;
  • the receiving unit 1120 is configured to receive a random access response message from the network device, and the random access response message includes indication information.
  • the information is used to indicate the position of the RO used by the terminal in the frame;
  • the processing unit 1130 is used to descramble the random access response message based on the RNTI, and determine the position of the RO in the frame based on the indication information.
  • the random access response message includes RAR
  • the indication information occupies m bits
  • the value of m bits is used to indicate that the RO is located in the i-th 10*T/2 m ms of the 10*T ms frame.
  • T is a positive integer
  • i is greater than or equal to 1.
  • the value of m and the subcarrier SCS satisfy the following relationship:
  • SCS is equal to 120 ⁇ n KHz, n is equal to 2 m , n is greater than or equal to 1, and m is greater than or equal to 0.
  • the indication information is valid indication information when the following conditions are met:
  • SCS is equal to 120 ⁇ n KHz
  • X is equal to 10/n
  • the length of the detection window of RAR is greater than or equal to Xms
  • n is an integer greater than or equal to 1.
  • the random access response message includes message B, indicating that the information occupies k bits, and the value of the k bits is used to indicate that the RO is located at the jth 10*T/2 of the 10 ⁇ 2 kt ms frame.
  • T is a positive integer
  • k, t, and j are all integers greater than or equal to 1.
  • SCS is equal to 120 ⁇ n KHz, n is equal to 2 t , and n is an integer greater than or equal to 1.
  • the indication information is valid indication information when the following conditions are met:
  • SCS is equal to 120 ⁇ n KHz
  • X is equal to 10/n
  • the length of the detection window of message B is greater than or equal to X ms
  • n is an integer greater than or equal to 1.
  • the indication information is carried in the DCI transmitted on the PDCCH of the random access response message; or, the indication information is carried in the PDSCH of the random access response message.
  • the length of the detection window of the RAR can also be determined according to the calculation formula of RNTI, and at least one of Y and Z.
  • the network device indicates the RNTI calculation formula, at least one of Y and Z to the terminal, and the terminal determines the length of the detection window and/or the first time interval according to the RNTI calculation formula, at least one of Y and Z, that is After the terminal sends the preamble, the time interval from which the RAR starts to be detected within the detection window.
  • the method of determining the length of the detection window and/or the first time interval according to the calculation formula of RNTI, at least one of Y and Z is different from the method of determining the calculation formula of RNTI according to the length of the detection window, and at least one of Y and Z.
  • One method, the two are dual, it can also be considered that the process of the latter is opposite to the former, so I won't repeat it here.
  • the communication apparatus 1100 can correspondingly implement the behaviors and functions of the network device in the foregoing method embodiments.
  • the communication apparatus 1100 may be a network device, or a component (for example, a chip or a circuit) applied to the network device.
  • the sending unit 1110 and the receiving unit 1120 may be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG. 6, such as S601 and S603 in the embodiment shown in FIG. 6, and/or for Other processes that support the technology described in this article.
  • the processing unit 1130 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 6 except for receiving and sending operations, such as S602 in the embodiment shown in FIG.
  • the sending unit 1110 and the receiving unit 1120 may be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG. 9, such as S901 and S903 in the embodiment shown in FIG. 9, and/or use To support other processes of the technology described in this article.
  • the processing unit 1130 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S902 in the embodiment shown in FIG. 9, and/or for supporting Other processes of the technique described in this article.
  • the receiving unit 1120 is configured to receive the random access preamble from the terminal; the processing unit 1130 is configured to scramble the random access response message based on the RNTI, where the RNTI is related to the subcarrier interval SCS; the sending unit 1110 is used to send the scrambled random access response message to the terminal.
  • RNTI satisfies the following formula:
  • RNTI C+k ⁇ Y, where C and k are integers, and the value of Y is related to SCS.
  • RNTI satisfies the following formula:
  • RNTI 1+a*s_id+14 ⁇ b*t_id+14 ⁇ Y ⁇ f_id+14 ⁇ Y ⁇ 8 ⁇ ul_carrier_id+Z;
  • s_id is the index of the first orthogonal frequency division multiplexing OFDM symbol in the time slot where the random access opportunity RO occupied by the random access preamble is sent
  • t_id is the first time slot where the RO is located in the 10ms frame
  • F_id is the index of the RO in the frequency domain
  • ul_carrier_id is the index of the uplink carrier
  • a and b are coefficients, a is greater than or equal to 1, b is greater than or equal to 1, and Z is a constant, and Z is greater than or equal to 0.
  • the sending unit 1110 is further configured to:
  • the configuration information is used to indicate the length of the detection window of the random access response message, where:
  • the receiving unit 1120 is used to receive the random access preamble from the terminal; the processing unit 1130 is used to scramble the random access response message based on the RNTI; the sending unit 1110 is used to scramble the random access response message
  • the access response message is sent to the terminal, where the random access response message includes indication information, and the indication information is used to indicate the position of the RO used by the terminal in the frame.
  • the random access response message includes RAR
  • the indication information occupies m bits
  • the value of m bits is used to indicate that the RO is located in the i-th 10*T/2 m ms of the 10*T ms frame.
  • T is a positive integer
  • i is greater than or equal to 1.
  • the value of m and the subcarrier SCS satisfy the following relationship:
  • SCS is equal to 120 ⁇ n KHz, n is equal to 2 m , n is greater than or equal to 1, and m is greater than or equal to 0.
  • the indication information is valid indication information when the following conditions are met:
  • SCS is equal to 120 ⁇ n KHz
  • X is equal to 10/n
  • the length of the detection window of RAR is greater than or equal to X ms
  • n is an integer greater than or equal to 1.
  • the random access response message includes message B, indicating that the information occupies k bits, and the value of the k bits is used to indicate that the RO is located at the jth 10*T/2 of the 10 ⁇ 2 kt ms frame.
  • T is a positive integer
  • k, t, and j are all integers greater than or equal to 1.
  • SCS is equal to 120 ⁇ n KHz, n is equal to 2 t , and n is an integer greater than or equal to 1.
  • the indication information is valid indication information when the following conditions are met:
  • SCS is equal to 120 ⁇ n KHz
  • X is equal to 10/n
  • the length of the detection window of message B is greater than or equal to X ms
  • n is an integer greater than or equal to 1.
  • the indication information is carried in the DCI transmitted on the PDCCH of the random access response message; or, the indication information is carried in the PDSCH of the random access response message.
  • Figure 12 shows a communication device 1200 provided by an embodiment of this application, where the communication device 1200 may be a terminal, which can implement the function of the terminal in the method provided in this embodiment of the application, or the communication device 1200 may be a network device, which can Realize the function of the network device in the method provided in the embodiment of this application; the communication device 1200 may also be a device that can support the terminal to implement the corresponding function in the method provided in the embodiment of this application, or can support the network device to implement the function provided in the embodiment of this application The device corresponding to the function in the method.
  • the communication device 1200 may be a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1200 may include a communication interface 1210 for communicating with other devices through a transmission medium, so that the device used in the communication device 1200 can communicate with other devices.
  • a communication interface 1210 for communicating with other devices through a transmission medium, so that the device used in the communication device 1200 can communicate with other devices.
  • the communication device is a terminal
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the communication interface 1210 may specifically be a transceiver.
  • the foregoing sending unit 1110 and receiving unit 1120 may be transceivers, and the transceivers are integrated in the communication device 1200 to form a communication interface 1210.
  • the communication device 1200 further includes at least one processor 1220, and the processor 1220 can use the communication interface 1210 to send and receive data for implementing or supporting the communication device 1200 to implement the functions of the terminal or network device in the method provided in the embodiments of the present application.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication interface 1210 can be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 6, such as S601 and S603, or S601, S603 and S603a in the embodiment shown in FIG. 6, and/or Other processes used to support the technology described in this article.
  • at least one processor 1220 is configured to perform all operations except for receiving and sending operations performed by the terminal in the embodiment shown in FIG. 6, such as S604 in the embodiment shown in FIG. 6, and/or for Other processes that support the technology described in this article.
  • the communication interface 1210 may be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 9, such as S901 and S903 in the embodiment shown in FIG. 9, and/or used to support the descriptions described herein.
  • At least one processor 1220 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S904 in the embodiment shown in FIG. 9, and/or for Other processes that support the technology described in this article.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the network equipment in the foregoing method embodiments.
  • the communication interface 1210 can be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG. 6, such as S601 and S603 in the embodiment shown in FIG. 6, and/or used to support the descriptions described herein. Other processes of the technology.
  • at least one processor 1220 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 6 except for receiving and sending operations, such as S602 in the embodiment shown in FIG. 6, and/or using To support other processes of the technology described in this article.
  • the communication interface 1210 can be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG.
  • At least one processor 1220 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S902 in the embodiment shown in FIG. 9, and/or using To support other processes of the technology described in this article.
  • the communication device 1200 may further include at least one memory 1230 for storing program instructions and/or data.
  • the memory 1230 and the processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230 to operate.
  • the processor 1220 may execute program instructions and/or data stored in the memory 1230, so that the communication device 1200 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the aforementioned communication interface 1210, the processor 1220, and the memory 1230 is not limited in the embodiment of the present application.
  • the memory 1230, the processor 1220, and the communication interface 1210 are connected by a bus 1240.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 12 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor 1220 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1230 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory).
  • a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), etc.
  • a volatile memory volatile memory
  • RAM random-access memory
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be a terminal or a network device or a circuit, or a chip applied to a terminal or a network device, or other combination devices, components, etc. that have the functions of the foregoing terminal or network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input and output interface of the chip system
  • the processing module may be a processor of the chip system.
  • FIG. 13 shows a schematic structural diagram of a simplified communication device. It is easy to understand and easy to illustrate.
  • the communication device uses a base station as an example of a network device.
  • the base station may be applied to the system shown in FIG. 4 or FIG. 5, and may be the network device in FIG. 4 or FIG. 5, which performs the functions of the network device in the foregoing method embodiment.
  • the communication device 1300 may include one or more radio frequency units, such as a remote radio unit (RRU) 1310 and one or more active antenna units (AAU) (also known as digital units, digital units). unit, DU) 1320.
  • RRU remote radio unit
  • AAU active antenna units
  • unit, DU unit
  • AAU can be considered as a combination of a baseband unit (BBU) and an antenna, that is, a structure that integrates radio frequency functions with the antenna.
  • BBU baseband unit
  • the antenna port of the AAU can be connected to an external RRU or a built-in radio frequency unit.
  • the RRU 1310 may be called a communication module, which corresponds to the sending unit 1110 and the receiving unit 1120 in FIG. 11.
  • the communication module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include At least one antenna 1313 and radio frequency unit 1312.
  • the RRU 1310 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the AAU 1320 part is mainly used for baseband processing, base station control, and so on.
  • the RRU 1310 and the AAU 1320 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the AAU 1320 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1130 in FIG. 11, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the AAU processing module
  • the AAU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the AAU 1320 may be composed of one or more single boards, and multiple single boards may jointly support a single access standard radio access network (such as an LTE network), or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the AAU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is used to control the base station to perform necessary actions, for example, it is used to control the base station to perform the operation process of the network device in the above method embodiment, for example, the processor 1322 is used to perform the embodiment shown in FIG. 6 or FIG.
  • the memory 1321 and the processor 1322 may serve one or more single boards.
  • the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor.
  • necessary circuits can be provided on each board.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal or a circuit.
  • the communication device may be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • Figure 14 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the vehicle-mounted unit, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the device, and the processor with the processing function can be regarded as the processing unit of the device.
  • the device includes a transceiver unit 1410 and a processing unit 1420.
  • the transceiving unit 1410 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1420 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1410 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1410 as the sending unit, that is, the transceiving unit 1410 includes a receiving unit and a sending unit.
  • the transceiving unit 1410 may also be called a transceiver, a transceiver, or a transceiving circuit or the like.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1410 is used to perform sending and receiving operations on the terminal side in the foregoing method embodiment, and the processing unit 1420 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the transceiver unit 1410 may be used to perform S601 and S603, or S601, S603, and S603a in the embodiment shown in FIG. 6, and/or other processes used to support the technology described herein. .
  • the transceiver unit 1410 may be used to execute S901 and S903 in the embodiment shown in FIG. 9 and/or other processes used to support the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device can perform functions similar to the processing unit 1130 in FIG. 11.
  • the device includes a processor 1510, a data sending processor 1520, and a data receiving processor 1530.
  • the processing unit 1130 in the foregoing embodiment may be the processor 1510 in FIG. 15 and completes corresponding functions.
  • the processing unit 1130 in the foregoing embodiment may be the sending data processor 1520 and/or the receiving data processor 1530 in FIG. 15.
  • the channel encoder and the channel decoder are shown in FIG. 15, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the communication device 1600 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1603 and an interface 1604.
  • the processor 1603 completes the functions of the aforementioned processing unit 1130
  • the interface 1604 completes the aforementioned functions of the sending unit 1110 and the receiving unit 1220.
  • the modulation subsystem includes a memory 1606, a processor 1603, and a program stored in the memory 1606 and running on the processor.
  • the terminal device in the above method embodiment is implemented. method.
  • the memory 1606 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the communication device 1600, as long as the memory 1606 can be connected to the The processor 1603 is fine.
  • the embodiments of the present application also provide a communication system.
  • the communication system includes network equipment and terminals, or may also include more terminals and access network equipment.
  • the communication system includes a network device and a terminal for realizing the above-mentioned related functions of FIG. 6 or FIG. 9.
  • the network devices are respectively used to implement the functions of the above-mentioned network part of FIG. 6 or FIG. 9.
  • the terminal is used to implement the functions of the terminal related to FIG. 6 or FIG. 9 described above.
  • the network device may execute S601, S602, and S603 in the embodiment shown in FIG. 6, and the terminal may execute S601, S602, and S604 in the embodiment shown in FIG. 6.
  • the network device may execute S901, S902, and S903 in the embodiment shown in FIG. 9, and the terminal may execute S901, S902, and S904 in the embodiment shown in FIG. 9.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal or network device in FIG. 6 or FIG. 9.
  • An embodiment of the present application also provides a computer program product, including computer program code, when the computer program code runs on a computer, the computer executes the method executed by the terminal or network device in FIG. 6 or FIG. 9.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, which is used to implement the functions of the terminal or network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application also provides a communication device, including a processor and an interface; the processor is configured to execute the information processing method described in any of the foregoing method embodiments.
  • the aforementioned communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • At least one means one or more
  • plural means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first message and the second message are only for distinguishing different messages, but do not indicate the difference in priority, sending order, or importance of the two messages.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by the computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (digital video disc, DVD for short)), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法及通信装置,其中随机接入方法包括:终端向网络设备发送随机接入前导码;所述终端接收来自所述网络设备的随机接入响应消息,基于无线网络临时标识RNTI对所述随机接入响应消息进行解扰,其中,所述RNTI与SCS相关。该方法中,RNTI与SCS相关,在SCS大于120KHz的情况下,可保证终端在随机接入响应的检测窗内接收的一个RAR对应一个RO,即保证终端接收正确的RAR。

Description

一种随机接入方法及通信装置 技术领域
本申请涉及通信技术领域,尤其涉及一种随机接入方法及通信装置。
背景技术
当终端设备期望向网络设备发送上行数据时,终端设备可以发起随机接入(random access,RA)。具体的,终端设备可在随机接入信道时机(random access channel,(RACH)occasion,RO)中向网络设备发送随机接入前导(preamble),并在发送了preamble之后,在一段时间内接收随机接入响应(random access response,RAR)。该段时间称为RAR的检测窗,或者RAR检测窗。所述RAR可由终端对应的随机接入无线网络临时标识符(random access radio network temporary identifier,RA-RNTI)加扰。RA-RNTI主要用来区分终端发送preamble占用的RO,RO包括时域资源和频域资源,以保证终端在发送preamble的RO上接收对应的RAR。
当前通信系统,例如长期演进(long term evolution,LTE)系统应用于小于52.6GHz的载波频段。由随机接入前导码生成的随机接入信号的子载波宽度可以为1.25KHz、5KHz、15KHz、30KHz、60KHz、120KHz,数据的子载波宽度可以为15KHz、30KHz、60KHz、120KHz。而第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统可应用于大于或等于52.6GHz的载波频段,由于载波频率更高,所以支持更大的子载波间隔,例如可支持的SCS包括240KHz、480KHz、960KHz、1920KHz、3840KHz。这种情况下,如果按照现有技术中RA-RNTI的设计,相同的RA-RNTI可能对应不同的RO,也就是相同的RAR对应不同的RO,这就导致一个终端可能会接收属于另一个终端的RAR,即导致终端接收错误的RAR。
发明内容
本申请提供一种随机接入方法及通信装置,在大子载波间隔的应用场景中,能够保证终端接收正确的RAR。
第一方面,提供一种随机接入方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端向网络设备发送随机接入前导码;
终端接收来自网络设备的随机接入响应消息,基于无线网络临时标识RNTI对该随机接入响应消息进行解扰,其中,所述RNTI与子载波间隔SCS相关。
在本申请实施例中,RNTI与SCS相关,不同的SCS,RNTI的设计也不同,可保证SCS大于或等于240KHz的情况下,不同的RO对应的RNTI不同,即保证终端接收正确的RAR。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,s_id表示发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交 频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
例如RNTI为RA-RNTI,a和b可等于1,Z可等于0;又例如RNTI为MSGB-RNTI,a和b可等于1,Z可等于14×80×8×2,可尽量不改变现有技术中RNTI的设计结构,有利于兼容现有技术。
作为所述RNTI的一种可替换的设计,所述RNTI满足如下公式:
RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
其中Y的取值与SCS相关,例如当所述SCS等于120KHz时,Y的取值为80,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2。
可见在SCS等于120KHz时,RNTI沿用现有技术中RNTI的设计,在SCS大于或等于240KHz,也尽量不改变RNTI的设计结构。应理解,在a的取值为1,b的取值为1,Z的取值为0的情况下,上述Y的可能的取值,可保证不同的RO对应的RNTI不同;或者,在a的取值为1,b的取值为1,Z的取值为0或14×80×8×2的情况下,上述Y的可能的取值,可保证不同的RO对应的RNTI不同。当然,上述列举的a、b和Z的取值只是举例,本申请实施例不限制a、b和Z的取值。
在一种可能的实现方式中,所述方法还包括:
所述终端接收来自所述网络设备的配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于5ms,Y的取值为80;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80。
在另一种可能的实现方式中,所述方法还包括:
所述终端接收来自所述网络设备的配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于5ms,Y的取值为160;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于2.5ms,Y的取值为320;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于1.25ms,Y的取值为640;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.625ms,Y的取值为1280;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.3125ms,Y的取值为2560。
该方案通过配置终端接收RAR的检测窗的长度,在SCS大于或等于240KHz的情况下,即使沿用现有技术中RNTI的设计,也能够保证终端接收正确的RAR。同理,在a的取值为1,b的取值为1,Z的取值为0的情况下,上述检测窗的长度和Y的可能的取值,可保证不同的RO对应的RNTI不同;或者,在a的取值为1,b的取值为1,Z的取值为0或14×80×8×2的情况下,上述检测窗的长度和Y的可能的取值,可保证不同的RO对应的RNTI不同。
第二方面,提供另一种随机接入方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端向网络设备发送随机接入前导码;
所述终端接收来自所述网络设备的随机接入响应消息,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
所述终端基于无线网络临时标识RNTI解扰所述随机接入响应消息,基于所述指示信息,确定所述RO在帧中的位置。
与第一方面的技术方案不同,可沿用现有技术中RNTI的设计,与现有技术兼容性更好。在SCS大于或等于240KHz的情况下,即存在一个RO对应两个RAR的情况下,该方案通过随机接入响应消息携带指示信息,指示随机接入响应消息对应的RO在帧中的位置,也能够保证终端接收正确的RAR。
其中RO在帧中的位置与SCS和/或随机接入响应消息的检测窗的长度相关。随机接入响应消息不同,指示信息的实现方式也有所不同。例如所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,所述i为大于或等于1。
其中,所述m的取值与子载波SCS满足如下关系:
所述SCS等于120×nKHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。例如:当SCS等于240KHz,m等于1,指示信息可用来区分RO位于10ms帧的第1个5ms或第2个5ms;当SCS等于480KHz时,m等于2,指示信息可用来区分RO位于10ms帧的4个2.5ms中的哪个2.5ms;当SCS等于960KHz时,m等于3,指示信息可用来区分RO位于10ms帧的8个1.25ms中的哪个1.25ms;当SCS等于1920KHz时,m等 于4,指示信息可用来区分RO位于10ms帧的16个0.625ms中的哪个0.625ms;当SCS等于3840KHz时,m等于5,指示信息可用来区分RO位于10ms帧的32个0.3125ms中的哪个0.3125ms等等,以此类推。
进一步地,在SCS大于或等于240KHz的情况下,指示信息有效。在一种可能的实现方式中,当所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述指示信息为有效的指示信息,其中,所述n为大于或等于1的整数。
应理解,当SCS小于或等于120KHz,沿用现有技术中的RA-RNTI不会出现一个RO对应多个RAR,所以即使网络设备向终端发送了指示信息,对于终端而言也是无用的,此时可认为该指示信息是无效的。同理,在SCS大于或等于240KHz的情况下,如果RAR的检测窗小于Xms,也不会出现一个RO对应多个RAR,所以此时指示信息也可以认为是无效的,终端不需要解析,降低终端的复杂度。
如果所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k大于或等于1。
其中,所述t的取值与所述SCS满足如下关系:
所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
例如:当SCS等于240KHz,n等于2,t等于1,k可等于2,该指示信息可用来区分RO位于10ms帧的第1个5ms或第2个5ms;当SCS等于480KHz时,n等于4,t等于2,k可等于2,该指示信息可用来区分RO位于10ms帧的4个2.5ms中的哪个2.5ms;当SCS等于960KHz时,n等于8,t等于3,k可等于3,该指示信息可用来区分RO位于10ms帧的8个1.25ms中的哪个1.25ms;当SCS等于1920KHz时,n等于16,t等于4,k可等于4,该指示信息可用来区分RO位于10ms帧的16个0.625ms中的哪个0.625ms;当SCS等于3840KHz时,n等于32,t等于5,k可等于5,该指示信息可用来区分RO位于10ms帧的32个0.3125ms中的哪个0.3125ms等等,以此类推。
在一种可能的实现方式中,在所述SCS等于120×n KHz,所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms的情况下,所述指示信息为有效的指示信息,其中,所述n为大于或等于1的整数。
应理解,与RAR类似,当SCS小于或等于120KHz,沿用现有技术中的MSGB-RNTI不会出现一个RO对应多个MSGB,所以即使网络设备向终端发送了指示信息,对于终端而言也是无用的,此时可认为该指示信息是无效的。同理,在SCS大于或等于240KHz的情况下,如果RAR的检测窗小于Xms,也不会出现一个RO对应多个MSGB,所以此时指示信息也可以认为是无效的,终端不需要解析,降低终端的复杂度。
在一种可能的实现方式中,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
第三方面,提供一种随机接入方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备接收来自终端的随机接入前导码;
所述网络设备基于无线网络临时标识RNTI对随机接入响应消息进行加扰,并将加扰 后的所述随机接入响应消息发送给所述终端,其中,所述RNTI与子载波间隔SCS相关。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
在一种可能的实现方式中,当所述SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2。
在一种可能的实现方式中,所述方法还包括:
所述网络设备向所述终端发送配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于5ms,Y的取值为80;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80;
或者,
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于5ms,Y的取值为160;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于2.5ms,Y的取值为320;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于1.25ms,Y的取值为640;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2 时,所述检测窗的长度大于0.625ms,Y的取值为1280;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.3125ms,Y的取值为2560。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,提供另一种随机接入方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
网络设备接收来自终端的随机接入前导码;
所述网络设备基于无线网络临时标识RNTI对随机接入响应消息进行加扰,并将加扰后的所述随机接入响应消息发送给所述终端,其中,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置。
在一种可能的实现方式中,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
在一种可能的实现方式中,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,所述i为大于或等于1。
在一种可能的实现方式中,所述m的取值与子载波SCS满足如下关系:
所述SCS等于120×nKHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
在一种可能的实现方式中,所述t的取值与所述SCS满足如下关系:
所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件 实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发单元和处理单元,其中:
所述收发单元,用于向网络设备发送随机接入前导码,以及接收来自所述网络设备的随机接入响应消息;
所述处理单元,用于基于无线网络临时标识RNTI对所述随机接入响应消息进行解扰,其中,所述RNTI与子载波间隔SCS相关。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
在一种可能的实现方式中,当所述SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2。
在一种可能的实现方式中,所述收发单元还用于:
接收来自所述网络设备的配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于5ms,Y的取值为80;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80;
或者,
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于5ms,Y的取值为160;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于2.5ms,Y的取值为320;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于1.25ms,Y的取值为640;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.625ms,Y的取值为1280;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.3125ms,Y的取值为2560。
关于第五方面或第五方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第六方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发单元和处理单元,其中:
所述收发单元,用于向网络设备发送随机接入前导码,以及来自所述网络设备的随机接入响应,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
所述处理单元,用于基于无线网络临时标识RNTI解扰所述随机接入响应消息,基于所述指示信息,确定所述RO在帧中的位置。
在一种可能的实现方式中,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
在一种可能的实现方式中,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,所述i为大于或等于1。
在一种可能的实现方式中,所述m的取值与子载波SCS满足如下关系:
所述SCS等于120×nKHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
在一种可能的实现方式中,所述t的取值与所述SCS满足如下关系:
所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
关于第六方面或第六方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第七方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第三方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发单元和处理单元,其中:
所述收发单元,用于接收来自终端的随机接入前导码;
所述处理单元,用于基于无线网络临时标识RNTI对随机接入响应消息进行加扰,所述RNTI与子载波间隔SCS相关;
所述收发单元,还用于将加扰后的所述随机接入响应消息发送给所述终端。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
在一种可能的实现方式中,所述RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
在一种可能的实现方式中,当所述SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2;
当所述SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2。
在一种可能的实现方式中,所述收发单元还用于:
向所述终端发送配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于5ms,Y的取值为80;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80;
或者,
当所述SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于5ms,Y的取值为160;
当所述SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于2.5ms,Y的取值为320;
当所述SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于1.25ms,Y的取值为640;
当所述SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.625ms,Y的取值为1280;
当所述SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×Y×8×2时,所述检测窗的长度大于0.3125ms,Y的取值为2560。
关于第七方面或第七方面的各种可能的实施方式所带来的技术效果,可参考对于第三方面或第三方面的各种可能的实施方式的技术效果的介绍。
第八方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第四方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发单元和处理单元,其中:
所述收发单元,用于接收来自终端的随机接入前导码;
所述处理单元,用于基于无线网络临时标识RNTI对随机接入响应消息进行加扰,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
所述收发单元,还用于将加扰后的所述随机接入响应消息发送给所述终端。
在一种可能的实现方式中,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
在一种可能的实现方式中,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,所述i为大于或等于1。
在一种可能的实现方式中,所述m的取值与子载波SCS满足如下关系:
所述SCS等于120×nKHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内, 其中T为正整数,所述k、t和j均为大于或等于1的整数。
在一种可能的实现方式中,所述t的取值与所述SCS满足如下关系:
所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
在一种可能的实现方式中,在满足如下条件的情况下,所述指示信息为有效的指示信息:
所述SCS等于120×n KHz,所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms,所述n为大于或等于1的整数。
在一种可能的实现方式中,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
关于第八方面或第八方面的各种可能的实施方式所带来的技术效果,可参考对于第四方面或第四方面的各种可能的实施方式的技术效果的介绍。
第九方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第五方面、第六方面、第七方面或第八方面中的通信装置,或者为设置在第五方面、第六方面、第七方面或第八方面中的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述方法实施例中由终端或网络设备所执行的方法。
应理解,该通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。该收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第五方面、第六方面、第七方面或第八方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,所述通信系统包括第五方面所述的通信装置和第六方面所述的通信装置。或者所述通信系统包括第七方面所述的通信装置和第八方面所述的通信装置。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端执行的方法;或实现上述各方面中由网络设备执行的方法。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由终端执行的方法被执行,或使得上述各方面中由网络设备执行的方法被执行。
上述第九方面至第十三方面及其实现方式的有益效果可以参考对第一方面或第二方面或第三方面或第四方面的方法及其实现方式的有益效果的描述。
附图说明
图1A为基于竞争的随机接入过程的流程示意图;
图1B为基于非竞争的随机接入过程的流程示意图;
图2为现有技术的RN-RNTI的一示例的应用示意图;
图3为现有技术的RN-RNTI的另一示例的应用示意图;
图4为本申请实施例适用的网络架构的一种示意图;
图5为本申请实施例提供的网络结构的另一种示意图;
图6为本申请实施例提供的随机接入方法的流程示意图;
图7为本申请实施例提供的RN-RNTI的一示例的应用示意图;
图8为本申请实施例提供的RN-RNTI的一示例的应用示意图;
图9为本申请实施例提供的随机接入方法的流程示意图;
图10为本申请实施例提供的RN-RNTI的一示例的应用示意图;
图11为本申请实施例提供的通信装置的一种结构示意图;
图12为本申请实施例提供的通信装置的另一种结构示意图;
图13为本申请实施例提供的一示例通信装置的另一种结构示意图;
图14为本申请实施例提供的另一通信装置的一种结构示意图;
图15为本申请实施例提供的另一通信装置的又一种结构示意图;
图16为本申请实施例提供的另一通信装置的再一种结构示意图。
具体实施方式
为了实现终端与网络设备之间的数据传输,终端通过随机接入过程与网络设备建立连接。所述随机接入过程包括如图1A所示的基于竞争的随机接入过程和图1B所示的基于非竞争的随机接入过程。
在图1A中,基于竞争的随机接入过程主要包括如下4个步骤,即step1-step4:
step1:终端向网络设备发送preamble(又称为消息1(message1,msg1)),以发起随机接入过程。具体的,终端可自主选择preamble,并根据接收的随机资源配置信息选择用于发送preamble的随机接入资源,以及在该随机接入资源发送preamble。所述随机接入资源包括随机接入的时间、频率资源。用于发送preamble的随机接入资源也称为一个RO。
需要说明的是,随机接入前导还可称为随机接入请求、前导、由物理随机接入信道PRACH承载的前导、RACH前导、消息1(message 1,Msg1)、或消息A(message A,MsgA)等。
preamble码是终端在物理随机接入信道中发送的实际内容。preamble码是一个(Zadoff-Chu,ZC)序列(又称为Zero-correlation sequence)。preamble码的长度可以为839或者139或者其他长度,通过不同的循环移位产生ZC序列前导用于不同的用户。
step2:网络设备向终端发送RAR消息(又称为消息2(message2,msg2))。
由于preamble的数量有限,且终端在发起随机接入时,会随机选择preamble,此时不同的终端可能会选择相同的preamble。如果网络设备检测到preamble,则发送该preamble对应的RAR。为了区分不同终端发送preamble所采用的RO,网络设备发送的RAR会采用RA-RNTI加扰。也就是网络设备在特定时间-频率资源上接收到终端发送的preamble后,基于RA-RNTI对RAR进行加扰,并将加扰后的RAR发送给终端。
加扰是指数据信号与一定的序列信号采用异或,或者两者相加之后进行模2求余,该 序列信号为加扰信号。该序列信号可以是已知的二进制序列信号,也可以是根据某些信息,例如小区标识,终端标识,随机接入无线网络临时标识等生成的序列信号。数据信息可以是对原始的数据信息比特进行编码之后的数据信息,也可以是未编码的数据信息,还可以是序列信息,例如帧头的前导信息,PDCCH中的DCI信息,PDCCH中的CRC校验信息等。
应理解,终端发起随机接入时,需要确定发送随机接入信号时的RO时间位置、RO频率位置、RO的索引和preamble索引中的至少一项或多项。终端可根据preamble所在RO的时间位置、RO的频率位置、RO的索引和preamble索引中的至少一项确定该RA-RNTI。基站可采用RA-RNTI对RAR加扰,也可以认为基站采用RA-RNTI对消息2对应的PDCCH或者RAR对应的PDCCH中携带的DCI进行加扰。基站检测preamble时,可以获取preamble所在RO的时间位置、RO的频率位置、preamble索引、RO的索引信息中的一项或者多项,然后确定RA-RNTI,向终端发送RAR。终端设备根据RA-RNTI监听RAR相应的PDCCH的时间频率位置,并接收RAR相应的PDCCH和PDSCH。需要说明的是,在本申请实施例中,对RAR进行加扰可以认为是对消息2进行加扰;或者对RAR进行加扰可以认为是对消息2对应的PDCCH进行加扰;或者对RAR进行加扰可以认为是对消息2对应的PDCCH中的DCI进行加扰;又或者对RAR进行加扰可以认为是对消息2对应的PDCCH中的DCI的循环冗余校验(cyclic redundancy check,CRC)字段进行加扰。
应理解,该消息2中携带分配给终端的无线网络临时标识(radio network temporary identifier,RNTI)。该消息2还可包括物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH),其中PDCCH用于调度PDSCH。PDSCH中包括了终端用于发送消息3(message3,msg3)的时频资源位置、调制编码方式等配置信息。
终端在发送preamble之后间隔一段时间(例如第一时间间隔)开始在RAR检测窗监测RAR。第一时间间隔由3GPP协议定义,例如在LTE系统,RAR检测窗监测的起始时间为终端发送preamble的最后一个子帧(sub-frame)+3个子帧(第一时间间隔);在NR系统中,RAR检测窗监测的起始时间为终端发送preamble的最后一个符号(symbol)+某个固定时间(第一时间间隔)。终端接收RAR后,通过自身的RA-RNTI对接收的RAR进行解扰,以确定所接收的RAR是否是网络设备发送给自己的RAR。如果终端接收的RAR是属于自己的,那么终端会在消息2指定的资源上发送消息3。
step3:终端根据消息2的配置向网络设备发送消息3,该消息3使用RAR中的RNTI进行加扰。
为了区分不同的终端,终端会在消息3中携带能够唯一标识终端的标识,例如消息3可携带小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),或者也可以携带系统架构演进临时移动用户识别(system architecture evolution temporary mobile subscriber identit,S-TMSI)。
step4:网络设备向终端发送冲突解决(contention resolution)消息(又称为消息4(message4,msg4))。
冲突解决消息可用于指示终端成功接入,该冲突解决消息携带有终端的标识,以完成竞争解决。
在图1B中,基于非竞争的随机接入过程主要包括如下3个步骤,即step0-step2:
Step0:网络设备向终端发送preamble分配信息。
网络设备可确定preamble,并通过preamble分配信息通知给终端。由于preamble是由网络设备分配,所以无需终端自主选择,可以避免与其他终端的竞争。
step1:终端向网络设备发送preamble(又称为消息1(message1,msg1)),以发起随机接入过程。
step2:网络设备向终端发送RAR消息(又称为消息2(message2,msg2))。
应理解,图1B中的step1与图1A中的step1相同,图1B中的step2与图1A中的step2相同,这里不再赘述。
除了如图1A所示的基于竞争的随机接入过程和图1B所示的基于非竞争的随机接入过程,还存在另一随机接入过程。该随机接入过程也称为2-step随机接入过程,包括:
step1:终端向网络设备发送消息A(messageA,MSGA),该消息A包括preamble和第一个数据信息。
step2:网络设备向终端发送消息B(messageB,MSGB),该消息B包括冲突解决和上行调度。
其中step1类似前述基于竞争的随机接入过程的step1和step3,step2类似前述基于竞争的随机接入过程的step2和step4,这里不再赘述。
前述的三种随机接入过程均涉及到网络设备采用RA-RNTI对发送的RAR进行加扰,以区分不同终端发送preamble所采用的RO。现有技术中,RA-RNTI满足如下公式(1):
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id   (1)
在公式(1)中,s_id是RO所在的第一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号在时隙中的索引,t_id是RO所在的第一个时隙(slot)在10ms帧中的索引,f_id是RO在频域的索引,ul_carrier_id是上行载波索引。
为了便于理解,请参见图2,为RA-RNTI的一种应用示意图。图2以子载波带宽(subcarrier space,SCS)是120KHz为例。如图2所示,10ms帧中有80个时隙(每个时隙可包括14个OFDM符号),4个RO分别为RO1、RO2、RO3和RO4。RO1、RO2、RO3和RO4对应的s_id和ul_carrier_id均为0,即s_id=0,ul_carrier_id=0,RO1和RO2对应的t_id为0,RO3和RO4对应的t_id为40,RO1对应的f_id为0,RO2对应的f_id为1,RO3对应的f_id为0,RO4对应的f_id为1。
RO1对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×0+14×80×8×0=1;
RO2对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×1+14×80×8×0=1121;
RO3对应的RA-RNTI满足:RA-RNTI=1+0+14×40+14×80×0+14×80×8×0=561;
RO4对应的RA-RNTI满足:RA-RNTI=1+0+14×40+14×80×1+14×80×8×0=1681。
类似的,如果随机接入过程是前述的2-step随机接入,MSGB的RNTI(MSGB-RNTI)满足如下公式(2):
MSGB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2    (2)
可看出公式(2)与公式(1)的区别之处在于,公式(2)比公式(1)多了一个常数,即“14×80×8×2”。该常数主要用于与基于竞争的4-step随机接入的RNTI(也就是RA-RNTI)的区分。
NR系统可以应用于大于或等于52.6GHz的载波频段,由于载波频率更高,所以支持更大的子载波间隔,例如可支持的SCS包括240/480/960/1920/3840KHz。这种情况下,如 果按照现有技术中RA-RNTI和RAR检测窗的设计,会导致终端接收的RAR对应不同的RO。
为了便于理解,下面以SCS为240KHz为例,沿用现有技术的RA-RNTI和RAR检测窗的设计,说明为何会导致终端接收的RAR对应不同的RO。
请参见图3,为RA-RNTI的一种应用示意图。图3以SCS是240KHz为例。如图3所示,10ms帧中有160个时隙,4个RO分别为RO1、RO2、RO3和RO4。RO1、RO2、RO3和RO4对应的s_id和ul_carrier_id均为0,即s_id=0,ul_carrier_id=0,RO1和RO2对应的t_id为0,RO3和RO4对应的t_id为80,RO1对应的f_id为0,RO2对应的f_id为1,RO3对应的f_id为0,RO4对应的f_id为1。
RO1对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×0+14×80×8×0=1;
RO2对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×1+14×80×8×0=1121;
RO3对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×0+14×80×8×0=1121;
RO4对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×1+14×80×8×0=2241。
可见,RO2对应的RA-RNTI和RO3对应的RA-RNTI相同,假设RO的检测窗的长度为10ms,如果终端1在RO2发送了Msg1,终端2在RO3也发送了Msg1,网络设备向终端1和终端2分别反馈RAR。由于RO2对应的RA-RNTI和RO3对应的RA-RNTI相同,网络设备反馈的RAR对应RO2和RO3,即一个RAR对应两个RO,这就可能导致终端接收的RAR是错误的。例如终端1接收RAR可能是网络设备针对RO3反馈的RAR,即终端1接收的RAR是错误的。
鉴于此,本申请实施例提供了两种技术方案,在大于120KHz的SCS的应用场景下,可保证终端接收的一个RAR对应一个RO,即保证终端接收正确的RAR。其中的一种方案是针对RNTI提供一种新的设计方案,能够使得终端在RAR的检测窗内接收的一个RAR对应一个RO;另一种方案是网络设备为终端配置RO的位置,即使沿用现有技术中RA-RNTI的设计,也能够使得终端在RAR的检测窗内接收的一个RAR对应一个RO。
本申请实施例提供的两种技术方案均可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统,如新无线(new radio,NR)系统,及下一代的通信系统,如6G系统等。当然,本申请实施例的技术方案也可以应用于其它的通信系统,只要该通信系统存在波束切换的需求即可。
参见图4,为本申请实施例适用的一种网络架构,通信系统包括网络设备和终端,网络设备和终端可以相互通信。应理解,图4中的网络架构是以一个网络设备和一个终端通信为例,在实际应用中,通信系统中网络设备和终端的数量还可以更多,网络设备和网络设备之间、或者终端和终端之间也可以相互通信。一个网络设备可以同时与多个终端通信。多个网络设备也可以同时与某个终端进行通信。
网络设备和终端进行数据传输时,网络设备可以通过控制信道,如PDCCH向终端发送控制信息,从而为终端分配数据信道,如PDSCH或物理上行共享信道(physical uplink shared channel,PUSCH)的资源。比如该控制信息可以指示数据信道的资源对应的时域符号和/或资源块(resource block,RB),网络设备和终端在该分配的资源上通过数据信道进行数据传输。其中,上述数据传输可包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备向终端发送数据,上行数据(如PUSCH携带的数据)传输可以指终端向网络设备发送数据。数据可以是广义的数据,比如可以是用户数 据,也可以是系统信息,广播信息或其他的信息等不作限定。
本申请实施例中涉及的网络设备可以称为基站,又可以称为无线接入网(radio access network,RAN)节点(或设备)。示例的,网络设备可以为下一代节点B(next-generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。本申请实施例中网络设备的名称可以是中继节点(RN),中继发送接收点(rTRP),IAB节点(IAB node)等。
本申请实施例中涉及的终端,也可称为终端设备,是用户侧的一种用于接收或发射信号的实体。终端可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车与外界(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)、用户站(customer premises equipment,CPE)、固定无线接入(fixed wireless access,FWA)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置、无人机等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化实现方式、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
请参见图5,示出了前述的网络设备和终端的另一种形式。终端10包括处理器101、 存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。网络设备20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络设备20发送传输信息。发射机2031可以用于通过天线2033向终端10发送传输控制配置信息,接收机2032可以用于通过天线2033接收终端10发送传输信息。
下面结合附图对本申请实施例提供的两种方案分别进行详细介绍。
方案一,提供RNTI的一种新的设计
请参见图6,为本申请实施例提供的一种随机接入方法的流程图。在下文的介绍过程中,以该方法应用于图4和图5所示的通信系统为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。为了便于介绍,在下文中,以该方法由网络设备和终端执行为例,也就是,以第一通信装置是终端,第二通信装置是网络设备为例。
具体的,本申请实施例提供的随机接入方法的流程描述如下。
S601、终端向网络设备发送随机接入前导码。
应理解,在随机接入过程中,终端可向网络设备发送随机接入前导码,如前述图1A或图1B中step1的相关描述,这里不再赘述。
S602、网络设备基于RNTI对随机接入响应消息进行加扰。
S603、网络设备将加扰后的随机接入响应消息发送给终端。
网络设备接收到终端发送的随机接入前导码之后,向终端发送随机接入响应消息。由于随机接入前导码的数量有限,且终端在发起随机接入时,会随机选择随机接入前导码,此时不同的终端可能会选择相同的随机接入前导码。如果网络设备检测到随机接入前导码,则发送该随机接入前导码对应的随机接入响应消息。为了区分不同终端发送随机接入前导码所采用的RO,网络设备发送的随机接入响应消息会采用RNTI加扰,这样终端基于RNTI对接收的随机接入响应进行解扰,以获得正确的随机接入响应消息。
如果SCS大于120KHz,例如SCS等于240KHz,沿用现有RNTI的设计,会导致一个随机接入响应消息对应两个RO,即终端在一个RO接收的随机接入响应消息可能是网络设备针对另一个RO反馈的随机接入响应消息,这就导致终端接收的随机接入响应消息是错误的。为此,本申请实施例针对RNTI进行设计,采用新设计的RNTI,能够保证一个随机接入响应消息对应一个RO。
在一种可能的实施方式中,RNTI与SCS的大小相关,这里SCS可以是发送Msg1的子载波宽度,也可以是随机接入响应的子载波宽度,也可以是网络设备指示的用于RNTI计算的子载波宽度,或者也可以是多个子载波宽度中的某一个子载波宽度。例如多个子载波宽度为{15KHz,发送Msg1的子载波宽度},发送Msg1的子载波宽度可以是一个或者多个值,SCS可以是{15KHz,发送Msg1的子载波宽度}中的最大宽度。再例如,多个子载波宽度为{发送Msg1的子载波宽度,发送Msg3的子载波宽度,上行初始接入部分带宽的子载波宽度},其中发送Msg1、Msg3、上行初始接入部分带宽的子载波宽度可以是一个或者多个值,SCS可以是{发送Msg1的子载波宽度,发送Msg3的子载波宽度,上行初始接入部分带宽的子载波宽度}中的最大宽度。应理解,在基于非竞争的随机接入过程中,随机接入响应消息可为RAR,RNTI为RA-RNTI;在基于竞争的随机接入过程中,随机接入 响应消息可为消息B,在下文中记为MSGB,RNTI为MSGB-RNTI。
示例性的,RA-RNTI满足公式(3):
RA-RNTI=1+s_id+14×t_id+14×Y×f_id+14×Y×8×ul_carrier_id     (3)
在公式(3)中,s_id发送随机接入前导码占用的RO所在的第一个OFDM符号在时隙中的索引,t_id是RO所在的第一个时隙在10ms帧中的索引,f_id是RO在频域的索引,ul_carrier_id是上行载波索引。
其中,Y的取值与SCS相关,例如当SCS等于120×n KHz,Y等于80×n。即当SCS等于120KHz,Y等于80;当SCS等于240KHz时,Y等于160;当SCS等于480KHz时,Y等于320;当SCS等于960KHz时,Y等于640;当SCS等于1920KHz时,Y等于1280;当SCS等于3840KHz时,Y等于2560等等,以此类推。
网络设备可基于公式(3)对RAR进行加扰,使得加扰后的RAR与RO一一对应。请参见图7,为RA-RNTI的一种应用示意图。图7以SCS等于240KHz为例。如图7所示,10ms帧中有160个时隙,4个RO分别为RO1、RO2、RO3和RO4。RO1、RO2、RO3和RO4对应的s_id和ul_carrier_id均为0,即s_id=0,ul_carrier_id=0,RO1和RO2对应的t_id为0,RO3和RO4对应的t_id为80,RO1对应的f_id为0,RO2对应的f_id为1,RO3对应的f_id为0,RO4对应的f_id为1。采用公式(3)中RA-RNTI的设计,可有:
RO1对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×160×0+14×160×8×0=1;
RO2对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×160×1+14×160×8×0=2241;
RO3对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×160×0+14×160×8×0=1121;
RO4对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×160×1+14×160×8×0=3361。
以RO对应的RAR的检测窗的长度为10ms为例,可见,图7所示的4个RO(即RO1、RO2、RO3和RO4)对应的RA-RNTI均不相同,所以在SCS大于120KHz的情况下,网络设备基于公式(3)对RAR进行加扰,可保证加扰后的一个RAR对应一个RO,即保证终端接收正确的RAR。
示例性的,MSGB-RNTI满足公式(4-a):
MSGB-RNTI=1+s_id+14×t_id+14×Y×f_id+14×Y×8×ul_carrier_id+14×80×8×2   (4-a)
示例性的,MSGB-RNTI满足公式(4-b):
MSGB-RNTI=1+s_id+14×t_id+14×Y×f_id+14×Y×8×ul_carrier_id+14×Y×8×2   (4-b)
在公式(4-a)和(4-b)中,s_id发送随机接入前导码占用的RO所在的第一个OFDM符号在时隙中的索引,t_id是RO所在的第一个时隙在10ms帧中的索引,f_id是RO在频域的索引,ul_carrier_id是上行载波索引。其中,Y的取值与SCS相关,例如当SCS等于120×n KHz,Y等于80×n。即当SCS等于240KHz时,Y等于160;当SCS等于480KHz时,Y等于320;当SCS等于960KHz时,Y等于640;当SCS等于1920KHz时,Y等于1280;当SCS等于3840KHz时,Y等于2560。
应理解,公式(4-a)和公式(3)之间的区别在于公式(4-a)比公式(3)多了一个常数“14×80×8×2”,公式(4-b)和公式(3)之间的区别在于公式(4-b)比公式(3)多了一个常数“14×Y×8×2”。该常数“14×80×8×2”或“14×Y×8×2”主要用于和基于竞争的4-step随机接入的RNTI(也就是RA-RNTI)进行区分。与公式(3)的原理类似,网络设备基于公式(4)对MSGB进行加扰,可保证加扰后的一个MSGB对应一个RO,即终端 接收正确的MSGB。
在一些实施例中,公式(3)、公式(4-a)、公式(4-b)的一种变形可为公式(5):
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z     (5)
在公式(5)中,a和b为系数,a大于或等于1,b大于或等于1,Z为常数,Z大于或等于0。应理解,公式(5)中的Y的取值与SCS相关,如前述的公式(3)和公式(4-a)。如果公式(5)中的RNTI为RA-RNTI,那么a等于1,b等于1,Z等于0;如果公式(5)中的RNTI为MSGB-RNTI,那么a等于1,b等于1,Z等于14×80×8×2。
在另一些实施例中,公式(3)和公式(4)的另一种变形可为公式(6):
RNTI=C+k×Y     (6)
在公式(3)中,C和k为整数,Y的取值与SCS相关,也就是C相当于公式(3)中的“1+s_id+14×t_id”,k相当于公式(3)中的“14×f_id+14×8×ul_carrier_id”,或者C相当于公式(4-a)中的“1+s_id+14×t_id+14×80×8×2”,k相当于公式(4-a)中的“14×f_id+14×8×ul_carrier_id”,或者C相当于公式(4-b)中的“1+s_id+14×t_id”,k相当于公式(4-b)中的“14×f_id+14×8×ul_carrier_id+14×8×2”。
在另一种可能的实施方式中,RNTI(例如RA-RNTI或MSGB-RNTI)与物理随机接入资源或者RO所在的频率范围有关,也可以认为前述公式(3)-公式(6)中的Y与物理随机接入资源或者RO所在的频率范围有关。
例如,请参见表1,为频率范围的示意表。表1以包括4个等级的频率范围为例,这4个等级的频率范围分别为FR1、FR2、FRm和FRn。
表1
Figure PCTCN2020079793-appb-000001
需要说明的是,本申请实施例对表1中的频率范围等级的数量、以及各个等级对应的X1、X2、Y1、Y2的具体取值不作限定。示例性的,X1和X2可以小于或等于24250,例如,X1为10000,X2为16000。示例性的,Y1和Y2可以大于或等于52600,例如,Y1为52600,Y2为65000,又例如,Y1为65000,Y2为85000。
在一些实施例中,当物理随机接入资源或RO所在的频率范围为FRm时,Y等于80;当物理随机接入资源或RO所在的频率范围为FRn时,Y等于160;或者当物理随机接入资源或RO所在的频率范围为FRn时,Y等于320;或者当物理随机接入资源或RO所在的频率范围为FRn时,Y等于640;或者当物理随机接入资源或RO所在的频率范围为FRn时,Y等于1280;或者当物理随机接入资源或RO所在的频率范围为FRn时,Y等于2560。或者,在另一些实施例中,当物理随机接入资源或RO所在的频率范围为FRn时,Y的取值可以由网络设备发送的配置信息确定。
当物理随机接入资源或RO所在频率范围为FR1或FR2时,网络设备可采用公式(1)或公式(2)确定各个RO和preamble对应的RNTI的取值,并采用确定的RNTI对消息2进行加扰。当物理随机接入资源或RO所在频率范围为FRm时,网络设备也可采用公式(1)或公式(2)确定各个RO和preamble对应的RNTI的取值,并采用确定的RNTI对消息2 进行加扰。当物理随机接入资源或RO所在频率范围为FRn时,网络设备可采用公式(3)-公式(6)中的任意一种公式确定各个RO和preamble对应的RNTI的取值,并采用确定的RNTI对消息2进行加扰。
或者,网络设备可确定采用上述公式(1)-公式(6)中的具体公式(也就是确定RNTI的计算方法),根据确定的公式确定各个RO和preamble对应的RNTI的取值,并将确定的公式(确定RNTI的计算方法,或者公式对应的索引)告知终端设备。终端设备根据网络设备的指示(确定RNTI的计算方法,或者公式对应的索引)确定RNTI的计算方法,并确定RNTI。
S604、终端基于RNTI对该随机接入响应消息进行解扰。
应理解,在基于非竞争的随机接入过程中,随机接入响应消息可为RAR,终端基于RA-RNTI对RAR进行解扰;在基于竞争的随机接入过程中,随机接入响应消息可为MSGB,终端基于MSGB-RNTI对MSGB进行解扰。
在RO对应的RAR的检测窗的长度是固定长度(10ms)的情况下,采用如前述的公式(3)-公式(6)可使得终端明确所接收的RAR或MSGB是否是网络设备发送给自己的。或者,在物理随机接入资源或RO所在频率范围为FR1或FR2或FRm时,通过公式(1)或公式(2),可使得终端明确所接收的RAR或MSGB是否是网络设备发送给自己的;在物理随机接入资源或RO所在频率范围为FR1或FR2或FRm时,终端可通过公式(3)-公式(6)可使得终端明确所接收的RAR或MSGB是否是网络设备发送给自己的。
在另一示例中,本申请实施例提出了该方案的一种可替换的方案,即RO对应的RAR的检测窗的长度可由网络设备配置,即RO对应的RAR的检测窗的长度可变,通过网络设备为终端指示随机接入响应消息的检测窗的长度,可保证在SCS在大于240KHz的情况下,即使沿用现有技术中RA-RNTI(即公式(1))或MSGB-RNTI(即公式(2)),也能够保证一个RAR或MSGB对应一个RO,即保证终端接收正确的RAR。
应理解,RNTI计算公式中涉及的t_id,可以是RO所在的第一个时隙在时间X中的索引;或者可以是RO所在的第一个时隙在10ms帧中的索引。
具体的,S603a、网络设备向终端发送配置信息,该配置信息用于指示随机接入响应消息的检测窗的长度。应理解,S603a可在S601之前执行。
将RO对应的RAR或MSGB的检测窗的长度记为X,在一种可能的实施方式中,X与SCS相关,例如SCS等于120×n KHz,X等于10/n ms。即当SCS等于120KHz,X等于10;当SCS等于240KHz时,X等于5;当SCS等于480KHz时,X等于2.5;当SCS等于960KHz时,X等于1.25;当SCS等于1920KHz时,X等于0.625;当SCS等于3840KHz时,X等于0.3125,n为整数,等等,以此类推。
示例性的,当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于或等于5ms,Y的取值为80;当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于5ms,Y的取值为160;或者,当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于5ms,Y的取值为80;当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于或等于5ms,Y的取值为160;
当SCS等于480KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2 或14×Y×8×2,检测窗的长度小于或等于2.5ms,Y的取值为80;当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于2.5ms,Y的取值为320;或者,当SCS等于480KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于2.5ms,Y的取值为80;当SCS等于240KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于或等于2.5ms,Y的取值为320;
当SCS等于960KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于或等于1.25ms,Y的取值为80;当SCS等于960KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于1.25ms,Y的取值为640;或者,当SCS等于960KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于1.25ms,Y的取值为80;当SCS等于960KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于或等于1.25ms,Y的取值为640;
当SCS等于1920KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于或等于0.625ms,Y的取值为80;当SCS等于1920KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于0.625ms,Y的取值为1280;或者,当SCS等于1920KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于0.625ms,Y的取值为80;当SCS等于1920KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于或等于0.625ms,Y的取值为1280;
当SCS等于3840KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于或等于0.3125ms,Y的取值为80;当SCS等于3840KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于0.3125ms,Y的取值为2560;或者,当SCS等于3840KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2,检测窗的长度小于0.3125ms,Y的取值为80;当SCS等于3840KHz时,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2,检测窗的长度大于或等于0.3125ms,Y的取值为2560。
终端接收随机接入响应消息的检测窗的长度,可在所接收的随机接入响应消息的检测窗的长度内监测网络设备发送的随机接入响应消息。网络设备发送的随机接入响应消息可采用如前述的公式(1)-公式(6)的任意一个公式对随机接入响应消息进行加扰,不管是采用哪个公式对随机接入响应消息进行加扰,均能够保证接收正确的RAR。
示例性的,请参见图8,图8以SCS等于240KHz为例。如图8所示,10ms帧中有160个时隙,4个RO分别为RO1、RO2、RO3和RO4。RO1、RO2、RO3和RO4对应的s_id和ul_carrier_id均为0,即s_id=0,ul_carrier_id=0,RO1和RO2对应的t_id为0,RO3和RO4对应的t_id为80,RO1对应的f_id为0,RO2对应的f_id为1,RO3对应的f_id为0,RO4对应的f_id为1。采用公式(1)中RA-RNTI的设计,可有:
RO1对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×0+14×80×8×0=1;
RO2对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×1+14×80×8×0=1121;
RO3对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×0+14×80×8×0=1121;
RO4对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×1+14×80×8×0=2241。
可见,RO2和RO3对应的RA-RNTI相同,但是由于SCS等于240KHz时,X等于5ms,那么终端在5ms内监测RAR,5ms要么是RO2,要么是RO3,与前述图7相同,也可保证一个RO对应一个RAR。
在另一种可能的实施方式中,X与RO所在频率范围相关。例如RO位于FR1或FR2或FRm时,X等于10ms;RO位于FRn时,X小于10ms。进一步地,X与SCS和RO所在频率范围相关。例如当SCS等于240KHz时,X等于5ms;当SCS等于480KHz时,X等于2.5ms;当SCS等于960KHz时,X等于1.25ms;当SCS等于1920KHz时,X等于0.625ms;当SCS等于3840KHz时,X等于0.3125ms等等,以此类推。本申请实施例结合RO所在的频率范围对检测窗的长度X与SCS进行关联,可以减少配置信息所需要的比特数量。
在一些实施例中,RA-RNTI或MSG-RNTI与RO所在的频率范围、子载波间隔和检测窗的长度有关。
例如RO所在的频率范围为FR1或FR2或FRm时,子载波间隔SCS取值不超过240kHz,Y的取值为80。SCS等于240KHz。检测窗的长度大于5ms,Y的取值为160,Z的取值为0或14×160×8×2;检测窗的长度小于或等于5ms,Y的取值为80,Z的取值为0或14×80×8×2。SCS小于或等于120KHz,检测窗的长度等于10ms,Y的取值为180,Z的取值为0或14×80×8×2。
再例如RO所在的频率范围为FRn时,SCS大于或等于240KHz,检测窗的长度小于或等于5ms。当SCS等于240kHz时,检测窗的长度等于5ms,Y的取值为160,Z的取值为0或14×160×8×2,当SCS等于240kHz时,检测窗的长度小于或等于2.5ms,Y的取值为80,Z的取值为0或14×80×8×2。SCS大于或等于480KHz时,检测窗的长度等于5ms,Y的取值为160,Z的取值为0或14×80×8×2或14×160×8×2,或者,SCS大于或等于480KHz时,检测窗的长度小于或等于2.5ms,Y的取值为80,Z的取值为0或14×80×8×2。
方案一中,RNTI与SCS相关,在SCS小于或等于120KHz的情况下,沿用现有技术中RA-RNTI或MSGB-RNTI的设计,在SCS大于或等于120KHz的情况下,Y的取值与SCS相关,可尽量沿用现有技术中RA-RNTI或MSGB-RNTI的设计结构,即尽量兼容现有RA-RNTI或MSGB-RNTI的设计结构,降低复杂度。
下面介绍本申请实施例提供的方案二,即沿用现有技术中RA-RNTI的设计,且网络设备为终端配置RO的位置。
请参见图9,为本申请实施例提供的一种随机接入方法的流程图。在下文的介绍过程中,以该方法应用于图4和图5所示的通信系统为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。为了便于介绍,在下文中,以该方法由网络设备和终端执行为例,也就是,以第一通信装置是终端,第二通信装置是网络设备为例。
具体的,本申请实施例提供的随机接入方法的流程描述如下。
S901、终端向网络设备发送随机接入前导码。
应理解,S901与前述的S601相同,这里不再赘述。
S902、网络设备基于RNTI对随机接入响应消息进行加扰。
S903、网络设备向终端发送随机接入响应消息,该随机接入响应消息包括指示信息,指示信息用于指示终端所采用的RO在帧中的位置。
应理解,在基于非竞争的随机接入过程中,随机接入响应消息可为RAR;在基于竞争的随机接入过程中,随机接入响应消息可为MSGB。在可能的实现方式中,指示信息可承载在RAR或MSGB的物理下行控制信道(physical downlink control channel,PDCCH)传输的下行控制信息(downlink control information,DCI);或者,指示信息可承载在RAR或MSGB的物理下行共享信道(physical downlink shared cHannel,PDSCH)。下面分别就随机接入响应消息是RAR和MSGB而言,介绍指示信息的实现方案。
在一些实施例中,RO在帧中的位置与SCS。对于RAR而言,所述指示信息可占用m个比特,该m个比特的取值用于指示RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,i为大于或等于1。在本申请实施例中,m的取值与SCS可满足:SCS等于120×nKHz,n等于2 m,n大于或等于1,m大于或等于0。
例如当SCS等于240KHz,m等于1,所述指示信息可用来区分RO位于10ms帧的第1个5ms或第2个5ms;当SCS等于480KHz时,m等于2,所述指示信息可用来区分RO位于10ms帧的4个2.5ms中的哪个2.5ms;当SCS等于960KHz时,m等于3,所述指示信息可用来区分RO位于10ms帧的8个1.25ms中的哪个1.25ms;当SCS等于1920KHz时,m等于4,所述指示信息可用来区分RO位于10ms帧的16个0.625ms中的哪个0.625ms;当SCS等于3840KHz时,m等于5,所述指示信息可用来区分RO位于10ms帧的32个0.3125ms中的哪个0.3125ms等等,以此类推。
为了便于理解,请参见图10,为RA-RNTI的一种应用示意图。图10以SCS是240KHz为例。如图10所示,10ms帧中有160个时隙,4个RO分别为RO1、RO2、RO3和RO4。RO1、RO2、RO3和RO4对应的s_id和ul_carrier_id均为0,即s_id=0,ul_carrier_id=0,RO1和RO2对应的t_id为0,RO3和RO4对应的t_id为80,RO1对应的f_id为0,RO2对应的f_id为1,RO3对应的f_id为0,RO4对应的f_id为1。网络设备采用公式(1)的RNTI对RAR进行加扰,有:
RO1对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×0+14×80×8×0=1;
RO2对应的RA-RNTI满足:RA-RNTI=1+0+14×0+14×80×1+14×80×8×0=1121;
RO3对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×0+14×80×8×0=1121;
RO4对应的RA-RNTI满足:RA-RNTI=1+0+14×80+14×80×1+14×80×8×0=2241。
虽然RO2对应的RA-RNTI和RO3对应的RA-RNTI相同,但是在该方案中,网络设备向终端发送的RAR可包括占用1bit的指示信息,该指示信息可指示终端所采用的RO在10ms帧中的位置,例如该指示信息指示终端所采用的RO,例如RO2在10ms帧中第1个5ms内,RO3在10ms帧中第2个5ms内,那么对于终端而言,一个RO对应一个RAR,可保证接收确定的RAR。
可选的,该m个比特可复用2-step随机接入过程中PDCCH的DCI中用于指示RO在40ms中的哪个10ms的2bit;或者该m个比特可复用新无线非授权频段(New Radio in Unlicensed Spectrum,NR-U)应用场景中PDCCH的DCI中用于指示RO在40ms中的哪个10ms的2bit。
可选的,当SCS小于240KHz时,该指示信息无效,也就是终端即使接收到该指示信息,也不根据该指示信息确定RO的位置。当SCS大于或等于240KHz时,该指示信息信息可能是有效的,也可能是无效的,具体的,跟RAR的检测窗的长度相关。也就是该指示信息是否有效与SCS和RAR的检测窗的长度相关。例如当RAR的检测窗的长度大于或 者等于X ms,该指示信息为有效的指示信息,当RAR的检测窗的长度小于X ms,该指示信息为无效的指示信息;或者,当RAR的检测窗的长度大于或等于X ms,该指示信息为有效的指示信息,当RAR的检测窗的长度小于或等于X ms,该指示信息为无效的指示信息。
例如,当SCS等于120×n KHz,X等于10/n,且RAR的检测窗的长度大于或者等于Xms,该指示信息为有效的指示信息;当SCS等于120×n KHz,X等于10/n,且RAR的检测窗的长度小于Xms,该指示信息为无效的指示信息。
又例如,当SCS等于120×n KHz,X等于10/n,且RAR的检测窗的长度大于或等于Xms,该指示信息为有效的指示信息;当SCS等于120×n KHz,X等于10/n,且RAR的检测窗的长度小于或等于Xms,该指示信息为无效的指示信息。
应理解,n为大于或等于1的整数。即当SCS等于120KHz,X等于10;当SCS等于240KHz时,X等于5;当SCS等于480KHz时,X等于2.5;当SCS等于960KHz时,X等于1.25;当SCS等于1920KHz时,X等于0.625;当SCS等于3840KHz时,X等于0.3125等等,以此类推。
举例来说,请继续参见图10,图10以SCS是240KHz,X=5为例。当X=5时,如果终端接收的占用m个比特的指示信息指示RAR的检测窗的长度为10ms,此时终端确定该10ms无效,终端不需要根据该指示信息确定RO在帧中的位置。
对于MSGB而言,所述指示信息可占用k个比特,这k个比特的取值用于指示终端所采用的RO位于10×2 k-t ms帧的第j个10*T/2 t ms内,其中T为正整数,k为大于或等于1的整数,j为大于或等于1的整数,t为大于或等于1的整数。k的取值与SCS可满足:SCS等于120×n KHz,n等于2 t,n为大于或等于1的整数。例如当SCS等于240KHz,n等于2,t等于1,k等于2,所述指示信息可用来区分RO位于10ms帧的第1个5ms或第2个5ms;当SCS等于480KHz时,n等于4,t等于2,k等于2,所述指示信息可用来区分RO位于10ms帧的4个2.5ms中的哪个2.5ms;当SCS等于960KHz时,n等于8,t等于3,k等于3,所述指示信息可用来区分RO位于10ms帧的8个1.25ms中的哪个1.25ms;当SCS等于1920KHz时,n等于16,t等于4,k等于4,所述指示信息可用来区分RO位于10ms帧的16个0.625ms中的哪个0.625ms;当SCS等于3840KHz时,n等于32,t等于5,k等于5所述指示信息可用来区分RO位于10ms帧的32个0.3125ms中的哪个0.3125ms等等,以此类推。需要说明的是,本申请实施例对k的取值大小不作限制,例如SCS等于240KHz,n等于2,t等于1,k等于3,所述指示信息可用来区分RO位于40ms帧的第1个20ms或第2个20ms。
与RAR类似,在SCS大于或等于240KHz的情况下,沿用现有技术中MSGB的设计,虽然存在不同的RO对应的MSGB-RNTI相同,但是在该方案中,网络设备向终端发送的MSGB可包括占用k个bit的指示信息,该指示信息可指示终端所采用的RO在10ms帧中的具体位置,那么对于终端而言,可保证在一个RO接收一个RAR,即可保证接收确定的RAR。
应理解,与RAR类似,当SCS小于240KHz时,该指示信息信息无效。当SCS大于或等于240KHz时,该指示信息信息可能是有效的,也可能是无效的,具体的,跟MSGB的检测窗的长度相关。也就是该指示信息是否有效与SCS和MSGB的检测窗的长度相关。
例如,当SCS等于120×n KHz,X等于10/n,且MSGB的检测窗的长度大于或者等 于X ms,该指示信息为有效的指示信息;当SCS等于120×n KHz,X等于10/n,且MSGB的检测窗的长度小于X ms,该指示信息为无效的指示信息。
又例如,当SCS等于120×n KHz,X等于10/n,且MSGB的检测窗的长度大于X ms,该指示信息为有效的指示信息;当SCS等于120×n KHz,X等于10/n,且MSGB的检测窗的长度小于或等于X ms,该指示信息为无效的指示信息。
应理解,n为大于或等于1的整数。即当SCS等于120KHz,X等于10;当SCS等于240KHz时,X等于5;当SCS等于480KHz时,X等于2.5;当SCS等于960KHz时,X等于1.25;当SCS等于1920KHz时,X等于0.625;当SCS等于3840KHz时,X等于0.3125等等,以此类推。
S904、终端基于RNTI解扰随机接入响应消息,基于随机接入响应消息中的指示信息,确定RO在帧中的位置。
应理解,终端基于RA-RNTI解扰所接收的RAR,并基于RAR中的指示信息,确定RO在帧中的位置,从而确定与该RO对应的RAR,即正确的RAR。同理,终端基于MSGB-RNTI解扰所接收的MSGB,并基于MSGB中的指示信息,确定RO在帧中的位置,从而确定与该RO对应的MSGB,即正确的MSGB。
方案二中,通过RAR或MSGB中的PDCCH或PDSCH携带指示信息,指示RAR或MSGB对应的RO的位置,可沿用现有技术中RA-RNTI或MSGB-RNTI的设计,与现有技术的兼容性更好。
上述本申请提供的实施例中,分别从终端、网络设备,以及终端和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图11示出了一种通信装置1100的结构示意图。该通信装置1100可以对应实现上述各个方法实施例中由终端或网络设备实现的功能或者步骤。该通信装置可以包括发送单元1110和接收单元1120,以及处理单元1130,在图11中以虚线进行示意。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。发送单元1110、接收单元1120和处理单元1130可以与该存储单元耦合,例如,处理单元1130可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成,例如发送单元1110和接收单元1120可集成,称为收发单元。
在一些可能的实施方式中,通信装置1100能够对应实现上述方法实施例中终端的行为和功能。例如通信装置1100可以为终端,也可以为应用于终端中的部件(例如芯片或者电路)。发送单元1110和接收单元1120可以用于执行图6所示的实施例中由终端所执行的全部接收或发送操作,例如图6所示的实施例中的S601和S603,或S601和S603和S603a,和/或用于支持本文所描述的技术的其它过程。其中,处理单元1130用于执行如图6所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图6所示的实施例中的S604,和/或用于支持本文所描述的技术的其它过程。或者发送单元1110和接收单元1120可以用于执行图9所示的实施例中由终端所执行的全部接收或发送操作,例如图9所示的 实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程。其中,处理单元1130用于执行如图9所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S904,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,发送单元1110用于向网络设备发送随机接入前导码;接收单元1120用于接收来自网络设备的随机接入响应消息;处理单元1130用于基于RNTI对随机接入响应消息进行解扰,其中,RNTI与子载波间隔SCS相关。
作为一种可能的实施方式,RNTI满足如下公式:
RNTI=C+k×Y,其中,C和k为整数,Y的取值与SCS相关。
作为一种可能的实施方式,RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,其中,s_id发送随机接入前导码占用的RO所在的第一个OFDM符号在时隙中的索引,t_id是RO所在的第一个时隙在10ms帧中的索引,f_id是RO在频域的索引,ul_carrier_id是上行载波索引;a和b为系数,a大于或等于1,b大于或等于1;Z为常数,Z大于或等于0。
作为一种可能的实施方式,当SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2。
作为一种可能的实施方式,接收单元1220还用于:
接收来自网络设备的配置信息,配置信息用于指示随机接入响应消息的检测窗的长度,其中,
当SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于5ms,Y的取值为80;
当SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
当SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于1.25ms,Y的取值为80;
当SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于0.625ms,Y的取值为80;
当SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于0.3125ms,Y的取值为80;
或者,
当SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,所述检测窗的长度大于5ms,Y的取值为160;
当SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,所述检测窗的长度大于2.5ms,Y的取值为320;
当SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,所述检测窗的长度大于1.25ms,Y的取值为640;
当SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,所述检测窗的长度大于0.625ms,Y的取值为1280;
当SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于0.3125ms,Y的取值为2560。
在另一些实施例中,发送单元1110用于向网络设备发送随机接入前导码;接收单元1120用于接收来自网络设备的随机接入响应消息,该随机接入响应消息包括指示信息,该指示信息用于指示终端所采用的RO在帧中的位置;处理单元1130用于基于RNTI解扰随机接入响应消息,基于指示信息,确定RO在帧中的位置。
作为一种可能的实施方式,随机接入响应消息包括RAR,指示信息占用m个比特,m个比特的取值用于指示RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,i为大于或等于1。
作为一种可能的实施方式,m的取值与子载波SCS满足如下关系:
SCS等于120×n KHz,n等于2 m,n大于或等于1,m大于或等于0。
作为一种可能的实施方式,在满足如下条件的情况下,指示信息为有效的指示信息:
SCS等于120×n KHz,X等于10/n,RAR的检测窗的长度大于或等于Xms,n为大于或等于1的整数。
作为一种可能的实施方式,随机接入响应消息包括消息B,指示信息占用k个比特,k个比特的取值用于指示RO位于10×2 k-t ms帧的第j个10*T/2 t ms内,其中T为正整数,k、t和j均为大于或等于1的整数。
作为一种可能的实施方式,k的取值与SCS满足如下关系:
SCS等于120×n KHz,n等于2 t,n为大于或等于1的整数。
作为一种可能的实施方式,在满足如下条件的情况下,指示信息为有效的指示信息:
SCS等于120×n KHz,X等于10/n,消息B的检测窗的长度大于或等于X ms,n为大于或等于1的整数。
作为一种可能的实施方式,指示信息承载在随机接入响应消息的PDCCH传输的DCI;或者,指示信息承载在随机接入响应消息的PDSCH。
需要说明的是,RAR的检测窗的长度也可以根据RNTI的计算公式、Y、Z中的至少一项确定。网络设备向终端指示RNTI的计算公式、Y、Z中的至少一项,终端根据RNTI的计算公式、Y、Z中的至少一项,确定检测窗的长度和/或第一时间间隔,也就是终端发送preamble之后距离开始在检测窗内开始检测RAR的时间间隔。应理解,根据RNTI的计算公式、Y、Z中的至少一项确定检测窗的长度和/或第一时间间隔的方法,与根据检测窗的长度确定RNTI的计算公式、Y、Z中的至少一项的方法,二者对偶,也可以认为后者与前者的过程相反,这里不再赘述。
在另一些可能的实施方式中,通信装置1100能够对应实现上述方法实施例中网络设备的行为和功能。例如通信装置1100可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路)。发送单元1110和接收单元1120可以用于执行图6所示的实施例中由网 络设备所执行的全部接收或发送操作,例如图6所示的实施例中的S601、S603,和/或用于支持本文所描述的技术的其它过程。其中,处理单元1130用于执行如图6所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图6所示的实施例中的S602,和/或用于支持本文所描述的技术的其它过程。或者发送单元1110和接收单元1120可以用于执行图9所示的实施例中由网络设备所执行的全部接收或发送操作,例如图9所示的实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程。其中,处理单元1130用于执行如图9所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,接收单元1120用于接收来自终端的随机接入前导码;处理单元1130用于基于RNTI对随机接入响应消息进行加扰,其中,RNTI与子载波间隔SCS相关;发送单元1110用于将加扰后的随机接入响应消息发送给终端,。
作为一种可能的实施方式,RNTI满足如下公式:
RNTI=C+k×Y,其中,C和k为整数,Y的取值与SCS相关。
作为一种可能的实施方式,RNTI满足如下公式:
RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
其中,s_id发送随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是RO所在的第一个时隙在10ms帧中的索引,f_id是RO在频域的索引,ul_carrier_id是上行载波索引;a和b为系数,a大于或等于1,b大于或等于1;Z为常数,Z大于或等于0。
作为一种可能的实施方式,当SCS等于240KHz时,Y的取值为160,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于480KHz时,Y的取值为320,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于960KHz时,Y的取值为640,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于1920KHz时,Y的取值为1280,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2;
当SCS等于3840KHz时,Y的取值为2560,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2。
作为一种可能的实施方式,发送单元1110还用于:
向终端发送配置信息,配置信息用于指示随机接入响应消息的检测窗的长度,其中,
当SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于5ms,Y的取值为80;
当SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于2.5ms,Y的取值为80;
当SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于1.25ms,Y的取值为80;
当SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时,检测窗的长度小于或等于0.625ms,Y的取值为80;
当SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2时, 检测窗的长度小于或等于0.3125ms,Y的取值为80;
或者,
当SCS等于240KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于5ms,Y的取值为160;
当SCS等于480KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于2.5ms,Y的取值为320;
当SCS等于960KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于1.25ms,Y的取值为640;
当SCS等于1920KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于0.625ms,Y的取值为1280;
当SCS等于3840KHz,a的取值为1,b的取值为1,Z的取值为0或14×80×8×2或14×Y×8×2时,检测窗的长度大于0.3125ms,Y的取值为2560。
在另一些实施例中,接收单元1120用于接收来自终端的随机接入前导码;处理单元1130用于基于RNTI对随机接入响应消息进行加扰;发送单元1110用于将加扰后的随机接入响应消息发送给终端,其中,随机接入响应消息包括指示信息,指示信息用于指示终端所采用的RO在帧中的位置。
作为一种可能的实施方式,随机接入响应消息包括RAR,指示信息占用m个比特,m个比特的取值用于指示RO位于10*T ms帧的第i个10*T/2 m ms内,其中T为正整数,i为大于或等于1。
作为一种可能的实施方式,m的取值与子载波SCS满足如下关系:
SCS等于120×n KHz,n等于2 m,n大于或等于1,m大于或等于0。
作为一种可能的实施方式,在满足如下条件的情况下,指示信息为有效的指示信息:
SCS等于120×n KHz,X等于10/n,RAR的检测窗的长度大于或等于X ms,n为大于或等于1的整数。
作为一种可能的实施方式,随机接入响应消息包括消息B,指示信息占用k个比特,k个比特的取值用于指示RO位于10×2 k-t ms帧的第j个10*T/2 t ms内,其中T为正整数,k、t和j均为大于或等于1的整数。
作为一种可能的实施方式,k的取值与SCS满足如下关系:
SCS等于120×n KHz,n等于2 t,n为大于或等于1的整数。
作为一种可能的实施方式,在满足如下条件的情况下,指示信息为有效的指示信息:
SCS等于120×n KHz,X等于10/n,消息B的检测窗的长度大于或等于X ms,n为大于或等于1的整数。
作为一种可能的实施方式,指示信息承载在随机接入响应消息的PDCCH传输的DCI;或者,指示信息承载在随机接入响应消息的PDSCH。
如图12所示为本申请实施例提供的通信装置1200,其中,通信装置1200可以是终端,能够实现本申请实施例提供的方法中终端的功能,或者,通信装置1200可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能;通信装置1200也可以是能够支持终端实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1200可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一些实施例中,通信装置1200可包括通信接口1210,用于通过传输介质和其它设备进行通信,从而用于通信装置1200中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。通信接口1210具体可以是收发器。在硬件实现上,上述发送单元1110和接收单元1120可以为收发器,收发器集成在通信装置1200中构成通信接口1210。
通信装置1200还包括至少一个处理器1220,处理器1220可以利用通信接口1210收发数据,用于实现或用于支持通信装置1200实现本申请实施例提供的方法中终端或网络设备的功能。例如通信装置1200能够对应实现上述方法实施例中终端的行为和功能。
通信接口1210可以用于执行图6所示的实施例中由终端所执行的全部接收或发送操作,例如图6所示的实施例中的S601和S603,或S601和S603和S603a,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1220用于执行如图6所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图6所示的实施例中的S604,和/或用于支持本文所描述的技术的其它过程。或者通信接口1210可以用于执行图9所示的实施例中由终端所执行的全部接收或发送操作,例如图9所示的实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1220用于执行如图9所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S904,和/或用于支持本文所描述的技术的其它过程。
例如通信装置1200能够对应实现上述方法实施例中网络设备的行为和功能。通信接口1210可以用于执行图6所示的实施例中由网络设备所执行的全部接收或发送操作,例如图6所示的实施例中的S601、S603,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1220用于执行如图6所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图6所示的实施例中的S602,和/或用于支持本文所描述的技术的其它过程。或者通信接口1210可以用于执行图9所示的实施例中由网络设备所执行的全部接收或发送操作,例如图9所示的实施例中的S901和S903,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1220用于执行如图9所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图9所示的实施例中的S902,和/或用于支持本文所描述的技术的其它过程。
在另一些实施例中,通信装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令和/或数据,以使得通信装置1200实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及通信接口1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1220可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件 组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1230可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端或网络设备也可以是电路,也可以是应用于终端或网络设备中的芯片或者其他具有上述终端或网络设备功能的组合器件、部件等。当通信装置是终端或网络设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端或网络设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
图13示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图13中,通信装置以网络设备是基站作为例子。该基站可应用于如图4或图5所示的系统中,可以为图4或图5中的网络设备,执行上述方法实施例中网络设备的功能。通信装置1300可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个有源天线单元(active antenna unit,AAU)(也可称为数字单元,digital unit,DU)1320。AAU可以认为是基带单元(base band unit,BBU)与天线的结合,即将射频功能与天线集成在一起的结构。AAU的天线端口可与外部的RRU连接,也可与内置的射频单元连接。所述RRU 1310可以称为通信模块,与图11中的发送单元1110和接收单元1120对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1313和射频单元1312。所述RRU 1310部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述AAU 1320部分主要用于进行基带处理,对基站进行控制等。所述RRU 1310与AAU 1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述AAU 1320为基站的控制中心,也可以称为处理模块,可以与图11中的处理单元1130对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述AAU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述AAU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述AAU 1320还包括存储器1321和处理器1322。所述存储器1321用以存储必要的指令和数据。所述处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如处理器1322用于执行如图6或图9所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程;或者处理器1322用于执行如图6或图9所示 的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
所述存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信装置,该通信装置可以是终端也可以是电路。该通信装置可以用于执行上述方法实施例中由终端所执行的动作。
图14示出了一种简化的终端的结构示意图。便于理解和图示方便,图14中,该终端以手机作为例子。如图14所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图14所示,该装置包括收发单元1410和处理单元1420。收发单元1410也可以称为收发器、收发机、收发装置等。处理单元1420也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元1410有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1410用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1420用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1410可以用于执行图6所示的实施例中的S601和S603,或者S601、S603和S603a,和/或用于支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元1410可以用于执行图9所示的实施例中的S901、S903和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图15所示的装置。作为一个例子,该装置可以完成类似于图11中处理单元1130的功能。在图15中,该装置包括处理器1510,发送数据处理器1520, 接收数据处理器1530。上述实施例中的处理单元1130可以是图15中的该处理器1510,并完成相应的功能。上述实施例中的处理单元1130可以是图15中的发送数据处理器1520,和/或接收数据处理器1530。虽然图15中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图16示出本实施例的另一种形式。通信装置1600中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1603,接口1604。其中处理器1603完成上述处理单元1130的功能,接口1604完成上述发送单元1110和接收单元1220的功能。作为另一种变形,该调制子系统包括存储器1606、处理器1603及存储在存储器1606上并可在处理器上运行的程序,该处理器1603执行该程序时实现上述方法实施例中终端设备的方法。需要注意的是,所述存储器1606可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于通信装置1600中,只要该存储器1606可以连接到所述处理器1603即可。
本申请实施例还提供一种通信系统,具体的,通信系统包括网络设备和终端,或者还可以包括更多个终端和接入网设备。示例性的,该通信系统包括用于实现上述图6或图9的相关功能的网络设备和终端。
所述网络设备分别用于实现上述图6或图9相关网络部分的功能。所述终端用于实现上述图6或图9相关终端的功能。例如网络设备可执行例如图6所示的实施例中的S601、S602和S603,终端可执行图6所示的实施例中的S601、S602和S604。又例如,网络设备可执行例如图9所示的实施例中的S901、S902和S903,终端可执行图9所示的实施例中的S901、S902和S904。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图6或图9中终端或网络设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图6或图9中终端或网络设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端或网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的信息处理方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a, b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一消息和第二消息,只是为了区分不同的消息,而并不是表示这两种消息的优先级、发送顺序或者重要程度等的不同。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (60)

  1. 一种随机接入方法,其特征在于,包括:
    终端向网络设备发送随机接入前导码;
    所述终端接收来自所述网络设备的随机接入响应消息,基于无线网络临时标识RNTI对所述随机接入响应消息进行解扰,其中,所述RNTI与子载波间隔SCS相关。
  2. 如权利要求1所述的方法,其特征在于,所述RNTI满足如下公式:
    RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
  3. 如权利要求1或2所述的方法,其特征在于,所述RNTI满足如下公式:
    RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
    其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
  4. 如权利要求2或3所述的方法,其特征在于,
    当所述SCS等于240KHz时,Y的取值为160;
    当所述SCS等于480KHz时,Y的取值为320;
    当所述SCS等于960KHz时,Y的取值为640;
    当所述SCS等于1920KHz时,Y的取值为1280;
    当所述SCS等于3840KHz时,Y的取值为2560。
  5. 如权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
    当所述SCS等于240KHz时,所述检测窗的长度小于或等于5ms,Y的取值为80;
    当所述SCS等于480KHz时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
    当所述SCS等于960KHz时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
    当所述SCS等于1920KHz时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
    当所述SCS等于3840KHz时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80。
  6. 一种随机接入方法,其特征在于,包括:
    终端向网络设备发送随机接入前导码;
    所述终端接收来自所述网络设备的随机接入响应消息,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
    所述终端基于无线网络临时标识RNTI解扰所述随机接入响应消息,基于所述指示信息,确定所述RO在帧中的位置。
  7. 如权利要求6所述的方法,其特征在于,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
  8. 如权利要求6或7所述的方法,其特征在于,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 mms内,其中T为正整数,所述i为大于或等于1。
  9. 如权利要求8所述的方法,其特征在于,所述m的取值与子载波SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
  10. 如权利要求8或9所述的方法,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
  11. 如权利要求6或7所述的方法,其特征在于,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
  12. 如权利要求11所述的方法,其特征在于,所述t的取值与所述SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
  13. 如权利要求11或12所述的方法,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms。
  14. 如权利要求6-13任一所述的方法,其特征在于,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
    所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
  15. 一种随机接入方法,其特征在于,包括:
    网络设备接收来自终端的随机接入前导码;
    所述网络设备基于无线网络临时标识RNTI对随机接入响应消息进行加扰,并将加扰后的所述随机接入响应消息发送给所述终端,其中,所述RNTI与子载波间隔SCS相关。
  16. 如权利要求15所述的方法,其特征在于,所述RNTI满足如下公式:
    RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
  17. 如权利要求15或16所述的方法,其特征在于,所述RNTI满足如下公式:
    RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
    其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于。
  18. 如权利要求16或17所述的方法,其特征在于,
    当所述SCS等于240KHz时,Y的取值为160;
    当所述SCS等于480KHz时,Y的取值为320;
    当所述SCS等于960KHz时,Y的取值为640;
    当所述SCS等于1920KHz时,Y的取值为1280;
    当所述SCS等于3840KHz时,Y的取值为2560。
  19. 如权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送配置信息,所述配置信息用于指示所述随机接入响应消 息的检测窗的长度,其中:
    当所述SCS等于240KHz时,所述检测窗的长度小于或等于5ms,Y的取值为80;
    当所述SCS等于480KHz时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
    当所述SCS等于960KHz时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
    当所述SCS等于1920KHz时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
    当所述SCS等于3840KHz时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80。
  20. 一种随机接入方法,其特征在于,包括:
    网络设备接收来自终端的随机接入前导码;
    所述网络设备基于无线网络临时标识RNTI对随机接入响应消息进行加扰,并将加扰后的所述随机接入响应消息发送给所述终端,其中,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置。
  21. 如权利要求20所述的方法,其特征在于,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
  22. 如权利要求20或21所述的方法,其特征在于,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 mms内,其中T为正整数,所述i为大于或等于1。
  23. 如权利要求22所述的方法,其特征在于,所述m的取值与子载波SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
  24. 如权利要求22或23所述的方法,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
  25. 如权利要求20或21所述的方法,其特征在于,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,所述k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
  26. 如权利要求25所述的方法,其特征在于,所述t的取值与所述SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
  27. 如权利要求25或26所述的方法,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms。
  28. 如权利要求20-27任一所述的方法,其特征在于,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
    所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
  29. 一种通信装置,其特征在于,包括:收发单元和处理单元,其中:
    所述收发单元,用于向网络设备发送随机接入前导码,以及接收来自所述网络设备的 随机接入响应消息;
    所述处理单元,用于基于无线网络临时标识RNTI对所述随机接入响应消息进行解扰,其中,所述RNTI与子载波间隔SCS相关。
  30. 如权利要求29所述的通信装置,其特征在于,所述RNTI满足如下公式:
    RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
  31. 如权利要求29或30所述的通信装置,其特征在于,所述RNTI满足如下公式:
    RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
    其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
  32. 如权利要求29或31所述的通信装置,其特征在于,
    当所述SCS等于240KHz时,Y的取值为160;
    当所述SCS等于480KHz时,Y的取值为320;
    当所述SCS等于960KHz时,Y的取值为640;
    当所述SCS等于1920KHz时,Y的取值为1280;
    当所述SCS等于3840KHz时,Y的取值为2560。
  33. 如权利要求29或31所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
    当所述SCS等于240KHz时,所述检测窗的长度小于或等于5ms,Y的取值为80;
    当所述SCS等于480KHz时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
    当所述SCS等于960KHz时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
    当所述SCS等于1920KHz时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
    当所述SCS等于3840KHz时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80。
  34. 一种通信装置,其特征在于,包括收发单元和处理单元,其中:
    所述收发单元,用于向网络设备发送随机接入前导码,以及来自所述网络设备的随机接入响应,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
    所述处理单元,用于基于无线网络临时标识RNTI解扰所述随机接入响应消息,基于所述指示信息,确定所述RO在帧中的位置。
  35. 如权利要求34所述的通信装置,其特征在于,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
  36. 如权利要求34或35所述的通信装置,其特征在于,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 mms内,其中T为正整数,所述i为大于或等于1。
  37. 如权利要求36所述的通信装置,其特征在于,所述m的取值与子载波SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
  38. 如权利要求36或37所述的通信装置,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
  39. 如权利要求34或35所述的通信装置,其特征在于,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
  40. 如权利要求39所述的通信装置,其特征在于,所述t的取值与所述SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
  41. 如权利要求39或40所述的通信装置,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms。
  42. 如权利要求34-41任一所述的通信装置,其特征在于,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
    所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
  43. 一种通信装置,其特征在于,包括收发单元和处理单元,其中:
    所述收发单元,用于接收来自终端的随机接入前导码;
    所述处理单元,用于基于无线网络临时标识RNTI对随机接入响应消息进行加扰,所述RNTI与子载波间隔SCS相关;
    所述收发单元,还用于将加扰后的所述随机接入响应消息发送给所述终端。
  44. 如权利要求43所述的通信装置,其特征在于,所述RNTI满足如下公式:
    RNTI=C+k×Y,其中,所述C和所述k为整数,所述Y的取值与所述SCS相关。
  45. 如权利要求43或44所述的通信装置,其特征在于,所述RNTI满足如下公式:
    RNTI=1+a*s_id+14×b*t_id+14×Y×f_id+14×Y×8×ul_carrier_id+Z;
    其中,其中,s_id发送所述随机接入前导码占用的随机接入机会RO所在的第一个正交频分复用OFDM符号在时隙中的索引,t_id是所述RO所在的第一个时隙在10ms帧中的索引,f_id是所述RO在频域的索引,ul_carrier_id是上行载波索引;所述a和所述b为系数,所述a大于或等于1,所述b大于或等于1;所述Z为常数,所述Z大于或等于0。
  46. 如权利要求44或45所述的通信装置,其特征在于,
    当所述SCS等于240KHz时,Y的取值为160;
    当所述SCS等于480KHz时,Y的取值为320;
    当所述SCS等于960KHz时,Y的取值为640;
    当所述SCS等于1920KHz时,Y的取值为1280;
    当所述SCS等于3840KHz时,Y的取值为2560。
  47. 如权利要求44或45所述的通信装置,其特征在于,所述收发单元还用于:
    向所述终端发送配置信息,所述配置信息用于指示所述随机接入响应消息的检测窗的长度,其中:
    当所述SCS等于240KHz时,所述检测窗的长度小于或等于5ms,Y的取值为80;
    当所述SCS等于480KHz时,所述检测窗的长度小于或等于2.5ms,Y的取值为80;
    当所述SCS等于960KHz时,所述检测窗的长度小于或等于1.25ms,Y的取值为80;
    当所述SCS等于1920KHz时,所述检测窗的长度小于或等于0.625ms,Y的取值为80;
    当所述SCS等于3840KHz时,所述检测窗的长度小于或等于0.3125ms,Y的取值为80。
  48. 一种通信装置,其特征在于,包括收发单元和处理单元,其中:
    所述收发单元,用于接收来自终端的随机接入前导码;
    所述处理单元,用于基于无线网络临时标识RNTI对随机接入响应消息进行加扰,所述随机接入响应消息包括指示信息,所述指示信息用于指示所述终端所采用的随机接入机会RO在帧中的位置;
    所述收发单元,还用于将加扰后的所述随机接入响应消息发送给所述终端。
  49. 如权利要求48所述的通信装置,其特征在于,所述RO在帧中的位置与子载波SCS和/或所述随机接入响应消息的检测窗的长度相关。
  50. 如权利要求48或49所述的通信装置,其特征在于,所述随机接入响应消息包括随机接入响应RAR,所述指示信息占用m个比特,所述m个比特的取值用于指示所述RO位于10*T ms帧的第i个10*T/2 mms内,其中T为正整数,所述i为大于或等于1。
  51. 如权利要求50所述的通信装置,其特征在于,所述m的取值与子载波SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 m,所述n大于或等于1,所述m大于或等于0。
  52. 如权利要求50或51所述的通信装置,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述SCS等于120×n KHz,所述X等于10/n,所述RAR的检测窗的长度大于或等于Xms,所述n为大于或等于1的整数。
  53. 如权利要求48或49所述的通信装置,其特征在于,所述随机接入响应消息包括消息B,所述指示信息占用k个比特,k个比特的取值用于指示所述RO位于10×2 k-tms帧的第j个10*T/2 tms内,其中T为正整数,所述k、t和j均为大于或等于1的整数。
  54. 如权利要求53所述的通信装置,其特征在于,所述t的取值与所述SCS满足如下关系:
    所述SCS等于120×n KHz,所述n等于2 t,所述n为大于或等于2的整数。
  55. 如权利要求53或54所述的通信装置,其特征在于,在满足如下条件的情况下,所述指示信息为有效的指示信息:
    所述X等于10/n,所述消息B的检测窗的长度大于或等于X ms。
  56. 如权利要求48-55任一所述的通信装置,其特征在于,所述指示信息承载在所述随机接入响应消息的物理下行控制信道PDCCH传输的下行控制信息DCI;或者,
    所述指示信息承载在所述随机接入响应消息的物理下行共享信道PDSCH。
  57. 一种通信装置,其特征在于,包括:所述通信装置包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所 述计算机程序,使得所述通信装置实现如权利要求1~5或6~14或15~19或20~28中任一项所述的方法。
  58. 一种通信系统,其特征在于,所述通信系统包括如权利要求29~33任一所述的通信装置和如权利要求43~47任一所述的通信装置;或者,所述通信系统包括如权利要求34~42任一所述的通信装置和如权利要求48~56任一所述的通信装置。
  59. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~5或6~14或15~19或20~28任意一项所述的方法。
  60. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,使所述计算机执行如权利要求1~5或6~14或15~19或20~28中任意一项所述的方法。
PCT/CN2020/079793 2020-03-17 2020-03-17 一种随机接入方法及通信装置 WO2021184227A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079793 WO2021184227A1 (zh) 2020-03-17 2020-03-17 一种随机接入方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079793 WO2021184227A1 (zh) 2020-03-17 2020-03-17 一种随机接入方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021184227A1 true WO2021184227A1 (zh) 2021-09-23

Family

ID=77768349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079793 WO2021184227A1 (zh) 2020-03-17 2020-03-17 一种随机接入方法及通信装置

Country Status (1)

Country Link
WO (1) WO2021184227A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220369099A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Subcarrier spacing capability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495222A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种ra-rnti确定方法及装置
CN109803445A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法及装置
WO2020050660A1 (en) * 2018-09-05 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495222A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种ra-rnti确定方法及装置
CN109803445A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法及装置
WO2020050660A1 (en) * 2018-09-05 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Extended ra-ResponseWindow and RA-RNTI calculation", 3GPP DRAFT; R2-1907057 - EXTENDED RA-RESPONSEWINDOW AND RA-RNTI CALCULATION, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 3, XP051711354 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining Details on PRACH Procedure", 3GPP DRAFT; R1-1720006_REMAINING DETAILS ON RACH PROCEDURE, vol. RAN WG1, 17 November 2017 (2017-11-17), Reno, Nevada, USA, pages 1 - 10, XP051369213 *
OPPO: "Discussion RA-RNTI due to extended RAR window", 3GPP DRAFT; R2-1905609 - DISCUSSION RA-RNTI DUE TO EXTENDED RAR WINDOW, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 2, XP051709967 *
SAMSUNG: "Random Access Response Reception in NR-U", 3GPP DRAFT; R2-1905708_RANDOM ACCESS RESPONSE RECEPTION IN NR-U, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 4, XP051710062 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220369099A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Subcarrier spacing capability
US11729605B2 (en) * 2021-05-11 2023-08-15 Qualcomm Incorporated Subcarrier spacing capability

Similar Documents

Publication Publication Date Title
US20140313949A1 (en) Signaling and procedure design for cellular cluster contending on license-exempt bands
US20220053577A1 (en) Random access preamble sending method and communication apparatus
US11122630B2 (en) Information sending method and apparatus and information receiving method and apparatus
WO2022028374A1 (en) Method and apparatus for pusch repetition in a random access procedure
JP7220797B2 (ja) ランダムアクセス手順のための方法、端末デバイスおよび基地局
AU2020223256B2 (en) Random access method and apparatus
US20220272771A1 (en) Information Indication Method and Apparatus
EP3923669A1 (en) Random access method, apparatus, and system
US11843454B2 (en) DMRS port determining method and communications apparatus
US20210235506A1 (en) Information processing method and apparatus
US20240032089A1 (en) Communication apparatus and communication method for prioritized traffic
WO2019160652A1 (en) Method and apparatus for mapping beam pattern to paging resources
US20230025552A1 (en) Communication method and apparatus
EP4080972A1 (en) Communication method and device
EP4038996A1 (en) Method and apparatus for a two-step random access procedure
WO2021184227A1 (zh) 一种随机接入方法及通信装置
US10667292B2 (en) Wireless communication method for saving power and wireless communication terminal using same
EP4362596A1 (en) Random access method and communication apparatus
WO2018201850A1 (zh) 资源配置方法、装置和系统
WO2021146871A1 (zh) 通信方法及装置
US20230180273A1 (en) Method and apparatus for transmission and reception of signal and communication system
WO2022151171A1 (zh) 随机接入方法及装置
WO2022077470A1 (zh) 数据信道的传输方法
US20240163777A1 (en) Network slicing-based random access method and apparatus, and storage medium
US20220256609A1 (en) Mechanism for Providing Multiple Transmission Opportunities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925448

Country of ref document: EP

Kind code of ref document: A1