WO2022206715A1 - 一种随机接入方法及装置 - Google Patents

一种随机接入方法及装置 Download PDF

Info

Publication number
WO2022206715A1
WO2022206715A1 PCT/CN2022/083520 CN2022083520W WO2022206715A1 WO 2022206715 A1 WO2022206715 A1 WO 2022206715A1 CN 2022083520 W CN2022083520 W CN 2022083520W WO 2022206715 A1 WO2022206715 A1 WO 2022206715A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnti
random access
terminal
rntis
carrier
Prior art date
Application number
PCT/CN2022/083520
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
张梦晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206715A1 publication Critical patent/WO2022206715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a random access method and apparatus.
  • the terminal when the terminal is in an idle state or an inactive state, if the terminal needs to transmit uplink data to the access network device, the terminal needs to initiate random access to the access network device, such as 4-step random access. Or 2-step random access, after switching from the idle/inactive state to the connected state, the uplink data is transmitted to the access network device.
  • the terminal may send uplink data based on 4-step random access or based on 2-step random access. That is, the 4-step random access or the 2-step random access sent by the terminal may only be used to access the access network equipment, and may also be used to send uplink data.
  • the access network device receives the request from the terminal at the random access channel occasion (RO), it calculates the corresponding terminal according to the RO. scramble the downlink control information (DCI) of the scheduling response message with the calculated RNTI, and send the scrambled RNTI.
  • the terminal side It will also calculate the RNTI according to the RO, and use the calculated RNTI to descramble the DCI. If the RNTI is successfully descrambled, it means that the RNTI is sent to itself, and it is determined that the response message returned by the access network device is its own. Indicates receipt of a response message.
  • DCI downlink control information
  • the RNTIs corresponding to different terminals may be the same, and it is impossible to distinguish whether the DCI scrambled with the RNTI is sent to these terminals. It is impossible to distinguish which terminal the response message replied by the access network device corresponds to random access or to uplink data transmission based on random randomness, so that these terminals all think that the DCI is sent to themselves, and multiple terminal random access conflicts occur. The problem.
  • Embodiments of the present application provide a random access method and apparatus, so as to solve the problem that the terminal cannot distinguish which type of random access the response message replied by the access network device corresponds to.
  • an embodiment of the present application provides a random access method, the method comprising: a first terminal sending a first message for sending uplink data based on a random access method to an access network device on a first RO, Receive first downlink control information (DCI) from the access network device, the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO; For example, when the first message is used to send uplink data based on the first random access method, the RNTI is the first RNTI determined according to the first RO, and when the first message is used to send uplink data based on the second random access method, The RNTI is the second RNTI determined according to the first RO, the first random access manner is different from the second random access manner, and the first RNTI and the second RNTI are the same or different.
  • DCI downlink control information
  • the first terminal Based on the method described in the first aspect, it is designed to send the RNTI of the uplink data based on the random access mode, so that the first terminal determines the RNTI according to the first RO, and identifies according to the determined RNTI that the process is sent based on the random access mode uplink data, and then correctly decode the response message corresponding to the first message according to the determination result, so as to avoid the problem of access conflict caused by the inability of the first terminal to distinguish which type of random access process it is.
  • an embodiment of the present application further provides a random access method, the method includes: an access network device receives, on a first RO, a first request for sending uplink data based on a random access manner from a first terminal.
  • message according to the first message, send the first DCI to the first terminal, the first DCI is used to schedule the response message corresponding to the first message, the first DCI is scrambled by the RNTI, and the RNTI is determined according to the first RO;
  • the RNTI is the first RNTI determined according to the first RO
  • the RNTI is the first RNTI determined according to the first RO
  • the RNTI is the first RNTI determined according to the first RO.
  • the first random access mode is different from the second random access mode, and the first RNTI and the second RNTI are the same or different.
  • the RNTI for sending uplink data based on the random access mode is designed according to the RO that sends the first message, so that the first terminal determines the RNTI according to the first RO, and identifies the process according to the determined RNTI
  • the uplink data is sent based on the random access method, and then the response message corresponding to the first message is correctly decoded according to the determination result, so as to avoid the problem of access conflict caused by the inability of the first terminal to distinguish which type of random access process it is.
  • the first RNTI is different from the second RNTI; the first RNTI belongs to the first RNTI set, the second RNTI belongs to the second RNTI set, the first RNTI set, the second RNTI set, the third RNTI set, and the third RNTI set.
  • the four RNTI sets do not overlap each other; the third RNTI set includes the RNTI used to access the access network device based on the first random access method, and the fourth RNTI set is used to access the access network based on the second random access method The RNTI of the device.
  • the random access process (or communication process) is designed with different RNTIs, so that the terminal can distinguish which of the above four types of processes corresponds to the response message scheduled by the access network equipment using the DCI according to the RNTI, and then according to the results of the distinction Decide whether to decode the response message, simplify the system design and avoid the problem of terminal access conflict.
  • t_id is the index value of the timeslot occupied by the first RO in one system frame, and B is an integer greater than 0 and less than Nslot; or, the first RO occupies the t_id th timeslot among B timeslots, and t_id is less than Equal to the index value of the t_id th time slot in a system frame, the B time slots are the time slots used for sending uplink data based on the first random access method; the value range of t_id is [0, B-1] f_id is the index value of the frequency domain unit occupied by the first RO in C frequency domain units, and C is an integer greater than 0 and less than Nf; Or, the first RO occupies the f_id symbol in the C frequency domain units, t_id is less than or equal to the index value of the f_id th time slot in Nf frequency domain units, C is the frequency domain unit used for sending uplink data based on the first random access mode; the value range of
  • an offset value is added to the RNTI used to access the access network device based on the random access method to obtain the RNTI used to send the uplink data based on the first random access method.
  • MsgB - RNTI determination method to determine the RNTI used for sending uplink data based on the first random access method, that is, by adding an offset value to distinguish the RNTI used for different random access procedures, which simplifies the system design.
  • the time-frequency resources of the RO are used.
  • the relative index value of the position determines the first RNTI, because the relative index values are continuous, even if the time-frequency resource position of the RO is discontinuous, the relative index value of the time-frequency resource position of the RO is also continuous, so RNTI collection can be avoided. There is a "hole" in the RNTI, which improves the resource utilization of RNTI.
  • s_id' is the index value of the symbol occupied by the first RO in a time slot, and E is an integer greater than 0 and less than Nsymbol; or, the first RO occupies the s_id' th symbol in the E symbols, and s_id' is less than Equal to the index value of the s_id' symbol in a time slot, and the E symbols are symbols used to send uplink data based on the first random access method; the value range of s_id' is [0, E-1]; t_id ' is the index value of the time slot occupied by the first RO in a system frame, and F is an integer greater than 0 and less than Nslot; or, the first RO occupies the t_id'th time slot in the F time slots, and t_id' is less than It is equal to the index value of the t_id'th timeslot in a system frame, and the F timeslots are timeslots used to send uplink data based
  • an offset value is added to the RNTI used for accessing the access network device based on the random access method to obtain the RNTI used for sending uplink data based on the second random access method, which can be referred to as
  • the RNTI used for sending uplink data based on the second random access method is determined by the determination method of MsgB-RNTI, and the RNTI used for different random access procedures is differentiated by adding an offset value, which simplifies the system design.
  • the time-frequency resources of the RO are used.
  • the relative index value of the position determines the second RNTI. Because the relative index values are continuous, even if the time-frequency resource position of the RO is discontinuous, the relative index value of the time-frequency resource position of the RO is also continuous, so RNTI collection can be avoided. There is a "hole" in the RNTI, which improves the resource utilization of RNTI.
  • the first RNTI is different from the second RNTI; the determination of the first RNTI according to the first RO includes: the first RNTI is determined according to the index value of the frequency domain unit occupied by the first RO, and the frequency domain occupied by the first RO is determined.
  • the value range of the index value of the unit starts from N, and N is an integer greater than 0;
  • the value range of the index value of the frequency domain unit starts from M, where M is an integer greater than 0.
  • the index value of the frequency domain unit is set to start from non-zero when calculating the first RNTI, so as to avoid overlapping with the index value of the frequency domain unit used for calculating the RA-RNTI, so as to avoid Sending uplink data in the random access mode is still a problem of accessing the access network device based on the first random access mode, which leads to an access conflict.
  • s_id is the index value of the symbol occupied by the first RO in a time slot, and the value range of s_id is [0, Nsymbol-1]
  • t_id is the index value of the time slot occupied by the first RO in
  • the number of domain units; the value range of f_id_2 is [M, Nf-1], M is less than Nf, and M is the number of frequency domain units used for the second random access in the Nf frequency domain units; ul_carrier_id is the first RO The index value of the occupied uplink carrier in the Nc uplink carriers, the value range of ul_carrier_id is [0, Nc-1]; the third offset value is greater than or equal to Nsymbol*Nslot*Nf*Nc; Nsymbol is a time slot including The number of symbols, Nslot is the number of time slots included in a system frame, Nf is the preset maximum frequency domain multiplexing coefficient for random access, and Nc is the preset uplink carrier for random access. quantity.
  • the first RNTI can be determined with reference to the calculation formula for calculating the RA-RNTI, which simplifies the system design.
  • the index values of the frequency domain units used in the two calculations are different, avoiding the frequency domain unit used for calculating the RA-RNTI.
  • the index values of the two overlap, thereby avoiding the problem of access conflict caused by the inability to distinguish whether the uplink data is sent based on the first random access mode or the access network device is accessed based on the first random access mode.
  • the second RNTI can be determined with reference to the calculation formula for calculating the MsgB-RNTI, which simplifies the system design.
  • the index values of the frequency domain units used in the two calculations are different, so as to avoid the index value of the frequency domain unit used in the calculation of the MsgB-RNTI. overlapping, thereby avoiding the problem of access conflict caused by the inability to distinguish whether uplink data is sent based on the second random access manner or access network equipment is accessed based on the second random access manner.
  • the first RNTI and the second RNTI correspond to the same calculation formula
  • the first RNTI and the second RNTI belong to the first RNTI set
  • the first RNTI set, the third RNTI set and the fourth RNTI set do not overlap each other
  • the third RNTI set includes RNTIs used to access the access network device based on the first random access method
  • the fourth RNTI set is used to access the RNTIs of the access network equipment based on the second random access method.
  • the calculation formulas of the first RNTI and the second RNTI are the same, that is, the two multiplex the same RNTI, which simplifies the system design.
  • different RNTIs are designed for accessing access network equipment based on 4-step RA, accessing access network equipment based on 2-step RA, and sending uplink data based on random access, so that the terminal can distinguish the access network according to the RNTI.
  • the network access device uses the response message scheduled by the DCI to which type corresponds, and then decides whether to decode the response message according to the discrimination result, which simplifies the system design and avoids the problem of terminal access conflicts.
  • the first DCI carries first indication information, and the first indication information is used to indicate that the first DCI corresponds to sending uplink data based on the first random access mode, or is used to indicate that the first DCI corresponds to the second random access method.
  • the access mode sends uplink data; or, the response message corresponding to the first message carries first indication information, and the first indication information is used to indicate that the response message corresponds to sending uplink data based on the first random access method, or is used to indicate that the response message corresponds to The uplink data is sent based on the second random access method.
  • the fourth offset value is greater than or equal to Nsymbol*Nslot*Nf*Nc*2; Nsymbol is the number of symbols included in a time slot, Nslot is the number of time slots included in a system frame, and Nf is a preset value for The maximum value of the frequency division multiplexing coefficient of random access, and Nc is the preset number of uplink carriers used for random access.
  • an offset value is added on the basis of RA-RNTI to obtain the first RNTI and the second RNTI for sending uplink data based on the random access method, that is, referring to the determination method of MsgB-RNTI, by adding The offset value is used to determine the RNTI for sending uplink data based on random access, which simplifies system design.
  • the present application provides a communication device, where the communication device may be a first terminal or a chip or a system-on-chip in the first terminal, or may be any device in the first terminal for implementing the first aspect or the first aspect.
  • the communication device may be an access network device or a chip or a system-on-chip in the access network device, and may also be the access network device for implementing the second aspect or any possible design of the second aspect.
  • the communication apparatus may implement the functions performed by the first terminal or the access network device in the above aspects or possible designs, and the functions may be implemented by executing corresponding software in hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus may include: a sending unit and a receiving unit; further, the communication apparatus may further include a processing unit.
  • the sending unit is configured to send a first message for sending uplink data based on a random access manner to the access network device on the first RO.
  • a receiving unit configured to receive the first DCI from the access network device, the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO;
  • the RNTI is the first RNTI determined according to the first RO
  • the RNTI is the first RNTI determined according to the first RO
  • the first random access mode is different from the second random access mode
  • the first RNTI and the second RNTI are the same or different.
  • the receiving unit is configured to receive, on the first RO, a first message for sending uplink data based on a random access manner from the first terminal.
  • a sending unit configured to send the first DCI of the access network device to the first terminal, where the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO; for example, When the first message is used to send uplink data based on the first random access method, the RNTI is the first RNTI determined according to the first RO, and when the first message is used to send uplink data based on the second random access method, the RNTI is According to the second RNTI determined by the first RO, the first random access manner is different from the second random access manner, and the first RNTI and the second RNTI are the same or different.
  • the determination method of the first RNTI and the second RNTI reference may be made to the first aspect or the second aspect or any possible design of the first aspect or any possible design of the second aspect.
  • the communication For the execution actions of each unit of the apparatus, reference may be made to the first aspect or any possible design of the first aspect, or the second aspect or any possible design of the second aspect, which will not be repeated.
  • a communication apparatus may be a first terminal or a chip or a system on a chip in the first terminal.
  • the communication apparatus may implement the functions performed by the first terminal in the above aspects or possible designs, and the functions may be implemented by hardware.
  • the communication apparatus may be an access network device or a chip or a system on a chip in the access network device.
  • the communication apparatus may implement the functions performed by the access network equipment in the above aspects or possible designs, and the functions may be implemented by hardware.
  • the communication device may include: a processor and a communication interface, and the processor and the communication interface may support the communication device to perform the first aspect or any possible design of the first aspect or the second aspect or the first aspect.
  • the communication device may further include a memory for storing necessary computer-executed instructions and data of the communication device.
  • the processor executes the computer-implemented instructions stored in the memory to cause the communication device to perform the first aspect or any possible design of the first aspect or the second aspect or the second aspect as described above The random access method described in any of the possible designs.
  • a computer-readable storage medium may be a readable non-volatile storage medium, and instructions are stored in the computer-readable storage medium, when the computer-readable storage medium is executed on a computer , causing the computer to execute the random access method described in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect.
  • a sixth aspect provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the first aspect or any possible design of the first aspect or the second aspect or any of the second aspects.
  • a communication device may be a first terminal or a chip or a system-on-chip in the first terminal, and the communication device includes one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors, the one or more memories for storing computer program code, the computer program code comprising computer instructions, when the one or more processors When executing the computer instructions, the first terminal is caused to execute the random access method described in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect .
  • an embodiment of the present application provides a communication system, where the communication system may include: a first terminal and an access network device.
  • the first terminal may perform the random access method described in the first aspect or any possible design of the first aspect
  • the access network device may perform the random access method described in the second aspect or any possible design of the second aspect. enter method.
  • an embodiment of the present application further provides a random access method, the method may include: an access network device receives a first message at a first random access resource, and receives a second message at a second random access resource; If the first random access resource belongs to the first random access resource set, the first random access resource set is used for the 4-step RA of the first type of terminal, and at least one of the following: 4-step RA of the first type of terminal SDT, 4-step SDT of the second type of terminal, 4-step RA of the second type of terminal; the access network device sends the first DCI according to the first message; wherein, the first DCI is used to schedule the response message corresponding to the first message , the first DCI uses RA-RNTI scrambling;
  • the second random access resource set is used for the 2-step RA of the first type of terminal, and at least one of the following: 2-step RA of the first type of terminal SDT, 2-step SDT of the second type of terminal, 2-step RA of the second type of terminal; the access network device sends the second DCI according to the second message; wherein the second DCI is used to schedule the response message corresponding to the second message , the second DCI is scrambled using MsgB-RNTI.
  • RA-RNTI is used to scramble the DCI of the scheduling response message for all processes/application scenarios based on 4-step
  • MsgB-RNTI scrambled scheduling is used for all processes/scenarios based on 2-step DCI of the response message, so that the terminal can distinguish whether it is a 4-step-based process/application scenario or a 2-step-based process/application scenario according to the RNTI of the scrambled DCI, without having to follow the random access-based process/application scenario in the communication process is added to extend the new RNTI and simplify system design.
  • the first type of terminal is a non-capability reduction redcap terminal that does not support coverage enhancement and does not support access network slicing;
  • the second type of terminal includes redcap terminals, terminals that support coverage enhancement, or support access network slicing. At least one of the terminals is added, and an application scenario of the method is added.
  • the preamble allocated to the first type of terminal and the preamble allocated to the second type of terminal in the preamble corresponding to the first random access resource set do not overlap.
  • the preambles allocated to terminals of different types among the preambles allocated to terminals of the second type do not overlap.
  • Different types of terminals that initiate 4-step RA/4-step SDT can be distinguished by allocating different preambles to different types of terminals in redcap terminals, terminals supporting coverage enhancement, or terminals supporting access network slicing.
  • the random access resources allocated to different types of terminals are different; the RA-RNTIs calculated according to the different random access resources are different. In this way, by allocating different random access resources for different types of terminals, the types of terminals that initiate 4-step RA/4-step SDT can be distinguished.
  • the present application provides a communication device, which may be an access network device or a chip or a system-on-a-chip in the access network device, and may also be an access network device for implementing the ninth aspect or the ninth aspect.
  • a communication device which may be an access network device or a chip or a system-on-a-chip in the access network device, and may also be an access network device for implementing the ninth aspect or the ninth aspect.
  • Any possible design of the aspect is a functional module of the described method.
  • the communication apparatus can implement the functions performed by the access network equipment or the access network equipment in the above aspects or possible designs, and the functions can be implemented by executing corresponding software in hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus may include: a sending unit and a receiving unit; further, the communication apparatus may further include a processing unit.
  • a communication apparatus may be an access network device or a chip or a system-on-a-chip in the access network device.
  • the communication apparatus may implement the functions performed by the access network equipment in the above aspects or possible designs, and the functions may be implemented by hardware.
  • the communication apparatus may be an access network device or a chip or a system on a chip in the access network device.
  • the communication apparatus may implement the functions performed by the access network equipment in the above aspects or possible designs, and the functions may be implemented by hardware.
  • the communication apparatus may include: a processor and a communication interface, and the processor and the communication interface may support the communication apparatus to perform the method described in the ninth aspect or any possible design of the ninth aspect.
  • the communication device may further include a memory for storing necessary computer-executed instructions and data of the communication device.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device executes the random access method described in the ninth aspect or any possible design of the ninth aspect.
  • a twelfth aspect provides a computer-readable storage medium
  • the computer-readable storage medium may be a readable non-volatile storage medium
  • instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer At the time, the computer is made to execute the random access method described in the ninth aspect or any possible design of the ninth aspect.
  • a thirteenth aspect provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the random access method described in the ninth aspect or any possible design of the ninth aspect.
  • a fourteenth aspect provides a communication apparatus, where the communication apparatus may be an access network device or a chip or a system-on-a-chip in the access network device, and the communication apparatus includes one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors, the one or more memories for storing computer program code, the computer program code comprising computer instructions, when the one or more processors
  • the access network device is caused to execute the random access method described in the ninth aspect or any possible design of the ninth aspect.
  • an embodiment of the present application provides a communication system, where the communication system may include: an access network device.
  • the access network device may perform the random access method described in the ninth aspect or any possible design of the ninth aspect.
  • Fig. 1a is a schematic diagram of 4-step random access
  • Figure 1b is a schematic diagram of 2-step random access
  • Figure 2a is a schematic diagram of RO for different random access modes
  • Figure 2b is a schematic diagram of RO for different random access modes
  • Fig. 2c is the index value schematic diagram of the initial frequency domain unit
  • FIG. 3 is a schematic diagram of RNTIs allocated for 4-step random access and 2-step random access;
  • FIG. 4 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the composition of a communication device according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram 1 of RNTI allocation provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram 2 of RNTI allocation provided by an embodiment of the present application.
  • FIG. 8a is a schematic diagram of frequency domain unit allocation provided by an embodiment of the present application.
  • FIG. 8b is a schematic diagram 3 of RNTI allocation provided by an embodiment of the present application.
  • FIG. 9a is a schematic diagram four of RNTI allocation provided by the embodiment of the present application.
  • FIG. 9b is a schematic diagram five of RNTI allocation provided by this embodiment of the present application.
  • FIG. 9c is a schematic diagram 6 of RNTI allocation provided by the embodiment of the present application.
  • FIG. 9d is a schematic diagram 7 of RNTI allocation provided by this embodiment of the present application.
  • FIG. 9e is a schematic diagram eight of RNTI allocation provided by this embodiment of the application.
  • 9f is a schematic diagram 9 of RNTI allocation provided by this embodiment of the present application.
  • FIG. 9g is a schematic diagram ten of RNTI allocation provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 1 of a RAR provided by an embodiment of the present application.
  • FIG. 12 is a second schematic diagram of the RAR provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of the composition of a communication apparatus 100 according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the composition of a communication device 110 according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the composition of a communication system according to an embodiment of the present application.
  • the network side equipment when the terminal in the connected state has no data service, the network side equipment (such as access network equipment) can send a radio resource control (radio resource control, RRC) release (release) message to the terminal, and the terminal receives the RRC release message.
  • RRC radio resource control
  • the message is converted from a connected state to a disconnected state (such as an idle state or an inactive state).
  • the network side device When the network side has downlink service requirements, the network side device will periodically send paging messages to the terminal to trigger the terminal to switch to the connected state. After the terminal is paged, it initiates random access (for example, 4-step random access). or 2-step random access), enter the connected state after completing the random access, and receive the downlink data sent by the network side.
  • the terminal when the terminal has an uplink service requirement, the terminal actively initiates random access, switches from the disconnected state to the connected state, and sends uplink data after entering the connected state.
  • the uplink data may include uplink small packet data (small data), and the uplink small packet data may refer to service data with a small amount of data, which is service data whose number of bits is less than or equal to a preset value, and the preset value can be used as needed Setting, the service data transmission occupies less transmission resources, for example, the uplink small packet data may be service data of several bits (bit), or service data of tens of bits, hundreds of bits or thousands of bits of service data.
  • bit bits
  • the uplink small packet data belongs to the small packet data service, and the typical small packet data service may include real-time messages (instant messages), such as and so on; it can also include heartbeat packets and other messages used to maintain the connection between the client and the server, as well as push messages of various applications, and so on.
  • real-time messages such as and so on
  • heartbeat packets and other messages used to maintain the connection between the client and the server, as well as push messages of various applications, and so on.
  • a random access (random access, RA) manner may include a 4-step random access manner or a 2-step random access manner.
  • the 4-step random access mode may be abbreviated as 4-step
  • the 2-step random access mode may be abbreviated as 2-step.
  • the following introduces the 4-step random access method and the 2-step random access method:
  • the 4-step random access may include: step (1), the terminal selects a random access channel occasion (RO), and selects a random access channel occurrence (RO) in the selection process.
  • a message 1 (message 1, Msg1) is sent to the access network device on the RO of the device, notifying the access network device that there is a random access request.
  • the first message may include a preamble (or a random access preamble).
  • step (2) after receiving the Msg1, the access network device sends a random access response to the terminal, and the random access response may also be referred to as message 2 (message 2, Msg2).
  • the second message may include the scheduling information of the third message (message 3, Msg3), which is used to instruct the terminal how to send the third message.
  • the terminal correspondingly receives message two.
  • the terminal sends a third message to the access network device according to the second message.
  • the access network device sends a message 4 (message 4, Msg4) to the terminal, and the message 4 may include a response message for Msg3 determined by the access network device, and the response message may include a message for resolving competition between terminals.
  • messages 4 messagessage 4, Msg4
  • the 2-step random access mode may include: step (1), the terminal selects an RO, and sends a message A ( message A, MsgA), MsgA may include a preamble (preamble) and a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • step (2) the access network device receives the MsgA, and replies a message B (message B, MsgB) to the terminal, where the MsgB may include relevant information for resolving contention between terminals.
  • RO may be a time-frequency resource pre-configured for the terminal for random access.
  • RO may be a time-frequency resource used by the terminal to send Msg1 or MsgA, and the time-frequency resource may include time domain resources (such as symbols, time slots, and system frames) and frequency-domain resources (such as uplink carriers and frequency-domain units, where a frequency-domain unit may include multiple resource blocks (RBs)).
  • the RO used by the terminal is selected from an optional RO set, the RO set may include one or more ROs used for random access, and the RO set may be pre-configured or specified in a protocol.
  • the ROs selected by different terminals may be the same or different.
  • the ROs used in different random access modes may be the same or different.
  • the RO used for 4-step random access and the RO used for 2-step random access may be the same or different.
  • the RO used for 4-step random access may be referred to as 4-step RO
  • the RO used for 2-step random access may be referred to as 2-step RO.
  • the RO used for 4-step random access is the same as the RO used for 2-step random access
  • the RO used for 4-step random access includes RO1-RO4
  • the RO used for 2-step random access The access ROs also include RO1-RO4, but the preamble used by the 4-step random access is orthogonal to the preamble used by the 2-step random access.
  • the RO used for 4-step random access may also be different from the RO used for 2-step random access, and the difference between 4-step RO and 2-step RO may include one or more of the following: 4
  • the time domain resource positions occupied by -step RO and 2-step RO are different, and the frequency domain resource positions occupied by 4-step RO and 2-step RO are different.
  • 4-step RO includes RO1 and RO2
  • 4-step RO occupies time slot 1
  • 2-step RO occupies time slot 1.
  • 2-step RO occupies time slot 2
  • the time domain resource position occupied by 4-step RO and 2-step RO is different
  • the frequency domain resource position occupied by 4-step RO and 2-step RO is the same Yes, both 4-step RO and 2-step RO occupy frequency domain unit 1 to frequency domain unit 4.
  • the preamble used by the terminal is randomly selected from an optional preamble set, and the preamble may be pre-configured or pre-specified in a protocol.
  • a preamble can correspond to an identifier, which can be called a preamble identifier (random access preamble identifier, RAPID), and the preamble identifier can be used to identify/identify the preamble.
  • RAPID random access preamble identifier
  • the preambles corresponding to different random access modes can be the same or different.
  • the preamble used for 4-step random access and the preamble used for 2-step random access can be the same or different.
  • the preamble used for 4-step random access is the same as the preamble used for 2-step random access.
  • the preamble for 2-step random access can be orthogonal.
  • the preamble used for 4-step random access is orthogonal to the preamble used for 2-step random access, which may include: the root sequence used by the preamble used for 4-step random access and the preamble used for 2-step random access
  • the root sequence used by the preamble is different, or the root sequence used by the preamble of the 4-step random access is the same as the root sequence used by the preamble used for the 2-step random access, but the cyclic shift values of the two are different.
  • both Msg2/Msg4 need to be scheduled by the access network equipment to the terminal through the physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • the access network equipment Send a PDCCH for scheduling Msg2/Msg4
  • the PDCCH carries downlink control information (DCI), and the DCI indicates the time-frequency resource location occupied by Msg2/Msg4.
  • DCI downlink control information
  • the DCI may be scrambled using a radio network temporary identity (RNTI), for example, the DCI may include a check digit, and the check digit is scrambled by RNTI, and the length of the check digit is the same as the length of the RNTI.
  • the scheduling information of Msg3 is included in Msg2. Specifically, the scheduling information of Msg3 is included in a random access response (random access response, RAR) included in Msg2.
  • RAR random access response
  • the access network device also needs to schedule the MsgB to the terminal through the PDCCH. Before sending the MsgB, the access network device sends the PDCCH used to schedule the MsgB.
  • the PDCCH carries DCI, and the DCI can be used for Indicates the time-frequency resource location occupied by the MsgB.
  • the DCI may be scrambled using RNTI.
  • the RNTI used for scrambling the DCI in the random access process may be referred to as random access-radio network temporary identifier (random access-RNTI, RA-RNTI).
  • random access-RNTI random access-radio network temporary identifier
  • the RNTI used for scrambling DCI in the 4-step random access process may be referred to as RA-RNTI
  • MsgB-RNTI the RNTI used for scrambling DCI in the 2-step random access process
  • the length of the RNTI may be predetermined, for example, the length of the RNTI may be specified as 16 bits (bits). There is a correlation between the value of RA-RNTI and the RO selected by the terminal.
  • the RA-RNTI can be determined according to the time-frequency resource location occupied by the RO selected by the terminal. For example, the RA-RNTI can be determined according to the index values s_id, RO The index value t_id of the occupied time slot, the index value f_id of the frequency domain unit occupied by the RO, and the index value ul_carrier_id of the uplink carrier occupied by the RO are determined.
  • RA-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id.
  • s_id is the index value (index) (or referred to as the number) of the symbol occupied by the RO in one time slot.
  • the index value of the symbol occupied by the RO in one slot may be referred to as the absolute index value of the symbol occupied by the RO in one slot.
  • new radio new radio
  • Nsymbol symbols in a time slot may be sequentially numbered starting from 0, so that a time slot includes symbol 0 to symbol Nsymbol-1. It should be noted that the present application is not limited to sequentially numbering symbols in a time slot starting from 0, and may also sequentially numbering symbols in a time slot starting from 1 or other numbers, which is not limited. The embodiments of the present application are only described with numbers starting from 0. When the symbols in a time slot are numbered sequentially from 0, the value range of s_id is [0, Nsymbol-1].
  • t_id is the index value (or number) of the time slot occupied by the RO in one system frame.
  • the index value of the time slot occupied by the RO in one system frame may be referred to as the absolute index value of the time slot occupied by the RO in one system frame.
  • the present application is not limited to sequentially numbering the time slots in a system frame from 0, and may also sequentially number the time slots in a system frame from 1 or other numbers, which is not limited. This application is only described with numbers starting from 0. When the time slots are sequentially numbered from 0, the value range of t_id is [0, Nslot-1].
  • f_id is the index value (or number) of the frequency domain unit occupied by the RO in the Nf frequency domain units; the index value of the frequency domain unit occupied by the RO in the Nf frequency domain units may be called the frequency domain unit occupied by the RO Absolute index value in Nf frequency domain cells.
  • the present application is not limited to sequentially numbering the frequency domain units used for random access starting from 0, and may also sequentially numbering the frequency domain units used for random access starting from 1 or other numbers, which is not limited.
  • the embodiments of the present application are only described with numbers starting from 0. When the frequency domain units are numbered sequentially from 0, the value range of f_id is [0, Nf-1].
  • the frequency domain unit described in this embodiment of the present application may be a bandwidth part (BWP), a physical resource block (PRB), or a frequency domain resource of other granularity, which is not limited.
  • ul_carrier_id is the index value of the uplink carrier occupied by the RO in the Nc uplink carriers; the index value of the uplink carrier occupied by the RO in the Nc uplink carriers can be called the absolute index of the uplink carrier occupied by the RO in the Nc uplink carriers value.
  • the present application is not limited to sequentially numbering uplink carriers used for random access starting from 0, and may also sequentially numbering uplink carriers used for random access starting from 1 or other numbers, without limitation.
  • the embodiments of the present application are only described with numbers starting from 0.
  • the value range of ul_carrier_id may be [0, Nc-1].
  • both 4-step RA and 2-step RA use the above formula (1) to calculate RNTI, there will be the following problems: Although the time-frequency resources occupied by 4-step RO and 2-step RO are different, such as 4-step RO and 2-step RO The time domain resource positions occupied by -step RO are the same, the frequency domain units occupied by 4-step RO and 2-step RO are different (for example, they do not overlap), and the starting frequency domain units are different. The index values are numbered sequentially from 0.
  • the value range of the index value of the frequency domain unit occupied by 4-step RO is [0, Nf1]
  • the value range of the index value of the frequency domain unit occupied by 2-step RO is [0, Nf2]
  • two The index value of the frequency domain unit occupied by the user is the same, which will lead to the same RA-RNTI calculated for different random access methods based on the above formula (1), so that random access is initiated using different random access methods.
  • the terminal cannot distinguish which random access mode RA-RNTI is, resulting in random access conflict between terminals.
  • 2-step RO occupies frequency domain unit 1 to frequency domain unit 4
  • 4-step RO occupies frequency domain unit 6 to frequency domain unit 9
  • 4-step RO and 2-step RO occupy the frequency domain
  • the domain units are different, but when the frequency domain units are numbered sequentially from 0, the index values f_id of the starting frequency domain units of the 4-step RO and the 2-step RO are both 0.
  • the access network device can distinguish different random access modes corresponding to different terminals according to different ROs, when the access network device sends the response message, since the RA-RNTI calculated by the above formula (1) is the same, the response The scrambling of the message is the same, so that different terminals may consider it as a response message sent to itself. If the preamble used by the two terminals is also the same, in the uplink grant (UL grant) of the response message, the random access method used by the two terminals cannot be distinguished by the preamble identifier (RAPID). In this way, the two use different random access methods. A terminal that initiates random access in the access mode may experience random access conflict.
  • MsgB-RNTI is used to scramble the DCI of MsgB.
  • the calculation formula of MsgB-RNTI is shown in the following formula (2):
  • MsgB-RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+offset value (offset) formula (2)
  • the response message scrambled by the RNTI can be distinguished whether it corresponds to a 2-step RA or a 4-step RA.
  • the offset value (offset) is equal to Nsymbol*Nslot*Nf*Nc, then as shown in Figure 3, the RNTI for 4-step RA is The value range is [1, 17920], and the value range of the RNTI used for 4-step RA is [17921, 35840]. The value sets of these two types of RNTI do not overlap each other.
  • the RNTI value greater than 35840 in FIG. 3 can be used for other processes.
  • the value range from 1 to 17920 is only the maximum value range of RA-RNTI, and the value range is obtained by traversing all possible values for parameters such as s_id, t_id, and f_id.
  • this part of the value may also be discontinuous, for example, s_id may only be equal to 0 or 7 , s_id cannot be equal to 1 to 6 and 8 to 13.
  • RA-RNTIs in the range of 1 to 17920, there will be RA-RNTIs that are not allocated for random access by terminals in this specific cell, such as the RA-RNTIs circled by the dotted lines in 1 to 17920 in Figure 3. etc., the parts circled by these dotted lines can form "holes".
  • the terminal in order to transmit the uplink small packet data, the terminal needs to initiate random access first, go through the complete random access process, and start from the disconnected state. Switch to the connected state, and send the uplink small packet data in the connected state. After the uplink small packet data is sent, the access network equipment may keep the terminal in the connected state for a long time, and then make the terminal release the connection. These steps will cause a large amount of information. This increases the overhead, increases the power consumption of the terminal, and increases the data transmission delay.
  • the terminal can use a random access method (such as a 2-step random access method or a 4-step random access method). access mode) to send uplink data to the access network equipment.
  • a random access method such as a 2-step random access method or a 4-step random access method. access mode
  • the uplink small packet data is carried in Msg3 and sent to the access network device, or the uplink small packet data is carried in MsgA and sent to the access network device.
  • sending uplink data to an access network device through a 2-step random access method may be described as sending uplink data to an access network device based on a 2-step random access method, and sending uplink data to an access network device based on a 2-step random access method.
  • the uplink data sent by the network access device can be called 2-step small data transmission (2-step-SDT).
  • Sending uplink data to the access network device through the 4-step random access method can be replaced by the description of sending uplink data to the access network device based on the 4-step random access method, and sending uplink data to the access network device based on the 4-step random access method. It can be called 4-step-SDT.
  • the access network device through the 2-step random access method or the access network device through the 4-step random access method may be described as accessing the access network device based on the 2-step random access method or based on the 4-step random access method.
  • Access network devices in the 2-step random access mode or access network devices based on the 4-step random access mode can be called non-small packet data transmission (non-SDT), based on
  • the device accessing the access network in the 2-step random access mode can be called 2-step RA, and the device accessing the access network based on the 4-step random access method can be called 4-step RA.
  • 4-step-SDT and 4-step RA correspond to 4-step random access methods
  • 2 -step-SDT and 2-step RA correspond to the 2-step random access method
  • 4-step-SDT and 4-step RA can be called the communication process using the 4-step random access method
  • 2- step-SDT and 2-step RA can be referred to as a communication process using a 2-step random access method.
  • an embodiment of the present application provides a random access method.
  • the method may include: a first terminal sends a first message to an access network device on a first RO; the first message is used for random access based on The first terminal receives the first DCI from the access network device; wherein, the first DCI is used to schedule the response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO;
  • the RNTI is the first RNTI;
  • the RNTI is the second RNTI, and the first The random access method is different from the second random access method, and the first RNTI and the second RNTI are the same or different. That is, the RNTI is configured for sending uplink data based on the random access method, so that the terminal can distinguish according to the RNTI that the response message corresponds to
  • the first RNTI described in this application is a type of RNTI used for sending uplink data based on the first random access method
  • the second RNTI is a type of RNTI used for sending uplink data based on the second random access method.
  • RNTI for example, the first RNTI is a type of RNTI for 4-step SDT
  • the second RNTI is a type of RNTI for 2-step SDT
  • the first RNTI is a type of RNTI for 2-step SDT
  • the second RNTI is a type of RNTI for 2-step SDT.
  • Two RNTIs are a class of RNTIs for 4-step SDT.
  • the fact that the first RNTI and the second RNTI are the same may include: the calculation formula used for calculating the two types of RNTIs is the same, the value ranges of the first RNTI and the second RNTI are the same or the value ranges overlap, and the like.
  • the difference between the first RNTI and the second RNTI may include: different calculation formulas used for calculating the two types of RNTIs, or the value ranges of the first RNTI and the second RNTI do not overlap, and the like.
  • sending uplink data based on the 2-step random access method can be replaced by the description of sending uplink data based on the resources of the 2-step random access, or sending the uplink data based on the PUSCH corresponding to MsgA in the 2-step random access method. data etc.
  • the sending of uplink data based on the 4-step random access mode may be replaced by the description of sending uplink data based on the resources of the 4-step random access, or sending the uplink data based on the PUSCH corresponding to Msg3 in the 4-step random access mode.
  • Initiating random access based on the 2-step random access mode may be replaced by initiating random access based on the resources of the 2-step random access, or initiating random access based on the preamble corresponding to MsgA in the 2-step random access mode.
  • Initiating random access based on the 4-step random access method may be replaced by the description of initiating random access based on the resources of the 4-step random access, or initiating random access based on the preamble corresponding to Msg1 in the 4-step random access method.
  • the uplink data in the following embodiments may refer to uplink small packet data or other service data that can be sent through a random access process, which is not limited.
  • the uplink data is different from the preamble.
  • the uplink data is The uplink data may be data carried/carried on the PUSCH corresponding to the MsgA, the uplink data may be transmitted through the PUSCH, and the uplink data transmitted on the PUSCH corresponding to the MsgA may be user plane (UP) data or control plane (control plane) data.
  • UP user plane
  • control plane control plane
  • the upstream data is a transport block (TB), and from the perspective of the high-level protocol, the upstream data is a media access control (media access control, MAC) packet data unit (packet data unit, PDU).
  • media access control media access control, MAC
  • PDU packet data unit
  • the Msg3 carrying the uplink data is different from the Msg3 carrying the control signaling in the prior art.
  • the uplink data carried in Msg3 may be UP data or CP data, or may be DTCH data, etc., which is not limited.
  • the random access method provided by the embodiments of the present application can be used in a fourth generation (4th generation, 4G) system, a long term evolution (long term evolution, LTE) system, a fifth generation (5th generation, 5G) system, a new radio interface (new radio interface) , NR) system, NR-vehicle-to-everything (V2X) system, any system in the Internet of Things system, and can also be applied to other next-generation communication systems, etc., without limitation.
  • the random access method provided by the embodiment of the present application is described below by taking the communication system shown in FIG. 4 as an example.
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include an access network device and multiple terminals, such as terminal 1 and terminal 2 .
  • the terminal may be in an idle state or an inactive state.
  • FIG. 4 is an exemplary frame diagram, the number of nodes included in FIG. 4 is not limited, and in addition to the functional nodes shown in FIG. 4, other nodes may also be included, such as: core network equipment, gateway equipment, Application servers, etc., are not limited.
  • the access network equipment is mainly used to implement functions such as resource scheduling, wireless resource management, and wireless access control of the terminal.
  • the access network device may be any node among a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the terminal may be a terminal equipment (terminal equipment) or a user equipment (user equipment, UE) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT).
  • the terminal may be a mobile phone (mobile phone), a tablet computer, or a computer with a wireless transceiver function, and may also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, or a wireless terminal in industrial control.
  • Terminal wireless terminal in unmanned driving, wireless terminal in telemedicine, wireless terminal in smart grid, wireless terminal in smart city, smart home, vehicle terminal, etc.
  • the device for realizing the function of the terminal may be a terminal, or a device capable of supporting the terminal to realize the function, such as a chip system (for example, a chip or a processing system composed of multiple chips).
  • a chip system for example, a chip or a processing system composed of multiple chips.
  • each network element shown in FIG. 4 may adopt the composition structure shown in FIG. 5 or include the components shown in FIG. 5 .
  • FIG. 5 is a schematic diagram of the composition of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 may be a terminal or a chip or on-chip in the terminal. system.
  • the communication apparatus 500 may be the access network equipment or a chip or a system on a chip in the access network equipment.
  • the communication apparatus 500 may include a processor 501 , a communication line 502 and a communication interface 503 . Further, the communication device 500 may further include a memory 504 . The processor 501 , the memory 504 and the communication interface 503 may be connected through a communication line 502 .
  • the processor 501 may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processing (DSP), a microprocessor, or a microcontroller. , programmable logic device (PLD) or any combination of them.
  • the processor 501 may also be other apparatuses having processing functions, such as circuits, devices or software modules.
  • the communication line 502 is used to transmit information between components included in the communication device 500 .
  • the communication interface 503 is used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), wireless local area networks (WLAN) and the like.
  • the communication interface 503 may be a radio frequency module, a transceiver, or any device capable of communication.
  • the embodiments of the present application are described by taking the communication interface 503 as an example of a radio frequency module, wherein the radio frequency module may include an antenna, a radio frequency circuit, and the like, and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
  • Memory 504 for storing instructions.
  • the instructions may be computer programs.
  • the memory 504 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or a random access memory (RAM) or a Other types of dynamic storage devices that store information and/or instructions, and may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media or other magnetic storage devices, optical disc storage includes compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • magnetic disk storage media or other magnetic storage devices optical disc storage includes compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • the memory 504 may exist independently of the processor 501 , or may be integrated with the processor 501 .
  • the memory 504 may be used to store instructions or program code or some data or the like.
  • the memory 504 may be located in the communication device 500, or may be located outside the communication device 500, which is not limited.
  • the processor 501 is configured to execute the instructions stored in the memory 504 to implement the random access method provided by the following embodiments of the present application.
  • processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the communication apparatus 500 includes a plurality of processors, for example, in addition to the processor 501 in FIG. 5 , a processor 507 may also be included.
  • the communication apparatus 500 may further include an output device 505 and an input device 506 .
  • the input device 506 may be a keyboard, a mouse, a microphone or a joystick, and the like
  • the output device 505 may be a display screen, a speaker, and the like.
  • the communication apparatus 500 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device with a similar structure in FIG. 5 .
  • the composition shown in FIG. 5 does not constitute a limitation on the communication device, and in addition to the components shown in FIG. 5 , the communication device may include more or less components than those shown in the figure, or combine some components , or a different component arrangement.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • each device in the following embodiments may have the components shown in FIG. 5 , and the actions, terms, etc. involved in the various embodiments may refer to each other, and the names of the messages or parameters in the messages that are exchanged between the devices in the various embodiments. etc. are just an example, and other names may also be used in specific implementations without limitation.
  • the terms "first" and "second” in the embodiments of the present application are used to distinguish different objects, rather than being used to describe a specific order of the objects. The properties of different objects represented by " are not limited.
  • FIG. 6 is a flowchart of a random access method provided by an embodiment of the present application. As shown in FIG. 6 , the method may include:
  • Step 601 The first terminal sends a first message to the access network device on the first RO.
  • the access network device receives the first message from the first terminal.
  • the first terminal may be any terminal in FIG. 4 , for example, the first terminal may be terminal 1 or terminal 2 in FIG. 4 .
  • the first terminal may be in a disconnected state (eg, an idle state or an inactive state).
  • the first terminal has uplink service requirements, and needs to send uplink data (such as uplink small packet data) to the access network device based on the random access method.
  • the access network device may be the access network device in FIG. 4 , and the access network device may provide a network service for the first terminal.
  • the random access manner may include a first random access manner or a second random access manner.
  • the first random access method is different from the second random access method.
  • the first random access manner may be a 4-step random access manner as shown in FIG. 1a
  • the second random access manner may be a 2-step random access manner as shown in FIG. 1b.
  • the first random access manner is the 2-step random access manner shown in FIG. 1b
  • the second random access manner may be the 4-step random access manner shown in FIG. 1a.
  • the first RO may be an RO randomly selected by the first terminal for sending uplink data based on a random access manner.
  • the RO used for sending the uplink data based on the 4-step random access method and the RO used for sending the uplink data based on the 2-step random access method may be the same or different.
  • the RO used to send uplink data based on the 4-step random access method belongs to the first RO set
  • the RO used to send uplink data based on the 2-step random access method belongs to the second RO set
  • the first message may be used to send uplink data based on a random access manner.
  • the first message may carry a preamble.
  • the random access mode is the 4-step random access mode
  • the first message may be Msg1.
  • the random access mode is the 2-step random access mode
  • the first message may be MsgA.
  • the MsgA may also include a physical uplink shared channel (PUSCH) associated with the preamble.
  • the PUSCH may include uplink data and/or other information.
  • Step 602 The access network device sends the first DCI to the first terminal according to the first message.
  • the first terminal receives the first DCI from the access network device.
  • the access network device sends a response message corresponding to the first message at the time-frequency resource location indicated by the first DCI.
  • the first terminal determines the RNTI according to the first RO, descrambles the first DCI according to the RNTI, and receives a response message corresponding to the first message according to the time-frequency resource position indicated by the first DCI after the first DCI is successfully descrambled.
  • the response message corresponding to the first message may be Msg2.
  • the response message corresponding to the first message may be MsgB.
  • the method further includes: the first terminal sends the Msg3 carrying the uplink data to the access network device, the access network device receives the Msg3, and sends the Msg3 to the first terminal. Msg4.
  • the first DCI may be used to schedule a response message corresponding to the first message.
  • the first DCI may indicate the time-frequency resource location of the response message corresponding to the first message.
  • the first DCI is scrambled by RNTI, there is an association relationship between the RNTI and the first RO, the RNTI may be determined according to the first RO, and the first RNTI and the second RNTI may be the same or different.
  • the RNTI may be 4-step-SDT-RNTI.
  • the RNTI may be 2-step-SDT-RNTI.
  • 4-step-SDT-RNTI and 2-step-SDT-RNTI can be the same or different, that is, this application designs RNTI for 4-step-SDT or 2-step-SDT in order to perform 4-step-SDT or 2
  • the terminal of -step-SDT learns, according to the RNTI, whether the response message corresponding to the first message scheduled by the DCI corresponds to the first message sent by itself, and if it corresponds to the first message sent by itself, it further decodes the response message corresponding to the first message. If it does not correspond to the first message sent by itself, the response message corresponding to the first message is not decoded.
  • the first RNTI and the second RNTI are different, the first RNTI and the second RNTI correspond to different calculation formulas, and the value ranges of the two are different.
  • the first RNTI is the same as the second RNTI, corresponds to the same calculation formula, and has the same value range.
  • the first RNTI belongs to the first RNTI set, the first RNTI set includes RNTIs used for sending uplink data based on the first random access method, the second RNTI belongs to the second RNTI set, and the second RNTI set includes RNTIs used for sending uplink data based on the first random access method.
  • the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set do not overlap each other.
  • the third RNTI set may include an RNTI for accessing the access network device based on the first random access manner, and the relationship between the RNTI included in the third RNTI set and the RO satisfies the above formula (1).
  • the fourth RNTI set may include an RNTI for accessing the access network device based on the second random access manner, and the relationship between the RNTI included in the fourth RNTI set and the RO satisfies the above formula (2).
  • the fact that the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set do not overlap each other may refer to the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set.
  • the same RNTI does not exist between different RNTI sets, in other words, the same RNTI does not exist in different RNTI sets at the same time, namely 4-step RA, 2-step RA, 4-step-SDT and
  • the four types of communication processes of 2-step-SDT are designed with different RNTIs, so that the terminal can distinguish which of the above four types of processes the response message scheduled by the access network equipment using DCI corresponds to according to the RNTI, and then decide whether to Decode the response message.
  • the determination of the first RNTI according to the first RO may include that the relationship between the first RNTI and the first RO satisfies the following formula (3):
  • the determination of the second RNTI according to the first RO may include that the relationship between the second RNTI and the first RO satisfies the following formula (4) :
  • Second RNTI 1+s_id'+E*t_id'+E*F*f_id'+E*F*G*ul_carrier_id'+second offset value
  • the parameters s_id, t_id, f_id, and ul_carrier_id in formula (3) are absolute index values of time-frequency resource positions occupied by the first RO.
  • the parameters s_id', t_id', f_id', and ul_carrier_id' in formula (4) are the absolute index values of the time-frequency resource positions occupied by the first RO.
  • s_id in formula (3) is the index value of the symbol occupied by the first RO in a time slot, and the value range of s_id is [0, A-1], where A can indicate that the first RO is used for the first random access.
  • t_id is the index value of the time slot occupied by the first RO in one system frame, and the value range of t_id is [0, B-1], where B may represent the time slot used for the first random access mode. quantity.
  • f_id is the index value of the frequency domain unit occupied by the first RO in the C frequency domain units, and the value range of f_id is [0, C-1], where C may represent the frequency domain used for the first random access mode The number of domain units.
  • ul_carrier_id is the index value of the uplink carrier occupied by the first RO among the D uplink carriers, and the value range of ul_carrier_id is [0, D-1], where D may represent the uplink carrier used in the first random access mode. quantity.
  • the first offset value may be used to separate the first RNTI set from other RNTI sets.
  • the first offset value is greater than or equal to Nsymbol*Nslot*Nf*Nc*2, and the first offset value may be used to isolate the first RNTI set from the third RNTI set and the fourth RNTI set.
  • the first offset value is greater than or equal to (Nsymbol*Nslot*Nf*Nc*2+the number of RNTIs included in the second RNTI set), and the first offset value may be used to compare the first RNTI set with the second RNTI set , the third RNTI set and the fourth RNTI set are separated.
  • the number of RNTIs included in the second RNTI set is E*F*H*G.
  • s_id' in formula (4) is the index value of the symbol occupied by the first RO in one time slot, and the value range of s_id' is [0, E-1], where E can represent the second random access
  • E can represent the second random access
  • t_id' is the index value of the time slot occupied by the first RO in one system frame
  • the value range of t_id' is [0, F-1], where F may represent the time used for the second random access mode.
  • the number of slots; f_id' is the index value of the frequency domain unit occupied by the first RO in the G frequency domain units; the value range of f_id' is [0, G-1], where G can represent the second The number of frequency domain units for random access.
  • ul_carrier_id' is the index value of the uplink carrier occupied by the first RO among the H uplink carriers, the value range of ul_carrier_id' is [0, H-1], and H can represent the uplink carrier used for the second random access mode. quantity.
  • the second offset value may be used to separate the second RNTI set from other RNTI sets. For example, when the first offset value is greater than or equal to Nsymbol*Nslot*Nf*Nc*2, the second offset value is greater than or equal to (Nsymbol*Nslot*Nf*Nc*2+A*B*C*D); The second offset value may be used to isolate the second set of RNTIs from the first set of RNTIs, the third set of RNTIs, and the fourth set of RNTIs.
  • the second offset value is greater than or equal to Nsymbol*Nslot*Nf*Nc* 2.
  • the second offset value may be used to isolate the second set of RNTIs from the third set of RNTIs and the fourth set of RNTIs.
  • the parameters A, B, C, and D corresponding to formula (3), and the parameters E, F, G, and D corresponding to formula (4) can be configured by the access network device to the terminal through system messages.
  • the value of A can be from 1 to Nsymbol
  • the value of B can be from 1 to Nslot
  • the value of C can be from 1 to Nf
  • the value of D can be from 1 to Nc.
  • the value range of E can be from 1 to Nsymbol
  • the value of F can be from 1 to Nslot
  • the value of G can be from 1 to Nf
  • the value of H can be from 1 to Nc.
  • the parameters A, B, C, and D corresponding to formula (3), and the parameters E, F, G, and D corresponding to formula (4) can have the following two different designs:
  • formula (3) is equivalent to: the first
  • RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+first offset value.
  • E in formula (4) is equal to Nsymbol, F is equal to Nslot, G is equal to Nf, and H is equal to Nc, formula (4) is equivalent to: the second
  • RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+second offset value.
  • the symbol occupied by the first RO may be the start symbol (the symbol at the front of the time domain position) in the time-frequency resource occupied by the first RO, or may be the time-frequency resource occupied by the first RO Other symbols in , such as the end symbol (the last symbol in the instant domain position), etc., are not restricted.
  • the first RO may occupy one or more symbols.
  • the time slot occupied by the first RO may be the initial time slot in the time-frequency resource occupied by the first RO (the time slot at the front of the time domain position), or may be another time slot in the time-frequency resource occupied by the first RO, For example, the end time slot (the last time slot in the instant domain position), etc., is not limited.
  • the first RO may occupy one or more time slots.
  • the frequency domain unit occupied by the first RO may be the initial frequency domain unit in the frequency domain resources occupied by the first RO (that is, the frequency domain unit at the front of the frequency domain position), or may be the frequency domain unit occupied by the first RO Other frequency domain units in the frequency domain resources of , such as the last frequency domain unit (that is, the last frequency domain unit in the frequency domain position), etc., are not limited.
  • the first RO may occupy one or more frequency domain units.
  • the uplink carrier occupied by the first RO may be the initial uplink carrier in the time-frequency resources occupied by the first RO (that is, the uplink carrier in the frontmost position in the frequency domain), or may be other uplink carriers in the time-frequency resources occupied by the first RO. , such as ending the uplink carrier (that is, the last uplink carrier in the frequency domain position), etc., without limitation.
  • the first RO may occupy one or more uplink carriers.
  • the value of each bit may be 0 or 1, and the possible values of each bit in the n bits can be combined to obtain a random 2 n RNTIs accessed, at this time, if the total number N of RNTIs included in the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set is greater than 2 n , a new one for randomization needs to be added
  • 2 n RNTIs are extended to N RNTIs to ensure that enough RNTIs can be used to send uplink data based on random access.
  • the length of the RNTI is 16 bits
  • there are 2 16 65536 RNTIs that can be used to access the access network device based on random access or to send uplink data based on random access.
  • the first offset value is equal to Nsymbol*Nslot*Nf*Nc*2
  • the second offset value is equal to (Nsymbol*Nslot*Nf*Nc*2+A*B*C*D )
  • the distribution of various RNTIs calculated based on formula (1), formula (2), formula (3) and formula (4) is shown in Figure 7a, and 65536 RNTIs are extended to 71680 RNTIs.
  • a set of RNTIs is a set of RNTIs with a value range of [35841, 53760], the value range of the first RNTI can be [35841, 53760], and the second set of RNTIs is a set of RNTIs with a value range of [53761, 71680], The value range of the second RNTI may be [53761, 71680].
  • the third RNTI set is an RNTI set with a value range of [1, 17920]
  • the fourth RNTI set is an RNTI set with a value range of [17921, 35840], and the four RNTI sets do not overlap each other.
  • the length of the RNTI is n, in order to control the total number of RNTIs included in the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set within 2 n , Ensure system compatibility.
  • the parameters A, B, C and D corresponding to formula (3) can be designed as one or more of the following: A is a positive integer less than Nsymbol, B is a positive integer less than Nslot, and C is a positive integer less than Nf A positive integer or D is a positive integer less than Nc, narrow the value range of one or more parameters in the parameters s_id, t_id, f_id, ul_carrier_id in formula (3), and then narrow the value range of the first RNTI and reduce the value of the first RNTI.
  • the parameters E, F, G and H corresponding to formula (4) are designed as one or more of the following: E is a positive integer less than NsymBol, F is a positive integer less than Nslot, G is a positive integer less than Nf Integer, or H is a positive integer less than Nc, in order to achieve the purpose of narrowing the value range of one or more parameters in the parameters s_id', t_id', f_id', ul_carrier_id' in formula (4), and then achieve the purpose of narrowing the second
  • the value range of the RNTI reduces the number of RNTIs included in the second RNTI set.
  • the number of RNTIs included in the first RNTI set is A*B*C*D
  • the number of RNTIs included in the second RNTI set is E*F*G*H
  • the third RNTI set and the third RNTI set The sum of the number of RNTIs included in the four-RNTI set is Nsymbol*Nslot*Nf*Nc*2.
  • the length of the RNTI is 16 bits
  • the second RNTI set shown in Figure 7b is obtained based on formula (4), and the value range of the second RNTI set is [44801, 53760].
  • the third RNTI set can be obtained based on formula (1), and the value range of the third RNTI set is [1, 17920], and the fourth RNTI set can be obtained based on formula (2), and the value range of the fourth RNTI set is [17921] , 35840], the four RNTI sets do not overlap each other, and the total number of RNTIs included in these four sets does not exceed 65536.
  • the value range of other parameters in formula (4) can also be limited.
  • the value of ul_cErrier_id' can only be 0.
  • the above formula (4) can be equivalent to:
  • s_id can be used when calculating the first RNTI.
  • t_id, f_id, ul_carrier_id and other parameters are defined as relative index values
  • s_id', t_id', f_id', ul_carrier_id' and other parameters can be defined as relative index values when calculating the second RNTI. Since the relative index value is continuous, at this time, the value of the RNTI corresponding to the RO configured in a cell for sending uplink data based on the random access mode can be continuous, thereby improving the resource utilization of the RNTI.
  • the value range configured for the RNTI for sending uplink data based on the random access mode is relatively large, but is configured for a cell
  • the possible positions of the RO used for sending uplink data based on random access mode are not many, and the value of RNTI corresponding to the RO used for sending uplink data based on random access mode may be a part of the value range.
  • the cell there are not many RNTIs that are actually used for sending uplink data based on random access.
  • Some RNTIs in the range of RNTIs for sending uplink data based on random access are not used, that is, the dotted line in Figure 3 "Hole" shown.
  • defining parameters such as s_id, t_id, f_id, and ul_carrier_id as relative index values may include: the first RO occupies the s_id th symbol among the A symbols, and the s_id is less than or equal to the s_id th symbol in a The index value in the time slot, A symbols are the symbols used for sending uplink data based on the first random access mode; the value range of s_id is [0, A-1]; the first RO occupies B time slots.
  • the t_id th timeslot, t_id is less than or equal to the index value of the t_id th timeslot in a system frame, and the B timeslots are timeslots used for sending uplink data based on the first random access mode;
  • the value range of t_id is [0, B-1];
  • the first RO occupies the f_id symbol in the C frequency domain units, and t_id is less than or equal to the index value of the f_id time slot in the Nf frequency domain units, and C is used for A frequency domain unit for sending uplink data in random access mode;
  • the value range of f_id is [0, C-1];
  • the first RO occupies the ul_carrier_id th uplink carrier among the D uplink carriers, and ul_carrier_id is less than or equal to the ul_carrier_id th uplink carrier
  • the index value of the carrier in the Nc uplink carriers, D is the up
  • defining parameters such as s_id', t_id', f_id', ul_carrier_id' as relative index values may include: the first RO occupies the s_id' th symbol among the E symbols, and s_id' is less than or equal to The index value of the s_id' symbol in a time slot, the E symbols are symbols used for sending uplink data based on the second random access method; the value range of s_id' is [0, E-1]; the first The RO occupies the t_id' th time slot in the F time slots, and t_id' is less than or equal to the index value of the t_id' th time slot in a system frame, and the F time slots are used for sending uplink based on the second random access method.
  • the time slot of the data the value range of t_id' is [0, F-1]; the first RO occupies the f_id' symbol in the G frequency domain units, and t_id' is less than or equal to the f_id' time slot in Nf
  • G is the frequency domain unit used for sending uplink data based on the second random access mode;
  • the value range of f_id' is [0, G-1];
  • the ul_carrier_id' th uplink carrier in the carrier, ul_carrier_id' is less than or equal to the index value of the ul_carrier_id' th uplink carrier among the Nc uplink carriers, H is the uplink carrier used for sending uplink data based on the second random access method;
  • ul_carrier_id' The value range of is [0, H-1].
  • s_id represents an index value (or referred to as an absolute index value) of a symbol occupied by the first RO in a time slot.
  • s_id represents the relative position of the symbols occupied by the first RO in the A symbols, and is the relative index value of the symbols occupied by the first RO in the A symbols.
  • the starting symbol for configuring the first RO can only be the 0th symbol or the 7th symbol
  • the related descriptions of the first offset value and the second offset value may refer to the description in the first example, which will not be repeated.
  • the parameters A, B, C, and D corresponding to formula (3), and the parameters E, F, G, and D corresponding to formula (4) can be referred to those described in the second design, and will not be repeated.
  • the parameters A, B, C and D corresponding to formula (3) are designed to be one or more of the following: A is a positive integer less than Nsymbol, B is a positive integer less than Nslot, and C is a positive integer less than Nf or D is a positive integer less than Nc.
  • E, F, G and H corresponding to formula (4) are designed to be one or more of the following: E is a positive integer less than NsymBol, F is a positive integer less than Nslot, G is a positive integer less than Nf, or H is a positive integer less than Nc.
  • the above formula (2) can be referred to, and the offset value can be added to distinguish the first RNTI used for sending uplink data based on the first random access mode and the first RNTI used for sending uplink data based on the second random access mode
  • the second RNTI of uplink data simplifies system design.
  • Mode 2 Use part of the RNTI included in the third RNTI set as the first RNTI, and this part of the RNTI can be used to send uplink data based on the first random access method, that is, the RNTI used to send uplink data based on the first random access method can be Multiplexing the original value range of the RNTI used to access the access network device (that is, non-SDT) based on the first random access method, or the RNTI used to send uplink data based on the first random access method.
  • the value range is a subset of the value range of the original RNTI used to access the access network device (ie, non-SDT) based on the first random access manner.
  • the part of the RNTI included in the fourth RNTI set is used as the second RNTI, and this part of the RNTI can be used to send uplink data based on the second random access method, that is, the RNTI used to send uplink data based on the second random access method can be Multiplexing the original value range of the RNTI used to access the access network device (that is, non-SDT) based on the second random access method, or the RNTI used to send uplink data based on the second random access method.
  • the value range is a subset of the value range of the original RNTI used to access the access network device (ie, non-SDT) based on the second random access manner.
  • the ROs of the 4-step RA and the 4-step SDT are sequentially numbered in the frequency domain unit (indexing), and the ROs of the 2-step RA and the 2-step SDT are sequentially numbered in the frequency domain.
  • the value range of the index value of the frequency domain unit occupied by the first RO is set to start from N , N is an integer greater than 0 and less than Nf, N is the number of frequency-domain units that can be used in the first random access mode, and the index of the frequency-domain unit occupied by the RO for sending uplink data based on the first random access mode
  • the number of frequency domain units used for transmitting uplink data based on the first random access manner is Nf-N.
  • the value range of the index value of the frequency domain unit occupied by the first RO is set to start from M, where M is an integer greater than 0 and less than Nf, and M is an integer that can be used for the second RNTI.
  • the number of frequency domain units used for sending uplink data based on the second random access manner is Nf-M.
  • the value of N may be configured by an access network device.
  • the value of N may be determined according to configuration information of the access network device, and the configuration information may be used to indicate the value of N.
  • the value of N may also be predefined, for example, the value of N may be pre-specified in the protocol.
  • the value of M may be configured by the access network device.
  • the value of M may be determined according to configuration information of the access network device, and the configuration information may be used to indicate the value of M.
  • the value of M may also be predefined, for example, the value of M may be pre-specified in the protocol.
  • frequency domain unit 1 to frequency domain unit 4 are configured for 4-step RA, and the number of frequency domain units for 4-step RA is 4 at this time, and frequency domain unit 6 to The frequency domain unit 9 is configured for 4-step-SDT, and the number of frequency domain units for 4-step-SDT is also 4 at this time.
  • mode 1 shown on the left side of the arrow in Figure 8a
  • the index value f_id 3 of the field unit 9.
  • the value range of the index value of the frequency domain unit for 4-step RA and for 4-step-SDT is the same, and the value range is [0, 3].
  • the index value f_id 7 of the field unit 9.
  • the value range of the index value of the frequency domain unit for 4-step RA and for 4-step-SDT is non-overlapping, and the value range of the frequency domain unit for 4-step RA is [0, 3] , the value range of the frequency domain unit for 4-step-SDT is [4, 7].
  • the above f_id_1 ⁇ N, N+1,...,Nf-1 ⁇ is the standard allowable value range, and the maximum value of f_id_1 can reach Nf-1, but in practical applications, the maximum value of f_id_1 The range may not reach Nf-1, and the maximum value of f_id_1 is less than Nf-1.
  • the above f_id_2 ⁇ M, M+1,...,Nf-1 ⁇ is the standard allowable value range, and the maximum value of f_id_2 can reach Nf-1, but in practical applications, the maximum value range of f_id_2 may be If Nf-1 is not reached, the maximum value of f_id_2 can be smaller than Nf-1.
  • Nf 8 and the first random access mode is 4-step random access mode
  • the number of frequency domain units for 4-step allocated to the cell is 6, and these 6 resources
  • the frequency domain unit 0 to frequency domain unit 2 in the unit are used for 4-step RA
  • the frequency domain unit 3 to frequency domain unit 5 are used for 4-step-SDT.
  • N 3
  • the value range of f_id_1 is [ 3, 5]
  • the first RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_1+Nsymbol*Nslot*Nf*ul_carrier_id Formula (5)
  • Second RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+third offset value
  • Second RNTI 1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+third offset value
  • s_id is the index value of the symbol occupied by the first RO in a time slot, and the value range of s_id is [0, Nsymbol-1]; t_id is the first RO occupied
  • the index value of the time slot in a system frame the value range of t_id is [0, Nslot-1];
  • the value range of f_id_1 is [N, Nf-1], N is less than Nf, N is Nf frequency domain
  • the value range of f_id_2 is [M, Nf-1], M is less than Nf, and M is the number of Nf frequency domain units used for the second random access.
  • the number of frequency domain units; ul_carrier_id is the index value of the uplink carrier occupied by the first RO among Nc uplink carriers, and the value range of ul_carrier_id is [0, Nc-1].
  • the third offset value may be greater than or equal to Nsymbol*Nslot*Nf*Nc.
  • the third offset value is the same as the offset in formula (2), and the related descriptions of Nsymbol, Nslot, Nf, and Nc can refer to the above descriptions, which will not be repeated.
  • formula (5) is the same as formula (1), except that the value ranges of the frequency domain units in different formulas are different.
  • the formula (6) is the same as the formula (2), except that the value ranges of the frequency domain units in different formulas are different.
  • the first random access method is 4-step
  • the second random access method is 2-step
  • the length of RNTI is 16 bits
  • there are 2 16 65536 RNTIs that can be used to access the access network based on random access
  • the first RNTI set shown in Figure 8b can be obtained, based on formula ( 6)
  • the third RNTI set can be obtained based on formula (1), and the value range of the third RNTI set is [1, 17920], and the fourth RNTI set can be obtained based on formula (2), and the value range of the fourth RNTI set is [17921] , 35840], as can be seen from Figure 8 b, the value of the RNTI included in the first RNTI set multiplexes the value of the RNTI included in the 3rd RNTI set, and the value of the RNTI included in the second RNTI set multiplexes the value of the RNTI included in the 4th RNTI set. The value of RNTI.
  • the RNTI used for sending uplink data based on the first random access method is the same as the value range used for sending the second RNTI based on the second random access method, that is, the RNTI corresponding to the 4-step SDT is the same as the RNTI corresponding to the 2-step SDT.
  • the corresponding RNTIs are the same, or the RNTI corresponding to the 4-step SDT and the RNTI corresponding to the 2-step SDT are of the same type, but the RNTI corresponding to the 4-step SDT and the RNTI corresponding to the 2-step SDT are the same as those used for random access.
  • the value range of the network access device (non-SDT) is different.
  • the access network device may also indicate to the first terminal whether the first DCI corresponds to 4-step SDT or 2-step SDT.
  • the third mode may include: the first RNTI and the second RNTI correspond to the same calculation formula, the first RNTI and the second RNTI belong to the first RNTI set, and the first RNTI set, the third RNTI set and the fourth RNTI set do not overlap each other ; wherein, the third RNTI set includes the RNTI used to access the access network device based on the first random access mode, and the fourth RNTI set is used to access the RNTI of the access network device based on the second random access mode.
  • the first DCI may also carry first indication information, and the first indication information may be used to indicate that the first DCI corresponds to sending uplink data based on the first random access mode, or is used to indicate that the first DCI corresponds to the second random access method.
  • the access mode sends uplink data.
  • the response message corresponding to the first message may carry first indication information, and the first indication information may be used to indicate that the response message corresponds to sending uplink data based on the first random access mode, or to indicate that the response message corresponds to sending uplink data based on the second random access method.
  • Incoming mode to send uplink data.
  • the value of 1 bit in the first DCI or the response message corresponding to the first message is used as the first indication information.
  • the value of the first indication information includes 0 or 1.
  • the first indication information indicates that uplink data is sent based on the first random access mode
  • the first indication information indicates that the uplink data is sent based on the second random access method. way to send uplink data.
  • the first indication information indicates that uplink data is sent based on the first random access method
  • the first indication information is 0, it indicates that uplink data is sent based on the second random access method.
  • reserved bits in the first DCI may be used as the first indication information, that is, unused bits in the first DCI defined in the current standard may be used as the first indication information.
  • the response message corresponding to the first message may be a media access control random access response (media access control random access response, MAC RAR), and a MAC RAR may be used.
  • the reserved bits in the RAR are used as the first indication information.
  • the first RNTI and the second RNTI may be referred to as SDT-RNTI.
  • the first RNTI and the second RNTI can satisfy the following formula (7):
  • s_id is the index value of the symbol occupied by the first RO in a time slot, and the value range of s_id is [0, Nsymbol-1];
  • t_id is the time slot occupied by the first RO in a system
  • the index value in the frame the value range of t_id is [0, Nslot-1];
  • f_id is the index value of the frequency domain unit occupied by the first RO in Nf frequency domain units, and the value range of f_id is [0, Nf-1];
  • ul_carrier_id is the index value of the uplink carrier occupied by the first RO among the Nc uplink carriers, and the value range of ul_carrier_id is [0, Nc-1].
  • the fourth offset value can be used to separate the first RNTI set from the third RNTI set and the fourth RNTI set, and the fourth offset value can be greater than or equal to Nsymbol*Nslot*Nf*Nc*2; Nsymbol, Nslot For the related descriptions of , Nf and Nc, reference may be made to the above description, which will not be repeated.
  • Nsymbol, Nslot, Nf and Nc can be reduced, for example, Nsymbol can be replaced with a value smaller than Nsymbol, and/or, Nslot Replace with a value less than Nslot, and/or, replace Nf with a value less than Nf, and/or, replace Nc with a value less than Nc, to narrow down one or more parameters of s_id, t_id, f_id, ul_carrier_id value range, and further narrow the value range of the first RNTI set.
  • the length of the RNTI is 16 bits
  • there are 2 16 65536 RNTIs that can be used to access the access network device based on random access or to send uplink data based on random access.
  • the calculated values of various RNTIs are The allocation situation is shown in Figure 9a, the first RNTI set is the RNTI set with a value range of [35841, 53760], the value range of the first RNTI and the second RNTI can be [35841, 53760], and the third RNTI set is An RNTI set with a value range of [1, 17920], the fourth RNTI set is an RNTI set with a value range of [17921, 35840], and the three RNTI sets do not overlap each other
  • the third mode can also be understood as: extending the value range of the RNTI, and using (n+1) bits to represent the RNTI, the (n+1) bits RNTI can be called new RNTI.
  • the first DCI use n bits (such as the last n bits) in the new RNTI to scramble the first DCI, and then carry the highest 1 bit in the new RNTI in the first DCI or the response message corresponding to the first message middle.
  • the first terminal After the first terminal calculates the SDT corresponding to the RNTI according to formula (7), it can learn from the first DCI or 1 bit carried in the response message corresponding to the first message whether the RNTI corresponds to sending uplink data based on the first random access method or based on the first random access method. 2. Send uplink data in random access mode.
  • the terminal accesses the access network device based on the random access mode.
  • the terminal can obtain the RA-RNTI according to the above formula (1) or obtain the MsgB-RNTI according to the formula (2), without interpreting the highest bit of the RNTI from the response message corresponding to the first DCI or the first message, that is, executing the The same operation of determining the RNTI exists.
  • the terminal performs SDT, the terminal determines whether it is a 4-step SDT or a 2-step SDT based on the above formula (7) and the highest bit of the RNTI in the response message corresponding to the first DCI or the first message.
  • the first random access method is a 4-step random access method
  • the second random access method is a 2-step random access method
  • the binary bit 0 indicates 4 -step SDT
  • binary bit 1 indicates 2-step SDT
  • the fourth offset value is equal to Nsymbol*Nslot*Nf*Nc*2
  • the allocation of various types of RNTI The situation is shown in Figure 9b, if the 4-step SDT is performed through the first RO, the first RNTI is calculated according to the above formula (7). At this time, the value range of the first RNTI can be [35841, 53760].
  • the second RNTI is determined according to the above formula (7) and the highest bit of the RNTI in the response message corresponding to the first DCI or the first message. At this time, the value of the second RNTI is The range is [101376, 119296]. If 4-step RA is performed through the first RO, the highest bit of the RNTI is not interpreted from the response message corresponding to the first DCI or the first message, and the RA-RNTI is calculated according to the above formula (1). The value range is [1, 17920].
  • the above-mentioned embodiment counts different types of RNTIs for the four types of communication processes of 4-step RA, 2-step RA, 2-step-SDT and 4-step-SDT, so as to avoid different ROs when performing these four types of communication processes.
  • the calculation parameters corresponding to the ROs are the same, and the RNTI calculated according to the calculation parameters corresponding to the different ROs is the same, so that the terminal can distinguish which of the four types of communication processes corresponds to the response message of the DCI scheduling scrambled by the RNTI. process.
  • the access network device may pre-allocate different RACH resources (such as RO) for terminals of different types/meeting different conditions, so that these terminals can Random access is performed on the RACH resource suitable for itself to meet the transmission requirements of the terminal.
  • RACH resources such as RO
  • the terminal may be divided into a reduced capability (reduced capability, redcap) terminal and a non-redcap (non-redcap) terminal.
  • the redcap terminal supports 20 megahertz (MHz) bandwidth, 1 receive antenna (RX) or 2 receive antennas (RX).
  • Non-redcap terminals support 100MHz bandwidth, 4 receive antennas (4RX), etc.
  • the access network device may configure special RACH resources (such as special ROs, etc.) for non-redcap terminals.
  • a non-redcap terminal can send Msg1 or MsgA on the RACH resource corresponding to the redcap terminal configured by the access network device, and the access network device can receive Msg1 or MsgA on the RACH resource, and can know whether the terminal is a non-redcap terminal according to the RACH resource. terminal for redcap.
  • the terminal may be divided into a terminal that supports the coverage enhancement capability and a terminal that does not support the coverage enhancement capability.
  • the coverage enhancement described in the embodiments of the present application may refer to increasing the coverage by means of repeated transmission or the like.
  • PUSCH physical uplink shared channel
  • a terminal that supports coverage enhancement can repeatedly send PUSCH multiple times at a time, and when the access network device receives a signal, it can combine and receive multiple repeated PUSCHs, increasing the The equivalent signal-to-noise ratio of the signal, so that the access network equipment can receive the signal of the terminal that is farther away.
  • the access network device can configure special RACH resources (such as special RO, etc.) for the terminal's "coverage enhancement” ). After selecting the RACH resource for the coverage enhancement association, the terminal may send Msg1 or MsgA on the selected RACH resource, and correspondingly, the access network device may receive Msg1 or MsgA on the RACH resource. For 4-step RA, according to the RACH resource selected by the terminal, the access network device can know that the terminal wishes to use the coverage enhancement technology to send the Msg3, and then the transmission of the Msg3 can be scheduled in the subsequent coverage enhancement mode.
  • special RACH resources such as special RO, etc.
  • the RACH resources corresponding to "coverage enhancement” include special RO/preamble and PUSCH configured as coverage enhancement mode (such as repeated transmission, etc.).
  • coverage enhancement mode such as repeated transmission, etc.
  • the terminal can be divided into a terminal that supports access network slicing (RAN slicing) and a terminal that does not support RAN slicing.
  • RAN slicing access network slicing
  • a terminal that supports access network slicing can obtain/allocate better-quality and more sufficient air interface resources, and a terminal that does not support access network slicing may obtain/allocate poor air interface resources.
  • the access network device may configure a dedicated RACH resource (such as a dedicated RO, etc.) for a terminal that supports access network slicing.
  • a terminal that supports access network slicing can send Msg1 or MsgA on the RACH resource configured by the access network device.
  • the access network device can receive Msg1 or MsgA on the RACH resource, and can know the terminal according to the RACH resource. It is a terminal that supports access network slicing.
  • the access network device configures RACH resource 1 for random access for non-redcap terminals, and configures dedicated RACH resource 2 for redcap terminals at the same time.
  • the physical resource locations occupied by RACH resource 1 for non-redcap terminals and RACH resource 2 for redcap terminals are not the same (for example, the time domain resources are the same, but the frequency domain resources are different), but the frequency domain resource indexes of the two may appear. (index) is the same (for example, f_id is the same), at this time, the RNTI (such as RA-RNTI or MsgB-RNTI) calculated according to the same calculation formula and the same calculation parameters are the same. For the terminal, it is impossible to determine whether Msg2 or MsgB is sent It is sent to the terminal of non-redcap or to the terminal of redcap, and there is a problem of RAR conflict.
  • RNTI such as RA-RNTI or MsgB-RNTI
  • an embodiment of the present application further provides a random access method, the method may include: the first terminal sends a first message to the access network device on the first random access channel opportunity RO; The first RO sends a first message to the access network device, the first terminal receives the first DCI from the access network device, the first DCI is used to schedule a response message corresponding to the first message, and the first DCI is scrambled by RNTI, The RNTI is determined according to the first RO; wherein, when the first terminal satisfies the first condition, the RNTI belongs to the first group of RNTIs; when the first terminal satisfies the second condition, the RNTI belongs to the second group of RNTIs, and the first group of RNTIs is used to satisfy The terminal that meets the first condition performs random access, and the second group of RNTIs is used for the terminal that meets the second condition to perform random access. That is, different types of RNTIs are designed for terminals of different types/meeting
  • the first condition may include one or more of the following: the terminal type is a non-capability reduction redcap type, does not support coverage enhancement, or does not support access network slicing.
  • the second condition may include one or more of the following: the terminal type is redcap type, supports coverage enhancement, or supports access network slicing.
  • the first terminal when the first terminal satisfies the first condition, it can also be described as the first terminal belonging to the first type, and the first type includes one of non-redcap type, does not support coverage enhancement, or does not support access network slicing. variety.
  • the second terminal if the second terminal satisfies the second condition, it may be described as the second terminal belonging to the second type, and the second type includes one or more of redcap type, support for coverage enhancement, or support for access network slicing.
  • first condition and the second condition introduced in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute limitations on the technical solutions provided by the embodiments of the present application, except for the above-mentioned conditions.
  • the technical solutions provided in the embodiments of the present application are also applicable to the conflict of random access caused by the inability to distinguish RNTIs for other terminals of different types/implementing different functions.
  • terminals that perform non-SDT terminals that only initiate RA
  • terminals that perform SDT such as terminals that use RA to transmit small packet data
  • a set of RNTIs is allocated to terminals that perform non-SDT
  • another set of RNTIs is allocated to terminals that perform SDT.
  • These two sets of RNTIs do not overlap each other.
  • the calculation methods of these two sets of RNTIs can refer to the above, such as allocation of non-SDT terminals.
  • a set of RNTIs including the third set of RNTIs and the fourth set of RNTIs, and a set of RNTIs including the first set of RNTIs and the second set of RNTIs is allocated to the terminal performing the SDT, and details are not repeated here.
  • the first group of RNTIs described in this application is a class of terminals that meet the first condition to perform random access (such as 4-step RA or 2-step RA or 4-step-SDT or 2-step-SDT).
  • the second group of RNTIs is a type of RNTI used for random access (such as 4-step RA or 2-step RA or 4-step-SDT or 2-step-SDT) for terminals that meet the second condition.
  • the first group of RNTIs and the second group of RNTIs can be obtained by grouping RNTIs used for random access, the first group of RNTIs and the second group of RNTIs do not overlap, and the two groups of RNTIs can be offset by offset.
  • the offset value (offset) is separated.
  • the maximum value of the RNTI included in the first group of RNTIs is less than the minimum value of the RNTI included in the second group of RNTIs
  • the RNTI values are arranged in ascending order.
  • the second group of RNTIs is behind, the value of the offset is greater than or equal to the total number of RNTIs included in the first group of RNTIs.
  • the RNTI values are arranged in ascending order.
  • the value of the offset is greater than or equal to the total number of RNTIs included in the second RNTI. Specifically, taking the first group of RNTIs in front and the second group of RNTIs behind as an example, the RNTIs included in the first group of RNTIs can satisfy the following formula:
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+A*B*C*D*i, where the value range of i can be [0, I], and I is An integer greater than or equal to 1, and the value of I can be set as required without limitation. For example, the value of I may include 1, 2, 3, and so on.
  • the relevant descriptions of the calculation parameters A, B, C, s_id, t_id, f_id, and ul_carrier_id in the formula can refer to the description of the calculation parameters in formula (3) above, which will not be repeated here.
  • the RNTIs included in the second group of RNTIs can satisfy the following formula:
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+A*B*C*D*j+offset, where the value range of j can be [0, J], J is an integer greater than or equal to 1, and the value of J can be set as required without limitation. For example, the value of J can include 1, 2, 3, and so on.
  • the offset may be used to separate the first group of RNTIs from the second group of RNTIs, and the offset may be greater than or equal to the total number of RNTIs included in the first group of RNTIs.
  • the first group of RNTIs includes
  • RNTI 1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id, and
  • the value range of the first group of RNTIs is [1, 35840].
  • the second set of RNTIs includes
  • RNTI 1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+35840, and
  • the value range of the second group of RNTIs is [ 35841, 71680].
  • the RNTIs used for random access are divided into a first group of RNTIs and a second group of RNTIs, and the two do not overlap, wherein the first group of RNTIs is used for terminals that meet the first condition to perform random access, and the second group of RNTIs is used to meet the first condition. Terminals under two conditions perform random access.
  • the RNTI after the RNTI used for 2-step RA can be used as the second group of RNTIs for the terminal that meets the second condition to perform RA.
  • random access may include four types of communication processes: 4-step RA, 2-step RA, 4-step-SDT, and 2-step-SDT. Therefore, in order to distinguish the terminals that meet the first condition, the first What kind of communication process is performed by the RNTIs in the group RNTIs. Further, the first group of RNTIs can be divided into four RNTI sets according to the embodiment shown in FIG. 6 . One RNTI set corresponds to one communication process. The RNTI in the set is used to distinguish the terminals that meet the first condition and perform different communication processes.
  • the first group of RNTIs may include a third set of RNTIs and a fourth set of RNTIs
  • the third RNTI set may include the RNTI used for the terminal that meets the first condition to access the access network device based on the first random access method
  • the fourth RNTI set may include the RNTI used for the terminal that meets the first condition to access the access network device based on the second random access method.
  • the RNTI of the access network device is accessed in the input mode, that is, the third RNTI set and the fourth RNTI set are designed to be used for the terminal that meets the first condition to distinguish 4-step RA or 2-step RA.
  • the first group of RNTIs may also include the first RNTI set and the second RNTI set; the first RNTI set, the second RNTI set The RNTI set, the third RNTI set, and the fourth RNTI set do not overlap each other; the first RNTI set may include the RNTI used for the terminal that meets the first condition to send uplink data based on the first random access method; the second RNTI set may include Send the RNTI of the uplink data based on the second random access method to the terminal that satisfies the first condition. That is, the first RNTI set and the second RNTI set are designed to distinguish 4-step-SDT and 2-step-SDT for terminals that satisfy the first condition.
  • the related descriptions and design methods of the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set may refer to the above description, which will not be repeated here.
  • a second group of RNTIs can be designed with reference to the above method, and the RNTIs included in the second group of RNTIs can be It can be used for random access for terminals that meet the second condition.
  • the second group of RNTIs may include a fifth set of RNTIs and a sixth set of RNTIs; wherein, the fifth set of RNTIs may include the RNTIs used by the terminal that meets the second condition to access the access network device based on the first random access method, and the first set of RNTIs
  • the six RNTI sets may include RNTIs that are used for the terminals that meet the second condition to access the access network device based on the second random access method, that is, the fifth and sixth RNTI sets are used to distinguish terminals that meet the second condition.
  • -step RA or 2-step RA may be used to distinguish terminals that meet the second condition.
  • the second group of RNTIs may also include the seventh RNTI set and the eighth RNTI set, the fifth RNTI set, the fifth RNTI set, The six RNTI sets, the seventh RNTI set, and the eighth RNTI set do not overlap each other; wherein the seventh RNTI set may include RNTIs used for the terminal that meets the second condition to send uplink data based on the first random access method; the eighth RNTI set It may include an RNTI for the terminal that meets the second condition to send uplink data based on the second random access method.
  • a terminal that satisfies the second condition can distinguish between 4-step-SDT and 2-step-SDT through the seventh RNTI set and the eighth RNTI set.
  • the following introduces the design method of the RNTI set included in the second group of RNTIs:
  • the RNTIs included in the fifth RNTI set may satisfy the following formula (8):
  • the RNTI included in the sixth RNTI set may satisfy the following formula (9):
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+the fifth offset value+the number of RNTIs included in the fifth RNTI set;
  • the RNTI included in the seventh RNTI set may satisfy the following formula (10):
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+the fifth offset value+the number of RNTIs included in the fifth RNTI set+the number of RNTIs included in the sixth RNTI set; formula (10)
  • the RNTI included in the eighth RNTI set may satisfy the following formula (11):
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+the fifth offset value+the number of RNTIs included in the fifth RNTI set+the number of RNTIs included in the sixth RNTI set+the number of RNTIs included in the sixth RNTI set The number of RNTIs included in the five-RNTI set; Equation (11)
  • the fifth offset value may be used to separate the second group of RNTIs from the first group of RNTIs, and the fifth offset value may be greater than or equal to the number of RNTIs included in the first group of RNTIs.
  • the embodiment of the present application is not limited to the fifth RNTI set corresponding to 4-step RA, the sixth RNTI set corresponds to 2-step RA, the seventh RNTI set corresponds to 4-step-SDT, the eighth RNTI set corresponds to 2-step-SDT, and the fifth RNTI set corresponds to 2-step RA and the sixth RNTI set
  • the seventh RNTI set corresponds to 2-step-SDT, and the eighth RNTI set corresponds to 4-step-SDT.
  • an RNTI set included in the second group of RNTIs can correspond to any of the above four types of communication processes
  • the first group of RNTIs includes the first RNTI set, the second RNTI set, the third RNTI set and
  • the value range of the first RNTI set is [35841, 44800]
  • the value range of the second RNTI set is [44801, 53760]
  • the value range of the third RNTI set is [1, 17920]
  • the value range of the fourth RNTI set is [17921, 35840], and the four RNTI sets do not overlap each other. As shown in FIG.
  • the second group of RNTIs is separated from the first group of RNTIs, and the second group of RNTIs includes the fifth RNTI set, the sixth RNTI set, the seventh RNTI set and the eighth RNTI set, and the fifth RNTI set is selected from the
  • the value range is [65536, 74496]
  • the value range of the sixth RNTI set is [74496, 83456]
  • the value range of the seventh RNTI set is [83456, 92416]
  • the value range of the eighth RNTI set is [92416] , 101376]
  • the four RNTI sets do not overlap each other.
  • the RNTI set shown in Figure 9d can not only distinguish terminals that meet different conditions, but also can distinguish terminals of the same type that perform SDT and non-SDT (such as 4-step RA or 2-step RA).
  • the terminal that satisfies different conditions and executing non-SDT is a non-redcap terminal
  • the terminal that satisfies the second condition is a redcap terminal
  • the fifth offset value is equal to 35840
  • the first group of RNTIs can be divided into a third RNTI set and a fourth RNTI set, the value range of the third RNTI set is [1, 17920], and the value range of the fourth RN
  • the second group of RNTIs is separated from the first group of RNTIs.
  • the second group of RNTIs can be divided into a fifth set of RNTIs, a sixth set of RNTIs, and a fifth set of RNTIs.
  • the value range of the RNTI set is [35840, 44800]
  • the value range of the sixth RNTI set is [44800, 53760]
  • the two RNTI sets do not overlap each other.
  • the RNTI set shown in Figure 9e can not only distinguish terminals that meet different conditions, but also can distinguish terminals that perform 4-step RA or 2-step RA in the same type of terminals.
  • the second group of RNTIs may multiplex some of the RNTIs in the first group of RNTIs.
  • some of the RNTIs in the first group of RNTIs may be multiplexed as the second group of RNTIs for terminals that meet the second condition. Random access is performed, and the other RNTIs in the first group of RNTIs can be used for random access by terminals that meet the first condition.
  • the RO used for performing random access by the terminal meeting the first condition and the RO used for performing random access by the terminal meeting the second condition are placed on the frequency domain unit. Sequentially numbered.
  • the 4-step RA used for the terminal meeting the first condition and the RO used for the 4-step RA of the terminal meeting the second condition are sequentially numbered in the frequency domain unit (indexing)
  • the 2-step RA for the terminal that satisfies the first condition and the RO for the 2-step RA of the terminal that satisfies the second condition are sequentially numbered on the frequency domain unit.
  • the 4-step-SDT used for the terminal that satisfies the first condition and the RO of the 4-step-SDT used for the terminal that satisfies the second condition are sequentially numbered in the frequency domain unit.
  • the 2-step-SDT of the terminal that meets the first condition and the RO for the 2-step-SDT of the terminal that meets the second condition are sequentially numbered in the frequency domain unit.
  • the RNTI may be determined according to the index value of the frequency domain unit occupied by the first RO.
  • the value range of the index value of the frequency domain unit occupied by the first RO starts from 0, that is, the value of f_id corresponding to the RO of the terminal satisfying the first condition
  • the range is ⁇ 0, .
  • the value range of f_id corresponding to the RO of the terminal in the second condition is ⁇ R, R+1, .
  • the number of frequency domain units that the terminal randomly accesses, and Nf is the preset maximum value of the frequency domain reuse coefficient for random access.
  • determining the RNTI according to the index value of the frequency domain unit occupied by the first RO may include:
  • RNTI 1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+offset value (offset); or,
  • RNTI 1+s_id+A*t_id+A*B*f_id_1+A*B*C*ul_carrier_id+A*B*C*D*i,
  • the value range of f_id is [0, R-1], that is, the frequency domain unit of the RO of the terminal that satisfies the first condition is numbered from 0.
  • the value range of f_id is [R, Nf-1], that is, the frequency domain units of the RO of the terminal satisfying the second condition are numbered from R, R is less than Nf, and R is used in the Nf frequency domain units.
  • the offset is greater than or equal to 0, and the offset is used to separate different RNTI sets.
  • the value range of i can be [0, I], where I is an integer greater than or equal to 1, and the value of I can be set as required without limitation.
  • the value of I may include 1, 2, 3, and so on.
  • the RNTI calculation formulas corresponding to the first group of RNTIs and the second group of RNTIs are the same, except that for different types of RNTIs, the value ranges of the index values of the frequency domain units are different, so as to distinguish different types of RNTIs Come.
  • the value range of the first group of RNTIs is [1, 35840].
  • the second group of RNTIs includes part of the RNTIs in [1, 35840], and the RNTIs included in the first group of RNTIs are multiplexed.
  • random access may include four types of communication processes: 4-step RA, 2-step RA, 4-step-SDT, and 2-step-SDT. Therefore, in order to distinguish the terminals that meet the first condition, the first Which communication process is performed by the RNTIs in the group RNTIs.
  • the first group of RNTIs can be divided into four sets of RNTIs according to the embodiment shown in FIG. 6 .
  • One set of RNTIs corresponds to one type of communication process.
  • the third RNTI set and the fourth RNTI set described above may further include the first RNTI set and the second RNTI set. Terminals that perform different communication processes among the terminals that satisfy the first condition are distinguished by RNTIs in different sets in the first group of RNTIs.
  • the related descriptions and design methods of the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set may refer to the above description, which will not be repeated here.
  • the second group of RNTIs may further include a seventh RNTI set and an eighth RNTI set, and the fifth RNTI set, the sixth RNTI set, the seventh RNTI set and the eighth RNTI set do not overlap each other.
  • the part of RNTI included in the third RNTI set in FIG. 7a or FIG. 7b or FIG. 9a or FIG. 9b can be used as the fifth RNTI set, and this part of RNTI can be used for terminals that meet the second condition to access based on the first random access method
  • the access network device that is, the RNTI used for the terminal that satisfies the second condition to access the access network device based on the first random access method can reuse the original RNTI used for the terminal that meets the first condition to access the access network device based on the first random access method.
  • the value range of the RNTI of the access network device can be used as the fifth RNTI set, and this part of RNTI can be used for terminals that meet the second condition to access based on the first random access method.
  • the part of the RNTI included in the fourth RNTI set is used as the sixth RNTI set, and this part of the RNTI can be used for the terminal that meets the second condition to access the access network device based on the second random access method, that is, it is used to meet the second condition.
  • the RNTI of the terminal that meets the first condition accessing the access network device based on the second random access method can reuse the original value of the RNTI used for the terminal that meets the first condition to access the access network device based on the second random access method. scope.
  • the part of the RNTI included in the first RNTI set is taken as the seventh RNTI set, and this part of RNTI can be used for the terminal that meets the second condition to send uplink data based on the first random access method, that is, the terminal that meets the second condition is used to send uplink data based on the first
  • the RNTI for sending the uplink data in the random access mode may reuse the original value range of the RNTI for the terminal that meets the first condition to send the uplink data based on the first random access mode.
  • the part of RNTI included in the second RNTI set is taken as the eighth RNTI set, and this part of RNTI can be used for the terminal that meets the second condition to send uplink data based on the second random access method, that is, the terminal that meets the second condition is based on the second
  • the RNTI for sending uplink data in the random access mode may reuse the original value range of the RNTI used for the terminal that meets the first condition to send uplink data based on the second random access mode.
  • the value range of the index value f_id of the frequency domain unit in the above formula (1) can be changed, and the value ranges of other parameters in the formula (1) remain unchanged.
  • the value range of f_id in formula (1) is [0, R-1], that is, the frequency domain unit of the RO of the terminal that satisfies the first condition is numbered from 0, and this , the RNTI included in the third RNTI set can be obtained by calculation according to formula (1).
  • the value range of f_id in formula (1) is [R, Nf-1], that is, the frequency domain unit of the RO of the terminal that satisfies the second condition is numbered from R, and this , the RNTI included in the fifth RNTI set can be obtained by calculation according to formula (1).
  • the value range of the index value f_id of the frequency domain unit in the above formula (2) can be changed, and the value ranges of other parameters in the formula (2) remain unchanged.
  • the value range of f_id in formula (2) is [0, R-1], that is, the frequency domain units of the RO of the terminal satisfying the first condition are numbered from 0, and this RNTIs included in the fourth RNTI set can be obtained by calculation according to formula (1).
  • the value range of f_id in formula (2) is [R, Nf-1], that is, the frequency domain unit of the RO of the terminal that satisfies the second condition is numbered from R, and this , the RNTI included in the sixth RNTI set can be obtained by calculation according to formula (2).
  • the value range of the index value f_id of the frequency domain unit in the above formula (3) can be changed, and the value ranges of other parameters in the formula (3) remain unchanged.
  • the value range of f_id in formula (3) is [0, R-1], that is, the frequency domain unit of the RO of the terminal that satisfies the first condition is numbered from 0, and this RNTIs included in the first RNTI set can be obtained by calculation according to formula (3).
  • the value range of f_id in formula (3) is [R, Nf-1], that is, the frequency domain unit of the RO of the terminal that satisfies the second condition is numbered from R, and this , the RNTIs included in the seventh RNTI set can be calculated according to formula (3).
  • the value range of the index value f_id of the frequency domain unit in the above formula (4) can be changed, and the value ranges of other parameters in the formula (4) remain unchanged.
  • the value range of f_id in formula (4) is [0, R-1], that is, the frequency domain unit of the RO of the terminal that satisfies the first condition is numbered from 0, and this , the RNTI included in the second RNTI set can be obtained by calculation according to formula (4).
  • the value range of f_id in formula (4) is [R, Nf-1], that is, the frequency domain unit of the RO of the terminal that satisfies the second condition is numbered from R, and this , the RNTI included in the eighth RNTI set can be obtained by calculation according to formula (4).
  • the third RNTI set as shown in Figure 9g can be obtained based on formula (1), and the value range of the third RNTI set is [1, 17920]; based on formula (2), it can be obtained as shown in Figure 9g
  • the fourth RNTI set shown in 9g the value range of the fourth RNTI set is [17921, 35840]; Based on formula (3), the first RNTI set as shown in Figure 9g can be obtained, and the value range of the first RNTI set is [35840, 53760]; based on formula (4), the second RNTI set as shown in FIG.
  • the value range of the second RNTI set is [53760, 71680].
  • the value range of f_id is [R, Nf-1]
  • the fifth RNTI set shown in Figure 9g can be obtained based on formula (1)
  • the fifth RNTI set shown in Figure 9g can be obtained based on formula (2)
  • Six RNTI sets, the seventh RNTI set shown in FIG. 9g can be obtained based on formula (3)
  • the eighth RNTI set shown in FIG. 9g can be obtained based on formula (4). It can be seen from FIG.
  • the values of RNTIs included in the fifth RNTI set are multiplexed with the values of RNTIs included in the third RNTI set
  • the values of RNTIs included in the sixth RNTI set are multiplexed with the values of RNTIs included in the fourth RNTI set.
  • the values of RNTIs included in the seventh RNTI set are multiplexed with the values of RNTIs included in the first RNTI set
  • the values of RNTIs included in the eighth RNTI set are multiplexed with the values of RNTIs included in the second RNTI set.
  • FIG. 9g is only an exemplary drawing, and the RNTI sets divided in FIG. 9g can distinguish terminals that satisfy different conditions and perform SDT or non-SDT.
  • the RNTI may be divided into a third RNTI set, a fourth RNTI set, a fifth RNTI set, and a sixth RNTI set.
  • the RNTI may be divided into a first RNTI set, a second RNTI set, a seventh RNTI set, and an eighth RNTI set.
  • the extension of the new RNTI is taken as an example to distinguish which type of terminal the terminal that initiates different communication processes and/or the terminal that initiates the random access belongs to.
  • RNTI may not be extended, but RA-RNTI is used to scramble the DCI of the scheduling response message for all communication processes/terminal types based on 4-step, and for all communication processes/terminal types based on 2-step All terminal types use MsgB-RNTI, which simplifies system design and is compatible with existing signaling.
  • the calculation formula of RA-RNTI is the above formula (1)
  • the calculation formula of MsgB-RNTI is the above formula (2). Specifically, the method is shown in Figure 10:
  • FIG. 10 is another random access method provided by an embodiment of the present application, as shown in FIG. 10 , which may include:
  • a first terminal sends a first message to an access network device in a first random access resource.
  • the access network device receives the first message on the first random access resource.
  • the first terminal belongs to the first type of terminal or the second type of terminal, which is not limited.
  • the first random access resource may be a random access channel (random access channel, RACH) resource (such as RO, etc.), or the first random access resource may include RACH resources (such as RO) and preamble.
  • RACH random access channel
  • the first random access resource may belong to a first random access resource set, and the first random access resource set may include one or more random access resources.
  • the random access resource as an RO as an example, the first random access resource set may include one or more ROs, and the first random access resource set may be referred to as the first RO resource set for short.
  • some time-frequency resources may be divided from the initial BWP as the first RO resource set, that is, the first RO resource set may be included in the initial BWP and is a part of the initial BWP.
  • the random access resource may be determined according to the code domain in addition to the time domain and the frequency domain. Taking the random access resource including RO and preamble (or it is understood that the random access resource is RO+preamble) as an example, the first random access resource set may include one or more ROs and include one or more preambles. Each random access resource is uniquely determined by an RO and a preamble.
  • the access network device may carry RO configuration information in the configuration information of the initial BWP, and the RO configuration information may indicate the time-frequency position of the RO included in the first RO resource set, and the preamble corresponding to the first RO resource set, such as RO configuration information
  • the starting frequency domain position of the RO, the frequency division multiplexing coefficient of the RO, the time domain position of the RO, the allocation situation of the preamble corresponding to the first RO resource set, etc. may be indicated. It should be understood that the "assignment” described in this application can also be replaced by “configuration” or “determination”, etc., which is not limited.
  • the first random access resource set may be used for 4-step RA of the first type of terminal, and at least one of the following: 4-step SDT of the first type of terminal, 4-step SDT of the second type of terminal step SDT, 4-step RA for the second type of terminal.
  • the access network device may configure the first random access resource set for the first type of terminal.
  • the first random access resource set may be used for the 4-step RA of the first type of terminal and the 4-step SDT of the first type of terminal.
  • the first random access resource set may be used for the 4-step RA of the first type of terminal, the 4-step-SDT of the first type of terminal, and the 4-step SDT of the second type of terminal.
  • the first random access resource set may be used for the 4-step RA of the first type of terminal and the 4-step RA of the second type of terminal.
  • the first random access resource set may be used for 4-step RA of the first type of terminal, 4-step SDT of the first type of terminal, 4-step SDT of the second type of terminal, and 4-step SDT of the second type of terminal. -step RA.
  • the first message may be Msg1, and the first message may carry a preamble.
  • the first message can be used to initiate 4-step RA, or when the first random access resource is used for 4-step SDT, the first message can be used to initiate 4-step RA.
  • Small packet data transmission is initiated using 4-step random access.
  • 4-step RA and 4-step SDT can refer to the above, and will not be repeated.
  • the one or more ROs included in the first random access resource set are specifically allocated to which type of communication process for which type of terminal is pre-configured by the access network device.
  • the configuration relationship may be stored on the access network device. For example, among the one or more ROs included in the first random access resource set, which ones are allocated to the use of the 4-step RA of the first type of terminals, which are allocated to the 4-step SDT of the first type of terminals, and which are allocated to the second type of terminals The 4-step SDT of the terminal, which 4-step RA to use for the second type of terminal, is pre-configured as required.
  • Different types of terminals and/or different communication processes may share the RO, or may exclusively share the RO.
  • its specific allocation rules can include any of the following: (1) the RO allocated to the 4-step RA does not overlap with the RO allocated to the 4-step SDT, and the 4-step RA allocated to different types of terminals /4-step SDT uses non-overlapping ROs. (2) 4-step RAs of different types of terminals share RO, and 4-step SDTs of different types of terminals share RO, and the ROs allocated to 4-step RA and 4-step SDT are different. (3) 4-step RA and 4-step SDT of the same type of terminal share RO, 4-step RA and 4-step SDT of different types of terminals share RO and so on.
  • the access network device After the first random access resource receives Msg1, it can be determined which type of terminal (the first type of terminal or the second type of terminal) initiated the first random access resource according to the use of the pre-configured first random access resource. Which type of 4-step random access procedure (4-step RA or 4-step SDT). For example, it is assumed that the first type of terminal exclusively enjoys the first random access resource. For example, when the random access resource is RO, the first type of terminal exclusively enjoys one or more ROs; when the random access resource is RO+preamble, the first The terminal of this type exclusively enjoys one or more combinations of RO+preamble. In S1001, for the access network device, after receiving Msg1 on the first random access resource, it can be judged according to the random access resource and its allocation This is Msg1 initiated by the first type of terminal.
  • the first type of terminal is a non-capability reduction redcap terminal that does not support coverage enhancement and does not support access network slicing.
  • the first type of terminal is a type of terminal that satisfies the following three conditions: Does not support coverage enhancement , Access network slicing is not supported, and the capability is not reduced.
  • the first type of terminal may be referred to as a normal (normal) terminal or as a legacy (legacy) terminal.
  • the second type of terminal may include at least one of a redcap terminal, a terminal supporting coverage enhancement, or a terminal supporting access network slicing.
  • the second type of terminals may include redcap terminals, or terminals that support coverage enhancement, or terminals that support access network slicing, or redcap terminals and terminals that support coverage enhancement, or redcap terminals and terminals that support access network slicing
  • the terminal either includes a terminal that supports coverage enhancement and a terminal that supports access network slicing, or includes a redcap terminal, a terminal that supports coverage enhancement, and a terminal that supports access network slicing.
  • first type of terminals and the second type of terminals introduced in the embodiments of the present application are to more clearly describe the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • other types of terminals may also be included.
  • those of ordinary skill in the art know that with the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application still use the Msg1 obtained according to the above formula (1) for the Msg1 initiated by other new types of terminals.
  • the RA-RNTI scrambles the DCI of the response message corresponding to the scheduling Msg1.
  • a terminal that supports one or more new capabilities can be understood as the second type of terminal in this embodiment of the present application, and does not support the terminal.
  • An existing terminal with new capabilities may be understood as the first type of terminal in this embodiment of the present application.
  • the access network device sends the first DCI according to the first message, so that the first terminal receives the first DCI according to the RA-RNTI, and receives a response message corresponding to the first message according to the indication of the first DCI.
  • the response message described in this application may be called a random access response (random access response, RAR) or a media access control random access response (media access control random access response, MAC RAR).
  • the response message corresponding to the first message may include Msg2.
  • the first DCI is scrambled using RA-RNTI.
  • the first DCI may be used to schedule a response message corresponding to the first message.
  • the RA-RNTIs corresponding to these multiple terminals are the same, and the first DCI obtained by scrambling is also the same, which is the same DCI.
  • the first DCI can be used to schedule the response messages corresponding to Msg1 initiated by multiple terminals
  • the response messages corresponding to Msg1 initiated by the multiple terminals are carried in the same physical downlink shared channel (PDSCH), and the first DCI can schedule the PDSCH.
  • PDSCH physical downlink shared channel
  • the MAC RAR can include RARs for multiple terminals, such as the MAC load in Figure 11. (playload) contains n MAC RARs, where n is an integer greater than or equal to 1.
  • a "RPID" field is included in the MAC subheader (subheader) of each RAR, and this field corresponds to the number of the peamble.
  • the terminal can check the RPID field in each RAR in the MAC RAR. If the RPID field of a RAR is the same as the number of the preamble sent by itself, then Means this RAR may be sent to itself.
  • the access network device after the first random access resource receives Msg1, it can determine which type of terminal (the first type of terminal or the second type of terminal) according to the purpose of the pre-configured first random access resource. Which type of 4-step random access procedure was initiated (4-step RA or 4-step SDT). Since it is stipulated in the embodiment shown in FIG. 10 that RA-RNTI is used to scramble the DCI of the scheduling response message for Msg1 initiated by any communication scenario/any terminal type, the access network device can, according to this regulation, use the above formula (1 ) and the related parameters of the first random access resource to obtain the RA-RNTI, scramble the first DCI by using the RA-RNTI, and send the scrambled first DCI.
  • the terminal receiving the scrambled first DCI can calculate and obtain an RA-RNTI according to the relevant parameters of the random access resource used by itself to send the Msg1 and formula (1), and use the calculated RA-RNTI to descramble the RA-RNTI.
  • the response message corresponding to the first message is received according to the instruction of the first DCI, for example, the MAC RAR in the format shown in FIG.
  • the RAR 11 can be received according to the first DCI, and the Whether the RPID field corresponds to the number of the preamble carried in the Msg1 sent by itself, and if so, it is determined that the RAR may be its own, and the follow-up process is performed according to the RAR.
  • the type of terminal and/or which type of communication process can be distinguished according to the RA-RNTI determined by the RO used to initiate the Msg1. Specifically as described in (1) and (2) below:
  • the ROs allocated to different types of terminals in the ROs corresponding to the first random access resource set are different; the RA-RNTIs calculated according to different random access resources are different.
  • the ROs used to initiate Msg1 are different and exclusive, and it is guaranteed that the RA-RNTIs calculated based on the ROs are different, different RA-RNTIs can be used. Distinguish which type of terminal is obtained/initiated which type of communication process, and avoid the problem of random access conflict between different terminals.
  • a part of the RO set configured for 4-step by the access network equipment is allocated for use by 4-step RA, and the other part is allocated for use by 4-step SDT.
  • the access network device configures the RO, it can ensure that the RA-RNTI calculated from the RO allocated to the 4-step RA does not overlap with the RA-RNTI calculated from the RO allocated to the 4-step SDT.
  • RA-RNTI distinguishes between 4-step RA and 4-step SDT to avoid random access conflicts.
  • the ROs allocated by the access network equipment to the 4-step RA can be allocated to the terminals of the 4-step SDT.
  • the preamble allocated to the 4-step RA is different from the preamble allocated to the 4-step SDT (that is, there is no intersection).
  • the ROs allocated by access network equipment to 4-step RAs can all be assigned to 4-step SDT terminals, 4-step redcap terminal use.
  • the preamble allocated to the 4-step RA, the preamble allocated to the 4-step SDT, and the preamble allocated to the 4-step of the redcap terminal are different (that is, there is no intersection).
  • a part of RO can be allocated to 4-step RA, and a part of RO can be allocated to 4-step SDT.
  • a part of RO can be allocated to 4-step RA and 4-step SDT for common use, but corresponding to shared RO, 4-step RA and 4-step SDT are distinguished by different preambles.
  • the RA-RNTIs calculated according to different ROs do not overlap, different communication processes/application scenarios can be distinguished through the RA-RNTI and/or the RPID carried in the RAR.
  • S1001-S1003 describe the DCI of the RA-RNTI scrambled scheduling response message calculated by formula (1) for any communication process/application scenario in which Msg1 is initiated.
  • the DCI of the Msg2-RNTI scrambled scheduling response message calculated by formula (2) is described, and there is no need to extend a new RNTI to simplify the 2-step system design to reduce computational complexity.
  • the details are described in S1003-S1004 as follows.
  • S1003 The second terminal sends a second message to the access network device on the second random access resource.
  • the access network device receives the second message at the second random access resource.
  • the first terminal belongs to the first type of terminal or the second type of terminal, which is not limited.
  • the second random access resource may be RACH resource (such as RO, etc.), or the second random access resource may include RACH resource (such as RO) and preamble.
  • the second random access resource may belong to a second random access resource set, and the second random access resource set may include one or more random access resources.
  • the random access resource as an RO as an example, the second random access resource set may include one or more ROs, and the second random access resource set may be referred to as a second RO resource set for short.
  • some time-frequency resources may be divided from the initial BWP as the second RO resource set, that is, the second RO resource set may be included in the initial BWP and is a part of the initial BWP.
  • the random access resource may be determined according to the code domain in addition to the time domain and the frequency domain.
  • the random access resource as RO+preamble as an example, the second random access resource set may include one or more ROs and include one or more preambles. Each random access resource is uniquely determined by an RO and a preamble.
  • the access network device may carry RO configuration information in the configuration information of the initial BWP, and the RO configuration information may indicate the time-frequency position of the RO included in the second RO resource set, and the preamble corresponding to the second RO resource set, such as RO configuration information
  • the starting frequency domain position of the RO, the frequency division multiplexing coefficient of the RO, the time domain position of the RO, the allocation situation of the preamble corresponding to the second RO resource set, and the like may be indicated.
  • the second random access resource is different from the first random access resource
  • the second random access resource set is different from the first random access resource set
  • the second random access resource is used for a certain type of terminal
  • the first random access resource is used for a certain type of terminal (the first type terminal or the second type terminal)
  • the communication process related to 4-step (4-step RA or 4-step SDT) initiated by the second-class terminal The communication process related to 4-step (4-step RA or 4-step SDT) initiated by the second-class terminal).
  • the second random access resource set can be used for the 2-step RA of the first type of terminal, and at least one of the following: 2-step SDT of the first type of terminal, 2-step SDT of the second type of terminal, second 2-step RA for class terminals.
  • the access network device may configure the second random access resource set for the first type of terminal.
  • the second random access resource set may be used for the 2-step RA of the first type of terminal and the 2-step SDT of the first type of terminal.
  • the second random access resource set may be used for the 2-step RA of the first type of terminal, the 2-step-SDT of the first type of terminal, and the 2-step SDT of the second type of terminal.
  • the second random access resource set may be used for the 2-step RA of the first type of terminal and the 2-step RA of the second type of terminal.
  • the second random access resource set may be used for the 2-step RA of the first type of terminal, the 2-step SDT of the first type of terminal, the 2-step SDT of the second type of terminal, and the 2-step SDT of the second type of terminal. -step RA.
  • the second message may be MsgA, and the second message may carry a preamble.
  • MsgA may also include a physical uplink shared channel (PUSCH) associated with the preamble, and the PUSCH may include an uplink data and/or other information.
  • PUSCH physical uplink shared channel
  • the second message can be used to initiate 2-step RA, or when the second random access resource is used for 2-step SDT, the second message can be used to initiate 2-step RA. Small packet data transmission is initiated using 2-step random access.
  • 2-step RA and 2-step SDT can refer to the above, and will not be repeated.
  • the one or more ROs included in the second random access resource set are specifically allocated to which type of communication process for which type of terminal is pre-configured by the access network device.
  • the configuration relationship may be stored on the access network device. For example, which of the one or more ROs included in the second random access resource set are allocated to the use of the 2-step RA of the first type of terminal, which are allocated to the 2-step SDT of the first type of terminal, and which are allocated to the second type of terminal.
  • the 2-step SDT of the terminal, which 2-step RA to use for the second type of terminal is pre-configured as needed.
  • Different types of terminals and/or different communication processes may share the RO, or may exclusively share the RO.
  • its specific allocation rules can include any of the following: (1) the RO allocated to the 2-step RA does not overlap with the RO allocated to the 2-step SDT, and the 2-step RA allocated to different types of terminals The RO used by the /2-step SDT does not overlap. (2) The 2-step RA of different types of terminals shares the RO, and the 2-step SDT of different types of terminals shares the RO, and the allocation to 2-step RA and 2-step SDT is different. (3) 2-step RA and 2-step SDT of the same type of terminal share RO, 2-step RA and 2-step SDT of different types of terminals share RO and so on.
  • the second random access resource After the second random access resource receives the MsgA, it can be determined which type of terminal (the first type of terminal or the second type of terminal) initiated the use of the preconfigured second random access resource. Which type of 2-step random access procedure (2-step RA or 2-step SDT). For example, it is assumed that the first type of terminal exclusively enjoys the second random access resource. For example, when the random access resource is RO, the first type of terminal exclusively enjoys one or more ROs; when the random access resource is RO+preamble, the first A terminal of this type exclusively enjoys one or more combinations of RO+preamble. In S1003, for the access network device, after receiving the MsgA on the second random access resource, it can be determined according to the random access resource and its allocation This is the MsgA initiated by the first type of terminal.
  • the access network device sends the second DCI according to the second message, so that the second terminal receives the second DCI according to the MsgB-RNTI, and receives a response message corresponding to the second message according to the indication of the second DCI.
  • the response message corresponding to the second message may include MsgB.
  • the second DCI is scrambled using MsgB-RNTI.
  • the second DCI may be used to schedule a response message corresponding to the second message.
  • the response message as an RAR as an example, if the access network device successfully receives the MsgA, the access network device can send a successful RAR (may be called a success RAR) to the terminal, where the success RAR carries the identification information of the terminal,
  • the terminal identification information is the same as the identification information reported by the terminal in the PUSCH of MsgA, so that the terminal can judge that its access is successful.
  • the MAC load may include RARs for n terminals, for example, n MAC RARs may be included, and the MAC RAR includes "reception successful" field, terminal identification information, the "receive successfully” field can indicate that the MAC RAR is a success RAR, the identification information of the terminal is to distinguish which MAC RAR belongs to which terminal, and n is an integer greater than or equal to 1.
  • the terminal can first determine that the current MAC RAR is a success RAR according to the "Received Successfully" field, and then check the identification information in the MAC RAR. If the MAC RAR includes its own identification information, Then it is determined that the MsgA sent by itself is successfully received.
  • the access network device can send a fallback RAR to the terminal to indicate the terminal Fallback to 4-step RA.
  • the format of fallback RAR is similar to the format of RAR in 4-step RA shown in Figure 11.
  • the subheader (subheader) of fallback RAR will contain RAPID. If the number of the preamble in MsgB sent by the terminal and the fallback RAR contain It corresponds to a RAPID of the terminal, which means that the MsgA sent by the terminal has not been successfully received.
  • the description about the MsgB-RNTI and the corresponding calculation formula can refer to the above description, which will not be repeated.
  • the second random access resource after the second random access resource receives the MsgA, it can determine which type of terminal (the first type of terminal or the second type of terminal) according to the purpose of the preconfigured second random access resource. Which type of 2-step random access procedure was initiated (2-step RA or 2-step SDT). Since it is stipulated in the embodiment shown in FIG.
  • the access network device can, according to this regulation, use the above formula (2 ) and the related parameters of the second random access resource to obtain the MsgB-RNTI, use the MsgB-RNTI to scramble the second DCI, and send the scrambled second DCI.
  • the terminal receiving the scrambled second DCI can calculate and obtain a MsgB-RNTI according to the relevant parameters of the random access resource used by itself to send the MsgA and formula (2), and use the calculated MsgB-RNTI to descramble the MsgB-RNTI.
  • the response message corresponding to the second message is received according to the instruction of the second DCI, for example, the MAC RAR in the format shown in FIG. 11 can be received according to the second DCI, and the Whether the RPID field corresponds to the number of the preamble carried in the MsgA sent by itself, and if so, it is determined that the RAR is its own, and the subsequent process is performed according to the RAR.
  • the type of terminal and/or which type of communication process can be distinguished according to the MsgB-RNTI determined by the RO used to initiate the MsgA. Specifically as described in (1) and (2) below:
  • the ROs allocated to different types of terminals in the ROs corresponding to the second random access resource set are different; the MsgB-RNTIs calculated according to different random access resources are different.
  • the ROs used to initiate MsgA are different and exclusive, and it is guaranteed that the MsgB-RNTIs calculated based on the ROs are different, different MsgB-RNTIs can be used. Distinguish which type of terminal is obtained/initiated which type of communication process, and avoid the problem of random access conflict between different terminals.
  • a part of the RO set configured for 2-step by the access network equipment is allocated to 2-step RA, and the other part is allocated to 2-step SDT.
  • the access network device configures the RO, it can ensure that the MsgB-RNTI calculated from the RO allocated to the 2-step RA does not intersect with the MsgB-RNTI calculated from the RO allocated to the 2-step SDT. In this way, through different MsgB -RNTI distinguishes between 2-step RA and 2-step SDT to avoid random access conflicts.
  • the ROs allocated by the access network equipment to the 2-step RA can be allocated to the terminals of the 2-step SDT.
  • the preamble allocated to the 2-step RA is different from the preamble allocated to the 2-step SDT (that is, there is no intersection).
  • the ROs allocated by access network equipment to 2-step RAs can all be assigned to 2-step SDT terminals, 2-step redcap terminal use.
  • the preamble allocated to the 2-step RA, the preamble allocated to the 2-step SDT, and the preamble allocated to the 2-step of the redcap terminal are different (that is, there is no intersection).
  • a part of RO can be allocated to 2-step RA, and a part of RO can be allocated to 2-step SDT.
  • a part of RO can be allocated to 2-step RA and 2-step SDT for common use, but corresponding to shared RO, 2-step RA and 2-step SDT are distinguished by different preambles.
  • different communication processes/application scenarios can be distinguished through the MsgB-RNTI and/or the RPID carried in the RAR.
  • RA-RNTI is used to scramble the DCI of the scheduling response message for all communication processes/application scenarios based on 4-step
  • MsgB-RNTI is used for all communication processes/scenarios based on 2-step.
  • the DCI of the scheduling response message so that the terminal can distinguish whether it is a 4-step-based communication process/application scenario or a 2-step-based communication process/application scenario according to the RNTI of the scrambled DCI, that is, it can be distinguished by RA-RNTI and MsgB-RNTI.
  • 4-step or 2-step there is no need to expand the new RNTI with the increase of random access-based communication processes/application scenarios in the communication process, simplifying the system design.
  • different 4-step communication processes/application scenarios are distinguished by different ROs and/or preambles.
  • Different communication processes/application scenarios of 2-step are distinguished by different ROs and/or preambles.
  • each node such as a terminal and an access network device, includes a corresponding hardware structure and/or software module for performing each function.
  • each node such as a terminal and an access network device
  • each node includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software, in conjunction with the algorithm steps of the examples described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal and the access network device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 13 shows a structural diagram of a communication apparatus 100.
  • the communication apparatus 100 may be a first terminal, or a chip in the first terminal, or a system-on-chip.
  • the communication apparatus 100 may be used to execute the above-mentioned embodiments The function of the first terminal.
  • the communication apparatus 100 shown in FIG. 13 includes: a sending unit 1001 and a receiving unit 1002;
  • the sending unit 1001 is configured to send a first message for sending uplink data based on a random access manner to an access network device on the first RO.
  • the sending unit 1001 may be used to support the communication apparatus 100 to perform S601.
  • the receiving unit 1002 is configured to receive a first DCI from an access network device, where the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO.
  • the receiving unit 1002 may be configured to support the communication apparatus 100 to perform S602.
  • the RNTI When the first message is used to send uplink data based on the first random access method, the RNTI is the first RNTI determined according to the first RO, and when the first message is used to send uplink data based on the second random access method, the RNTI is According to the second RNTI determined by the first RO, the first random access manner is different from the second random access manner, and the first RNTI and the second RNTI are the same or different.
  • the first RNTI and the second RNTI For the manner of determining the first RNTI and the second RNTI, reference may be made to the method embodiments described above, which will not be repeated.
  • the communication apparatus 100 is configured to perform the function of the first terminal in the random access method shown in the method shown in FIG. 6 , so it can achieve the same effect as the above random access method.
  • the communication apparatus 100 shown in FIG. 13 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 100.
  • the processing module can support the communication device 100 to perform control functions.
  • the communication module can integrate the functions of the sending unit 1001 and the receiving unit 1002, and can be used to support the communication device 100 to perform steps 601 and 602 and communicate with other network entities, such as with the function modules shown in FIG. 4 or between network entities. communication.
  • the communication device 100 may further include a storage module for storing program codes and data of the communication device 100 .
  • the processing module may be a processor or a controller. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module may be a transceiver circuit or a communication interface or the like.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication apparatus 100 involved in the embodiment of the present application may be the communication apparatus 500 shown in FIG. 5 .
  • FIG. 14 shows a structural diagram of a communication apparatus 110.
  • the communication apparatus 110 may be an access network device, or a chip in an access network device, or a system on a chip.
  • the communication apparatus 110 may be used to execute the above-mentioned embodiments.
  • the communication device 110 shown in FIG. 14 includes: a receiving unit 1101 and a sending unit 1102;
  • the receiving unit 1101 is configured to receive, on the first RO, a first message for sending uplink data based on a random access manner from a first terminal.
  • the receiving unit 1101 may support the communication device 110 to perform step 601 .
  • the sending unit 1102 is configured to send the first DCI of the access network device to the first terminal, where the first DCI is used to schedule a response message corresponding to the first message, the first DCI is scrambled by RNTI, and the RNTI is determined according to the first RO.
  • the sending unit 1102 may support the communication apparatus 110 to perform step 602 .
  • the RNTI When the first message is used to send uplink data based on the first random access method, the RNTI is the first RNTI determined according to the first RO, and when the first message is used to send uplink data based on the second random access method, the RNTI is According to the second RNTI determined by the first RO, the first random access manner is different from the second random access manner, and the first RNTI and the second RNTI are the same or different.
  • the first RNTI and the second RNTI For the manner of determining the first RNTI and the second RNTI, reference may be made to the description in the foregoing method embodiments.
  • the first RNTI belongs to the first RNTI set
  • the first RNTI set includes RNTIs used for sending uplink data based on the first random access method
  • the second RNTI belongs to the second RNTI set
  • the second RNTI set includes The RNTI of uplink data is sent in random access mode.
  • the first RNTI set, the second RNTI set, the third RNTI set, and the fourth RNTI set do not overlap each other.
  • the part of the RNTI included in the third RNTI set is used as the first RNTI, and this part of the RNTI can be used to send uplink data based on the first random access method, that is, the RNTI used to send uplink data based on the first random access method can be Multiplexing the original value range of the RNTI used to access the access network device (that is, non-SDT) based on the first random access method, or the RNTI used to send uplink data based on the first random access method.
  • the value range is a subset of the value range of the original RNTI used to access the access network device (ie, non-SDT) based on the first random access manner.
  • the part of the RNTI included in the fourth RNTI set is used as the second RNTI, and this part of the RNTI can be used to send uplink data based on the second random access method, that is, the RNTI used to send uplink data based on the second random access method can be Multiplexing the original value range of the RNTI used to access the access network device (that is, non-SDT) based on the second random access method, or the RNTI used to send uplink data based on the second random access method.
  • the value range is a subset of the value range of the original RNTI used to access the access network device (ie, non-SDT) based on the second random access manner.
  • the RNTI used for sending uplink data based on the first random access method is the same as the value range used to send the second RNTI based on the second random access method, that is, the RNTI corresponding to the 4-step SDT is the same as the RNTI corresponding to the 2-step SDT.
  • the corresponding RNTIs are the same, or the RNTI corresponding to the 4-step SDT and the RNTI corresponding to the 2-step SDT are of the same type, but the RNTI corresponding to the 4-step SDT and the RNTI corresponding to the 2-step SDT are the same as those used for random access.
  • the value range of the network access device (non-SDT) is different.
  • the access network device may also indicate to the first terminal whether the first DCI corresponds to 4-step SDT or 2-step SDT.
  • the communication apparatus 110 is configured to perform the function of the access network device in the random access method shown in the method shown in FIG. 6 , so it can achieve the same effect as the above random access method.
  • the receiving unit 1101 is configured to receive the first message in the first random access resource; the sending unit 1102 is configured to send the first DCI according to the first message; wherein the first random access resource belongs to the first random access resource.
  • a set of random access resources, the first set of random access resources is used for the 4-step RA of the first type of terminal, and at least one of the following: 4-step SDT of the first type of terminal, 4-step SDT of the second type of terminal step SDT, 4-step RA of the second type of terminal; the first DCI is used to schedule the response message corresponding to the first message, and the first DCI uses RA-RNTI to scramble;
  • the receiving unit 1101 is configured to receive the second message in the second random access resource; the sending unit 1102 is configured to send the second DCI according to the second message; the second random access resource belongs to the second random access resource set, the second The random access resource set is used for the 2-step RA of the first type of terminal, and at least one of the following: 2-step SDT of the first type of terminal, 2-step SDT of the second type of terminal, 2-step SDT of the second type of terminal -step RA; the second DCI is used to schedule the response message corresponding to the second message, and the second DCI is scrambled by MsgB-RNTI.
  • the communication apparatus 110 is configured to perform the function of the access network device in the random access method shown in the method shown in FIG. 10 , so it can achieve the same effect as the above random access method.
  • the communication apparatus 110 shown in FIG. 14 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 110.
  • the processing module can support the communication device 110 to perform management functions.
  • the communication module can integrate the functions of the receiving unit 1101 and the sending unit 1102, and can be used to support the communication device 110 to perform steps 601, 602, S1001-S1004 and communicate with other network entities, such as with the function module or network shown in FIG. 4 . communication between entities.
  • the communication device 110 may further include a storage module for storing program codes and data of the communication device 110 .
  • the processing module may be a processor or a controller. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module may be a transceiver circuit or a communication interface or the like.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 110 involved in this embodiment of the present application may be the communication device 500 shown in FIG. 5 .
  • FIG. 15 is a structural diagram of a communication system provided by an embodiment of the application.
  • the communication system may include: a terminal 120 and an access network device 121 .
  • the functions of the terminal 120 are the same as those of the communication apparatus 100 described above.
  • the functions of the access network device 121 are the same as those of the above-mentioned communication device 110 , which will not be repeated.
  • Embodiments of the present application also provide a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by instructing the relevant hardware by a computer program, the program can be stored in the above computer-readable storage medium, and when the program is executed, it can include the processes in the above method embodiments.
  • the computer-readable storage medium may be the terminal in any of the foregoing embodiments, for example, an internal storage unit including a data sending end and/or a data receiving end, such as a hard disk or a memory of the terminal.
  • the above-mentioned computer-readable storage medium can also be an external storage device of the above-mentioned terminal, such as a plug-in hard disk equipped on the above-mentioned terminal, a smart memory card (smart media card, SMC), a secure digital (secure digital, SD) card, flash memory card (flash card) etc. Further, the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned terminal and an external storage device.
  • the above-mentioned computer-readable storage medium is used for storing the above-mentioned computer program and other programs and data required by the above-mentioned terminal.
  • the above-mentioned computer-readable storage medium can also be used to temporarily store data that has been output or is to be output.
  • At least one (item) refers to one or more
  • multiple refers to two or more
  • at least two (item) refers to two or three and More than three
  • "and/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist Three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • connection in the embodiments of the present application, refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.
  • transmission in the embodiments of the present application refers to bidirectional transmission, including the actions of sending and/or receiving.
  • transmission in the embodiments of the present application includes data transmission, data reception, or data transmission and data reception.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals, uplink data transmission is uplink channel and/or uplink signal transmission, and downlink data transmission is downlink channel and/or downlink signal transmission.
  • Network and “system” appearing in the embodiments of this application express the same concept, and a communication system is a communication network.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种随机接入方法及装置,以便终端区分从接入网设备接收到的响应消息对应基于随机接入发送上行数据。所述方法包括:第一终端在第一随机接入信道时机上向接入网设备发送第一消息;第一消息用于基于随机接入方式发送上行数据;第一终端接收来自接入网设备的第一DCI;其中,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。本申请方案适用于通信技术领域、人工智能、车联网、智能家居联网等领域。

Description

一种随机接入方法及装置
本申请要求于2021年3月31日提交国家知识产权局、申请号为202110351822.4、发明名称为“一种Msg2/MsgB发送方法”的中国专利申请的优先权、以及要求2021年5月7日提交国家知识产权局、申请号为202110496503.2、发明名称为“一种随机接入方法及装置”的中国专利申请的优先权、以及要求2021年6月21日提交国家知识产权局、申请号为202110686684.5、发明名称为“一种随机接入方法及装置”的中国专利申请的优先权、以及于2021年8月5日提交国家知识产权局、申请号为202110898685.6、发明名称为“一种随机接入方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种随机接入方法及装置。
背景技术
目前,在终端处于空闲(idle)态或非激活(inactive)态时,若终端需要向接入网设备传输上行数据,则终端需要向接入网设备发起随机接入,如4步随机接入或者2步随机接入,从idle/inactive态切换到连接(connected)态后向接入网设备传输上行数据。或者,为了终端的节省信令开销以及功率消耗,终端可以基于4步随机接入或者基于2步随机接入发送上行数据。即终端发送的4步随机接入或者2步随机接入可以仅用于接入接入网设备,也可以用于发送上行数据。
在4步随机接入或者2步随机接入的过程中,接入网设备在随机接入信道时机(random access channel occasion,RO)接收到终端发出的请求后,根据该RO计算得到该终端对应的无线网络临时标识(radio network tempory identity,RNTI),用计算出的RNTI加扰调度响应消息的下行控制信息(downlink control information,DCI),将加扰后的RNTI发送出去,相应的,终端侧也会根据RO计算得到RNTI,并利用计算出的RNTI解扰该DCI,如果成功解扰则表示该RNTI是发送给自己的,确定接入网设备返回的响应消息是自己的,进而根据DCI的指示接收响应消息。
但是,某种场景下不同终端(比如随机接入的终端以及基于随机接入发送上行数据的终端)对应的RNTI可能是相同的,无法区分用该RNTI加扰的DCI到底是发送给这些终端中的哪个终端的,无法区分接入网设备回复的响应消息对应随机接入还是对应基于随机随机的上行数据传输,使得这些终端均认为该DCI是发送给自己的,出现多个终端随机接入冲突的问题。
发明内容
本申请实施例提供一种随机接入方法及装置,以解决终端无法区分接入网设备回复的响应消息对应哪类随机接入的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种随机接入方法,所述方法包括:第一终端在第一RO上向接入网设备发送用于基于随机接入方式发送上行数据的第一消息,接收来 自接入网设备的第一下行控制信息(downlink control information,DCI),第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;比如,当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。
基于第一方面所述的方法,设计用于基于随机接入方式发送上行数据的RNTI,以便第一终端根据第一RO确定RNTI,根据确定出的RNTI识别出该过程是基于随机接入方式发送上行数据,进而根据确定结果正确解码第一消息对应的响应消息,避免因第一终端无法区分是哪类随机接入过程导致接入冲突的问题。
第二方面,本申请实施例还提供一种随机接入方法,所述方法包括:接入网设备在第一RO上接收来自第一终端的用于基于随机接入方式发送上行数据的第一消息,根据第一消息,向第一终端发送第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;比如,当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。
基于第二方面所述的方法,根据发送第一消息的RO设计用于基于随机接入方式发送上行数据的RNTI,以便第一终端根据第一RO确定RNTI,根据确定出的RNTI识别出该过程是基于随机接入方式发送上行数据,进而根据确定结果正确解码第一消息对应的响应消息,避免因第一终端无法区分是哪类随机接入过程导致接入冲突的问题。
一种可能的设计中,第一RNTI与第二RNTI不同;第一RNTI属于第一RNTI集合,第二RNTI属于第二RNTI集合,第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;其中,第三RNTI集合包括用于基于第一随机接入方式接入接入网设备的RNTI,第四RNTI集合用于基于第二随机接入方式接入接入网设备的RNTI。
基于该可能的设计,可以为基于4-step RA接入接入网设备、基于2-step RA接入接入网设备、基于4-step发送上行数据以及基于2-step发送上行数据这四类随机接入过程(或者称为通信过程)设计互不相同的RNTI,以便终端能够根据RNTI区分出接入网设备使用DCI调度的响应消息对应上述四类过程中的哪一类,进而根据区分结果决定是否解码响应消息,简化系统设计且避免终端接入冲突的问题。
一种可能的设计中,第一RNTI根据第一RO确定可以包括:第一RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第一偏移值;其中,s_id为第一RO占用的符号在一个时隙中的索引值,A为大于0且小于Nsymbol的整数;或者,第一RO占用A个符号中的第s_id个符号,s_id小于等于第s_id个符号在一个时隙中的索引值,A个符号为用于基于第一随机接入方式发送上行数据的符号;s_id的取值范围是[0,A-1];
其中,t_id为第一RO占用的时隙在一个系统帧中的索引值,B为大于0且小于Nslot的整数;或者,第一RO占用B个时隙中的第t_id个时隙,t_id小于等于第t_id个时隙在一个系统帧中的索引值,B个时隙为用于基于第一随机接入方式发送上行数据的时隙;t_id的的取值范围是[0,B-1];f_id为第一RO占用的频域单元在C个频域单元中的索引值,C为大于0且小于Nf的整数;或者,第一RO占用C个频域单元中的第f_id个符号,t_id小于等于第f_id个时隙在Nf个频域单元中的索引值,C为用于基于第一随机接入方式发送上行数据的频域单元;f_id的取值范围是[0,C-1];ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,D为大于0且小于Nc的整数;或者,第一RO占用D个上行载波中的第ul_carrier_id个上行载波,ul_carrier_id小于等于第ul_carrier_id个上行载波在Nc个上行载波中的索引值,D为用于基于第一随机接入方式发送上行数据的上行载波;ul_carrier_id的取值范围是[0,D-1];第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2,或者,第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+第二RNTI集合包括的RNTI的数量);Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,Nc为预设的上行载波的数量。
基于该可能的设计,在用于基于随机接入方式接入接入网设备的RNTI的基础之上增加一个偏移值得到用于基于第一随机接入方式发送上行数据的RNTI,可参照MsgB-RNTI的确定方式来确定用于基于第一随机接入方式发送上行数据的RNTI,即通过增加偏移值来区分用于不同随机接入过程的RNTI,简化系统设计。同时,为了避免因可用的RO的时频资源位置是不连续的,导致第一RNTI所属RNTI集合中出现“空洞”(比如RNTI集合中可用的RNTI实际未真正使用),采用RO的时频资源位置的相对索引值确定第一RNTI,因相对索引值都是连续存在的,即使RO的时频资源位置是不连续,RO的时频资源位置的相对索引值也是连续的,因此可以避免RNTI集合中出现“空洞”,提高RNTI的资源利用率。
一种可能的设计中,第二RNTI集合包括的RNTI的数量是E*F*G*H;第二RNTI根据第一RO确定包括:第二RNTI=1+s_id’+E*t_id’+E*F*f_id’+E*F*G*ul_carrier_id’+第二偏移值;其中,当第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2时,第二偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D);或者,当第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+第二RNTI集合包括的RNTI的数量)时,第二偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;
其中,s_id’为第一RO占用的符号在一个时隙中的索引值,E为大于0且小于Nsymbol的整数;或者,第一RO占用E个符号中的第s_id’个符号,s_id’小于等于第s_id’个符号在一个时隙中的索引值,E个符号为用于基于第一随机接入方式发送上行数据的符号;s_id’的取值范围是[0,E-1];t_id’为第一RO占用的时隙在一个系统帧中的索引值,F为大于0且小于Nslot的整数;或者,第一RO占用F个时隙中的第t_id’个时隙,t_id’小于等于第t_id’个时隙在一个系统帧中的索引值,F个时隙为用于基于第一随机接入方式发送上行数据的时隙;t_id’的的取值范围是[0,F-1];f_id’为第一RO占用的频域单元在G个频域单元中的索引值,G为大于0且小于Nf的整数;或者,第一RO占用G个频域单元中的第f_id’个符号,t_id’小于等于第f_id’个时隙在Nf个 频域单元中的索引值,G为用于基于第一随机接入方式发送上行数据的频域单元;f_id’的取值范围是[0,G-1];ul_carrier_id’为第一RO占用的上行载波在H个上行载波中的索引值,H为大于0且小于Nc的整数;或者,第一RO占用H个上行载波中的第ul_carrier_id’个上行载波,ul_carrier_id’小于等于第ul_carrier_id’个上行载波在Nc个上行载波中的索引值,H为用于基于第一随机接入方式发送上行数据的上行载波;ul_carrier_id’的取值范围是[0,H-1]。
基于该可能的设计,在用于基于随机接入方式接入接入网设备的RNTI的基础之上增加一个偏移值得到用于基于第二随机接入方式发送上行数据的RNTI,即可参照MsgB-RNTI的确定方式来确定用于基于第二随机接入方式发送上行数据的RNTI,通过增加偏移值来区分用于不同随机接入过程的RNTI,简化系统设计。同时,为了避免因可用的RO的时频资源位置是不连续的,导致第二RNTI所属RNTI集合中出现“空洞”(比如RNTI集合中可用的RNTI实际未真正使用),采用RO的时频资源位置的相对索引值确定第二RNTI,因相对索引值都是连续存在的,即使RO的时频资源位置是不连续,RO的时频资源位置的相对索引值也是连续的,因此可以避免RNTI集合中出现“空洞”,提高RNTI的资源利用率。
一种可能的设计中,第一RNTI与第二RNTI不同;第一RNTI根据第一RO确定包括:第一RNTI根据第一RO占用的频域单元的索引值确定,第一RO占用的频域单元的索引值的取值范围从N开始,N为大于0的整数;第二RNTI根据第一RO确定包括:第二RNTI根据第一RO占用的频域单元的索引值确定,第一RO占用的频域单元的索引值的取值范围从M开始,M为大于0的整数。
基于该可能的设计,计算第一RNTI时将频域单元的索引值设置为从非零开始,避免与计算RA-RNTI所用的频域单元的索引值重叠,从而避免因无法区分是基于第一随机接入方式发送上行数据还是基于第一随机接入方式接入接入网设备导致接入冲突的问题。类似的,将计算第二RNTI时将频域单元的索引值设置为从非零开始,避免与计算MsgB-RNTI所用的频域单元的索引值重叠,从而避免因无法区分是基于第二随机接入方式发送上行数据还是基于第二随机接入方式接入接入网设备导致接入冲突的问题。
一种可能的设计中,第一RNTI根据第一RO占用的频域单元的索引值确定包括:第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_1+Nsymbol*Nslot*Nf*ul_carrier_id;第二RNTI根据第一RO占用的频域单元的索引值确定包括:第二RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+第三偏移值;其中,s_id为第一RO占用的符号在一个时隙中的索引值,s_id的取值范围为[0,Nsymbol-1];t_id为第一RO占用的时隙在一个系统帧中的索引值,t_id的取值范围为[0,Nslot-1];f_id_1的取值范围为[N,Nf-1],N小于Nf,N为Nf个频域单元中用于第一随机接入的频域单元的数量;f_id_2的取值范围为[M,Nf-1],M小于Nf,M为Nf个频域单元中用于第二随机接入的频域单元的数量;ul_carrier_id为第一RO占用的上行载波在Nc个上行载波中的索引值,ul_carrier_id的取值范围为[0,Nc-1];第三偏移值大于或等于Nsymbol*Nslot*Nf*Nc;Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频域复用系数最大值, Nc为预设的用于随机接入的上行载波的数量。
基于该可能的设计,可参照计算RA-RNTI的计算公式确定第一RNTI,简化系统设计,同时二者计算时所用的频域单元的索引值不同,避免与计算RA-RNTI所用的频域单元的索引值重叠,从而避免因无法区分是基于第一随机接入方式发送上行数据还是基于第一随机接入方式接入接入网设备导致接入冲突的问题。类似的,可参照计算MsgB-RNTI的计算公式确定第二RNTI,简化系统设计,同时二者计算时所用的频域单元的索引值不同,避免与计算MsgB-RNTI所用的频域单元的索引值重叠,从而避免因无法区分是基于第二随机接入方式发送上行数据还是基于第二随机接入方式接入接入网设备导致接入冲突的问题。
一种可能的设计中,第一RNTI以及第二RNTI对应同一计算公式,第一RNTI以及第二RNTI属于第一RNTI集合,第一RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;其中,第三RNTI集合包括用于基于第一随机接入方式接入接入网设备的RNTI,第四RNTI集合用于基于第二随机接入方式接入接入网设备的RNTI。
基于该可能的设计,第一RNTI以及第二RNTI的计算公式相同,即二者复用相同的RNTI,简化系统设计。同时,为基于4-step RA接入接入网设备、基于2-step RA接入接入网设备、基于随机接入方式发送上行数据设计互不相同的RNTI,以便终端能够根据RNTI区分出接入网设备使用DCI调度的响应消息对应哪一类,进而根据区分结果决定是否解码响应消息,简化系统设计且避免终端接入冲突的问题。
一种可能的设计中,第一DCI携带第一指示信息,第一指示信息用于指示第一DCI对应基于第一随机接入方式发送上行数据、或者用于指示第一DCI对应基于第二随机接入方式发送上行数据;或者,第一消息对应的响应消息携带第一指示信息,第一指示信息用于指示响应消息对应基于第一随机接入方式发送上行数据、或者用于指示响应消息对应基于第二随机接入方式发送上行数据。
基于该可能的设计,在第一RNTI以及第二RNTI的计算公式相同的情况下,为了区分基于第一随机接入方式发送上行数据、基于第二随机接入方式发送上行数据,在第一DCI或者响应消息中增加指示信息,以便终端能够结合RNTI以及该指示信息区分出是基于第一随机接入方式发送上行数据还是基于第二随机接入方式发送上行数据,进而根据区分结果决定是否解码响应消息,简化系统设计且避免终端接入冲突的问题。
一种可能的设计中,第一RNTI根据第一RO确定包括:第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+第四偏移值;其中,s_id为第一RO占用的符号在一个时隙中的索引值,s_id的取值范围为[0,Nsymbol-1];t_id为第一RO占用的时隙在一个系统帧中的索引值,t_id的取值范围为[0,Nslot-1];f_id为第一RO占用的频域单元在Nf个频域单元中的索引值,f_id的取值范围为[0,Nf-1];ul_carrier_id为第一RO占用的上行载波在Nc个上行载波中的索引值,ul_carrier_id的取值范围为[0,Nc-1];
其中,第四偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,Nc为预设的用于随机接入的上行载波的数量。
基于该可能的设计,在RA-RNTI的基础之上增加一个偏移值得到用于基于随机接入方式发送上行数据的第一RNTI以及第二RNTI,即参照MsgB-RNTI的确定方式,通过增加偏移值来确定用于基于随机接入方式发送上行数据的RNTI,简化系统设计。
第三方面,本申请提供一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,还可以为第一终端中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第二方面或第二方面的任一可能的设计所述的方法的功能模块。该通信装置可以实现上述各方面或者各可能的设计中第一终端或接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:发送单元以及接收单元;进一步的,该通信装置还可以包括处理单元。
一种可能的设计中,发送单元,用于在第一RO上向接入网设备发送用于基于随机接入方式发送上行数据的第一消息。
接收单元,用于接收来自接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;比如,当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。
又一种可能的设计中,接收单元,用于在第一RO上接收来自第一终端的用于基于随机接入方式发送上行数据的第一消息。
发送单元,用于向第一终端发送接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;比如,当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。
具体的,第一RNTI以及第二RNTI的确定方式可参照第一方面或第二方面或第一方面的任一可能的设计或者第二方面的任一可能的设计中所述,同时,该通信装置各个单元的执行动作可参照第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述,不予赘述。
第四方面,提供了一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中第一终端所执行的功能,所述功能可以通过硬件实现。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器与通信接口可以支持通信装置执行上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计所述的方法。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器, 用于保存通信装置必要的计算机执行指令和数据。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
第七方面,提供了一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,该通信装置包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述第一终端执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的随机接入方法。
其中,第四方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第八方面,本申请实施例提供一种通信系统,该通信系统可以包括:第一终端以及接入网设备。第一终端可以执行第一方面或者第一方面的任一可能的设计所述的随机接入方法,接入网设备可以执行第二方面或者第二方面的任一可能的设计所述的随机接入方法。
第九方面,本申请实施例还提供一种随机接入方法,该方法可以包括:接入网设备在第一随机接入资源接收第一消息,在第二随机接入资源接收第二消息;如果第一随机接入资源属于第一随机接入资源集合,第一随机接入资源集合用于第一类终端的4-step RA,以及下述至少一种:第一类终端的4-step SDT、第二类终端的4-step SDT、第二类终端的4-step RA;接入网设备根据第一消息发送第一DCI;其中,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RA-RNTI加扰;
如果第二随机接入资源属于第二随机接入资源集合,第二随机接入资源集合用于第一类终端的2-step RA,以及下述至少一种:第一类终端的2-step SDT、第二类终端的2-step SDT、第二类终端的2-step RA;接入网设备根据第二消息发送第二DCI;其中,第二DCI用于调度第二消息对应的响应消息,第二DCI使用MsgB-RNTI加扰。
基于第九方面所述的方法,对于基于4-step的所有过程/应用场景均采用RA-RNTI加扰调度响应消息的DCI,对于基于2-step所有过程/场景均采用MsgB-RNTI加扰调度响应消息的DCI,以便终端根据加扰DCI的RNTI区分是基于4-step的过程/应用场景还是基于2-step的过程/应用场景,无需随着通信过程中基于随机接入的过程/应用场景的增加来扩展新的RNTI,简化系统设计。
一种可能的设计中,第一类终端为不支持覆盖增强且不支持接入网切片的非能力 降低redcap终端;第二类终端包括redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中的至少一种,增加该方法的应用场景。
一种可能的设计中,第一随机接入资源集合对应的preamble中分配给第一类终端使用的preamble和分配给第二类终端使用的preamble不重叠,通过为不同类型终端分配不同的preamble,区分发起4-step RA/4-step SDT的终端的类型。
一种可能的设计中,分配给第二类终端使用的preamble中分配给不同类型终端使用的preamble不重叠。通过为redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中不同类型终端分配不同的preamble,区分发起4-step RA/4-step SDT的终端的类型。
一种可能的设计中,第一随机接入资源集合对应的随机接入资源中分配给不同类型终端使用的随机接入资源不同;根据不同随机接入资源计算得到的RA-RNTI不同。如此,通过为不同类型终端分配不同的随机接入资源,区分发起4-step RA/4-step SDT的终端的类型。
第十方面,本申请提供一种通信装置,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第九方面或第九方面的任一可能的设计所述的方法的功能模块。该通信装置可以实现上述各方面或者各可能的设计中接入网设备或接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:发送单元以及接收单元;进一步的,该通信装置还可以包括处理单元。
具体的,该通信装置各个单元的执行动作可参照第九方面或者第九方面的任一可能的设计中所述,不予赘述。
第十一方面,提供了一种通信装置,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器与通信接口可以支持通信装置执行上述第九方面或者第九方面的任一可能的设计所述的方法。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器,用于保存通信装置必要的计算机执行指令和数据。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第九方面或者第九方面的任一可能的设计中所述的随机接入方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第九方面或者第九方面的任一可能的设计中所述的随机接入方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第九方面或者第九方面的任一可能的设计中所述的随机接入方法。
第十四方面,提供了一种通信装置,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,该通信装置包括一个或多个处理器、一个或多个存储器。 所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使接入网设备执行第九方面或第九方面的任一可能的设计中所述的随机接入方法。
其中,第十方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第九方面或者第九方面的任一种可能的设计所带来的技术效果,不再赘述。
第十五方面,本申请实施例提供一种通信系统,该通信系统可以包括:接入网设备。接入网设备可以执行第九方面或者第九方面的任一可能的设计所述的随机接入方法。
附图说明
图1a为4步随机接入示意图;
图1b为2步随机接入示意图;
图2a为用于不同随机接入方式的RO示意图;
图2b为用于不同随机接入方式的RO示意图;
图2c为起始频域单元的索引值示意图;
图3为分配给用于4步随机接入以及2步随机接入的RNTI的示意图;
图4为本申请实施例提供的一种系统架构的简化示意图;
图5为本申请实施例提供的一种通信装置的组成示意图;
图6为本申请实施例提供的一种随机接入方法流程图;
图7a为本申请实施例提供的RNTI分配示意图一;
图7b为本申请实施例提供的RNTI分配示意图二;
图8a为本申请实施例提供的频域单元分配示意图;
图8b为本申请实施例提供的RNTI分配示意图三;
图9a为本申请实施例提供的RNTI分配示意图四;
图9b为本申请实施例提供的RNTI分配示意图五;
图9c为本申请实施例提供的RNTI分配示意图六;
图9d为本申请实施例提供的RNTI分配示意图七;
图9e为本申请实施例提供的RNTI分配示意图八;
图9f为本申请实施例提供的RNTI分配示意图九;
图9g为本申请实施例提供的RNTI分配示意图十;
图10为本申请实施例提供的又一种随机接入方法的流程图;
图11为本申请实施例提供的RAR的示意图一;
图12为本申请实施例提供的RAR的示意图二;
图13为本申请实施例提供的一种通信装置100的组成示意图;
图14为本申请实施例提供的一种通信装置110的组成示意图;
图15为本申请实施例提供的一种通信系统组成示意图。
具体实施方式
通信系统中,当处于连接态的终端没有数据业务的时候,网络侧设备(比如接入网设备)可以向终端发送无线资源控制(radio resource control,RRC)释放(release) 消息,终端接收RRC释放消息,从连接态转换为非连接态(比如空闲态(idle)态或者非激活态(inactive)态)。当网络侧有下行业务需求时,网络侧设备会周期性的向终端发送寻呼(paging)消息,触发终端切换到连接态,终端被寻呼后,发起随机接入(比如4步随机接入或2步随机接入),在完成随机接入后进入连接态,接收网络侧发送的下行数据。或者,当终端有上行业务需求时,终端主动发起随机接入,从非连接态切换到连接态,并在进入连接态后发送上行数据。
本申请实施例中,上行数据可以包括上行小包数据(small data),上行小包数据可以指数据量较小的业务数据,是比特数小于等于预设值的业务数据,该预设值可以根据需要设置,该业务数据传输时占用的传输资源较少,如上行小包数据可以为几比特(bit)的业务数据、或者几十bit的业务数据、几百bit或者几千bit的业务数据。上行小包数据属于小包数据业务,其中典型的小包数据业务可以包括实时消息(instant message),例如
Figure PCTCN2022083520-appb-000001
等;还可以包括心跳包等用于维持客户端与服务器连接的消息以及各种应用的推送消息等等。
本申请实施例中,随机接入(random access,RA)方式可以包括4步随机接入方式或者2步随机接入方式。为便于描述,可以将4步随机接入方式简称为4-step,将2步随机接入方式简称为2-step。下面对4步随机接入方式以及2步随机接入方式进行介绍:
参照图1a,为4步随机接入方式,如图1a所示,4步随机接入可以包括:步骤(1)、终端选择随机接入信道时机(random access channel occasion,RO),并在选择的RO上向接入网设备发送消息一(message 1,Msg1),通知接入网设备有一个随机接入请求。其中,消息一可以包括前导码(preamble)(或者随机接入前导码(random access preamble))。步骤(2)、接入网设备接收到Msg1后,向终端发送随机接入响应,随机接入响应也可以称为消息二(message 2,Msg2)。其中,消息二可以包括消息三(message 3,Msg3)的调度信息,用于指示终端如何发送消息三。终端对应接收消息二。步骤(3)、终端根据消息二向接入网设备发送消息三。步骤(4)、接入网设备向终端发送消息四(message 4,Msg4),消息四可以包括接入网设备确定的针对Msg3的响应消息,该响应消息可以包括用于终端之间竞争解决的相关信息。
参照图1b,为2步随机接入方式,如图1b所示,2步随机接入方式可以包括:步骤(1)、终端选择RO,在选择的RO上向接入网设备发送消息A(message A,MsgA),MsgA可以包括前导码(preamble)以及一个物理上行共享信道(physical uplink shared channel,PUSCH)。步骤(2)、接入网设备接收MsgA,向终端回复消息B(message B,MsgB),MsgB可以包括用于终端之间竞争解决的相关信息。
本申请实施例中,RO可以是预先给终端配置的用于随机接入的时频资源,比如RO可以是终端发送Msg1或者MsgA所用的时频资源,该时频资源可以包括时域资源(比如符号、时隙以及系统帧)以及频域资源(比如上行载波以及频域单元,其中频域单元可以包括多个资源块(resource block,RB))。终端所使用的RO是从一个可选的RO集合中选择的,该RO集合可以包括一个或者多个用于随机接入的RO,该RO集合可以预先配置或者协议规定好。不同终端选择的RO可能相同或不同。不同随机接入方式所用的RO可以相同或者不同,比如用于4步随机接入的RO与用于2步 随机接入的RO可以相同,也可以不同。为便于描述,本申请中,可以将用于4步随机接入的RO称为4-step RO,用于2步随机接入的RO可以称为2-step RO。
例如,如图2a所示,用于4步随机接入的RO与用于2步随机接入的RO是相同的,用于4步随机接入的RO包括RO1-RO4,用于2步随机接入的RO也包括RO1-RO4,但是4步随机接入使用的preamble与2步随机接入使用的preamble是正交的。另一些实施例中,用于4步随机接入的RO与用于2步随机接入的RO也可以不同,4-step RO与2-step RO不同可以包括下述一种或者多种:4-step RO与2-step RO占用的时域资源位置是不同的、4-step RO与2-step RO占用的频域资源位置是不同的。例如,如图2b所示,4-step RO与2-step RO占用的时域资源位置是不同的,4-step RO包括RO1以及RO2,4-step RO占用时隙1,而2-step RO包括RO3以及RO4,2-step RO占用时隙2,4-step RO与2-step RO占用的时域资源位置是不同的,4-step RO与2-step RO占用的频域资源位置是相同的,4-step RO与2-step RO均占用频域单元1至频域单元4。
本申请实施例中,终端所使用的preamble是从一个可选的preamble集合中随机选择的,该preamble可以预先配置或协议预先规定好。一个preamble可以对应一个标识,该标识可以称为preamble的标识(random access preamble identifier,RAPID),preamble的标识可以用于标识/识别该preamble。不同随机接入方式对应的preamble可以相同或者不同,比如用于4步随机接入的preamble与用于2步随机接入的preamble可以相同,也可以不同,用于4步随机接入的preamble与用于2步随机接入的preamble可以是正交的。其中,用于4步随机接入的preamble与用于2步随机接入的preamble是正交的可以包括:用于4步随机接入的preamble使用的根序列与用于2步随机接入的preamble使用的根序列不同,或者4步随机接入的preamble使用的根序列与用于2步随机接入的preamble使用的根序列相同,但是二者的循环移位值不同。
在随机接入过程中,除第一个步骤是终端选择RO以及preamble发送消息之外,其他步骤所传输的消息都需要接入网设备调度,需要接入网设备指示该消息对应的时频资源位置。比如,在4步随机接入过程中,Msg2/Msg4都是需要接入网设备通过物理下行控制信道(physical downlink control channel,PDCCH)调度给终端,比如,发送Msg2/Msg4之前,接入网设备发送用于调度Msg2/Msg4的PDCCH,该PDCCH中携带下行控制信息(downlink control information,DCI),DCI指示Msg2/Msg4所占用的时频资源位置。该DCI可以使用无线网络临时标识(radio network tempory identity,RNTI)加扰,比如该DCI可以包括校验位,该校验位使用RNTI加扰,该校验位的长度与RNTI的长度相同。Msg3的调度信息包含在Msg2中,具体的,Msg3的调度信息包含在Msg2包括的随机接入响应(random access response,RAR)中。又比如,2步随机接入时,MsgB也是需要接入网设备通过PDCCH调度给终端,发送MsgB之前,接入网设备发送用于调度MsgB的PDCCH,该PDCCH中携带DCI,该DCI可以用于指示MsgB所占用的时频资源位置。该DCI可以使用RNTI加扰。
本申请实施例中,用于在随机接入过程中加扰DCI的RNTI可以称为随机接入-无线网络临时标识(random access-RNTI,RA-RNTI)。为便于描述,本申请中,用于在4步随机接入过程中加扰DCI的RNTI可以称为RA-RNTI,用于在2步随机接入过 程中加扰DCI的RNTI可以称为MsgB-RNTI。RNTI的长度可以预先规定,比如可以规定RNTI的长度为16个比特(bits)。RA-RNTI的取值与终端选择的RO之间存在关联关系,RA-RNTI可以根据终端选择的RO占用的时频资源位置确定,比如RA-RNTI可以根据RO占用的符号的索引值s_id、RO占用的时隙的索引值t_id、RO占用的频域单元的索引值f_id以及RO占用的上行载波的索引值ul_carrier_id确定。
具体的,RA-RNTI与RO之间可以满足下述公式(1):
RA-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carri er_id。
其中,s_id为RO占用的符号在一个时隙中的索引值(index)(或者称为编号)。RO占用的符号在一个时隙中的索引值可以称为RO占用的符号在一个时隙中的绝对索引值。一个时隙可以包括Nsymbol个符号(symbol)。Nsymbol可以是预先配置的或者协议预先规定的,Nsymbol为大于0的整数。比如新空口(new radio,NR)系统中规定,普通循环前缀(normal cyclic prefix,NCP)的情况下Nsymbol=14,即一个时隙中可以包括14个符号。示例性的,可以从0开始对一个时隙中的Nsymbol个符号进行顺序编号,得到一个时隙中包括符号0至符号Nsymbol-1。应注意,本申请不限于从0开始对一个时隙中的符号进行顺序编号,还可以从1或者其他数字开始对一个时隙中的符号进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在一个时隙中的符号从0开始顺序编号的情况下,s_id的取值范围为[0,Nsymbol-1]。
其中,t_id为RO占用的时隙在一个系统帧中的索引值(或者编号)。RO占用的时隙在一个系统帧中的索引值可以称为RO占用的时隙在一个系统帧中的绝对索引值。一个系统帧最多包括Nslot个时隙。Nslot可以是预先配置的或者协议预先规定的,比如NR系统中规定Nslot=80,即一个系统帧最多可以包括80个时隙。如果从0开始对这Nslot个时隙进行顺序编号,可以得到一个系统帧中包括时隙0至时隙Nslot-1。应注意,本申请不限于从0开始对一个系统帧中的时隙进行顺序编号,还可以从1或者其他数字开始对一个系统帧中的时隙进行顺序编号,不予限制。本申请仅以从0开始编号进行说明。在从0开始对时隙进行顺序编号的情况下,t_id的取值范围为[0,Nslot-1]。
其中,f_id为RO占用的频域单元在Nf个频域单元中的索引值(或者编号);RO占用的频域单元在Nf个频域单元中的索引值可以称为RO占用的频域单元在Nf个频域单元中的绝对索引值。Nf可以为预设的用于随机接入的频分复用系数最大值,Nf可以是预先配置的或者协议预先规定的,比如NR系统中规定Nf=8,即用于随机接入的频域单元最多包括8个频域单元,如果从0开始对这8个频域单元进行顺序编号,则可以得到用于随机接入的频域单元包括:频域单元0至频域单元7。应注意,本申请不限于从0开始对用于随机接入的频域单元进行顺序编号,还可以从1或者其他数字开始对用于随机接入的频域单元进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在从0开始对频域单元进行顺序编号的情况下,f_id的取值范围为[0,Nf-1]。应理解,本申请实施例所述的频域单元可以是一个带宽部分(bandwidth part,BWP)或者物理资源块(physical resource block,PRB)或者其他粒度的频域资源,不予限制。
其中,ul_carrier_id为RO占用的上行载波在Nc个上行载波中的索引值;RO占用的上行载波在Nc个上行载波中的索引值可以称为RO占用的上行载波在Nc个上行载波中的绝对索引值。Nc可以为预设的用于随机接入的上行载波的数量,Nc可以是预先配置的或者协议预先规定的。比如NR系统中规定Nc=2,即用于随机接入的上行载波为2个。如果从0开始对这Nc个上行载波进行顺序编号,则可以得到用于随机接入的上行载波包括:上行载波0至上行载波Nc-1。应注意,本申请不限于从0开始对用于随机接入的上行载波进行顺序编号,还可以从1或者其他数字开始对用于随机接入的上行载波进行顺序编号,不予限制。本申请实施例仅以从0开始编号进行说明。在从0开始对上行载波进行顺序编号的情况下,ul_carrier_id的取值范围可以为[0,Nc-1]。
如果4-step RA以及2-step RA都采用上述公式(1)计算RNTI,则会存在如下问题:虽然4-step RO与2-step RO占用的时频资源不同,比如4-step RO与2-step RO占用的时域资源位置相同,4-step RO与2-step RO占用的频域单元不同(比如不重叠)、起始频域单元不同,但是由于计算RNTI时所用的频域单元的索引值是从0开始顺序编号的,此时,如果用于4-step RA的频域单元最多包括Nf1个频域单元,则4-step RO占用的频域单元的索引值的取值范围为[0,Nf1],如果用于2-step RA的频域单元最多包括Nf2个频域单元,则2-step RO占用的频域单元的索引值的取值范围为[0,Nf2],二者占用的频域单元的索引值存在相同的情况,这会导致基于上述公式(1),针对不同的随机接入方式计算得到的RA-RNTI相同,使得使用不同随机接入方式发起随机接入的终端无法区分是哪种随机接入方式的RA-RNTI,造成终端之间发生随机接入冲突。
例如,如图2c所示,2-step RO占用频域单元1至频域单元4,4-step RO占用频域单元6至频域单元9,4-step RO与2-step RO占用的频域单元不同,但在对频域单元从0开始进行顺序编号的情况下,4-step RO与2-step RO的起始频域单元的索引值f_id均为0。此时,如果有两个不同终端,一个终端使用4-step RO中f_id=0的RO发送Msg1,两一个终端使用2-step RO中f_id=0的RO发送MsgA,这两个索引值均为f_id=0的RO的频域单元是不同的。虽然接入网设备可以根据不同的RO区分出不同的随机接入方式对应不同的终端,但是接入网设备发送响应消息时,由于采用上述公式(1)计算出来的RA-RNTI相同,对响应消息的加扰相同,导致不同的终端可能都认为是发送给自己的响应消息。假如两个终端使用的preamble也相同,在响应消息的上行授权(UL grant)中,也无法通过preamble的标识(RAPID)区分两个终端所使用的随机接入方式,这样,两个使用不同随机接入方式发起随机接入的终端可能会发生随机接入冲突。
为解决上述问题,针对2-step RA,采用MsgB-RNTI对MsgB的DCI进行加扰,MsgB-RNTI的计算公式如下公式(2)所示:
MsgB-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+偏移值(offset)公式(2)
即通过引入偏移值来区分RNTI所加扰的响应消息对应2-step RA还是4-step RA。
例如,假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,偏移值(offset)等于Nsymbol*Nslot*Nf*Nc,则如图3所示,用于4-step RA的RNTI的取值范围为[1,17920], 用于4-step RA的RNTI的取值范围为[17921,35840],这二类RNTI取值集合互不重叠。
需要说明的是,图3中大于35840的RNTI取值可以用于进行其他流程。此外,应理解,取值范围1~17920只是RA-RNTI的最大取值范围,该取值范围是考虑了s_id,t_id,f_id等参数都遍历了所有可能的取值得到的。但是,实际应用中,针对某一个特定的小区,s_id,t_id,f_id可以取所有可能的取值中的部分值时,这部分值还可能是不连续的,例如s_id可能只能等于0或7,s_id不能等于1~6以及8~13。因此取值范围为1~17920中的RA-RNTI中会存在未分配给针对该特定小区的终端进行随机接入的RA-RNTI,比如图3中1~17920中虚线所圈出来的RA-RNTI等,这些虚线所圈出来的部分可以形成“空洞”。
此外,对于处于非连接态的终端而言,即使上行业务是一个上行小包数据,为了传输该上行小包数据,终端也需要先发起随机接入,走一遍完整的随机接入流程,从非连接态切换到连接态,在连接态下发送上行小包数据,上行小包数据发送完后接入网设备可能令终端在较长时间维持在连接态,再令终端释放连接,这些步骤会造成较大的信令开销,加大终端的功率消耗,造成数据传输时延增加。为了降低终端处于非连接态时发送上行小包数据的功率消耗,减小数据传输时延,一种可能的实现方式中,终端可以通过随机接入方式(如2步随机接入方式或4步随机接入方式)向接入网设备发送上行数据。比如将上行小包数据携带在Msg3中发送给接入网设备,或者将上行小包数据携带在MsgA中发送给接入网设备。
本申请实施例中,通过2步随机接入方式向接入网设备发送上行数据可以替换描述为基于2步随机接入方式向接入网设备发送上行数据,基于2步随机接入方式向接入网设备发送上行数据可以称为2步小包数据传输(2-step small data transmission,2-step-SDT)。通过4步随机接入方式向接入网设备发送上行数据可以替换描述为基于4步随机接入方式向接入网设备发送上行数据,基于4步随机接入方式向接入网设备发送上行数据可以称为4-step-SDT。通过2步随机接入方式接入接入网设备或者通过4步随机接入方式接入接入网设备可以替换描述为基于2步随机接入方式接入接入网设备或者基于4步随机接入方式接入接入网设备,基于2步随机接入方式接入接入网设备或者基于4步随机接入方式接入接入网设备可以称为无小包数据传输(non-SDT),基于2步随机接入方式接入接入网设备可以称为2-step RA,基于4步随机接入方式接入接入网设备可以称为4-step RA。应理解,4-step-SDT、2-step-SDT、4-step RA以及2-step RA这四类通信过程中,4-step-SDT以及4-step RA对应4步随机接入方式,2-step-SDT以及2-step RA对应2步随机接入方式,根据随机接入方式划分,4-step-SDT以及4-step RA可以称为使用4步随机接入方式的通信过程,2-step-SDT以及2-step RA可以称为使用2步随机接入方式的通信过程。
类似于4-step RA和2-step RA的问题,当4-step-SDT或者2-step-SDT SDT和non-SDT使用的RO不同时,仍然可能出现不同的RO对应的计算参数相同,从而导致根据RO计算得到的RNTI相同,使得进行SDT的终端以及进行non-SDT的终端无法区分该RNTI所加扰的DCI调度的响应消息对应SDT还是non-SDT,从而出现不同终端之间随机接入冲突的问题。
为解决该问题,本申请实施例提供了一种随机接入方法,该方法可以包括:第一终端在第一RO上向接入网设备发送第一消息;第一消息用于基于随机接入方式发送上行数据;第一终端接收来自接入网设备的第一DCI;其中,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。即为基于随机接入方式发送上行数据配置RNTI,以便终端根据该RNTI区分出响应消息对应基于随机接入方式发送上行数据。
应理解,本申请所述的第一RNTI是一类用于基于第一随机接入方式发送上行数据的RNTI,第二RNTI是一类用于基于第二随机接入方式发送上行数据的一类RNTI,比如第一RNTI是一类用于4-step SDT的RNTI,第二RNTI是一类用于2-step SDT的RNTI,或者第一RNTI是一类用于2-step SDT的RNTI,第二RNTI是一类用于4-step SDT的RNTI。第一RNTI与第二RNTI相同可以包括:计算这两类RNTI所用的计算公式相同,第一RNTI与第二RNTI的取值范围相同或取值范围重叠等。第一RNTI与第二RNTI不同可以包括:计算这两类RNTI所用的计算公式不同、或者第一RNTI与第二RNTI的取值范围不重叠等。
需要说明的是,本申请中,基于2步随机接入方式发送上行数据可以替换描述为基于2步随机接入的资源发送上行数据、或者基于2步随机接入方式中MsgA对应的PUSCH发送上行数据等。基于4步随机接入方式发送上行数据可以替换描述为基于4步随机接入的资源发送上行数据、或者基于4步随机接入方式中的Msg3对应的PUSCH发送上行数据等。基于2步随机接入方式发起随机接入可以替换描述为基于2步随机接入的资源发起随机接入、或者基于2步随机接入方式中的MsgA对应的preamble发起随机接入等。基于4步随机接入方式发起随机接入可以替换描述为基于4步随机接入的资源发起随机接入、或者基于4步随机接入方式中的Msg1对应的preamble发起随机接入等。
需要说明的是,下述实施例中的上行数据可以指上行小包数据或者其他能够通过随机接入过程发送的业务数据,不予限制。例如,当基于2步随机接入方式对应的传输资源(或称为2步随机接入的资源)发送上行数据时,该上行数据是不同于preamble的,从物理层使用的信道来看,该上行数据可以是承载/携带在MsgA对应的PUSCH的数据,该上行数据可以通过PUSCH传输,MsgA对应的PUSCH上传输的上行数据可以为用户面(user plane,UP)的数据或者控制面(control plane,CP)的数据,或者,为专用业务信道(dedicated traffic channel,DTCH)的数据等,不予限制。从物理层来看,该上行数据为一个传输块(transport block,TB),从高层协议上来看,该上行数据为一个媒体接入控制(media access control,MAC)分组数据单元(packet data unit,PDU)。当基于4随机接入方式对应的传输资源(或称为4步随机接入的资源)发送上行数据时,携带上行数据的Msg3与现有技术中承载控制信令的Msg3不同,本申请中,Msg3中携带的上行数据可以为UP的数据或者CP的数据,或者,为DTCH的数据等,不予限制。
下面结合说明书附图,对本申请实施例提供的随机接入方法进行描述。
本申请实施例提供的随机接入方法可用于第四代(4th generation,4G)系统、长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新空口(new radio,NR)系统、NR-车与任何事物通信(vehicle-to-everything,V2X)系统、物联网系统中的任一系统,还可以适用于其他下一代通信系统等,不予限制。下面以图4所示通信系统为例,对本申请实施例提供的随机接入方法进行描述。
图4是本申请实施例提供的一种通信系统的示意图,如图4所示,该通信系统可以包括接入网设备以及多个终端,如:终端1、终端2。在图4所示系统中,终端可以处于空闲态或者非激活态。需要说明的是,图4为示例性框架图,图4中包括的节点的数量不受限制,且除图4所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
其中,接入网设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,接入网设备可以为小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的随机接入方法。
在具体实现时,图4所示各网元,如:终端、接入网设备可采用图5所示的组成结构或者包括图5所示的部件。图5为本申请实施例提供的一种通信装置500的组成示意图,当该通信装置500具有本申请实施例所述的终端的功能时,该通信装置500可以为终端或者终端中的芯片或者片上系统。当通信装置500具有本申请实施例所述的接入网设备的功能时,通信装置500可以为接入网设备或者接入网设备中的芯片或者片上系统。
如图5所示,该通信装置500可以包括处理器501,通信线路502以及通信接口503。进一步的,该通信装置500还可以包括存储器504。其中,处理器501,存储器504以及通信接口503之间可以通过通信线路502连接。
其中,处理器501可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器501还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路502,用于在通信装置500所包括的各部件之间传送信息。
通信接口503,用于与其他设备或其它通信网络进行通信。该其它通信网络可以 为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口503可以是射频模块、收发器或者任何能够实现通信的装置。本申请实施例以通信接口503为射频模块为例进行说明,其中,射频模块可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器504,用于存储指令。其中,指令可以是计算机程序。
其中,存储器504可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等。
需要说明的是,存储器504可以独立于处理器501存在,也可以和处理器501集成在一起。存储器504可以用于存储指令或者程序代码或者一些数据等。存储器504可以位于通信装置500内,也可以位于通信装置500外,不予限制。处理器501,用于执行存储器504中存储的指令,以实现本申请下述实施例提供的随机接入方法。
在一种示例中,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
作为一种可选的实现方式,通信装置500包括多个处理器,例如,除图5中的处理器501之外,还可以包括处理器507。
作为一种可选的实现方式,通信装置500还可以包括输出设备505和输入设备506。输入设备506可以是键盘、鼠标、麦克风或操作杆等,输出设备505可以是显示屏、扬声器(speaker)等设备。
需要说明的是,通信装置500可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图5中类似结构的设备。此外,图5中示出的组成结构并不构成对该通信装置的限定,除图5所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下面结合图4所示通信系统,对本申请实施例提供的随机接入方法进行描述。其中,下述实施例中各设备可以具有图5所示部件,且各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。此外,本申请实施例中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序,本申请实施例对“第一”和“第二”所表示的不同对象的属性不做限定。
图6为本申请实施例提供的一种随机接入方法流程图,如图6所示,该方法可以包括:
步骤601:第一终端在第一RO上向接入网设备发送第一消息。相应的,接入网设备接收来自第一终端的第一消息。
其中,第一终端可以是图4中的任一终端,比如第一终端可以是图4中的终端1或者终端2。第一终端可以处于非连接态(比如空闲态或者非激活态)。第一终端有 上行业务需求,需要基于随机接入方式向接入网设备发送上行数据(比如上行小包数据)。接入网设备可以是图4中的接入网设备,该接入网设备可以为第一终端提供网络服务。
其中,随机接入方式可以包括第一随机接入方式或者第二随机接入方式。第一随机接入方式与第二随机接入方式不同。第一随机接入方式可以是如图1a所示的4步随机接入方式,第二随机接入方式可以是图1b所示的2步随机接入方式。或者第一随机接入方式是图1b所示的2步随机接入方式,第二随机接入方式可以是图1a所示的4步随机接入方式。
其中,第一RO可以是第一终端随机选择的用于基于随机接入方式发送上行数据的RO。用于基于4步随机接入方式发送上行数据的RO与用于基于2步随机接入方式发送上行数据的RO可以相同或者不同。比如用于基于4步随机接入方式发送上行数据的RO属于第一RO集合,用于基于2步随机接入方式发送上行数据的RO属于第二RO集合,第一RO集合与第二RO集合不重叠,或者第一RO集合与第二RO集合重叠或者是同一RO集合。
其中,第一消息可以用于基于随机接入方式发送上行数据。第一消息可以携带preamble。当随机接入方式是4步随机接入方式时,第一消息可以是Msg1。当随机接入方式是2步随机接入方式时,第一消息可以是MsgA,除携带preamble之外,MsgA还可以包括与该preamble关联的物理上行共享信道(physical uplink shared channel,PUSCH),该PUSCH中可以包括上行数据和/或其他信息。
步骤602:接入网设备根据第一消息,向第一终端发送第一DCI。相应的,第一终端接收来自接入网设备的第一DCI。
进一步可选的,接入网设备在第一DCI所指示的时频资源位置上发送第一消息对应的响应消息。相应的,第一终端根据第一RO确定RNTI,根据RNTI解扰第一DCI,并在第一DCI解扰成功后,根据第一DCI指示的时频资源位置上接收第一消息对应的响应消息。当第一消息为Msg1时,第一消息对应的响应消息可以是Msg2。当第一消息为MsgA时,第一消息对应的响应消息可以是MsgB。
进一步可选的,如果第一消息对应的响应消息是Msg2,则所述方法还包括:第一终端向接入网设备发送携带上行数据的Msg3,接入网设备接收Msg3,向第一终端发送Msg4。
其中,第一DCI可以用于调度第一消息对应的响应消息。第一DCI可以指示第一消息对应的响应消息的时频资源位置。第一DCI使用RNTI加扰,RNTI与第一RO之间存在关联关系,RNTI可以根据第一RO确定,第一RNTI与第二RNTI可以相同或不同。比如,当第一消息用于4-step-SDT时,RNTI可以为4-step-SDT-RNTI。当第一消息用于2-step-SDT时,RNTI可以为2-step-SDT-RNTI。4-step-SDT-RNTI与2-step-SDT-RNTI可以相同或不同,即本申请设计了用于4-step-SDT或2-step-SDT的RNTI,以便执行4-step-SDT或2-step-SDT的终端根据RNTI获知DCI调度的第一消息对应的响应消息是否对应自身发送的第一消息,若对应自身发送的第一消息,则进一步解码该第一消息对应的响应消息,若不对应自身发送的第一消息,则不解码该第一消息对应的响应消息。
下面对第一RNTI以及第二RNTI的确定方式进行描述。其中,方式一以及方式二中,第一RNTI与第二RNTI不同,第一RNTI与第二RNTI对应不同的计算公式,二者的取值范围不同。方式三中,第一RNTI与第二RNTI相同,对应相同的计算公式,取值范围相同。
方式一、第一RNTI属于第一RNTI集合,第一RNTI集合包括用于基于第一随机接入方式发送上行数据的RNTI,第二RNTI属于第二RNTI集合,第二RNTI集合包括用于基于第二随机接入方式发送上行数据的RNTI。第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠。
其中,第三RNTI集合可以包括用于基于第一随机接入方式接入接入网设备的RNTI,第三RNTI集合包括的RNTI与RO之间的关系满足上述公式(1)。第四RNTI集合可以包括用于基于第二随机接入方式接入接入网设备的RNTI,第四RNTI集合包括的RNTI与RO之间的关系满足上述公式(2)。
本申请实施例中,第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠可以指第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合这四个RNTI集合中,不同RNTI集合之间不存在相同的RNTI,换言之,同一RNTI不会同时存在于不同的RNTI集合中,即为4-step RA、2-step RA、4-step-SDT以及2-step-SDT这四类通信过程设计互不相同的RNTI,以便终端能够根据RNTI区分出接入网设备使用DCI调度的响应消息对应上述四类过程中哪一类,进而根据区分结果决定是否解码该响应消息。
具体的,当第一RO上发送的第一消息用于基于第一随机接入方式发送上行数据时,第一RNTI根据第一RO确定可以包括第一RNTI与第一RO之间满足下述公式(3):
第一RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第一偏移值公式(3)
当第一RO上发送的第一消息用于基于第一随机接入方式发送上行数据时,第二RNTI根据第一RO确定可以包括第二RNTI与第一RO之间满足下述公式(4):
第二RNTI=1+s_id’+E*t_id’+E*F*f_id’+E*F*G*ul_carrier_id’+第二偏移值公式(4)
本申请实施例中,各个公式中的符号“+”表示相加计算,符号“*”表示相乘计算。其中符合“*”还可以替换为符号“×”。
下面对公式(3)中的参数A、B、C、s_id、t_id,f_id、ul_carrier_id、第一偏移值,对公式(4)中的参数E、F、G、s_id’、t_id’,f_id’、ul_carrier_id’以及第二偏移值进行描述:
示例一中,公式(3)中的参数s_id、t_id,f_id、ul_carrier_id为第一RO占用的时频资源位置的绝对索引值。公式(4)中的参数s_id’、t_id’,f_id’、ul_carrier_id’为第一RO占用的时频资源位置的绝对索引值。
比如,公式(3)中的s_id为第一RO占用的符号在一个时隙中的索引值,s_id的取值范围是[0,A-1],其中,A可以表示用于第一随机接入方式的符号的数量。t_id为第一RO占用的时隙在一个系统帧中的索引值,t_id的的取值范围是[0,B-1],其中,B可以表示用于第一随机接入方式的时隙的数量。f_id为第一RO占用的频域单元在C个频域单元中的索引值,f_id的取值范围是[0,C-1],其中,C可以表示用于第一随机 接入方式的频域单元的数量。ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,ul_carrier_id的取值范围是[0,D-1],其中,D可以表示用于第一随机接入方式的上行载波的数量。
其中,第一偏移值可以用于将第一RNTI集合与其他RNTI集合隔开。比如,第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2,第一偏移值可以用于将第一RNTI集合与第三RNTI集合以及第四RNTI集合隔离开。或者,第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+第二RNTI集合包括的RNTI的数量),第一偏移值可以用于将第一RNTI集合与第二RNTI集合、第三RNTI集合以及第四RNTI集合隔开。第二RNTI集合包括的RNTI的数量为E*F*H*G。
公式(4)中的s_id’为第一RO占用的符号在一个时隙中的索引值,s_id’的取值范围是[0,E-1],其中,E可以表示用于第二随机接入方式的时隙的数量。t_id’为第一RO占用的时隙在一个系统帧中的索引值,t_id’的的取值范围是[0,F-1],其中,F可以表示用于第二随机接入方式的时隙的数量;f_id’为第一RO占用的频域单元在G个频域单元中的索引值;f_id’的取值范围是[0,G-1],其中,G可以表示用于第二随机接入方式的频域单元的数量。ul_carrier_id’为第一RO占用的上行载波在H个上行载波中的索引值,ul_carrier_id’的取值范围是[0,H-1],H可以表示用于第二随机接入方式的上行载波的数量。
其中,第二偏移值可以用于将第二RNTI集合与其他RNTI集合隔开。比如,当第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2时,第二偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D);第二偏移值可以用于将第二RNTI集合与第一RNTI集合、第三RNTI集合以及第四RNTI集合隔离开。或者,当第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+第二RNTI集合包括的RNTI的数量)时,第二偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2,第二偏移值可以用于将第二RNTI集合与第三RNTI集合以及第四RNTI集合隔离开。
示例一中,公式(3)对应的参数A、B、C以及D,公式(4)对应的参数E、F、G以及D可以由接入网设备通过系统消息配置给终端。比如,A的取值可以从1至Nsymbol,B的取值可以从1至Nslot,C的取值可以从1至Nf,D的取值可以从1至Nc。E的取值范围可以是从1至Nsymbol,F的取值可以从1至Nslot,G的取值可以从1至Nf,H的取值可以从1至Nc。具体的,公式(3)对应的参数A、B、C以及D,公式(4)对应的参数E、F、G以及D可以有以下两种不同设计:
第一种设计,公式(3)中的A等于Nsymbol,B等于Nslot,C等于Nf,D等于Nc,公式(3)等效为:第一
RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+第一偏移值。公式(4)中的E等于Nsymbol,F等于Nslot,G等于Nf,H等于Nc,公式(4)等效为:第二
RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+第二偏移值。
例如,假设第一RO占用系统帧中的时隙1、占用时隙1中的符号5至符号7、占用8个频域单元中的频域单元0、占用2个上行载波中的上行载波0,Nsymbol=14, Nslot=80,Nf=8,Nc=2,则可以在第一消息用于基于第一随机接入方式发送上行数据时,将s_id=5、t_id=1,f_id=0、ul_carrier_id=0、A=14、B=80、Nf=8、Nc=2、第一偏移值=14*80*8*2*2代入公式(3)得到第一RNTI。或者在第一消息用于基于第二随机接入方式发送上行数据时,将s_id=5、t_id=1,f_id=0、ul_carrier_id=0、A=14、B=80、Nf=8、Nc=2以及第二偏移值=14*80*8*2*3代入公式(4)得到第二RNTI。
应理解,本申请实施例中,第一RO占用的符号可以是第一RO占用的时频资源中的起始符号(即时域位置最前的符号),也可以是第一RO占用的时频资源中的其他符号,比如结束符号(即时域位置最后的符号)等,不予限制。可选的,第一RO可以占用一个或者多个符号。第一RO占用的时隙可以是第一RO占用的时频资源中的起始时隙(即时域位置最前的时隙),也可以是第一RO占用的时频资源中的其他时隙,比如结束时隙(即时域位置最后的时隙)等,不予限制。可选的,第一RO可以占用一个或者多个时隙。
本申请实施例中,第一RO占用的频域单元可以是第一RO占用的频域资源中的起始频域单元(即频域位置最前的频域单元),也可以是第一RO占用的频域资源中的其他频域单元,比如最后一个频域单元(即频域位置最后的频域单元)等,不予限制。可选的,第一RO可以占用一个或者多个频域单元。第一RO占用的上行载波可以是第一RO占用的时频资源中的起始上行载波(即频域位置最前的上行载波),也可以是第一RO占用的时频资源中的其他上行载波,比如结束上行载波(即频域位置最后的上行载波)等,不予限制。可选的,第一RO可以占用一个或者多个上行载波。
应理解,本申请实施例中,如果RNTI的长度为n个比特,每个比特的取值可以是0或1,将这n个比特中每个比特的可能取值组合起来可以得到用于随机接入的2 n个RNTI,此时,如果第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合包括的RNTI的总数量N大于2 n,则需要增加新的用于随机接入的RNTI,将2 n个RNTI扩展至N个RNTI,以保证有足够的RNTI可以用于基于随机接入发送上行数据。
例如,假设RNTI的长度为16bit,则存在2 16=65536个RNTI可以用于基于随机接入接入接入网设备或者用于基于随机接入发送上行数据,此时假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,第一偏移值等于Nsymbol*Nslot*Nf*Nc*2,第二偏移值等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D),则基于公式(1)、公式(2)、公式(3)以及公式(4)计算出的各类RNTI的分配情况如图7a所示,将65536个RNTI扩展至71680个RNTI,其中第一RNTI集合是取值范围为[35841,53760]的RNTI集合,第一RNTI的取值范围可以是[35841,53760],第二RNTI集合是取值范围为[53761,71680]的RNTI集合,第二RNTI的取值范围可以是[53761,71680]。第三RNTI集合是取值范围为[1,17920]的RNTI集合,第四RNTI集合是取值范围为[17921,35840]的RNTI集合,这四个RNTI集合互不重叠。
第二种设计,在RNTI的长度为n的情况下,为了将第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合包括的RNTI的总数量控制在2 n个之内,保证系统兼容。缩小公式(3)对应的参数A、B、C以及D中一个或者多个参数的取值,缩小公式(4)对应的参数E、F、H以及H中一个或者多个参数的取值,以实现减少第一RNTI集合、第二RNTI集合所包括的RNTI的数量,将第一RNTI集合、第二 RNTI集合、第三RNTI集合以及第四RNTI集合包括的RNTI的总数量控制在2 n个,。
具体的,可以将公式(3)对应的参数A、B、C以及D设计为下述一种或多种:A为小于Nsymbol的正整数,B为小于Nslot的正整数,C为小于Nf的正整数或者D为小于Nc的正整数,缩小公式(3)中的参数s_id、t_id,f_id、ul_carrier_id中一个或者多个参数的取值范围,进而缩小第一RNTI的取值范围,减小第一RNTI集合所包括的RNTI的数量。
类似的,将公式(4)对应的参数E、F、G以及H设计为下述一种或者多种:E为小于NsymBol的正整数,F为小于Nslot的正整数,G为小于Nf的正整数,或者H为小于Nc的正整数,以达到缩小公式(4)中的参数s_id’、t_id’,f_id’、ul_carrier_id’中一个或多个参数的取值范围的目的,进而实现缩小第二RNTI的取值范围,缩小第二RNTI集合所包括的RNTI的数量。
其中,第二种设计中,第一RNTI集合包括的RNTI的数量为A*B*C*D,第二RNTI集合包括的RNTI的数量为E*F*G*H,第三RNTI集合以及第四RNTI集合包括的RNTI的数量之和为Nsymbol*Nslot*Nf*Nc*2。A*B*C*D+E*F*G*H+Nsymbol*Nslot*Nf*Nc*2≤2 n
例如,假设RNTI的长度为16bit,存在2 16=65536个RNTI可以用于基于随机接入接入接入网设备或者用于基于随机接入发送上行数据,假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,A=Nsymbol=14,B=Nslot=80,C=4<Nf,D=Nc=2,E=Nsymbol=14,F=Nslot=80,G=4<Nf,H=Nc=2,第一偏移值等于Nsymbol*Nslot*Nf*Nc*2,第二偏移值等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D),则公式(3)等效为第一RNTI=1+s_id+14*t_id+14*80*f_id+14*80*4*ul_carrier_id+14*80*8*2*2,其中,0≤f_id≤3,基于公式(3)可以得到如图7b所示的第一RNTI集合,第一RNTI集合的取值范围为[35841,44800]。公式(4)等效为第二RNTI=1+s_id’+14*t_id’+14*80*f_id’+14*80*4*ul_carrier_id’+14*80*8*2*2
+14*80*4*2,其中,0≤f_id’≤3,基于公式(4)得到如图7b所示的第二RNTI集合,第二RNTI集合的取值范围为[44801,53760]。基于公式(1)可以得到第三RNTI集合,第三RNTI集合的取值范围为[1,17920],基于公式(2)可以得到第四RNTI集合,第四RNTI集合的取值范围为[17921,35840],这四个RNTI集合互不重叠,且这四个集合包括的RNTI总数量不超过65536。
又例如,以上述公式(3)为例,除了限制除f_id的取值范围之外,还可以限制公式(3)中其他参数的取值范围,比如限制只能在一个上行载波上发送基于第一随机接入方式发送上行数据,即Nc=1,此时ul_carrier_id的取值只能为0,在Nsymbol=14,Nslot=80,Nf=8,Nc=2,A=Nsymbol,B=Nslot,C=Nf的情况下,上述公式(3)可以等效为:
第一RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+14*80*8*2*2=1+s_id+14*t_id+14*80*f_id+14*80*8*2*2。
以上述公式(4)为例,除了限制f_id’的取值范围之外,还可以限制公式(4)中其他参数的取值范围,比如限制只能在一个上行载波上发送基于第一随机接入方式发 送上行数据,即Nc=1,此时ul_cErrier_id’的取值只能为0,在Nsymbol=14,Nslot=80,Nf=8,Nc=2,E=Nsymbol,B=Nslot,C=Nf的情况下,上述公式(4)可以等效为:
第二RNTI=1+s_id’+14*t_id’+14*80*f_id’+14*80*8*ul_carrier_id’+14*80*8*2*2+14*80*8=1+s_id’+14*t_id’+14*80*f_id’+14*80*8*2*2+14*80*8。
再例如,以上述公式(3)为例,A=7,s_id只能取0~6,B=40,t_id只能取0~39,在Nsymbol=14,Nslot=80,Nf=8,Nc=2,C=Nf,D=Nc的情况下,上述公式(3)可以等效为:
第一RNTI=1+s_id+7*t_id+7*40*f_id+7*40*8*ul_carrier_id+14*80*8*2*2。
以上述公式(4)为例,E=7,s_id’只能取0~6,F=40,t_id’只能取0~39,在NsymBol=14,Nslot=80,Nf=8,Nc=2,G=Nf,H=Nc的情况下,上述公式(4)可以等效为:第二RNTI=1+s_id’+7*t_id’+7*40*f_id’+7*40*8*ul_carrier_id’+14*80*8*2*2+7*40*8*2。
示例二,为了避免因第一RO占用的时频资源位置不连续,导致用于基于随机接入方式发送上行数据的RNTI的取值范围中“空洞”的发生,计算第一RNTI时可以将s_id,t_id,f_id,ul_carrier_id等参数定义为相对索引值,计算第二RNTI时可以将s_id’,t_id’,f_id’,ul_carrier_id’等参数定义为相对索引值。由于相对索引值是连续的,此时可以使一个小区中配置的用于基于随机接入方式发送上行数据的RO对应的RNTI的取值是连续的,提高RNTI的资源利用率。
其中,用于基于随机接入方式发送上行数据的RNTI的取值范围中存在“空洞”可以指:为基于随机接入方式发送上行数据的RNTI配置的取值范围比较大,但是为一个小区配置的用于基于随机接入方式发送上行数据的RO的可能位置不会很多,用于基于随机接入方式发送上行数据的RO所对应的RNTI取值可能是该取值范围中的一部分,针对这个小区,实际被用作基于随机接入方式发送上行数据的RNTI不是很多,存在基于随机接入方式发送上行数据的RNTI的取值范围中的一些RNTI并未得到使用,即出现如图3中虚线所示的“空洞”。
具体的,对于公式(3),将s_id,t_id,f_id,ul_carrier_id等参数定义为相对索引值可以包括:第一RO占用A个符号中的第s_id个符号,s_id小于等于第s_id个符号在一个时隙中的索引值,A个符号为用于基于第一随机接入方式发送上行数据的符号;s_id的取值范围是[0,A-1];第一RO占用B个时隙中的第t_id个时隙,t_id小于等于第t_id个时隙在一个系统帧中的索引值,B个时隙为用于基于第一随机接入方式发送上行数据的时隙;t_id的的取值范围是[0,B-1];第一RO占用C个频域单元中的第f_id个符号,t_id小于等于第f_id个时隙在Nf个频域单元中的索引值,C为用于基于第一随机接入方式发送上行数据的频域单元;f_id的取值范围是[0,C-1];第一RO占用D个上行载波中的第ul_carrier_id个上行载波,ul_carrier_id小于等于第ul_carrier_id个上行载波在Nc个上行载波中的索引值,D为用于基于第一随机接入方式发送上行数据的上行载波;ul_carrier_id的取值范围是[0,D-1]。
类似的,对于公式(4),将s_id’,t_id’,f_id’,ul_carrier_id’等参数定义为相对索引值可以包括:第一RO占用E个符号中的第s_id’个符号,s_id’小于等于第s_id’ 个符号在一个时隙中的索引值,E个符号为用于基于第二随机接入方式发送上行数据的符号;s_id’的取值范围是[0,E-1];第一RO占用F个时隙中的第t_id’个时隙,t_id’小于等于第t_id’个时隙在一个系统帧中的索引值,F个时隙为用于基于第二随机接入方式发送上行数据的时隙;t_id’的的取值范围是[0,F-1];第一RO占用G个频域单元中的第f_id’个符号,t_id’小于等于第f_id’个时隙在Nf个频域单元中的索引值,G为用于基于第二随机接入方式发送上行数据的频域单元;f_id’的取值范围是[0,G-1];第一RO占用H个上行载波中的第ul_carrier_id’个上行载波,ul_carrier_id’小于等于第ul_carrier_id’个上行载波在Nc个上行载波中的索引值,H为用于基于第二随机接入方式发送上行数据的上行载波;ul_carrier_id’的取值范围是[0,H-1]。
例如,以公式(3)中的s_id为例,示例一中s_id表示第一RO占用的符号在一个时隙中的索引值(或者称为绝对索引值)。而在示例二中,s_id表示第一RO占用的符号在A个符号中的相对位置,为第一RO占用的符号在A个符号中的相对索引值。例如,假设在一个小区中,配置第一RO的起始符号只能是第0个符号或第7个符号,则示例一中s_id的取值为0或7,而在示例二中,如果第一RO占用第0个符号时,则s_id=0,如果第一RO占用第7个符号,则s_id=1。
示例二中,第一偏移值、第二偏移值的相关描述可参照示例一中所述,不予赘述。
示例二中,公式(3)对应的参数A、B、C以及D,公式(4)对应的参数E、F、G以及D可以参照上述第二种设计中所述,不予赘述。比如公式(3)对应的参数A、B、C以及D设计为下述一种或多种:A为小于Nsymbol的正整数,B为小于Nslot的正整数,C为小于Nf的正整数或者D为小于Nc的正整数。公式(4)对应的参数E、F、G以及H设计为下述一种或者多种:E为小于NsymBol的正整数,F为小于Nslot的正整数,G为小于Nf的正整数,或者H为小于Nc的正整数。
基于方式一所述方法,可以参照上述公式(2),通过增加偏移值来区分用于基于第一随机接入方式发送上行数据的第一RNTI、以及用于基于第二随机接入方式发送上行数据的第二RNTI,简化系统设计。
方式二、将第三RNTI集合包括的部分RNTI作为第一RNTI,这部分RNTI可以用于基于第一随机接入方式发送上行数据,即用于基于第一随机接入方式发送上行数据的RNTI可以复用原有的用于基于第一随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围,或者,用于基于第一随机接入方式发送上行数据的RNTI的取值范围,为原有的用于基于第一随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围的子集。类似的,将第四RNTI集合包括的部分RNTI作为第二RNTI,这部分RNTI可以用于基于第二随机接入方式发送上行数据,即用于基于第二随机接入方式发送上行数据的RNTI可以复用原有的用于基于第二随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围,或者,用于基于第二随机接入方式发送上行数据的RNTI的取值范围,为原有的用于基于第二随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围的子集。
具体的,4-step RA与4-step SDT的RO在频域单元上依次顺序编号(indexing),2-step RA与2-step SDT的RO在频域上依次顺序编号。比如当第一消息用于基于第一随机接入方式发送上行数据,且第一RNTI根据第一RO确定时,将第一RO占用的频 域单元的索引值的取值范围设置为从N开始,N为大于0且小于Nf的整数,N为可以用于第一随机接入方式的频域单元的数量,用于基于第一随机接入方式发送上行数据的RO占用的频域单元的索引值f_id_1∈{N,N+1,…,Nf-1},此时用于基于第一随机接入方式发送上行数据的频域单元的数量为Nf-N。当第二RNTI根据第一RO确定时,将第一RO占用的频域单元的索引值的取值范围设置为从M开始,M为大于0且小于Nf的整数,M是可以用于第二随机接入方式的频域单元的数量,用于基于第二随机接入方式发送上行数据的RO占用的频域单元的索引值f_id_2∈{M,M+1,…,Nf-1},此时用于基于第二随机接入方式发送上行数据的频域单元的数量为Nf-M。
本申请实施例中,N的取值可以由接入网设备配置,比如N的取值可以根据接入网设备的配置信息确定,该配置信息可以用于指示N的取值大小。N的取值也可以是预定义的,比如N的取值可以在协议中预先规定好。类似的,M的取值可以由接入网设备配置,比如M的取值可以根据接入网设备的配置信息确定,该配置信息可以用于指示M的取值大小。M的取值也可以是预定义的,比如M的取值可以在协议中预先规定好。
例如,如图8a所示,将频域单元1至频域单元4配置为用于4-step RA,此时用于4-step RA的频域单元的数量为4,将频域单元6至频域单元9配置为用于4-step-SDT,此时用于4-step-SDT的频域单元的数量也为4。在方式一中(如图8a中箭头左侧所示),对频域单元1至频域单元4从0开始顺序编号,频域单元1的索引值f_id=0,频域单元2的索引值f_id=2,频域单元3的索引值f_id=2,频域单元4的索引值f_id=3。对频域单元6至频域单元9从0开始顺序编号,频域单元6的索引值f_id=0,频域单元7的索引值f_id=2,频域单元8的索引值f_id=2,频域单元9的索引值f_id=3。用于4-step RA以及用于4-step-SDT的频域单元的索引值的取值范围是相同的,取值范围均为[0,3]。而在方式二(如图8b中箭头右侧所示)中,对频域单元1至频域单元4从0开始顺序编号,频域单元1的索引值f_id=0,频域单元2的索引值f_id=2,频域单元3的索引值f_id=2,频域单元4的索引值f_id=3。对频域单元6至频域单元9从4开始顺序编号,频域单元6的索引值f_id=4,频域单元7的索引值f_id=5,频域单元8的索引值f_id=6,频域单元9的索引值f_id=7。用于4-step RA以及用于4-step-SDT的频域单元的索引值的取值范围是不重叠的,用于4-step RA的频域单元的取值范围是[0,3],用于4-step-SDT的频域单元的取值范围是[4,7]。
需要说明的是,上述f_id_1∈{N,N+1,…,Nf-1}是标准允许的取值范围,f_id_1的最大取值可以达到Nf-1,但是实际应用中,f_id_1的最大取值范围可能达不到Nf-1,f_id_1的最大取值小于Nf-1。同理,上述f_id_2∈{M,M+1,…,Nf-1}是标准允许的取值范围,f_id_2的最大取值可以达到Nf-1,但是实际应用中,f_id_2的最大取值范围可能达不到Nf-1,f_id_2的最大取值可以小于Nf-1。比如假设Nf为8,第一随机接入方式为4-step随机接入方式,针对某个小区,配置给该小区的用于4-step的频域单元的数量为6个,这6个资源单元中的频域单元0~频域单元2用于4-step RA,频域单元3~频域单元5用于4-step-SDT,此时N=3,但是f_id_1的取值范围为[3,5],f_id_1的最大取值范围达不到Nf-1=7。
方式二中,第一RNTI与第一RO之间满足下述公式(5):
第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_1+Nsymbol*Nslot*Nf*ul_carrier_id   公式(5)
第二RNTI与第一RO之间满足下述公式(6):
第二RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+第三偏移值   公式(6)
其中,公式(5)以及公式(6)中,s_id为第一RO占用的符号在一个时隙中的索引值,s_id的取值范围为[0,Nsymbol-1];t_id为第一RO占用的时隙在一个系统帧中的索引值,t_id的取值范围为[0,Nslot-1];f_id_1的取值范围为[N,Nf-1],N小于Nf,N为Nf个频域单元中用于第一随机接入的频域单元的数量;f_id_2的取值范围为[M,Nf-1],M小于Nf,M为Nf个频域单元中用于第二随机接入的频域单元的数量;ul_carrier_id为第一RO占用的上行载波在Nc个上行载波中的索引值,ul_carrier_id的取值范围为[0,Nc-1]。
其中,第三偏移值可以大于或等于Nsymbol*Nslot*Nf*Nc。第三偏移值与公式(2)中的offset相同,Nsymbol、Nslot、Nf以及Nc的相关描述可参照上文描述,不予赘述。由上可知,公式(5)与公式(1)相同,只不过不同公式中频域单元的取值范围不同。公式(6)与公式(2)相同,只不过不同公式中频域单元的取值范围不同。
例如,假设第一随机接入方式为4-step,第二随机接入方式为2-step,RNTI的长度为16bit,存在2 16=65536个RNTI可以用于基于随机接入接入接入网设备或者用于基于随机接入发送上行数据,假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,基于公式(5)可以得到如图8b所示的第一RNTI集合,基于公式(6)得到如图8b所示的第二RNTI集合。基于公式(1)可以得到第三RNTI集合,第三RNTI集合的取值范围为[1,17920],基于公式(2)可以得到第四RNTI集合,第四RNTI集合的取值范围为[17921,35840],从图8b可知,第一RNTI集合包括的RNTI的取值复用第三RNTI集合包括的RNTI的取值,第二RNTI集合包括的RNTI的取值复用第四RNTI集合包括的RNTI的取值。
方式三、用于基于第一随机接入方式发送上行数据的RNTI与用于基于第二随机接入方式发送第二RNTI的取值范围相同,即4-step SDT对应的RNTI与2-step SDT对应的RNTI相同,或者4-step SDT对应的RNTI与2-step SDT对应的RNTI类型相同,但是4-step SDT对应的RNTI、2-step SDT对应的RNTI与用于随机接入方式接入接入网设备(non-SDT)的取值范围不同。为区分4-step SDT与2-step SDT,针对SDT,接入网设备还可以向第一终端指示第一DCI对应4-step SDT还是2-step SDT。
具体的,方式三可以包括:第一RNTI以及第二RNTI对应同一计算公式,第一RNTI以及第二RNTI属于第一RNTI集合,第一RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;其中,第三RNTI集合包括用于基于第一随机接入方式接入接入网设备的RNTI,第四RNTI集合用于基于第二随机接入方式接入接入网设备的RNTI。
可选的,第一DCI还可以携带第一指示信息,第一指示信息可以用于指示第一DCI对应基于第一随机接入方式发送上行数据、或者用于指示第一DCI对应基于第二随机接入方式发送上行数据。或者,第一消息对应的响应消息可以携带第一指示信息,第一指示信息可以用于指示响应消息对应基于第一随机接入方式发送上行数据、或者 用于指示响应消息对应基于第二随机接入方式发送上行数据。
例如,使用第一DCI或者第一消息对应的响应消息中的1个比特的取值作为第一指示信息。该第一指示信息的取值包括0或1,当第一指示信息为0时,指示基于第一随机接入方式发送上行数据,当第一指示信息为1时,指示基于第二随机接入方式发送上行数据。或者,当第一指示信息为1时,指示基于第一随机接入方式发送上行数据,当第一指示信息为0时,指示基于第二随机接入方式发送上行数据。
具体的,第一指示信息包含在第一DCI中时,可以使用第一DCI中的预留(reserved)比特作为第一指示信息,即使用当前标准中定义的第一DCI中的未使用的比特作为第一指示信息。或者,第一指示信息包含在第一消息对应的响应消息中时,第一消息对应的响应消息可以为媒体接入控制随机接入响应(media access control random access response,MAC RAR),可以使用MAC RAR中的预留比特作为第一指示信息。
方式三中,第一RNTI以及第二RNTI可以称为SDT-RNTI。第一RNTI以及第二RNTI可以满足下述公式   (7):
SDT-RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carr ier_id+第四偏移值   公式(7)
其中,公式(7)中s_id为第一RO占用的符号在一个时隙中的索引值,s_id的取值范围为[0,Nsymbol-1];t_id为第一RO占用的时隙在一个系统帧中的索引值,t_id的取值范围为[0,Nslot-1];f_id为第一RO占用的频域单元在Nf个频域单元中的索引值,f_id的取值范围为[0,Nf-1];ul_carrier_id为第一RO占用的上行载波在Nc个上行载波中的索引值,ul_carrier_id的取值范围为[0,Nc-1]。
其中,第四偏移值可以用于将第一RNTI集合与第三RNTI集合、第四RNTI集合隔开,第四偏移值可以大于或等于Nsymbol*Nslot*Nf*Nc*2;Nsymbol、Nslot、Nf以及Nc的相关描述可参照上文表述,不予赘述。需要说明的是,公式(7)中,如上述第二种设计中所述,可以缩小Nsymbol、Nslot、Nf以及Nc的参数取值,比如将Nsymbol替换小于Nsymbol的值,和/或、将Nslot替换为小于Nslot的值,和/或,将Nf替换为小于Nf的值,和/或,将Nc替换为小于Nc的取值,以缩小s_id、t_id,f_id、ul_carrier_id中一个或者多个参数的取值范围,进而缩小第一RNTI集合的取值范围。
例如,假设RNTI的长度为16bit,则存在2 16=65536个RNTI可以用于基于随机接入接入接入网设备或者用于基于随机接入发送上行数据,此时假设Nsymbol=14,Nslot=80,Nf=8,Nc=2,第四偏移值等于Nsymbol*Nslot*Nf*Nc*2,则基于公式(1)、公式(2)、以及公式(7)计算出的各类RNTI的分配情况如图9a所示,第一RNTI集合是取值范围为[35841,53760]的RNTI集合,第一RNTI、第二RNTI的取值范围可以是[35841,53760],第三RNTI集合是取值范围为[1,17920]的RNTI集合,第四RNTI集合是取值范围为[17921,35840]的RNTI集合,这三个RNTI集合互不重叠。
在RNTI的长度为nbit,第一指示信息为1bit的情况下,方式三还可以理解为:扩展RNTI的取值范围,使用(n+1)个比特表征RNTI,该(n+1)个bit的RNTI可以称为new RNTI。在第一DCI中,使用new RNTI中的n比特(比如后n个比特)对第一DCI进行加扰,然后将new RNTI中最高位的1bit承载在第一DCI或第一消息对应的响应消息中。第一终端根据公式(7)计算出来该RNTI对应SDT之后,可以从第一 DCI或第一消息对应的响应消息承载的1bit获知该RNTI对应基于第一随机接入方式发送上行数据还是对应基于第二随机接入方式发送上行数据。
在使用(n+1)个比特表征RNTI的情况下,为了避免对现有终端的影响,使得现有终端能够兼容支持方式三所述方法,在终端基于随机接入方式接入接入网设备时,该终端可以根据上述公式(1)得到RA-RNTI或者根据公式(2)计算得到MsgB-RNTI,不从第一DCI或第一消息对应的响应消息中解读RNTI的最高位,即执行与现有相同的确定RNTI的操作。如果该终端进行SDT,则该终端基于上述公式(7)、以及第一DCI或第一消息对应的响应消息中RNTI的最高位确定是4-step SDT还是2-step SDT。
例如,如图9b所示,假设RNTI的长度为17bit,第一随机接入方式为4-step随机接入方式,第二随机接入方式为2-step随机接入方式,二进制比特0指示4-step SDT,二进制比特1指示2-step SDT,Nsymbol=14,Nslot=80,Nf=8,Nc=2,第四偏移值等于Nsymbol*Nslot*Nf*Nc*2,各类RNTI的分配情况如图9b所示,如果通过第一RO进行4-step SDT,则根据上述公式(7)计算得到第一RNTI,此时,第一RNTI的取值范围可以是[35841,53760]。如果通过第一RO进行2-step SDT,则根据上述公式(7)、以及第一DCI或第一消息对应的响应消息中RNTI的最高位确定第二RNTI,此时,第二RNTI的取值范围是[101376,119296]。如果通过第一RO进行4-step RA,则不从第一DCI或第一消息对应的响应消息中解读RNTI的最高位,根据上述公式(1)计算得到RA-RNTI,此时RA-RATI的取值范围是[1,17920]。如果通过第一RO进行2-step RA(即non-SDT),则不从第一DCI或第一消息对应的响应消息中解读RNTI的最高位,根据上述公式(2)计算得到MsgB-RNTI,MsgB-RNTI的取值范围为[17921,35840],这几类RNTI的取值范围互不重叠。
上述实施例针对4-step RA、2-step RA、2-step-SDT以及4-step-SDT这四类通信过程计不同类型的RNTI,避免出现在执行这四类通信过程时RO不同,不同的RO对应的计算参数相同,根据该不同的RO对应的计算参数计算得到的RNTI相同的情况,使得终端能够区分出RNTI所加扰的DCI调度的响应消息对应这四类通信过程中的哪个通信过程。
实际应用中,存在不同类型(type)/满足不同条件的终端,这些终端进行随机接入时的传输需求可能是不同的。当不同类型/满足不同条件的终端执行上述四类通信过程中任一过程时,接入网设备可以为不同类型/满足不同条件的终端预先分配不同的RACH资源(比如RO),以便这些终端在适合自己的RACH资源上进行随机接入,以满足终端的传输需求。
比如根据终端的通信能力/硬件规格,可以将终端分为降低能力(reduced capability,redcap)的终端以及非redcap(non-redcap)的终端。其中redcap的终端支持20兆赫兹(MHz)带宽,1个接收天线(RX)或2个接收天线(RX)。非redcap的终端支持100MHz带宽、4个接收天线(4RX)等。执行随机接入过程时,接入网设备可以为非redcap的终端配置专门的RACH资源(比如专门的RO等)。非redcap的终端可以在接入网设备配置的与redcap的终端对应的RACH资源上发送Msg1或MsgA,接入网设备可以在该RACH资源上接收Msg1或者MsgA,并且根据RACH资源可以获知该终端是非redcap的终端。
又比如根据终端的覆盖增强能力,可以将终端分为支持覆盖增强能力的终端以及不支持覆盖增强能力的终端。其中,本申请实施例所述的覆盖增强可以指通过重复传输等方式增加覆盖范围。以物理上行共享信道(pysical uplink shared channel,PUSCH)为例,支持覆盖增强能力的终端可以一次性重复发送多次PUSCH,接入网设备接收信号时可以将多个重复的PUSCH进行合并接收,增加信号的等效信噪比,从而让接入网设备接收到距离更远的终端的信号。如果终端在随机接入过程中发送Msg3或者MsgA的时候,需要用到重复传输等覆盖增强技术,则接入网设备可以为该终端的“覆盖增强”配置专门的RACH资源(比如专门的RO等)。终端选择覆盖增强关联的RACH资源后,可以在选择的RACH资源上发送Msg1或MsgA,相对应的,接入网设备可以在该RACH资源上接收Msg1或者MsgA。对于4-step RA,接入网设备根据终端选择的RACH资源可以获知该终端希望使用覆盖增强技术发送Msg3,则后续可以以覆盖增强的方式调度Msg3的传输。对于2-step RA,“覆盖增强”对应的RACH资源包括专门的RO/preamble,以及配置为覆盖增强方式(如重复传输等)的PUSCH,终端发送MsgA的时候,会发送“覆盖增强”对应的RO/preamble以及重复传输的PUSCH。
再比如,根据终端的优先级或者终端的业务优先级,可以将终端分为支持接入网切片(RAN slicing)的终端和不支持RAN slicing的终端。其中,支持接入网切片的终端可以获得/被分配更优质更充足的空口资源,不支持接入网切片的终端可能获得/被分配较差的空口资源。在执行随机接入过程时,接入网设备可以为支持接入网切片的终端配置专门的RACH资源(比如专门的RO等)。支持接入网切片的终端可以在接入网设备配置的RACH资源上发送Msg1或MsgA,相对应的,接入网设备可以在该RACH资源上接收Msg1或者MsgA,并且根据RACH资源可以获知该终端是支持接入网切片的终端。
此时,虽然为不同类型/的终端分配不同的RO,但是如果不同RO对应的计算参数相同,则会导致根据该RO对应的计算参数计算出来的RNTI是相同的,使得终端无法区分该RNTI所加扰的DCI是否是发送给自己的。例如,以非redcap的终端以及redcap的终端为例,接入网设备为非redcap的终端配置了用于随机接入的RACH资源1,同时为redcap的终端配置了专用的RACH资源2。用于非redcap的终端的RACH资源1与用于redcap的终端的RACH资源2占用的物理资源位置不相同(比如时域资源相同,频域资源不同),但是可能出现二者的频域资源索引(index)相同(例如f_id相同),此时根据相同计算公式以及相同计算参数计算得到的RNTI(比如RA-RNTI或MsgB-RNTI)是相同的,对于终端而言,无法判断Msg2或MsgB是发给非redcap的终端的还是发给redcap的终端的,出现RAR冲突的问题。
针对该技术问题,本申请实施例还提供一种随机接入方法,该方法可以包括:第一终端在第一随机接入信道时机RO上向接入网设备发送第一消息;第一终端在第一RO上向接入网设备发送第一消息,第一终端接收来自接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定;其中,当第一终端满足第一条件时,RNTI属于第一组RNTI;当第一终端满足第二条件时,RNTI属于第二组RNTI,第一组RNTI用于满足第一条件的终端进行随机接入,第二组RNTI用于满足第二条件的终端进行随机接入。即针对不同类型/ 满足不同条件的终端设计不同类型的RNTI,以区分不同类型的终端发起的随机接入。
其中,第一消息的相关描述可以参照S601中所述,不予赘述。
其中,第一条件可以包括下述一种或者多种:终端类型为非能力降低redcap类型、不支持覆盖增强、或者不支持接入网切片。第二条件可以包括下述一种或者多种:终端类型为redcap类型、支持覆盖增强、或者支持接入网切片。
需要说明的是,第一终端满足第一条件还可以替换描述为第一终端属于第一类型,第一类型包括非redcap类型、不支持覆盖增强、或者不支持接入网切片中的一种或多种。同理,第二终端满足第二条件可以替换描述为第二终端属于第二类型,第二类型包括redcap类型、支持覆盖增强、或者支持接入网切片中的一种或多种。
应理解,本申请实施例引入的第一条件、第二条件是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,除上述条件之外,还可以包括其他条件,比如第一条件还可以包括执行non-SDT,第二条件还可以包括执行SDT等,此外,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于其他不同类型/实现不同功能的终端因无法区分RNTI导致的随机接入的冲突问题,同样适用。比如,可以将执行non-SDT的终端(仅发起RA的终端)、执行SDT的终端(比如利用RA传输小包数据的终端)分为不同类型的终端,这种场景下,可以参照上述方式,对执行non-SDT的终端分配一组RNTI,对执行SDT的终端分配另一组RNTI,这两组RNTI互不重叠,这两组RNTI的计算方式可以参照上述,比如对执行non-SDT的终端分配包括第三RNTI集合以及第四RNTI集合的一组RNTI,对执行SDT的终端分配包括第一RNTI集合以及第二RNTI集合的一组RNTI,具体不再赘述。
应理解,本申请所述的第一组RNTI是一类用于满足第一条件的终端进行随机接入(比如4-step RA或者2-step RA或者4-step-SDT或者2-step-SDT)的RNTI,第二组RNTI是一类用于满足第二条件的终端进行随机接入(比如4-step RA或者2-step RA或者4-step-SDT或者2-step-SDT)的RNTI。
一种可能的设计中,第一组RNTI和第二组RNTI可以是对用于随机接入的RNTI的分组得到,第一组RNTI与第二组RNTI不重叠,二组RNTI之间可以通过偏移值(offset)隔开,当第一组RNTI包括的RNTI的最大取值小于第二组RNTI包括的RNTI的最小取值时,即按照RNTI取值从小到大顺序排列,第一组RNTI在前,第二组RNTI在后时,该offset的取值大于或等于第一组RNTI包括的RNTI总数量,当第二组RNTI包括的RNTI的最大取值小于第一组RNTI包括的RNTI的最小取值时,即按照RNTI取值从小到大顺序排列,第二组RNTI在前,第一组RNTI在后时,该offset的取值大于或等于第二RNTI包括的RNTI总数量。具体的,以第一组RNTI在前,第二组RNTI在后为例,第一组RNTI包括的RNTI可以满足如下公式:
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+A*B*C*D*i,其中i的取值范围可以是[0,I],I为大于或等于1的整数,I的取值可以根据需要设置,不予限制。比如I的取值可以包括1、2、3等。其中该公式中计算参数A、B、C、s_id、t_id,f_id、ul_carrier_id的相关描述可以参照上文对公式(3)中的计算参数的描述,在此不予赘述。
第二组RNTI包括的RNTI可以满足如下公式:
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+A*B*C*D*j+offset,其中j的取值范围可以是[0,J],J为大于或等于1的整数,J的取值可以根据需要设置,不予限制。比如J的取值可以包括1、2、3等。其中offset可以用于将第一组RNTI与第二组RNTI隔开,offset可以大于或者等于第一组RNTI包括的RNTI总数量。
例如,假设I=1,J=1,A=14、B=80、C=Nf=8、D=Nc=2,offset=第一组RNTI包括的RNTI总数量,则第一组RNTI包括
RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id、以及
RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+14*80*8*2,如图9c所示,
第一组RNTI的取值范围为[1,35840]。第二组RNTI包括
RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+35840、以及
RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+14*80*8*2+35840,如图9c所示,第二组RNTI的取值范围是[35841,71680]。将用于随机接入的RNTI分为第一组RNTI和第二RNTI,二者不重叠,其中第一组RNTI用于满足第一条件的终端进行随机接入,第二组RNTI用于满足第二条件的终端进行随机接入。与图7b相比,图9c中可以将用于2-step RA的RNTI之后的RNTI作为第二组RNTI,用于满足第二条件的终端进行RA。
进一步的,如上所述,随机接入可以包括4-step RA、2-step RA、4-step-SDT、2-step-SDT四类通信过程,因此为了区分满足第一条件的终端使用第一组RNTI中的RNTI执行哪种通信过程,进一步的可以按照图6所示实施例将第一组RNTI进行划分得到四个RNTI集合,一个RNTI集合对应一种通信过程,通过第一组RNTI中不同集合内的RNTI来区分满足第一条件的终端中执行不同通信过程的终端。
例如,如图6对应的实施例中所述,为了区分满足第一条件的终端中执行4-step RA、2-step RA的终端,第一组RNTI可以包括第三RNTI集合以及第四RNTI集合,第三RNTI集合可以包括用于满足第一条件的终端基于第一随机接入方式接入接入网设备的RNTI,第四RNTI集合可以包括用于满足第一条件的终端基于第二随机接入方式接入接入网设备的RNTI,即设计第三RNTI集合、第四RNTI集合以用于满足第一条件的终端区分4-step RA还是2-step RA。
进一步,为了区分满足第一条件的终端中执行4-step-SDT、2-step-SDT的终端,第一组RNTI还可以包括第一RNTI集合、第二RNTI集合;第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;第一RNTI集合可以包括用于满足第一条件的终端基于第一随机接入方式发送上行数据的RNTI;第二RNTI集合可以包括用于满足第一条件的终端基于第二随机接入方式发送上行数据的RNTI。即设计第一RNTI集合、第二RNTI集合以用于满足第一条件的终端区分4-step-SDT、2-step-SDT。
具体的,第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合的相关描述以及设计方式可参照上文所述,在此不予赘述。
类似的,对于满足第二条件的终端,为了区分满足第二条件的终端中执行4-step RA、2-step RA的终端,可以参照上述方式设计第二组RNTI,第二组RNTI包括的RNTI 可以用于满足第二条件的终端进行随机接入。比如第二组RNTI可以包括第五RNTI集合、第六RNTI集合;其中,第五RNTI集合可以包括用于满足第二条件的终端基于第一随机接入方式接入接入网设备的RNTI,第六RNTI集合可以包括用于满足第二条件的终端基于第二随机接入方式接入接入网设备的RNTI,即通过第五RNTI集合、第六RNTI集合以实现满足第二条件的终端区分4-step RA还是2-step RA。
进一步的,为了区分满足第二条件的终端中执行4-step-SDT、2-step-SDT的终端,第二组RNTI还可以包括第七RNTI集合以及第八RNTI集合,第五RNTI集合、第六RNTI集合、第七RNTI集合以及第八RNTI集合互不重叠;其中,第七RNTI集合可以包括用于满足第二条件的终端基于第一随机接入方式发送上行数据的RNTI;第八RNTI集合可以包括用于满足第二条件的终端基于第二随机接入方式发送上行数据的RNTI。即通过第七RNTI集合、第八RNTI集合以实现满足第二条件的终端区分4-step-SDT还是2-step-SDT。下面对第二组RNTI包括的RNTI集合的设计方式进行介绍:
具体的,第五RNTI集合包括的RNTI可以满足下述公式(8):
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值;   公式(8)
第六RNTI集合包括的RNTI可以满足下述公式(9):
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量;   公式(9)
第七RNTI集合包括的RNTI可以满足下述公式(10):
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量;   公式(10)
第八RNTI集合包括的RNTI可以满足下述公式(11):
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量+第五RNTI集合包括的RNTI数量;   公式(11)
其中,上述公式(8)-公式(11)中的计算参数A、B、C、s_id、t_id,f_id、ul_carrier_id的相关描述可以参照上文对公式(3)中的计算参数的描述。
其中,第五偏移值可以用于将第二组RNTI与第一组RNTI隔开,第五偏移值可以大于或等于第一组RNTI包括的RNTI的数量。需要说明的是,以第一随机接入方式为4步随机接入方式,第二随机接入方式为2步随机接入方式为例,本申请实施例不限于第五RNTI集合对应4-step RA、第六RNTI集合对应2-step RA、第七RNTI集合对应4-step-SDT以及第八RNTI集合对应2-step-SDT,还可以第五RNTI集合对应2-step RA、第六RNTI集合对应4-step RA、第七RNTI集合对应2-step-SDT以及第八RNTI集合对应4-step-SDT,换言之,第二组RNTI包括的一个RNTI集合可以对应上述四类通信过程中的任一过程,不同RNTI集合对应不同通信过程即可。
如此,可以为满足第二条件的终端引入单独的一类RNTI,该类RNTI可以用于满足第二条件的终端执行上述四类通信过程。
例如,假设满足第一条件的终端为非redcap的终端,满足第二条件的终端为redcap的终端,Nsymbol=14,Nslot=80,Nf=8,Nc=2,上述公式(3)、以及公式(8)-公 式(11)中的A=Nsymbol=14,B=Nslot=80,C=4<Nf,D=Nc=2,第五偏移值等于65536,上述公式(4)中的E=Nsymbol=14,F=Nslot=80,G=4<Nf,H=Nc=2,则如图9d所示,第一组RNTI包括第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合,第一RNTI集合的取值范围为[35841,44800],第二RNTI集合的取值范围为[44801,53760],第三RNTI集合的取值范围为[1,17920],第四RNTI集合的取值范围为[17921,35840],这四个RNTI集合互不重叠。如图9d所示,第二组RNTI与第一组RNTI分割开来,第二组RNTI包括第五RNTI集合、第六RNTI集合、第七RNTI集合以及第八RNTI集合,第五RNTI集合的取值范围为[65536,74496],第六RNTI集合的取值范围为[74496,83456],第七RNTI集合的取值范围为[83456,92416],第八RNTI集合的取值范围为[92416,101376],这四个RNTI集合互不重叠。图9d所示RNTI集合不仅可以区分满足不同条件的终端,而且可以区分同类型终端中执行SDT、non-SDT(比如4-step RA或者2-step RA)的终端。
又例如,以区分满足不同条件的、执行non-SDT的终端为例,假设满足第一条件的终端为非redcap的终端,满足第二条件的终端为redcap的终端,Nsymbol=14,Nslot=80,Nf=8,Nc=2,上述公式(8)-公式(9)中的A=Nsymbol=14,B=Nslot=80,C=4<Nf,D=Nc=2,第五偏移值等于35840,上述公式(4)中的E=Nsymbol=14,F=Nslot=80,G=4<Nf,H=Nc=2,则如图9e所示,根据上述公式(1)以及公式(2),可以将第一组RNTI分为第三RNTI集合以及第四RNTI集合,第三RNTI集合的取值范围为[1,17920],第四RNTI集合的取值范围为[17921,35840],这两个RNTI集合互不重叠。如图9e所示,第二组RNTI与第一组RNTI分割开来,根据上述公式(8)以及公式(9)可以将第二组RNTI分为第五RNTI集合、第六RNTI集合,第五RNTI集合的取值范围为[35840,44800],第六RNTI集合的取值范围为[44800,53760],这两个RNTI集合互不重叠。图9e所示RNTI集合不仅可以区分满足不同条件的终端,而且可以区分同类型终端中执行4-step RA或者2-step RA的终端。
又一种可能的设计中,第二组RNTI可以复用第一组RNTI中的部分RNTI,比如第一组RNTI中的部分RNTI可以复用作为第二组RNTI,用于满足第二条件的终端进行随机接入,而第一组RNTI中除此之外的RNTI可以用于满足第一条件的终端进行随机接入。
为实现RNTI的复用,可以参照图8a所示思想,将用于满足第一条件的终端执行随机接入的RO与用于满足第二条件的终端执行随机接入的RO在频域单元上依次顺序编号。比如在non-SDT场景下,将用于满足第一条件的终端的4-step RA与用于满足第二条件的终端的4-step RA的RO在频域单元上依次顺序编号(indexing),将用于满足第一条件的终端的2-step RA与用于满足第二条件的终端的2-step RA的RO在频域单元上依次顺序编号。在SDT场景下,将用于满足第一条件的终端的4-step-SDT与用于满足第二条件的终端的4-step-SDT的RO在频域单元上依次顺序编号,将用于满足第一条件的终端的2-step-SDT与用于满足第二条件的终端的2-step-SDT的RO在频域单元上依次顺序编号。
比如RNTI可以根据第一RO占用的频域单元的索引值确定。当第一终端满足第一条件,RNTI属于第一组RNTI时,第一RO占用的频域单元的索引值的取值范围从 0开始,即满足第一条件的终端的RO对应的f_id取值范围为{0,…,R-1};当第一终端满足第二条件,RNTI属于第二组RNTI时,第一RO占用的频域单元的索引值的取值范围从R开始,即满足第二条件的终端的RO对应的f_id取值范围为{R,R+1,…,Nf-1},R为大于0的整数,R为Nf个频域单元中用于满足第一条件的终端随机接入的频域单元的数量,Nf为预设的用于随机接入的频域复用系数最大值。
具体的,RNTI根据第一RO占用的频域单元的索引值确定可以包括:
RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+偏移值(offset);或者,
RNTI=1+s_id+A*t_id+A*B*f_id_1+A*B*C*ul_carrier_id+A*B*C*D*i,
其中,计算参数A、B、C、s_id、t_id,f_id、ul_carrier_id的相关描述可以参照上文对公式(3)中的计算参数的描述。当第一终端满足第一条件时,f_id的取值范围为[0,R-1],即对满足第一条件的终端的RO的频域单元从0开始编号,当第一终端满足第二条件时,f_id的取值范围为[R,Nf-1],即对满足第二条件的终端的RO的频域单元从R开始编号,R小于Nf,R为Nf个频域单元中用于满足第一条件的终端进行随机接入的频域单元的数量。offset大于或者等于0,offset用于将不同RNTI集合分割开来。其中i的取值范围可以是[0,I],I为大于或等于1的整数,I的取值可以根据需要设置,不予限制。比如I的取值可以包括1、2、3等。
即第一组RNTI与第二组RNTI对应的RNTI计算公式是相同的,只不过针对不同类的RNTI,其频域单元的索引值的取值范围是不同,以此将不同类的RNTI区分开来。
例如,假设I=1,J=1,A=14、B=80、C=Nf=8、D=Nc=2,则第一组RNTI包括RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id、以及RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id+14*80*8*2,如图9f所示,第一组RNTI的取值范围为[1,35840]。第二组RNTI包括[1,35840]中的部分RNTI,复用第一组RNTI包括的RNTI。
进一步的,如上所述,随机接入可以包括4-step RA、2-step RA、4-step-SDT、2-step-SDT四类通信过程,因此为了区分满足第一条件的终端使用第一组RNTI中的RNTI执行哪种通信过程,进一步的可以按照图6所示实施例将第一组RNTI进行划分得到四个RNTI集合,一个RNTI集合对应一种通信过程,比如第一组RNTI可以包括上文所述的第三RNTI集合、第四RNTI集合,进一步的还可以包括第一RNTI集合以及第二RNTI集合。通过第一组RNTI中不同集合内的RNTI来区分满足第一条件的终端中执行不同通信过程的终端。
具体的,第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合的相关描述以及设计方式可参照上文所述,在此不予赘述。
类似的,对于满足第二条件的终端,为了区分满足第二条件的终端中执行4-step RA、2-step RA的终端,进一步的,为了区分满足第二条件的终端中执行4-step-SDT、2-step-SDT的终端,第二组RNTI还可以包括第七RNTI集合以及第八RNTI集合,第五RNTI集合、第六RNTI集合、第七RNTI集合以及第八RNTI集合互不重叠。
比如可以将图7a或图7b或图9a或图9b中第三RNTI集合包括的部分RNTI作为第五RNTI集合,这部分RNTI可以用于满足第二条件的终端基于第一随机接入方式 接入接入网设备,即用于满足第二条件的终端基于第一随机接入方式接入接入网设备的RNTI可以复用原有的用于满足第一条件的终端基于第一随机接入方式接入接入网设备的RNTI的取值范围。类似的,将第四RNTI集合包括的部分RNTI作为第六RNTI集合,这部分RNTI可以用于满足第二条件的终端基于第二随机接入方式接入接入网设备,即用于满足第二条件的终端基于第二随机接入方式接入接入网设备的RNTI可以复用原有的用于满足第一条件的终端基于第二随机接入方式接入接入网设备的RNTI的取值范围。将第一RNTI集合包括的部分RNTI作为第七RNTI集合,这部分RNTI可以用于满足第二条件的终端基于第一随机接入方式发送上行数据,即用于满足第二条件的终端基于第一随机接入方式发送上行数据的RNTI可以复用原有的用于满足第一条件的终端基于第一随机接入方式发送上行数据的RNTI的取值范围。将第二RNTI集合包括的部分RNTI作为第八RNTI集合,这部分RNTI可以用于满足第二条件的终端基于第二随机接入方式发送上行数据,即用于满足第二条件的终端基于第二随机接入方式发送上行数据的RNTI可以复用原有的用于满足第一条件的终端基于第二随机接入方式发送上行数据的RNTI的取值范围。
例如,可以改变上述公式(1)中的频域单元的索引值f_id的取值范围,公式(1)中其他参数的取值范围不变。当第一终端满足第一条件时,公式(1)中的f_id的取值范围为[0,R-1],即对满足第一条件的终端的RO的频域单元从0开始编号,此时,根据公式(1)可以计算得到第三RNTI集合所包括的RNTI。当第一终端满足第二条件时,公式(1)中的f_id的取值范围为[R,Nf-1],即对满足第二条件的终端的RO的频域单元从R开始编号,此时,根据公式(1)可以计算得到第五RNTI集合所包括的RNTI。
又例如,可以改变上述公式(2)中的频域单元的索引值f_id的取值范围,公式(2)中其他参数的取值范围不变。当第一终端满足第一条件时,公式(2)中的f_id的取值范围为[0,R-1],即对满足第一条件的终端的RO的频域单元从0开始编号,此时根据公式(1)可以计算得到第四RNTI集合所包括的RNTI。当第一终端满足第二条件时,公式(2)中的f_id的取值范围为[R,Nf-1],即对满足第二条件的终端的RO的频域单元从R开始编号,此时,根据公式(2)可以计算得到第六RNTI集合所包括的RNTI。
再例如,可以改变上述公式(3)中的频域单元的索引值f_id的取值范围,公式(3)中其他参数的取值范围不变。当第一终端满足第一条件时,公式(3)中的f_id的取值范围为[0,R-1],即对满足第一条件的终端的RO的频域单元从0开始编号,此时根据公式(3)可以计算得到第一RNTI集合所包括的RNTI。当第一终端满足第二条件时,公式(3)中的f_id的取值范围为[R,Nf-1],即对满足第二条件的终端的RO的频域单元从R开始编号,此时,根据公式(3)可以计算得到第七RNTI集合所包括的RNTI。
再例如,可以改变上述公式(4)中的频域单元的索引值f_id的取值范围,公式(4)中其他参数的取值范围不变。当第一终端满足第一条件时,公式(4)中的f_id的取值范围为[0,R-1],即对满足第一条件的终端的RO的频域单元从0开始编号,此时,根据公式(4)可以计算得到第二RNTI集合所包括的RNTI。当第一终端满足第 二条件时,公式(4)中的f_id的取值范围为[R,Nf-1],即对满足第二条件的终端的RO的频域单元从R开始编号,此时,根据公式(4)可以计算得到第八RNTI集合所包括的RNTI。
假设满足第一条件的终端为非redcap的终端,满足第二条件的终端为redcap的终端,Nsymbol=14,Nslot=80,Nf=8,Nc=2,在f_id的取值范围为[0,R-1]的情况下,基于公式(1)可以得到如图9g所示的第三RNTI集合,第三RNTI集合的取值范围为[1,17920];基于公式(2)可以得到如图9g所示的第四RNTI集合,第四RNTI集合的取值范围为[17921,35840];基于公式(3)可以得到如图9g所示的第一RNTI集合,第一RNTI集合的取值范围为[35840,53760];基于公式(4)可以得到如图9g所示的第二RNTI集合,第二RNTI集合的取值范围为[53760,71680]。在f_id的取值范围为[R,Nf-1]的情况下,基于公式(1)可以得到如图9g所示的第五RNTI集合,基于公式(2)可以得到如图9g所示的第六RNTI集合,基于公式(3)可以得到如图9g所示的第七RNTI集合,基于公式(4)可以得到如图9g所示的第八RNTI集合。从图9g可知,第五RNTI集合包括的RNTI的取值复用第三RNTI集合包括的RNTI的取值,第六RNTI集合包括的RNTI的取值复用第四RNTI集合包括的RNTI的取值,第七RNTI集合包括的RNTI的取值复用第一RNTI集合包括的RNTI的取值,第八RNTI集合包括的RNTI的取值复用第二RNTI集合包括的RNTI的取值。
需要说明的是,图9g仅为示例性附图,图9g划分的RNTI集合可以区分满足不同条件、执行SDT还是non-SDT的终端。同理,在区分满足不同条件、执行non-SDT的终端的场景下,可以将RNTI分为第三RNTI集合、第四RNTI集合以及第五RNTI集合、第六RNTI集合即可。在区分满足不同条件、执行SDT的终端的场景下,可以将RNTI划分为第一RNTI集合、第二RNTI集合、第七RNTI集合以及第八RNTI集合即可。
上述以扩展新的RNTI为例,来区分发起不同通信过程的终端和/或发起随机接入的终端属于哪类终端。可替换的,本申请中还可以不扩展RNTI,而是针对基于4-step的所有通信过程/终端类型均采用RA-RNTI加扰调度响应消息的DCI,对于基于2-step的所有通信过程/终端类型均采用MsgB-RNTI,简化系统设计,兼容现有信令。其中RA-RNTI的计算公式为上述公式(1),MsgB-RNTI的计算公式为上述公式(2)。具体的,该方法如图10所示:
图10为本申请实施例提供的又一种随机接入方法,如图10所示,可以包括:
S1001:第一终端在第一随机接入资源向接入网设备发送第一消息。相应的,接入网设备在第一随机接入资源上接收第一消息。
其中,第一终端属于第一类终端或者第二类终端,不予限制。
其中,第一随机接入资源可以是随机接入信道(random access channel,RACH)资源(比如RO等),或者第一随机接入资源可以包括RACH资源(比如RO)和preamble。第一随机接入资源可以属于第一随机接入资源集合,第一随机接入资源集合可以包括一个或者多个随机接入资源。以随机接入资源为RO为例,第一随机接入资源集合可以包括一个或者多个RO,第一随机接入资源集合可以简称为第一RO资源集合。示例性的,可以从初始BWP中划分出来一些时频资源作为第一RO资源集合,即第一RO 资源集合可以包括在初始BWP中,是初始BWP的一部分。当一个终端与另一个终端选用相同RO时,可以认为两个终端选用了相同的随机接入资源;当一个终端与另一个终端选用不同RO时,可以认为两个终端选用了不同的随机接入资源。或者,随机接入资源除了根据时域、频域确定外,还可以根据码域确定。以随机接入资源包括RO和preamble(或者理解为随机接入资源为RO+preamble)为例,第一随机接入资源集合可以包括一个或者多个RO,并且包括一个或多个preamble。每个随机接入资源通过一个RO以及一个preamble唯一确定。当一个终端与另一个终端选用相同RO且相同preamble时,可以认为两个终端选用了相同的随机接入资源;当一个终端与另一个终端选用不同的RO,或者一个终端与另一个终端选用相同的RO不同的preamble时,都可以认为两个终端选用了不同的随机接入资源。接入网设备可以在初始BWP的配置信息中携带RO配置信息,RO配置信息可以指示第一RO资源集合所包括的RO的时频位置,以及第一RO资源集合对应的preamble,比如RO配置信息可以指示RO的起始频域位置、RO的频分复用系数、RO的时域位置、第一RO资源集合对应的preamble的分配情况等等。应理解,本申请所述的“分配”还可以替换描述为“配置(configuration)”或者“确定”等,不予限制。
本申请实施例中,第一随机接入资源集合可以用于第一类终端的4-step RA,以及下述至少一种:第一类终端的4-step SDT、第二类终端的4-step SDT、第二类终端的4-step RA。接入网设备可以为第一类终端配置第一随机接入资源集合。比如第一随机接入资源集合可以用于第一类终端的4-step RA以及第一类终端的4-step SDT。又比如,第一随机接入资源集合可以用于第一类终端的4-step RA、第一类终端的4-step-SDT,以及第二类终端的4-step SDT。又比如,第一随机接入资源集合可以用于第一类终端的4-step RA、第二类终端的4-step RA。再比如,第一随机接入资源集合可以用于第一类终端的4-step RA、第一类终端的4-step SDT、第二类终端的4-step SDT、以及第二类终端的4-step RA。
其中,第一消息可以是Msg1,第一消息可以携带preamble。当第一随机接入资源用于中4-step RA时,第一消息可以用于发起4-step RA,或者当第一随机接入资源用于4-step SDT时,第一消息可以用于利用4步随机接入发起小包数据传输。
其中,有关4-step RA、4-step SDT的相关描述可参照上文,不予赘述。
本申请实施例中,以随机接入资源为RO为例,第一随机接入资源集合包括的一个或者多个RO具体分配给哪类终端的哪类通信过程是接入网设备预先配置的。可选的,该配置关系可以存储在接入网设备上。比如第一随机接入资源集合包括的一个或者多个RO中哪些分配给第一类终端的4-step RA的使用、哪些分配给第一类终端的4-step SDT、哪些分配给第二类终端的4-step SDT、哪些分配给第二类终端的4-step RA使用是根据需要预先配置。不同类型终端和/或不同通信过程可以共享RO,也可以独享RO。示例性地,其具体分配规则可以包括下述任一种:(1)分配给4-step RA使用的RO与分配给4-step SDT的RO不重叠,分配给不同类型终端的4-step RA/4-step SDT使用的RO不重叠。(2)不同类型终端的4-step RA共享RO、不同类型终端的4-step SDT共享RO,分配给4-step RA和4-step SDT的RO不同。(3)同一类型终端的4-step RA和4-step SDT共享RO,不同类型终端的4-step RA和4-step SDT共享RO 等等。
对于接入网设备而言,在第一随机接入资源接收Msg1之后,可以根据预先配置的第一随机接入资源的用途确定是哪类终端(第一类终端还是第二类终端)发起的哪类4步随机接入过程(4-step RA还是4-step SDT)。比如假设第一类终端独享第一随机接入资源,如当随机接入资源为RO时,第一类终端独享一个或多个RO;当随机接入资源为RO+preamble时,第一类终端独享一个或多个RO+preamble的组合,S1001中,对应接入网设备而言,在第一随机接入资源上接收到Msg1后,可以根据随机接入资源与其分配情况,判断出这是第一类终端发起的Msg1。
本申请实施例中,第一类终端为不支持覆盖增强且不支持接入网切片的非能力降低redcap终端,换言之第一类终端为满足下述三个条件的一类终端:不支持覆盖增强、不支持接入网切片、非能力降低。本申请实施例中,第一类终端可以称为正常(normal)终端或者被称为现有(legacy)终端。
本申请实施例中,第二类终端可以包括redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中的至少一种。比如第二类终端可以包括redcap终端,或者包括支持覆盖增强的终端,或者包括支持接入网切片的终端,或者包括redcap终端和支持覆盖增强的终端,或者包括redcap终端和支持接入网切片的终端,或者包括支持覆盖增强的终端和支持接入网切片的终端,或包括redcap终端、支持覆盖增强的终端和支持接入网切片的终端。
应理解,本申请实施例引入的第一类终端、第二类终端是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,除上述类型终端之外,还可以包括其他类型终端。比如,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于其他新的类型终端发起的Msg1仍使用根据上文公式(1)得到的RA-RNTI加扰调度Msg1对应的响应消息的DCI。可以理解的,随着网络架构的演变和新业务场景的出现,出现的支持一种或多种新能力(功能或特性)的终端可以理解为本申请实施例的第二类终端,而不支持新能力的现有终端可以理解为本申请实施例中的第一类终端。
S1002:接入网设备根据第一消息发送第一DCI,以使得第一终端根据RA-RNTI接收第一DCI,根据第一DCI的指示接收第一消息对应的响应消息。
其中,本申请所述的响应消息可以称为随机接入响应(random access response,RAR)或者媒体接入控制随机接入响应(media access control random access response,MAC RAR)。第一消息对应的响应消息可以包括Msg2。第一DCI使用RA-RNTI加扰。第一DCI可以用于调度第一消息对应的响应消息。
应理解,当多个终端共享相同随机接入资源发送Msg1或者多个终端发送Msg1时所用的随机接入资源的参数与第一随机接入资源的参数(时域位置、频域索引)相同时,这多个终端对应的RA-RNTI是相同的,加扰得到的第一DCI也是相同的,是同一个DCI,此时,第一DCI可以用于调度多个终端发起的Msg1对应的响应消息,比如这多个终端发起的Msg1对应的响应消息携带在同一物理下行共享信道(physical downlink shared channel,PDSCH)中,第一DCI可以调度该PDSCH。
以响应消息为MAC RAR为例,多个终端发起的Msg1对应的MAC RAR的格式 如图11所示,可以看出,MAC RAR中可以包括针对多个终端的RAR,比如图11中的MAC负载(playload)中包含n个MAC RAR,n为大于或等于1的整数。为了区分每个RAR属于哪个终端,在每个RAR的MAC子头(subheader)中包含一个“RPID”的字段,这个字段对应peamble的编号。终端根据第一DCI接收到携带如图11所示格式的MAC RAR的PDSCH后,可以检查MAC RAR中每个RAR中的RPID字段,如果一个RAR的RPID字段与自己发送的preamble的编号相同,则意味着这个RAR可能是发送给自己的。
具体的,有关RA-RNTI的描述、对应的计算公式可以参照上文所述,不予赘述。
例如,对于接入网设备而言,在第一随机接入资源接收Msg1之后,可以根据预先配置的第一随机接入资源的用途确定是哪类终端(第一类终端还是第二类终端)发起的哪类4步随机接入过程(4-step RA还是4-step SDT)。由于图10所示实施例中规定,对于任何通信场景/任何终端类型发起的Msg1均采用RA-RNTI加扰调度响应消息的DCI,则接入网设备可以根据该规定,根据上文公式(1)以及第一随机接入资源的相关参数计算得到RA-RNTI,使用RA-RNTI加扰第一DCI,并发送加扰的第一DCI。相应的,接收到该加扰的第一DCI的终端可以根据自己发送Msg1所用的随机接入资源的相关参数以及公式(1)计算得到一个RA-RNTI,利用计算得到的RA-RNTI解扰该加扰的第一DCI,如果解扰成功,则根据第一DCI的指示接收第一消息对应的响应消息,比如可以根据第一DCI接收图11所示格式的MAC RAR,检查每个RAR中的RPID字段是否与自己发送的Msg1中携带的preamble的编号对应,如果对应,则确定该RAR可能是自己的,进而根据该RAR进行后续流程。
由上可知,对于不同类型终端(第一类终端、第二类终端)和/或不同通信过程(4-step RA、4-step SDT),只要是发送Msg1,则均采用公式(1)计算得到的RA-RNTI加扰调度响应消息的DCI,无需扩展新的RNTI,简化系统设计,降低计算复杂度。
进一步的,为了避免发起Msg1的不同类型终端和/或不同通信过程之间产生冲突,针对不同情况采取不同的解决方法。比如,在不同类型终端和/或不同通信过程共享RO的情况下,因终端无法根据发起Msg1所用的RO确定出的RA-RNTI区分是哪类终端和/或哪类通信过程,还需要为在不同类型终端和/或不同通信过程分配不同preamble,根据Msg1所用的preamble区分是哪类终端和/或哪类通信过程。而在不同类型终端和/或不同通信过程独享RO的情况下,则可以根据发起Msg1所用的RO确定的RA-RNTI区分是哪类终端和/或哪类通信过程。具体如下(1)、(2)所述:
(1)第一随机接入资源集合对应的RO中分配给不同类型终端使用的RO不同;根据不同随机接入资源计算得到的RA-RNTI不同。换言之,对于不同类型终端和/或不同通信过程,如果发起Msg1所用的RO是不同的,是独享的,并且保证基于RO计算得到的RA-RNTI是不同的,则可以通过不同的RA-RNTI区分得到是哪类终端/发起哪类通信过程的终端,避免不同终端之间随机接入冲突的问题。
例如,以4-step RA和4-step SDT为例,接入网设备配置给4-step的RO集合中的一部分分配给4-step RA使用,另一部分分配给4-step SDT使用。如果接入网设备在配置RO时候,能够保证根据分配给4-step RA的RO计算得到RA-RNTI与分配给4-step SDT的RO计算得到的RA-RNTI没有交集,这样,可以通过不同的RA-RNTI区分是 4-step RA还是4-step SDT,避免随机接入冲突。
(2)对于不同类型终端和/或不同通信过程,如果发起Msg1所用的RO是共享的,基于该RO计算得到的RA-RNTI是相同的,则不能通过不同的RA-RNTI区分得到是哪类终端/哪类通信过程,进而可以根据preamble的编号对应的RPID来区分是哪类终端/哪类通信过程的终端,避免发生不同终端之间随机接入冲突的问题。即所有基于4-step的通信过程/应用场景都共享相同的RO,不同的通信过程/应用场景采用不同的preamble。
例如,以4-step RA和4-step SDT为例,接入网设备分配给4-step RA使用的RO,都可以分配给4-step SDT的终端使用。该RO对应的preamble中,分配给4-step RA使用的preamble与分配给4-step SDT使用的preamble不同(即无交集)。
又例如,以4-step RA、4-step SDT和redcap终端的4-step为例,接入网设备分配给4-step RA的RO,都可以给4-step SDT的终端、4-step的redcap终端使用。该RO对应的preamble中,分配给4-step RA使用的preamble、分配给4-step SDT使用的preamble、分配给redcap终端的4-step使用的preamble不同(即无交集)。
应理解,上述两种设计方式还可以结合使用,比如以4-step RA和4-step SDT为例,一部分RO可以分配给4-step RA使用,一部分RO可以分配给4-step SDT使用,还有一部分RO可以分配给4-step RA和4-step SDT共同使用,但是对应共享RO,4-step RA和4-step SDT用不同preamble区分。这样,在根据不同RO计算得到的RA-RNTI没有交集的情况下,通过RA-RNTI和/或RAR中携带的RPID,可以区分不同的通信过程/应用场景。
S1001-S1003以4-step为例,对发起Msg1的任何通信过程/应用场景均采用公式(1)计算得到的RA-RNTI加扰调度响应消息的DCI进行了描述。类似的,对于基于2-step的任何通信过程/应用场景可以均采用公式(2)计算得到的Msg2-RNTI加扰调度响应消息的DCI进行了描述,无需扩展新的RNTI,以简化2-step的系统设计,降低计算复杂度。具体如下S1003-S1004中所述。
S1003:第二终端在第二随机接入资源向接入网设备发送第二消息。相应的,接入网设备在第二随机接入资源接收第二消息。
其中,第一终端属于第一类终端或者第二类终端,不予限制。
其中,第二随机接入资源可以是RACH资源(比如RO等),或者第二随机接入资源可以包括RACH资源(比如RO)和preamble。第二随机接入资源可以属于第二随机接入资源集合,第二随机接入资源集合可以包括一个或者多个随机接入资源。以随机接入资源为RO为例,第二随机接入资源集合可以包括一个或者多个RO,第二随机接入资源集合可以简称为第二RO资源集合。示例性的,可以从初始BWP中划分出来一些时频资源作为第二RO资源集合,即第二RO资源集合可以包括在初始BWP中,是初始BWP的一部分。当一个终端与另一个终端选用相同RO时,可以认为两个终端选用了相同的随机接入资源;当一个终端与另一个终端选用不同RO时,可以认为两个终端选用了不同的随机接入资源。或者,随机接入资源除了根据时域、频域确定外,还可以根据码域确定。以随机接入资源为RO+preamble为例,第二随机接入资源集合 可以包括一个或者多个RO,并且包括一个或多个preamble。每个随机接入资源通过一个RO以及一个preamble唯一确定。当一个终端与另一个终端选用相同RO且相同preamble时,可以认为两个终端选用了相同的随机接入资源;当一个终端与另一个终端选用不同的RO,或者一个终端与另一个终端选用相同的RO不同的preamble时,都可以认为两个终端选用了不同的随机接入资源。接入网设备可以在初始BWP的配置信息中携带RO配置信息,RO配置信息可以指示第二RO资源集合所包括的RO的时频位置,以及第二RO资源集合对应的preamble,比如RO配置信息可以指示RO的起始频域位置、RO的频分复用系数、RO的时域位置、第二RO资源集合对应的preamble的分配情况等等。
本申请实施例中,第二随机接入资源不同于第一随机接入资源,第二随机接入资源集合不同于第一随机接入资源集合,第二随机接入资源用于某类终端(第一类终端或者第二类终端)发起的与2-step相关的通信过程(2-step RA或者2-step SDT),第一随机接入资源用于某类终端(第一类终端或第二类终端)发起的与4-step相关的通信过程(4-step RA或者4-step SDT)。比如第二随机接入资源集合可以用于第一类终端的2-step RA,以及下述至少一种:第一类终端的2-step SDT、第二类终端的2-step SDT、第二类终端的2-step RA。接入网设备可以为第一类终端配置第二随机接入资源集合。比如第二随机接入资源集合可以用于第一类终端的2-step RA以及第一类终端的2-step SDT。又比如,第二随机接入资源集合可以用于第一类终端的2-step RA、第一类终端的2-step-SDT,以及第二类终端的2-step SDT。又比如,第二随机接入资源集合可以用于第一类终端的2-step RA、第二类终端的2-step RA。再比如,第二随机接入资源集合可以用于第一类终端的2-step RA、第一类终端的2-step SDT、第二类终端的2-step SDT、以及第二类终端的2-step RA。
其中,第二消息可以是MsgA,第二消息可以携带preamble,除携带preamble之外,MsgA还可以包括与该preamble关联的物理上行共享信道(physical uplink shared channel,PUSCH),该PUSCH中可以包括上行数据和/或其他信息。当第二随机接入资源用于中2-step RA时,第二消息可以用于发起2-step RA,或者当第二随机接入资源用于2-step SDT时,第二消息可以用于利用2步随机接入发起小包数据传输。
其中,有关2-step RA、2-step SDT的相关描述可参照上文,不予赘述。
本申请实施例中,以随机接入资源为RO为例,第二随机接入资源集合包括的一个或者多个RO具体分配给哪类终端的哪类通信过程是接入网设备预先配置的。可选的,该配置关系可以存储在接入网设备上。比如第二随机接入资源集合包括的一个或者多个RO中哪些分配给第一类终端的2-step RA的使用、哪些分配给第一类终端的2-step SDT、哪些分配给第二类终端的2-step SDT、哪些分配给第二类终端的2-step RA使用是根据需要预先配置。不同类型终端和/或不同通信过程可以共享RO,也可以独享RO。示例性地,其具体分配规则可以包括下述任一种:(1)分配给2-step RA使用的RO与分配给2-step SDT的RO不重叠,分配给不同类型终端的2-step RA/2-step SDT使用的RO不重叠。(2)不同类型终端的2-step RA共享RO、不同类型终端的2-step SDT共享RO,分配给2-step RA和2-step SDT不同。(3)同一类型终端的2-step RA和2-step SDT共享RO,不同类型终端的2-step RA和2-step SDT共享RO等等。
对于接入网设备而言,在第二随机接入资源接收MsgA之后,可以根据预先配置的第二随机接入资源的用途确定是哪类终端(第一类终端还是第二类终端)发起的哪类2步随机接入过程(2-step RA还是2-step SDT)。比如假设第一类终端独享第二随机接入资源,如当随机接入资源为RO时,第一类终端独享一个或多个RO;当随机接入资源为RO+preamble时,第一类终端独享一个或多个RO+preamble的组合,S1003中,对应接入网设备而言,在第二随机接入资源上接收到MsgA后,可以根据随机接入资源与其分配情况,判断出这是第一类终端发起的MsgA。
S1004:接入网设备根据第二消息发送第二DCI,以使得第二终端根据MsgB-RNTI接收第二DCI,根据第二DCI的指示接收第二消息对应的响应消息。
其中,第二消息对应的响应消息可以包括MsgB。第二DCI使用MsgB-RNTI加扰。第二DCI可以用于调度第二消息对应的响应消息。以响应消息为RAR为例,若接入网设备成功收到了MsgA,则接入网设备可以给终端发送接入成功的RAR(可以称为success RAR),在该success RAR携带终端的标识信息,该终端标识信息与终端在MsgA的PUSCH中上报的标识信息相同,从而让终端判断自己接入成功。
例如,如图12所示,为success RAR示意图,如图12所示,MAC负载(playload)中可以包含针对n个终端的RAR,比如可以包含n个MAC RAR,MAC RAR中包含“接收成功”的字段、终端的标识信息,“接收成功”的字段可以指示该MAC RAR为success RAR,终端的标识信息以区分哪个MAC RAR属于哪个终端,n为大于或等于1的整数。终端接收到如图12所示格式的MAC RAR后,首先可以根据“接收成功”字段确定当前MAC RAR为一个success RAR,其次检查MAC RAR中的标识信息,如果MAC RAR中包括自己的标识信息,则确定自己发送的MsgA被成功接收。
若接入网设备没有成功收到MsgA,例如仅收到了MsgA中的preamble但未成功收到MsgA中的PUSCH,则接入网设备可以给终端发送回退RAR(fallback RAR),用于指示终端回退到4-step RA。此时fallback RAR的格式类似于图11所示的4-step RA时RAR的格式,比如fallback RAR的subheader(子头)中会包含RAPID,如果终端发送的MsgB中的preamble的编号与fallback RAR包含的一个RAPID对应,则意味着该终端发送的MsgA没有被成功接收。
具体的,有关MsgB-RNTI的描述、对应的计算公式可以参照上文所述,不予赘述。
例如,对于接入网设备而言,在第二随机接入资源接收MsgA之后,可以根据预先配置的第二随机接入资源的用途确定是哪类终端(第一类终端还是第二类终端)发起的哪类2步随机接入过程(2-step RA还是2-step SDT)。由于图10所示实施例中规定,对于任何通信场景/任何终端类型发起的MsgA均采用MsgB-RNTI加扰调度响应消息的DCI,则接入网设备可以根据该规定,根据上文公式(2)以及第二随机接入资源的相关参数计算得到MsgB-RNTI,使用MsgB-RNTI加扰第二DCI,并发送加扰的第二DCI。相应的,接收到该加扰的第二DCI的终端可以根据自己发送MsgA所用的随机接入资源的相关参数以及公式(2)计算得到一个MsgB-RNTI,利用计算得到的MsgB-RNTI解扰该加扰的第二DCI,如果解扰成功,则根据第二DCI的指示接收第二消息对应的响应消息,比如可以根据第二DCI接收图11所示格式的MAC RAR,检查每个RAR中的RPID字段是否与自己发送的MsgA中携带的preamble的编号对应, 如果对应,则确定该RAR是自己的,进而根据该RAR进行后续流程。
由上可知,对于不同类型终端(第一类终端、第二类终端)和/或不同通信过程(2-step RA、2-step SDT),只要是发送MsgA,则均采用公式(2)计算得到的MsgB-RNTI加扰调度响应消息的DCI,无需扩展新的RNTI,简化系统设计,降低计算复杂度。
进一步的,为了避免发起MsgA的不同类型终端和/或不同通信过程之间产生冲突,针对不同情况采取不同的解决方法。比如,在不同类型终端和/或不同通信过程共享RO的情况下,终端无法根据发起MsgA所用的RO计算得到的MsgB-RNTI区分是哪类终端和/或哪类通信过程,还需要为不同类型终端和/或不同通信过程分配不同preamble,根据preamble区分是哪类终端和/或哪类通信过程。而在不同类型终端和/或不同通信过程独享RO的情况下,则可以根据发起MsgA所用的RO确定的MsgB-RNTI区分是哪类终端和/或哪类通信过程。具体如下(1)、(2)所述:
(1)第二随机接入资源集合对应的RO中分配给不同类型终端使用的RO不同;根据不同随机接入资源计算得到的MsgB-RNTI不同。换言之,对于不同类型终端和/或不同通信过程,如果发起MsgA所用的RO是不同的,是独享的,并且保证基于RO计算得到的MsgB-RNTI是不同的,则可以通过不同的MsgB-RNTI区分得到是哪类终端/发起哪类通信过程的终端,避免不同终端之间随机接入冲突的问题。
例如,以2-step RA和2-step SDT为例,接入网设备配置给2-step的RO集合中的一部分分配给2-step RA使用,另一部分分配给2-step SDT使用。如果接入网设备在配置RO时候,能够保证根据分配给2-step RA的RO计算得到MsgB-RNTI与分配给2-step SDT的RO计算得到的MsgB-RNTI没有交集,这样,通过不同的MsgB-RNTI区分是2-step RA还是2-step SDT,避免随机接入冲突。
(2)对于不同类型终端和/或不同通信过程,如果发起MsgA所用的RO是共享的,基于该RO计算得到的MsgB-RNTI是相同的,则不能通过不同的MsgB-RNTI区分得到是哪类终端/哪类通信过程,此时,可以针对类型终端和/或不同通信过程分配不同的preamble,进而可以在接收PUSCH失败的场景下,根据preamble的编号对应的RPID来区分是哪类终端/哪类通信过程的终端发起的MsgB中的PUSCH接收失败,避免发生不同终端之间随机接入冲突的问题。即所有基于2-step的通信过程/应用场景都共享相同的RO,不同的通信过程/应用场景采用不同的preamble。
例如,以2-step RA和2-step SDT为例,接入网设备分配给2-step RA使用的RO,都可以分配给2-step SDT的终端使用。该RO对应的preamble中,分配给2-step RA使用的preamble与分配给2-step SDT使用的preamble不同(即无交集)。
又例如,以2-step RA、2-step SDT和redcap终端的2-step为例,接入网设备分配给2-step RA的RO,都可以给2-step SDT的终端、2-step的redcap终端使用。该RO对应的preamble中,分配给2-step RA使用的preamble、分配给2-step SDT使用的preamble、分配给redcap终端的2-step使用的preamble不同(即无交集)。
应理解,上述两种设计方式还可以结合使用,比如以2-step RA和2-step SDT为例,一部分RO可以分配给2-step RA使用,一部分RO可以分配给2-step SDT使用,还有一部分RO可以分配给2-step RA和2-step SDT共同使用,但是对应共享RO,2-step RA和2-step SDT用不同preamble区分。这样,在根据不同RO计算得到的MsgB-RNTI 没有交集的情况下,通过MsgB-RNTI和/或RAR中携带的RPID,可以区分不同的通信过程/应用场景。
基于图10所述的方法,对于基于4-step的所有通信过程/应用场景均采用RA-RNTI加扰调度响应消息的DCI,对于基于2-step所有通信过程/场景均采用MsgB-RNTI加扰调度响应消息的DCI,以便终端根据加扰DCI的RNTI区分是基于4-step的通信过程/应用场景还是基于2-step的通信过程/应用场景,即可以通过RA-RNTI、MsgB-RNTI区分是4-step还是2-step,无需随着通信过程中基于随机接入的通信过程/应用场景的增加来扩展新的RNTI,简化系统设计。进一步的,对于4-step的不同通信过程/应用场景通过不同的RO和/或preamble进行区分。对于2-step的不同通信过程/应用场景通过不同的RO和/或preamble进行区分。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端、接入网设备为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端、接入网设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图13示出了一种通信装置100的结构图,该通信装置100可以为第一终端,或者第一终端中的芯片,或者片上系统,该通信装置100可以用于执行上述实施例中涉及的第一终端的功能。作为一种可实现方式,图13所示通信装置100包括:发送单元1001,接收单元1002;
发送单元1001,用于在第一RO上向接入网设备发送用于基于随机接入方式发送上行数据的第一消息。例如,发送单元1001可以用于支持通信装置100执行S601。
接收单元1002,用于接收来自接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定。例如,接收单元1002可以用于支持通信装置100执行S602。
当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。第一RNTI和第二RNTI的确定方式可参照上述方法实施例中所述,不予赘述。
具体的,上述图6所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置100用于执行图6所示方法所示随机接入方法中第一终端的功能,因此可以达到与上述随机接入方法相同的效果。
作为又一种可实现方式,图13所示通信装置100包括:处理模块和通信模块。处理模块用于对通信装置100的动作进行控制管理,例如,处理模块可以支持该通信装置100执行控制功能。通信模块可以集成发送单元1001以及接收单元1002的功能,可以用于支持通信装置100执行步骤601、步骤602以及与其他网络实体的通信,例如与图4示出的功能模块或网络实体之间的通信。该通信装置100还可以包括存储模块,用于存储通信装置100的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置100可以为图5所示通信装置500。
图14示出了一种通信装置110的结构图,该通信装置110可以为接入网设备,或者接入网设备中的芯片,或者片上系统,该通信装置110可以用于执行上述实施例中涉及的接入网设备的功能。作为一种可实现方式,图14所示通信装置110包括:接收单元1101,发送单元1102;
接收单元1101,用于在第一RO上接收来自第一终端的用于基于随机接入方式发送上行数据的第一消息。例如,接收单元1101可以支持通信装置110执行步骤601。
发送单元1102,用于向第一终端发送接入网设备的第一DCI,第一DCI用于调度第一消息对应的响应消息,第一DCI使用RNTI加扰,RNTI根据第一RO确定。例如,发送单元1102可以支持通信装置110执行步骤602。
当第一消息用于基于第一随机接入方式发送上行数据时,RNTI为根据第一RO确定的第一RNTI,当第一消息用于基于第二随机接入方式发送上行数据时,RNTI为根据第一RO确定的第二RNTI,第一随机接入方式与第二随机接入方式不同,第一RNTI与第二RNTI相同或不同。第一RNTI和第二RNTI的确定方式可参照上述方法实施例中所述。
比如,第一RNTI属于第一RNTI集合,第一RNTI集合包括用于基于第一随机接入方式发送上行数据的RNTI,第二RNTI属于第二RNTI集合,第二RNTI集合包括用于基于第二随机接入方式发送上行数据的RNTI。第一RNTI集合、第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠。
又比如,将第三RNTI集合包括的部分RNTI作为第一RNTI,这部分RNTI可以用于基于第一随机接入方式发送上行数据,即用于基于第一随机接入方式发送上行数据的RNTI可以复用原有的用于基于第一随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围,或者,用于基于第一随机接入方式发送上行数据的RNTI的取值范围,为原有的用于基于第一随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围的子集。类似的,将第四RNTI集合包括的部分RNTI作为第二RNTI,这部分RNTI可以用于基于第二随机接入方式发送上行数据,即用于基于第二随机接入方式发送上行数据的RNTI可以复用原有的用于基于第二随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围,或者,用于基于第二随机接入方式发送上行 数据的RNTI的取值范围,为原有的用于基于第二随机接入方式接入接入网设备(即non-SDT)的RNTI的取值范围的子集。
再比如,用于基于第一随机接入方式发送上行数据的RNTI与用于基于第二随机接入方式发送第二RNTI的取值范围相同,即4-step SDT对应的RNTI与2-step SDT对应的RNTI相同,或者4-step SDT对应的RNTI与2-step SDT对应的RNTI类型相同,但是4-step SDT对应的RNTI、2-step SDT对应的RNTI与用于随机接入方式接入接入网设备(non-SDT)的取值范围不同。为区分4-step SDT与2-step SDT,针对SDT,接入网设备还可以向第一终端指示第一DCI对应4-step SDT还是2-step SDT。
具体的,上述图6所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置110用于执行图6所示方法所示随机接入方法中接入网设备的功能,因此可以达到与上述随机接入方法相同的效果。
一种可能的设计中,接收单元1101,用于在第一随机接入资源接收第一消息;发送单元1102,用于根据第一消息发送第一DCI;其中,第一随机接入资源属于第一随机接入资源集合,第一随机接入资源集合用于第一类终端的4-step RA,以及下述至少一种:第一类终端的4-step SDT、第二类终端的4-step SDT、第二类终端的4-step RA;第一DCI用于调度第一消息对应的响应消息,第一DCI使用RA-RNTI加扰;
接收单元1101,用于在第二随机接入资源接收第二消息;发送单元1102,用于根据第二消息发送第二DCI;第二随机接入资源属于第二随机接入资源集合,第二随机接入资源集合用于第一类终端的2-step RA,以及下述至少一种:第一类终端的2-step SDT、第二类终端的2-step SDT、第二类终端的2-step RA;第二DCI用于调度第二消息对应的响应消息,第二DCI使用MsgB-RNTI加扰。
具体的,上述图10所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置110用于执行图10所示方法所示随机接入方法中接入网设备的功能,因此可以达到与上述随机接入方法相同的效果。
作为又一种可实现方式,图14所示通信装置110包括:处理模块和通信模块。处理模块用于对通信装置110的动作进行控制管理,例如,处理模块可以支持该通信装置110执行管理功能。通信模块可以集成接收单元1101以及发送单元1102的功能,可以用于支持通信装置110执行步骤601、步骤602、S1001-S1004以及与其他网络实体的通信,例如与图4示出的功能模块或网络实体之间的通信。该通信装置110还可以包括存储模块,用于存储通信装置110的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置110可以为图5所示通信装置500。
图15为本申请实施例提供的一种通信系统的结构图,如图15所示,该通信系统可以包括:终端120、接入网设备121。终端120的功能与上述通信装置100的功能相同。接入网设备121与上述通信装置110的功能相同,不予赘述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的终端,如:包括数据发送端和/或数据接收端的内部存储单元,例如终端的硬盘或内存。上述计算机可读存储介质也可以是上述终端的外部存储设备,例如上述终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述终端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述终端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过 其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (61)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    第一终端在第一随机接入信道时机RO上向接入网设备发送第一消息;其中,所述第一消息用于基于随机接入方式发送上行数据;
    所述第一终端接收来自接入网设备的第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    其中,当所述第一消息用于基于第一随机接入方式发送上行数据时,所述RNTI为第一RNTI,当所述第一消息用于基于第二随机接入方式发送上行数据时,所述RNTI为第二RNTI,所述第一随机接入方式与所述第二随机接入方式不同,所述第一RNTI与所述第二RNTI相同或不同。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一RNTI属于第一RNTI集合,所述第二RNTI属于第二RNTI集合,所述第一RNTI集合、所述第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;
    其中,所述第三RNTI集合包括用于基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合用于基于第二随机接入方式接入所述接入网设备的RNTI。
  3. 根据权利要求2所述的方法,其特征在于,所述第一RNTI根据所述第一RO确定包括:第一RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第一偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述A为大于0且小于Nsymbol的整数;或者,所述第一RO占用A个符号中的第s_id个符号,所述s_id小于等于所述第s_id个符号在一个时隙中的索引值,所述A个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id的取值范围是[0,A-1];
    其中,所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述B为大于0且小于Nslot的整数;或者,所述第一RO占用B个时隙中的第t_id个时隙,所述t_id小于等于所述第t_id个时隙在一个系统帧中的索引值,所述B个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id的的取值范围是[0,B-1];
    其中,所述f_id为第一RO占用的频域单元在C个频域单元中的索引值,所述C为大于0且小于Nf的整数;或者,所述第一RO占用C个频域单元中的第f_id个符号,所述t_id小于等于所述第f_id个时隙在Nf个频域单元中的索引值,所述C为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id的取值范围是[0,C-1];
    其中,所述ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,所述D为大于0且小于Nc的整数;或者,所述第一RO占用D个上行载波中的第ul_carrier_id个上行载波,所述ul_carrier_id小于等于所述第ul_carrier_id个上行载波在Nc个上行载波中的索引值,所述D为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id的取值范围是[0,D-1];
    其中,所述第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2,或者,第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+所述第二RNTI集合包括的RNTI的数量);所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量, Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  4. 根据权利要求3所述的方法,其特征在于,所述第二RNTI集合包括的RNTI的数量是E*F*G*H;所述第二RNTI根据所述第一RO确定包括:
    所述第二RNTI=1+s_id’+E*t_id’+E*F*f_id’+E*F*G*ul_carrier_id’+第二偏移值;
    其中,当所述第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2时,所述第二偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D);或者,当所述第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+所述第二RNTI集合包括的RNTI的数量)时,所述第二偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;
    其中,所述s_id’为所述第一RO占用的符号在一个时隙中的索引值,所述E为大于0且小于Nsymbol的整数;或者,所述第一RO占用E个符号中的第s_id’个符号,所述s_id’小于等于所述第s_id’个符号在一个时隙中的索引值,所述E个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id’的取值范围是[0,E-1];
    其中,所述t_id’为第一RO占用的时隙在一个系统帧中的索引值,所述F为大于0且小于Nslot的整数;或者,所述第一RO占用F个时隙中的第t_id’个时隙,所述t_id’小于等于所述第t_id’个时隙在一个系统帧中的索引值,所述F个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id’的的取值范围是[0,F-1];
    其中,所述f_id’为第一RO占用的频域单元在G个频域单元中的索引值,所述G为大于0且小于Nf的整数;或者,所述第一RO占用G个频域单元中的第f_id’个符号,所述t_id’小于等于所述第f_id’个时隙在Nf个频域单元中的索引值,所述G为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id’的取值范围是[0,G-1];
    其中,所述ul_carrier_id’为第一RO占用的上行载波在H个上行载波中的索引值,所述H为大于0且小于Nc的整数;或者,所述第一RO占用H个上行载波中的第ul_carrier_id’个上行载波,所述ul_carrier_id’小于等于所述第ul_carrier_id’个上行载波在Nc个上行载波中的索引值,所述H为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id’的取值范围是[0,H-1]。
  5. 根据权利要求1所述的方法,其特征在于,所述第一RNTI与所述第二RNTI不同;
    所述第一RNTI根据所述第一RO确定包括:所述第一RNTI根据所述第一RO占用的频域单元的索引值确定,所述第一RO占用的频域单元的索引值的取值范围从N开始,所述N为大于0的整数;
    所述第二RNTI根据所述第一RO确定包括:所述第二RNTI根据所述第一RO占用的频域单元的索引值确定,所述第一RO占用的频域单元的索引值的取值范围从M开始,所述M为大于0的整数。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一RNTI根据所述第一RO占用的频域单元的索引值确定包括:所述第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_1+Nsymbol*Nslot*Nf*ul_carrier_id;
    所述第二RNTI根据所述第一RO占用的频域单元的索引值确定包括:所述第二RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+ 第三偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];所述f_id_1的取值范围为[N,Nf-1],所述N小于所述Nf,所述N为Nf个频域单元中用于所述第一随机接入的频域单元的数量;所述f_id_2的取值范围为[M,Nf-1],所述M小于所述Nf,所述M为Nf个频域单元中用于所述第二随机接入的频域单元的数量;所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述第三偏移值大于或等于Nsymbol*Nslot*Nf*Nc;所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nf为预设的用于随机接入的频域复用系数最大值,所述Nc为预设的用于随机接入的上行载波的数量。
  7. 根据权利要求1所述的方法,其特征在于,
    所述第一RNTI以及所述第二RNTI对应同一计算公式,所述第一RNTI以及所述第二RNTI属于第一RNTI集合,所述第一RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;其中,所述第三RNTI集合包括用于基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合用于基于第二随机接入方式接入所述接入网设备的RNTI。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一DCI携带第一指示信息,第一指示信息用于指示所述第一DCI对应基于所述第一随机接入方式发送上行数据、或者用于指示所述第一DCI对应基于所述第二随机接入方式发送上行数据;或者,
    所述第一消息对应的响应消息携带第一指示信息,所述第一指示信息用于指示所述响应消息对应基于第一随机接入方式发送上行数据、或者用于指示所述响应消息对应基于第二随机接入方式发送上行数据。
  9. 根据权利要求7或者8所述的方法,其特征在于,所述第一RNTI根据所述第一RO确定包括:所述第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+第四偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];所述f_id为所述第一RO占用的频域单元在Nf个频域单元中的索引值,所述f_id的取值范围为[0,Nf-1];所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述第四偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的用于随机接入的上行载波的数量。
  10. 一种随机接入方法,其特征在于,所述方法包括:
    接入网设备在第一随机接入信道时机RO上接收来自第一终端的第一消息;其中,所述第一消息用于基于随机接入方式发送上行数据;
    所述接入网设备根据所述第一消息,向所述第一终端发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    其中,当所述第一消息用于基于第一随机接入方式发送上行数据时,所述RNTI为第一RNTI,当所述第一消息用于基于第二随机接入方式发送上行数据时,所述RNTI为第二RNTI,所述第一随机接入方式与所述第二随机接入方式不同,所述第一RNTI与所述第二RNTI相同或不同。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一RNTI属于第一RNTI集合,所述第二RNTI属于第二RNTI集合,所述第一RNTI集合、所述第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;
    其中,所述第三RNTI集合包括用于基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合包括用于基于第二随机接入方式接入所述接入网设备的RNTI。
  12. 根据权利要求11所述的方法,其特征在于,所述第一RNTI根据所述第一RO确定包括:第一RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第一偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述A为大于0且小于Nsymbol的整数;或者,所述第一RO占用A个符号中的第s_id个符号,所述s_id小于等于所述第s_id个符号在一个时隙中的索引值,所述A个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id的取值范围是[0,A-1];
    其中,所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述B为大于0且小于Nslot的整数;或者,所述第一RO占用B个时隙中的第t_id个时隙,所述t_id小于等于所述第t_id个时隙在一个系统帧中的索引值,所述B个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id的的取值范围是[0,B-1];
    其中,所述f_id为第一RO占用的频域单元在C个频域单元中的索引值,所述C为大于0且小于Nf的整数;或者,所述第一RO占用C个频域单元中的第f_id个符号,所述t_id小于等于所述第f_id个时隙在Nf个频域单元中的索引值,所述C为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id的取值范围是[0,C-1];
    其中,所述ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,所述D为大于0且小于Nc的整数;或者,所述第一RO占用D个上行载波中的第ul_carrier_id个上行载波,所述ul_carrier_id小于等于所述第ul_carrier_id个上行载波在Nc个上行载波中的索引值,所述D为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id的取值范围是[0,D-1];
    其中,所述第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2,或者,第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+所述第二RNTI集合包括的RNTI的数量);所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量, Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  13. 根据权利要求12所述的方法,其特征在于,所述第二RNTI集合包括的RNTI的数量是E*F*G*H;所述第二RNTI根据所述第一RO确定包括:
    所述第二RNTI=1+s_id’+E*t_id’+E*F*f_id’+E*F*G*ul_carrier_id’+第二偏移值;
    其中,当所述第一偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2时,所述第二偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+A*B*C*D);或者,当所述第一偏移值大于或等于(Nsymbol*Nslot*Nf*Nc*2+所述第二RNTI集合包括的RNTI的数量)时,所述第二偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;
    其中,所述s_id’为所述第一RO占用的符号在一个时隙中的索引值,所述E为大于0且小于Nsymbol的整数;或者,所述第一RO占用E个符号中的第s_id’个符号,所述s_id’小于等于所述第s_id’个符号在一个时隙中的索引值,所述E个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id’的取值范围是[0,E-1];
    其中,所述t_id’为第一RO占用的时隙在一个系统帧中的索引值,所述F为大于0且小于Nslot的整数;或者,所述第一RO占用F个时隙中的第t_id’个时隙,所述t_id’小于等于所述第t_id’个时隙在一个系统帧中的索引值,所述F个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id’的的取值范围是[0,F-1];
    其中,所述f_id’为第一RO占用的频域单元在G个频域单元中的索引值,所述G为大于0且小于Nf的整数;或者,所述第一RO占用G个频域单元中的第f_id’个符号,所述t_id’小于等于所述第f_id’个时隙在Nf个频域单元中的索引值,所述G为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id’的取值范围是[0,G-1];
    其中,所述ul_carrier_id’为第一RO占用的上行载波在H个上行载波中的索引值,所述H为大于0且小于Nc的整数;或者,所述第一RO占用H个上行载波中的第ul_carrier_id’个上行载波,所述ul_carrier_id’小于等于所述第ul_carrier_id’个上行载波在Nc个上行载波中的索引值,所述H为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id’的取值范围是[0,H-1]。
  14. 根据权利要求10所述的方法,其特征在于,所述第一RNTI与所述第二RNTI不同;
    所述第一RNTI根据所述第一RO确定包括:所述第一RNTI根据所述第一RO占用的频域单元的索引值确定,所述第一RO占用的频域单元的索引值的取值范围从N开始,所述N为大于0的整数;
    所述第二RNTI根据所述第一RO确定包括:所述第二RNTI根据所述第一RO占用的频域单元的索引值确定,所述第一RO占用的频域单元的索引值的取值范围从M开始,所述M为大于0的整数。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一RNTI根据所述第一RO占用的频域单元的索引值确定包括:所述第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_1+Nsymbol*Nslot*Nf*ul_carrier_id;
    所述第二RNTI根据所述第一RO占用的频域单元的索引值确定包括:所述第二RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id_2+Nsymbol*Nslot*Nf*ul_carrier_id+ 第三偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];所述f_id_1的取值范围为[N,Nf-1],所述N小于所述Nf,所述N为Nf个频域单元中用于所述第一随机接入的频域单元的数量;所述f_id_2的取值范围为[M,Nf-1],所述M小于所述Nf,所述M为Nf个频域单元中用于所述第二随机接入的频域单元的数量;所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述第三偏移值大于或等于Nsymbol*Nslot*Nf*Nc;所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nf为预设的用于随机接入的频域复用系数最大值,所述Nc为预设的用于随机接入的上行载波的数量。
  16. 根据权利要求10所述的方法,其特征在于,
    所述第一RNTI以及所述第二RNTI对应同一计算公式,所述第一RNTI以及所述第二RNTI属于第一RNTI集合,所述第一RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;其中,所述第三RNTI集合包括用于基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合包括用于基于第二随机接入方式接入所述接入网设备的RNTI。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一DCI携带第一指示信息,第一指示信息用于指示所述第一DCI对应基于所述第一随机接入方式发送上行数据、或者用于指示所述第一DCI对应基于所述第二随机接入方式发送上行数据;或者,
    所述第一消息对应的响应消息携带第一指示信息,所述第一指示信息用于指示所述响应消息对应基于第一随机接入方式发送上行数据、或者用于指示所述响应消息对应基于第二随机接入方式发送上行数据。
  18. 根据权利要求16或者17所述的方法,其特征在于,
    所述第一RNTI根据所述第一RO确定包括:所述第一RNTI=1+s_id+Nsymbol*t_id+Nsymbol*Nslot*f_id+Nsymbol*Nslot*Nf*ul_carrier_id+第四偏移值;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];所述f_id为所述第一RO占用的频域单元在Nf个频域单元中的索引值,所述f_id的取值范围为[0,Nf-1];所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述第四偏移值大于或等于Nsymbol*Nslot*Nf*Nc*2;所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的用于随机接入的上行载波的数量。
  19. 一种通信系统,其中,该通信系统包括:
    第一终端,用于在第一随机接入信道时机RO上向接入网设备发送第一消息;其中,所述第一消息用于基于随机接入方式发送上行数据;
    所述接入网设备,用于在第一随机接入信道时机RO上接收来自第一终端的第一消息;
    所述接入网设备,还用于根据所述第一消息,向所述第一终端发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    所述第一终端,还用于接收所述第一DCI;
    其中,当所述第一消息用于基于第一随机接入方式发送上行数据时,所述RNTI为第一RNTI,当所述第一消息用于基于第二随机接入方式发送上行数据时,所述RNTI为第二RNTI,所述第一随机接入方式与所述第二随机接入方式不同,所述第一RNTI与所述第二RNTI相同或不同。
  20. 一种随机接入方法,其特征在于,所述方法包括:
    第一终端在第一随机接入信道时机RO上向接入网设备发送第一消息;
    所述第一终端接收来自接入网设备的第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    其中,当所述第一终端满足第一条件时,所述RNTI属于第一组RNTI;当所述第一终端满足第二条件时,所述RNTI属于第二组RNTI,所述第一组RNTI用于满足所述第一条件的终端进行随机接入,所述第二组RNTI用于满足所述第二条件的终端进行随机接入。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一条件包括下述一种或者多种:终端类型为非能力降低redcap类型、不支持覆盖增强、或者不支持接入网切片;
    所述第二条件包括下述一种或者多种:终端类型为redcap类型、支持覆盖增强、或者支持接入网切片。
  22. 根据权利要求20或21所述的方法,其特征在于,
    所述第一组RNTI包括第三RNTI集合以及第四RNTI集合;
    其中,所述第三RNTI集合包括用于满足所述第一条件的终端基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合包括用于满足所述第一条件的终端基于第二随机接入方式接入所述接入网设备的RNTI。
  23. 根据权利要求22所述的方法,其特征在于,所述第一组RNTI还包括第一RNTI集合、第二RNTI集合;所述第一RNTI集合、所述第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;
    其中,所述第一RNTI集合包括用于满足所述第一条件的终端基于第一随机接入方式发送上行数据的RNTI;所述第二RNTI集合包括用于满足所述第一条件的终端基于第二随机接入方式发送上行数据的RNTI。
  24. 根据权利要求23所述的方法,其特征在于,所述第一RNTI集合包括的RNTI以及所述第二RNTI集合包括的RNTI对应同一计算公式;
    所述第一DCI携带第一指示信息,第一指示信息用于指示所述第一DCI对应基于所述第一随机接入方式发送上行数据、或者用于指示所述第一DCI对应基于所述第二随机接入方式发送上行数据;或者,
    所述第一消息对应的响应消息携带第一指示信息,所述第一指示信息用于指示所述响应消息对应基于第一随机接入方式发送上行数据、或者用于指示所述响应消息对应基于第二随机接入方式发送上行数据。
  25. 根据权利要求20-24任一项所述的方法,其特征在于,
    所述第二组RNTI包括第五RNTI集合、第六RNTI集合;
    其中,所述第五RNTI集合包括用于满足所述第二条件的终端基于第一随机接入方式接入所述接入网设备的RNTI,所述第六RNTI集合包括用于满足所述第二条件的终端基于第二随机接入方式接入所述接入网设备的RNTI。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第二组RNTI还包括第七RNTI集合以及第八RNTI集合,所述第五RNTI集合、所述第六RNTI集合、所述第七RNTI集合以及所述第八RNTI集合互不重叠;
    其中,所述第七RNTI集合包括用于满足所述第二条件的终端基于第一随机接入方式发送上行数据的RNTI;所述第八RNTI集合包括用于满足所述第二条件的终端基于第二随机接入方式发送上行数据的RNTI。
  27. 根据权利要求26所述的方法,其特征在于,
    所述第五RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值;
    所述第六RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量;
    所述第七RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量;
    所述第八RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量+第五RNTI集合包括的RNTI数量;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述A为大于0且小于Nsymbol的整数;或者,所述第一RO占用A个符号中的第s_id个符号,所述s_id小于等于所述第s_id个符号在一个时隙中的索引值,所述A个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id的取值范围是[0,A-1];
    其中,所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述B为大于0且小于Nslot的整数;或者,所述第一RO占用B个时隙中的第t_id个时隙,所述t_id小于等于所述第t_id个时隙在一个系统帧中的索引值,所述B个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id的的取值范围是[0,B-1];
    其中,所述f_id为第一RO占用的频域单元在C个频域单元中的索引值,所述C 为大于0且小于Nf的整数;或者,所述第一RO占用C个频域单元中的第f_id个符号,所述t_id小于等于所述第f_id个时隙在Nf个频域单元中的索引值,所述C为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id的取值范围是[0,C-1];
    其中,所述ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,所述D为大于0且小于Nc的整数;或者,所述第一RO占用D个上行载波中的第ul_carrier_id个上行载波,所述ul_carrier_id小于等于所述第ul_carrier_id个上行载波在Nc个上行载波中的索引值,所述D为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id的取值范围是[0,D-1];
    其中,所述第五偏移值大于或等于所述第一组RNTI包括的RNTI的数量;所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  28. 根据权利要求20-24任一项所述的方法,其特征在于,所述RNTI根据所述第一RO确定,包括:
    所述RNTI根据所述第一RO占用的频域单元的索引值确定;
    其中,当所述第一终端满足所述第一条件,所述RNTI属于第一组RNTI时,所述第一RO占用的频域单元的索引值的取值范围从0开始;当所述第一终端满足所述第二条件,所述RNTI属于第二组RNTI时,所述第一RO占用的频域单元的索引值的取值范围从R开始,所述R为大于0的整数,所述R为Nf个频域单元中用于满足所述第一条件的终端随机接入的频域单元的数量,所述Nf为预设的用于随机接入的频域复用系数最大值。
  29. 根据权利要求28所述的方法,其特征在于,所述RNTI根据所述第一RO占用的频域单元的索引值确定包括:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+偏移值offset;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];当所述第一终端满足所述第一条件时,所述f_id的取值范围为[0,R-1],当所述第一终端满足所述第二条件时,所述f_id的取值范围为[R,Nf-1],所述R小于所述Nf,所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nc为预设的用于随机接入的上行载波的数量;
    其中,所述offset大于或者等于0。
  30. 一种随机接入方法,其特征在于,所述方法包括:
    接入网设备在第一随机接入信道时机RO上接收来自第一终端的第一消息;
    所述接入网设备向所述第一终端发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    其中,当所述第一终端满足第一条件时,所述RNTI属于第一组RNTI;当所述第 一终端满足第二条件时,所述RNTI属于第二组RNTI,所述第一组RNTI用于满足所述第一条件的终端进行随机接入,所述第二组RNTI用于满足所述第二条件的终端进行随机接入。
  31. 根据权利要求30所述的方法,其特征在于,
    所述第一条件包括下述一种或者多种:终端类型为非能力降低redcap类型、不支持覆盖增强、或者不支持接入网切片;
    所述第二条件包括下述一种或者多种:终端类型为redcap类型、支持覆盖增强、或者支持接入网切片。
  32. 根据权利要求30或31所述的方法,其特征在于,
    所述第一组RNTI包括第三RNTI集合以及第四RNTI集合;
    其中,所述第三RNTI集合包括用于满足所述第一条件的终端基于第一随机接入方式接入所述接入网设备的RNTI,所述第四RNTI集合包括用于满足所述第一条件的终端基于第二随机接入方式接入所述接入网设备的RNTI。
  33. 根据权利要求32所述的方法,其特征在于,所述第一组RNTI还包括第一RNTI集合、第二RNTI集合;所述第一RNTI集合、所述第二RNTI集合、第三RNTI集合以及第四RNTI集合互不重叠;
    其中,所述第一RNTI集合包括用于满足所述第一条件的终端基于第一随机接入方式发送上行数据的RNTI;所述第二RNTI集合包括用于满足所述第一条件的终端基于第二随机接入方式发送上行数据的RNTI。
  34. 根据权利要求33所述的方法,其特征在于,所述第一RNTI集合包括的RNTI以及所述第二RNTI集合包括的RNTI对应同一计算公式;
    所述第一DCI携带第一指示信息,第一指示信息用于指示所述第一DCI对应基于所述第一随机接入方式发送上行数据、或者用于指示所述第一DCI对应基于所述第二随机接入方式发送上行数据;或者,
    所述第一消息对应的响应消息携带第一指示信息,所述第一指示信息用于指示所述响应消息对应基于第一随机接入方式发送上行数据、或者用于指示所述响应消息对应基于第二随机接入方式发送上行数据。
  35. 根据权利要求30-34任一项所述的方法,其特征在于,
    所述第二组RNTI包括第五RNTI集合、第六RNTI集合;
    其中,所述第五RNTI集合包括用于满足所述第二条件的终端基于第一随机接入方式接入所述接入网设备的RNTI,所述第六RNTI集合包括用于满足所述第二条件的终端基于第二随机接入方式接入所述接入网设备的RNTI。
  36. 根据权利要求35所述的方法,其特征在于,
    所述第二组RNTI还包括第七RNTI集合以及第八RNTI集合,所述第五RNTI集合、所述第六RNTI集合、所述第七RNTI集合以及所述第八RNTI集合互不重叠;
    其中,所述第七RNTI集合包括用于满足所述第二条件的终端基于第一随机接入方式发送上行数据的RNTI;所述第八RNTI集合包括用于满足所述第二条件的终端基于第二随机接入方式发送上行数据的RNTI。
  37. 根据权利要求36所述的方法,其特征在于,
    所述第五RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值;
    所述第六RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量;
    所述第七RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量;
    所述第八RNTI集合包括的RNTI满足:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+第五偏移值+第五RNTI集合包括的RNTI的数量+第六RNTI集合包括的RNTI的数量+第五RNTI集合包括的RNTI数量;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述A为大于0且小于Nsymbol的整数;或者,所述第一RO占用A个符号中的第s_id个符号,所述s_id小于等于所述第s_id个符号在一个时隙中的索引值,所述A个符号为用于基于所述第一随机接入方式发送上行数据的符号;所述s_id的取值范围是[0,A-1];
    其中,所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述B为大于0且小于Nslot的整数;或者,所述第一RO占用B个时隙中的第t_id个时隙,所述t_id小于等于所述第t_id个时隙在一个系统帧中的索引值,所述B个时隙为用于基于所述第一随机接入方式发送上行数据的时隙;所述t_id的的取值范围是[0,B-1];
    其中,所述f_id为第一RO占用的频域单元在C个频域单元中的索引值,所述C为大于0且小于Nf的整数;或者,所述第一RO占用C个频域单元中的第f_id个符号,所述t_id小于等于所述第f_id个时隙在Nf个频域单元中的索引值,所述C为用于基于所述第一随机接入方式发送上行数据的频域单元;所述f_id的取值范围是[0,C-1];
    其中,所述ul_carrier_id为第一RO占用的上行载波在D个上行载波中的索引值,所述D为大于0且小于Nc的整数;或者,所述第一RO占用D个上行载波中的第ul_carrier_id个上行载波,所述ul_carrier_id小于等于所述第ul_carrier_id个上行载波在Nc个上行载波中的索引值,所述D为用于基于所述第一随机接入方式发送上行数据的上行载波;所述ul_carrier_id的取值范围是[0,D-1];
    其中,所述第五偏移值大于或等于所述第一组RNTI包括的RNTI的数量;所述Nsymbol为一个时隙包括的符号的数量,Nslot为一个系统帧包括的时隙的数量,Nf为预设的用于随机接入的频分复用系数最大值,所述Nc为预设的上行载波的数量。
  38. 根据权利要求30-34任一项所述的方法,其特征在于,所述RNTI根据所述第一RO确定,包括:
    所述RNTI根据所述第一RO占用的频域单元的索引值确定;
    其中,当所述第一终端满足所述第一条件,所述RNTI属于第一组RNTI时,所述第一RO占用的频域单元的索引值的取值范围从0开始;当所述第一终端满足所述第二条件,所述RNTI属于第二组RNTI时,所述第一RO占用的频域单元的索引值的 取值范围从R开始,所述R为大于0的整数,所述R为Nf个频域单元中用于满足所述第一条件的终端随机接入的频域单元的数量,所述Nf为预设的用于随机接入的频域复用系数最大值。
  39. 根据权利要求38所述的方法,其特征在于,所述RNTI根据所述第一RO占用的频域单元的索引值确定包括:
    RNTI=1+s_id+A*t_id+A*B*f_id+A*B*C*ul_carrier_id+偏移值offset;
    其中,所述s_id为所述第一RO占用的符号在一个时隙中的索引值,所述s_id的取值范围为[0,Nsymbol-1];所述t_id为第一RO占用的时隙在一个系统帧中的索引值,所述t_id的取值范围为[0,Nslot-1];当所述第一终端满足所述第一条件时,所述f_id的取值范围为[0,R-1],当所述第一终端满足所述第二条件时,所述f_id的取值范围为[R,Nf-1],所述R小于所述Nf,所述ul_carrier_id为所述第一RO占用的上行载波在Nc个上行载波中的索引值,所述ul_carrier_id的取值范围为[0,Nc-1];
    其中,所述Nsymbol为一个时隙包括的符号的数量,所述Nslot为一个系统帧包括的时隙的数量,所述Nc为预设的用于随机接入的上行载波的数量;
    其中,所述offset大于或者等于0。
  40. 一种通信系统,其中,该通信系统包括:
    第一终端,用于在第一随机接入信道时机RO上向接入网设备发送第一消息;
    所述接入网设备,用于在第一随机接入信道时机RO上接收来自第一终端的所述第一消息;
    所述接入网设备,还用于根据所述第一消息,向所述第一终端发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用无线网络临时标识RNTI加扰,所述RNTI根据所述第一RO确定;
    所述第一终端,还用于接收所述第一DCI;
    其中,当所述第一终端满足第一条件时,所述RNTI属于第一组RNTI;当所述第一终端满足第二条件时,所述RNTI属于第二组RNTI,所述第一组RNTI用于满足所述第一条件的终端进行随机接入,所述第二组RNTI用于满足所述第二条件的终端进行随机接入。
  41. 一种随机接入方法,其特征在于,所述方法包括:
    接入网设备在第一随机接入资源接收第一消息,在第二随机接入资源接收第二消息;其中,所述第一随机接入资源属于第一随机接入资源集合,所述第一随机接入资源集合用于第一类终端的4步随机接入4-step RA,以及下述至少一种:所述第一类终端的基于4步随机接入的小包数据传输4-step SDT、第二类终端的4-step SDT、所述第二类终端的4-step RA;所述第二随机接入资源属于第二随机接入资源集合,所述第二随机接入资源集合用于所述第一类终端的2步随机接入2-step RA,以及下述至少一种:所述第一类终端的基于2步随机接入的小包数据传输2-step SDT、所述第二类终端的2-step SDT、所述第二类终端的2-step RA;
    所述接入网设备根据所述第一消息发送第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用随机接入-无线网络临时标识RA-RNTI加扰;
    所述接入网设备根据所述第二消息发送第二DCI;其中,所述第二DCI用于调度所述第二消息对应的响应消息,所述第二DCI使用消息B-无线网络临时标识
    MsgB-RNTI加扰。
  42. 根据权利要求41所述的方法,其特征在于,
    所述第一类终端为不支持覆盖增强且不支持接入网切片的非能力降低redcap终端;所述第二类终端包括redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中的至少一种。
  43. 根据权利要求41或42所述的方法,其特征在于,
    所述第一随机接入资源集合对应的前导码preamble中分配给所述第一类终端使用的preamble和分配给所述第二类终端使用的preamble不重叠。
  44. 根据权利要求43所述的方法,其特征在于,
    分配给所述第二类终端使用的preamble中分配给不同类型终端使用的preamble不重叠。
  45. 根据权利要求41-44任一项所述的方法,其特征在于,
    所述第一随机接入资源集合对应的随机接入资源中分配给不同类型终端使用的随机接入资源不同;根据不同随机接入资源计算得到的RA-RNTI不同。
  46. 一种随机接入方法,其特征在于,所述方法包括:
    第一终端在第一随机接入资源向接入网设备发送第一消息,其中,所述第一随机接入资源属于第一随机接入资源集合,所述第一随机接入资源集合用于第一类终端的4步随机接入4-step RA,以及下述至少一种:所述第一类终端的基于4步随机接入的小包数据传输4-step SDT、第二类终端的4-step SDT、所述第二类终端的4-step RA;
    所述第一终端接收来自所述接入网设备的第一下行控制信息DCI;其中,所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用随机接入-无线网络临时标识RA-RNTI加扰。
  47. 根据权利要求46所述的方法,其特征在于,
    所述第一类终端为不支持覆盖增强且不支持接入网切片的非能力降低redcap终端;所述第二类终端包括redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中的至少一种。
  48. 根据权利要求46或47所述的方法,其特征在于,
    所述第一随机接入资源集合对应的前导码preamble中分配给所述第一类终端使用的preamble和分配给所述第二类终端使用的preamble不重叠。
  49. 根据权利要求48所述的方法,其特征在于,
    分配给所述第二类终端使用的preamble中分配给不同类型终端使用的preamble不重叠。
  50. 根据权利要求46-49任一项所述的方法,其特征在于,
    所述第一随机接入资源集合对应的随机接入资源中分配给不同类型终端使用的随机接入资源不同;根据不同随机接入资源计算得到的RA-RNTI不同。
  51. 一种随机接入方法,其特征在于,所述方法包括:
    第二终端在第二随机接入资源向接入网设备发送第二消息,其中,所述第二随机 接入资源属于第二随机接入资源集合,所述第二随机接入资源集合用于第一类终端的2步随机接入2-step RA,以及下述至少一种:所述第一类终端的基于2步随机接入的小包数据传输2-step SDT、第二类终端的2-step SDT、所述第二类终端的2-step RA;
    所述第二终端接收来自所述接入网设备的第二下行控制信息DCI;其中,所述第二DCI用于调度所述第二消息对应的响应消息,所述第二DCI使用消息B-无线网络临时标识MsgB-RNTI加扰。
  52. 根据权利要求51所述的方法,其特征在于,
    所述第一类终端为不支持覆盖增强且不支持接入网切片的非能力降低redcap终端;所述第二类终端包括redcap终端、支持覆盖增强的终端、或者支持接入网切片的终端中的至少一种。
  53. 根据权利要求51或52所述的方法,其特征在于,
    所述第二随机接入资源集合对应的前导码preamble中分配给所述第一类终端使用的preamble和分配给所述第二类终端使用的preamble不重叠。
  54. 根据权利要求53所述的方法,其特征在于,
    分配给所述第二类终端使用的preamble中分配给不同类型终端使用的preamble不重叠。
  55. 根据权利要求51-54任一项所述的方法,其特征在于,
    所述第二随机接入资源集合对应的随机接入资源中分配给不同类型终端使用的随机接入资源不同;根据不同随机接入资源计算得到的MsgB-RNTI不同。
  56. 一种随机接入系统,其特征在于,包括:
    第一终端,用于在第一随机接入资源向接入网设备发送第一消息;其中,所述第一随机接入资源属于第一随机接入资源集合,所述第一随机接入资源集合用于第一类终端的4步随机接入4-step RA,以及下述至少一种:所述第一类终端的基于4步随机接入的小包数据传输4-step SDT、第二类终端的4-step SDT、所述第二类终端的4-step RA;
    所述接入网设备,用于在所述第一随机接入资源接收第一消息,根据所述第一消息发送第一下行控制信息DCI;所述第一DCI用于调度所述第一消息对应的响应消息,所述第一DCI使用随机接入-无线网络临时标识RA-RNTI加扰。
  57. 一种随机接入系统,其特征在于,包括:
    第二终端,用于在第二随机接入资源向接入网设备发送第二消息;其中,所述第二随机接入资源属于第二随机接入资源集合,所述第二随机接入资源集合用于第一类终端的2步随机接入2-step RA,以及下述至少一种:所述第一类终端的基于2步随机接入的小包数据传输2-step SDT、第二类终端的2-step SDT、所述第二类终端的2-step RA;
    所述接入网设备,用于在所述第二随机接入资源接收第二消息,根据所述第二消息发送第二下行控制信息DCI;所述第二DCI用于调度所述第二消息对应的响应消息,所述第二DCI使用消息B-无线网络临时标识MsgB-RNTI加扰。
  58. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述处理器和所述通信接口用于支持所述通信装置执行如权利要求1-9任一项所述的方法或者 如权利要求10-18任一项所述的方法或者权利要求20-29任一项所述的方法或者权利要求30-39任一项所述的方法或权利要求41-45任一项所述的方法或权利要求46-50任一项所述的方法或者权利要求51-55任一项所述的方法。
  59. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-9任一项所述的方法或者如权利要求10-18任一项所述的方法或者权利要求20-29任一项所述的方法或者权利要求30-39任一项所述的方法或权利要求41-45任一项所述的方法或权利要求46-50任一项所述的方法或者权利要求51-55任一项所述的方法。
  60. 一种计算机程序产品,其中,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-9任一项所述的方法或者如权利要求10-18任一项所述的方法或者权利要求20-29任一项所述的方法或者权利要求30-39任一项所述的方法或权利要求41-45任一项所述的方法或权利要求46-50任一项所述的方法或者权利要求51-55任一项所述的方法。
  61. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-9任一项所述的方法或者如权利要求10-18任一项所述的方法或者权利要求20-29任一项所述的方法或者权利要求30-39任一项所述的方法或权利要求41-45任一项所述的方法或权利要求46-50任一项所述的方法或者权利要求51-55任一项所述的方法。
PCT/CN2022/083520 2021-03-31 2022-03-28 一种随机接入方法及装置 WO2022206715A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202110351822 2021-03-31
CN202110351822.4 2021-03-31
CN202110496503.2 2021-05-07
CN202110496503 2021-05-07
CN202110686684.5 2021-06-21
CN202110686684 2021-06-21
CN202110898685.6 2021-08-05
CN202110898685.6A CN115150967A (zh) 2021-03-31 2021-08-05 一种随机接入方法及装置

Publications (1)

Publication Number Publication Date
WO2022206715A1 true WO2022206715A1 (zh) 2022-10-06

Family

ID=83405323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083520 WO2022206715A1 (zh) 2021-03-31 2022-03-28 一种随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN115150967A (zh)
WO (1) WO2022206715A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478757A (zh) * 2019-01-24 2020-07-31 华为技术有限公司 一种ra-rnti处理方法和装置
WO2020167083A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
CN111615204A (zh) * 2019-05-10 2020-09-01 维沃移动通信有限公司 一种随机接入消息的处理方法和终端
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
WO2021030967A1 (zh) * 2019-08-16 2021-02-25 富士通株式会社 两步随机接入中接收和发送随机接入响应的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478757A (zh) * 2019-01-24 2020-07-31 华为技术有限公司 一种ra-rnti处理方法和装置
WO2020167083A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
CN111615204A (zh) * 2019-05-10 2020-09-01 维沃移动通信有限公司 一种随机接入消息的处理方法和终端
WO2021030967A1 (zh) * 2019-08-16 2021-02-25 富士通株式会社 两步随机接入中接收和发送随机接入响应的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "RNTI design for MsgB reception", 3GPP DRAFT; R2-1910621 RNTI DESIGN FOR MSGB RECEPTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051768396 *

Also Published As

Publication number Publication date
CN115150967A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6732102B2 (ja) ランダムアクセスのための方法及び装置
US11363499B2 (en) Resource configuration method, apparatus, and system
US9794920B2 (en) Base station, method, computer readable medium, and system for radio communication for suppressing load of blind decoding
US20130150109A1 (en) Base station, method for radio communication, program, radio communication system, and radio terminal
CN107005984B (zh) 一种减少资源冲突的方法及ue
KR20170008234A (ko) 강화된 분산형 채널 액세스에서의 소프트 시분할 멀티플렉싱 시그널링
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
WO2021170118A1 (zh) 接入方法及装置
JP7174859B2 (ja) ランダムアクセス方法、装置、及びシステム
US20200178346A1 (en) Wireless communication method and apparatus
WO2021227983A1 (zh) 一种信息传输的方法、装置及系统
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
KR20230056028A (ko) 통신 방법 및 통신 장치
GB2540184A (en) Dynamic ajusting of contention mechanism for access to random resource units in an 802.11 channel
WO2022206715A1 (zh) 一种随机接入方法及装置
US20230042274A1 (en) Enhancements for Reduced Capability New Radio Devices
JP7464798B2 (ja) 情報伝送方法及び装置
WO2022267871A1 (zh) 一种随机接入方法及装置
GB2600393A (en) Low latency reliable service management in a BSS
WO2019129010A1 (zh) 一种通信方法及装置
WO2022252841A1 (zh) 一种随机接入方法及装置
WO2022077470A1 (zh) 数据信道的传输方法
US20230345547A1 (en) Random access method, apparatus, and system
US9585146B2 (en) Method of allocating slot and accessing channel in wireless local area network (WLAN)
EP4161159A1 (en) Enhancements for reduced capability new radio devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778897

Country of ref document: EP

Kind code of ref document: A1