WO2021030967A1 - 两步随机接入中接收和发送随机接入响应的方法及装置 - Google Patents

两步随机接入中接收和发送随机接入响应的方法及装置 Download PDF

Info

Publication number
WO2021030967A1
WO2021030967A1 PCT/CN2019/101111 CN2019101111W WO2021030967A1 WO 2021030967 A1 WO2021030967 A1 WO 2021030967A1 CN 2019101111 W CN2019101111 W CN 2019101111W WO 2021030967 A1 WO2021030967 A1 WO 2021030967A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnti
random access
carrier
offset
index
Prior art date
Application number
PCT/CN2019/101111
Other languages
English (en)
French (fr)
Inventor
张健
蒋琴艳
路杨
张磊
王昕�
Original Assignee
富士通株式会社
张健
蒋琴艳
路杨
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 蒋琴艳, 路杨, 张磊, 王昕� filed Critical 富士通株式会社
Priority to EP19942394.8A priority Critical patent/EP4017127A4/en
Priority to JP2022507889A priority patent/JP2022544210A/ja
Priority to PCT/CN2019/101111 priority patent/WO2021030967A1/zh
Priority to KR1020227004378A priority patent/KR20220034839A/ko
Priority to CN201980099118.5A priority patent/CN114208300B/zh
Publication of WO2021030967A1 publication Critical patent/WO2021030967A1/zh
Priority to US17/590,082 priority patent/US20220225430A1/en
Priority to JP2023178489A priority patent/JP2023171691A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the invention relates to the field of communications.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • SI System Information
  • Random access Random access and other processes.
  • the user equipment After the user equipment obtains downlink synchronization through cell search, it performs random access based on the random access configuration and other information contained in the system information, thereby establishing a connection with the cell and obtaining uplink synchronization.
  • FIG 1 is a schematic diagram of the random access process of LTE.
  • the contention-based random access process is described as an example, which includes at least the following four steps: the user equipment sends a preamble, also known as Msg1; network After receiving the preamble, the device feeds back a random access response (RAR, Random Access Response), also known as Msg2; the user equipment sends Msg3 through the physical uplink shared channel (PUSCH, Physical Uplink Shared Channel); the network device sends the Msg3 through the physical downlink sharing Channel (PDSCH, Physical Downlink Shared Channel) feedback Msg4.
  • RAR Random Access Response
  • PUSCH Physical Uplink shared channel
  • PDSCH Physical Downlink Shared Channel
  • This kind of random access process can be called 4-step random access (4-step RACH).
  • Fig. 2 is a schematic diagram of the random access process of NR (New Radio), which can be called 2-step random access (2-step RACH).
  • NR New Radio
  • 2-step RACH 2-step random access
  • the two-step random access can access the network more quickly.
  • the user equipment sends msgA, where msgA carries at least the preamble and Msg3 information during the four-step random access; the network equipment sends msgB to the user equipment, where msgB at least carries Msg2 (RAR) and Msg4 information during four-step random access.
  • RAR Msg2
  • the time-frequency resource that can be used to send the preamble is called a physical random access channel (PRACH, Physical Random Access Channel) opportunity, or RO for short.
  • PRACH Physical Random Access Channel
  • RO Physical Random Access Channel
  • the user equipment detects Msg2 in the four-step random access or msgB in the two-step random access in a listening window corresponding to its RO.
  • at least one user equipment using four-step random access and at least one user equipment using two-step random access coexist.
  • RA-RNTI Random Access Temporary identification
  • RA-RNTI RA-Radio Network Tempory Identity
  • the user equipment uses the RA-RNTI scrambled DCI through the blind CRC check, which can filter out Msg2 for other ROs (that is, the RO not used by the user equipment itself) , So as to avoid mistaking the Msg2 that is not against the own RO for the own Msg2.
  • embodiments of the present invention provide a method and device for receiving and sending random access responses in two-step random access.
  • a method for receiving a random access response in a two-step random access is applied to a user equipment side.
  • the method includes: calculating a first RNTI, and the first The RNTI is different from the RA-RNTI actually used in the four-step random access; the first RNTI is used in the listening window to detect the downlink control information (DCI, Downlink Control Information) of the scheduling random access response; and when it is successfully detected When the downlink control information is used, a random access response is received on the physical downlink shared channel (PDSCH) according to the downlink control information.
  • DCI Downlink Control Information
  • a method for receiving a random access response in two-step random access is applied to a user equipment side.
  • the method includes: calculating a first RNTI, wherein the The value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access; the first RNTI is used in the listening window to detect downlink control information for scheduling random access responses; and when When the downlink control information is successfully detected, a random access response is received on the physical downlink shared channel according to the downlink control information.
  • a method for sending a random access response in a two-step random access is applied to the network device side.
  • the method includes: calculating a first RNTI, and the first The RNTI is different from the RA-RNTI actually used in the four-step random access; the first RNTI is used to scramble the cyclic redundancy check (CRC) of the downlink control information used to schedule the random access response; and the Downlink control information and the random access response.
  • CRC cyclic redundancy check
  • a method for sending a random access response in a two-step random access is applied to a network device side.
  • the method includes: calculating a first RNTI, wherein the The value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access; the first RNTI is used to perform the cyclic redundancy check of the downlink control information used for scheduling random access responses Scrambling; and sending the downlink control information and random access response.
  • an apparatus for receiving a random access response in a two-step random access is applied to a user equipment side, and the apparatus includes: a first calculation unit configured to calculate The first RNTI, the first RNTI is different from the RA-RNTI actually used in the four-step random access; the first detection unit, which is used for the downlink control of the scheduling random access response using the first RNTI in the listening window Information (DCI, Downlink Control Information); and the first receiving unit, which is used to receive random access on the physical downlink shared channel (PDSCH) according to the downlink control information when the downlink control information is successfully detected Into the response.
  • a first calculation unit configured to calculate The first RNTI, the first RNTI is different from the RA-RNTI actually used in the four-step random access
  • the first detection unit which is used for the downlink control of the scheduling random access response using the first RNTI in the listening window Information (DCI, Downlink Control Information)
  • DCI Downlink Control Information
  • the first receiving unit which is used to receive random access on
  • an apparatus for receiving a random access response in a two-step random access is applied to a user equipment side, and the apparatus includes: a fourth calculation unit for calculating The first RNTI, wherein the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access; the fourth detection unit is configured to use the first RNIT in the listening window The RNTI detects the downlink control information for scheduling random access responses; and the second receiving unit is configured to, when the downlink control information is successfully detected, receive the random access on the physical downlink shared channel according to the downlink control information. Into the response.
  • an apparatus for sending a random access response in two-step random access is applied to the network equipment side, and the apparatus includes: a seventh calculation unit for calculating The first RNTI, the first RNTI is different from the RA-RNTI actually used in the four-step random access; the first scrambling unit, which is used to use the first RNTI to control the downlink control information used for scheduling random access responses Cyclic redundancy check (CRC) for scrambling; and a first sending unit for sending the downlink control information and the random access response.
  • a seventh calculation unit for calculating The first RNTI, the first RNTI is different from the RA-RNTI actually used in the four-step random access the first scrambling unit, which is used to use the first RNTI to control the downlink control information used for scheduling random access responses Cyclic redundancy check (CRC) for scrambling
  • CRC Cyclic redundancy check
  • an apparatus for sending a random access response in two-step random access is applied to the network equipment side, and the apparatus includes: a tenth calculation unit for calculating The first RNTI, wherein the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access; the second scrambling unit is used to use the first RNTI pair Scrambling is performed on the cyclic redundancy check of the downlink control information of the scheduling random access response; and a second sending unit configured to send the downlink control information and the random access response.
  • a user equipment including the apparatus according to the fifth aspect or the sixth aspect of the embodiments of the present invention.
  • a network device including the device according to the seventh aspect or the eighth aspect of the embodiments of the present invention.
  • a communication system includes the user equipment according to the ninth aspect of the embodiments of the present invention and/or the user equipment according to the tenth aspect of the embodiments of the present invention.
  • the described network equipment includes the user equipment according to the ninth aspect of the embodiments of the present invention and/or the user equipment according to the tenth aspect of the embodiments of the present invention.
  • a computer-readable program wherein when the program is executed in an apparatus or user equipment that receives a random access response in two-step random access, the program causes The apparatus or user equipment for receiving a random access response in the two-step random access executes the method for receiving a random access response in the two-step random access described in the first aspect or the second aspect of the embodiment of the present invention.
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables an apparatus or user equipment receiving a random access response in two-step random access to execute The method for receiving a random access response in the two-step random access described in the first aspect or the second aspect of the embodiment of the present invention.
  • a fourteenth aspect of the embodiments of the present invention there is provided a computer-readable program, wherein when the program is executed in an apparatus or network device that sends a random access response in two-step random access, the program causes The apparatus or network device for sending a random access response in the two-step random access executes the method for receiving a random access response in the two-step random access described in the third aspect or the fourth aspect of the embodiment of the present invention.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes an apparatus or network device that sends a random access response in two-step random access to execute The method for receiving a random access response in the two-step random access described in the third aspect or the fourth aspect of the embodiment of the present invention.
  • the beneficial effect of the embodiments of the present invention is that by using an RNTI different from the RA-RNTI actually used in the four-step random access to perform CRC scrambling on the DCI for scheduling msgB, the confusion of the RNTI in the two-step random access can be avoided, That is to say, user equipment that can avoid two-step random access will not be the msgB or Msg2 for its own RO, and the user equipment that can avoid four-step random access will not be the msgB for its own RO. Misunderstood the Msg2 for own RO.
  • FIG. 1 is a schematic diagram of the random access process of LTE
  • Figure 2 is a schematic diagram of a random access process of NR (New Radio);
  • Figure 3 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an example of a random access process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another example of a random access process according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another example of a random access process according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of the offset of Embodiment 1 of the present invention.
  • FIG. 10 is another schematic diagram of the offset of Embodiment 1 of the present invention.
  • FIG. 11 is another schematic diagram of the offset of Embodiment 1 of the present invention.
  • FIG. 12 is another schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 1 of the present invention.
  • FIG. 13 is a schematic diagram of another example of the random access process of Embodiment 1 of the present invention.
  • FIG. 14 is a schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 3 of the present invention.
  • FIG. 16 is another schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 4 of the present invention.
  • FIG. 18 is a schematic diagram of a method for sending and receiving random access responses in two-step random access according to Embodiment 5 of the present invention.
  • FIG. 19 is another schematic diagram of a method for sending and receiving random access responses in two-step random access according to Embodiment 5 of the present invention.
  • FIG. 20 is another schematic diagram of a method for sending and receiving a random access response in a two-step random access according to Embodiment 6 of the present invention.
  • FIG. 21 is a schematic diagram of an apparatus for receiving a random access response in a two-step random access according to Embodiment 7 of the present invention.
  • FIG. 22 is a schematic diagram of the first calculation unit 2101 of Embodiment 7 of the present invention.
  • FIG. 23 is a schematic diagram of the first detection unit 2102 of Embodiment 7 of the present invention.
  • FIG. 24 is a schematic diagram of an apparatus for receiving a random access response in a two-step random access according to Embodiment 8 of the present invention.
  • FIG. 25 is a schematic diagram of a fourth calculation unit 2401 of Embodiment 8 of the present invention.
  • 26 is a schematic diagram of a device for sending a random access response in a two-step random access according to Embodiment 9 of the present invention.
  • FIG. 27 is a schematic diagram of a seventh calculation unit 2601 of Embodiment 9 of the present invention.
  • FIG. 28 is a schematic diagram of an apparatus for sending a random access response in a two-step random access according to Embodiment 10 of the present invention.
  • FIG. 29 is a schematic diagram of the tenth calculation unit 2801 of Embodiment 10 of the present invention.
  • FIG. 30 is a schematic block diagram of the system configuration of user equipment according to Embodiment 11 of the present invention.
  • FIG. 31 is a schematic diagram of a structure of a network device according to Embodiment 12 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelations, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • Network device refers to, for example, a device in a communication system that connects user equipment to a communication network and provides services for the user equipment.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present invention, which schematically illustrates a case where user equipment and network equipment are taken as an example.
  • the communication system 100 may include: a network equipment 101 and a user equipment 101.
  • FIG. 3 only uses one user equipment as an example for illustration.
  • the network device 101 is, for example, a network device gNB of NR.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the user equipment 102 may send data to the network device 101, for example, initiate a random access process.
  • the random access process may be a four-step random access (4-step RACH) or a two-step random access (2 -step RACH).
  • the user equipment that may cause the two-step random access will not be the msgB for its own RO Or Msg2 mistakenly thinks it is the msgB for its own RO, or the user equipment causing the four-step random access will mistake the msgB for its own RO and mistake it for the Msg2 for its own RO.
  • Fig. 4 is a schematic diagram of an example of a random access process according to an embodiment of the present invention. As shown in Figure 4, it is assumed that unpaired spectrum (unpaired spectrum) or Time Division Duplex (TDD, Time Division Duplex) spectrum is used, and the subcarrier spacing is 15kHz, and no SUL (Supplementary Uplink) carrier is configured. RO of 2-step RACH and 4-step RACH are multiplexed in TDM mode.
  • unpaired spectrum unpaired spectrum
  • TDD Time Division Duplex
  • SUL Supplemental Uplink
  • the PRACH configuration index of 4-step RACH is configured to 5
  • the PRACH configuration index of 2-step RACH is configured to 6 .
  • the RO of the 4-step RACH is located in the time slot with index 4 in the even system frame
  • the RO of the 2-step RACH is located in the time slot with index 4 in the odd system frame.
  • Figure 2 shows the parameter definitions of 2-step RACH and 4-step RACH with the same frequency resource index See section 6.3.3.2 of TS38.211V15.6.0.
  • PUSCH occasion is abbreviated as PO, which represents the time-frequency resource of PUSCH.
  • the PUSCH is located in an adjacent time slot after the RO, and there is no restriction on the size and location of the frequency domain resource of the PUSCH.
  • 2-step RACH has msgB monitoring window (msgB monitoring window).
  • the RAR monitoring window is located after the preamble, and the msgB monitoring window is located after the PUSCH (PO).
  • Figure 4 collectively refers to the RAR monitoring window and msgB monitoring window as the monitoring window.
  • the length of the monitoring window is 10 milliseconds (ms)
  • the monitoring window of 2-step RACH and the monitoring window of 4-step RACH overlap in time.
  • the value of RA-RNTI has a period of 10 milliseconds, so RO1 and RO2 in Figure 2 will have the same RA-RNTI, that is, RNTI is confused.
  • the 2-step RACH user will mistakenly send the Msg2 originally sent to the 4-step RACH user (this Msg2 is for RO1) as sent to himself
  • the 4-step RACH user will also mistake the msgB originally sent to the 2-step RACH user (the msgB is for RO2) as the Msg2 sent to him. Since RO1 and RO2 can use the same preamble, the user cannot tell whether the preamble belongs to 2-step RACH (corresponding to RO2) or 4-step by the RAPID (Random Access Preamble Identifier, or preamble ID) in the MAC PDU. step RACH (corresponding to RO1).
  • RAPID Random Access Preamble Identifier, or preamble ID
  • Fig. 5 is a schematic diagram of another example of a random access process in an embodiment of the present invention.
  • the RO of 2-step RACH and 4-step RACH is multiplexed in FDM mode. More specifically, in the time domain, according to Table 6.3.3.2-3 of 3GPP TS 38.211 V15.6.0, the PRACH configuration index of 4-step RACH is configured to 5, and the PRACH configuration of 2-step RACH is configured The index configuration is 5.
  • the ROs of the 4-step RACH and the 2-step RACH are configured to occupy different frequency resources, that is, they are multiplexed in the same time slot in the FDM manner.
  • Other parameter configurations are the same as in Figure 4.
  • the frequency resource index n RA (or f_id) of the two is identified from 0. If 2-step RACH reuses the RA-RNTI calculation method, because 2-step RACH and 4-step RACH have the same frequency resource index n RA (or f_id), RO1 and RO2 will have the same RA-RNTI. Overlapping parts will cause RNTI confusion.
  • 4-step RACH only detects preamble.
  • 2-step RACH not only needs to detect preamble, but also needs to demodulate and decode PUSCH, which requires longer processing time than 4-step RACH. Therefore, 2-step RACH can be configured with a longer listening window length than 4-step RACH.
  • the maximum 4-step RACH monitoring window length is 10 milliseconds, and the 2-step RACH maximum monitoring window length can be greater than the 4-step RACH maximum monitoring window length, that is, greater than 10 milliseconds.
  • the 2-step RACH monitoring window length is configured to be greater than the 4-step RACH maximum monitoring window length, as shown in Figure 4, the 2-step RACH monitoring window and the 4-step RACH monitoring window will have more parts in time Therefore, reusing the 4-step RACH RA-RNTI method will also cause 2-step RACH users to mistake 4-step RACH users’ Msg2 as msgB for their RO, or 4-step RACH users to 2-step RACH The user's msgB is mistakenly regarded as the Msg2 for his RO.
  • the 2-step RACH monitoring window length is configured to be greater than the 4-step RACH maximum monitoring window length
  • reusing the 4-step RACH RA-RNTI method will also cause the 2-step RACH user to change other 2-step RACH users’ msgB was mistakenly regarded as msgB for its own RO.
  • Fig. 6 is a schematic diagram of another example of a random access process according to an embodiment of the present invention.
  • the PRACH configuration index (PRACH configuration index) of the 2-step RACH is configured to 12.
  • the RO of the 2-step RACH is located in the time slot with index 4 in each system frame.
  • the frequency domain there is no restriction on the frequency resource configuration of the 2-step RACH.
  • Figure 6 shows the 2-step RACH with the same frequency resource index.
  • Figure 6 assumes that the length of the listening window is 20 ms, which is greater than the maximum length of the listening window configurable for 4-step RACH of 10 ms.
  • the two listening windows of 2-step RACH overlap in time. If 2-step RACH reuses 4-step RACH RA-RNTI, RO1 and RO2 in Figure 6 will have the same RA-RNTI value. Within the time range when the two listening windows overlap, 2-step RACH users will Mistake the msgB originally sent to other 2-step RACH users as the msgB sent to yourself.
  • the maximum listening window length of 2-step RACH is greater than the maximum listening window length of 4-step RACH
  • reusing the RA-RNTI method of 4-step RACH will result in both 2-step RACH and 4-step RACH
  • the confusion of RNTI will cause the confusion of the RNTI of the 2-step RACH itself.
  • the embodiment of the present invention provides a method for receiving a random access response in two-step random access, and the method is applied to the user equipment side.
  • FIG. 7 is a schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 1 of the present invention. As shown in FIG. 7, the method includes:
  • Step 701 Calculate the first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • Step 702 Use the first RNTI in the listening window to detect downlink control information (DCI, Downlink Control Information) for scheduling random access responses; and
  • DCI Downlink Control Information
  • Step 703 When the downlink control information is successfully detected, receive a random access response on the physical downlink shared channel (PDSCH) according to the downlink control information.
  • PDSCH physical downlink shared channel
  • the confusion of the RNTI in the two-step random access can be avoided, that is to say, both can be avoided.
  • the user equipment with random access will not mistake the msgB or Msg2 for its own RO as the msgB for its own RO, and it can avoid that the user equipment with the four-step random access will not mistake the msgB for its own RO for its own RO. Msg2.
  • step 701 a first RNTI that is different from the RA-RNTI actually used in the four-step random access is calculated, and the first RNTI may be represented by msgB-RNTI, for example.
  • msgB can be carried by one MAC PDU (that is, one PDSCH).
  • the first RNTI can be calculated based on the second RNTI and the offset.
  • msgB-RNTI represents the first RNTI
  • offset represents the offset
  • RA-RNTI 2-step represents the second RNTI
  • the offset offset is used to avoid confusion between msgB-RNTI in two-step random access and RA-RNTI in four-step random access, and RA-RNTI 2-step is used to avoid confusion in two-step random access.
  • RNTI is confused. In other words, the user equipment with two-step random access will not mistake the Msg2 of the user equipment with four-step random access as msgB for its own RO, and the user equipment with four-step random access will not use the two-step random access.
  • the msgB of the user equipment is mistakenly regarded as the Msg2 for its own RO, and the user equipment of the two-step random access will not mistake the msgB of the other two-step random access user equipment as the msgB for its own RO.
  • the offset may be configured by the network device.
  • the offset can be configured by the network device through at least one of the following methods: broadcast message; RRC signaling; and MAC CE (MAC control element).
  • the broadcast message may be system information SIB1 or MIB.
  • the specific value of the offset is not limited.
  • the offset offset may be greater than or equal to a value determined according to one of the following: the value range of the RA-RNTI; the value range of the RA-RNTI and the configuration information of the second carrier; the value of the RA-RNTI Value range, configuration information of the second carrier and the first PRACH configuration information of the four-step random access on the second carrier; configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier And the second PRACH configuration information of the four-step random access on the first carrier.
  • the RA-RNTI is a four-step random access RA-RNTI.
  • the RA-RNTI can be calculated according to the following formula (2):
  • RA-RNTI 4-step 1+s_id 4-step +14 ⁇ t_id 4-step +14 ⁇ 80 ⁇ f_id 4-step +14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id 4-step (2)
  • RA-RNTI 4-step represents the RA-RNTI of four-step random access
  • s_id 4-step represents the index of the first symbol where the RO of four-step random access is located, 0 ⁇ s_id 4-step ⁇ 14
  • t_id 4-step represents the index of the first time slot where RO is located in a system frame SFN, 0 ⁇ t_id 4-step ⁇ 80
  • f_id 4-step represents the index of the frequency resource where RO is located in the frequency domain, 0 ⁇ f_id 4-step ⁇ 8, up to 8 ROs can be configured in FDM in the frequency domain
  • the first carrier is a NUL (Normal Uplink) carrier
  • the second carrier is a SUL (Supplementary Uplink) carrier.
  • the offset offset is greater than or equal to the value determined according to the value range of the RA-RNTI, for example, it can be calculated according to the following formula (3):
  • max ⁇ 4-step RA-RNTI that can be used by RACH ⁇ represents the maximum value of RA-RNTI that can be used in four-step random access, that is, the offset can be greater than or equal to all possible values of the RA-RNTI The maximum value.
  • 17920 is the maximum value of RA-RNTI that can be used in four-step random access, that is, the maximum value of all possible values of the RA-RNTI.
  • the value range of the msgB-RNTI of the 2-step RACH can be compared with The value range of RA-RNTI of 4-step RACH does not overlap, so it can be guaranteed that msgB-RNTI of 2-step RACH and RA-RNTI of 4-step RACH will not have the same value, because different RNTIs are used
  • 2-step RACH msgB and 4-step RACH Msg2 2-step RACH users will not mistake 4-step RACH user’s Msg2 as msgB for their own RO, 4-step RACH users will not take 2-step
  • the msgB of the RACH user is mistakenly regarded as the Msg2 for the RO.
  • FIG. 8 is a schematic diagram of the offset of Embodiment 1 of the present invention.
  • the RA-RNTI value range of the 4-step RACH is shown in the form of a two-dimensional graph.
  • Each box in Figure 8 represents a possible RA-RNTI value, which depends on the PRACH resource configuration. Not all RA-RNTI will be used.
  • the filled box represents the RA-RNTI actually used, so it is distinguished List the available RA-RNTI and the actual RA-RNTI.
  • RA-RNTI is uniquely determined by the time index (s_id, t_id), frequency index (f_id), and carrier index (ul_carrier_id) corresponding to RO.
  • RA-RNTI increases as the time index (s_id, t_id) increases, and with the frequency index ( f_id) increases as the carrier index (ul_carrier_id) increases.
  • the above formulas (4 and (5) are equivalent to setting the offset to be greater than or equal to the maximum value of all possible values of RA-RNTI, as shown in Figure 8.
  • the minimum value of offset can be regarded as the value of all available RA-RNTI
  • the value space is the granularity.
  • the offset offset is greater than or equal to a value determined according to the RA-RNTI value range and the configuration information of the second carrier. For example, it can be calculated according to the following formula (5):
  • ul_carrier_id represents the index of the uplink carrier used to send the preamble
  • the maximum value of all possible values of this RA-RNTI, max ⁇ 4-step RA-RNTI that can be used by RACH ⁇ represents the maximum value of RA-RNTI that can be used in four-step random access.
  • 8960 is the maximum value of all possible RA-RNTI values that satisfy the condition that the index of the uplink carrier used to transmit the preamble is zero
  • 17920 is the maximum value of RA-RNTI that can be used in four-step random access .
  • 2-step RACH users can know SUL carrier configuration information by receiving system information SIB1, and the SUL carrier configuration information includes at least whether the SUL carrier is configured.
  • the above information can be used to further determine the value range of the 4-step RACH RA-RNTI. If the SUL carrier is not configured, according to TS 38.321 V15.6.0, section 5.1.3, since ul_carrier_id cannot be set to 1, the value range of RA-RNTI for 4-step RACH is determined to be 1 to 8960.
  • the offset When setting the offset to be greater than or equal to 8960, it can avoid overlapping with the range of msgB-RNTI of 2-step RACH; otherwise, if SUL carrier is configured, set the range of RA-RNTI of 4-step RACH It is determined to be 1 to 17920. In this case, the offset needs to be set to be greater than or equal to 17920 to avoid overlapping with the range of msgB-RNTI of 2-step RACH. In this way, 2-step RACH users will not mistake the Msg2 of 4-step RACH users as their own msgB, and 4-step RACH users will not mistake the msgB of 2-step RACH users as their own Msg2.
  • FIG. 9 is another schematic diagram of the offset of Embodiment 1 of the present invention.
  • the offset offset is greater than or equal to a value determined according to the RA-RNTI value range, the configuration information of the second carrier, and the first PRACH configuration information of the four-step random access on the second carrier, for example, It can be calculated according to the following formula (7):
  • ul_carrier_id represents the index of the uplink carrier used to send the preamble
  • the maximum value of all possible values of the RA-RNTI under one condition, max ⁇ 4-step RA-RNTI that can be used by RACH ⁇ represents the maximum value of RA-RNTI that can be used in four-step random access.
  • 8960 is the maximum value of all possible RA-RNTI values that satisfy the condition that the index of the uplink carrier used to transmit the preamble is zero
  • 17920 is the maximum value of RA-RNTI that can be used in four-step random access .
  • 2-step RACH users can know SUL carrier configuration information (including at least whether the SUL carrier is configured) by receiving the system information SIB1, and know the first PRACH configuration information of the 4-step RACH on the SUL carrier, the first PRACH
  • the configuration information includes at least whether PRACH resources are configured with 4-step RACH. If the SUL carrier is not configured, or the SUL carrier is configured, but the SUL carrier is not configured with 4-step RACH PRACH resources, the value range of 4-step RACH RA-RNTI is determined to be 1-8960.
  • the offset can be set to be greater than or equal to 8960 to avoid overlapping with the range of msgB-RNTI of 2-step RACH; otherwise, the range of RA-RNTI of 4-step RACH is determined to be 1 to 17920. At this time, it is necessary to set the offset to be greater than or equal to 17920 to avoid overlapping with the range of msgB-RNTI of 2-step RACH. In this way, 2-step RACH users will not mistake the Msg2 of 4-step RACH users as their own msgB, and 4-step RACH users will not mistake the msgB of 2-step RACH users as their own Msg2.
  • the visualization of formulas (7) and (8) can be seen in Figure 9.
  • the offset offset is determined according to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier.
  • the offset can be calculated according to the following formula (9):
  • the msg1-FDM value is one of 1, 2, 4, and 8, which is used to indicate how many of them exist in the frequency domain in FDM mode Multiplexed RO.
  • 2-step RACH users can know the SUL carrier configuration information (including at least whether the SUL carrier is configured) by receiving the system information SIB1, and can obtain the second PRACH configuration information of the 4-step RACH on the NUL and/or SUL carrier
  • the second PRACH configuration information includes at least whether the PRACH resource of the 4-step RACH is configured and the specific PRACH resource configuration of the 4-step RACH.
  • the PRACH resource configuration includes high-level parameters msg1-FDM. The above information can be used to further determine the value range of the RA-RNTI of the 4-step RACH.
  • the value range of 4-step RACH RA-RNTI is determined as At this time, set the offset to be greater than or equal to It can avoid the overlap of the RNTI value range of 4-step RACH and 2-step RACH; otherwise, determine the value range of RA-RNTI of 4-step RACH as At this time, set the offset to be greater than or equal to To avoid the overlap of the RNTI range of 4-step RACH and 2-step RACH.
  • 2-step RACH users will not mistake the Msg2 of 4-step RACH users as their own msgB
  • 4-step RACH users will not mistake the msgB of 2-step RACH users as their own Msg2.
  • FIG. 10 is another schematic diagram of the offset of Embodiment 1 of the present invention.
  • the minimum value of the offset is based on the granularity of f_id, or the “row” in FIG. 10 is used as the granularity for offset.
  • the offset offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH of the four-step random access on the first carrier.
  • the value determined by the configuration information can be calculated according to the following formula (10):
  • max ⁇ 4-step RA-RNTI actually used by RACH ⁇ represents the largest RA-RNTI actually used.
  • 2-step RACH users can know SUL carrier configuration information by receiving system information SIB1.
  • the SUL carrier configuration information includes at least whether the SUL carrier is configured, and can obtain the 4-step RACH on the NUL and/or SUL carrier.
  • PRACH configuration information includes at least whether the PRACH resource of the 4-step RACH is configured and the specific PRACH resource configuration of the 4-step RACH.
  • the PRACH resource configuration includes all the necessary information for calculating the RA-RNTI of the 4-step RACH.
  • 2-step RACH users can obtain all the RA-RNTI values that have been used by 4-step RACH in the current period, so you can choose offset to be greater than or equal to the maximum value of all RA-RNTI values, which can avoid 4
  • the RNTI range of -step RACH and 2-step RACH overlap In this way, 2-step RACH users will not mistake the Msg2 of 4-step RACH users as their own msgB, and 4-step RACH users will not mistake the msgB of 2-step RACH users as their own Msg2.
  • FIG. 11 is another schematic diagram of the offset of Embodiment 1 of the present invention.
  • the minimum value of the offset is based on the grid in Figure 11 as the granularity.
  • the method for determining the second RNTI is exemplarily explained according to the relationship between the length of the listening window (which may be referred to as the msgB listening window) of two-step random access and the length of the listening window of four-step random access.
  • the second RNTI is based on the first one where the RO of the two-step random access is located.
  • the index of each symbol, the index of the first time slot in a system frame, the index of the frequency resource where it is located, and the index of the uplink carrier used to send the preamble are determined.
  • the second RNTI can be calculated with reference to the RA-RNTI of four-step random access.
  • the second RNTI can be calculated according to the following formula (11):
  • RA-RNTI 2-step 1+s_id 2-step +14 ⁇ t_id 2-step +14 ⁇ 80 ⁇ f_id 2-step +14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id 2-step (11)
  • RA-RNTI 2-step means the second RNTI
  • s_id 2-step means the index of the first symbol where the RO for two -step random access is located, 0 ⁇ s_id 2-step ⁇ 14
  • t_id 2-step means in one The index of the first time slot where the RO is located in the system frame SFN, 0 ⁇ t_id 2-step ⁇ 80
  • f_id 2-step represents the index of the frequency resource where the RO is located in the frequency domain, 0 ⁇ f_id 2-step ⁇ 8, Up to 8 ROs can be configured in FDM in the frequency domain
  • condition 1 is "if the SUL carrier is not configured”
  • condition 2 is "if the SUL carrier is not configured, or the SUL carrier is configured but the SUL carrier is not configured with 4-step RACH PRACH resources”
  • the meaning of other parameters can be See formula (11), which will not be repeated here.
  • the second RNTI is based on the first one where the RO of the two-step random access is located.
  • the index of the symbol, the index of the first time slot in a system frame, the index of the frequency resource, the index of the uplink carrier used to send the preamble, the index of the system frame, and the maximum monitoring corresponding to the subcarrier interval The window length is determined, or the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO for two-step random access, the index of the first time slot in a system frame, and the The frequency resource index, the uplink carrier index used to send the preamble, the system frame index, and the maximum listening window length are determined.
  • 10240 can be evenly divided by the maximum listening window length in milliseconds.
  • the second RNTI can be calculated according to the following formula (15):
  • RA-RNTI 2-step 1+s_id 2-step +14 ⁇ t_id_new+14 ⁇ W ⁇ f_id 2-step +14 ⁇ W ⁇ 8 ⁇ ul_carrier_id 2-step
  • t_id_new mod(t_id 2-step +2 ⁇ ⁇ 10 ⁇ SFN_id,W) (15)
  • the carrier spacing corresponds to ⁇ values of 0, 1, 2, and 3 respectively.
  • For the strict definition of ⁇ , refer to section 5.1.3 of TS 38.321 V15.6.0 Represents the maximum monitoring window length corresponding to 15 ⁇ 2 ⁇ kHz sub-carrier spacing, The unit is ms, Greater than the maximum monitoring window length of 4-step RACH (for example, 10 milliseconds), different sub-carrier intervals can have independent maximum monitoring window lengths W represents the number of time slots included in the monitoring window; SFN_id represents the SFN index, 0 ⁇ SFN_id ⁇ 1024; t_id_new represents the number of the time slot in the monitoring window, 0 ⁇ t_id_new ⁇ W, that is, the period is W; RA-RNTI 2- Step can avoid confusion of RNTI of 2-step RACH.
  • the RA-RNTI 2-step in equation (15) is related to ⁇ , and ⁇ is used for RA-RNTI 2-step calculation.
  • is used for RA-RNTI 2-step calculation.
  • the variables t_id_new corresponding to RO1 and RO2 are 4 and 14, respectively, and the other variables corresponding to RO1 and RO2 are the same, so the RA calculated for RO1 and RO2 -RNTI 2-step is different from each other, thus avoiding RNTI confusion of 2-step RACH.
  • Formula (1) further avoids the confusion of RNTI of 2-step RACH and 4-step RACH through offset.
  • RA-RNTI 2-step can also be calculated independently of ⁇ .
  • RA-RNTI 2-step 1+s_id 2-step +14 ⁇ t_id_new+14 ⁇ W ⁇ f_id 2-step +14 ⁇ W ⁇ 8 ⁇ ul_carrier_id 2-step
  • the RA-RNTI 2-step of formula (16) has nothing to do with ⁇ .
  • the effect obtained is similar to the previous one, and will not be repeated here.
  • the method for determining the second RNTI is exemplarily explained based on the relationship between the length of the listening window of the two-step random access and the length of the listening window of the four-step random access.
  • the first RNTI is calculated through step 701, and in step 702, the first RNTI is used in the listening window to detect downlink control information (DCI, Downlink Control Information) for scheduling random access responses.
  • DCI Downlink Control Information
  • the specific detection method can refer to related prior art.
  • step 703 when the DCI is successfully detected, a random access response is received on the PDSCH according to the DCI.
  • Example 2 how to receive the random access response when the msgB is carried by two MAC PDUs (that is, two PDSCHs) is described.
  • msgB is divided into fallbackRAR (or Msg2-like msgB) and successRAR (or Msg4-like msgB).
  • fallbackRAR or Msg2-like msgB
  • successRAR or Msg4-like msgB.
  • 2-step RACH when the network device detects the presence of a preamble, but fails to correctly demodulate and decode the PUSCH associated with the preamble, the network device sends fallbackRAR to instruct users with two-step random access to send Msg3, which is equivalent From fallback to four-step random access; when the network device detects the presence of the preamble and correctly demodulates and decodes the PUSCH associated with the preamble, the network device sends successRAR to indicate the user access of the two-step random access Into success.
  • msgB-RNTI-1 and msgB-RNTI-2 are used for fallbackRAR and successRAR, respectively.
  • msgB-RNTI-1 and msgB-RNTI-2 are used for fallbackRAR and successRAR, respectively.
  • msgB is carried by one MAC PDU
  • the fallbackRAR and successRAR are carried by one MAC PDU.
  • the first RNTI includes a third RNTI and/or a fourth RNTI.
  • FIG. 12 is another schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 1 of the present invention. As shown in FIG. 12, the method includes:
  • Step 1201 Calculate the third RNTI and/or the fourth RNTI, where the third RNTI and the fourth RNTI are different from the RA-RNTI actually used in the four-step random access;
  • Step 1202 Use the third RNTI in the listening window to detect the first downlink control information for scheduling the first random access response; and/or use the fourth RNTI to schedule the second random access in the listening window The second downlink control information in response is detected; and
  • Step 1203 When the first downlink control information is successfully detected, according to the first downlink control information, receive the first random access response on the first physical downlink shared channel (PDSCH), and/or when successful When the second downlink control information is detected, the second random access response is received on the second physical downlink shared channel (PDSCH) according to the second downlink control information.
  • PDSCH physical downlink shared channel
  • the third RNTI may be expressed as msgB-RNTI-1
  • the fourth RNTI may be expressed as msgB-RNTI-2.
  • step 1201 for example, the third RNTI is calculated according to the fifth RNTI and the first offset; and/or the fourth RNTI is calculated according to the fifth RNTI, the first offset, and the second offset.
  • the third RNTI and the fourth RNTI can be calculated according to the following formulas (17) and (18):
  • msgB-RNTI-2 offset1+offset2+RA-RNTI 2-step (18)
  • msgB-RNTI-1 represents the third RNTI
  • msgB-RNTI-2 represents the fourth RNTI
  • offset1 represents the first offset
  • offset2 represents the second offset
  • RA-RNTI 2-step represents the fifth RNTI.
  • msgB-RNTI-1 is used for fallbackRAR
  • msgB-RNTI-2 is used for successRAR
  • msgB-RNTI-1 is used for successRAR
  • msgB-RNTI-2 is used for fallbackRAR .
  • the first offset offset1 and the second offset offset2 may be configured by the network device.
  • the first offset offset1 and the second offset offset2 may be configured by the network device through at least one of the following methods: broadcast message; RRC signaling; and MAC CE (MAC control element).
  • the broadcast message may be system information SIB1 or MIB.
  • the specific values of the first offset offset1 and the second offset offset2 are not limited.
  • the method for determining the first offset offset1 may be the same as the method for determining the offset offset in Example 1) above.
  • the first offset offset1 may be greater than or equal to a value determined according to one of the following: the value range of the RA-RNTI; the value range of the RA-RNTI and the configuration information of the second carrier; the RA-RNTI The value range of the second carrier, the configuration information of the second carrier, and the first PRACH configuration information of the four-step random access on the second carrier; the configuration information of the second carrier, the second PRACH of the four-step random access on the second carrier Configuration information and the second PRACH configuration information of the four-step random access on the first carrier.
  • the first offset offset1 can be calculated according to any one of formulas (3)-(10) in the above example 1).
  • the method for determining the second offset offset2 can be similar to the method for determining the offset offset above.
  • the corresponding four-step random access parameters need to be replaced with two-step random access during calculation. Input parameters.
  • the second offset is greater than or equal to a value determined according to one of the following: the value range of the fifth RNTI; the value range of the fifth RNTI and the configuration information of the second carrier; the value of the fifth RNTI Value range, configuration information of the second carrier, and first PRACH configuration information of two-step random access on the second carrier; configuration information of the second carrier, second PRACH configuration information of two-step random access on the second carrier And the second PRACH configuration information of the two-step random access on the first carrier.
  • the second offset is greater than or equal to one of the following values: the maximum value of all possible values of the fifth RNTI; the condition that the index of the uplink carrier used for transmitting the preamble is zero is satisfied.
  • RA-RNTI 2-step in the above formulas (19), (20), (21), (22), (23) represents the fifth RNTI, and the meaning of other parameters can refer to formulas (3), (5) The meaning of the corresponding parameters in (7), (9) and (10) will not be repeated here.
  • the fifth RNTI can be obtained by a method similar to the calculation of the second RNTI in the above example 1).
  • the fifth RNTI is based on the first RO where the two-step random access is located.
  • the index of each symbol, the index of the first time slot in a system frame, the index of the frequency resource where it is located, and the index of the uplink carrier used to send the preamble are determined.
  • the fifth RNTI can be calculated by referring to formula (11) in Example 1).
  • the fifth RNTI is based on the first one where the RO of the two-step random access is located.
  • the index of the symbol, the index of the first time slot in a system frame, the index of the frequency resource, the index of the uplink carrier used to send the preamble, the index of the system frame, and the maximum monitoring corresponding to the subcarrier interval The window length is determined, or the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO for two-step random access, the index of the first time slot in a system frame, and the The frequency resource index, the uplink carrier index used to send the preamble, the system frame index, and the maximum listening window length are determined.
  • 10240 can be evenly divided by the maximum listening window length in milliseconds.
  • the fifth RNTI can be calculated by referring to formula (15) or (16) in Example 1).
  • steps 1202 and 1203 are similar to steps 702 and 703, and will not be repeated here.
  • the fifth RNTI is based on the index of the first symbol where the RO of the two-step random access is located.
  • the index of the first time slot in a system frame, the index of the frequency resource where it is located, and the index of the uplink carrier used to send the preamble are determined, and the first offset is equal to zero.
  • 2-step RACH can use the same RO as 4-step RACH, or use a different RO from 4-step RACH.
  • the two using the same RO can also be called a shared RO (shared RO), and the two using different ROs can also be called a separate RO (separated RO).
  • 2-step RACH and 4-step RACH use the same RO
  • 2-step RACH and 4-step RACH use different preambles, that is, use preamble to distinguish 2-step RACH from 4-step RACH; when 2
  • 2-step RACH and 4-step RACH can be distinguished by RO, so 2-step RACH and 4-step RACH can use the same preamble.
  • 2-step RACH uses the same RO as 4-step RACH, or uses a different RO from 4-step RACH
  • the above methods are applicable, that is, when fallbackRAR and successRAR are carried by one MAC PDU, msgB-RNTI is used msgB; when fallbackRAR and successRAR are carried by two MAC PDUs respectively, msgB-RNTI-1 and msgB-RNTI-2 are used for fallbackRAR and successRAR respectively.
  • msgB-RNTI-1 RA-RNTI 2-step is used for fallbackRAR
  • RNTI can be divided into the following two situations: for fallbackRAR and successRAR are carried by two MAC PDUs, and 2-step RACH uses the same RO as 4-step RACH, only a new RNTI ( msgB-RNTI); for fallbackRAR and successRAR carried by two MAC PDUs, and 2-step RACH uses a different RO from 4-step RACH, use two new RNTIs (ie msgB-RNTI-1 and msgB -RNTI-2).
  • offset1 and offset2 can be configured by network equipment, fallbackRAR and successRAR are carried by two MAC PDUs respectively, and 2-step RACH uses the same RO as 4-step RACH, network equipment can configure offset1 to be equal to 0.
  • Table 1 summarizes the usage of RNTI.
  • time slot or symbol configured to send the preamble and/or PUSCH is not available, such as the time slot or symbol of a certain time slot.
  • a group of symbols are downlink or flexible symbols, or if the user needs to cancel the preamble transmission or cancel the PUSCH transmission on a group of symbols in a certain time slot, the time slot or symbol is considered unavailable at this time.
  • For strict conditions for users to cancel the preamble and/or PUSCH transmission please refer to section 11.1 of TS 38.213 V15.6.0, which will not be repeated here.
  • the user can still use the time slot or symbol where the preamble is located to send the preamble, that is, fall back to being used as a traditional 4-step RACH.
  • the monitoring window will start after the time slot or symbol where the preamble is located.
  • the listening window cannot start after the time slot or symbol where the preamble is located, otherwise it will cause RNTI confusion.
  • FIG. 13 is a schematic diagram of another example of the random access process in Embodiment 1 of the present invention.
  • the PRACH configuration index (PRACH configuration index) of the 2-step RACH is configured to 12.
  • the RO of the 2-step RACH is located in the time slot with index 4 in each system frame.
  • FIG. 13 shows the 2-step RACH with the same frequency resource index.
  • Figure 13 assumes that the length of the listening window is 10 milliseconds, and the maximum length of the listening window is also 10 milliseconds.
  • time slot 5 of SFN#1 in Figure 13 is configured as PO, according to the conditions of section 11.1 of TS 38.213 V15.6.0, this time slot cannot be used for PUSCH transmission, but RO2 can still be used for transmitting preamble.
  • the monitoring window corresponding to RO2 starts from time slot 5, but the monitoring window will overlap with the monitoring window of RO1, and because RO1 and RO2 correspond to the same RNTI , So RNTI confusion will occur in the overlapping part of the listening window.
  • the two-step random access is allowed to use the uplink shared channel
  • the preamble is sent in the time slot or symbol where the associated preamble is located, and the listening window is located after the time slot or symbol where the uplink shared channel is located.
  • the listening window is after the last symbol of the PO and starts from the first symbol of the earliest CORESET (control resource set) used to receive the PDCCH of the scheduling msgB.
  • the monitoring window of RO2 can be set to start from time slot 6, that is, still follow the starting position of the corresponding monitoring window when the PUSCH exists. At this time, since the monitoring windows no longer overlap, RNTI confusion can be avoided.
  • the two-step random access does not allow the use of the preamble associated with the uplink shared channel
  • the preamble is sent in the time slot or symbol.
  • the embodiment of the present invention provides a method for receiving a random access response in two-step random access, and the method is applied to the user equipment side.
  • FIG. 14 is a schematic diagram of a method for receiving a random access response in a two-step random access according to Embodiment 2 of the present invention. As shown in FIG. 14, the method includes:
  • Step 1401 Calculate a first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • Step 1402 Use the first RNTI in the listening window to detect the downlink control information of the scheduling random access response.
  • Step 1403 When the downlink control information is successfully detected, receive a random access response on the physical downlink shared channel according to the downlink control information.
  • the first RNTI can be calculated according to the second RNTI and the offset.
  • the offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier. Determined value, and the sum of the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier is not greater than 8.
  • the offset is calculated according to the following formula (24):
  • the msg1-FDM value is one of 1, 2, 4, and 8, which is used to indicate how many of them exist in the frequency domain in FDM mode Multiplexed RO.
  • the parameters in formula (24) are restricted as follows: and / or With this restriction, the value of msgB-RNTI of 2-step RACH will not be greater than the maximum value of RA-RNTI available for 4-step RACH, that is, msgB-RNTI and RA-RNTI share the same value range. This value The range is the value range of the available RA-RNTI for 4-step RACH.
  • the RNTI used for random access response of 4-step RACH and 2-step RACH still falls within the value range of RA-RNTI of the 4-step RACH, that is, the value range of RNTI used for random access response is not extended.
  • the calculation method of the second RNTI can refer to the description in Embodiment 1.
  • the second RNTI is calculated according to formula (11) in Embodiment 1.
  • the first RNTI includes the third RNTI and the fourth RNTI, and the values of the third RNTI and the fourth RNTI are not greater than four steps The maximum value of all possible values of RA-RNTI for random access.
  • the third RNTI is calculated according to the fifth RNTI and the first offset offset1; and/or according to the fifth RNTI and the first offset
  • the fourth RNTI is calculated by the offset offset1 and the second offset offset2.
  • the first offset offset1 is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier.
  • the value determined by the PRACH configuration information, the second offset offset2 is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the two-step random access on the first carrier.
  • the value determined by the second PRACH configuration information of the access, and the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier The sum of two times of is not more than 8.
  • the first offset offset1 can be calculated using the above formula (24), and the second offset offset2 can be calculated according to the following formula (26):
  • the parameters in formula (26) are restricted as follows: and / or With this restriction, the value of msgB-RNTI of 2-step RACH will not be greater than the maximum value of RA-RNTI available for 4-step RACH, that is, msgB-RNTI and RA-RNTI share the same value range. This value The range is the value range of the available RA-RNTI for 4-step RACH.
  • the RNTI used for random access response of 4-step RACH and 2-step RACH still falls within the value range of RA-RNTI of the 4-step RACH, that is, the value range of RNTI used for random access response is not extended.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access, which can also avoid the two-step random access. RNTI is confused.
  • the embodiment of the present invention provides a method for sending a random access response in two-step random access, and the method is applied to the network device side. It corresponds to the method for receiving a random access response in the two-step random access on the user equipment side described in Embodiment 1. For the same or related content, refer to the description in Embodiment 1.
  • FIG. 15 is a schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 3 of the present invention. As shown in Figure 15, the method includes:
  • Step 1501 Calculate the first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • Step 1502 Use the first RNTI to scramble the cyclic redundancy check (CRC) of the downlink control information used for scheduling random access responses; and
  • Step 1503 Send the downlink control information and the random access response.
  • the first RNTI is calculated according to the second RNTI and the offset.
  • the specific method for calculating the second RNTI may be the same as the method described in Embodiment 1, and the description will not be repeated here.
  • step 1502 the calculated first RNTI is used to scramble the CRC of the DCI of the scheduling random access response, and the specific method of the scrambling can be referred to related prior art, which will not be described in detail here.
  • step 1503 for example, the DCI with scrambled CRC is sent through the PDCCH, and the random access response is sent through the PDSCH.
  • the offset may be configured by the network device.
  • the method may further include:
  • Step 1504 Configure the offset by at least one of the following methods: broadcast message; RRC signaling; and MAC CE (MAC control element).
  • the broadcast message may be system information SIB1 or MIB.
  • the specific value of the offset is not limited.
  • the method for determining the offset can be the same as the method described in Embodiment 1, and the description will not be repeated here.
  • FIG. 16 is another schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 3 of the present invention. As shown in Figure 16, the method includes:
  • Step 1601 Calculate the third RNTI and/or the fourth RNTI, where the third RNTI and the fourth RNTI are different from the RA-RNTI actually used in the four-step random access;
  • Step 1602 Use the third RNTI to scramble the cyclic redundancy check of the first downlink control information used for scheduling random access responses, or use the fourth RNTI to scramble the first downlink control information used for scheduling random access responses. 2. Scrambling the cyclic redundancy check of the downlink control information; and
  • Step 1603 Send the first downlink control information and the first random access response, and/or, send the second downlink control information and the second random access response.
  • step 1601 for example, the third RNTI is calculated according to the fifth RNTI and the first offset, and/or the fourth RNTI is calculated according to the fifth RNTI, the first offset, and the second offset.
  • the method for calculating the third RNTI and the fourth RNTI and the method for calculating the fifth RNTI are the same as those described in Embodiment 1, and the description will not be repeated here.
  • the first offset and/or the second offset may be biased by the network device.
  • the method may further include:
  • Step 1604 Configure the first offset and/or the second offset by using at least one of the following methods: broadcast message; RRC signaling; and MAC CE (MAC control element).
  • the broadcast message may be system information SIB1 or MIB.
  • the specific values of the first offset and the second offset are not limited.
  • the method for determining the first offset and the second offset is the same as that described in Embodiment 1, and the description will not be repeated here.
  • the embodiment of the present invention provides a method for sending a random access response in two-step random access, and the method is applied to the network device side. It corresponds to the method for receiving random access responses in two-step random access on the user equipment side described in Embodiment 2. For the same or related content, refer to the description in Embodiment 2.
  • FIG. 17 is a schematic diagram of a method for sending a random access response in a two-step random access according to Embodiment 4 of the present invention. As shown in Figure 17, the method includes:
  • Step 1701 Calculate the first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • Step 1702 Use the first RNTI to scramble the cyclic redundancy check of the downlink control information used for scheduling random access responses;
  • Step 1703 Send the downlink control information and the random access response.
  • step 1701 the method for calculating the first RNTI may be the same as that described in Embodiment 2, and the description will not be repeated here.
  • step 1702 and step 1703 the specific implementation method can refer to the implementation of related steps in Embodiment 3, and the description will not be repeated here.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access, which can also avoid the two-step random access. RNTI is confused.
  • the embodiment of the present invention provides a method for sending and receiving a random access response in two-step random access.
  • the method is applied to the network equipment side and the user equipment side, which corresponds to the application described in Embodiment 1.
  • the method for receiving a random access response in the two-step random access on the user equipment side and the method for sending a random access response in the two-step random access on the network equipment side described in Embodiment 3 are the same or related. Reference can be made to the description in Example 1 and Example 3.
  • FIG. 18 is a schematic diagram of a method for sending and receiving a random access response in a two-step random access according to Embodiment 5 of the present invention. As shown in Figure 18, the method includes:
  • Step 1801 The network device calculates a first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • Step 1802 The network device uses the first RNTI to scramble the cyclic redundancy check (CRC) of the downlink control information used for scheduling random access responses; and
  • Step 1803 The network device sends the downlink control information and the random access response
  • Step 1804 the user equipment calculates the first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • Step 1805 The user equipment uses the first RNTI to detect the downlink control information of the scheduling random access response in the listening window;
  • Step 1806 When the user equipment successfully detects the downlink control information, it receives a random access response on the physical downlink shared channel (PDSCH) according to the downlink control information.
  • PDSCH physical downlink shared channel
  • FIG. 19 is another schematic diagram of a method for sending and receiving random access responses in two-step random access according to Embodiment 5 of the present invention. As shown in Figure 19, the method includes:
  • Step 1901 The network device calculates the third RNTI and/or the fourth RNTI, where the third RNTI and the fourth RNTI are different from the RA-RNTI actually used in the four-step random access;
  • Step 1902 The network device uses the third RNTI to scramble the cyclic redundancy check of the first downlink control information used for scheduling random access responses, or uses the fourth RNTI pair for scheduling random access responses Scrambling the cyclic redundancy check of the second downlink control information;
  • Step 1903 The network device sends the first downlink control information and the first random access response, and/or, sends the second downlink control information and the second random access response;
  • Step 1904 the user equipment calculates the third RNTI and/or the fourth RNTI, where the third RNTI and the fourth RNTI are different from the RA-RNTI actually used in the four-step random access;
  • Step 1905 Use the third RNTI in the listening window to detect the first downlink control information for scheduling the first random access response; and/or use the fourth RNTI to schedule the second random access in the listening window The second downlink control information in response is detected; and
  • Step 1906 When the first downlink control information is successfully detected, according to the first downlink control information, receive the first random access response on the first physical downlink shared channel (PDSCH), and/or when successful When the second downlink control information is detected, the second random access response is received on the second physical downlink shared channel (PDSCH) according to the second downlink control information.
  • PDSCH physical downlink shared channel
  • the embodiment of the present invention provides a method for sending and receiving random access responses in two-step random access.
  • the method is applied to the network equipment side and the user equipment side, which corresponds to the application described in Embodiment 2.
  • the method for receiving a random access response in the two-step random access on the user equipment side and the method for sending a random access response in the two-step random access on the network equipment side described in Embodiment 4 are the same or related. Refer to the description in Example 1 and Example 2.
  • FIG. 20 is another schematic diagram of a method for sending and receiving a random access response in a two-step random access according to Embodiment 6 of the present invention. As shown in Figure 20, the method includes:
  • Step 2001 The network device calculates a first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • Step 2002 The network device uses the first RNTI to scramble the cyclic redundancy check of the downlink control information used for scheduling random access responses;
  • Step 2003 The network device sends the downlink control information and the random access response.
  • Step 2004 The user equipment calculates a first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • Step 2005 the user equipment uses the first RNTI to detect the downlink control information of the scheduling random access response in the listening window;
  • Step 2006 When the user equipment successfully detects the downlink control information, it receives a random access response on the physical downlink shared channel according to the downlink control information.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access, which can also avoid the two-step random access. RNTI is confused.
  • the embodiment of the present invention provides a device for receiving a random access response in two-step random access, and the device can be configured on the user equipment side. Since the principle of the device to solve the problem is similar to the method of embodiment 1, its specific implementation can refer to the implementation of the method of embodiment 1, and the same content or related parts will not be repeated.
  • FIG. 21 is a schematic diagram of an apparatus for receiving a random access response in a two-step random access according to Embodiment 7 of the present invention. As shown in FIG. 21, the apparatus 2100 includes:
  • the first calculation unit 2101 is configured to calculate a first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • the first detection unit 2102 is configured to use the first RNTI to detect downlink control information (DCI, Downlink Control Information) for scheduling random access responses in the listening window; and
  • DCI Downlink Control Information
  • the first receiving unit 2103 is configured to receive a random access response on the physical downlink shared channel (PDSCH) according to the downlink control information when the downlink control information is successfully detected.
  • PDSCH physical downlink shared channel
  • the first calculation unit 2101 calculates the first RNTI according to the second RNTI and the offset.
  • the first RNTI includes the third RNTI and/or the fourth RNTI,
  • FIG. 22 is a schematic diagram of the first calculation unit 2101 of Embodiment 7 of the present invention. As shown in FIG. 22, the first calculation unit 2101 includes:
  • the second calculation unit 2201 is configured to calculate the third RNTI according to the fifth RNTI and the first offset; and/or,
  • the third calculation unit 2202 is configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset,
  • FIG. 23 is a schematic diagram of the first detection unit 2102 according to Embodiment 7 of the present invention. As shown in FIG. 23, the first detection unit 2102 includes:
  • the second detection unit 2301 is configured to use the third RNTI to detect the first downlink control information for scheduling the first random access response in the listening window; and/or,
  • the third detection unit 2302 is configured to use the fourth RNTI to detect the second downlink control information for scheduling the second random access response in the listening window.
  • the embodiment of the present invention provides a device for receiving a random access response in two-step random access, and the device can be configured on the user equipment side. Since the principle of the device to solve the problem is similar to the method of embodiment 2, its specific implementation can refer to the implementation of the method of embodiment 2, and the same content or related parts will not be repeated.
  • FIG. 24 is a schematic diagram of a device for receiving a random access response in two-step random access according to Embodiment 8 of the present invention. As shown in FIG. 24, the device 2400 includes:
  • the fourth calculation unit 2401 is configured to calculate the first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • a fourth detection unit 2402 configured to use the first RNTI to detect downlink control information for scheduling random access responses in the listening window;
  • the second receiving unit 2403 is configured to receive a random access response on the physical downlink shared channel according to the downlink control information when the downlink control information is successfully detected.
  • the fourth calculation unit 2401 calculates the first RNTI according to the second RNTI and the offset.
  • the first RNTI includes the third RNTI and/or the fourth RNTI,
  • FIG. 25 is a schematic diagram of the fourth calculation unit 2401 of Embodiment 8 of the present invention. As shown in FIG. 25, the fourth calculation unit 2401 includes:
  • a fifth calculation unit 2501 configured to calculate the third RNTI according to the fifth RNTI and the first offset;
  • the sixth calculation unit 2502 is configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access, which can also avoid the two-step random access. RNTI is confused.
  • the embodiment of the present invention provides a device for sending a random access response in two-step random access, and the device can be configured on the network device side. Since the principle of the device to solve the problem is similar to the method of the third embodiment, the specific implementation can refer to the implementation of the method described in the third embodiment, and the same content or related parts will not be repeated.
  • FIG. 26 is a schematic diagram of an apparatus for sending a random access response in two-step random access according to Embodiment 9 of the present invention. As shown in FIG. 26, the apparatus 2600 includes:
  • the seventh calculation unit 2601 is configured to calculate the first RNTI, which is different from the RA-RNTI actually used in the four-step random access;
  • a first scrambling unit 2602 configured to use the first RNTI to scramble a cyclic redundancy check (CRC) of downlink control information used for scheduling random access responses;
  • the first sending unit 2603 is configured to send the downlink control information and the random access response.
  • the seventh calculation unit 2601 calculates the first RNTI according to the second RNTI and the offset.
  • FIG. 27 is a schematic diagram of the seventh calculation unit 2601 in Embodiment 9 of the present invention. As shown in FIG. 27, the seventh calculation unit 2601 includes:
  • the eighth calculating unit 2701 is configured to calculate the third RNTI according to the fifth RNTI and the first offset; and/or,
  • the ninth calculating unit 2702 is configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset.
  • the first scrambling unit 2602 uses the third RNTI to scramble the cyclic redundancy check of the first downlink control information used for scheduling random access responses, or uses the fourth RNTI to Scrambling is performed on the cyclic redundancy check of the second downlink control information of the scheduling random access response.
  • the apparatus 2600 may further include:
  • the configuration unit 2604 is configured to configure at least one of the offset, the first offset, and the second offset through at least one of the following devices: broadcast message; RRC signaling; and MAC CE (MAC control) element).
  • the embodiment of the present invention provides a device for sending a random access response in two-step random access, and the device can be configured on the network device side. Since the principle of the device to solve the problem is similar to the method of embodiment 4, its specific implementation can refer to the implementation of the method described in embodiment 3, and the same content or related parts will not be repeated.
  • FIG. 28 is a schematic diagram of a device for sending a random access response in two-step random access according to Embodiment 10 of the present invention. As shown in FIG. 28, the device 2800 includes:
  • the tenth calculation unit 2801 is configured to calculate the first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • a second scrambling unit 2802 configured to use the first RNTI to scramble the cyclic redundancy check of downlink control information used for scheduling random access responses;
  • the second sending unit 2803 is configured to send the downlink control information and the random access response.
  • the tenth calculation unit 2801 calculates the first RNTI according to the second RNTI and the offset.
  • FIG. 29 is a schematic diagram of the tenth calculation unit 2801 in Embodiment 10 of the present invention. As shown in FIG. 29, the tenth calculation unit 2801 includes:
  • An eleventh calculation unit 2901 configured to calculate the third RNTI according to the fifth RNTI and the first offset;
  • the twelfth calculation unit 2902 is configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values for the four-step random access, which can also avoid the two-step random access. RNTI is confused.
  • the embodiment of the present invention provides a user equipment, and the user equipment includes an apparatus for receiving a random access response in a two-step random access as described in Embodiment 7 or Embodiment 8.
  • FIG. 30 is a schematic block diagram of the system configuration of user equipment according to Embodiment 11 of the present invention.
  • the user equipment 3000 may include a processor 3010 and a memory 3020; the memory 3020 is coupled to the processor 3010. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to achieve telecommunication functions or other functions.
  • the function of the apparatus for receiving random access responses in two-step random access may be integrated into the processor 3010.
  • the processor 3010 may be configured to: calculate the first RNTI, which is different from the RA-RNTI actually used in the four-step random access; use the first RNTI to schedule random access in the listening window.
  • Incoming response downlink control information (DCI, Downlink Control Information) is detected; and when the downlink control information is successfully detected, a random access response is received on the physical downlink shared channel (PDSCH) according to the downlink control information.
  • DCI Downlink Control Information
  • the processor 3010 may be configured to: calculate the first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values of the four-step random access; in the listening window The first RNTI is used to detect the downlink control information for scheduling random access responses; and when the downlink control information is successfully detected, the random access response is received on the physical downlink shared channel according to the downlink control information
  • the apparatus for receiving a random access response in two-step random access may be configured separately from the processor 3010.
  • the apparatus for receiving a random access response in two-step random access may be configured with the processor 3010.
  • the connected chip is controlled by the processor 3010 to realize the function of the device for receiving the random access response in the two-step random access.
  • the user equipment 3000 may further include: a communication module 3030, an input unit 3040, a display 3050, and a power supply 3060. It should be noted that the user equipment 3000 does not necessarily include all the components shown in FIG. 30; in addition, the user equipment 3000 may also include components not shown in FIG. 30, and related technologies may be referred to.
  • the processor 3010 is sometimes called a controller or an operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the processor 3010 receives input and controls the operation of various components of the user equipment 3000. operating.
  • the memory 3020 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • a variety of data can be stored, and programs that execute related information can also be stored.
  • the processor 3010 can execute the program stored in the memory 3020 to implement information storage or processing.
  • the functions of other components are similar to the existing ones, so I won't repeat them here.
  • the components of the user equipment 3000 can be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present invention.
  • the RNTI in the two-step random access can be avoided Confusion, that is to say, user equipment that can avoid two-step random access will not be the msgB or Msg2 for its own RO, and the user equipment that can avoid four-step random access will not be for itself The msgB of RO mistakenly thought it was the Msg2 of RO.
  • the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for the four-step random access, which can also avoid the two-step random access. Incoming RNTI is confused.
  • An embodiment of the present invention provides a network device, and the network device includes a device for sending a random access response in a two-step random access as described in Embodiment 9 or Embodiment 10.
  • FIG. 31 is a schematic diagram of a structure of a network device according to Embodiment 12 of the present invention.
  • the network device 3100 may include: a processor 3110 and a memory 3120; the memory 3120 is coupled to the processor 3110.
  • the memory 3120 can store various data; in addition, it also stores an information processing program 3130, and executes the program 3130 under the control of the processor 3110 to receive various information sent by the user equipment and send various information to the user equipment .
  • the function of the device for receiving random access response in two-step random access may be integrated into the processor 3110.
  • the processor 3110 may be configured to: calculate a first RNTI, which is different from the RA-RNTI actually used by the four-step random access; use the first RNTI pair for scheduling random access response
  • the cyclic redundancy check (CRC) of the downlink control information is scrambled; and the downlink control information and the random access response are sent.
  • CRC cyclic redundancy check
  • the processor 3110 may be configured to: calculate a first RNTI, where the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values of four-step random access; An RNTI scrambles the cyclic redundancy check of the downlink control information used for scheduling the random access response; and sends the downlink control information and the random access response.
  • the apparatus for sending a random access response in two-step random access can be configured separately from the processor 3110.
  • the apparatus for sending a random access response in two-step random access can be configured with the processor 3110.
  • the connected chip is controlled by the processor 3110 to realize the function of the random access response device in the two-step random access.
  • the network device 3100 may further include: a transceiver 3140, an antenna 3150, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 3100 does not necessarily include all the components shown in FIG. 31; in addition, the network device 3100 may also include components not shown in FIG. 31, and reference may be made to the prior art.
  • the value of the first RNIT is not greater than the maximum value of all possible RA-RNTI values of the four-step random access, which can also avoid the two-step random access. Incoming RNTI is confused.
  • An embodiment of the present invention provides a communication system, which includes the user equipment described in Embodiment 11 and/or the network equipment described in Embodiment 12.
  • the structure of the communication system can refer to FIG. 3.
  • the communication system 100 includes a network device 101 and a user equipment 102.
  • the user equipment 102 is the same as the user equipment recorded in the embodiment 11.
  • the network equipment recorded in 12 is the same, and the repeated content will not be repeated.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the method/device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in FIG. 21 may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in FIG. 7.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in FIG. 21 can be implemented as a general-purpose processor or a digital signal processor for performing the functions described in the present invention ( DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • DSP Digital Signal Process
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to FIG. 21 can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microcomputers.
  • a device for receiving a random access response in two-step random access the device being applied to a user equipment side, and the device comprising:
  • a first calculation unit configured to calculate a first RNTI, where the first RNTI is different from the RA-RNTI actually used in the four-step random access;
  • the first detection unit is configured to use the first RNTI to detect downlink control information (DCI, Downlink Control Information) for scheduling random access responses in the listening window; and
  • DCI Downlink Control Information
  • the first receiving unit is configured to receive a random access response on a physical downlink shared channel (PDSCH) according to the downlink control information when the downlink control information is successfully detected.
  • PDSCH physical downlink shared channel
  • the first calculation unit calculates the first RNTI according to the second RNTI and the offset.
  • the first RNTI includes a third RNTI and/or a fourth RNTI
  • the first calculation unit includes:
  • the second calculation unit is configured to calculate the third RNTI according to the fifth RNTI and the first offset; and/or,
  • a third calculation unit configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset
  • the first detection unit includes:
  • the second detection unit is configured to use the third RNTI to detect the first downlink control information for scheduling the first random access response in the listening window; and/or,
  • the third detection unit is configured to use the fourth RNTI to detect the second downlink control information for scheduling the second random access response in the listening window.
  • MAC CE (MAC control element).
  • the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the second PRACH configuration information of the two-step random access on the first carrier are configured to provide the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the second PRACH configuration information of the two-step random access on the first carrier.
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, It is determined by the uplink carrier index, the system frame index, and the maximum listening window length corresponding to the subcarrier interval used to send the preamble, or,
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, Determined by the uplink carrier index, the system frame index and the maximum listening window length used to send the preamble, or,
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, and It is determined by the index of the uplink carrier used to send the preamble.
  • the fifth RNTI is random
  • the index of the first symbol where the accessed RO is located, the index of the first time slot in a system frame, the index of the frequency resource where it is located, and the index of the uplink carrier used to send the preamble are determined, and The first offset is equal to zero.
  • Two-step random access allows the preamble to be sent using the time slot or symbol where the preamble associated with the uplink shared channel is located, and the listening window is located after the time slot or symbol where the uplink shared channel is located, or two steps Random access is not allowed to use the time slot or symbol of the preamble associated with the uplink shared channel to send the preamble.
  • a device for receiving a random access response in two-step random access comprising:
  • a fourth calculation unit configured to calculate the first RNTI, wherein the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • a fourth detection unit configured to use the first RNTI to detect downlink control information for scheduling random access responses in the listening window
  • the second receiving unit is configured to receive a random access response on a physical downlink shared channel according to the downlink control information when the downlink control information is successfully detected.
  • the fourth calculation unit calculates the first RNTI according to the second RNTI and the offset
  • the offset is determined according to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier, and,
  • the sum of the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier is not greater than 8.
  • the first RNTI includes a third RNTI and a fourth RNTI, and the values of the third RNTI and the fourth RNTI are not greater than the maximum value of all possible values of RA-RNTI for four-step random access,
  • the fourth calculation unit includes:
  • a fifth calculation unit configured to calculate the third RNTI according to the fifth RNTI and the first offset
  • a sixth calculation unit configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset
  • the first offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration of the four-step random access on the first carrier
  • the value determined by the information, the second offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the two-step random access on the first carrier
  • the second PRACH configuration information determines the value, and the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier
  • the sum of times is not more than 8.
  • a device for sending a random access response in two-step random access comprising:
  • a seventh calculation unit configured to calculate a first RNTI, where the first RNTI is different from the RA-RNTI actually used in the four-step random access;
  • a first scrambling unit configured to use the first RNTI to scramble a cyclic redundancy check (CRC) of downlink control information used for scheduling random access responses;
  • the first sending unit is configured to send the downlink control information and the random access response.
  • the seventh calculation unit calculates the first RNTI according to the second RNTI and the offset.
  • the first RNTI includes a third RNTI and/or a fourth RNTI
  • the seventh calculation unit includes:
  • An eighth calculation unit configured to calculate the third RNTI according to the fifth RNTI and the first offset; and/or,
  • a ninth calculation unit configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset
  • the first scrambling unit uses the third RNTI to scramble the cyclic redundancy check of the first downlink control information used for scheduling random access responses, or uses the fourth RNTI pair for scheduling The cyclic redundancy check of the second downlink control information of the random access response is scrambled.
  • a configuration unit configured to configure at least one of the offset, the first offset, and the second offset through at least one of the following devices:
  • MAC CE (MAC control element).
  • the offset or the first offset is greater than or equal to a value determined according to one of the following:
  • the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier are configured to provide the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier.
  • the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the second PRACH configuration information of the two-step random access on the first carrier are configured to provide the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the second PRACH configuration information of the two-step random access on the first carrier.
  • the offset or the first offset is greater than or equal to one of the following values:
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, It is determined by the uplink carrier index, the system frame index, and the maximum listening window length corresponding to the subcarrier interval used to send the preamble, or,
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, Determined by the uplink carrier index, the system frame index and the maximum listening window length used to send the preamble, or,
  • the second RNTI or the fifth RNTI is based on the index of the first symbol of the RO of the two-step random access, the index of the first time slot in a system frame, the index of the frequency resource, and It is determined by the index of the uplink carrier used to send the preamble.
  • the fifth RNTI is random
  • the index of the first symbol where the accessed RO is located, the index of the first time slot in a system frame, the index of the frequency resource where it is located, and the index of the uplink carrier used to send the preamble are determined, and The first offset is equal to zero.
  • Two-step random access allows the preamble to be sent using the time slot or symbol where the preamble associated with the uplink shared channel is located, and the listening window is located after the time slot or symbol where the uplink shared channel is located, or two steps Random access is not allowed to use the time slot or symbol of the preamble associated with the uplink shared channel to send the preamble.
  • a device for sending a random access response in two-step random access the device being applied to the network equipment side, the device comprising:
  • a tenth calculation unit configured to calculate a first RNTI, wherein the value of the first RNIT is not greater than the maximum value of all possible values of RA-RNTI for four-step random access;
  • a second scrambling unit configured to use the first RNTI to scramble a cyclic redundancy check of downlink control information used for scheduling random access responses
  • the second sending unit is configured to send the downlink control information and the random access response.
  • the tenth calculation unit calculates the first RNTI according to the second RNTI and the offset
  • the offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration information of the four-step random access on the first carrier.
  • the sum of the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier is not greater than 8.
  • the first RNTI includes a third RNTI and a fourth RNTI, and the values of the third RNTI and the fourth RNTI are not greater than the maximum value of all possible values of RA-RNTI for four-step random access,
  • the tenth calculation unit includes:
  • An eleventh calculation unit configured to calculate the third RNTI according to the fifth RNTI and the first offset
  • a twelfth calculation unit configured to calculate the fourth RNTI according to the fifth RNTI, the first offset, and the second offset
  • the first offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the four-step random access on the second carrier, and the second PRACH configuration of the four-step random access on the first carrier
  • the value determined by the information, the second offset is greater than or equal to the configuration information of the second carrier, the second PRACH configuration information of the two-step random access on the second carrier, and the two-step random access on the first carrier
  • the second PRACH configuration information determines the value, and the msg1-FDM parameter in the PRACH resource configuration of the four-step random access of the carrier and the msg1-FDM parameter in the PRACH resource configuration of the two-step random access of the same carrier
  • the sum of times is not more than 8.
  • a user equipment comprising the apparatus according to any one of appendix 1-15.
  • a network device comprising the device according to any one of Supplements 16-30.
  • a communication system comprising the user equipment according to appendix 31 and/or the network equipment according to appendix 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种两步随机接入中接收和发送随机接入响应的方法及装置,接收装置包括:第一计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;第一检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息进行检测;以及第一接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。

Description

两步随机接入中接收和发送随机接入响应的方法及装置 技术领域
本发明涉及通信领域。
背景技术
在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)的长期演进(LTE,Long Term Evolution)系统中,用户设备初始接入网络时需要经过小区搜索、获取系统信息(SI,System Information)及随机接入等过程。用户设备通过小区搜索获取下行同步后,基于系统信息中包含的随机接入配置等信息进行随机接入,从而与小区建立连接并取得上行同步。
图1是LTE的随机接入过程的一示意图,以基于竞争的随机接入过程为例进行了说明,其中至少包括以下四个步骤:用户设备发送前导码(preamble),又称为Msg1;网络设备收到该前导码后,反馈随机接入响应(RAR,Random Access Response),又称为Msg2;用户设备通过物理上行共享信道(PUSCH,Physical Uplink Shared Channel)发送Msg3;网络设备通过物理下行共享信道(PDSCH,Physical Downlink Shared Channel)反馈Msg4。这种随机接入过程可以称为四步随机接入(4-step RACH)。
图2是NR(New Radio)的随机接入过程的一示意图,可以称为两步随机接入(2-step RACH)。相比于传统的四步随机接入,两步随机接入能够更加快速的接入网络。如图2所示,两步随机接入时,用户设备发送msgA,其中msgA至少携带四步随机接入时的前导码(preamble)和Msg3信息;网络设备向用户设备发送msgB,其中msgB至少携带四步随机接入时的Msg2(RAR)和Msg4信息。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在四步随机接入或两步随机接入时,可用于发送前导码的时频资源称为物理随机 接入信道(PRACH,Physical Random Access Channel)机会(occasion),简称为RO。用户设备在发送前导码后,在其RO所对应的一个监听窗内检测四步随机接入中的Msg2或两步随机接入中的msgB。在一些应用场景中,出现了采用四步随机接入的至少一个用户设备和采用两步随机接入的至少一个用户设备共存的情况。
发明人发现,无论对于Msg2还是MsgB的收发,一个重要的设计需求是能够避免某一用户设备将不是针对自己RO的随机接入响应(Msg2或msgB)误认为是自己的随机接入响应。在四步随机接入中,对于调度Msg2的下行控制信息(DCI,Downlink Control Information),其循环冗余校验(CRC,Cyclic Redundancy Check)使用随机接入(RA,Random Access)中的无线网络临时标识(RA-RNTI,RA-Radio Network Tempory Identity)加扰。RA-RNTI由RO的时频位置决定,因此一个Msg2总是针对某一个RO。在监听窗(又称为RAR窗,RAR window)内,用户设备通过盲检CRC使用了RA-RNTI加扰的DCI,可以过滤掉针对其他RO(即不是用户设备自己所使用的RO)的Msg2,从而能够避免将不是针对自己RO的Msg2误认为是自己的Msg2。
对于两步随机接入,需求变得更加复杂,既需要避免两步随机接入用户设备将不是针对自己RO的msgB误认为是自己的msgB,又需要避免两步随机接入用户设备将不是针对自己RO的Msg2误认为是自己的msgB,还需要避免四步随机接入用户设备将不是针对自己RO的msgB误认为是自己的Msg2,传统四步随机接入的RA-RNTI方法不能够满足两步随机接入的上述需求,因此不再适用于两步随机接入。
为了解决上述问题的至少一个,本发明实施例提供了一种两步随机接入中接收和发送随机接入响应的方法及装置。
根据本发明实施例的第一方面,提供一种两步随机接入中接收随机接入响应的方法,所述方法应用于用户设备侧,所述方法包括:计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
根据本发明实施例的第二方面,提供一种两步随机接入中接收随机接入响应的方法,所述方法应用于用户设备侧,所述方法包括:计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;在监听窗内 使用所述第一RNTI对调度随机接入响应的下行控制信息进行检测;以及当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道上接收随机接入响应。
根据本发明实施例的第三方面,提供一种两步随机接入中发送随机接入响应的方法,所述方法应用于网络设备侧,所述方法包括:计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及发送所述下行控制信息和所述随机接入响应。
根据本发明实施例的第四方面,提供一种两步随机接入中发送随机接入响应的方法,所述方法应用于网络设备侧,所述方法包括:计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及发送所述下行控制信息和随机接入响应。
根据本发明实施例的第五方面,提供一种两步随机接入中接收随机接入响应的装置,所述装置应用于用户设备侧,所述装置包括:第一计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;第一检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及第一接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
根据本发明实施例的第六方面,提供一种两步随机接入中接收随机接入响应的装置,所述装置应用于用户设备侧,所述装置包括:第四计算单元,其用于计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;第四检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息进行检测;以及第二接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道上接收随机接入响应。
根据本发明实施例的第七方面,提供一种两步随机接入中发送随机接入响应的装置,所述装置应用于网络设备侧,所述装置包括:第七计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;第一加扰单元, 其用于使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及第一发送单元,其用于发送所述下行控制信息和所述随机接入响应。
根据本发明实施例的第八方面,提供一种两步随机接入中发送随机接入响应的装置,所述装置应用于网络设备侧,所述装置包括:第十计算单元,其用于计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;第二加扰单元,其用于使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及第二发送单元,其用于发送所述下行控制信息和所述随机接入响应。
根据本发明实施例的第九方面,提供一种用户设备,所述用户设备包括根据本发明实施例的第五方面或第六方面所述的装置。
根据本发明实施例的第十方面,提供一种网络设备,所述网络设备包括根据本发明实施例的第七方面或第八方面所述的装置。
根据本发明实施例的第十一方面,提供一种通信系统,所述通信系统包括根据本发明实施例的第九方面所述的用户设备和/或根据根据本发明实施例的第十方面所述的网络设备。
根据本发明实施例的第十二方面,提供了一种计算机可读程序,其中当在两步随机接入中接收随机接入响应的装置或用户设备中执行所述程序时,所述程序使得所述两步随机接入中接收随机接入响应的装置或用户设备执行本发明实施例的第一方面或第二方面所述的两步随机接入中接收随机接入响应的方法。
根据本发明实施例的第十三方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得两步随机接入中接收随机接入响应的装置或用户设备执行本发明实施例的第一方面或第二方面所述的两步随机接入中接收随机接入响应的接收方法。
根据本发明实施例的第十四方面,提供了一种计算机可读程序,其中当在两步随机接入中发送随机接入响应的装置或网络设备中执行所述程序时,所述程序使得所述两步随机接入中发送随机接入响应的装置或网络设备执行本发明实施例的第三方面或第四方面所述的两步随机接入中接收随机接入响应的方法。
根据本发明实施例的第十五方面,提供了一种存储有计算机可读程序的存储介 质,其中所述计算机可读程序使得两步随机接入中发送随机接入响应的装置或网络设备执行本发明实施例的第三方面或第四方面所述的两步随机接入中接收随机接入响应的方法。
本发明实施例的有益效果在于:通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含/具有”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是LTE的随机接入过程的一示意图;
图2是NR(New Radio)的随机接入过程的一示意图;
图3是本发明实施例的通信系统的一示意图;
图4是本发明实施例的随机接入过程的一个示例的示意图;
图5是本发明实施例的随机接入过程的另一个示例的示意图;
图6是本发明实施例的随机接入过程的又一个示例的示意图;
图7是本发明实施例1的两步随机接入中接收随机接入响应的方法的一示意图;
图8是本发明实施例1的偏移量的一示意图;
图9是本发明实施例1的偏移量的又一示意图;
图10是本发明实施例1的偏移量的又一示意图;
图11是本发明实施例1的偏移量的又一示意图;
图12是本发明实施例1的两步随机接入中接收随机接入响应的方法的另一示意图;
图13是本发明实施例1的随机接入过程的又一个示例的示意图;
图14是本发明实施例2的两步随机接入中接收随机接入响应的方法的一示意图;
图15是本发明实施例3的两步随机接入中发送随机接入响应的方法的一示意图;
图16是本发明实施例3的两步随机接入中发送随机接入响应的方法的另一示意图;
图17是本发明实施例4的两步随机接入中发送随机接入响应的方法的一示意图;
图18是本发明实施例5的两步随机接入中发送和接收随机接入响应的方法的一示意图;
图19是本发明实施例5的两步随机接入中发送和接收随机接入响应的方法的另一示意图;
图20是本发明实施例6的两步随机接入中发送和接收随机接入响应的方法的另一示意图;
图21是本发明实施例7的两步随机接入中接收随机接入响应的装置的一示意图;
图22是本发明实施例7的第一计算单元2101的一示意图;
图23是本发明实施例7的第一检测单元2102的一示意图;
图24是本发明实施例8的两步随机接入中接收随机接入响应的装置的一示意图;
图25是本发明实施例8的第四计算单元2401的一示意图;
图26是本发明实施例9的两步随机接入中发送随机接入响应的装置的一示意图;
图27是本发明实施例9的第七计算单元2601的一示意图;
图28是本发明实施例10的两步随机接入中发送随机接入响应的装置的一示意 图;
图29是本发明实施例10的第十计算单元2801的一示意图;
图30是本发明实施例11的用户设备的系统构成的一示意框图;
图31是本发明实施例12的网络设备的一构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信 网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
图3是本发明实施例的通信系统的一示意图,其示意性说明了以用户设备和网络设备为例的情况,如图3所示,通信系统100可以包括:网络设备101和用户设备101。为简单起见,图3仅以一个用户设备为例进行说明。网络设备101例如为NR的网络设备gNB。
在本发明实施例中,网络设备101和用户设备102之间可以进行现有的业务或者 未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,用户设备102可以向网络设备101发送数据,例如,发起随机接入过程,该随机接入过程可以是四步随机接入(4-step RACH),也可以是两步随机接入(2-step RACH)。
在两步随机接入中,如果仍然使用四步随机接入中的RA-RNTI对调度msgB的DCI进行CRC加扰,那么,可能导致两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,或者,导致四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
图4是本发明实施例的随机接入过程的一个示例的示意图。如图4所示,假设使用非成对频谱(unpaired spectrum)或时分双工(TDD,Time Division Duplex)频谱,并且假设子载波间隔为15kHz,没有配置SUL(Supplementary Uplink)载波。2-step RACH和4-step RACH的RO以TDM方式复用。
在时域上,根据3GPP TS 38.211 V15.6.0的表6.3.3.2-3,将4-step RACH的PRACH配置索引(PRACH configuration index)配置为5,将2-step RACH的PRACH配置索引配置为6。根据上述PRACH配置,4-step RACH的RO位于偶数系统帧内的索引为4的时隙,2-step RACH的RO位于奇数系统帧内的索引为4的时隙。在频域上,对于2-step RACH和4-step RACH的频率资源配置不加限制,简单起见,图2示出了具有相同频率资源索引的2-step RACH和4-step RACH,参数的定义参见TS38.211V15.6.0的6.3.3.2小节。类似于RO的定义,将PUSCH occasion简称为PO,表示PUSCH的时频资源。
图4中PUSCH位于RO之后的一个相邻时隙,对PUSCH的频域资源大小和位置不加限制。与4-step RACH中的监听窗(又称为RAR监听窗,RAR window)类似,2-step RACH具有msgB监听窗(msgB monitoring window)。RAR监听窗位于前导码之后,msgB监听窗位于PUSCH(PO)之后。简单起见,图4将RAR监听窗和msgB监听窗统称为监听窗(monitoring window),图4中,假设监听窗的时间长度为10毫秒(ms),是4-step RACH可配置的最大的监听窗长度。如图4所示,2-step RACH的监听窗与4-step RACH的监听窗在时间上发生重叠。根据TS 38.321 V15.6.0的5.1.3 小节给出的RA-RNTI计算方法,RA-RNTI的取值以10毫秒为周期,因此图2中的RO1和RO2将具有相同的RA-RNTI,即发生RNTI混淆。如果2-step RACH重用RA-RNTI,在两个监听窗发生重叠的时间范围内,2-step RACH用户会将原本发送给4-step RACH用户的Msg2(该Msg2针对RO1)错当成发送给自己的msgB,同时,4-step RACH用户也会将原本发送给2-step RACH用户的msgB(该msgB针对RO2)错当成发送给自己的Msg2。由于RO1和RO2可以使用相同的前导码(preamble),用户也无法通过MAC PDU中的RAPID(Random Access Preamble Identifier,即preamble ID)来分辨该前导码属于2-step RACH(对应RO2)还是4-step RACH(对应RO1)。
图5是本发明实施例的随机接入过程的另一个示例的示意图。其中,2-step RACH和4-step RACH的RO以FDM方式复用。更具体地,在时域上,根据3GPP TS 38.211 V15.6.0的表6.3.3.2-3,将4-step RACH的PRACH配置索引(PRACH configuration index)配置为5,将2-step RACH的PRACH配置索引配置为5。但是在频域上,4-step RACH和2-step RACH的RO被配置为占据不同的频率资源,即以FDM方式复用在同一个时隙内。其他参数配置与图4相同。由于2-step RACH和4-step RACH被独立配置,二者的频率资源索引n RA(或者f_id)均从0开始标识。如果2-step RACH重用RA-RNTI计算方法,由于2-step RACH和4-step RACH具有相同频率资源索引n RA(或者f_id),所以RO1和RO2将具有相同的RA-RNTI,在监听窗的重叠部分将发生RNTI混淆。
在本发明实施例中,4-step RACH仅检测preamble,相比之下,2-step RACH不但需要检测preamble,还需要解调译码PUSCH,从而需要比4-step RACH更长的处理时间,因此可以为2-step RACH配置比4-step RACH更大的监听窗长度。4-step RACH最大监听窗长度为10毫秒,2-step RACH最大监听窗长度可以大于4-step RACH最大监听窗长度,即大于10毫秒。当2-step RACH监听窗长度被配置为大于4-step RACH最大监听窗长度时,如图4所示,2-step RACH的监听窗与4-step RACH的监听窗将有更多部分在时间上发生重叠,因此重用4-step RACH的RA-RNTI方法同样会导致2-step RACH用户将4-step RACH用户的Msg2错当成针对自己RO的msgB,或者4-step RACH用户将2-step RACH用户的msgB错当成针对自己RO的Msg2。此外,当2-step RACH监听窗长度被配置为大于4-step RACH最大监听窗长 度时,重用4-step RACH的RA-RNTI方法还会导致2-step RACH用户将其他2-step RACH用户的msgB错当成针对自己RO的msgB。
图6是本发明实施例的随机接入过程的又一个示例的示意图。在时域上,根据3GPP TS 38.211 V15.6.0的表6.3.3.2-3,将2-step RACH的PRACH配置索引(PRACH configuration index)配置为12。根据上述PRACH配置,2-step RACH的RO位于每个系统帧内的索引为4的时隙。在频域上,对于2-step RACH的频率资源配置不加限制,简单起见,图6示出了具有相同频率资源索引的2-step RACH。图6假设监听窗的时间长度为20ms,大于4-step RACH可配置的最大的监听窗长度10毫秒。如图6所示,2-step RACH的两个监听窗在时间上发生重叠。如果2-step RACH重用4-step RACH的RA-RNTI,图6中的RO1和RO2将具有相同的RA-RNTI取值,在两个监听窗发生重叠的时间范围内,2-step RACH用户会将原本发送给其他2-step RACH用户的msgB错当成发送给自己的msgB。综上所述,当2-step RACH的最大监听窗长度大于4-step RACH的最大监听窗长度时,重用4-step RACH的RA-RNTI方法既会导致2-step RACH和4-step RACH的RNTI发生混淆,又会导致2-step RACH自身的RNTI发生混淆。
下面结合附图对本发明实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本发明实施例提供了一种两步随机接入中接收随机接入响应的方法,该方法应用于用户设备侧。
图7是本发明实施例1的两步随机接入中接收随机接入响应的方法的一示意图,如图7所示,该方法包括:
步骤701:计算第一RNTI,第一RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤702:在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及
步骤703:当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
这样,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能 够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
在步骤701中,计算不同于四步随机接入实际使用的RA-RNTI的第一RNTI,第一RNTI例如可以用msgB-RNTI来表示。
作为一种示例,即示例1),msgB可以由一个MAC PDU(即一个PDSCH)承载。在该情况下,例如,可以根据第二RNTI和偏移量来计算第一RNTI。
例如,根据以下的公式(1)计算第一RNTI:
msgB-RNTI=offset+RA-RNTI 2-step  (1)
其中,msgB-RNTI表示第一RNTI,offset表示偏移量,RA-RNTI 2-step表示第二RNTI。
在本实施例中,偏移量offset用来避免两步随机接入的msgB-RNTI与四步随机接入的RA-RNTI发生混淆,RA-RNTI 2-step用来避免两步随机接入内的RNTI混淆。也就是说,两步随机接入的用户设备不会将四步随机接入的用户设备的Msg2错当成针对自己RO的msgB,四步随机接入的用户设备不会将两步随机接入的用户设备的msgB错当成针对自己RO的Msg2,两步随机接入的用户设备不会将其他两步随机接入的用户设备的msgB错当成针对自己RO的msgB。在本实施例中,该偏移量offset可以是网络设备配置的。
例如,该偏移量offset可以由网络设备通过以下至少一种方法进行配置:广播消息;RRC信令;以及MAC CE(MAC control element)。
例如,该广播消息是可以是系统信息SIB1或MIB。
在本实施例中,不对偏移量offset的具体数值进行限制。
例如,该偏移量offset可以大于或等于根据以下的一个确定的数值:该RA-RNTI的取值范围;该RA-RNTI的取值范围和第二载波的配置信息;该RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息。
在本实施例中,该RA-RNTI是四步随机接入的RA-RNTI。例如,该RA-RNTI可以根据以下的公式(2)计算得到:
RA-RNTI 4-step=1+s_id 4-step+14×t_id 4-step+14×80×f_id 4-step+14×80×8×ul_carrier_id 4-step      (2)
其中,RA-RNTI 4-step表示四步随机接入的RA-RNTI,s_id 4-step表示四步随机接入的RO所在的第一个符号的索引,0≤s_id 4-step<14;t_id 4-step表示在一个系统帧SFN内RO所在的第一个时隙的索引,0≤t_id 4-step<80;f_id 4-step表示在频域上RO所在的频率资源的索引,0≤f_id 4-step<8,频域上最多能够以FDM方式配置8个RO;ul_carrier_id 4-step表示四步随机接入的前导码发送所使用的上行载波(carrier)的索引,0≤ul_carrier_id 4-step<2,当使用的是NUL(Normal Uplink)载波时,ul_carrier_id 4-step=0,当使用的是SUL(Supplementary Uplink)载波时,ul_carrier_id 4-step=1。
在本实施例中,例如,第一载波是NUL(Normal Uplink)载波,第二载波是SUL(Supplementary Uplink)载波。
例如,该偏移量offset大于或等于根据该RA-RNTI的取值范围确定的数值,例如,可以根据以下的公式(3)计算:
offset≥max{4-step RACH可以使用的RA-RNTI}     (3)
其中,max{4-step RACH可以使用的RA-RNTI}表示四步随机接入可以使用的RA-RNTI的最大值,也就是说,该offset可以大于或等于该RA-RNTI的所有可能取值的最大值。
将上述公式(3)以及相关参数的范围代入上述公式(3),得到以下的公式(4):
offset≥14×80×8×2=17920   (4)
其中,17920是四步随机接入可以使用的RA-RNTI的最大值,也就是该RA-RNTI的所有可能取值的最大值。
这样,通过将offset设为大于或等于4-step RACH的RA-RNTI的所有可能取值的最大值(最大可行值),通过引入offset可以使得2-step RACH的msgB-RNTI的取值范围与4-step RACH的RA-RNTI的取值范围不发生重叠,因此能够保证2-step RACH的msgB-RNTI与4-step RACH的RA-RNTI不会具有相同的取值,由于不同的RNTI被用于2-step RACH的msgB和4-step RACH的Msg2,2-step RACH用户不会将4-step RACH用户的Msg2错当成针对自己RO的msgB,4-step RACH用户也不会将2-step RACH用户的msgB错当成针对自己RO的Msg2。
图8是本发明实施例1的偏移量的一示意图。如图8所示,以二维图的形式示出了4-step RACH的RA-RNTI取值范围。图8中每个方格表示一个可能使用的RA-RNTI取值,其取决于PRACH资源配置,并非所有RA-RNTI都会被用到,填充的方格表示被实际使用的RA-RNTI,因此区分出可用的RA-RNTI和实际使用的RA-RNTI。RA-RNTI由RO所对应的时间索引(s_id,t_id)、频率索引(f_id)和载波索引(ul_carrier_id)唯一确定,RA-RNTI数值随时间索引(s_id,t_id)增加而增加,随频率索引(f_id)增加而增加,随载波索引(ul_carrier_id)增加而增加。上述公式(4和(5)相当于将offset设置为大于或等于RA-RNTI所有可能取值的最大值,如图8所示。可以看作offset的最小值以全部可用的RA-RNTI的取值空间为粒度。
又例如,该偏移量offset大于或等于根据该RA-RNTI的取值范围和第二载波的配置信息确定的数值,例如,可以根据以下的公式(5)计算:
Figure PCTCN2019101111-appb-000001
其中,ul_carrier_id表示发送前导码所使用的上行载波的索引,max{4-step RACH在ul_carrier_id=0时可以使用的RA-RNTI}表示满足发送前导码所使用的上行载波的索引为零这一条件的该RA-RNTI的所有可能取值的最大值,max{4-step RACH可以使用的RA-RNTI}表示四步随机接入可以使用的RA-RNTI的最大值。
将上述公式(3)以及相关参数的范围代入上述公式(5),得到以下的公式(6):
Figure PCTCN2019101111-appb-000002
其中,8960是满足发送前导码所使用的上行载波的索引为零这一条件的该RA-RNTI的所有可能取值的最大值,17920是四步随机接入可以使用的RA-RNTI的最大值。
这样,2-step RACH用户通过接收系统信息SIB1,可以知晓SUL载波配置信息,该SUL载波配置信息至少包括SUL载波是否被配置。利用上述信息可以进一步确定4-step RACH的RA-RNTI的取值范围。如果SUL载波没有被配置,根据TS 38.321 V15.6.0的5.1.3小节的方法,由于ul_carrier_id不能取值为1,因此将4-step RACH的RA-RNTI的取值范围确定为1~8960,此时将offset设为大于或等于8960即可避免与 2-step RACH的msgB-RNTI的取值范围发生重叠;否则,如果SUL载波被配置,则将4-step RACH的RA-RNTI的取值范围确定为1~17920,此时需要将offset设为大于或等于17920来避免与2-step RACH的msgB-RNTI的取值范围发生重叠。这样,2-step RACH用户不会将4-step RACH用户的Msg2错当成自己的msgB,4-step RACH用户也不会将2-step RACH用户的msgB错当成自己的Msg2。
图9是本发明实施例1的偏移量的又一示意图。如图9所示,左侧的图表示当不存在SUL载波时,将offset设为大于或等于ul_carrier_id=0时的最大可用RA-RNTI,即可避免RNTI发生重叠和混淆;右侧的图表示,当存在SUL时,需要将offset设为大于或等于RA-RNTI所有可用取值的最大值。可以看作offset的最小值以ul_carrier_id(载波)为粒度,图9左侧的图的offset偏移量为大于或等于ul_carrier_id=0时所有可用的RA-RNTI的取值空间,图9右侧的图的offset的最小值以ul_carrier_id=0和ul_carrier_id=1时所有可用的RA-RNTI的取值空间为粒度。
又例如,该偏移量offset大于或等于根据该RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息确定的数值,例如,可以根据以下的公式(7)计算:
Figure PCTCN2019101111-appb-000003
其中,其中,ul_carrier_id表示发送前导码所使用的上行载波的索引,max{4-step RACH在ul_carrier_id=0时可以使用的RA-RNTI}表示满足发送前导码所使用的上行载波的索引为零这一条件的该RA-RNTI的所有可能取值的最大值,max{4-step RACH可以使用的RA-RNTI}表示四步随机接入可以使用的RA-RNTI的最大值。
将上述公式(2)以及相关参数的范围代入上述公式(7),得到以下的公式(8):
Figure PCTCN2019101111-appb-000004
其中,8960是满足发送前导码所使用的上行载波的索引为零这一条件的该RA-RNTI的所有可能取值的最大值,17920是四步随机接入可以使用的RA-RNTI的最大值。
这样,2-step RACH用户通过接收系统信息SIB1,可以知晓SUL载波配置信息(至少包括SUL载波是否被配置),以及知晓SUL载波上的4-step RACH的第一PRACH配置信息,该第一PRACH配置信息至少包括是否被配置有4-step RACH的PRACH资源。如果SUL载波没有被配置,或者SUL载波被配置,但是该SUL载波没有被配置有4-step RACH的PRACH资源,此时将4-step RACH的RA-RNTI的取值范围确定为1~8960,因此可以将offset设为大于或等于8960来避免与2-step RACH的msgB-RNTI的取值范围发生重叠;否则,将4-step RACH的RA-RNTI的取值范围确定为1~17920,此时需要将offset设为大于或等于17920来避免与2-step RACH的msgB-RNTI的取值范围发生重叠。这样,2-step RACH用户不会将4-step RACH用户的Msg2错当成自己的msgB,4-step RACH用户也不会将2-step RACH用户的msgB错当成自己的Msg2。对公式(7)和(8)的形象化示意可以参见图9。
又例如,该偏移量offset根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定,例如,可以根据以下的公式(9)计算offset:
Figure PCTCN2019101111-appb-000005
其中,
Figure PCTCN2019101111-appb-000006
表示NUL载波的4-step RACH的PRACH资源配置中的msg1-FDM参数,
Figure PCTCN2019101111-appb-000007
表示SUL载波的4-step RACH的PRACH资源配置中的msg1-FDM参数,msg1-FDM取值为1,、2、4、8中的一种,用于指示频域上存在多少个以FDM方式复用的RO。
这样,2-step RACH用户通过接收系统信息SIB1,可以知晓SUL载波配置信息(至少包括SUL载波是否被配置),并可以获得NUL和/或SUL载波上的4-step RACH的第二PRACH配置信息,这里第二PRACH配置信息至少包括是否被配置有4-step RACH的PRACH资源以及4-step RACH的具体的PRACH资源配置。PRACH资源配置包含了高层参数msg1-FDM。利用上述信息可以进一步确定4-step RACH的RA-RNTI的取值范围。如果SUL载波没有被配置,或者SUL载波被配置,但是该SUL载波没有被配置有4-step RACH的PRACH资源,将4-step RACH的RA-RNTI的取值范围确定为
Figure PCTCN2019101111-appb-000008
此时将offset设为大于或等于
Figure PCTCN2019101111-appb-000009
即可避免4-step RACH与2-step RACH的RNTI的取值范围发生重叠;否则,将4-step RACH的RA-RNTI的取值范围确定为
Figure PCTCN2019101111-appb-000010
此时将offset设为大于或等于
Figure PCTCN2019101111-appb-000011
来避免4-step RACH与2-step RACH的RNTI的取值范围发生重叠。这样,2-step RACH用户不会将4-step RACH用户的Msg2错当成自己的msgB,4-step RACH用户也不会将2-step RACH用户的msgB错当成自己的Msg2。
图10是本发明实施例1的偏移量的又一示意图。如图10所示,offset的最小值以f_id为粒度,或者说是以图10中的“行”为粒度,来进行偏移。图10左侧的图的offset偏移量为大于或等于ul_carrier_id=0(一个载波)时实际使用的最大的RA-RNTI所在的“行”,图4右侧的图的offset偏移量为大于或等于ul_carrier_id=0和ul_carrier_id=1(两个载波)时实际使用的最大的RA-RNTI所在的“行”。也就是说,该offset大于或等于满足RO所在的频率资源索引等于实际使用的最大的该RA-RNTI所对应的频率资源索引这一条件的该RA-RNTI的所有可能取值的最大值。
又例如,该偏移量offset大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,例如,可以根据以下的公式(10)计算offset:
offset≥max{4-step RACH实际使用的RA-RNTI}    (10)
其中,max{4-step RACH实际使用的RA-RNTI}表示实际使用的最大的RA-RNTI。
这样,2-step RACH用户通过接收系统信息SIB1,可以知晓SUL载波配置信息,该SUL载波配置信息至少包括SUL载波是否被配置,并可以获得NUL和/或SUL载波上的4-step RACH的第二PRACH配置信息。第二PRACH配置信息至少包括是否被配置有4-step RACH的PRACH资源以及4-step RACH的具体的PRACH资源配置。PRACH资源配置包含了用于计算4-step RACH的RA-RNTI的所有必要信息。根据PRACH资源配置,2-step RACH用户能够获得当期已经被4-step RACH使用的RA-RNTI的所有取值,因此可以选择offset大于或等于RA-RNTI所有取值中的最大值,能够避免4-step RACH与2-step RACH的RNTI的取值范围发生重叠。这样,2-step RACH用户不会将4-step RACH用户的Msg2错当成自己的msgB,4-step RACH用户也不会将2-step RACH用户的msgB错当成自己的Msg2。
图11是本发明实施例1的偏移量的又一示意图。如图11所示,offset的最小值以图11中的方格为粒度。图11左侧的图的offset偏移量为大于或等于ul_carrier_id=0(一个载波)时实际使用的最大的RA-RNTI所在的“方格”,图11右侧的图的offset偏移量为大于或等于ul_carrier_id=0和ul_carrier_id=1(两个载波)时实际使用的最大的RA-RNTI所在的“方格”。也就是说,偏移量offset大于或等于实际使用的最大的RA-RNTI。
以上,对偏移量offset的确定方法进行了示例性的说明。
下面,根据两步随机接入的监听窗(可以称为msgB监听窗)长度与四步随机接入的监听窗长度的关系,对第二RNTI的确定方法进行示例性的说明。
例如,对于两步随机接入的监听窗(msgB监听窗)的最大长度不大于四步随机接入的最大监听窗长度的情况,该第二RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定。
例如,可以参照四步随机接入的RA-RNTI计算该第二RNTI。
例如,与公式(2)的形式类似,可以根据以下的公式(11)计算第二RNTI:
RA-RNTI 2-step=1+s_id 2-step+14×t_id 2-step+14×80×f_id 2-step+14×80×8×ul_carrier_id 2-step      (11)
其中,RA-RNTI 2-step表示第二RNTI,s_id 2-step表示两步随机接入的RO所在的第一个符号的索引,0≤s_id 2-step<14;t_id 2-step表示在一个系统帧SFN内RO所在的第一个时隙的索引,0≤t_id 2-step<80;f_id 2-step表示在频域上RO所在的频率资源的索引,0≤f_id 2-step<8,频域上最多能够以FDM方式配置8个RO;ul_carrier_id 2-step表示两步随机接入的前导码发送所使用的上行载波(carrier)的索引,0≤ul_carrier_id 2-step<2,当使用的是NUL(Normal Uplink)载波时,ul_carrier_id 2-step=0,当使用的是SUL(Supplementary Uplink)载波时,ul_carrier_id 2-step=1。
例如,将上述公式(11)和公式(3)代入公式(1)中,得到以下的公式(13):msgB-RNTI≥1+s_id 2-step+14×t_id 2-step+14×80×(f_id 2-step+16)+14×80×8 ×ul_carrier_id 2-step    (13)
其中,各个参数的含义可以参见公式(11)和公式(3),此处不再赘述。
又例如,将上述公式(11)和公式(5),或者,将公式(11)和公式(7)代入公式(1)中,得到以下的公式(13):
Figure PCTCN2019101111-appb-000012
其中,条件1是“如果SUL载波没有被配置”,条件2是“如果SUL载波没有被配置,或者SUL载波被配置但SUL载波没有被配置4-step RACH的PRACH资源”,其他参数的含义可参见公式(11),此处不再赘述。
又例如,将上述公式(11)和公式(9)代入公式(1)中,得到以下的公式(14):
Figure PCTCN2019101111-appb-000013
其中,各个参数的含义可以参见公式(11)和公式(9),此处不再赘述。
例如,对于两步随机接入的监听窗(msgB监听窗)的最大长度大于四步随机接入的最大监听窗长度的情况,该第二RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及子载波间隔所对应的最大的监听窗长度所确定,或者,该第二RNTI或该第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及最大的监听窗长度所确定。
在本实施例中,例如,10240能够被以毫秒为单位的最大的监听窗长度整除。
例如,对于
Figure PCTCN2019101111-appb-000014
Figure PCTCN2019101111-appb-000015
可以进行如下限制:即需要满足10240是
Figure PCTCN2019101111-appb-000016
或W max的整数倍,或者说10240能够被
Figure PCTCN2019101111-appb-000017
或W max整除。这是由于SFN索引范围为0~1023,即SFN周期为10240ms,如果10240不是
Figure PCTCN2019101111-appb-000018
或W max的整数倍,当前一个SFN索引为1023,后一个SFN索引为0时,SFN#1023内会存在计数未满一个周期的t_id_new,会导致SFN#1023与下一个SFN#0中具有相同t_id_new的间隔小于W,因此位于这两个t_id_new的RO所对应的两个监听窗会发生重叠,在重叠部分仍然会发生RNTI混淆。或者,对于
Figure PCTCN2019101111-appb-000019
或W max进行如下限制:对于t_id_new计数未满一 个周期(W)的时隙,这些时隙不会被用于发送preamble(即不会被用作RO)。由于不使用可能产生歧义的RO,因此同样能够避免RNTI混淆。
例如,该第二RNTI可以根据以下的公式(15)计算:
RA-RNTI 2-step=1+s_id 2-step+14×t_id_new+14×W×f_id 2-step+14×W×8×ul_carrier_id 2-step
Figure PCTCN2019101111-appb-000020
t_id_new=mod(t_id 2-step+2 μ×10×SFN_id,W)      (15)
其中,s_id 2-step、t_id 2-step和ul_carrier_id 2-step的含义与公式(11)中相同,此处不再赘述;μ=0,1,2,3,15kHz、30kHz、60kHz和120kHz子载波间隔分别对应μ值为0、1、2、3,μ的严格定义参见TS 38.321 V15.6.0的5.1.3小节;
Figure PCTCN2019101111-appb-000021
表示15×2 μkHz子载波间隔所对应的最大的监听窗长度,
Figure PCTCN2019101111-appb-000022
的单位为ms,
Figure PCTCN2019101111-appb-000023
大于4-step RACH的最大的监听窗长度(例如,10毫秒),不同子载波间隔可以具有独立的最大监听窗长度
Figure PCTCN2019101111-appb-000024
W表示监听窗内所包含的时隙数;SFN_id表示SFN索引,0≤SFN_id<1024;t_id_new表示在监听窗内的时隙编号,0≤t_id_new<W,即周期为W;RA-RNTI 2-step能够避免2-step RACH的RNTI发生混淆。
公式(15)中的RA-RNTI 2-step与μ相关,μ被用于RA-RNTI 2-step计算。以图6为例,对于(15)式的各个变量,RO1和RO2所对应的变量t_id_new分别为4和14,而RO1和RO2所对应的其他变量均相同,因此对RO1和RO2计算出的RA-RNTI 2-step互不相同,从而避免了2-step RACH的RNTI混淆。公式(1)通过offset进一步避免了2-step RACH与4-step RACH的RNTI发生混淆。通过使用公式(1)和公式(15),既能够避免2-step RACH和4-step RACH的RNTI发生混淆,又能够避免2-step RACH自身的RNTI发生混淆。换句话说,既能够避免2-step RACH用户接收到发送给其他2-step RACH用户的msgB和/或发送给4-step RACH用户的Msg2,又能够避免4-step RACH用户接收到发送给其他2-step RACH用户的msgB。
在本实施例中,也可以与μ无关的计算RA-RNTI 2-step,例如,将μ=3代入公式(15),得到以下的公式(16):
RA-RNTI 2-step=1+s_id 2-step+14×t_id_new+14×W×f_id 2-step+14×W×8×ul_carrier_id 2-step
W=8×W max,
t_id_new=mod(t_id 2-step+80×SFN_id,W)       (16)
其中,各个参数的含义可以参照公式(15),此处不再赘述。
这样,不同子载波间隔具有相同的最大监听窗长度。因此,公式(16)的RA-RNTI 2-step与μ无关。其获得的效果与之前类似,不再赘述。
以上,根据两步随机接入的监听窗长度与四步随机接入的监听窗长度的关系,对第二RNTI的确定方法进行示例性的说明。
在本实施例中,通过步骤701计算出第一RNTI,在步骤702中,在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测。
具体的检测方法可以参考相关的现有技术。
在步骤703中,当成功检测到该DCI时,根据该DCI,在PDSCH上接收随机接入响应。
以上,作为示例1),对msgB由一个MAC PDU承载的情况下,如何接收随机接入响应的方法进行了说明。
下面,作为另一种示例,即示例2),对msgB由两个MAC PDU(即两个PDSCH)承载的情况如何接收随机接入响应进行说明。
例如,msgB分为fallbackRAR(或Msg2-like msgB)和successRAR(或Msg4-like msgB)。对于2-step RACH:当网络设备检测到前导码(preamble)存在,但没有正确解调译码与前导码关联的PUSCH时,网络设备发送fallbackRAR,指示两步随机接入的用户发送Msg3,相当于回退(fallback)到四步随机接入;当网络设备检测到前导码存在,并且正确解调译码与前导码关联的PUSCH时,网络设备发送successRAR,指示两步随机接入的用户接入成功。
在该情况下,两个RNTI(例如表示为msgB-RNTI-1和msgB-RNTI-2)被分别用于fallbackRAR和successRAR。实际上,对于前面所述msgB由一个MAC PDU承载的情况,其等价于fallbackRAR和successRAR由一个MAC PDU承载。当两步随机接入使用与四步随机接入不同的RO,并且当msgB由两个MAC PDU承载时,虽然 两步随机接入的fallbackRAR与四步随机接入的Msg2非常类似,但是二者也不能够放到一个MAC PDU中承载(从而二者使用相同的RNTI,例如四步随机接入的RA-RNTI)。这是因为当两步随机接入使用与四步随机接入不同的RO时(例如图4中的RO1和RO2),两步随机接入可以使用与四步随机接入相同的前导码(即相同的RAPID),用户无法通过MAC PDU中的RAPID来区分两步随机接入和四步随机接入,从而产生歧义。因此,fallbackRAR也需要使用与四步随机接入的RA-RNTI不同的RNTI。msgB-RNTI-1和msgB-RNTI-2被分别用于fallbackRAR和successRAR。
例如,该第一RNTI包括第三RNTI和/或第四RNTI。
图12是本发明实施例1的两步随机接入中接收随机接入响应的方法的另一示意图,如图12所示,该方法包括:
步骤1201:计算第三RNTI和/或第四RNTI,第三RNTI和第四RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1202:在监听窗内使用该第三RNTI对调度第一随机接入响应的第一下行控制信息进行检测;和/或,在监听窗内使用该第四RNTI对调度第二随机接入响应的第二下行控制信息进行检测;以及
步骤1203:当成功检测到该第一下行控制信息时,根据该第一下行控制信息,在第一物理下行共享信道(PDSCH)上接收第一随机接入响应,和/或,当成功检测到该第二下行控制信息时,根据该第二下行控制信息,在第二物理下行共享信道(PDSCH)上接收第二随机接入响应。
在本实施例中,第三RNTI可以表示为msgB-RNTI-1,第四RNTI可以表示为msgB-RNTI-2。
在步骤1201中,例如,根据第五RNTI和第一偏移量计算第三RNTI;和/或,根据该第五RNTI、该第一偏移量以及第二偏移量计算第四RNTI。
例如,可以根据以下的公式(17)和(18)计算第三RNTI和第四RNTI:
msgB-RNTI-1=offset1+RA-RNTI 2-step  (17)
msgB-RNTI-2=offset1+offset2+RA-RNTI 2-step    (18)
其中,msgB-RNTI-1表示第三RNTI,msgB-RNTI-2表示第四RNTI,offset1表示第一偏移量,offset2表示第二偏移量,RA-RNTI 2-step表示第五RNTI。
在本实施例中,msgB-RNTI-1被用于fallbackRAR,msgB-RNTI-2被用于 successRAR,或者也可以是,msgB-RNTI-1被用于successRAR,msgB-RNTI-2被用于fallbackRAR。
这样,既能够避免2-step RACH和4-step RACH的RNTI发生混淆,又能够避免2-step RACH自身的RNTI发生混淆。在本实施例中,第一偏移量offset1以及第二偏移量offset2可以是网络设备配置的。
例如,第一偏移量offset1以及第二偏移量offset2可以由网络设备通过以下至少一种方法进行配置:广播消息;RRC信令;以及MAC CE(MAC control element)。
例如,该广播消息是可以是系统信息SIB1或MIB。
在本实施例中,不对第一偏移量offset1以及第二偏移量offset2的具体数值进行限制。
例如,第一偏移量offset1的确定方法可以和上面示例1)中的偏移量offset的确定方法相同。
例如,该第一偏移量offset1可以大于或等于根据以下的一个确定的数值:该RA-RNTI的取值范围;该RA-RNTI的取值范围和第二载波的配置信息;该RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息。
例如,该第一偏移量offset1可以根据以上示例1)中的公式(3)-(10)中的任一个来计算。
在本实施例中,第二偏移量offset2的确定方法可以和上面的偏移量offset的确定方法类似,但是,在计算时需要将相应的四步随机接入的参数替换为两步随机接入的参数。
例如,该第二偏移量大于或等于根据以下的一个确定的数值:该第五RNTI的取值范围;该第五RNTI的取值范围和第二载波的配置信息;该第五RNTI的取值范围、第二载波的配置信息以及第二载波上的两步随机接入的第一PRACH配置信息;第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息。
也就是说,该第二偏移量大于或等于以下取值中的一个:该第五RNTI的所有可能取值的最大值;满足发送前导码所使用的上行载波的索引为零这一条件的该第五RNTI的所有可能取值的最大值;满足RO所在的频率资源索引等于实际使用的最大 的该第五RNTI所对应的频率资源索引这一条件的该第五RNTI的所有可能取值的最大值;实际使用的最大的该第五RNTI。
例如,与以上示例1)中的公式(3)、(5)、(7)、(9)、(10)类似,根据以下的公式(19)、(20)、(21)、(22)、(23)来计算第二偏移量offset2:
offset2≥max{2-step RACH可以使用的RA-RNTI 2-step}    (19);
Figure PCTCN2019101111-appb-000025
Figure PCTCN2019101111-appb-000026
Figure PCTCN2019101111-appb-000027
offset2≥max{2-step RACH实际使用的RA-RNTI 2-step}     (23)
其中,上述公式(19)、(20)、(21)、(22)、(23)中的RA-RNTI 2-step表示第五RNTI,其他参数的含义可以参考公式(3)、(5)、(7)、(9)、(10)中相应参数的含义,此处不再赘述。
在本实施例中,第五RNTI可以通过与上面的示例1)中计算第二RNTI的类似的方法得到。
例如,对于两步随机接入的监听窗(msgB监听窗)的最大长度不大于四步随机接入的最大监听窗长度的情况,该第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定。
例如,该第五RNTI可以参照示例1)中的公式(11)计算得到。
例如,对于两步随机接入的监听窗(msgB监听窗)的最大长度大于四步随机接入的最大监听窗长度的情况,该第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及子载波间隔所对应的最大的监听窗 长度所确定,或者,该第二RNTI或该第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及最大的监听窗长度所确定。
在本实施例中,例如,10240能够被以毫秒为单位的最大的监听窗长度整除。
例如,该第五RNTI可以参照示例1)中的公式(15)或(16)计算得到。
在本实施例中,当通过步骤1201计算出第三RNTI和/或第四RNTI之后,步骤1202、1203的具体实现与步骤702、703类似,此处不再赘述。
以上,从msgB由一个或两个MAC PDU承载角度进行了说明,下面从两步随机接入(2-step RACH)和四步随机接入4-step RACH是否使用相同的RO角度进行说明。
例如,当两步随机接入和四步随机接入共享RO和/或最大的监听窗长度不大于10毫秒时,该第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定,并且该第一偏移量等于零。
2-step RACH可以使用与4-step RACH相同的RO,或者使用与4-step RACH不同的RO。二者使用相同的RO也可以称为共享RO(shared RO),二者使用不同的RO也可以称为独立RO(separated RO)。当2-step RACH与4-step RACH使用相同的RO时,2-step RACH与4-step RACH使用不同的前导码(preamble),即通过preamble区分2-step RACH和4-step RACH;当2-step RACH与4-step RACH使用不同的RO时,通过RO即可区分2-step RACH和4-step RACH,因此2-step RACH与4-step RACH可以使用相同的preamble。
无论2-step RACH使用与4-step RACH相同的RO,还是使用与4-step RACH不同的RO,上述方法均可适用,即当fallbackRAR和successRAR由一个MAC PDU承载时,msgB-RNTI被用于msgB;当fallbackRAR和successRAR分别由两个MAC PDU承载时,msgB-RNTI-1和msgB-RNTI-2分别被用于fallbackRAR和successRAR。
特别地,在2-step RACH的msgB的最大监听窗长度不大于4-step RACH的Msg2的最大监听窗长度(即10毫秒)的前提下,当fallbackRAR和successRAR分别由两个MAC PDU承载,并且2-step RACH使用与4-step RACH相同的RO时,可以使用另外一种实施方式。更具体地,msgB-RNTI-1=RA-RNTI 2-step被用于fallbackRAR, msgB-RNTI-2=offset2+RA-RNTI 2-step被用于successRAR,即offset1等于0。由于共享RO,msgB-RNTI-1与4-step RACH的RA-RNTI相同,此时虽然无法通过RNTI区分4-step RACH的Msg2和2-step RACH的fallbackRAR,但是二者可以进一步通过MAC PDU中承载的RAPID得到区分,因此最终也不会产生歧义。由于共享RO,因此也等价于RA-RNTI被用于fallbackRAR,公式(1)中的msgB-RNTI被用于successRAR。此时RNTI的使用可以分为以下两种情况:对于fallbackRAR和successRAR分别由两个MAC PDU承载,并且2-step RACH使用与4-step RACH相同的RO这种情况,仅使用一个新的RNTI(msgB-RNTI);对于fallbackRAR和successRAR分别由两个MAC PDU承载,并且2-step RACH使用与4-step RACH不同的RO这种情况,使用两个新的RNTI(即msgB-RNTI-1和msgB-RNTI-2)。当offset1和offset2可以由网络设备进行配置时,对于fallbackRAR和successRAR分别由两个MAC PDU承载,并且2-step RACH使用与4-step RACH相同的RO这种情况,网络设备可以配置offset1等于0。表1总结了RNTI的使用情况。
表1
Figure PCTCN2019101111-appb-000028
另外,对于两步随机接入(2-step RACH),在配置了RO和PO资源后,可能发生被配置的用于发送preamble和/或PUSCH所在时隙或符号不可用,例如某时隙的一组符号是下行或自由(flexible)符号,或者在某时隙的一组符号上用户需要取消preamble发送或取消PUSCH发送,此时均认为该时隙或符号不可用。严格的用户取消preamble和/或PUSCH发送的条件可以参见TS 38.213 V15.6.0的11.1节,这里不 再赘述。当PUSCH所在时隙或符号不可用,但与之关联的preamble所在时隙或符号可用时,用户仍然可以使用preamble所在时隙或符号发送preamble,即回退到作为传统的4-step RACH使用。对于4-step RACH,监听窗会从preamble所在时隙或符号之后起始。然而,当由于PUSCH不可用而导致回退到4-step RACH时,尽管只发送preamble,但监听窗不能从preamble所在时隙或符号之后起始,否则会造成RNTI混淆问题。
图13是本发明实施例1的随机接入过程的又一个示例的示意图。在时域上,根据3GPP TS 38.211 V15.6.0的表6.3.3.2-3,将2-step RACH的PRACH配置索引(PRACH configuration index)配置为12。根据上述PRACH配置,2-step RACH的RO位于每个系统帧内的索引为4的时隙。在频域上,对于2-step RACH的频率资源配置不加限制,简单起见,图13示出了具有相同频率资源索引的2-step RACH。图13假设监听窗的时间长度为10毫秒,并且最大监听窗长度也为10毫秒。图13中SFN#1的时隙5尽管被配置为PO,但根据TS 38.213 V15.6.0的11.1节的条件,该时隙不可用于PUSCH发送,但RO2仍可用于发送preamble。按照现有四步随机接入(4-step RACH)方法,RO2对应的监听窗从时隙5开始,但该监听窗会与RO1的监听窗发生重叠,又由于RO1和RO2所对应的RNTI相同,因此在监听窗重叠部分会发生RNTI混淆。
在本实施例中,当上行共享信道所在的时隙或符号不可用,且与该上行共享信道关联的前导码所在的时隙或符号可用时,两步随机接入允许使用与该上行共享信道关联的前导码所在的时隙或符号发送前导码,并且该监听窗位于该上行共享信道所在的时隙或符号之后。例如,监听窗在PO的最后一个符号之后,从用于接收调度msgB的PDCCH的最早的CORESET(control resource set)的第一个符号开始。仍以图13为例,可以令RO2的监听窗从时隙6开始,即仍然遵照PUSCH存在时所对应的监听窗的起始位置,此时由于监听窗不再重叠,能够避免RNTI混淆。
或者,上行共享信道所在的时隙或符号不可用,且与该上行共享信道关联的前导码所在的时隙或符号可用时,两步随机接入不允许使用与该上行共享信道关联的前导码所在的时隙或符号发送前导码。通过加入这种限制,同样能够避免上述的RNTI混淆的问题。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI 对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
实施例2
本发明实施例提供了一种两步随机接入中接收随机接入响应的方法,该方法应用于用户设备侧。
图14是本发明实施例2的两步随机接入中接收随机接入响应的方法的一示意图,如图14所示,该方法包括:
步骤1401:计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
步骤1402:在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息进行检测;以及
步骤1403:当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道上接收随机接入响应。
对应于实施例1中的示例1),即msgB由一个MAC PDU承载的情况,在步骤1401中,可以根据第二RNTI和偏移量计算该第一RNTI。
例如,该偏移量大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数之和不大于8。例如,该偏移量根据以下的公式(24)计算得到:
Figure PCTCN2019101111-appb-000029
其中,
Figure PCTCN2019101111-appb-000030
表示NUL载波的4-step RACH的PRACH资源配置中的msg1-FDM参数,
Figure PCTCN2019101111-appb-000031
表示SUL载波的4-step RACH的PRACH资源配置中的msg1-FDM参数,msg1-FDM取值为1,、2、4、8中的一种,用于指示频域上存 在多少个以FDM方式复用的RO。
对公式(24)中的参数进行如下的限制:
Figure PCTCN2019101111-appb-000032
和/或
Figure PCTCN2019101111-appb-000033
通过这种限制,2-step RACH的msgB-RNTI取值不会大于4-step RACH的可用RA-RNTI的最大值,即msgB-RNTI与RA-RNTI共享同一段取值范围,这一取值范围即为4-step RACH的可用RA-RNTI的取值范围。通过这种方式,尽管在4-step RACH基础上又增加了对2-step RACH的支持,但用于4-step RACH和2-step RACH的随机接入响应的RNTI(msgB-RNTI和RA-RNTI)仍然落在4-step RACH的RA-RNTI的取值范围内,即没有扩展用于随机接入响应的RNTI的取值范围。
在本实施例中,第二RNTI的计算方法可以参照实施例1中的记载,例如,根据实施例1中的公式(11)计算第二RNTI。
将上述公式(24)以及公式(11)代入公式(1)中,得到以下的公式(25):
Figure PCTCN2019101111-appb-000034
其中,具体参数的含义可以参见公式(1)、(11)、(24),此处不再赘述。
对应于实施例1中的示例2),即msgB由两个MAC PDU承载的情况,第一RNTI包括第三RNTI和第四RNTI,该第三RNTI和第四RNTI的取值均不大于四步随机接入的RA-RNTI所有可能取值的最大值,在步骤1401中,根据第五RNTI和第一偏移量offset1计算该第三RNTI;和/或根据该第五RNTI、该第一偏移量offset1以及第二偏移量offset2计算该第四RNTI。
例如,该第一偏移量offset1大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,该第二偏移量offset2大于或等于根据第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息确定的数值,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数的二倍之和不大于8。
例如,该第一偏移量offset1可以使用上述公式(24)计算得到,该第二偏移量 offset2可以根据以下的公式(26)计算得到:
Figure PCTCN2019101111-appb-000035
其中,
Figure PCTCN2019101111-appb-000036
表示NUL载波的2-step RACH的PRACH资源配置中的msg1-FDM参数,
Figure PCTCN2019101111-appb-000037
表示SUL载波的2-step RACH的PRACH资源配置中的msg1-FDM参数。
对公式(26)中的参数进行如下的限制:
Figure PCTCN2019101111-appb-000038
和/或
Figure PCTCN2019101111-appb-000039
通过这种限制,2-step RACH的msgB-RNTI取值不会大于4-step RACH的可用RA-RNTI的最大值,即msgB-RNTI与RA-RNTI共享同一段取值范围,这一取值范围即为4-step RACH的可用RA-RNTI的取值范围。通过这种方式,尽管在4-step RACH基础上又增加了对2-step RACH的支持,但用于4-step RACH和2-step RACH的随机接入响应的RNTI(msgB-RNTI和RA-RNTI)仍然落在4-step RACH的RA-RNTI的取值范围内,即没有扩展用于随机接入响应的RNTI的取值范围。
由上述实施例可知,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例3
本发明实施例提供了一种两步随机接入中发送随机接入响应的方法,该方法应用于网络设备侧。其对应于实施例1中所述的应用于用户设备侧的两步随机接入中接收随机接入响应的方法,相同或相关的内容可以参照实施例1中的记载。
对应于实施例1中的示例1),即msgB由一个MAC PDU承载的情况。图15是本发明实施例3的两步随机接入中发送随机接入响应的方法的一示意图。如图15所示,该方法包括:
步骤1501:计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1502:使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗 余校验(CRC)进行加扰;以及
步骤1503:发送该下行控制信息和该随机接入响应。
例如,在步骤1501中,根据第二RNTI和偏移量计算该第一RNTI。
在本实施例中,计算第二RNTI的具体方法可以与实施例1中记载的方法相同,此处不再重复说明。
在步骤1502中,使用计算出的第一RNTI对调度随机接入响应的DCI的CRC进行加扰,其加扰的具体方法可以参考相关的现有技术,此处不再具体说明。
在步骤1503中,例如,通过PDCCH发送CRC经过加扰的DCI,以及通过PDSCH发送随机接入响应。
在本实施例中,该偏移量可以是网络设备配置的。例如,如图15所示,在步骤1501之前,该方法还可以包括:
步骤1504:通过以下至少一种方法配置偏移量:广播消息;RRC信令;以及MAC CE(MAC control element)。
例如,该广播消息是可以是系统信息SIB1或MIB。
在本实施例中,不对该偏移量的具体数值进行限制。
例如,该偏移量的确定方法可以与实施例1中记载的方法相同,此处不再重复说明。
对应于实施例1中的示例2),即msgB由两个MAC PDU承载的情况。
图16是本发明实施例3的两步随机接入中发送随机接入响应的方法的另一示意图。如图16所示,该方法包括:
步骤1601:计算第三RNTI和/或第四RNTI,该第三RNTI和第四RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1602:使用该第三RNTI对用于调度随机接入响应的第一下行控制信息的循环冗余校验进行加扰,或者,使用该第四RNTI对用于调度随机接入响应的第二下行控制信息的循环冗余校验进行加扰;以及
步骤1603:发送该第一下行控制信息和该第一随机接入响应,和/或,发送该第二下行控制信息和该第二随机接入响应。
在步骤1601中,例如,根据第五RNTI和第一偏移量计算第三RNTI,和/或,根据该第五RNTI、该第一偏移量以及第二偏移量计算第四RNTI。
在本实施例中,计算第三RNTI和第四RNTI的方法、计算第五RNTI的方法与实施例1中的记载相同,此处不再重复说明。
在本实施例中,该第一偏移量和/或第二偏移量可以是网络设备偏置的。例如,如图16所示,在步骤1601之前,该方法还可以包括:
步骤1604:通过以下至少一种方法配置第一偏移量和/或第二偏移量:广播消息;RRC信令;以及MAC CE(MAC control element)。
例如,该广播消息是可以是系统信息SIB1或MIB。
在本实施例中,不对第一偏移量和第二偏移量的具体数值进行限制。
例如,第一偏移量、第二偏移量的确定方法与实施例1中的记载相同,此处不再重复说明。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
实施例4
本发明实施例提供了一种两步随机接入中发送随机接入响应的方法,该方法应用于网络设备侧。其对应于实施例2中所述的应用于用户设备侧的两步随机接入中接收随机接入响应的方法,相同或相关的内容可以参照实施例2中的记载。
图17是本发明实施例4的两步随机接入中发送随机接入响应的方法的一示意图。如图17所示,该方法包括:
步骤1701:计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
步骤1702:使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及
步骤1703:发送该下行控制信息和该随机接入响应。
在步骤1701中,计算第一RNTI的方法可以与实施例2中的记载相同,此处不再重复说明。
在步骤1702和步骤1703中,其具体的实现方法可以参照实施例3中的相关步骤 的实施,此处不再重复说明。
由上述实施例可知,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例5
本发明实施例提供了一种用于两步随机接入中发送和接收随机接入响应的方法,该方法应用于网络设备侧和用户设备侧,其对应于实施例1中所述的应用于用户设备侧的两步随机接入中接收随机接入响应的方法和实施例3中所述的应用于网络设备侧的两步随机接入中发送随机接入响应的方法,相同或相关的内容可以参照实施例1和实施例3中的记载。
对应于实施例1中的示例1),即msgB由一个MAC PDU承载的情况。
图18是本发明实施例5的两步随机接入中发送和接收随机接入响应的方法的一示意图。如图18所示,该方法包括:
步骤1801:网络设备计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1802:网络设备使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及
步骤1803:网络设备发送该下行控制信息和该随机接入响应;
步骤1804:用户设备计算第一RNTI,第一RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1805:用户设备在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息进行检测;以及
步骤1806:用户设备当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
对应于实施例1中的示例2),即msgB由两个MAC PDU承载的情况。
图19是本发明实施例5的两步随机接入中发送和接收随机接入响应的方法的另一示意图。如图19所示,该方法包括:
步骤1901:网络设备计算第三RNTI和/或第四RNTI,该第三RNTI和第四RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1902:网络设备使用该第三RNTI对用于调度随机接入响应的第一下行控制信息的循环冗余校验进行加扰,或者,使用该第四RNTI对用于调度随机接入响应的第二下行控制信息的循环冗余校验进行加扰;以及
步骤1903:网络设备发送该第一下行控制信息和该第一随机接入响应,和/或,发送该第二下行控制信息和该第二随机接入响应;
步骤1904:用户设备计算第三RNTI和/或第四RNTI,第三RNTI和第四RNTI不同于四步随机接入实际使用的RA-RNTI;
步骤1905:在监听窗内使用该第三RNTI对调度第一随机接入响应的第一下行控制信息进行检测;和/或,在监听窗内使用该第四RNTI对调度第二随机接入响应的第二下行控制信息进行检测;以及
步骤1906:当成功检测到该第一下行控制信息时,根据该第一下行控制信息,在第一物理下行共享信道(PDSCH)上接收第一随机接入响应,和/或,当成功检测到该第二下行控制信息时,根据该第二下行控制信息,在第二物理下行共享信道(PDSCH)上接收第二随机接入响应。
在本实施例中,上述各个步骤的实施可以参照实施例1和实施例3中的记载,此处不再重复说明。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
实施例6
本发明实施例提供了一种用于两步随机接入中发送和接收随机接入响应的方法,该方法应用于网络设备侧和用户设备侧,其对应于实施例2中所述的应用于用户设备侧的两步随机接入中接收随机接入响应的方法和实施例4中所述的应用于网络设备侧的两步随机接入中发送随机接入响应的方法,相同或相关的内容可以参照实施例1和实施例2中的记载。
图20是本发明实施例6的两步随机接入中发送和接收随机接入响应的方法的另一示意图。如图20所示,该方法包括:
步骤2001:网络设备计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
步骤2002:网络设备使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;
步骤2003:网络设备发送该下行控制信息和该随机接入响应。
步骤2004:用户设备计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
步骤2005:用户设备在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息进行检测;以及
步骤2006:用户设备当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道上接收随机接入响应。
在本实施例中,上述各个步骤的实施可以参照实施例2和实施例4中的记载,此处不再重复说明。
由上述实施例可知,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例7
本发明实施例提供了一种两步随机接入中接收随机接入响应的装置,该装置可以配置于用户设备侧。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1所述的方法的实施,内容相同或相关之处不再重复说明。
图21是本发明实施例7的两步随机接入中接收随机接入响应的装置的一示意图,如图21所示,装置2100包括:
第一计算单元2101,其用于计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;
第一检测单元2102,其用于在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及
第一接收单元2103,其用于当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
例如,第一计算单元2101根据第二RNTI和偏移量计算该第一RNTI。
例如,对应于实施例1中的示例2),该第一RNTI包括第三RNTI和/或第四RNTI,
图22是本发明实施例7的第一计算单元2101的一示意图,如图22所示,第一计算单元2101包括:
第二计算单元2201,其用于根据第五RNTI和第一偏移量计算该第三RNTI;和/或,
第三计算单元2202,其用于根据该第五RNTI、该第一偏移量以及第二偏移量计算该第四RNTI,
图23是本发明实施例7的第一检测单元2102的一示意图,如图23所示,第一检测单元2102包括:
第二检测单元2301,其用于在监听窗内使用该第三RNTI对调度第一随机接入响应的第一下行控制信息进行检测;和/或,
第三检测单元2302,其用于在监听窗内使用该第四RNTI对调度第二随机接入响应的第二下行控制信息进行检测。
在本实施例中,上述各个单元的功能的实现可以参照实施例1中相应步骤的记载,此处不再重复说明。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
实施例8
本发明实施例提供了一种两步随机接入中接收随机接入响应的装置,该装置可以配置于用户设备侧。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2所述的方法的实施,内容相同或相关之处不再重复说明。
图24是本发明实施例8的两步随机接入中接收随机接入响应的装置的一示意图,如图24所示,装置2400包括:
第四计算单元2401,其用于计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
第四检测单元2402,其用于在监听窗内使用该第一RNTI对调度随机接入响应的 下行控制信息进行检测;以及
第二接收单元2403,其用于当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道上接收随机接入响应。
例如,第四计算单元2401根据第二RNTI和偏移量计算该第一RNTI。
例如,对应于实施例1中的示例2),该第一RNTI包括第三RNTI和/或第四RNTI,
图25是本发明实施例8的第四计算单元2401的一示意图,如图25所示,第四计算单元2401包括:
第五计算单元2501,其用于根据第五RNTI和第一偏移量计算该第三RNTI;和/或
第六计算单元2502,其用于根据该第五RNTI、该第一偏移量以及第二偏移量计算该第四RNTI。
在本实施例中,上述各个单元的功能的实现可以参照实施例1中相应步骤的记载,此处不再重复说明。
由上述实施例可知,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例9
本发明实施例提供了一种两步随机接入中发送随机接入响应的装置,该装置可以配置于网络设备侧。由于该装置解决问题的原理与实施例3的方法类似,因此其具体的实施可以参照实施例3所述的方法的实施,内容相同或相关之处不再重复说明。
图26是本发明实施例9的两步随机接入中发送随机接入响应的装置的一示意图,如图26所示,装置2600包括:
第七计算单元2601,其用于计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;
第一加扰单元2602,其用于使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及
第一发送单元2603,其用于发送该下行控制信息和该随机接入响应。
例如,第七计算单元2601根据第二RNTI和偏移量计算该第一RNTI。
对应于实施例1中的示例2),图27是本发明实施例9的第七计算单元2601的 一示意图。如图27所示,第七计算单元2601包括:
第八计算单元2701,其用于根据第五RNTI和第一偏移量计算该第三RNTI;和/或,
第九计算单元2702,其用于根据该第五RNTI、该第一偏移量以及第二偏移量计算该第四RNTI。
在该情况下,第一加扰单元2602使用该第三RNTI对用于调度随机接入响应的第一下行控制信息的循环冗余校验进行加扰,或者,使用该第四RNTI对用于调度随机接入响应的第二下行控制信息的循环冗余校验进行加扰。
在本实施例中,如图26所示,装置2600还可以包括:
配置单元2604,其用于通过以下至少一种装置配置该偏移量、该第一偏移量和该第二偏移量中的至少一个:广播消息;RRC信令;以及MAC CE(MAC control element)。
在本实施例中,上述各个单元的功能的实现可以参照实施例3中相应步骤的记载,此处不再重复说明。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
实施例10
本发明实施例提供了一种两步随机接入中发送随机接入响应的装置,该装置可以配置于网络设备侧。由于该装置解决问题的原理与实施例4的方法类似,因此其具体的实施可以参照实施例3所述的方法的实施,内容相同或相关之处不再重复说明。
图28是本发明实施例10的两步随机接入中发送随机接入响应的装置的一示意图,如图28所示,装置2800包括:
第十计算单元2801,其用于计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
第二加扰单元2802,其用于使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及
第二发送单元2803,其用于发送该下行控制信息和该随机接入响应。
例如,第十计算单元2801根据第二RNTI和偏移量计算该第一RNTI。
对应于实施例1中的示例2),图29是本发明实施例10的第十计算单元2801的一示意图。如图29所示,第十计算单元2801包括:
第十一计算单元2901,其用于根据第五RNTI和第一偏移量计算该第三RNTI;和/或
第十二计算单元2902,其用于根据该第五RNTI、该第一偏移量以及第二偏移量计算该第四RNTI。
在本实施例中,上述各个单元的功能的实现可以参照实施例4中相应步骤的记载,此处不再重复说明。
由上述实施例可知,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例11
本发明实施例提供了一种用户设备,该用户设备包括如实施例7或实施例8所述的两步随机接入中接收随机接入响应的装置。
图30是本发明实施例11的用户设备的系统构成的一示意框图。如图30所示,用户设备3000可以包括处理器3010和存储器3020;存储器3020耦合到处理器3010。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,两步随机接入中接收随机接入响应的装置的功能可以被集成到处理器3010中。
对应于实施例7,处理器3010可以被配置为:计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;在监听窗内使用该第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
对应于实施例8,处理器3010可以被配置为:计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;在监听窗内 使用该第一RNTI对调度随机接入响应的下行控制信息进行检测;以及当成功检测到该下行控制信息时,根据该下行控制信息,在物理下行共享信道上接收随机接入响应
在另一个实施方式中,两步随机接入中接收随机接入响应的装置可以与处理器3010分开配置,例如可以将两步随机接入中接收随机接入响应的装置配置为与处理器3010连接的芯片,通过处理器3010的控制来实现两步随机接入中接收随机接入响应的装置的功能。
如图30所示,该用户设备3000还可以包括:通信模块3030、输入单元3040、显示器3050、电源3060。值得注意的是,用户设备3000也并不是必须要包括图30中所示的所有部件;此外,用户设备3000还可以包括图30中没有示出的部件,可以参考相关技术。
如图30所示,处理器3010有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器3010接收输入并控制用户设备3000的各个部件的操作。
其中,存储器3020,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器3010可执行该存储器3020存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。用户设备3000的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,对应于实施例7,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
另外,对应于实施例8,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例12
本发明实施例提供了一种网络设备,该网络设备包括如实施例9或实施例10所 述的两步随机接入中发送随机接入响应的装置。
图31是本发明实施例12的网络设备的一构成示意图。如图31所示,网络设备3100可以包括:处理器(processor)3110和存储器3120;存储器3120耦合到处理器3110。其中该存储器3120可存储各种数据;此外还存储信息处理的程序3130,并且在处理器3110的控制下执行该程序3130,以接收用户设备发送的各种信息、并且向用户设备发送各种信息。
在一个实施方式中,两步随机接入中接收随机接入响应的装置的功能可以被集成到处理器3110中。
对应于实施例9,处理器3110可以被配置为:计算第一RNTI,该第一RNTI不同于四步随机接入实际使用的RA-RNTI;使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及发送该下行控制信息和该随机接入响应。
对应于实施例10,处理器3110可以被配置为:计算第一RNTI,其中,该第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;使用该第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及发送该下行控制信息和该随机接入响应。
在另一个实施方式中,两步随机接入中发送随机接入响应的装置可以与处理器3110分开配置,例如可以将两步随机接入中发送随机接入响应的装置配置为与处理器3110连接的芯片,通过处理器3110的控制来实现两步随机接入中发送随机接入响应的装置的功能。
此外,如图31所示,网络设备3100还可以包括:收发机3140和天线3150等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备3100也并不是必须要包括图31中所示的所有部件;此外,网络设备3100还可以包括图31中没有示出的部件,可以参考现有技术。
由上述实施例可知,对应于实施例9,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
另外,对应于实施例10,通过对msg1-FDM参数进行限制,使得第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值,同样能够避免两步随机接入中的RNTI混淆。
实施例13
本发明实施例提供了一种通信系统,包括如实施例11所述的用户设备和/或如实施例12所述的网络设备。
例如,该通信系统的结构可以参照图3,如图3所示,通信系统100包括网络设备101和用户设备102,用户设备102与实施例11中记载的用户设备相同,网络设备101与实施例12中记载的网络设备相同,重复的内容不再赘述。
由上述实施例可知,通过使用不同于四步随机接入实际使用的RA-RNTI的RNTI对调度msgB的DCI进行CRC加扰,能够避免两步随机接入中的RNTI的混淆,也就是说,既能够避免两步随机接入的用户设备将不是针对自己RO的msgB或Msg2误认为是针对自己RO的msgB,又能够避免四步随机接入的用户设备将不是针对自己RO的msgB误认为是针对自己RO的Msg2。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图21中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图7中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以 存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图21中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图21描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
根据本发明实施例公开的各种实施方式,还公开了如下附记:
1、一种两步随机接入中接收随机接入响应的装置,所述装置应用于用户设备侧,所述装置包括:
第一计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;
第一检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及
第一接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
2、根据附记1所述的装置,其中,
所述第一计算单元根据第二RNTI和偏移量计算所述第一RNTI。
3、根据附记1所述的装置,其中,
所述第一RNTI包括第三RNTI和/或第四RNTI,
所述第一计算单元包括:
第二计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或,
第三计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
所述第一检测单元包括:
第二检测单元,其用于在监听窗内使用所述第三RNTI对调度第一随机接入响应的第一下行控制信息进行检测;和/或,
第三检测单元,其用于在监听窗内使用所述第四RNTI对调度第二随机接入响应的第二下行控制信息进行检测。
4、根据附记2或3所述的装置,其中,所述偏移量、所述第一偏移量和所述第二偏移量中的至少一个由网络设备通过以下至少一种装置进行配置:
广播消息;
RRC信令;以及
MAC CE(MAC control element)。
5、根据附记2或3所述的装置,其中,所述偏移量或所述第一偏移量大于或等于根据以下的一个确定的数值:
所述RA-RNTI的取值范围;
所述RA-RNTI的取值范围和第二载波的配置信息;
所述RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;
第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息;
6、根据附记5所述的装置,其中,所述第二偏移量大于或等于根据以下的一个确定的数值:
所述第五RNTI的取值范围;
所述第五RNTI的取值范围和第二载波的配置信息;
所述第五RNTI的取值范围、第二载波的配置信息以及第二载波上的两步随机接入的第一PRACH配置信息;
第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息。
7、根据附记2或3所述的装置,其中,所述偏移量或所述第一偏移量大于或等 于以下取值中的一个:
所述RA-RNTI的所有可能取值的最大值;
满足发送前导码所使用的上行载波的索引为零这一条件的所述RA-RNTI的所有可能取值的最大值;
满足RO所在的频率资源索引等于实际使用的最大的所述RA-RNTI所对应的频率资源索引这一条件的所述RA-RNTI的所有可能取值的最大值;
实际使用的最大的所述RA-RNTI。
8、根据附记7所述的装置,其中,所述第二偏移量大于或等于以下取值中的一个:
所述第五RNTI的所有可能取值的最大值;
满足发送前导码所使用的上行载波的索引为零这一条件的所述第五RNTI的所有可能取值的最大值;
满足RO所在的频率资源索引等于实际使用的最大的所述第五RNTI所对应的频率资源索引这一条件的所述第五RNTI的所有可能取值的最大值;
实际使用的最大的所述第五RNTI。
9、根据附记2或3所述的装置,其中,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及子载波间隔所对应的最大的监听窗长度所确定,或者,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及最大的监听窗长度所确定,或者,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定。
10、根据附记9所述的装置,其中,当两步随机接入和四步随机接入共享RO和/或最大的监听窗长度不大于10毫秒时,所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源 的索引以及发送前导码所使用的上行载波的索引所确定,并且所述第一偏移量等于零。
11、根据附记9所述的装置,其中,10240能够被以毫秒为单位的最大的监听窗长度整除。
12、根据附记1所述的装置,其中,
当上行共享信道所在的时隙或符号不可用,且与所述上行共享信道关联的前导码所在的时隙或符号可用时,
两步随机接入允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码,并且所述监听窗位于所述上行共享信道所在的时隙或符号之后,或者,两步随机接入不允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码。
13、一种两步随机接入中接收随机接入响应的装置,所述装置应用于用户设备侧,所述装置包括:
第四计算单元,其用于计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
第四检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息进行检测;以及
第二接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道上接收随机接入响应。
14、根据附记13所述的装置,其中,
所述第四计算单元根据第二RNTI和偏移量计算所述第一RNTI,
所述偏移量根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数之和不大于8。
15、根据附记13所述的装置,其中,
所述第一RNTI包括第三RNTI和第四RNTI,所述第三RNTI和第四RNTI的取值均不大于四步随机接入的RA-RNTI所有可能取值的最大值,
所述第四计算单元包括:
第五计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或
第六计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
所述第一偏移量大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,所述第二偏移量大于或等于根据第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息确定的数值,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数的二倍之和不大于8。
16、一种两步随机接入中发送随机接入响应的装置,所述装置应用于网络设备侧,所述装置包括:
第七计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;
第一加扰单元,其用于使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及
第一发送单元,其用于发送所述下行控制信息和所述随机接入响应。
17、根据附记16所述的装置,其中,
所述第七计算单元根据第二RNTI和偏移量计算所述第一RNTI。
18、根据附记16所述的装置,其中,
所述第一RNTI包括第三RNTI和/或第四RNTI,
所述第七计算单元包括:
第八计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或,
第九计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
所述第一加扰单元使用所述第三RNTI对用于调度随机接入响应的第一下行控制信息的循环冗余校验进行加扰,或者,使用所述第四RNTI对用于调度随机接入响应的第二下行控制信息的循环冗余校验进行加扰。
19、根据附记17或18所述的装置,其中,所述装置还包括:
配置单元,其用于通过以下至少一种装置配置所述偏移量、所述第一偏移量和所述第二偏移量中的至少一个:
广播消息;
RRC信令;以及
MAC CE(MAC control element)。
20、根据附记17或18所述的装置,其中,
所述偏移量或所述第一偏移量大于或等于根据以下的一个确定的数值:
所述RA-RNTI的取值范围;
所述RA-RNTI的取值范围和第二载波的配置信息;
所述RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;
第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息。
21、根据附记20所述的装置,其中,所述第二偏移量大于或等于根据以下的一个确定的数值:
所述第五RNTI的取值范围;
所述第五RNTI的取值范围和第二载波的配置信息;
所述第五RNTI的取值范围、第二载波的配置信息以及第二载波上的两步随机接入的第一PRACH配置信息;
第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息。
22、根据附记17或18所述的装置,其中,
所述偏移量或所述第一偏移量大于或等于以下取值中的一个:
所述RA-RNTI的所有可能取值的最大值;
满足发送前导码所使用的上行载波的索引为零这一条件的所述RA-RNTI的所有可能取值的最大值;
满足RO所在的频率资源索引等于实际使用的最大的所述RA-RNTI所对应的频率资源索引这一条件的所述RA-RNTI的所有可能取值的最大值;
实际使用的最大的所述RA-RNTI。
23、根据附记22所述的装置,其中,所述第二偏移量大于或等于以下取值中的一个:
所述第五RNTI的所有可能取值的最大值;
满足发送前导码所使用的上行载波的索引为零这一条件的所述第五RNTI的所有可能取值的最大值;
满足RO所在的频率资源索引等于实际使用的最大的所述第五RNTI所对应的频率资源索引这一条件的所述第五RNTI的所有可能取值的最大值;
实际使用的最大的所述第五RNTI。
24、根据附记17或18所述的装置,其中,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及子载波间隔所对应的最大的监听窗长度所确定,或者,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及最大的监听窗长度所确定,或者,
所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定。
25、根据附记24所述的装置,其中,当两步随机接入和四步随机接入共享RO和/或最大的监听窗长度不大于10毫秒时,所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定,并且所述第一偏移量等于零。
26、根据附记24所述的装置,其中,10240能够被以毫秒为单位的最大的监听窗长度整除。
27、根据附记16所述的装置,
当上行共享信道所在的时隙或符号不可用,且与所述上行共享信道关联的前导码所在的时隙或符号可用时,
两步随机接入允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码,并且所述监听窗位于所述上行共享信道所在的时隙或符号之后,或者,两步随机接入不允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码。
28、一种两步随机接入中发送随机接入响应的装置,所述装置应用于网络设备侧,所述装置包括:
第十计算单元,其用于计算第一RNTI,其中,所述第一RNIT的取值不大于四步随机接入的RA-RNTI所有可能取值的最大值;
第二加扰单元,其用于使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验进行加扰;以及
第二发送单元,其用于发送所述下行控制信息和所述随机接入响应。
29、根据附记28所述的装置,其中,
所述第十计算单元根据第二RNTI和偏移量计算所述第一RNTI,
所述偏移量大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数之和不大于8。
30、根据附记28所述的装置,其中,
所述第一RNTI包括第三RNTI和第四RNTI,所述第三RNTI和第四RNTI的取值均不大于四步随机接入的RA-RNTI所有可能取值的最大值,
所述第十计算单元包括:
第十一计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或
第十二计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
所述第一偏移量大于或等于根据第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息确定的数值,所述第二偏移量大于或等于根据第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH 配置信息确定的数值,并且,载波的四步随机接入的PRACH资源配置中的msg1-FDM参数和相同载波的两步随机接入的PRACH资源配置中的msg1-FDM参数的二倍之和不大于8。
31、一种用户设备,所述用户设备包括根据附记1-15中的任一项所述的装置。
32、一种网络设备,所述网络设备包括根据附记16-30中的任一项所述的装置。
33、一种通信系统,所述通信系统包括根据附记31所述的用户设备和/或根据附记32所述的网络设备。

Claims (20)

  1. 一种两步随机接入中接收随机接入响应的装置,所述装置应用于用户设备侧,所述装置包括:
    第一计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;
    第一检测单元,其用于在监听窗内使用所述第一RNTI对调度随机接入响应的下行控制信息(DCI,Downlink Control Information)进行检测;以及
    第一接收单元,其用于当成功检测到所述下行控制信息时,根据所述下行控制信息,在物理下行共享信道(PDSCH)上接收随机接入响应。
  2. 根据权利要求1所述的装置,其中,
    所述第一计算单元根据第二RNTI和偏移量计算所述第一RNTI。
  3. 根据权利要求1所述的装置,其中,
    所述第一RNTI包括第三RNTI和/或第四RNTI,
    所述第一计算单元包括:
    第二计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或,
    第三计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
    所述第一检测单元包括:
    第二检测单元,其用于在监听窗内使用所述第三RNTI对调度第一随机接入响应的第一下行控制信息进行检测;和/或,
    第三检测单元,其用于在监听窗内使用所述第四RNTI对调度第二随机接入响应的第二下行控制信息进行检测。
  4. 根据权利要求2或3所述的装置,其中,所述偏移量、所述第一偏移量和所述第二偏移量中的至少一个由网络设备通过以下至少一种装置进行配置:
    广播消息;
    RRC信令;以及
    MAC CE(MAC control element)。
  5. 根据权利要求2或3所述的装置,其中,所述偏移量或所述第一偏移量大于 或等于根据以下的一个确定的数值:
    所述RA-RNTI的取值范围;
    所述RA-RNTI的取值范围和第二载波的配置信息;
    所述RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;
    第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及第一载波上的四步随机接入的第二PRACH配置信息。
  6. 根据权利要求5所述的装置,其中,所述第二偏移量大于或等于根据以下的一个确定的数值:
    所述第五RNTI的取值范围;
    所述第五RNTI的取值范围和第二载波的配置信息;
    所述第五RNTI的取值范围、第二载波的配置信息以及第二载波上的两步随机接入的第一PRACH配置信息;
    第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息。
  7. 根据权利要求2或3所述的装置,其中,所述偏移量或所述第一偏移量大于或等于以下取值中的一个:
    所述RA-RNTI的所有可能取值的最大值;
    满足发送前导码所使用的上行载波的索引为零这一条件的所述RA-RNTI的所有可能取值的最大值;
    满足RO所在的频率资源索引等于实际使用的最大的所述RA-RNTI所对应的频率资源索引这一条件的所述RA-RNTI的所有可能取值的最大值;
    实际使用的最大的所述RA-RNTI。
  8. 根据权利要求7所述的装置,其中,所述第二偏移量大于或等于以下取值中的一个:
    所述第五RNTI的所有可能取值的最大值;
    满足发送前导码所使用的上行载波的索引为零这一条件的所述第五RNTI的所有可能取值的最大值;
    满足RO所在的频率资源索引等于实际使用的最大的所述第五RNTI所对应的频 率资源索引这一条件的所述第五RNTI的所有可能取值的最大值;
    实际使用的最大的所述第五RNTI。
  9. 根据权利要求2或3所述的装置,其中,
    所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及子载波间隔所对应的最大的监听窗长度所确定,或者,
    所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引、发送前导码所使用的上行载波的索引、系统帧索引以及最大的监听窗长度所确定,或者,
    所述第二RNTI或所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定。
  10. 根据权利要求9所述的装置,其中,当两步随机接入和四步随机接入共享RO和/或最大的监听窗长度不大于10毫秒时,所述第五RNTI根据两步随机接入的RO所在的第一个符号的索引、所在的第一个时隙在一个系统帧内的索引、所在的频率资源的索引以及发送前导码所使用的上行载波的索引所确定,并且所述第一偏移量等于零。
  11. 根据权利要求9所述的装置,其中,10240能够被以毫秒为单位的最大的监听窗长度整除。
  12. 根据权利要求1所述的装置,其中,
    当上行共享信道所在的时隙或符号不可用,且与所述上行共享信道关联的前导码所在的时隙或符号可用时,
    两步随机接入允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码,并且所述监听窗位于所述上行共享信道所在的时隙或符号之后,或者,两步随机接入不允许使用与所述上行共享信道关联的前导码所在的时隙或符号发送前导码。
  13. 一种两步随机接入中发送随机接入响应的装置,所述装置应用于网络设备侧,所述装置包括:
    第七计算单元,其用于计算第一RNTI,所述第一RNTI不同于四步随机接入实际使用的RA-RNTI;
    第一加扰单元,其用于使用所述第一RNTI对用于调度随机接入响应的下行控制信息的循环冗余校验(CRC)进行加扰;以及
    第一发送单元,其用于发送所述下行控制信息和所述随机接入响应。
  14. 根据权利要求13所述的装置,其中,
    所述第七计算单元根据第二RNTI和偏移量计算所述第一RNTI。
  15. 根据权利要求13所述的装置,其中,
    所述第一RNTI包括第三RNTI和/或第四RNTI,
    所述第七计算单元包括:
    第八计算单元,其用于根据第五RNTI和第一偏移量计算所述第三RNTI;和/或,第九计算单元,其用于根据所述第五RNTI、所述第一偏移量以及第二偏移量计算所述第四RNTI,
    所述第一加扰单元使用所述第三RNTI对用于调度随机接入响应的第一下行控制信息的循环冗余校验进行加扰,或者,使用所述第四RNTI对用于调度随机接入响应的第二下行控制信息的循环冗余校验进行加扰。
  16. 根据权利要求14或15所述的装置,其中,所述装置还包括:
    配置单元,其用于通过以下至少一种装置配置所述偏移量、所述第一偏移量和所述第二偏移量中的至少一个:
    广播消息;
    RRC信令;以及
    MAC CE(MAC control element)。
  17. 根据权利要求14或15所述的装置,其中,
    所述偏移量或所述第一偏移量大于或等于根据以下的一个确定的数值:
    所述RA-RNTI的取值范围;
    所述RA-RNTI的取值范围和第二载波的配置信息;
    所述RA-RNTI的取值范围、第二载波的配置信息以及第二载波上的四步随机接入的第一PRACH配置信息;
    第二载波的配置信息、第二载波上的四步随机接入的第二PRACH配置信息以及 第一载波上的四步随机接入的第二PRACH配置信息。
  18. 根据权利要求17所述的装置,其中,所述第二偏移量大于或等于根据以下的一个确定的数值:
    所述第五RNTI的取值范围;
    所述第五RNTI的取值范围和第二载波的配置信息;
    所述第五RNTI的取值范围、第二载波的配置信息以及第二载波上的两步随机接入的第一PRACH配置信息;
    第二载波的配置信息、第二载波上的两步随机接入的第二PRACH配置信息以及第一载波上的两步随机接入的第二PRACH配置信息。
  19. 根据权利要求14或15所述的装置,其中,
    所述偏移量或所述第一偏移量大于或等于以下取值中的一个:
    所述RA-RNTI的所有可能取值的最大值;
    满足发送前导码所使用的上行载波的索引为零这一条件的所述RA-RNTI的所有可能取值的最大值;
    满足RO所在的频率资源索引等于实际使用的最大的所述RA-RNTI所对应的频率资源索引这一条件的所述RA-RNTI的所有可能取值的最大值;
    实际使用的最大的所述RA-RNTI。
  20. 根据权利要求19所述的装置,其中,所述第二偏移量大于或等于以下取值中的一个:
    所述第五RNTI的所有可能取值的最大值;
    满足发送前导码所使用的上行载波的索引为零这一条件的所述第五RNTI的所有可能取值的最大值;
    满足RO所在的频率资源索引等于实际使用的最大的所述第五RNTI所对应的频率资源索引这一条件的所述第五RNTI的所有可能取值的最大值;
    实际使用的最大的所述第五RNTI。
PCT/CN2019/101111 2019-08-16 2019-08-16 两步随机接入中接收和发送随机接入响应的方法及装置 WO2021030967A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19942394.8A EP4017127A4 (en) 2019-08-16 2019-08-16 METHOD AND DEVICE FOR RECEIVING DIRECT ACCESS RESPONSES AND METHOD AND DEVICE FOR TRANSMITTING DIRECT ACCESS RESPONSE IN A TWO-STAGE DIRECT ACCESS
JP2022507889A JP2022544210A (ja) 2019-08-16 2019-08-16 2ステップランダムアクセスにおけるランダムアクセスレスポンスの受送信方法及び装置
PCT/CN2019/101111 WO2021030967A1 (zh) 2019-08-16 2019-08-16 两步随机接入中接收和发送随机接入响应的方法及装置
KR1020227004378A KR20220034839A (ko) 2019-08-16 2019-08-16 랜덤 액세스 응답을 수신하기 위한 방법과 장치 및 2-단계 랜덤 액세스에서 랜덤 액세스 응답을 전송하기 위한 방법과 장치
CN201980099118.5A CN114208300B (zh) 2019-08-16 两步随机接入中接收和发送随机接入响应的方法及装置
US17/590,082 US20220225430A1 (en) 2019-08-16 2022-02-01 Methods and apparatuses for receiving and transmitting random access response in 2-step random access
JP2023178489A JP2023171691A (ja) 2019-08-16 2023-10-16 2ステップランダムアクセスにおけるランダムアクセスレスポンスの受送信方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101111 WO2021030967A1 (zh) 2019-08-16 2019-08-16 两步随机接入中接收和发送随机接入响应的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/590,082 Continuation US20220225430A1 (en) 2019-08-16 2022-02-01 Methods and apparatuses for receiving and transmitting random access response in 2-step random access

Publications (1)

Publication Number Publication Date
WO2021030967A1 true WO2021030967A1 (zh) 2021-02-25

Family

ID=74660126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101111 WO2021030967A1 (zh) 2019-08-16 2019-08-16 两步随机接入中接收和发送随机接入响应的方法及装置

Country Status (5)

Country Link
US (1) US20220225430A1 (zh)
EP (1) EP4017127A4 (zh)
JP (2) JP2022544210A (zh)
KR (1) KR20220034839A (zh)
WO (1) WO2021030967A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206715A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 一种随机接入方法及装置
WO2022267871A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种随机接入方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220225429A1 (en) * 2021-01-12 2022-07-14 Samsung Electronics Co., Ltd. User equipment for random access and method thereof, base station for random access and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369701A (zh) * 2012-03-29 2013-10-23 京信通信系统(中国)有限公司 一种随机接入的方法及装置
US20180192401A1 (en) * 2017-01-04 2018-07-05 Huawei Technologies Co., Ltd. System and method for user equipment identifier configuration
CN109892000A (zh) * 2016-11-01 2019-06-14 高通股份有限公司 两步随机接入过程

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412675A (zh) * 2019-02-15 2021-09-17 索尼集团公司 通信设备、基础设施设备和方法
KR20200110201A (ko) * 2019-03-14 2020-09-23 한국전자통신연구원 통신 시스템에서 단말의 접속 제어 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369701A (zh) * 2012-03-29 2013-10-23 京信通信系统(中国)有限公司 一种随机接入的方法及装置
CN109892000A (zh) * 2016-11-01 2019-06-14 高通股份有限公司 两步随机接入过程
US20180192401A1 (en) * 2017-01-04 2018-07-05 Huawei Technologies Co., Ltd. System and method for user equipment identifier configuration

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.211
HUAWEI, HISILICON: "Calculation of RA-RNTI", 3GPP TSG-RAN WG2 MEETING #99BIS; R2-1710775, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 29 September 2017 (2017-09-29), Prague, Czech Republic; 20171009 - 20171013, XP051355179 *
See also references of EP4017127A4
VIVO: "RA-RNTI Calculation for Extended RAR Window", 3GPP TSG-RAN WG2 MEETING #106; R2-1905621, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 May 2019 (2019-05-03), Reno, USA; 20190513 - 20190517, XP051709979 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206715A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 一种随机接入方法及装置
WO2022267871A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种随机接入方法及装置

Also Published As

Publication number Publication date
JP2023171691A (ja) 2023-12-01
JP2022544210A (ja) 2022-10-17
US20220225430A1 (en) 2022-07-14
KR20220034839A (ko) 2022-03-18
EP4017127A4 (en) 2022-07-27
EP4017127A1 (en) 2022-06-22
CN114208300A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
TWI694705B (zh) 槽及小型槽結構之發信號及判定
CN107113150B (zh) 用于发送上行链路信号的方法和用户设备、以及用于接收上行链路信号的方法和基站
US20200068511A1 (en) Method and user equipment for transmitting uplink signal
US11283581B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2020221264A1 (zh) 一种随机接入方法、装置及存储介质
US20160100429A1 (en) Controlling Random Access Failure on a Secondary Cell
US11134523B2 (en) Uplink transmission control method and apparatus and communication system
WO2017040147A1 (en) Random access channel design for narrowband wireless communication
KR101730758B1 (ko) 가변 대역폭을 지원하는 통신 방법 및 무선기기
US10206229B2 (en) Device and method of handling random access procedure
JP2016219896A (ja) ユーザ端末、無線基地局及び無線通信方法
JP2014513504A (ja) ランダムアクセス応答のためのクロススケジューリング
US20220225430A1 (en) Methods and apparatuses for receiving and transmitting random access response in 2-step random access
US10742387B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
US11582676B2 (en) Method for relay terminal to transmit and receive signals in wireless communication system, and device for same
CN112204917B (zh) 在支持tdd窄带的无线通信系统中发送或接收系统信息的方法和设备
JP2024069386A (ja) アップリンク伝送方法及び装置
CN114208300B (zh) 两步随机接入中接收和发送随机接入响应的方法及装置
WO2022027527A1 (zh) 信号的发送和接收方法、装置和通信系统
WO2022151171A1 (zh) 随机接入方法及装置
WO2018177228A1 (zh) 无线通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507889

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227004378

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019942394

Country of ref document: EP

Effective date: 20220316