WO2022267685A1 - 双频多馈天线及电子设备 - Google Patents

双频多馈天线及电子设备 Download PDF

Info

Publication number
WO2022267685A1
WO2022267685A1 PCT/CN2022/089396 CN2022089396W WO2022267685A1 WO 2022267685 A1 WO2022267685 A1 WO 2022267685A1 CN 2022089396 W CN2022089396 W CN 2022089396W WO 2022267685 A1 WO2022267685 A1 WO 2022267685A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
frequency
antenna
feed
unit
Prior art date
Application number
PCT/CN2022/089396
Other languages
English (en)
French (fr)
Inventor
李渭
赵鲁豫
王兴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022267685A1 publication Critical patent/WO2022267685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a dual-frequency multi-feed antenna and electronic equipment.
  • MIMO Multiple Input Multiple Output
  • the main purpose of the embodiments of the present application is to provide a dual-frequency multi-feed antenna and electronic equipment.
  • An embodiment of the present application provides a dual-frequency multi-feed antenna, including: a plurality of dual-frequency antenna units and a plurality of connection units, a plurality of dual-frequency antenna units are adjacently arranged, and a gap between two adjacent dual-frequency antenna units Connected by one connecting unit, each of the dual-frequency antenna units is provided with a feeding branch near the side of the connecting unit, and the end of the feeding branch is connected to a feeding point; on each of the connecting units A short-circuit stub is provided, and the end of the short-circuit stub is connected to the grounding point.
  • the embodiment of the present application also provides an electronic device, including the dual-frequency multi-feed antenna as described above.
  • FIG. 1 is a schematic structural diagram of a dual-frequency multi-feed antenna provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a dual-frequency multi-feed antenna provided in another embodiment of the present application.
  • FIG. 3 is an electromagnetic simulation result of a dual-frequency multi-feed antenna provided by an embodiment of the present application.
  • an embodiment of the present application provides a dual-frequency multi-feed antenna, including: multiple dual-frequency antenna units and multiple connection units, A plurality of dual-frequency antenna units are adjacently arranged, and two adjacent dual-frequency antenna units are connected by a connecting unit, and each dual-frequency antenna unit is arranged on a side close to the connecting unit There is a feeding branch, the end of which is connected to the feeding point; each of the connecting units is provided with a short-circuit branch, and the end of the short-circuiting branch is connected to the grounding point.
  • the dual-frequency multi-feed antenna proposed in the embodiment of the present application can be laid out based on the dual-frequency antenna unit and the connection unit, wherein the dual-frequency antenna units are arranged adjacent to each other, and each dual-frequency antenna unit is provided on the side close to the connection unit.
  • Feed branch, the end of the feed branch is connected to the feed point, so that two adjacent dual-frequency antenna units can be connected through the connection unit to form a whole, so multiple feed points are connected to the same antenna as a whole , so as to use the orthogonal or offset effect of the radiation patterns generated by different feed points to achieve good performance of the multi-antenna system, thereby reducing the size of the antenna and reducing the cost of the antenna, while using multi-feed technology to achieve multiple input and multiple output.
  • each connection unit is provided with a short-circuit stub, and the end of the short-circuit stub is connected to the ground point, so that the impedance between different antennas can be adjusted through the setting of the short-circuit stub, and the mutual influence between different antennas can be avoided by using the impedance.
  • the isolation degree is improved without adding additional isolation results or circuits, which further reduces the size of the antenna and avoids a large clearance area.
  • the dual-frequency multi-feed antenna provided by the embodiment of the present application has stronger applicability because the antenna layout is simple, and the configuration of the dual-frequency antenna unit is not affected by the type of antenna.
  • Fig. 1 comprises 2 dual-frequency antenna units with dual-frequency multi-feed antenna 100, is respectively dual-frequency antenna unit 101A and dual-frequency antenna unit 101B, and connects the connection of dual-frequency antenna unit 101A and dual-frequency antenna unit 101B
  • the unit 102 is taken as an example, and the dual-frequency multi-feed antenna 100 of this embodiment is specifically described.
  • the dual-frequency antenna unit 101A is adjacent to the dual-frequency antenna unit 101B, and is connected through a connecting unit 102 arranged between the two, so that the dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B form A whole, that is, a complete radiator.
  • the side of the dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B close to the connection unit 102 is respectively provided with a feeding branch, and the end of the feeding branch is connected to the feeding point.
  • the end of the feeding branch 103A is connected to the feeding point.
  • the end of the feeding stub 103B is connected to the feeding point 104B; the connecting unit 102 is provided with a short-circuit stub 105 , and the end of the short-circuit stub 105 is connected to the grounding point 106 .
  • a grounded short-circuit stub 105 is provided between the feeding stub 103A and the feeding stub 103B.
  • the direction of the current in the dual-frequency multi-feed antenna 100 will change, that is, the current will will flow back to the ground through the short-circuit stub 105, thereby reducing the resonant frequency of the dual-frequency multi-feed antenna 100; It has a transformer effect, which changes part of the capacitive reactance into impedance, thereby transforming the impedance of the dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B, which helps to form resonance.
  • the impedance of the dual-band antenna unit 101A and the dual-band antenna unit 101B can be adjusted, thereby adjusting the isolation between the two antennas.
  • the dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B form a whole through the connection unit 102, that is, a complete radiator, which realizes that by loading multiple feed points on a radiator, the The orthogonality or cancellation of the radiation patterns achieves good performance of the multi-antenna system, thereby reducing the volume of the antenna and reducing the cost of the antenna.
  • the distance between the short-circuit stub 105 and the adjacent feeding stub 103 can be set as ⁇ /4, where ⁇ is the dual position where the feeding stub 103 is located.
  • the wavelength corresponding to the center frequency of the frequency band supported by the high-frequency antenna unit 101 that is, the distance between the short-circuit stub 105 and the feed stub 103A is 1/4 of the wavelength corresponding to the frequency band supported by the dual-frequency antenna unit 101A, and the distance between the short-circuit stub 105 and the feed stub 103B 1/4 of the wavelength corresponding to the frequency band supported by the dual-band antenna unit 101B.
  • the dual-band antenna unit supports two frequency bands - frequency band 1 and frequency band 2, when the center frequency of frequency band 1 is higher than the center frequency of frequency band 2, it is also necessary to satisfy the center frequency of frequency band 1 within the preset error range Within 3 times the center frequency of Band 2.
  • the electromagnetic wave radiate externally in the form of sine waves, at 1/4 wavelength, the electromagnetic wave corresponds to the positive antinode point with the largest positive amplitude; at 3/4 wavelength, the corresponding negative antinode point has the largest negative amplitude, and the wavelength It is inversely proportional to the frequency, by setting the two center frequencies of the frequency bands of the adjacent dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B in the dual-frequency multi-feed antenna 100 to satisfy the triple frequency relationship, so as to realize that the two electromagnetic waves emitted approximately satisfy 3 times the frequency relationship, and then when the frequency of the two electromagnetic waves differs by 3 times, the corresponding two electromagnetic waves can have the largest amplitude and opposite phases, and finally ensure the highest antenna radiation efficiency and the largest isolation between the two antennas.
  • the number of short-circuit stubs 105 provided on each connection unit 102 may be one or two.
  • the dual-frequency antenna unit 101A and the dual-frequency antenna unit 101B share one short-circuit stub 105, and two adjacent dual-frequency antenna units 101A and dual-frequency antenna units 101B
  • the distance between the two feeding stubs 103A and 103B respectively set is 1/4 of the sum of the wavelengths corresponding to the center frequencies of the frequency bands supported by the two dual-frequency antenna units 101A and dual-frequency antenna unit 101B. At this time, the short circuit is still satisfied.
  • the distance from the branch 105 to the feeding branch 103A is 1/4 of the wavelength corresponding to the center frequency of the frequency band supported by the dual-frequency multi-feed unit 101A, and to the feeding branch 103B is 1/4 of the wavelength corresponding to the center frequency of the frequency band supported by the dual-frequency multi-feed unit 101B 4, and the layout scheme has the smallest size at this time; when the number of short-circuit stubs 105 set on the connection unit 102 is 2, the distance between the two short-circuit stubs 105 is not limited, and the middle distance between the two short-circuit stubs 105 is At this time, the distance between the short-circuit branch and its adjacent feeder branch (feeder branch A or feeder branch B) located on the same side of the vertical line is still the same as the corresponding frequency band supported by the dual-frequency multi-feed unit The center frequency of the corresponding wavelength corresponds to 1/4 of the wavelength. In particular, when the distance between two short-circuit stubs 105 is 0, the number of short-circuit stub
  • the above examples are only examples for better understanding of the technical solution of this embodiment, and are not used as the only limitation to this embodiment.
  • the number of dual-frequency antenna units in the dual-frequency multi-feed antenna 100 is not limited to two as shown in FIG. It only needs to be connected, and the specific connection method is similar to the above description, which will not be repeated in this embodiment.
  • the number of connecting units 102 is the number of dual-band antenna units 101 minus one.
  • this embodiment does not limit the type of the dual-frequency antenna unit 101, that is, the position of the radiating element includes but is not limited to only at the top, and it can also be placed on the side. According to the actual layout requirements, the shape of the radiating element includes but is not limited to a square, Other shapes are also possible, and the length of the outstretched metal arm is also adjustable.
  • Each dual-frequency antenna unit 101 in the dual-frequency multi-feed antenna 100 can be any antenna unit that supports dual frequency, such as a dual-frequency loop antenna, a dual-frequency microstrip antenna, etc., and multiple dual-frequency antenna units 101 can be of different types. The same, may also be partly the same, or all may be different, and details will not be repeated here.
  • the dual-frequency antenna unit 101 does not need to be limited in the above-mentioned embodiments, thus avoiding the restriction of the type and quantity of antennas on the construction of the dual-frequency multi-feed antenna 100, reducing the difficulty of antenna layout and increasing the applicability , reducing costs.
  • the foregoing embodiments do not limit the frequency bands supported by the dual-band antenna unit 101 , and may be any frequency bands determined according to actual needs.
  • the frequency bands supported by the dual-band antenna unit 101 are both the N41 frequency band (2496MHz-2690MHz) and the N78 frequency band (3400-3600MHz) licensed by the operator.
  • the frequency bands supported by each dual-frequency antenna unit are the same. In this way, by increasing the number of antennas to achieve more input and output, and then increase the uplink and downlink rates, that is, to form a MIMO system, increase the user Internet access rate, and then improve user experience.
  • the dual-band multi-feed antenna 100 further includes a substrate 107 , wherein the substrate 107 includes a headroom area 108 and a floor area 109 .
  • the dual-frequency antenna unit 101 and the feeding stub 103 provided thereon that is, the feeding stub 103A and the feeding stub 103B in FIG. 104 (ie feed point 104A and feed point 104B in FIG. 1 ) and ground point 106 are both disposed on the substrate 107 , and together with the substrate 107 constitute the dual-frequency multi-feed antenna 100 .
  • the antenna main body and the radiator of the dual-frequency antenna unit 100 are arranged in the clearance area 108, and the feed point 104 and the grounding point 106 are located in the floor area 109, so that parts such as circuits are all arranged in the floor area 109, and the clearance area 108 Only the radiator is included, which avoids the interference of the circuit to the antenna, and improves the accuracy of the dual-frequency multi-feed antenna 100 .
  • the present embodiment does not limit the material of the substrate 107, and it may be any material that can be used to make an antenna.
  • the substrate 107 may be a printed circuit board (Printed circuit boards, PCB) substrate of FR4 medium.
  • the relative permittivity and dielectric loss tangent of the substrate 107 are determined according to the center frequency of the frequency band supported by the dual-band antenna unit 101 . Since the relative permittivity and the dielectric loss tangent of the substrate 107 will affect the actual bandwidth of the dual-frequency multi-feed antenna 100, the relative permittivity and the dielectric loss tangent of the substrate 107 need to be compatible with the dual-frequency antenna unit 101. Adapt to the center frequency of the band.
  • the selected substrate 107 is an FR4 dielectric PCB substrate with a size of 90 ⁇ 50 ⁇ 0.8mm, and the operating frequency band is 2496MHz-2690MHz and 3400MHz-3600MHz, then the relative permittivity of the substrate 107 can be 4.4, and the dielectric loss angle Tangent can be 0.02.
  • the distance between the radiator of the dual-band antenna unit 101 and the floor area 109 is determined according to the radiation efficiency of the dual-band multi-feed antenna 100 .
  • the distance between the radiator of the dual-frequency antenna unit 101 and the floor area 109 can be constantly tested through experiments to achieve the best radiation efficiency.
  • the distance between the radiator of the dual-band antenna unit 101 and the floor area 109 may also be determined according to the relative permittivity and the center frequency of the frequency band supported by the dual-band antenna unit.
  • the dual-frequency antenna unit 101 and the floor area 109 will affect the actual bandwidth of the dual-frequency multi-feed antenna 100, and then considering the influence of the relative dielectric constant and the center frequency of the frequency band on the bandwidth, the dual-frequency The distance between the radiator of the antenna unit 101 and the floor area 109 needs to be adapted to the center frequency and relative permittivity of the frequency band supported by the dual-band antenna unit 101 .
  • the length of the short-circuit stub is determined according to the radiation efficiency and isolation of the dual-frequency multi-feed antenna 100 .
  • the length and width of the radiator of the dual-frequency antenna unit are determined according to the frequency bands supported by the dual-frequency antenna unit.
  • the electromagnetic simulation is carried out with the dual-frequency dual-feed antenna 100 as an example.
  • Loop antenna a dual-frequency antenna unit 101 dual-frequency planar inverted F antenna (Planar Inverted-F Antenna, PIFA), two dual-frequency antenna units 101 are printed on the FR4 dielectric PCB substrate 107 with a size of 90mm ⁇ 50mm ⁇ 0.8mm , wherein, the relative permittivity of the substrate 107 is 4.4, the dielectric loss tangent is 0.02, the two dual-band antenna units 101 are all working in the dual-band 2496MHz-2690MHz and 3400MHz-3600MHz, and the two dual-band antenna units 101 are independent
  • a feed point 104 is set and a feed branch 103 whose end is connected to the feed point 104, a connection unit 102 is arranged between the two feed points 103, a short-circuit branch 105 is arranged on the connection unit 102, and the short-circuit branch 105
  • the end of the grounding point 106 is
  • the dual-frequency dual-feed antenna obtained at this time has realized 2 ⁇ 2 multiple input multiple output (Multiple Input Multiple Output, MIMO), wherein the port 1 working frequency band 1: 2496MHz-2690MHz, the port 1 working frequency band: 3400MHz-3600MHz; Two working frequency band 1: 2496MHz-2690MHz, port two working frequency band 2: 3400MHz-3600MHz.
  • MIMO Multiple Input Multiple Output
  • the dual-frequency loop antenna in the two dual-frequency antenna units 101 is antenna 1
  • the dual-frequency PIFA antenna is antenna 2
  • the current distribution is mainly concentrated On the antenna 1 side, the radiator of the antenna 2 has almost no current distribution, which makes the antenna 2 and the excitation port antenna 1 well isolated, thereby ensuring a good isolation between the two antennas.
  • the simulation efficiency of the antenna in the working frequency band (3400MHz-3600MHz) is greater than 40%, and the low-frequency ring
  • the radiation efficiency of the antenna is higher, and the radiation efficiency of the PIFA antenna in the high frequency band is higher; both
  • S11 the less the electromagnetic wave transmitted by the antenna is reflected, the energy is radiated by the antenna, and the antenna's external radiation efficiency is higher.
  • S22 represents the return loss of antenna 2, so I won't go into details here.
  • S12 represents the isolation between antenna 1 and antenna 2, that is, when antenna 1 is working, how much signal from antenna 1 can be received by antenna 2, the lower the value of S12, it means that antenna 2 receives the signal from antenna 1
  • the embodiment of the present application also provides an electronic device, including a dual-frequency multi-feed antenna; wherein, the dual-frequency multi-feed antenna includes: a plurality of dual-frequency antenna units and a plurality of connection units, and the plurality of dual-frequency antenna units are arranged adjacently, Two adjacent dual-frequency antenna units are connected by a connecting unit, and a feeding branch is arranged on the side of each dual-frequency antenna unit close to the connecting unit, and the end of the feeding branch is connected to a feeding point; on each connecting unit A short-circuit stub is provided, and the end of the short-circuit stub is connected to the grounding point.
  • the electronic device provided in the embodiment of the present application includes the same dual-frequency multi-feed antenna as the dual-frequency multi-feed antenna provided in other embodiments. Therefore, the electronic device provided in this embodiment also has a dual-frequency The technical effect of the multi-feed antenna is the same, and will not be repeated here.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种双频多馈天线及电子设备。一种双频多馈天线,包括:多个双频天线单元(101A,101B)和多个连接单元(102),多个所述双频天线单元(101A,101B)相邻设置,相邻两个所述双频天线单元(101A,101B)之间通过一个所述连接单元(102)连接,每个所述双频天线单元(101A,101B)上靠近所述连接单元(102)的一侧设置有馈电枝节(103A,103B),所述馈电枝节(103A,103B)的末端连接馈电点(104A,104B);每个所述连接单元(102)上设置有短路枝节(105),所述短路枝节(105)的末端与接地点连接。

Description

双频多馈天线及电子设备
相关申请的交叉引用
本申请基于申请号为202110697078.3、申请日为2021年6月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及通信领域,特别涉及一种双频多馈天线及电子设备。
背景技术
随着技术的发展对移动通信能力提出了更高的要求,通信系统需要支持更多的频段、更大的吞吐率、更低的时延、更少的能量消耗与更广域的覆盖面积,其中,基于多输入多输出技术(Multiple Input Multiple Output,MIMO)技术在理想条件下可以实现吞吐率成倍数的提高。因此,为了满足用户的需求,支持双频且同时支持MIMO的天线在终端产品中的应用越来越迫切、也越来越重要。目前为了实现支持双频且同时支持多输入多输出的天线,通常的做法是采用两个双频天线,或者多个单频天线的方案进行天线布局,同时还需要布局双频的隔离结构或者电路以满足天线对隔离度的要求。
然而,基于各项不同功能的天线种类和数量又非常多,且为了具有更好的隔离度还需要设置隔离结构或电路或增大净空区,使得设备产品内的天线净空区面积大大增加,进而增大后的天线净空区和用于隔离的隔离结构或电路会大大增加天线占用的区域,复杂的布局增加了设计天线的难度和成本,且布局会随着天线的形状、类型等发生较大变化,布局方案适用性低。
发明内容
本申请实施例的主要目的在于提出一种双频多馈天线及电子设备。
本申请实施例提供了双频多馈天线,包括:多个双频天线单元和多个连接单元,多个所述双频天线单元相邻设置,相邻两个所述双频天线单元之间通过一个所述连接单元连接,每个所述双频天线单元上靠近所述连接单元的一侧设置有馈电枝节,所述馈电枝节的末端连接馈电点;每个所述连接单元上设置有短路枝节,所述短路枝节的末端与接地点连接。
本申请实施例还提出了一种电子设备,包括如上所述的双频多馈天线。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行说明,这些说明并不构成对实施例的限定。
图1是本申请一实施例提供的双频多馈天线的结构示意图;
图2是本申请另一实施例提供的双频多馈天线的结构示意图;
图3是本申请一实施例提供的双频多馈天线的电磁仿真结果。
具体实施方式
由背景技术可知,为了满足终端对能够同时支持双频工作和多输入多输出的天线的需求,提出基于两个双频天线或多个单频天线的布局方案,但是这些布局方案往往具有复杂的布局,并且为了减小天线彼此之间的干扰需要提供较大的净空区域以及用于隔离的隔离结构或电路,但是较大的净空区域用于隔离的隔离结构或电路会大大增加天线占用的区域,复杂的布局增加了设计天线的难度和成本。另外,天线的种类和数量较多,布局会随着天线的形状、类型等发生较大变化,布局方案适用性低。
为了使得天线布局结构简洁、占用空间小、隔离度高且能够布局方案适用性强,本申请实施例提供了一种双频多馈天线,包括:多个双频天线单元和多个连接单元,多个所述双频天线单元相邻设置,相邻两个所述双频天线单元之间通过一个所述连接单元连接,每个所述双频天线单元上靠近所述连接单元的一侧设置有馈电枝节,所述馈电枝节的末端连接馈电点;每个所述连接单元上设置有短路枝节,所述短路枝节的末端与接地点连接。
本申请实施例提出的双频多馈天线,能够基于双频天线单元和连接单元进行布局,其中,双频天线单元相邻设置,且每个双频天线单元上靠近连接单元的一侧设置有馈电枝节,馈电枝节的末端连接馈电点,这样由于相邻两个双频天线单元之间通过连接单元连接能够形成一个整体,因此实现了多个馈电点连接在同一个天线整体上,从而利用不同馈电点所产生辐射模式的正交或抵消作用实现多天线系统良好的性能,以此缩小天线的体积,降低天线的成本,同时利用多馈技术实现多输入多输出。
此外,每个连接单元上都设置有短路枝节,短路枝节的末端与接地点连接,使得能够通过短路枝节的设置调整不同天线之间的阻抗,进而利用该阻抗避免不同天线之间的相互影响,提高隔离度,且不需要额外增加隔离结果或电路,进一步缩小了天线的体积,避免较大的净空区。
此外,本申请实施例提供的双频多馈天线,由于以及天线布局简单,并且双频天线单元的设置不受天线类别的影响,因此适用性更强。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
下面对本实施例的双频多馈天线的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
参考图1,图1以双频多馈天线100包括2个双频天线单元,分别为双频天线单元101A和双频天线单元101B,以及连接双频天线单元101A和双频天线单元101B的连接单元102为例,对本实施例的双频多馈天线100进行具体说明。
如图1所示,双频天线单元101A与双频天线单元101B相邻设置,并通过设置于二者之间的一个连接单元102进行连接,进而双频天线单元101A和双频天线单元101B形成了一个整体,即一个完整的辐射体。同时双频天线单元101A和双频天线单元101B上靠近连接单元102的一侧各自设置有馈电枝节,馈电枝节的末端连接馈电点,具体地说,馈电枝节103A的 末端连接馈电点104A,馈电枝节103B的末端连接馈电点104B;连接单元102上设置有短路枝节105,短路枝节105的末端与接地点106连接。
值得一提的是,在馈电枝节103A和馈电枝节103B间设置接地的短路枝节105,一方面,从微观上看,双频多馈天线100中的电流方向将会发生改变,即电流将会通过短路枝节105流回大地,从而降低双频多馈天线100的谐振频率;另一方面,馈电枝节103A和短路枝节105、馈电枝节103B和短路枝节105各自相当于一段双线传输线,具有变压器效应,将部分容抗变为阻抗,从而变换双频天线单元101A和双频天线单元101B的阻抗,有助于形成谐振。而通过调整短路枝节105与馈电枝节103A以及馈电枝节103B之间的距离就能够调整双频天线单元101A和双频天线单元101B的阻抗,进而调整两个天线之间的隔离度。此外,双频天线单元101A和双频天线单元101B通过连接单元102形成了一个整体,即一个完整的辐射体,实现了通过在一个辐射体上加载多个馈电点,利用不同馈电点所辐射模式的正交或抵消作用实现多天线系统良好的性能,以此缩小天线的体积,降低天线的成本。
在一些实施例中,为了保证较高的发射和接收效率,可以将短路枝节105与相邻的馈电枝节103之间的距离设置为λ/4,其中,λ为馈电枝节103所在的双频天线单元101支持的频段的中心频率对应的波长,即短路枝节105与馈电枝节103A为双频天线单元101A支持的频段对应的波长的1/4、短路枝节105与馈电枝节103B的距离为双频天线单元101B支持的频段对应的波长的1/4。
在一些实施例中,若双频天线单元支持两个频段——频段1和频段2,当频段1的中心频率高于频段2的中心频率,还需要满足频段1的中心频率在预设误差范围内为较频段2的中心频率的3倍。由于电磁波以正弦波的形式对外辐射,1/4波长时,电磁波对应的是正向波腹点,正向幅度最大,3/4波长时,对应的负向波腹点,负向幅度最大,波长与频率呈反比,通过设置双频多馈天线100中相邻的双频天线单元101A和双频天线单元101B的频段的两个中心频率满足3倍频关系,从而实现发射的两个电磁波近似满足3倍频关系,进而当两个电磁波频率相差3倍时,能够使得对应的两个电磁波幅度最大,相位相反,最终确保天线辐射效率最高,两天线间的隔离度最大。
需要说明的是,此时,每个连接单元102上设置的短路枝节105的数量可以是1个,也可以是2个。当连接单元102上设置的短路枝节105数量为1个时,双频天线单元101A和双频天线单元101B共用一个短路枝节105,且相邻两个双频天线单元101A和双频天线单元101B上分别设置的两个馈电枝节103A和馈电枝节103B的距离为两个双频天线单元101A和双频天线单元101B支持频段的中心频率对应波长之和的1/4,此时,仍然满足短路枝节105到馈电枝节103A的距离为双频多馈单元101A支持频段的中心频率对应波长的1/4、到馈电枝节103B为双频多馈单元101B支持频段的中心频率对应波长的1/4,且此时布局方案具有最小的尺寸;当连接单元102上设置的短路枝节105数量为2个时,不限定两个短路枝节105之间的距离,以2个短路枝节105之间的中垂线来划分,此时仍然满足短路枝节与其位于中垂线同侧的且相邻的馈电枝节(馈电枝节A或馈电枝节B)的距离均为相应的双频多馈单元支持频段的中心频率对应波长的1/4,特别地,当两个短路枝节105之间的距离为0时,就会变成连接单元102上设置的短路枝节105数量为1个的情况。
应当理解的是,上述示例仅是为了更好的理解本实施例的技术方案而列举的示例,不作为对本实施例的唯一限制。在实际应用中,双频多馈天线100中的双频天线单元的数量并不 局限于图1所示的两个,也可以是多个,只要每两个相邻的天线单元通过一个连接单元连接即可,具体的连接方式与上述描述类似,本实施例对此不再赘述。
此外,值得一提的是,由于每两个相邻的双频天线单元101(即图1中的双频天线单元101A和双频天线单元101B)之间通过一个连接单元102进行连接,因此,在实际应用中,需要满足连接单元102的数量为双频天线单元101的数量减一。另外,本实施例不对双频天线单元101的种类进行限制,即辐射振子的位置包括但不限于只在顶端,侧面也可以放置,根据实际布局需要,辐射振子的形状包括但不限于是方形,也可以是其他形状,伸出的金属手臂长度也是可以调节的。
双频多馈天线100中的各双频天线单元101可以是任何一种支持双频的天线单元,如双频环形天线、双频微带天线等,并且多个双频天线单元101可以种类均相同,也可以是部分相同,还可以是均不相同,此处不再一一赘述。
值得一提的是,上述实施例中不需要对双频天线单元101进行限定,因此,避免了天线种类和数量对构建双频多馈天线100的限制,降低了天线布局的难度,增加适用性,降低了成本。
上述实施例不对双频天线单元101支持的频段进行限制,可以是任何一种根据实际需求确定的频段。在一个例子中,双频天线单元101支持的频段均为运营商获得许可使用的N41频段(2496MHz-2690MHz)和N78频段(3400-3600MHz)。
在一些实施例中,每个双频天线单元支持的频段相同,这样,通过增加天线的数量实现更多输入和输出,进而增加上下行速率,即形成MIMO系统,提高用户上网速率,进而提升用户体验。
参考图2,双频多馈天线100还包括基板107,其中,基板107包括净空区108和地板区109。具体地说,双频天线单元101及其上设置的馈电枝节103(即图1中的馈电枝节103A和馈电枝节103B)、连接单元102及其上设置的短路枝节105、馈电点104(即图1中的馈电点104A和馈电点104B)和接地点106均设置在基板107上,并与基板107一起构成双频多馈天线100。更具体地说,双频天线单元100的天线主体和辐射体设置于净空区108,馈电点104和接地点106位于地板区109,从而将电路等部分均设置在地板区109,净空区108内仅包括辐射体,避免了电路对天线的干扰,提高了双频多馈天线100的精度。
需要说明的是,本实施例不对基板107的材质进行限定,可以是任何一种能够用于制作天线的材质,如基板107可以是FR4介质的印制电路板(Printed circuit boards,PCB)基板。
在一些实施例中,基板107的相对介电常数和介电损耗正切角根据双频天线单元101支持的频段的中心频率确定。由于基板107的相对介电常数和介电损耗正切角会影响双频多馈天线100的实际带宽,因此,基板107的相对介电常数和介电损耗正切角需要与双频天线单元101支持的频段的中心频率相适应。如当选取的基板107为尺寸为90×50×0.8mm的FR4介质PCB基板,且工作频段为2496MHz-2690MHz与3400MHz-3600MHz,则该基板107的相对介电常数可以为4.4,介电损耗角正切可以为0.02。
在一些实施例中,双频天线单元101的辐射体与地板区109的距离根据双频多馈天线100的辐射效率确定。特别地,可以通过实验等方式不断试探双频天线单元101的辐射体与地板区109的距离以达到最好的辐射效率。当然,在其他实施例中,双频天线单元101的辐射体与地板区109的距离还可以根据相对介电常数和双频天线单元支持的频段的中心频率确定。 由于双频天线单元101的辐射体与地板区109的距离会影响双频多馈天线100的实际带宽,再考虑到相对介电常数和频段的中心频率对带宽的影响,因此,此时双频天线单元101的辐射体与地板区109的距离需要与双频天线单元101支持的频段的中心频率和相对介电常数相适应。
在一些实施例中,短路枝节的长度根据双频多馈天线100的辐射效率和隔离度确定。
在一些实施例中,双频天线单元的辐射体的长度和宽度根据双频天线单元支持的频段确定。
为了更好地说明本实施例的效果,以双频双馈天线100为例进行电磁仿真,此时,双频双馈天线100包括两个双频天线单元101,一双频天线单元101为双频环形天线,一双频天线单元101双频平面倒F型天线(Planar Inverted-F Antenna,PIFA),两个双频天线单元101被印刷于尺寸为90mm×50mm×0.8mm的FR4介质PCB基板107上,其中,基板107的相对介电常数为4.4,介电损耗角正切为0.02,两个双频天线单元101均工作在双频段2496MHz-2690MHz与3400MHz-3600MHz,两个双频天线单元101各自独立设置的一个馈电点104和末端连接于馈电点104的馈电枝节103,在两个馈电点103之间设置一个连接单元102,连接单元102上设置有一个短路枝节105,短路枝节105的末端直接连接到基板107的地板区109上设置的接地点106。此时得到的双频双馈天线具有实现了2×2的多输入多输出(Multiple Input Multiple Output,MIMO),其中端口一工作频带1:2496MHz-2690MHz,端口一工作频带:3400MHz-3600MHz;端口二工作频带1:2496MHz-2690MHz,端口二工作频带2:3400MHz-3600MHz。假设两个双频天线单元101中的双频环形天线为天线1,双频PIFA天线为天线2,通过电磁仿真看到,当给天线1激励时,天线2接匹配负载时,电流分布主要集中在天线1一侧,天线2辐射体自身几乎没有电流分布,这使得天线2与激励端口天线1隔离良好,从而确保了两天线间具有较好的隔离度。同理,当给天线2激励,天线1接匹配负载时,在天线1上也没有明显的电流分布,所以天线2与天线1的隔离良好,且在每个端口的每个频段内,回波损耗小于-6dB,两端口之间隔离度大于13dB。具体参见图3所示的隔离度变化曲线图,其中横坐标为频率,纵坐标为隔离度,由图可知,在工作频带内(3400MHz-3600MHz)天线的仿真效率均大于40%,低频段环形天线辐射效率较高,高频段PIFA天线辐射效率更高;|S11|和|S22|均低于-10dB,天线端口隔离|S21|低于-25dB,其中,S11代表天线1的回波损耗,S11越小,说明天线传输的电磁波被反射的越少,能量都被天线辐射出去,天线对外辐射效率也就越高,同理S22代表天线2的回波损耗,此处不再一一赘述了;S12代表天线1和天线2之间的隔离度,即天线1工作时,天线2所能接收的到的天线1的信号量的多少,S12的数值越低,说明天线2接收到天线1的信号越少,天线间的隔离度越好,两天线间的相互影响越小。
本申请实施例还提供了一种电子设备,包括双频多馈天线;其中,双频多馈天线包括:多个双频天线单元和多个连接单元,多个双频天线单元相邻设置,相邻两个双频天线单元之间通过一个连接单元连接,每个双频天线单元上靠近连接单元的一侧设置有馈电枝节,馈电枝节的末端连接馈电点;每个连接单元上设置有短路枝节,短路枝节的末端与接地点连接。
事实上,本申请实施例提供的电子设备包括的双频多馈天线与其他实施例提供的双频多馈天线相同,因此,本实施例提供的电子设备也具有与其他实施例提供的双频多馈天线相同的技术效果,在此不在赘述。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的方案和范围。

Claims (10)

  1. 一种双频多馈天线,包括:多个双频天线单元和多个连接单元,
    多个所述双频天线单元相邻设置,相邻两个双频天线单元之间通过一个所述连接单元连接,每个所述双频天线单元上靠近所述连接单元的一侧设置有馈电枝节,所述馈电枝节的末端连接馈电点;每个所述连接单元上设置有短路枝节,所述短路枝节的末端与接地点连接。
  2. 根据权利要求1所述的双频多馈天线,其中,所述短路枝节与相邻的所述馈电枝节之间的距离为λ/4,其中,λ为所述馈电枝节所在的所述双频天线单元支持的频段的中心频率对应的波长。
  3. 根据权利要求2所述的双频多馈天线,其中,所述双频天线单元支持两个频段,其中,较高频段的中心频率在预设误差范围内为较低频段的中心频率的3倍。
  4. 根据权利要求1所述的双频多馈天线,其中,所述双频多馈天线还包括基板,所述基板包括净空区和地板区,所述双频天线单元的天线主体和辐射体设置于所述净空区,所述馈电点和所述接地点位于所述地板区。
  5. 根据权利要求4所述的双频多馈天线,其中,所述基板的相对介电常数和介电损耗正切角根据所述双频天线单元支持的频段的中心频率确定。
  6. 根据权利要求5所述的双频多馈天线,其中,所述双频天线单元的辐射体与所述地板区的距离根据所述双频多馈天线的辐射效率确定。
  7. 根据权利要求1所述的双频多馈天线,其中,所述短路枝节的长度根据所述双频多馈天线的辐射效率和隔离度确定。
  8. 根据权利要求1所述的双频多馈天线,其中,所述双频天线单元的辐射体的长度和宽度根据所述双频天线单元支持的频段确定。
  9. 根据权利要求1所述的双频多馈天线,其中,每个所述双频天线单元支持的频段相同。
  10. 一种电子设备,包括如权利要求1至9中任意一项所述的双频多馈天线。
PCT/CN2022/089396 2021-06-23 2022-04-26 双频多馈天线及电子设备 WO2022267685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110697078.3A CN115513657A (zh) 2021-06-23 2021-06-23 双频多馈天线及电子设备
CN202110697078.3 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022267685A1 true WO2022267685A1 (zh) 2022-12-29

Family

ID=84499877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089396 WO2022267685A1 (zh) 2021-06-23 2022-04-26 双频多馈天线及电子设备

Country Status (2)

Country Link
CN (1) CN115513657A (zh)
WO (1) WO2022267685A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897808B1 (en) * 2000-08-28 2005-05-24 The Hong Kong University Of Science And Technology Antenna device, and mobile communications device incorporating the antenna device
CN206541932U (zh) * 2017-01-22 2017-10-03 温州大学 一种适用于无线局域网的双频mimo天线
CN109524765A (zh) * 2017-09-20 2019-03-26 西安四海达通信科技有限公司 一种多馈天线及移动终端
CN212485544U (zh) * 2020-05-12 2021-02-05 西安电子科技大学 天线装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897808B1 (en) * 2000-08-28 2005-05-24 The Hong Kong University Of Science And Technology Antenna device, and mobile communications device incorporating the antenna device
CN206541932U (zh) * 2017-01-22 2017-10-03 温州大学 一种适用于无线局域网的双频mimo天线
CN109524765A (zh) * 2017-09-20 2019-03-26 西安四海达通信科技有限公司 一种多馈天线及移动终端
CN212485544U (zh) * 2020-05-12 2021-02-05 西安电子科技大学 天线装置和电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING GUODONG: "High Performance and Low Coupling 5G Terminal Multi-antenna System", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 April 2022 (2022-04-15), CN , XP093016725, ISSN: 1674-0246 *
JING GUODONG; ZHU YUZHAO; XIE GENGGENG; ZHAO LUYU: "Dual-Band Dual-Fed 5G MIMO Antenna with Multi-Feed Technology", 2020 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE (CSRSWTC), IEEE, 13 December 2020 (2020-12-13), pages 1 - 2, XP033886278, DOI: 10.1109/CSRSWTC50769.2020.9372673 *

Also Published As

Publication number Publication date
CN115513657A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP6342048B2 (ja) 容量結合した複合ループアンテナ
US7084823B2 (en) Integrated front end antenna
US20190305415A1 (en) Integrated multi-standard antenna system with dual function connected array
CN109659674B (zh) 一种通讯天线及其辐射单元
KR20130090770A (ko) 절연 특성을 가진 지향성 안테나
KR20050103972A (ko) 안테나 장치
CN114512827B (zh) 一种超宽带斜45度极化紧耦合阵列天线
CN213753059U (zh) 多频低sar天线及电子设备
TW200924290A (en) Dual-band antenna
US9461365B2 (en) LTE antenna pair for MIMO/diversity operation in the LTE/GSM bands
WO2022233248A1 (zh) 一种天线解耦结构、mimo天线及终端
WO2018028101A1 (zh) 紧凑型激励地板正交辐射的高隔离度天线及其mimo通信系统
CN107403996A (zh) 一种金属边框多耦合终端天线以及移动终端设备
WO2018157661A1 (zh) 天线和终端
CN104617395B (zh) 一种多频段介质谐振手机终端天线
WO2016113779A1 (en) Dual-band inverted-f antenna with multiple wave traps for wireless electronic devices
KR101218702B1 (ko) 멀티모드 고주파 모듈
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2022267685A1 (zh) 双频多馈天线及电子设备
CN112952362A (zh) 集成天线和电子设备
TWI559614B (zh) Dual - frequency directional antenna device and its array
KR100861865B1 (ko) 무선 단말기
TWI467853B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
WO2024046199A1 (zh) 一种电子设备
CN215497078U (zh) 多频微带天线和具有天线的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827184

Country of ref document: EP

Kind code of ref document: A1