WO2022267611A1 - 激振装置及喷油激振系统 - Google Patents

激振装置及喷油激振系统 Download PDF

Info

Publication number
WO2022267611A1
WO2022267611A1 PCT/CN2022/084905 CN2022084905W WO2022267611A1 WO 2022267611 A1 WO2022267611 A1 WO 2022267611A1 CN 2022084905 W CN2022084905 W CN 2022084905W WO 2022267611 A1 WO2022267611 A1 WO 2022267611A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration excitation
excitation device
adjustment
vibration
nozzle
Prior art date
Application number
PCT/CN2022/084905
Other languages
English (en)
French (fr)
Inventor
罗莉
张婷
曹杰
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2022267611A1 publication Critical patent/WO2022267611A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Definitions

  • the invention relates to an excitation device and an oil injection excitation system.
  • edge plate dampers are designed to reduce the vibration stress of rotor blades and prevent high cycle fatigue failure of rotor blades.
  • the blades of the high-pressure turbine rotor blades have a high passing frequency, and the rotor blades and the rotor are in a tenon connection structure.
  • the resonant frequency of the rotor blade and the damping effect of the damper are tested under high-speed rotation. This test method can be closer to the boundary conditions in the centrifugal load conditions during engine operation, and realize the nonlinear connection of the rotor blades and the frictional motion between the damper and the rotor blades, so as to obtain more reliable test data.
  • a commonly used test system takes the rotor system as the research object, uses atomized oil droplets as the excitation source, and realizes non-contact excitation to the rotor blades on the high-speed rotating test bench to obtain the blade vibration characteristics of the rotor system and the damper's damping effect. vibration effect.
  • the fuel injector support in the existing atomized oil droplet fuel injection system is not adjustable, it can only be tested for the same type of engine. If the size of the engine changes, the injector bracket needs to be redesigned, resulting in a long preparation time, and the injector bracket cannot adjust the number of injectors, the angle of the injector and the position of the injector in real time according to the different speeds of the engine , leading to poor test repeatability and low test efficiency.
  • the technical problem to be solved by the present invention is to provide a vibration excitation device and an oil injection vibration excitation system in order to overcome the defect that the fuel injection nozzle support in the atomized oil droplet injection system in the prior art cannot be adjusted.
  • a kind of excitation device it comprises:
  • the vibration excitation device body includes several adjustment units, all adjustment units are connected in sequence, and the distance between adjacent adjustment units is adjustable, so as to realize the adjustable length of the vibration excitation device body ;
  • An adjustment component one end of the adjustment component is connected to the body of the vibration excitation device, and the other end of the adjustment component is connected to the nozzle.
  • the vibration excitation device can adjust the length of the vibration excitation device by adjusting the distance between adjacent adjustment units, and accordingly the position of the adjustment assembly and the nozzle connected to the vibration excitation device body can be adjusted. , to adapt to the performance test of aero-engines of different sizes, the adjustment is convenient, and the test efficiency and economic benefits are improved.
  • the number of the adjustment assembly and the number of the nozzles are multiple, and the plurality of adjustment assemblies are arranged at intervals along the length direction of the vibration excitation device body, and each of the adjustment assemblies is installed with at least one of the the nozzle described above.
  • adopting the above-mentioned structural form facilitates a plurality of nozzles to be arranged at intervals on the body of the vibration excitation device, and spraying can be performed from multiple positions.
  • any of the nozzles can be switched between open and closed states.
  • the above-mentioned structural form can be used to adjust the number of opened nozzles as required.
  • the length of the adjustment component is adjustable.
  • the angle of the adjustment component relative to the body of the vibration excitation device can be adjusted.
  • the above-mentioned structural form can be used to adjust the angle of the nozzle relative to the main body of the vibration excitation device as required.
  • the adjustment assembly includes a connecting rod and a ball joint structure, the number of the connecting rod and the ball joint structure is multiple, and a plurality of the connecting rods are connected through the ball joint structure, and the connecting rod
  • the head end of the connecting rod is connected to the body of the excitation device, the tail end of the connecting rod is installed with the ball joint structure, and the nozzle is installed on the ball joint structure.
  • the above-mentioned structural form can be used to flexibly adjust the injection angle and range of the nozzle in a wider range, and obtain the optimal injection position, so as to obtain an angle that is more conducive to exciting the resonance of the blade.
  • the adjacent adjustment units are hinged to each other, and at least one adjustment unit is detachably connected to the adjacent adjustment unit.
  • the above structure is adopted to facilitate the adjustment of the distance between adjacent adjustment units, and also to increase or decrease the adjustment units, so as to adjust the length or coverage of the vibration excitation device body in a wider range.
  • the adjustment unit can be added or reduced at the dismounted position without disassembling the entire vibration excitation device, and the operation is convenient.
  • the adjustment unit is a support rod.
  • the structure of the support rod is simple, the support rod and the support rod are hinged, and a certain angle is formed, and the distance between the adjacent adjustment units can be realized by adjusting the relative angle between the support rod and the support rod. adjustable.
  • the adjustment unit includes two support rods, and the middle parts of the two support rods are hinged to form a fork structure.
  • the length of the body of the vibration excitation device can be adjusted by adjusting the included angle of the fork-shaped structure, and at the same time, the fork-shaped structure can also form a stable support structure.
  • all the adjustment units are connected in sequence to form a closed ring structure or an open ring structure.
  • the vibration excitation device further includes a fixed shaft, the fixed shaft extends along the radial direction of the ring structure, the adjustment unit is connected to the fixed shaft, and can move along the fixed shaft The axial direction is adjustable.
  • the fixed shaft is used to support and fix the vibration excitation device body.
  • the adjustment unit includes two support rods, the middle parts of the two support rods are hinged by a hinge shaft to form a fork structure, and the fixed shaft and the hinge shaft are the same axis.
  • connection position between the adjustment assembly and the vibration excitation device body is close to the connection position between the adjacent adjustment units.
  • the above-mentioned structural form is adopted to keep the distance between the adjustment components at a better position, and to avoid interference between the adjustment components during adjustment.
  • the vibration excitation device further includes a mounting plate and a fixed rod, the number of the fixed rods and the fixed shafts are multiple and arranged in one-to-one correspondence, and one end of the fixed rod is connected to the mounting plate The other end of the fixed rod is connected to the fixed shaft.
  • the above-mentioned structural form is adopted to facilitate fixing the body of the vibration excitation device on the mounting plate to form a stable supporting structure.
  • a fuel injection excitation system which is used in the rotor system of an aero-engine, the fuel injection excitation system includes an oil supply and return device and the vibration excitation device as described above, and the vibration excitation device is installed on the rotor system of the rotor system On the peripheral side, the oil supply and return device communicates with the nozzle.
  • the vibration excitation device can adjust the length of the vibration excitation device by adjusting the distance between adjacent adjustment units, and accordingly the position of the adjustment assembly and the nozzle connected to the vibration excitation device body can be adjusted. , in order to adapt to the performance tests of different sizes of aero-engines, and realize the effective excitation of the rotor blades in the rotating state to obtain test data.
  • the positive progress effect of the present invention is: the distance between the adjacent adjustment units of the vibration excitation device can be adjusted, so that the length of the vibration excitation device can be adjusted, and accordingly the adjustment assembly and the nozzle connected to the vibration excitation device body can be adjusted.
  • the position can be adjusted to adapt to the performance test of aero-engines of different sizes, the adjustment is convenient, and the test efficiency and economic benefits are improved.
  • FIG. 1 is a structural schematic diagram of a first viewing angle of an excitation device according to a preferred embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a second viewing angle of an excitation device according to a preferred embodiment of the present invention.
  • Fig. 3 is a structural schematic diagram of a third viewing angle of an excitation device according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a partial structure of an excitation device according to a preferred embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a fuel injection excitation system according to a preferred embodiment of the present invention.
  • this embodiment discloses a vibration excitation device
  • the vibration excitation device 10 includes a vibration excitation device body 1, a nozzle 2 and an adjustment unit 11, and the vibration excitation device body 1 includes several adjustment units 11 , all the adjusting units 11 are connected in sequence, and the distance between adjacent adjusting units 11 can be adjusted, so as to realize the adjustable length of the vibrating device body 1 .
  • One end of the adjustment assembly 3 is connected to the body 1 of the vibration device, and the other end of the adjustment assembly 3 is connected to the nozzle 2 .
  • the vibration excitation device 10 is adjustable in the length between the adjacent adjustment units 11, so that the length of the vibration excitation device 10 can be adjusted, and the adjustment assembly 3 connected to the vibration excitation device body 1 can be adjusted accordingly. And the position of the nozzle 2 can be adjusted to adapt to the performance test of aero-engines of different sizes, the adjustment is convenient, and the test efficiency and economic benefits are improved.
  • connection position between the adjustment component 3 and the vibration excitation device body 1 is close to the connection position between the adjacent adjustment units 11, so that the distance between the adjustment components 3 is kept at a better position, and when adjusting, multiple Interference between adjustment components 3.
  • the quantity of adjusting assembly 3 and nozzle 2 is multiple, and a plurality of adjusting assemblies 3 are arranged at intervals along the length direction of the vibration excitation device body 1, and at least one nozzle 2 is installed on each adjustment assembly 3, is convenient to install in the vibration excitation device.
  • a plurality of nozzles 2 are arranged at intervals on the body 1, which can spray from multiple positions.
  • any nozzle 2 can be switched between open and closed states, which is convenient for adjusting the number of opened nozzles 2 .
  • the number of nozzles 2 opened is adjusted according to the resonance frequency and rotational speed.
  • a threaded interface is provided on the nozzle 2
  • a threaded plug is installed on the nozzle 2 to close unnecessary nozzles 2.
  • the length of the adjustment component 3 is adjustable, so the distance of the nozzle 2 relative to the vibration excitation device body 1 can be adjusted through the adjustment component 3 , that is, the position of the nozzle 2 is adjustable. Further, the angle of the adjustment assembly 3 relative to the vibration excitation device body 1 can be adjusted, so as to realize the adjustable spraying angle of the nozzle 2, so that it can cover a larger spraying range.
  • the adjustment assembly 3 of the present embodiment includes a connecting rod 31 and a spherical hinge structure 32, the number of the connecting rod 31 and the spherical hinge structure 32 is multiple, and the plurality of connecting rods 31 pass through the ball
  • the hinge structure 32 is connected, the head end of the connecting rod 31 is connected on the body 1 of the excitation device, the tail end of the connecting rod 31 is equipped with a ball hinge structure 32, and the nozzle 2 is installed on the ball hinge structure 32.
  • the adjacent adjustment units 11 are hinged to each other.
  • the detachable connection between at least one adjustment unit 11 and the adjacent adjustment unit 11 facilitates the addition or reduction of adjustment units 11 to adjust the length or coverage of the vibration excitation device body 1 in a wider range.
  • the adjustment unit can be added or reduced at the dismounted position without disassembling the entire vibration excitation device, and the operation is convenient.
  • the adjustment unit 11 may be a support rod, and a plurality of support rods are sequentially hinged to form the vibration excitation device body 1, and a certain angle is formed between the support rods to realize the adjustable distance between adjacent support rods. The included angle between the support rod and the support rod can be adjusted to realize the adjustable length of the vibration excitation device body 1 .
  • the adjustment unit 11 includes two support rods, and the middle parts of the two support rods are hinged to form a fork-shaped structure.
  • the length of the vibration exciting device body 1 can be adjusted by adjusting the included angle of the fork-shaped structure, and at the same time, the fork-shaped structure can also form a stable supporting structure.
  • all the adjustment units 11 are connected end to end in sequence to form a closed ring structure.
  • the adjustment units 11 may also be connected in sequence to form a ring structure with an opening.
  • the vibration excitation device 10 also includes a fixed shaft 4, the fixed shaft 4 extends along the radial direction of the ring structure, the adjustment unit 11 is connected to the fixed shaft 4, and can be moved along the axial direction of the fixed shaft 4 adjust.
  • the fixed shaft 4 forms a support and fixation for the vibration excitation device body 1; when adjusting, the adjustment unit 11 slides along the fixed shaft 4, and is fixed after the adjustment is completed.
  • the fixed axis 4 and the hinge axis are coaxial to prevent the adjustment unit 11 from interfering during adjustment.
  • the excitation device 10 also includes a mounting plate 5 and a fixed rod 6, the number of the fixed rod 6 and the fixed shaft 4 are multiple and arranged in one-to-one correspondence, one end of the fixed rod 6 is connected to a surface of the mounting plate 5, and the fixed rod 6 The other end is connected to the fixed shaft 4.
  • the vibration excitation device body 1 can be fixed on the mounting plate 5 to form a stable supporting structure.
  • a method for adjusting the body of an excitation device comprising the steps of:
  • step 2 when the adjustment unit 11 slides outward along the fixed axis, the angle between the two support rods increases, and the inner diameter of the ring-shaped vibration excitation device body 1 increases; when the adjustment unit 11 slides outward along the fixed axis When sliding inside, the included angle between the two support rods becomes smaller, and the inner diameter of the ring-shaped vibrating device body 1 becomes smaller.
  • this embodiment also discloses a fuel injection excitation system, the fuel injection vibration system is used for the vibration test and the damping effect test of the rotor system 20 of an aero-engine in a high-speed rotation state.
  • the oil vibration system includes an oil supply and return device 30 and a vibration device 10 .
  • the rotor system 20 is installed in the test chamber 50 , and the motor 40 drives the rotor system 20 to rotate.
  • the vibration excitation device 10 is installed on the peripheral side of the rotor system 20 .
  • there are two vibration excitation devices 10, and the two vibration excitation devices 10 are arranged symmetrically on both sides of the rotor system.
  • the oil supply and return device 30 communicates with the nozzle 2 through the oil pipe 301 , and the oil supply and return device 30 is used to supply oil to the nozzle 2 .
  • the vibration excitation device 10 is adjustable by the distance between the adjacent adjustment units 11, so that the length of the vibration excitation device 10 can be adjusted, and accordingly the positions of the adjustment assembly 3 and the nozzle 2 connected to the vibration excitation device body 1 can be adjusted. It can be adjusted to adapt to the performance test of aero-engines of different sizes, so as to effectively excite the rotor blades in the rotating state to obtain test data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Testing Of Engines (AREA)

Abstract

一种激振装置(10)及喷油激振系统,激振装置(10)包括:激振装置本体(1),激振装置本体(1)包括若干个调节单元(11),所有的调节单元(11)依次连接,相邻的调节单元(11)之间的间距可调;喷嘴(2);调节组件(3),调节组件(3)的一端连接于激振装置本体(1),调节组件(3)的另一端连接喷嘴(2)。激振装置(10)通过相邻的调节单元(11)之间的间距可调,实现激振装置(10)的长度可调,相应地使连接在激振装置本体(1)上的调节组件(3)及喷嘴(2)的位置可调,以适应不同尺寸的航空发动机的性能测试,调节方便,提高试验效率和经济效益。一种喷油激振系统,其用于航空发动机的转子系统(20),喷油激振系统包括供回油装置(30)和激振装置(10),激振装置(10)安装于转子系统(20)的周侧供回油装置(30)连通于喷嘴(2)。

Description

激振装置及喷油激振系统
本申请要求申请日为2021年6月23日的中国专利申请202110698011.1的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种激振装置及喷油激振系统。
背景技术
航空发动机的涡轮转子叶片在工作时,处在非稳态流场的环境中,易产生振动,若振动载荷过高就会导致涡轮转子叶片疲劳失效,为此造成发动机严重损伤。因此,需将涡轮转子叶片振动应力控制在许用范围内。
目前,国内外都对涡轮转子叶片的振动特性和振动水平开展试验研究和仿真预测,并设计缘板阻尼器降低转子叶片振动应力,防止转子叶片高周疲劳失效。高压涡轮转子叶片的叶片通过频率很高,转子叶片与转子之间为榫连接结构。试验时,测试转子叶片在高速旋转状态下的共振频率和阻尼器的减振效果。该种测试方法可以更接近发动机运行过程中的离心力载荷条件中的边界条件,实现转子叶片的非线性连接及阻尼器与转子叶片的摩擦运动,以获取更可靠的试验数据。
一种常用的试验系统是以转子系统为研究对象,采用雾化油滴作为激励源,在高速旋转试验台上对转子叶片实现非接触式激励,获取转子系统的叶片振动特性和阻尼器的减振效果。
在涡轮高速旋转的条件下,激励起发动机转子叶片的激振频率需满足以下公式:f=N×n/60
式中,f为激振频率,单位为Hz;N为喷油嘴数;n为转速,单位为r/m。
由于现有的雾化油滴喷油系统中的喷油嘴支架不可调节,因此只能针对同一型号的发动机试验。若发动机的尺寸改变,需重新设计喷油嘴支架,导致准备时间长,并且,喷油嘴支架不能够根据发动机不同的转速实时调整喷 油嘴数量、喷油嘴的角度和喷油嘴的位置,导致试验的重复性差、试验效率低。
发明内容
本发明要解决的技术问题是为了克服现有技术中的雾化油滴喷油系统中的喷油嘴支架不可调节的缺陷,提供一种激振装置及喷油激振系统。
本发明是通过下述技术方案来解决上述技术问题:
一种激振装置,其包括:
激振装置本体,所述激振装置本体包括若干个调节单元,所有的调节单元依次连接,相邻的所述调节单元之间的间距可调,以实现所述激振装置本体的长度可调;
喷嘴;
调节组件,所述调节组件的一端连接于所述激振装置本体,所述调节组件的另一端连接所述喷嘴。
在本方案中,该激振装置通过相邻的调节单元之间的间距可调,实现激振装置的长度可调,相应地使连接在激振装置本体上的调节组件及喷嘴的位置可调,以适应不同尺寸的航空发动机的性能测试,调节方便,提高试验效率和经济效益。
较佳地,所述调节组件和所述喷嘴的数量均为多个,多个所述调节组件沿所述激振装置本体的长度方向间隔设置,每一所述调节组件上至少安装有一个所述喷嘴。
在本方案中,采用上述结构形式,便于在激振装置本体上间隔设置多个喷嘴,可从多个位置进行喷射。
较佳地,任一所述喷嘴均能够在打开或关闭两种状态之间切换。
在本方案中,采用上述结构形式,可根据需要调整喷嘴开启的数量。
较佳地,所述调节组件的长度可调。
在本方案中,采用上述结构形式,可根据需要调整喷嘴的位置。
较佳地,所述调节组件能够相对于所述激振装置本体的角度可调。
在本方案中,采用上述结构形式,可根据需要调整喷嘴相对于激振装置本体的角度。
较佳地,所述调节组件包括连杆和球铰结构,所述连杆和所述球铰结构的数量为多个,多个所述连杆通过所述球铰结构连接,所述连杆的首端连接于所述激振装置本体,所述连杆的尾端安装有所述球铰结构,所述球铰结构上安装有所述喷嘴。
在本方案中,采用上述结构形式,可以使喷嘴在更大范围内灵活调整喷射角度和范围,获取最优的喷射位置,以获取更有利于激励叶片共振的角度。
较佳地,相邻的所述调节单元相互铰接,至少一个所述调节单元与相邻的所述调节单元之间可拆卸连接。
在本方案中,采用上述结构形式,便于调节相邻调节单元之间的间距,也便于增加或减少调节单元,以在更大范围内调节激振装置本体的长度或覆盖范围。当激振装置的喷嘴不能够阀盖航空发动机时,可在拆卸位置增加或减少调节单元,而无需拆卸整个激振装置,操作方便。
较佳地,所述调节单元为支撑杆。
在本方案中,支撑杆结构简洁,支撑杆与支撑杆之间铰接,且形成一定夹角,可通过调整支撑杆与支撑杆之间的相对角度,以实现相邻的调节单元之间的间距可调。
较佳地,所述调节单元包括两个支撑杆,两个所述支撑杆的中部铰接形成叉型结构。
在本方案中,采用上述结构形式,可通过调节叉型结构的夹角,实现激振装置本体的长度可调,同时,叉型结构还可形成稳定的支撑结构。
较佳地,所有的调节单元依次连接,形成封闭的环状结构或具有开口的环状结构。
在本方案中,采用上述结构形式,便于布置更多的喷嘴。
较佳地,所述激振装置还包括固定轴,所述固定轴沿所述环状结构的径向方向延伸设置,所述调节单元连接于所述固定轴,并能够沿所述固定轴的轴向方向可调节。
在本方案中,固定轴用于对激振装置本体形成支撑固定。
较佳地,所述调节单元包括两个支撑杆,两个所述支撑杆的中部通过铰链轴铰接形成叉型结构,所述固定轴与所述铰链轴为同一轴。
在本方案中,采用上述结构形式,防止调节单元在调节的过程中产生干涉。
较佳地,所述调节组件与所述激振装置本体的连接位置靠近相邻的所述调节单元之间的连接位置。
在本方案中,采用上述结构形式,使调节组件间的距离保持在较佳位置,调节时,避免调节组件之间干涉。
较佳地,所述激振装置还包括安装盘和固定杆,所述固定杆和所述固定轴的数量均为多个且一一对应设置,所述固定杆的一端连接于所述安装盘的一表面,所述固定杆的另一端连接于所述固定轴。
在本方案中,采用上述结构形式,便于将激振装置本体固定在安装盘上,形成稳定的支撑结构。
一种喷油激振系统,其用于航空发动机的转子系统,所述喷油激振系统包括供回油装置和如上所述的激振装置,所述激振装置安装于所述转子系统的周侧,所述供回油装置连通于所述喷嘴。
在本方案中,该激振装置通过相邻的调节单元之间的间距可调,实现激振装置的长度可调,相应地使连接在激振装置本体上的调节组件及喷嘴的位置可调,以适应不同尺寸的航空发动机的性能测试,实现在旋转状态下有效激振转子叶片获取测试数据。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发 明各较佳实例。
本发明的积极进步效果在于:该激振装置通过相邻的调节单元之间的间距可调,实现激振装置的长度可调,相应地使连接在激振装置本体上的调节组件及喷嘴的位置可调,以适应不同尺寸的航空发动机的性能测试,调节方便,提高试验效率和经济效益。
附图说明
图1为本发明一较佳实施例的激振装置第一视角的结构示意图。
图2为本发明一较佳实施例的激振装置第二视角的结构示意图。
图3为本发明一较佳实施例的激振装置第三视角的结构示意图。
图4为本发明一较佳实施例的激振装置的局部结构示意图。
图5为本发明一较佳实施例的喷油激振系统的结构示意图。
附图标记说明:
激振装置10
激振装置本体1
调节单元11
喷嘴2
调节组件3
连杆31
球铰结构32
固定轴4
安装盘5
固定杆6
转子系统20
供回油装置30
油管301
电机40
试验腔50
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
如图1-图4所示,本实施例公开了一种激振装置,该激振装置10包括激振装置本体1、喷嘴2和调节单元11,激振装置本体1包括若干个调节单元11,所有的调节单元11依次连接,相邻的调节单元11之间的间距可调,以实现激振装置本体1的长度可调。调节组件3的一端连接于激振装置本体1,调节组件3的另一端连接喷嘴2。
在本实施例中,该激振装置10通过相邻的调节单元11之间的间距可调,实现激振装置10的长度可调,相应地使连接在激振装置本体1上的调节组件3及喷嘴2的位置可调,以适应不同尺寸的航空发动机的性能测试,调节方便,提高试验效率和经济效益。
在本实施例中,调节组件3与激振装置本体1的连接位置靠近相邻的调节单元11之间的连接位置,使调节组件3间的间距保持在较佳位置,避免调节时,多个调节组件3之间干涉。
其中,调节组件3和喷嘴2的数量均为多个,多个调节组件3沿激振装置本体1的长度方向间隔设置,每一调节组件3上至少安装有一个喷嘴2,便于在激振装置本体1上间隔设置多个喷嘴2,可从多个位置喷射。
进一步地,任一喷嘴2均能够在打开或关闭两种状态之间切换,便于调整喷嘴2开启的数量。试验时,根据共振频率和转速调整喷嘴2开启的数量。具体地在喷嘴2上设置螺纹接口,在喷嘴2上安装螺纹堵头可将不需要的喷嘴2关闭。
优选地,调节组件3的长度可调,则喷嘴2通过调节组件3能够相对于激振装置本体1的距离可调,即喷嘴2的位置可调。进一步地,调节组件3能够相对于激振装置本体1的角度可调,以实现喷嘴2的喷射角度可调,使 其覆盖更大的喷射范围。
如图1、图2和图4所示,本实施例的调节组件3包括连杆31和球铰结构32,连杆31和球铰结构32的数量为多个,多个连杆31通过球铰结构32连接,连杆31的首端连接在激振装置本体1上,连杆31的尾端安装有球铰结构32,球铰结构32上安装有喷嘴2。通过调整连杆31和球铰结构32,可以使喷嘴2在更大范围内灵活调整喷射角度和范围,获取最优的喷射位置,以获取更有利于激励叶片共振的角度和位置。
为了便于调节相邻调节单元11之间的间距,相邻的调节单元11相互铰接。至少一个调节单元11与相邻的调节单元11之间可拆卸连接,便于增加或减少调节单元11,以在更大范围内调节激振装置本体1的长度或覆盖范围。当激振装置的喷嘴不能够阀盖航空发动机时,可在拆卸位置增加或减少调节单元,而无需拆卸整个激振装置,操作方便。
具体地,调节单元11可以为支撑杆,多个支撑杆依次铰接形成激振装置本体1,支撑杆与支撑杆之间形成一定夹角,以实现相邻支撑杆之间的间距可调。可调节支撑杆与支撑杆之间的夹角,实现激振装置本体1的长度可调。
在本实施例中,调节单元11包括两个支撑杆,两个支撑杆的中部铰接,形成叉型结构。调节时,可通过调节叉型结构的夹角,实现激振装置本体1的长度可调,同时,叉型结构还可形成稳定的支撑结构。
在本实施例中,为了便于布置更多的喷嘴2且形成稳定的结构,所有的调节单元11依次首尾连接,形成封闭的环状结构。在其他可替代的实施例中,调节单元11也可依次连接,形成具有开口的环状结构。
如图1所示,激振装置10还包括固定轴4,固定轴4沿环状结构的径向方向延伸设置,调节单元11连接于固定轴4,并能够沿固定轴4的轴向方向可调节。固定时,固定轴4对激振装置本体1形成支撑固定;调节时,调节单元11沿固定轴4滑动,调节完毕后固定。在本实施例中,固定轴4与铰 链轴为同一轴,防止调节单元11在调节的过程中产生干涉。
激振装置10还包括安装盘5和固定杆6,固定杆6和固定轴4的数量均为多个且一一对应设置,固定杆6的一端连接于安装盘5的一表面,固定杆6的另一端连接于固定轴4。通过设置安装盘5,可将激振装置本体1固定在安装盘5上,形成稳定的支撑结构。
一种激振装置本体的调节方法,其包括如下步骤:
1、旋松每一固定轴4上用于固定调节单元11的螺母;
2、调整调节单元11相对于固定轴4的位置;
3、将用于固定调节单元11的螺母旋紧。
在步骤2中,当调节单元11沿固定轴向外滑动时,两个支撑杆之间的夹角增大,环状的激振装置本体1的内径增大;当调节单元11沿固定轴向内滑动时,两个支撑杆之间的夹角变小,环状的激振装置本体1的内径变小。
如图5所示,本实施例还公开了一种喷油激振系统,该喷油激振系统用于航空发动机的转子系统20在高速旋转状态下的振动测试和阻尼减振效果测试,喷油激振系统包括供回油装置30和激振装置10。转子系统20安装在试验腔50内,电机40驱动转子系统20旋转。激振装置10安装在转子系统20的周侧。在本实施例中,激振装置10的数量是两个,两个激振装置10对称布置在转子系统的两侧。供回油装置30通过油管301与喷嘴2连通,供回油装置30用于给喷嘴2供油。
该激振装置10通过相邻的调节单元11之间的间距可调,实现激振装置10的长度可调,相应地使连接在激振装置本体1上的调节组件3及喷嘴2的位置可调,以适应不同尺寸的航空发动机的性能测试,实现在旋转状态下有效激振转子叶片获取测试数据。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式 做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (14)

  1. 一种激振装置,其特征在于,其包括:
    激振装置本体,所述激振装置本体包括若干个调节单元,所有的调节单元依次连接,相邻的所述调节单元之间的间距可调,以实现所述激振装置本体的长度可调;
    喷嘴;
    调节组件,所述调节组件的一端连接于所述激振装置本体,所述调节组件的另一端连接所述喷嘴。
  2. 如权利要求1所述的激振装置,其特征在于,所述调节组件和所述喷嘴的数量均为多个,多个所述调节组件沿所述激振装置本体的长度方向间隔设置,每一所述调节组件上至少安装有一个所述喷嘴。
  3. 如权利要求2所述的激振装置,其特征在于,任一所述喷嘴均能够在打开或关闭两种状态之间切换。
  4. 如权利要求1-3中至少一项所述的激振装置,其特征在于,所述调节组件的长度可调。
  5. 如权利要求1-4中至少一项所述的激振装置,其特征在于,所述调节组件能够相对于所述激振装置本体的角度可调。
  6. 如权利要求1-5中至少一项所述的激振装置,其特征在于,所述调节组件包括连杆和球铰结构,所述连杆和所述球铰结构的数量为多个,多个所述连杆通过所述球铰结构连接,所述连杆的首端连接于所述激振装置本体,所述连杆的尾端安装有所述球铰结构,所述球铰结构上安装有所述喷嘴。
  7. 如权利要求1-6中至少一项所述的激振装置,其特征在于,相邻的所述调节单元相互铰接,至少一个所述调节单元与相邻的所述调节单元之间可拆卸连接。
  8. 如权利要求7所述的激振装置,其特征在于,所述调节单元为支撑杆。
  9. 如权利要求7所述的激振装置,其特征在于,所述调节单元包括两个 支撑杆,两个所述支撑杆的中部铰接形成叉型结构。
  10. 如权利要求1-7中至少一项所述的激振装置,其特征在于,所有的调节单元依次连接,形成封闭的环状结构或具有开口的环状结构。
  11. 如权利要求10所述的激振装置,其特征在于,所述激振装置还包括固定轴,所述固定轴沿所述环状结构的径向方向延伸设置,所述调节单元连接于所述固定轴,并能够沿所述固定轴的轴向方向可调节。
  12. 如权利要求11所述的激振装置,其特征在于,所述调节单元包括两个支撑杆,两个所述支撑杆的中部通过铰链轴铰接形成叉型结构,所述固定轴与所述铰链轴为同一轴。
  13. 如权利要求1-12中至少一项所述的激振装置,其特征在于,所述调节组件与所述激振装置本体的连接位置靠近相邻的所述调节单元之间的连接位置。
  14. 一种喷油激振系统,其用于航空发动机的转子系统,其特征在于,所述喷油激振系统包括供回油装置和如权利要求1-13中任一项所述的激振装置,所述激振装置安装于所述转子系统的周侧,所述供回油装置连通于所述喷嘴。
PCT/CN2022/084905 2021-06-23 2022-04-01 激振装置及喷油激振系统 WO2022267611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110698011.1 2021-06-23
CN202110698011.1A CN115508095A (zh) 2021-06-23 2021-06-23 激振装置及喷油激振系统

Publications (1)

Publication Number Publication Date
WO2022267611A1 true WO2022267611A1 (zh) 2022-12-29

Family

ID=84500190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084905 WO2022267611A1 (zh) 2021-06-23 2022-04-01 激振装置及喷油激振系统

Country Status (2)

Country Link
CN (1) CN115508095A (zh)
WO (1) WO2022267611A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297384A (en) * 1993-10-13 1996-07-31 Mtu Muenchen Gmbh Testing rotor blades
CN102490878A (zh) * 2011-11-25 2012-06-13 北京航空航天大学 单自由度对称式摆动驱动的大展缩比水下机器人回收装置
CN103528776A (zh) * 2013-09-27 2014-01-22 东北大学 一种高阶旋转叶片动力学相似测试实验台及测试方法
US20170122835A1 (en) * 2015-11-02 2017-05-04 Rolls-Royce Plc Vibrational testing and correlation
CN110068439A (zh) * 2019-04-25 2019-07-30 西安交通大学 转子叶片多模态振动激励装置及其激励方法
JP2020038136A (ja) * 2018-09-05 2020-03-12 泰三 嶋田 ターボチャージャの損失測定装置および方法
CN211799635U (zh) * 2020-01-18 2020-10-30 魏凯 塔吊喷淋降尘系统
CN112985721A (zh) * 2019-12-13 2021-06-18 中国航发商用航空发动机有限责任公司 涡轮转子叶片振动特性的检测装置和检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297384A (en) * 1993-10-13 1996-07-31 Mtu Muenchen Gmbh Testing rotor blades
CN102490878A (zh) * 2011-11-25 2012-06-13 北京航空航天大学 单自由度对称式摆动驱动的大展缩比水下机器人回收装置
CN103528776A (zh) * 2013-09-27 2014-01-22 东北大学 一种高阶旋转叶片动力学相似测试实验台及测试方法
US20170122835A1 (en) * 2015-11-02 2017-05-04 Rolls-Royce Plc Vibrational testing and correlation
JP2020038136A (ja) * 2018-09-05 2020-03-12 泰三 嶋田 ターボチャージャの損失測定装置および方法
CN110068439A (zh) * 2019-04-25 2019-07-30 西安交通大学 转子叶片多模态振动激励装置及其激励方法
CN112985721A (zh) * 2019-12-13 2021-06-18 中国航发商用航空发动机有限责任公司 涡轮转子叶片振动特性的检测装置和检测方法
CN211799635U (zh) * 2020-01-18 2020-10-30 魏凯 塔吊喷淋降尘系统

Also Published As

Publication number Publication date
CN115508095A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US5443229A (en) Aircraft gas turbine engine sideways mount
US7805949B2 (en) Device for supporting and housing auxiliaries in a bypass turbojet
JP6185068B2 (ja) 歯車キャリヤー可撓マウントの潤滑
CN110044628A (zh) 一种用于压气机稳定性试验的动态畸变发生器及其方法
US11555414B2 (en) Device, method and assembly for cleaning the core engine of a jet engine
US8028530B2 (en) Device for attaching a combustion chamber
JP2018123824A (ja) タービンブレード基部でのタービンブレードの取付けまたは取外し
CN110486100A (zh) 可变刚度支承壳体
US20200182153A1 (en) Turbine engine case attachment and a method of using the same
US20180128122A1 (en) Apparatus and method for providing fluid to a bearing damper
WO2022267611A1 (zh) 激振装置及喷油激振系统
EP3216699A1 (en) Method and system for mounting an aircraft engine
US11801536B2 (en) Wash system for a gas turbine engine
US20200062412A1 (en) Turbine engine assembly and method of maufacturing thereof
CN107503803B (zh) 清洗涡轮风扇发动机前三级可调导向器执行机构的方法
US20230271695A1 (en) Turbine engine module equipped with a propeller and stator vanes supported by retaining means and corresponding turbine engine
WO2022179065A1 (zh) 激振系统以及用于测试航空发动机转子的试验设备
CN110375027A (zh) 直升机尾传动轴系局域共振减振装置及其控制方法
JP2013040608A (ja) ターボ機械荷重調整アセンブリ、支持されたターボ機械アセンブリ、およびターボ機械の支持方法
CN109580410A (zh) 一种工作叶片热障涂层服役载荷的等效加载装置及方法
US11560840B2 (en) Damper engine mount links
CN210566296U (zh) 一种导叶风阀及风机
US11035253B2 (en) Face seal with damper
US20240076987A1 (en) Shaft for a turbomachine
CN212340662U (zh) 一种便于独立控制旋流的压气机整涡旋流畸变模拟装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE