WO2022267283A1 - 机器人及其导航方法、装置和计算机可读存储介质 - Google Patents
机器人及其导航方法、装置和计算机可读存储介质 Download PDFInfo
- Publication number
- WO2022267283A1 WO2022267283A1 PCT/CN2021/126710 CN2021126710W WO2022267283A1 WO 2022267283 A1 WO2022267283 A1 WO 2022267283A1 CN 2021126710 W CN2021126710 W CN 2021126710W WO 2022267283 A1 WO2022267283 A1 WO 2022267283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- path
- robot
- execution
- execution path
- new
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000033001 locomotion Effects 0.000 claims abstract description 24
- 238000004590 computer program Methods 0.000 claims description 24
- 230000008034 disappearance Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
Definitions
- the present application belongs to the field of robots, and in particular relates to a robot and its navigation method, device and computer-readable storage medium.
- the robot positioning and navigation technology is based on the robot's positioning and target point, combined with the established map, calculates the robot's path through the planning module and navigation module, and transmits it to the motion control module to control the robot to move smoothly and quickly to the target point.
- the planning module of the robot will receive the sensing data collected by the sensors installed on the robot in real time, and convert the sensing data into the obstacle cost map.
- the map performs trajectory planning at a certain frequency, so that a path for real-time obstacle avoidance can be planned.
- the above navigation method can realize the autonomous obstacle avoidance navigation of the robot.
- the robot when the robot moves according to the trajectory output by the planning module, it may move back and forth between multiple paths, and the robot shakes and vibrates in place, which is not conducive to improving the fluency and friendliness of the robot's navigation, and may even Fail the navigation task.
- the embodiments of the present application provide a robot and its navigation method, device, and computer-readable storage medium to solve the problem that the robot in the prior art may move back and forth between multiple paths in a complex scene
- the shaking and vibration of the ground is not conducive to improving the fluency and friendliness of the robot's navigation, and even leads to the problem of mission failure.
- the first aspect of the embodiments of the present application provides a robot navigation method, the method comprising:
- the execution path of the robot is updated according to the switching scheme corresponding to the preset switching condition, and the execution path of the robot is updated according to the updated execution path. path for robot navigation.
- the switching condition of the navigation fluency problem includes that the cost of the new path is greater than the cost of the execution path, and the difference between the two costs is greater than the second cost threshold;
- the new path is updated as the execution path, and the vehicle moves according to the updated execution path.
- the switching condition of the navigation fluency problem includes that the generated new path is a channel whose minimum width is smaller than a predetermined width threshold;
- failure points of invalid paths are stored in the invalid path library, and judging whether the new path is a valid path includes: :
- the Methods before the new path is determined to be an invalid path or a valid path according to a preset invalid path library, the Methods also include:
- the invalid path library is updated according to the recorded failure point location and failure path.
- the switching condition of the navigation fluency problem includes that the cost difference between the new path and the execution path is less than a predetermined first cost threshold, and the included direction angle is greater than a predetermined The first angle threshold of ;
- the robot ignores the new path and continues to move according to the execution path, or The new path updates the execution path, and moves according to the updated execution path.
- the method further includes:
- the robot updates the execution path with the new path, and moves according to the updated execution path.
- the second aspect of the embodiments of the present application provides a robot navigation device, the device comprising:
- an obstacle information collection unit configured to collect obstacle information around the robot during the movement of the robot according to the previously generated execution path
- a new path generating unit configured to generate a new path according to the collected obstacle information
- a path update unit configured to update the execution of the robot according to the preset switching scheme corresponding to the switching condition when the switching between the new path and the execution path meets the preset switching condition of the navigation fluency problem. path, the robot navigates according to the updated execution path.
- the third aspect of the embodiments of the present application provides a robot, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
- the processor executes the computer program, the following steps are implemented: The steps of any one of the methods in one aspect.
- the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method according to any one of the first aspect is implemented A step of.
- the embodiment of the present application has the beneficial effect that: the present application acquires surrounding obstacle information and generates a new path when the robot moves according to the previously generated execution path. If the switching between the new path and the execution path meets the preset switching conditions that will cause navigation fluency problems, then according to the correspondence between the preset switching conditions and the switching schemes, find the switching scheme corresponding to the currently satisfied switching conditions, according to The switching scheme updates the execution path of the robot for navigation, so that the robot can detect the moment when the navigation fluency problem occurs in time during the moving process, and updates the execution path according to the switching scheme corresponding to the switching condition, thereby effectively reducing the robot’s
- the probability of moving back and forth or shaking between multiple paths improves the fluency and friendliness of robot navigation and improves the efficiency of task completion.
- Fig. 1 is a schematic diagram of the implementation flow of a robot navigation method provided by the embodiment of the present application
- Fig. 2 is a schematic diagram of a cost map of a new path and execution path provided by the embodiment of the present application;
- Fig. 3 is a schematic diagram of a cost map of yet another new path and execution path provided by the embodiment of the present application;
- Fig. 4 is a cost map diagram of another new path and execution path provided by the embodiment of the present application.
- Fig. 5 is a schematic diagram of the implementation flow of another robot navigation method provided by the embodiment of the present application.
- Fig. 6 is a schematic diagram of a robot navigation device provided by an embodiment of the present application.
- Fig. 7 is a schematic diagram of a robot provided by an embodiment of the present application.
- the robot When the robot is executing a task, it will generate an execution path for navigation based on the task target position and the current position of the robot. In order to be able to respond to all obstacles in the environment in a timely manner for obstacle avoidance navigation, the robot will receive information from sensors installed on the robot in real time, and convert the sensor information into the obstacle cost map. The robot performs trajectory planning at a certain frequency according to the cost map, and generates A new, less expensive path that differs from the previous path of execution.
- the robot may appear to move back and forth between the execution path and the new path, or move back and forth between multiple new paths, which will cause the robot to shake in place, which is not conducive to improving the fluency of robot navigation and friendliness, and even cause robot navigation tasks to fail.
- the embodiment of the present application proposes a robot navigation method, as shown in Figure 1, the method includes:
- the execution path is the path executed by the robot during the current moving process.
- the execution path can be continuously updated as the robot moves.
- the execution path may be determined according to the current position of the robot, the target position of the robot, and the obstacle information when the robot starts to move.
- the robot When the robot detects obstacles through the sensors set on the robot during the moving process, it can generate a new path different from the previous execution path, update the previous execution path, and replace the previous execution path with the generated new path path to get the updated execution path.
- the execution path may be updated one or more times as new paths are generated.
- the previously generated execution path refers to an execution path that is determined and is being executed before the obstacle information is currently detected.
- the execution path may be the original path planned according to the task to be executed and the obstacle information before the execution of the task, or it may be an execution path updated during the execution of the task.
- the sensor for the robot to collect obstacle information may include one or more of sensors such as a laser radar sensor, an infrared sensor, and a visible light camera.
- the robot's cost map is updated according to the detected obstacle.
- the cost map of the robot can include the static map layer, obstacle map layer and expansion layer of the scene where the robot is located.
- the static map layer may be a map layer in which obstacles do not change over time. It can be completed through SLAM (English full name is simultaneous localization and mapping, Chinese full name is simultaneous localization and mapping).
- the obstacle map layer is used to dynamically record the obstacle information detected by the sensor. Including freely movable obstacles included in the scene, such as characters and animals included in the scene.
- the expansion layer is expanded according to the obstacles in the static map layer and the obstacle map layer, including a map of the expansion space determined by the obstacles in the static map layer and the obstacle map layer.
- the robot is usually not allowed to enter, lest the robot collide with obstacles.
- the robot After the robot detects the obstacle information in the scene, it can generate one or more new paths different from the execution path, and can update the scene cost map according to the detected obstacle information, and update the execution path according to the updated cost map.
- the cost of the path can be determined according to the traveling distance of the robot. The longer the distance of the path, the greater the cost of the path.
- the solid line represents the current execution path
- the dotted line represents the new path
- the triangle represents the current position of the robot
- the five-pointed star represents the target position of the robot.
- the length of the new path in Figure 2 is greater than the execution route, therefore, the cost of the new path in Figure 2 is much greater than the cost of the execution path.
- one or more new paths with a lower cost than the execution path can be obtained by comparing the cost of the paths, which can be used to update the execution path.
- the preset switching conditions that cause navigation fluency problems may include one or more of the following conditions:
- the cost of the new path is greater than the cost of the execution path, and the cost difference between the two is greater than the second cost threshold.
- the generated new path is a channel whose minimum width is smaller than a predetermined width threshold.
- the cost difference between the new path and the execution path is smaller than a predetermined first cost threshold, and the included direction angle is larger than a predetermined first angle threshold.
- the cost of detecting the new path of the robot is greater than the cost of the execution path.
- the movement of the robot can be stopped, and after the robot is stopped, the detection makes the execution of the robot The state of an obstacle whose path is invalid. If the disappearance of an obstacle that invalidates the execution path of the robot is detected, execution can be continued directly according to the previous execution path.
- the navigation movement can be performed according to the new path generated by the obstacle, so as to avoid repeated movement of the robot repeatedly returning to the execution path for navigation movement due to the disappearance of the obstacle, Improve the fluency of robot movement.
- the predetermined duration can be adjusted accordingly according to the cost difference between the cost of the new path and the cost of the execution path. For example, the greater the difference between the cost of the new path and the cost of the execution path, the longer the predetermined duration can be. Indicates that if the cost of the new path increases more, the longer you can wait for the obstacle to disappear.
- the robot can choose a path with a lower cost as the new execution path.
- the robot moves along the first path (which may be the execution path or a new path) and may move a certain distance before re-using other paths as the execution path. , so that the robot shakes left and right during the movement process, making the navigation not smooth.
- the switching scheme for the cost of the new path and the execution path is relatively similar may include: according to the current cost difference between the new path and the execution path is less than the first cost threshold, and the direction angle is greater than the predetermined first angle threshold If the scene information is not available, ignore the new path and continue to move according to the execution path, or update the execution path with the new path and move according to the updated execution path, so as to prevent the robot from updating the new path to the execution path and reduce the chance of the robot shaking from side to side.
- the path can be directly updated to the execution path for navigation, or continue to follow the previous path Execution path for navigation.
- the planned path may include a path of a narrow passage, but within a short period of time, the narrow passage cannot be passed due to perceived obstacles, and another different path is planned. Due to the narrow passage, the robot may switch between the planned multiple paths, resulting in the robot's navigation behavior may shake left and right, and even cause the robot to freeze when navigating.
- the invalid path library determined according to the forecast can be used to find the current path. Whether the generated new path is an invalid path. If the currently generated new path is an invalid path, the movement of the current execution path can be continued; if the new path is a valid path, the new path can be updated as the execution path, and the movement can be made according to the updated execution path. Thereby avoiding the left and right shaking of the robot under this switching condition, and improving the fluency of the robot's movement.
- the judgment may be made according to failure points included in the invalid paths in the invalid path library.
- the failure point in the invalid path is the position that the robot is not allowed to pass.
- the current execution path of the robot and the invalid points in the execution path can be added and updated to the invalid path library , so that the robot can more quickly judge whether the new path is a valid path as the usage time increases.
- the invalid paths in the invalid path library including failure points, starting positions, and target positions of the invalid paths, can be set by the user according to scenarios.
- Fig. 5 shows the implementation process of a robot navigation method combining three switching conditions, including:
- the robot initiates navigation, and the robot moves according to a previously set execution path.
- the robot plans a new path.
- the robot During the navigation process of the robot, the robot generates a new path different from the execution path according to the detected obstacle information in the scene. There can be one or more new paths.
- the cost of the new path can be greater than the current execution path, or less than or equal to the current execution path of the robot.
- the robot judges whether the cost of the new path is greater than the cost of the execution path.
- the cost of the new path generated by the robot is greater than the cost of the executed path, and the difference is greater than a second cost threshold, check whether the obstacle disappears within a predetermined period of time. If it is detected that the obstacle does not disappear within the predetermined time period, then execute 509 , that is, update the new path to the execution path. If it is detected that the obstacle disappears within the predetermined period of time, execute 510, that is, navigate and move according to the current execution path.
- 505 may be executed to further determine whether the execution path is a valid path.
- 506 may be executed to determine whether the angle between the new path and the execution path is greater than a predetermined first angle threshold. If the execution path is invalid, 511 may be executed to update the invalid path to the invalid path library.
- step 507 determine whether the difference between the cost of the new path and the execution path is smaller than the first cost threshold.
- the first cost threshold is smaller than the second cost threshold.
- the new path may be updated as the execution path for navigational movement, or the navigational movement may be based on a previous execution path.
- 508 may be executed to determine whether the new path is a failure path.
- 509 may be executed to update the new path as an execution path, and the updated execution path may be compared with other generated new paths. If the new path is a failed path, then 510 may be performed to navigate the movement according to the previously executed path.
- 512 is also included, judging whether the target position is reached. If it arrives, it ends, if it does not arrive, return to the new path waiting for planning, and compare it with the newly generated new path again.
- Fig. 6 is a schematic diagram of a robot navigation device provided in the embodiment of the present application. As shown in Fig. 6, the device includes:
- An obstacle information collection unit 601, configured to collect obstacle information around the robot during the movement of the robot according to the previously generated execution path;
- a new path generation unit 602 configured to generate a new path according to the collected obstacle information
- the path updating unit 603 is configured to update the robot's path according to the preset switching scheme corresponding to the switching condition when the switching between the new path and the execution path meets the preset switching condition of the navigation fluency problem. Execution path, robot navigation according to the updated execution path.
- the robot navigation device shown in FIG. 6 corresponds to the robot navigation method shown in FIG. 1 .
- Fig. 7 is a schematic diagram of a robot provided by an embodiment of the present application.
- the robot 7 of this embodiment includes: a processor 70 , a memory 71 and a computer program 72 stored in the memory 71 and operable on the processor 70 , such as a robot's navigation program.
- the processor 70 executes the computer program 72, the steps in the above-mentioned embodiments of the navigation method for each robot are realized.
- the processor 70 executes the computer program 72, the functions of the modules/units in the above-mentioned device embodiments are realized.
- the computer program 72 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 71 and executed by the processor 70 to complete this application.
- the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 72 in the robot 7 .
- the robot may include, but not limited to, a processor 70 and a memory 71 .
- FIG. 7 is only an example of the robot 7, and does not constitute a limitation to the robot 7. It may include more or less components than shown in the illustration, or combine some components, or different components, such as
- the robot may also include input and output devices, network access devices, buses, and the like.
- the so-called processor 70 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
- the memory 71 may be an internal storage unit of the robot 7 , such as a hard disk or memory of the robot 7 . Described memory 71 also can be the external storage device of described robot 7, for example the plug-in type hard disk that is equipped on described robot 7, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, Flash card (Flash Card), etc. Further, the memory 71 may also include both an internal storage unit of the robot 7 and an external storage device. The memory 71 is used to store the computer program and other programs and data required by the robot. The memory 71 can also be used to temporarily store data that has been output or will be output.
- the disclosed apparatus/terminal device and method may be implemented in other ways.
- the device/terminal device embodiments described above are only illustrative.
- the division of the modules or units is only a logical function division.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in this application can also be completed by hardware related to computer program instructions.
- the computer program can be stored in a computer-readable storage medium.
- the computer program When executed by a processor, the steps in the above-mentioned various method embodiments can be realized.
- the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
- the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, computer-readable media Excluding electrical carrier signals and telecommunication signals.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种机器人及其导航方法、装置和计算机可读存储介质。该方法包括:在机器人根据在先生成的执行路径移动的过程中,采集机器人周围的障碍物信息(S101);根据所采集的障碍物信息生成新路径(S102);当新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的切换条件对应的切换方案,更新机器人的执行路径,根据更新的执行路径进行机器人导航(S103)。使得机器人在移动过程中,能够及时检测到产生导航流畅性问题的时刻,并根据切换条件对应的切换方案更新执行路径,减少机器人来回移动或晃动的几率,提高机器人导航的流畅性和友好性,提高任务完成效率。
Description
本申请要求于2021年06月25日在中国专利局提交的、申请号为202110713026.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于机器人领域,尤其涉及机器人及其导航方法、装置及计算机可读存储介质。
机器人定位导航技术是根据机器人的定位、目标点,结合已经建立好的地图,通过规划模块和导航模块计算出机器人的路径,并传递给运动控制模块以控制机器人流畅快速地运动到目标点。为了能够及时响应环境中的障碍物以进行避障导航,机器人的规划模块会实时接收安装于机器人上传感器所采集的传感数据,将传感数据转化到障碍物代价地图中,规划器根据代价地图以一定的频率进行轨迹规划,从而够规划出实现实时避障的路径。
上述导航方式能够实现机器人自主避障导航。但是,在一些复杂场景下,机器人按照规划模块输出的轨迹进行运动时,可能会出现在多个路径间来回移动,机器人原地摇晃震动,不利于提高机器人导航的流畅性和友好性,甚至会使导航任务失败。
有鉴于此,本申请实施例提供了一种机器人及其导航方法、装置和计算机可读存储介质,以解决现有技术中的机器人在复杂场景下,可能会多个路径间来回移动,机器人原地摇晃震动,不利于提高机器人导航的流畅性和友好性,甚至导致任务失败的问题。
本申请实施例的第一方面提供了一种机器人的导航方法,所述方法包括:
在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息;
根据所采集的障碍物信息生成新路径;
当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
结合第一方面,在第一方面的第一种可能实现方式中,所述导航流畅性问题的切换条件包括新路径的代价大于执行路径的代价,且二者的代价差大于第二代价阈值;
根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:
所述机器人停止运动;
当检测到使机器人的执行路径无效的障碍物消失时,继续按照执行路径移动;
如果在预定时长内没有检测到使执行路径无效的障碍物消失,则将新路径更新为执行路径,按照更新后的执行路径移动。
结合第一方面,在第一方面的第二种可能实现方式中,所述导航流畅性问题的切换条件包括生成的新路径为最小宽度小于预定的宽度阈值的通道;
根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:
根据预先设定的无效路径库,确定所述新路径为无效路径或有效路径;
如果所述新路径为有效路径,则将新路径更新执行路径,按照更新后的执行路径移动;
如果所述新路径为无效路径,则继续按照执行路径移动。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,所述无效路径库中存储有无效路径的失效点,判断所述新路径是否为有效路径,包括:
判断所述新路径是否包括所述无效路径的失效点。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,在根据 预先设定的无效路径库,确定所述新路径为无效路径或有效路径之前,所述方法还包括:
记录所述机器人的执行路径中所遇到的宽度小于预定的宽度阈值的失效点位置,以及该失效点位置对应的失效路径;
根据所记录的失效点位置和失效路径,更新所述无效路径库。
结合第一方面,在第一方面的第五种可能实现方式中,所述导航流畅性问题的切换条件包括新路径与执行路径的代价差小于预定的第一代价阈值,且方向夹角大于预定的第一角度阈值;
根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:
所述机器人根据当前的新路径与执行路径的代价差小于预定的第一代价阈值,且方向夹角大于预定的第一角度阈值的场景信息,则忽略新路径,继续按照执行路径移动,或者将新路径更新执行路径,按照更新后的执行路径移动。
结合第一方面的第五种可能实现方式,在第一方面的第六种可能实现方式中,所述方法还包括:
如果所述机器人根据当前的新路径与执行路径的方向夹角小于预定的第一角度阈值,则将新路径更新执行路径,按照更新后的执行路径移动。
本申请实施例的第二方面提供了一种机器人的导航装置,所述装置包括:
障碍物信息采集单元,用于在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息;
新路径生成单元,用于根据所采集的障碍物信息生成新路径;
路径更新单元,用于当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
本申请实施例的第三方面提供了机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述方法的步骤。
本申请实施例与现有技术相比存在的有益效果是:本申请在机器人根据在先生成的执行路径移动时,获取周围的障碍物信息并生成新路径。如果新路径和执行路径的切换符合预设的会产生导航流畅性问题的切换条件,则根据预先设定的切换条件与切换方案的对应关系,查找当前满足的切换条件所对应的切换方案,根据切换方案更新机器人的执行路径进行导航,从而使得机器人在移动过程中,能够及时的检测到产生导航流畅性问题的时刻,并根据切换条件对应的切换方案更新执行路径,从而能够有效的减少机器人在多个路径间来回移动或晃动的几率,提高机器人导航的流畅性和友好性,提高任务完成效率。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种机器人的导航方法的实现流程示意图;
图2是本申请实施例提供的一种新路径和执行路径的代价地图示意图;
图3是本申请实施例提供的又一种新路径和执行路径的代价地图示意图;
图4是本申请实施例提供的又一种新路径和执行路径的代价地图意图;
图5是本申请实施例提供的又一种机器人导航方法的实现流程示意图;
图6是本申请实施例提供的一种机器人的导航装置的示意图;
图7是本申请实施例提供的机器人的示意图。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
机器人在执行任务时,会根据任务目标位置和机器人当前所在的位置,生成用于导航的执行路径。为了能够及时响应环境中所有障碍物进行避障导航,机器人会实时接收安装于机器人上传感器的信息,将传感器信息转化到障碍物代价地图中,机器人根据代价地图以一定的频率进行轨迹规划,生成与在先的执行路径不同的、代价更小的新路径。由于机器人环境信息的影响,机器人可能会出现在执行路径和新路径之间来回移动,或者在多个新路径之间来回移动,从而会使得机器人出现原地摇晃,不利于提高机器人导航的流畅性和友好性,甚至会导致机器人导航任务失败。
为了克服上述缺陷,本申请实施例提出了一种机器人的导航方法,如图1所示,该方法包括:
在S101中,在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息。
其中,所述执行路径,为机器人当前移动过程中所执行的路径。该执行路径可以随着机器人的移动而不断的更新。
比如,在机器人开始执行任务时,该执行路径可以根据机器人当前位置、机器人目标位置以及开始移动时的障碍物信息所确定的路径。
当机器人在移动过程中,通过机器人上所设置的传感器检测到障碍物时,可以生成与之前的执行路径不同的新路径,对之前的执行路径进行更新,即将所生成的新路径替换之前的执行路径,从而得到更新后的执行路径。在机器人的移动过程中,随着新路径的生成,该执行路径可能会更新一次或者多次。
所述在先生成的执行路径,指在当前检测到障碍物信息的之前所确定和正在执行的执行路径。该执行路径可能为根据所要执行的任务,以及在执行任务之前的障碍物信息所规划的原始路径,也可以为在执行任务过程中更新后的执行路径。
其中,机器人采集障碍物信息的传感器,可以包括激光雷达传感器、红外传感器、可见光摄像头等传感器中的一种或者多种。
在S102中,根据所采集的障碍物信息生成新路径。
在机器人检测到障碍物时,会根据所检测到的障碍物更新机器人的代价地图。其中,机器人的代价地图,可以包括机器人所在场景的静态地图层、障碍物地图层和膨胀层等。
其中,静态地图层可以为障碍物不随着时间发生改变的地图层。可以通过SLAM(英文全称为simultaneous localization and mapping,中文全称为同步定位和建图)建图时完成。
障碍物地图层用于动态的记录传感器所检测到的障碍物信息。包括场景中所包括的可自由移动的障碍,比如场景中所包括的人物、动物等。
所述膨胀层根据静态地图层和障碍物地图层中的障碍物进行膨胀,包括静态地图层和障碍物地图层中的障碍物所确定的膨胀空间的地图。在该膨胀空间内,通常不允许机器人进入,以免机器人与障碍物相撞。
在机器人检测到场景中的障碍物信息后,可以生成与执行路径不同的一条或者多条新 路径,并可以根据所检测到的障碍物信息更新场景代价地图,根据所更新的代价地图,更新执行路径的代价,以及确定所生成的新路径的代价。
其中,路径的代价可以根据机器人的通行距离来确定。路径的距离越长,则表示路径的代价越大。比如,图2所示的路径示意图中,实线表示当前的执行路径,虚线表示新路径,三角形表示机器人当前的位置,五角星表示机器人目标位置。图2中的新路径的长度大于执行路线,因此,图2中的新路径的代价远大于执行路径的代价。
在S103中,当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
当生成一条或者多条新路径时,可以通过路径的代价的比较,筛选得到代价相对于执行路径更小的一条或者多条新路径,可用于对执行路径进行更新。
本申请实施例在将执行路径切换为新路径时,还包括对切换条件的检测和判断。如果切换条件符合预先设定的导航流畅性问题的切换条件,则进一步根据该切换条件查找对应的切换方案,根据所查找的切换方案更新机器人的执行路径,从而避免机器人来回移动,提升机器人导航的流畅性。
其中,预先设定的引起导航流畅性问题的切换条件,可以包括以下条件中的一种或者几种:
1、新路径的代价大于执行路径的代价,且二者的代价差大于第二代价阈值。
2、生成的新路径为最小宽度小于预定的宽度阈值的通道。
3、新路径与执行路径的代价差小于预定的第一代价阈值,且方向夹角大于预定的第一角度阈值。
在机器人移动过程中,如果根据障碍物信息检测到新路径,并且将执行路径切换为新路径时符合上述切换条件中的任意一种,则可以根据预先设定的切换条件与切换方案的对应关系,查找相应的切换方案,从而实现机器人的流畅移动。
如图2所示,检测到机器人的新路径的代价大于执行路径的代价,为了能够提高机器人的移动效率,减少对机器人所在场景的移动障碍物对移动路径带来的对执行效率的影响,当机器人检测到新路径的代价大于执行路径的代价,且新路径的代价与执行路径的代价差大于第二代价阈值时,则可以停止机器人的移动,并且在停止机器人的后,检测使机器人的执行路径无效的障碍物的状态。如果检测到使机器人的执行路径无效的障碍物消失时,则可直接根据之前的执行路径继续执行。如果在预定时长内,所述障碍物仍然没有消失,则可以按照该障碍物生成的新路径执行导航移动,从而可以避免因障碍物消失而导致机器人重复回到执行路径进行导航移动的反复移动,提高机器人移动的流畅性。
其中,预定时长可以根据新路径的代价与执行路径的代价差进行相应的调整。比如,新路径的代价与执行路径的代价差越大,则预定时长可以更长。表示如果新路径的代价增加越多,则可以等待障碍物消失的时间越长。
如图3所示,当新路径与执行路径的代价较为相似,即新路径的代价与执行路径的代价的差值小于第一代价阈值时,在通常情况下,机器人可以选择代价更小的路径作为新的执行路径。然而,由于机器人定位的精度的影响,机器人按照第一路径(可能为执行路径,也可能为新路径)在移动过程中,可能会导致移动一定距离后,重新将其它的路径作为执行路径来移动,从而使得机器人在移动过程中左右摇晃,使得导航不流畅。
为了克服该缺陷,对于新路径与执行路径的代价较为相近的切换方案可以包括:根据当前的新路径与执行路径的代价差小于的第一代价阈值,且方向夹角大于预定的第一角度阈值的场景信息,则忽略新路径,继续按照执行路径移动,或者将新路径更新执行路径,按照更新后的执行路径移动,从而避免机器人将新路径更新为执行路径,减少机器人左右摇晃的几率。
当然,在可能的实现方式中,如果检测到机器人的新路径与当前的执行路径的角度较 小,比如小于第一角度阈值,则可以直接将路径更新为执行路径进行导航,或者继续按照之前的执行路径进行导航。
在可能的实现方式中,如图4所示,在实现场景中可能存在一些固定的或临时产生的狭窄通道,同时由于存在优越感器噪声,或者障碍物为细小障碍物等复杂情况,优越感器无法稳定地感知到路径中的障碍物信息。在这种情况下,规划的路径可能包括狭窄通道的路径,但短时间内该通道内由于感知到障碍物导致该狭窄通道无法通过,进而规划出另一条不同的路径。由于通道狭窄而导致机器人可能在规划的多条路径之间切换,导致机器人导航行为可能存在左右摇晃,甚至导致机器人导航时出现卡顿现象。
为了解决这种切换条件下机器人的左右摇晃问题,当新路径与当前执行路径的方向不同,且新路径的最小宽度位置小于预定的宽度阈值时,则可以根据预告确定的无效路径库,查找当前生成的新路径是否为无效路径。如果当前生成的新路径为无效路径,则可继续当前的执行路径移动,如果新路径为有效路径,则可以将新路径更新为执行路径,按照更新后的执行路径移动。从而避免机器人在这种切换条件下出现左右晃动,提高机器人移动的流畅性。
其中,判断新路径是否为无效路径时,可以根据无效路径库中的无效路径所包括的失效点进行判断。无效路径中的失效点,即为机器人不允许通过的位置。当新路径中包括失效点时,则可以判断新路径为无效路径。
另外,在机器人的移动过程中,如果检测到机器人移动到的通道的宽度小于预定的宽度阈值,则可以将该机器人当前的执行路径,以及执行路径中的无效点添加和更新至无效路径库中,从而使得机器人能够随着使用时间的增加,更为快捷的判断新路径是否为有效路径。
在可能的实现方式中,所述无效路径库中的无效路径,包括无效路径的失效点,起始位置和目标位置等,可以由用户根据场景设定。
可以理解的是,上述三种切换方式,可以选取其中两种或者三种相结合来更新机器人的执行路径。比如图5示出了一种结合三种切换条件的机器人导航方法实现流程,包括:
501,机器人发起导航,机器人根据在先设定的执行路径移动。
502,机器人规划新路径。
机器人在导航过程中,机器人根据所检测到的场景中的障碍物信息,生成与执行路径不同的新路径。该新路径可以为一条或者多条。新路径的代价可以大于当前的执行路径,也可以小于或等于当前机器人的执行路径。
503,机器人判断新路径的代价是否大于执行路径的代价。
504,如果机器人生成的新路径的代价大于执行路径的代价,且差值大于第二代价阈值,则在预定时长内检测障碍物是否消失。如果在预定时长内检测到障碍物未消失,则执行509,即将新路径更新为执行路径。如果在预定时长内检测到障碍物消失,则执行510,即按照当前的执行路径导航移动。
如果机器人生成的新路径的代价与执行路径的代价的差值小于第二代价阈值,则可以执行505,进一步判断执行路径是否为有效路径。
如果执行路径有效,则可以执行506,判断新路径与执行路径的夹角是否大于预定的第一角度阈值。如果执行路径无效,则可以执行511,将该无效路径更新至无效路径库。
如果新路径与执行路径的夹角大于预定的第一角度阈值,则执行507,即判断新路径的代价与执行路径的代价的差值是否小于第一代价阈值。其中,第一代价阈值小于第二代价阈值。
如果新路径与执行路径的夹角小于或等于预定的第一角度阈值,则可将新路径更新为执行路径,以用于导航移动,或者根据在先的执行路径导航移动。
如果新路径的代价与执行路径的代价的差值大于或等于第一代价阈值,则可以执行508,判断新轨迹是否为失效路径。
如果新路径不是失效路径,则可以执行509,将新路径更新为执行路径,可根据所更新的执行路径,与所生成的其它新路径进行比较。如果新路径是失效路径,则可以执行510,根据在先的执行路径导航移动。
在509和510之后,还包括512,判断是否到达目标位置。如果到达则结束,如果未到达,则返回等待规划的新路径,重新与新生成的新路径进行比较。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图6为本申请实施例提供的一种机器人的导航装置的示意图,如图6所示,该装置包括:
障碍物信息采集单元601,用于在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息;
新路径生成单元602,用于根据所采集的障碍物信息生成新路径;
路径更新单元603,用于当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
图6所示的机器人的导航装置,与图1所示的机器人的导航方法对应。
图7是本申请一实施例提供的机器人的示意图。如图7所示,该实施例的机器人7包括:处理器70、存储器71以及存储在所述存储器71中并可在所述处理器70上运行的计算机程序72,例如机器人的导航程序。所述处理器70执行所述计算机程序72时实现上述各个机器人的导航方法实施例中的步骤。或者,所述处理器70执行所述计算机程序72时实现上述各装置实施例中各模块/单元的功能。
示例性的,所述计算机程序72可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器71中,并由所述处理器70执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序72在所述机器人7中的执行过程。
所述机器人可包括,但不仅限于,处理器70、存储器71。本领域技术人员可以理解,图7仅仅是机器人7的示例,并不构成对机器人7的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述机器人还可以包括输入输出设备、网络接入设备、总线等。
所称处理器70可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器71可以是所述机器人7的内部存储单元,例如机器人7的硬盘或内存。所述存储器71也可以是所述机器人7的外部存储设备,例如所述机器人7上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器71还可以既包括所述机器人7的内部存储单元也包括外部存储设备。所述存储器71用于存储所述计算机程序以及所述机器人所需的其他程序和数据。所述存储器71还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成 的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。
Claims (10)
- 一种机器人的导航方法,其特征在于,所述方法包括:在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息;根据所采集的障碍物信息生成新路径;当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
- 根据权利要求1所述的方法,其特征在于,所述导航流畅性问题的切换条件包括新路径的代价大于执行路径的代价,且二者的代价差大于第二代价阈值;根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:所述机器人停止运动;当检测到使机器人的执行路径无效的障碍物消失时,继续按照执行路径移动;如果在预定时长内没有检测到使执行路径无效的障碍物消失,则将新路径更新为执行路径,按照更新后的执行路径移动。
- 根据权利要求1所述的方法,其特征在于,所述导航流畅性问题的切换条件包括生成的新路径为最小宽度小于预定的宽度阈值的通道;根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:根据预先设定的无效路径库,确定所述新路径为无效路径或有效路径;如果所述新路径为有效路径,则将新路径更新执行路径,按照更新后的执行路径移动;如果所述新路径为无效路径,则继续按照执行路径移动。
- 根据权利要求3所述的方法,其特征在于,所述无效路径库中存储有无效路径的失效点,判断所述新路径是否为有效路径,包括:判断所述新路径是否包括所述无效路径的失效点。
- 根据权利要求3所述的方法,其特征在于,在根据预先设定的无效路径库,确定所述新路径为无效路径或有效路径之前,所述方法还包括:记录所述机器人的执行路径中所遇到的宽度小于预定的宽度阈值的失效点位置,以及该失效点位置对应的失效路径;根据所记录的失效点位置和失效路径,更新所述无效路径库。
- 根据权利要求1所述的方法,其特征在于,所述导航流畅性问题的切换条件包括新路径与执行路径的代价差小于预定的第一代价阈值,且方向夹角大于预定的第一角度阈值;根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,包括:所述机器人根据当前的新路径与执行路径的代价差小于预定的第一代价阈值,且方向夹角大于预定的第一角度阈值的场景信息,则忽略新路径,继续按照执行路径移动,或者将新路径更新执行路径,按照更新后的执行路径移动。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:如果所述机器人根据当前的新路径与执行路径的方向夹角小于预定的第一角度阈值,则将新路径更新执行路径,按照更新后的执行路径移动。
- 一种机器人的导航装置,其特征在于,所述装置包括:障碍物信息采集单元,用于在机器人根据在先生成的执行路径移动的过程中,采集所述机器人周围的障碍物信息;新路径生成单元,用于根据所采集的障碍物信息生成新路径;路径更新单元,用于当所述新路径和执行路径的切换,符合预设的导航流畅性问题的切换条件时,根据预先设定的所述切换条件对应的切换方案,更新所述机器人的执行路径,根据更新的执行路径进行机器人导航。
- 一种机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运 行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述方法的步骤。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110713026.0A CN113390417A (zh) | 2021-06-25 | 2021-06-25 | 机器人及其导航方法、装置和计算机可读存储介质 |
CN202110713026.0 | 2021-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267283A1 true WO2022267283A1 (zh) | 2022-12-29 |
Family
ID=77624134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/126710 WO2022267283A1 (zh) | 2021-06-25 | 2021-10-27 | 机器人及其导航方法、装置和计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113390417A (zh) |
WO (1) | WO2022267283A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113390417A (zh) * | 2021-06-25 | 2021-09-14 | 深圳市优必选科技股份有限公司 | 机器人及其导航方法、装置和计算机可读存储介质 |
CN114594761B (zh) * | 2022-01-05 | 2023-03-24 | 美的集团(上海)有限公司 | 机器人的路径规划方法、电子设备及计算机可读存储介质 |
CN114459486B (zh) * | 2022-02-24 | 2024-08-20 | 深圳市优必选科技股份有限公司 | 机器人及其通道导航方法、装置及存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576686A (zh) * | 2013-11-21 | 2014-02-12 | 中国科学技术大学 | 一种机器人自主导引及避障的方法 |
CN106292697A (zh) * | 2016-07-26 | 2017-01-04 | 北京工业大学 | 一种移动设备的室内路径规划与导航方法 |
CN110260867A (zh) * | 2019-07-29 | 2019-09-20 | 浙江大华技术股份有限公司 | 一种机器人导航中位姿确定、纠正的方法、设备及装置 |
CN111380556A (zh) * | 2020-03-03 | 2020-07-07 | 北京百度网讯科技有限公司 | 用于自动驾驶车辆的信息处理方法和装置 |
US20200264618A1 (en) * | 2019-02-20 | 2020-08-20 | Baidu Online Network Technology (Beijing) Co., Ltd. | Blacklist-based re-navigation method and apparatus, and storage medium |
US20200340826A1 (en) * | 2017-12-29 | 2020-10-29 | Zte Corporation | Map construction and navigation method, and device and system |
CN112013848A (zh) * | 2020-08-26 | 2020-12-01 | 西安西科节能技术服务有限公司 | 一种基于射频识别技术的装载机室内导航路径规划方法 |
CN112578785A (zh) * | 2019-09-29 | 2021-03-30 | 杭州海康机器人技术有限公司 | 路径规划方法、调度服务器及存储介质 |
CN113390417A (zh) * | 2021-06-25 | 2021-09-14 | 深圳市优必选科技股份有限公司 | 机器人及其导航方法、装置和计算机可读存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106774347A (zh) * | 2017-02-24 | 2017-05-31 | 安科智慧城市技术(中国)有限公司 | 室内动态环境下的机器人路径规划方法、装置和机器人 |
CN109974702A (zh) * | 2017-12-27 | 2019-07-05 | 深圳市优必选科技有限公司 | 一种机器人导航方法、机器人及存储装置 |
CN112650235A (zh) * | 2020-03-11 | 2021-04-13 | 南京奥拓电子科技有限公司 | 一种机器人避障控制方法、系统及机器人 |
-
2021
- 2021-06-25 CN CN202110713026.0A patent/CN113390417A/zh active Pending
- 2021-10-27 WO PCT/CN2021/126710 patent/WO2022267283A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576686A (zh) * | 2013-11-21 | 2014-02-12 | 中国科学技术大学 | 一种机器人自主导引及避障的方法 |
CN106292697A (zh) * | 2016-07-26 | 2017-01-04 | 北京工业大学 | 一种移动设备的室内路径规划与导航方法 |
US20200340826A1 (en) * | 2017-12-29 | 2020-10-29 | Zte Corporation | Map construction and navigation method, and device and system |
US20200264618A1 (en) * | 2019-02-20 | 2020-08-20 | Baidu Online Network Technology (Beijing) Co., Ltd. | Blacklist-based re-navigation method and apparatus, and storage medium |
CN110260867A (zh) * | 2019-07-29 | 2019-09-20 | 浙江大华技术股份有限公司 | 一种机器人导航中位姿确定、纠正的方法、设备及装置 |
CN112578785A (zh) * | 2019-09-29 | 2021-03-30 | 杭州海康机器人技术有限公司 | 路径规划方法、调度服务器及存储介质 |
CN111380556A (zh) * | 2020-03-03 | 2020-07-07 | 北京百度网讯科技有限公司 | 用于自动驾驶车辆的信息处理方法和装置 |
CN112013848A (zh) * | 2020-08-26 | 2020-12-01 | 西安西科节能技术服务有限公司 | 一种基于射频识别技术的装载机室内导航路径规划方法 |
CN113390417A (zh) * | 2021-06-25 | 2021-09-14 | 深圳市优必选科技股份有限公司 | 机器人及其导航方法、装置和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113390417A (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022267283A1 (zh) | 机器人及其导航方法、装置和计算机可读存储介质 | |
JP6845894B2 (ja) | 自動運転車両におけるセンサー故障を処理するための方法 | |
KR102099152B1 (ko) | 자율 주행 차량의 경로 및 속도 최적화에 대한 폴백 메카니즘 | |
JP7141370B2 (ja) | 標準的なナビゲーション地図と車両の過去の軌跡に基づいて決定された車線構成を利用した自動運転 | |
JP6754856B2 (ja) | 自動運転車両のためのセンサー集約フレームワーク | |
JP6498246B2 (ja) | グラフベースの車線変更ガイドを用いて自律走行車を動作させる方法及びシステム | |
JP6784794B2 (ja) | 自動運転車の経路計画用のドリフト補正の方法 | |
JP6667686B2 (ja) | 自動運転車両のための走行軌跡生成方法、システム及び機械可読媒体 | |
JP6517897B2 (ja) | 自律走行車用のバネシステムに基づく車線変更方法 | |
KR102210714B1 (ko) | 다수의 스레드를 이용하여 자율 주행 차량을 위한 기준선을 생성하기 위한 방법 및 시스템 | |
JP6975775B2 (ja) | 自動運転車両の高速道路における自動運転に用いる、地図及びポジショニングなしで車線に沿う走行方法 | |
KR20190100856A (ko) | 곡선 투영을 가속화하기 위한 시스템 및 방법 | |
JP2019167091A (ja) | 自動運転車両の周辺車両の挙動に基づくリアルタイム感知調整と運転調整 | |
CN108602509A (zh) | 基于运动规划来操作自动驾驶车辆的方法和系统 | |
CN111044057A (zh) | 用于自动驾驶车辆的基于先前驾驶轨迹的实时地图生成方案 | |
US20200174113A1 (en) | Omnidirectional sensor fusion system and method and vehicle including the same | |
JP2021140822A (ja) | 車両制御方法、車両制御装置及び車両 | |
CN111105695B (zh) | 地图制作方法、装置、电子设备及计算机可读存储介质 | |
US20200158523A1 (en) | Dynamic drop off and pick up of passengers via autonomous vehicles | |
JP6892516B2 (ja) | 列挙に基づく自動運転車両の3ポイントターン計画 | |
WO2021027966A1 (zh) | 行进方法、可行进设备和存储介质 | |
JP6987150B2 (ja) | 自動運転車両の3ポイントターンの最適プランナー切り替え方法 | |
JP2022034861A (ja) | フォークリフト、位置推定方法、及びプログラム | |
KR20200094842A (ko) | 차량의 주행 장애물 검출 장치 및 방법 | |
JP7045393B2 (ja) | 自動運転車両の基準線を生成するための方法およびシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946765 Country of ref document: EP Kind code of ref document: A1 |