WO2022267244A1 - 一种降低涡流损耗的转子 - Google Patents

一种降低涡流损耗的转子 Download PDF

Info

Publication number
WO2022267244A1
WO2022267244A1 PCT/CN2021/119105 CN2021119105W WO2022267244A1 WO 2022267244 A1 WO2022267244 A1 WO 2022267244A1 CN 2021119105 W CN2021119105 W CN 2021119105W WO 2022267244 A1 WO2022267244 A1 WO 2022267244A1
Authority
WO
WIPO (PCT)
Prior art keywords
eddy current
magnetic steel
steel assembly
rotor
current loss
Prior art date
Application number
PCT/CN2021/119105
Other languages
English (en)
French (fr)
Inventor
张广权
陈进华
杨文雄
汤磊
夏莉
Original Assignee
上海盘毂动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海盘毂动力科技股份有限公司 filed Critical 上海盘毂动力科技股份有限公司
Priority to EP21946728.9A priority Critical patent/EP4362284A1/en
Publication of WO2022267244A1 publication Critical patent/WO2022267244A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the field of motors, in particular to a rotor with reduced eddy current loss.
  • the surface of the metal conductor (including the magnetic steel of the rotor) in the alternating magnetic field will generate an electromotive force due to electromagnetic induction, and the electromotive force will generate a self-closing vortex-shaped eddy current due to the existence of resistance.
  • This phenomenon is called Eddy current effect.
  • the eddy current loss will become very large, which will cause a large temperature rise. If the temperature is too high, it may even cause irreversible demagnetization of the magnetic steel, so the eddy current loss must be suppressed.
  • a rotor with reduced eddy current loss comprising:
  • a rotor yoke the rotor yoke includes a fixed part, and an inner ring part and an outer ring part connected to the fixed part and arranged in the same direction;
  • the magnetic steel assembly is ring-shaped, fixed on the fixing part and radially fixed by the inner ring part and the outer ring part;
  • a plurality of passages are uniformly arranged on the inner ring part and/or the outer ring part to reduce eddy current loss.
  • the channel is arranged along the axial direction, radial direction or circumferential direction of the magnetic steel assembly.
  • the channel on the inner ring part is arranged axially along the magnetic steel assembly, and passes through the inner ring part and the fixing part.
  • the channel on the outer ring part is arranged along the radial direction of the magnetic steel assembly.
  • a plurality of the channels are arranged equidistantly along the circumference of the magnetic steel assembly.
  • channels are provided on the fixing part.
  • the channel on the fixing part is arranged along the circumference of the magnetic steel assembly.
  • the size of the inner ring part and the outer ring part in the axial direction of the magnet steel assembly is smaller than the axial size of the magnet steel assembly.
  • Fig. 1 is the structure schematic diagram of the rotor that reduces eddy current loss described in the present invention
  • Fig. 2 is an axonometric view of the rotor yoke of the present invention
  • the rotor with reduced eddy current loss includes:
  • a rotor yoke 110, the rotor yoke 110 includes a fixed part 111, and an inner ring part 112 and an outer ring part 113 connected to the fixed part 111 and arranged in the same direction;
  • a plurality of passages 130a, 130b and 130c are uniformly arranged on the inner ring part 112 and/or the outer ring part 113 to reduce eddy current loss.
  • the transmission path of the eddy current is blocked to increase the resistance of the eddy current, so as to reduce the eddy current loss, effectively Avoid the temperature rise caused by eddy current loss, thereby preventing the occurrence of demagnetization of the magnetic steel and affecting the service life.
  • the fixing part 111 is in the shape of a ring, and the inner and outer ring parts 112 and 113 arranged in the same direction extend from the inner and outer edges of the fixing part 111, so that the fixing part 111 .
  • An annular groove for installing the magnetic steel assembly 120 is formed between the inner ring part 112 and the outer ring part 113 .
  • the passages 130 a , 130 b and 130 c can be arranged along the axial direction, radial direction or circumferential direction of the magnetic steel assembly 120 .
  • the channel 130b on the outer ring portion 113 is arranged along the radial direction of the magnetic steel assembly 120 .
  • the channel 130b is arranged along the radial direction of the magnetic steel assembly 120 and is located on the outer ring part 113, wherein the channel 130b can pass through or partially pass through the outer ring part 113, and a plurality of the The passages 130b are arranged at equidistant intervals along the circumference of the magnetic steel assembly 120 .
  • the channel 130b on the outer ring part 113 is located on the end face of the outer ring part 113 away from the fixing part 111 , as shown in FIG. 2 .
  • the channel 130b may be located in the middle of the outer ring portion 113 .
  • the size of the inner ring portion 112 in the radial direction of the magnetic steel assembly 120 is greater than the size of the outer ring portion 113 in the radial direction of the magnetic steel assembly 120, for example, the inner ring portion 112 is in the radial direction of the magnetic steel assembly 120.
  • the radial dimension of the steel assembly 120 is three times or more than the radial dimension of the outer ring portion 113 of the magnetic steel assembly 120 . Since the inner ring part 112 is larger in the radial direction of the magnetic steel assembly 120, it can open the channel 130a axially arranged in the magnetic steel assembly 120, while the outer ring part 113 is located in the magnetic steel assembly 120.
  • the size of the assembly 120 in the radial direction is relatively small, so the outer ring portion 113 can open a channel 130b arranged along the radial direction of the magnetic steel assembly 120 .
  • the shapes of the channels on the inner ring part 112 and the outer ring part 113 can be interchanged.
  • the cross-section of the channels 130a and 130b may be regular or irregular. Taking a regular shape as an example, the cross-section of the channel 130a is circular, and the channel 130b is square, but not limited thereto.
  • the number of channels 130 a on the inner ring portion 112 is smaller than the number of channels 130 b on the outer ring portion 113 .
  • the number of channels 130b on the outer ring portion 113 is twice the number of channels 130a on the inner ring portion 112.
  • the channel 130 c is disposed along the circumference of the magnetic steel assembly 120 , and can be disposed on the inner ring part 112 , the outer ring part 113 or the fixing part 111 .
  • the channel 130c is arranged on the end surface of the inner ring part 112 away from the fixed part 111, and a plurality of the channels 130c can be along the diameter of the magnetic steel assembly 120 to the interval setting.
  • the channels 130c are arranged on the outer end surface of the outer ring part 113 , and a plurality of the channels 130c are arranged at intervals along the axial direction of the magnetic steel assembly 120 .
  • the channel 130c is arranged on the end surface of the fixing part 111 respectively connecting the inner ring part 112 and the outer ring part 113, that is, it is arranged on the fixing part 111 and the outer ring part 113.
  • the channel 130c on the fixing part 111 is arranged along the circumference of the magnetic steel assembly 120, and a plurality of the channels 130c are arranged at intervals along the radial direction of the magnetic steel assembly 120, and the channel 130c is arranged from the inside to the In addition, the spacing becomes larger in turn, of course, it can also be set at equal intervals.
  • the channel 130c is arranged along the circumference of the magnetic steel assembly 120 and may be in a closed ring shape. Certainly also can be assembled by multi-segment arc structure.
  • the dimensions of the inner ring part 112 and the outer ring part 113 in the axial direction of the magnet steel assembly 120 are smaller than the axial size of the magnet steel assembly 120 . That is, after the magnetic steel assembly 120 is fixed on the rotor yoke 110 , the magnetic steel assembly 120 is higher than the inner ring part 112 and the outer ring part 113 , as shown in FIG. 1 .
  • the assembly of the magnetic steel assembly 120 and the rotor yoke 110 is facilitated, and the eddy current loss of the rotor yoke is preliminarily reduced.
  • the size of the outer ring portion 113 in the axial direction of the magnetic steel assembly 120 is larger than the size of the inner ring portion 112 in the axial direction of the magnetic steel assembly 120 .
  • the dimensions of the inner ring part 112 and the outer ring part 113 in the axial direction of the magnet steel assembly 120 are smaller than the axial size of the magnet steel assembly 120, which is convenient for the magnet steel assembly 120 to
  • the assembly with the rotor yoke 110 can preliminarily reduce the eddy current loss of the rotor yoke.
  • a plurality of channels 130a, 130b and 130c are evenly arranged on the inner ring part 112 and/or the outer ring part 113 to block the transmission path of the eddy current, so as to increase the resistance of the eddy current and reduce the eddy current loss. Effectively avoid the temperature rise caused by eddy current loss, thereby preventing the occurrence of demagnetization of the magnetic steel and affecting the service life, and ultimately improving the working efficiency of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种降低涡流损耗的转子,包括转子轭(110),所述转子轭(110)包括固定部(111),及连接于所述固定部(111)且同向设置的内环部(112)和外环部(113);磁钢组件(120),所述磁钢组件(120)呈环形,固定于所述固定部(110)上并通过所述内环部(112)和所述外环部(113)进行径向固定;所述内环部(112)和/或所述外环部(113)上均匀设置有多个通道(130a、130b、130c),阻断涡流的传递路径,以增加涡流的电阻,达到降低涡流损耗的目的,有效避免涡流损耗引起的升温,进而防止磁钢退磁现象的出现和影响使用寿命。

Description

一种降低涡流损耗的转子 技术领域
本发明涉及电机领域,尤其涉及一种降低涡流损耗的转子。
背景技术
电机在转动的情况下,处于交变磁场的金属导体(包括转子的磁钢)表面会因电磁感应产生电动势,该电动势因电阻的存在而产生自行闭合的旋涡状电涡流,这种现象称为电涡流效应。在高速旋转的情况下涡流损耗将会变得很大,这将会引起较大的温升,若温度太高甚至可造成磁钢不可逆的退磁,故必须抑制涡流损耗。
发明内容
为了解决上述问题,本发明提供了一种防止温升,且利用在内环部、外环部和固定部上设置通道的降低涡流损耗的转子。
一种降低涡流损耗的转子,包括:
转子轭,所述转子轭包括固定部,及连接于所述固定部且同向设置的内环部和外环部;
磁钢组件,所述磁钢组件呈环形,固定于所述固定部上并通过所述内环部和所述外环部进行径向固定;
所述内环部和/或所述外环部上均匀设置有多个通道,以降低涡流损耗。
作为优选的技术方案,所述通道沿所述磁钢组件的轴向、径向或周向设置。
作为优选的技术方案,所述内环部上的所述通道沿所述磁钢组件轴向设置,且通过所述内环部和所述固定部。
作为优选的技术方案,所述外环部上的所述通道沿所述磁钢组件的径向设置。
作为优选的技术方案,所述外环部上的所述通道,其位于所述外环部远离所述固定部的端面上。
作为优选的技术方案,多个所述通道沿着所述磁钢组件周向等距间隔设置。
作为优选的技术方案,所述固定部上设置有通道。
作为优选的技术方案,所述固定部上的通道沿所述磁钢组件周向设置。
作为优选的技术方案,多个所述通道沿着所述磁钢组件的径向间隔设置。
作为优选的技术方案,所述内环部和外环部在所述磁钢组件轴线方向上的尺寸,其小于 所述磁钢组件的轴向尺寸。
与现有技术相比,本技术方案具有以下优点:
所述内环部和外环部在所述磁钢组件轴线方向上的尺寸,其均小于所述磁钢组件的轴向尺寸,便于所述磁钢组件和所述转子轭的装配,以及达到初步降低转子轭的涡流损耗。另外通过在所述内环部和/或所述外环部上均匀设置多个通道,阻断涡流的传递路径,以增加涡流的电阻,达到降低涡流损耗的目的,有效避免涡流损耗引起的升温,进而防止磁钢退磁现象的出现和影响使用寿命,最终能够提升电机的工作效率。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为本发明所述降低涡流损耗的转子的结构示意图;
图2为本发明所述转子轭的轴测图;
图3为本发明所述转子轭的主视图;
图4为本发明所述转子轭的后视图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图1至图4所示,所述降低涡流损耗的转子,包括:
转子轭110,所述转子轭110包括固定部111,及连接于所述固定部111且同向设置的内环部112和外环部113;
磁钢组件120,所述磁钢组件120呈环形,固定于所述固定部111上并通过所述内环部112和所述外环部113进行径向固定;
所述内环部112和/或所述外环部113上均匀设置有多个通道130a、130b和130c,以降低涡流损耗。
通过在所述内环部112和/或所述外环部113上均匀设置多个通道130a、130b和130c,阻断涡流的传递路径,以增加涡流的电阻,达到降低涡流损耗的目的,有效避免涡流损耗引起的升温,进而防止磁钢退磁现象的出现和影响使用寿命。
如图2至图4所示,所述固定部111呈环形,所述固定部111内外边缘延伸有同向设置的所述内环部112和所述外环部113,以使所述固定部111、所述内环部112和所述外环部113之间形成用于安装所述磁钢组件120的环形槽。其中当所述磁钢组件120安装在该环形槽内时,所述内环部112抵接在所述磁钢组件120的内边缘,所述外环部113抵接在所述磁钢组件130的外边缘,以使所述内环部112和所述外环部113对所述磁钢组件120进行径向固定。
需要说明的是,所述固定部111、所述内环部112和所述外环部113可一体成型。
如图2和图3所示,所述通道130a、130b和130c能够沿所述磁钢组件120的轴向、径向或周向设置。
在一个实施例中,所述内环部112上的所述通道130a沿所述磁钢组件120轴向设置,且通过所述内环部112和所述固定部111。具体地,所述通道130a沿所述磁钢组件120的轴向设置,且位于所述内环部112上,其中所述通道130a可贯通或部分贯通所述内环部112和所述固定部111,并且多个所述通道130a沿着所述磁钢组件120周向等距间隔设置。
在另一个实施例中,所述外环部113上的所述通道130b沿所述磁钢组件120的径向设置。具体地,所述通道130b沿所述磁钢组件120的径向设置,且位于所述外环部113上,其中所述通道130b可贯通或部分贯通所述外环部113,并且多个所述通道130b沿着所述磁钢组件120周向等距间隔设置。作为优选地,所述外环部113上的所述通道130b,其位于所述外环部113远离所述固定部111的端面上,参考图2。当然所述通道130b可位于所述外环部113的中部。
进一步说明,所述内环部112在所述磁钢组件120径向上的尺寸大于所述外环部113在所述磁钢组件120径向上的尺寸,例如所述内环部112在所述磁钢组件120径向上的尺寸,其为外环部113在所述磁钢组件120径向上的尺寸的三倍或三倍以上。由于所述内环部112在所述磁钢组件120径向上的尺寸较大,因此其可开设所述磁钢组件120轴向设置的通道130a,而所述外环部113在所述磁钢组件120径向上的尺寸较小,因此所述外环部113可开设沿所述磁钢组件120的径向设置的通道130b。当然所述内环部112和所述外环部113上的通道形状可互换。
更进一步地,所述通道130a、130b的横截面可呈规则或不规则形状,以规则形状为例,所述通道130a的横截面呈圆形,所述通道130b呈方形,但不限于此。
值得注意的是,所述内环部112上的所述通道130a的数量,其小于所述外环部113上的所述通道130b的数量。例如所述外环部113上的所述通道130b的数量,其为所述述内环 部112上的所述通道130a的数量的两倍。
如图2和图3所示,所述通道130c沿所述磁钢组件120的周向设置,其可设置在所述内环部112、所述外环部113或所述固定部111上。以所述内环部112为例,所述通道130c设置在所述内环部112远离所述固定部111的端面上,且多个所述通道130c可沿着所述磁钢组件120的径向间隔设置。以所述外环部112为例,所述通道130c设置在所述外环部113的外端面上,且多个所述通道130c沿着所述磁钢组件120的轴向间隔设置。
以所述固定部111为例,所述通道130c设置在所述固定部111分别连接所述内环部112和所述外环部113的端面上,即设置在所述固定部111与所述磁钢组件120连接的端面上。其中所述固定部111上的通道130c沿所述磁钢组件120周向设置,并且多个所述通道130c沿着所述磁钢组件120的径向间隔设置,并且所述通道130c从内至外,间距依次变大,当然也可等距间隔设置。
进一步说明,所述通道130c沿所述磁钢组件120的周向设置,可呈一封闭的环形。当然也可由多段的弧形结构组装。
如图1和图2所示,所述内环部112和外环部113在所述磁钢组件120轴线方向上的尺寸,其均小于所述磁钢组件120的轴向尺寸。即所述磁钢组件120固定在所述转子轭110上后,所述磁钢组件120高出所述内环部112和所述外环部113,参考图1。通过采用上述结构,便于所述磁钢组件120和所述转子轭110的装配,以及达到初步降低转子轭的涡流损耗。
具体地,所述外环部113在所述磁钢组件120轴线方向上的尺寸,其大于所述内环部112在所述磁钢组件120轴线方向上的尺寸。
如图1所示,所述磁钢组件120可由多个子磁钢组装,每个所述子磁钢呈扇形,并且多个子磁钢呈环形排列固定于所述转子轭110上。
综上所述,所述内环部112和外环部113在所述磁钢组件120轴线方向上的尺寸,其均小于所述磁钢组件120的轴向尺寸,便于所述磁钢组件120和所述转子轭110的装配,以及达到初步降低转子轭的涡流损耗。另外通过在所述内环部112和/或所述外环部113上均匀设置多个通道130a、130b和130c,阻断涡流的传递路径,以增加涡流的电阻,达到降低涡流损耗的目的,有效避免涡流损耗引起的升温,进而防止磁钢退磁现象的出现和影响使用寿命,最终能够提升电机的工作效率。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (10)

  1. 一种降低涡流损耗的转子,其特征在于,包括:
    转子轭(110),所述转子轭(110)包括固定部(111),及连接于所述固定部(111)且同向设置的内环部(112)和外环部(113);
    磁钢组件(120),所述磁钢组件(120)呈环形,固定于所述固定部(111)上并通过所述内环部(112)和所述外环部(113)进行径向固定;
    所述内环部(112)和/或所述外环部(113)上均匀设置有多个通道(130a、130b和130c),以降低涡流损耗。
  2. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述通道(130a、130b和130c)沿所述磁钢组件(120)的轴向、径向或周向设置。
  3. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述内环部(112)上的所述通道(130a)沿所述磁钢组件(120)轴向设置,且通过所述内环部(112)和所述固定部(111)。
  4. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述外环部(113)上的所述通道(130b)沿所述磁钢组件(120)的径向设置。
  5. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述外环部(113)上的所述通道(130b),其位于所述外环部(113)远离所述固定部(111)的端面上。
  6. 如权利要求3、4或5任一项所述的降低涡流损耗的转子,其特征在于,多个所述通道(130a和130b)沿着所述磁钢组件(120)周向等距间隔设置。
  7. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述固定部(111)上设置有通道(130c)。
  8. 如权利要求7所述的降低涡流损耗的转子,其特征在于,所述固定部(111)上的通道(130c)沿所述磁钢组件(120)周向设置。
  9. 如权利要求8所述的降低涡流损耗的转子,其特征在于,多个所述通道(130c)沿着所述磁钢组件(120)的径向间隔设置。
  10. 如权利要求1所述的降低涡流损耗的转子,其特征在于,所述内环部(112)和外环部(113)在所述磁钢组件(120)轴线方向上的尺寸,其小于所述磁钢组件(120)的轴向尺寸。
PCT/CN2021/119105 2021-06-21 2021-09-17 一种降低涡流损耗的转子 WO2022267244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21946728.9A EP4362284A1 (en) 2021-06-21 2021-09-17 Rotor for reducing eddy current loss

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110685615.2 2021-06-21
CN202110685615.2A CN113364179B (zh) 2021-06-21 2021-06-21 一种降低涡流损耗的转子

Publications (1)

Publication Number Publication Date
WO2022267244A1 true WO2022267244A1 (zh) 2022-12-29

Family

ID=77535331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119105 WO2022267244A1 (zh) 2021-06-21 2021-09-17 一种降低涡流损耗的转子

Country Status (3)

Country Link
EP (1) EP4362284A1 (zh)
CN (1) CN113364179B (zh)
WO (1) WO2022267244A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364179B (zh) * 2021-06-21 2023-03-14 上海盘毂动力科技股份有限公司 一种降低涡流损耗的转子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328706A (ja) * 1992-05-14 1993-12-10 Sawafuji Electric Co Ltd リターダの渦流板及び冷却構造
CN106233578A (zh) * 2013-12-11 2016-12-14 株式会社达耐时 轴向间隙电机
CN110391703A (zh) * 2019-08-15 2019-10-29 苏州保邦电气有限公司 一种低损耗的轴向磁通永磁电机转子轭
CN210839106U (zh) * 2019-10-18 2020-06-23 上海盘毂动力科技股份有限公司 一种电机及电机转子的背铁结构
CN112994403A (zh) * 2021-04-26 2021-06-18 合肥工业大学 一种低涡流损耗的齿槽型圆筒直线电机的初级结构
CN113037040A (zh) * 2021-05-11 2021-06-25 沈阳工业大学 一种低转子损耗双定子轴向磁通永磁电机
CN113364179A (zh) * 2021-06-21 2021-09-07 上海盘毂动力科技股份有限公司 一种降低涡流损耗的转子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816358B2 (ja) * 2006-09-19 2011-11-16 ダイキン工業株式会社 モータおよび圧縮機
SG144786A1 (en) * 2007-05-25 2008-08-28 Agency Science Tech & Res Low profile spindle motor
CN101311021A (zh) * 2008-05-13 2008-11-26 赵幼仪 连飞整体电动毂轮
US8680736B2 (en) * 2008-11-10 2014-03-25 Hitachi Industrial Equipment Systems Co., Ltd. Armature core, motor using same, and axial gap electrical rotating machine using same
JP5088584B2 (ja) * 2009-01-23 2012-12-05 アイシン・エィ・ダブリュ株式会社 回転電機
JP5835984B2 (ja) * 2011-07-25 2015-12-24 日本電産サンキョー株式会社 ポンプ装置
JP5867626B2 (ja) * 2012-12-28 2016-02-24 株式会社Ihi ダブルステータ型スイッチトリラクタンス回転機
EP2926879B1 (de) * 2014-04-03 2017-09-27 BOKELA Ingenieurgesellschaft für Mechanische Verfahrenstechnik mbH Filtervorrichtung und Filtrationsverfahren
CN204391931U (zh) * 2015-02-03 2015-06-10 吕周安 一种新型电机转子盘
CN105515242A (zh) * 2016-01-13 2016-04-20 西安交通大学 一种内置式盘式电动机转子
JP2019019911A (ja) * 2017-07-19 2019-02-07 日本精工株式会社 クラッチ装置
CN107846096B (zh) * 2017-10-20 2021-07-30 珠海格力节能环保制冷技术研究中心有限公司 盘式电机转子和盘式电机
JP2019170091A (ja) * 2018-03-23 2019-10-03 アイシン・エィ・ダブリュ株式会社 回転電機
CN110571998A (zh) * 2018-06-06 2019-12-13 舍弗勒技术股份两合公司 用于永磁电机的定子及永磁电机
CN208820554U (zh) * 2018-10-31 2019-05-03 山东精创功能复合材料有限公司 转子导磁板及smc无轭型轴向磁场电机
CN109474148A (zh) * 2018-11-19 2019-03-15 眭华兴 一种电动滑板车轮毂电机
CN109713819B (zh) * 2019-01-07 2020-03-20 南京航空航天大学 一种高强度Halbach永磁阵列转子结构
CN109818466A (zh) * 2019-03-19 2019-05-28 上海电气风电集团有限公司 电机转子的制造方法、电机转子及电机
CN111969819A (zh) * 2020-08-12 2020-11-20 南京航空航天大学 三相聚磁式h型定子横向磁通永磁电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328706A (ja) * 1992-05-14 1993-12-10 Sawafuji Electric Co Ltd リターダの渦流板及び冷却構造
CN106233578A (zh) * 2013-12-11 2016-12-14 株式会社达耐时 轴向间隙电机
CN110391703A (zh) * 2019-08-15 2019-10-29 苏州保邦电气有限公司 一种低损耗的轴向磁通永磁电机转子轭
CN210839106U (zh) * 2019-10-18 2020-06-23 上海盘毂动力科技股份有限公司 一种电机及电机转子的背铁结构
CN112994403A (zh) * 2021-04-26 2021-06-18 合肥工业大学 一种低涡流损耗的齿槽型圆筒直线电机的初级结构
CN113037040A (zh) * 2021-05-11 2021-06-25 沈阳工业大学 一种低转子损耗双定子轴向磁通永磁电机
CN113364179A (zh) * 2021-06-21 2021-09-07 上海盘毂动力科技股份有限公司 一种降低涡流损耗的转子

Also Published As

Publication number Publication date
CN113364179B (zh) 2023-03-14
CN113364179A (zh) 2021-09-07
EP4362284A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US9343933B2 (en) Rotating electric machine
JP5310872B2 (ja) ロータ
JP7339969B2 (ja) ロータ組立体、及び二次磁極モータ
WO2009084251A1 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
WO2022267244A1 (zh) 一种降低涡流损耗的转子
JP4984241B2 (ja) 永久磁石式回転機
CN104953737B (zh) 一种永磁无刷电机
JP2018153047A (ja) 回転電機のロータ
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
US10153673B2 (en) Production method for rotating electrical machine
WO2017077789A1 (ja) 回転電機
US20140132121A1 (en) Transverse flux motor
WO2022121253A1 (zh) 一种端部绕组磁通电机
WO2021022922A1 (zh) 转子组件和交替极电机
WO2020088086A1 (zh) 转子及永磁电机
WO2020088085A1 (zh) 电机转子及永磁电机
CN111064297A (zh) 转子结构以及具有其的磁悬浮电机
JP7050808B2 (ja) 永久磁石式回転電機
WO2014155914A1 (ja) 回転電機
CN107742931A (zh) 电机定子铁芯
KR20140082894A (ko) 아웃터 로터 타입의 모터
TW201308835A (zh) 具有軸向氣隙之馬達
CN202026174U (zh) 一种盘式永磁同步电动机的转子永磁体安装结构
TWI648939B (zh) 軸流間隙型旋轉電機
KR20150034875A (ko) 매입형 영구자석 전동기의 회전자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18569129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021946728

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021946728

Country of ref document: EP

Effective date: 20240122