WO2020088086A1 - 转子及永磁电机 - Google Patents

转子及永磁电机 Download PDF

Info

Publication number
WO2020088086A1
WO2020088086A1 PCT/CN2019/103973 CN2019103973W WO2020088086A1 WO 2020088086 A1 WO2020088086 A1 WO 2020088086A1 CN 2019103973 W CN2019103973 W CN 2019103973W WO 2020088086 A1 WO2020088086 A1 WO 2020088086A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
permanent
rotor core
along
Prior art date
Application number
PCT/CN2019/103973
Other languages
English (en)
French (fr)
Inventor
王敏
肖勇
史进飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2021514966A priority Critical patent/JP7230185B2/ja
Publication of WO2020088086A1 publication Critical patent/WO2020088086A1/zh
Priority to US17/206,127 priority patent/US11984764B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of driving devices, in particular to a rotor and a permanent magnet motor.
  • the permanent magnet motor mainly includes a stator and a rotor.
  • the rotor includes a rotor core and permanent magnets.
  • the permanent magnets are installed in the magnetic steel slots of the rotor core.
  • the three-phase stator current When a three-phase symmetrical current flows into the stator side, the three-phase stator current generates a rotating magnetic field in the space because the three-phase stator differs by 120 ° in space, and the rotor is moved by the electromagnetic force in the rotating magnetic field. It is kinetic energy; when the permanent magnet generates a rotating magnetic field, the three-phase stator winding reacts through the armature under the action of the rotating magnetic field and induces a three-phase symmetrical current. At this time, the rotor kinetic energy is converted into electrical energy.
  • the magnetic field provided by the permanent magnet is fixed in the traditional permanent magnet motor, the magnetic field inside the permanent magnet motor is difficult to adjust, so it is difficult for the permanent magnet motor to take into account the efficiency at high frequency and low frequency, and the fixed power supply voltage limits the permanent magnet The maximum operating frequency of the motor.
  • a rotor including:
  • At least two first permanent magnets and at least two second permanent magnets the first permanent magnets and the second permanent magnets have different coercive forces, and the at least two first permanent magnets and the at least two The second permanent magnets are arranged on the axial end surface of the rotor core at intervals along the circumferential direction of the rotor core, and each of the first permanent magnet and each The second permanent magnets are arranged in series and form permanent magnetic poles;
  • a portion of the rotor core located between every two adjacent permanent magnetic poles in the circumferential direction forms alternating poles, and the permanent magnetic poles form a magnetic circuit passing through the stator and the alternating poles.
  • the coercive force of the first permanent magnet is smaller than the coercive force of the second permanent magnet, and the first permanent magnet is smaller than the second permanent magnet in the radial direction of the rotor core
  • the magnet is located on the side facing away from the center of the rotor core.
  • the at least two first permanent magnets and the at least two second permanent magnets are arranged on the axial end surface of the rotor core at regular intervals along the circumferential direction of the rotor core .
  • the magnetic pole direction of the permanent magnetic pole is arranged along the radial direction of the rotor core.
  • the first permanent magnet and the second permanent magnet are layered along the radial direction of the rotor core.
  • both ends of the first permanent magnet and the second permanent magnet are flush along the circumferential direction of the rotor core.
  • the cross-sectional shape of the permanent magnetic pole is rectangular or V-shaped with an opening facing away from the center of the rotor core.
  • each of the permanent magnetic poles forms a first central angle at a line between the circumferential ends of the rotor core and the center of the rotor core, the first central angle Greater than ⁇ / p and less than 1.5 * ⁇ / p, where p is 1/2 of the sum of the number of the permanent magnetic pole and the alternating pole.
  • a magnetic isolation groove is formed on the axial end surface of the rotor core, and the magnetic isolation groove extends at both ends of the permanent magnetic pole along the circumferential direction of the rotor core.
  • a permanent magnet motor includes a stator and a rotor according to any one of the above, the rotor is rotatably sleeved in the stator.
  • the permanent magnet poles are formed by first permanent magnets and second permanent magnets connected in series along the radial direction of the rotor core and having different coercive forces.
  • the permanent magnets with low coercive force are changed by the magnetizing current
  • the magnetic field strength of the magnet realizes the adjustment of the magnetic field of the permanent magnet motor, so that the permanent magnet motor realizes the efficiency when taking into account high frequency and low frequency; and the permanent magnet pole is combined with the alternating pole.
  • FIG. 1 is a structural diagram of a rotor provided by an embodiment of this application.
  • FIG. 2 is a magnetic field distribution diagram of the rotor provided in FIG. 1;
  • FIG. 3 is a structural diagram of a rotor provided by another embodiment of the present application.
  • an embodiment of the present application provides a permanent magnet motor, including a stator and a rotor 100, the rotor 100 is coaxially sleeved in the stator, and there is an air gap between the rotor 100 and the stator so that the rotor 100 is opposed The stator rotates.
  • the stator includes a stator iron core and an armature winding.
  • the stator iron core is stamped from soft magnetic silicon steel sheet.
  • a plurality of teeth are circumferentially spaced in the stator iron core, and an armature is wound around each tooth The winding and the armature winding are energized to generate a rotating magnetic field and act on the rotor 100 to cause the rotor 100 to rotate.
  • the rotor 100 includes a rotor core 10 and permanent magnets.
  • the rotor core 10 is stamped from a soft magnetic silicon steel sheet, and the permanent magnets are arranged on the axial end surface of the rotor core 10 in the axial direction.
  • the axial end surface of the rotor core 10 is provided with a magnetic steel slot 11, and the permanent magnet is installed in the magnetic steel slot 11.
  • the magnetic steel slots 11 are opened on the axial end surface of the rotor core 10 along the circumferential direction of the rotor core 10.
  • the permanent magnets include a first permanent magnet 20 and a second permanent magnet 30, the coercive force of the first permanent magnet 20 and the second permanent magnet 30 are different, and the first permanent magnet 20 and the second permanent magnet 30
  • the same number and at least two pieces, one first permanent magnet 20 and one first permanent magnet 20 are installed together in one magnetic steel slot 11, and are located in the same magnetic steel slot 11 along the radial direction of the rotor core 10
  • the first permanent magnet 20 and the second permanent magnet are arranged in series and together form a permanent magnetic pole 40.
  • the circumferential portion of the rotor core 10 between each adjacent two permanent magnetic poles 40 forms an alternating pole 50 (the alternating pole 50 is formed in the rotor core 10 where no permanent magnets are provided),
  • the permanent magnetic pole 40 forms a magnetic circuit passing through the stator and the alternating pole 50.
  • the permanent magnet pole 40 is formed by the first permanent magnet 20 and the second permanent magnet 30 connected in series along the radial direction of the rotor core 10, and the first permanent magnet 20 and the second permanent magnet 30 Coercive force is different, when the permanent magnet motor is in a low speed and large torque state, the permanent magnet with low coercive force is magnetized and saturated by the magnetizing current, so that the magnetic field strength inside the permanent magnet motor is enhanced to meet the needs.
  • the magnetization current reduces the magnetization of the permanent magnet with low coercive force, so that the magnetic field inside the permanent magnet motor is reduced to meet the requirements.
  • the magnetic field strength of the permanent magnet motor is adjustable , So that the permanent magnet motor achieves the efficiency at both high frequency and low frequency; and the first permanent magnet 20 and the second permanent magnet 30 are arranged in series along the radial direction of the rotor core 10, which improves the permanent magnet with low coercive force. Anti-demagnetization ability; at the same time, the permanent magnet pole 40 and the alternating pole 50 are combined. When the magnetizing current modifies the permanent magnet motor, the loop formed by it passes through the permanent magnet pole 40 and the alternating pole 50.
  • the magnetic steel slots 11 are evenly spaced along the circumferential direction of the rotor core 10, and accordingly, at least two first permanent magnets 20 are evenly spaced along the circumferential direction of the rotor core 10, and at least two The second permanent magnets 30 are also arranged at even intervals.
  • the number of the first permanent magnet 20 and the second permanent magnet 30 is also at least three.
  • the center of the pattern formed by the connection of at least three magnetic steel slots 11 coincides with the center of the rotor core 10.
  • the center of the pattern formed by the connecting lines of the first permanent magnets 20 installed in the at least three magnetic steel slots 11 coincides with the center of the rotor core 10
  • the second permanent magnets installed in the at least three magnetic steel slots 11 The center of the pattern formed by the connection lines of the magnets 30 also coincides with the center of the rotor core 10.
  • the first permanent magnet 20 and the second permanent magnet 30 disposed in each magnetic steel groove 11 are stacked along the radial direction of the rotor core 10 to ensure that the first permanent magnet 20 and the second permanent magnet 30 are stacked.
  • both ends of the first permanent magnet 20 and the second permanent magnet 30 disposed in each magnetic steel groove 11 along the circumferential direction of the rotor core 10 are flush, that is, along the rotor iron
  • the circumferential first permanent magnet 20 and the second permanent magnet 30 of the core 10 have the same size.
  • each first permanent magnet 20 and each second permanent magnet 30 are rectangular along the circumferential direction of the rotor core 10, and in this case, the first permanent magnet 20 and the second permanent magnet 30
  • the permanent magnet poles 40 formed in series are rectangular.
  • the pattern formed by the connection of at least three permanent magnetic poles 40 is a regular polygon, and the magnetic pole direction of each permanent magnetic pole 40 is along the radial direction of the rotor core 10.
  • a line between each two ends of each permanent magnetic pole 40 along the circumferential direction of the rotor core 10 and the center of the rotor core 10 forms a first center angle ⁇ 1, and the first center angle ⁇ 1 Greater than ⁇ / p and less than 1.5 * ⁇ / p, where p is 1/2 of the sum of the permanent magnetic pole 40 and the alternating pole 50.
  • the magnetic field of the alternating pole 50 is provided by the magnetic field of the permanent pole 40, such a setting can ensure that the first central angle ⁇ 1 of the permanent pole 40 is greater than the second central angle ⁇ 2 of the alternating pole 50 (each alternating pole 50 is along the circumference of the rotor core 10 The center angle formed by the connection between the two ends of the rotor and the center of the rotor core 10), so that the magnetic density inside the permanent magnet motor can be ensured, and the second center angle ⁇ 2 of the alternating pole 50 is also not excessive small.
  • the coercive force of the first permanent magnet 20 is smaller than the coercive force of the second permanent magnet 30, and the first permanent magnet 20 is located away from the rotor core in the radial direction of the rotor core 10 than the second permanent magnet 30
  • the side of the center of 10, that is, the first permanent magnet 20 having a smaller coercive force is located outside the second permanent magnet 30 having a larger coercive force (the side close to the stator).
  • the magnetic field is generated by the stator, when the first permanent magnet 20 is placed outside the second permanent magnet 30, the magnetic field will directly act on the first permanent magnet 20, compared to the second permanent magnet with a larger coercive force
  • the magnet 30 is arranged outside the first permanent magnet 20 with a small coercive force (in this case, the magnetic field is first applied to the second permanent magnet 30 and then to the first permanent magnet 20, and the magnetic field is applied to the second permanent magnet There will be losses when the magnet 30), reducing the difficulty of magnetic adjustment.
  • the width of the first permanent magnet 20 is greater than that of the second permanent magnet
  • the width of 30, and the size selection of the first permanent magnet 20 and the second permanent magnet 30 satisfy the following relationship:
  • d1 is the width of the second permanent magnet 30 with high coercive force
  • d2 is the width of the first permanent magnet 20 with low coercive force
  • H1 is the coercive force of the second permanent magnet 30 with high coercive force Force
  • H2 is the coercive force of the first permanent magnet 20 having a low coercive force.
  • each first permanent magnet 20 and each second permanent magnet 30 along the circumferential direction of the rotor core 10 may not be rectangular, such as setting each first permanent magnet
  • the cross-sectional shapes of the magnet 20 and each second permanent magnet 30 are V-shaped openings facing away from the center of the rotor core 10. That is, each first permanent magnet 20 includes two parts arranged at an angle, and each second permanent magnet 30 includes two parts arranged at an angle.
  • the permanent magnetic pole formed by the first permanent magnet 20 and the second permanent magnet 30 40 is V-shaped, thus ensuring that the magnetic density of the permanent magnet motor is improved and the torque density of the permanent magnet motor is improved without changing the first center angle ⁇ 1 of the permanent magnet pole 40 relative to the above embodiment.
  • the axial end surface of the rotor core 10 is provided with a magnetic isolation groove 12, and the magnetic isolation groove 12 extends along the circumferential direction of the rotor core 10 at both ends of the permanent magnetic pole 40.
  • the arrangement of the magnetic isolation slot 12 prevents the magnetic flux of the permanent magnetic pole 40 from closing at its own end, and reduces the magnetic leakage of the permanent magnet motor.
  • An embodiment of the present application further provides a rotor 100 included in the permanent magnet motor.
  • the rotor 100 and the permanent magnet motor provided by the embodiments of the present application have the following beneficial effects:
  • the permanent magnet pole 40 is formed by the first permanent magnet 20 and the second permanent magnet 30 connected in series with each other in the radial direction of the rotor core 10 and having different coercive forces.
  • the current magnetizes and saturates the permanent magnet with low coercive force, so that the strength of the magnetic field inside the permanent magnet motor is increased to meet the needs.
  • the degree of magnetization of the magnet reduces the internal magnetic field of the permanent magnet motor to meet the requirements. In this way, the magnetic field strength of the permanent magnet motor is adjustable, so that the permanent magnet motor realizes the efficiency when taking into account high frequency and low frequency;
  • the permanent magnetic poles 40 and the alternating poles 50 are alternately arranged along the circumferential direction of the rotor core 10. Since there are no permanent magnets at the alternating poles 50, the difficulty of magnetizing permanent magnets with low coercivity is reduced, and due to the existence of the alternating poles 50 , Greatly reducing the amount of permanent magnets;
  • the first permanent magnet 20 having a coercive force in the radial direction of the rotor core 10 is located outside the second permanent magnet 30 having a high coercive force, when the magnetic adjustment is required, the magnetic field generated by the stator directly acts The first permanent magnet 20 reduces the difficulty of magnetic adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请涉及一种转子及永磁电机,包括:转子铁芯;至少两块第一永磁体及至少两块第二永磁体,第一永磁体与第二永磁体的矫顽力不同,且至少两块第一永磁体及至少两块第二永磁体均沿转子铁芯的周向间隔设置于转子铁芯的轴向端面上,沿转子铁芯的径向上每个第一永磁体与每个第二永磁体串联布置并形成永磁极;其中,每相邻两个永磁极之间形成交替极,永磁极形成穿过定子及交替极的磁路。通过磁化电流改变具有低矫顽力的第一永磁体的磁场强度,实现了永磁电机磁场可调,从而永磁电机实现了兼顾高频与低频时的效率;由于在交替极处未存在永磁体,降低了具有低矫顽力的永磁体的磁化难度,且由于交替极的存在,大幅减小了永磁体的用量。

Description

转子及永磁电机
相关申请
本申请要求2018年11月1日申请的,申请号为201811295293.5,名称为“转子及永磁电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及驱动装置技术领域,特别是涉及一种转子及永磁电机。
背景技术
永磁电机主要包括定子及转子,转子包括转子铁芯及永磁体,永磁体安装于转子铁芯的磁钢槽内。当定子侧通入三相对称电流时,由于三相定子在空间位置上相差120°,所以三相定子电流在空间中产生旋转磁场,转子在旋转磁场中受到电磁力作用运动,此时电能转化为动能;当永磁体产生旋转磁场时,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流,此时转子动能转化为电能。
传统永磁电机由于永磁体提供的磁场固定,因此永磁电机内部的磁场难以调节,从而永磁电机难以兼顾高频与低频时的效率,且在供电电源电压固定的情况下,限制了永磁电机的最高运行频率。
发明内容
基于此,有必要针对传统永磁电机难以兼顾高频与低频时的效率的问题,提供一种可兼顾高频与低频时的效率的转子及永磁电机。
一种转子,包括:
转子铁芯;
至少两块第一永磁体及至少两块第二永磁体,所述第一永磁体与所述第二永磁体的矫顽力不同,且所述至少两块第一永磁体及所述至少两块第二永磁体均沿所述转子铁芯的周向间隔设置于所述转子铁芯的轴向端面上,沿所述转子铁芯的径向上每个所述第一永磁体与每个所述第二永磁体串联布置并形成永磁极;
其中,所述转子铁芯沿周向位于每相邻两个所述永磁极之间的部分形成交替极,所述永磁极形成穿过定子及所述交替极的磁路。
在其中一个实施例中,所述第一永磁体的矫顽力小于所述第二永磁体的矫顽力,沿所述转子铁芯的径向上所述第一永磁体较所述第二永磁体位于背离所述转子铁芯的中心的一侧。
在其中一个实施例中,所述至少两块第一永磁体及所述至少两块第二永磁体均沿所述转子铁芯的周向均匀间隔设置于所述转子铁芯的轴向端面上。
在其中一个实施例中,所述永磁极的磁极方向沿所述转子铁芯的径向设置。
在其中一个实施例中,沿所述转子铁芯的径向上所述第一永磁体与所述第二永磁体层叠设置。
在其中一个实施例中,沿所述转子铁芯的周向上所述第一永磁体与所述第二永磁体的两端部平齐。
在其中一个实施例中,所述永磁极的截面形状为长方形或者开口背离所述转子铁芯的中心的V字形。
在其中一个实施例中,每个所述永磁极沿所述转子铁芯的周向的两端与所述转子铁芯的中心之间的连线形成第一圆心角,所述第一圆心角大于π/p且小于1.5*π/p,其中p为所述永磁极与所述交替极数量总和的1/2。
在其中一个实施例中,所述转子铁芯的轴向端面上开设有隔磁槽,所述隔磁槽沿所述转子铁芯的周向延伸于所述永磁极的两端。
一种永磁电机,包括定子及如上述任一项所述的转子,所述转子可转动地套设于所述定子内。
本申请提供的转子及永磁电机,永磁极由沿转子铁芯的径向相互串联且矫顽力不同的第一永磁体与第二永磁体形成,通过磁化电流改变具有低矫顽力的永磁体的磁场强度,实现了永磁电机磁场可调,从而永磁电机实现了兼顾高频与低频时的效率;且永磁极与交替极相结合,当磁化电流对永磁电机进行调磁时,其形成的回路经过永磁极与交替极,交替极处未存在永磁体,则减少了对于上述回路的阻扰,因此降低了具有低矫顽力的永磁体的磁化难度;同时由于交替极的存在,永磁极交替存在,因此大幅减小了永磁体的用量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例提供的转子的结构图;
图2为图1中所提供的转子的磁场分布图;
图3为本申请另一实施例提供的转子的结构图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参阅图1及图2,本申请一实施例提供一种永磁电机,包括定子与转子100,转子100同轴套设于定子内,且转子100与定子之间具有气隙以便于转子100相对于定子转动。
在一实施例中,定子包括定子铁芯及电枢绕组,定子铁芯由软磁硅钢片冲压而成,定子铁芯内沿周向间隔设置有多个齿,每个齿外缠绕有电枢绕组,电枢绕组通电产生旋转的磁场,并作用于转子100促使转子100转动。
在一实施例中,转子100包括转子铁芯10及永磁体,转子铁芯10由软磁硅钢片冲压而成,永磁体沿轴向设置于转子铁芯10的轴向端面上。具体地,转子铁芯10的轴向端面开设有磁钢槽11,永磁体装设于磁钢槽11内。
在一实施例中,磁钢槽11沿转子铁芯10的周向间隔开设于转子铁芯10的轴向端面上。
在一实施例中,永磁体包括第一永磁体20及第二永磁体30,第一永磁体20与第二永磁体30的矫顽力不同,且第一永磁体20与第二永磁体30数量相同且均为至少两块,一块第一永磁体20与一块第一永磁体20共同装设于一个磁钢槽11内,且沿转子铁芯10的径向位于同一个磁钢槽11内的第一永磁体20与第二永磁串联布置并共同形成一个永磁极40。
在一实施例中,转子铁芯10的周向位于每相邻两个永磁极40之间的部分形成一个交替极50(交替极50形成于转子铁芯10未设置有永磁体的部分),永磁极40形成穿过定子及交替极50的磁路。
本实施例提供的永磁电机,由于永磁极40由沿转子铁芯10的径向相互串联的第一永磁体20与第二永磁体30形成,且第一永磁体20与第二永磁体30的矫顽力不同,则当永磁电机处于低速大转矩状态时,通过磁化电流将具有低矫顽力的永磁体充磁饱和,使永磁电机内部的磁场强度增强以满足需要,当永磁电机运行于高速小转矩时,通过磁化电流降低具有低矫顽力的永磁体的磁化程度,使永磁电机内部的磁场减小以满足要求,如此实现了永磁电机的磁场强度可调,从而永磁电机实现了兼顾高频与低频时的效率;且沿转子铁芯10的径向第一永磁体20与第二永磁体30串联设置,提高了具有低矫顽力的永磁体的抗退磁能力;同时永磁极40与交替极50相结合,当磁化电流对永磁电机进行调磁时,其形成的回路经过永磁极40与交替极50,交替极50处未存在永磁体,则减少了对于上述回路的阻扰,因此降低了具有低矫顽力的永磁体的磁化难度,且由于交替极50的存在,永磁极40交替存在,因此大幅减小了永磁体的用量。
进一步,在一实施例中,沿转子铁芯10的周向上磁钢槽11均匀间隔设置,相应地,沿转子铁芯10的周向上至少两个第一永磁体20均匀间隔设置,至少两个第二永磁体30也均匀间隔设置。
具体地,在一实施例中,磁钢槽11为至少3个,相应地,第一永磁体20与第二永磁体30的数量也为至少3个。
在一个实施例中,至少3个磁钢槽11连线所形成的图形的中心与转子铁芯10的中心重合。此时装设于至少3个磁钢槽11内的第一永磁体20连线所形成的图形的中心与转子铁芯10的中心重合,装设于至少3个磁钢槽11内的第二永磁体30连线所形成的图形的中心也与转子铁芯10的中心重合。
具体地,在一实施例中,沿转子铁芯10的径向上设置位于每个磁钢槽11内的第一永磁体20与第二永磁体30层叠设置,以保证第一永磁体20与第二永磁体30的串联效果。
进一步,在一实施例中,沿转子铁芯10的周向设置位于每个磁钢槽11内的第一永磁体20与第二永磁体30的两端部平齐,也即为沿转子铁芯10的周向第一永磁体20与第二永磁体30的尺寸相同。
在一个实施例中,沿转子铁芯10的周向上设置每个第一永磁体20与每个第二永磁体30的截面形状均为长方形,此时第一永磁体20与第二永磁体30串联形成的永磁极40为长方形。此时至少3个永磁极40连线所形成的图形为正多边形,且每个永磁极40的磁极 方向均沿转子铁芯10的径向。
具体地,在一实施例中,每个永磁极40沿转子铁芯10的周向的两端与转子铁芯10的中心之间的连线形成第一圆心角θ1,该第一圆心角θ1大于π/p且小于1.5*π/p,其中p为永磁极40与交替极50总和的1/2。由于交替极50的磁场由永磁极40的磁场提供,如此设置可以保证永磁极40的第一圆心角θ1大于交替极50的第二圆心角θ2(每个交替极50沿转子铁芯10的周向的两端与转子铁芯10的中心之间的连线形成的圆心角),因此可以保证永磁电机内部的磁密,同时也保证了交替极50的第二圆心角θ2也不至于过小。
在一个实施例中,第一永磁体20的矫顽力小于第二永磁体30的矫顽力,沿转子铁芯10的径向上第一永磁体20较第二永磁体30位于背离转子铁芯10的中心的一侧,即具有较小矫顽力的第一永磁体20位于具有较大矫顽力的第二永磁体30的外侧(靠近定子的一侧)。由于调磁磁场由定子产生,当第一永磁体20置于第二永磁体30外侧时,调磁磁场将直接作用于第一永磁体20,相较于具有较大矫顽力的第二永磁体30设置于具有较小矫顽力的第一永磁体20外侧的情况(此时调磁磁场首先作用于第二永磁体30后再作用于第一永磁体20,磁场在作用于第二永磁体30时会有损失),降低了调磁难度。
进一步,设置为了保证具有低矫顽力的第一永磁体20的磁化电流较小,又能够使永磁电机在正常运行时不会产生退磁,设置第一永磁体20的宽度大于第二永磁体30的宽度,且第一永磁体20与第二永磁体30的尺寸选择满足以下关系:
50kA/m<(H1*d1+H2*d2)/(d1+d2)<400kA/m;
其中,d1为具有高矫顽力的第二永磁体30的宽度,d2为具有低矫顽力的第一永磁体20的宽度,H1为具有高矫顽力的第二永磁体30的矫顽力,H2为具有低矫顽力的第一永磁体20的矫顽力。
参阅图3,在另一个实施例中,沿转子铁芯10的周向上每个第一永磁体20与每个第二永磁体30的截面形状也可以不为长方形,如设置每个第一永磁体20与每个第二永磁体30的截面形状均为开口背离转子铁芯10的中心的V字形。也即为每个第一永磁体20包括呈角度设置的两部分,每个第二永磁体30包括呈角度设置的两部分,此时第一永磁体20与第二永磁体30形成的永磁极40为V字形,如此保证了在相对于上述实施例不改变永磁极40的第一圆心角θ1的情况下,提高了永磁电机的磁密,提高了永磁电机的转矩密度。
在一个实施例中,转子铁芯10的轴向端面上开设有隔磁槽12,隔磁槽12沿转子铁芯10的周向延伸于永磁极40的两端。隔磁槽12的设置防止了永磁极40的磁通在自身的端部闭合,减少了永磁电机的漏磁。
本申请一实施例还提供一种上述永磁电机所包括的转子100。
本申请实施例提供的转子100及永磁电机,具有以下有益效果:
1、永磁极40由沿转子铁芯10的径向相互串联且矫顽力不同的第一永磁体20与第二永磁体30形成,则当永磁电机处于低速大转矩状态时,通过磁化电流将具有低矫顽力的永磁体充磁饱和,使永磁电机内部的磁场强度增强以满足需要,当永磁电机运行于高速小转矩时,通过磁化电流降低具有低矫顽力的永磁体的磁化程度,使永磁电机内部的磁场减小以满足要求,如此实现了永磁电机的磁场强度可调,从而永磁电机实现了兼顾高频与低频时的效率;
2、沿转子铁芯10的周向永磁极40与交替极50交替设置,由于在交替极50处未存在永磁体,降低了具有低矫顽力的永磁体的磁化难度,且由于交替极50的存在,大幅减小了永磁体的用量;
3、沿转子铁芯10的径向上具有矫顽力的第一永磁体20位于具有高矫顽力的第二永磁体30的外侧,则当需要调磁时,定子产生的调磁磁场直接作用于第一永磁体20,降低了调磁难度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种转子(100),其特征在于,包括:
    转子铁芯(10);
    至少两块第一永磁体(20)及至少两块第二永磁体(30),所述第一永磁体(20)与所述第二永磁体(30)的矫顽力不同,且所述至少两块第一永磁体(20)及所述至少两块第二永磁体(30)均沿所述转子铁芯(10)的周向间隔设置于所述转子铁芯(10)的轴向端面上,沿所述转子铁芯(10)的径向上每个所述第一永磁体(20)与每个所述第二永磁体(30)串联布置并形成永磁极(40);
    其中,所述转子铁芯(10)沿周向位于每相邻两个所述永磁极(40)之间的部分形成交替极(50),所述永磁极(40)形成穿过定子及所述交替极(50)的磁路。
  2. 根据权利要求1所述的转子(100),其特征在于,所述第一永磁体(20)的矫顽力小于所述第二永磁体(30)的矫顽力,沿所述转子铁芯(10)的径向上所述第一永磁体(20)较所述第二永磁体(30)位于背离所述转子铁芯(10)的中心的一侧。
  3. 根据权利要求1所述的转子(100),其特征在于,所述至少两块第一永磁体(20)及所述至少两块第二永磁体(30)均沿所述转子铁芯(10)的周向均匀间隔设置于所述转子铁芯(10)的轴向端面上。
  4. 根据权利要求3所述的转子(100),其特征在于,所述永磁极(40)的磁极方向沿所述转子铁芯(10)的径向设置。
  5. 根据权利要求3所述的转子(100),其特征在于,沿所述转子铁芯(10)的径向上所述第一永磁体(20)与所述第二永磁体(30)层叠设置。
  6. 根据权利要求3所述的转子(100),其特征在于,沿所述转子铁芯(10)的周向上所述第一永磁体(20)与所述第二永磁体(30)的两端部平齐。
  7. 根据权利要求1所述的转子(100),其特征在于,所述永磁极(40)的截面形状为长方形或者开口背离所述转子铁芯(10)的中心的V字形。
  8. 根据权利要求1所述的转子(100),其特征在于,每个所述永磁极(40)沿所述转子铁芯(10)的周向的两端与所述转子铁芯(10)的中心之间的连线形成第一圆心角(θ1),所述第一圆心角(θ1)大于π/p且小于1.5*π/p,其中p为所述永磁极(40)与所述交替极(50)数量总和的1/2。
  9. 根据权利要求1所述的转子(100),其特征在于,所述转子铁芯(10)的轴向端面上开设有隔磁槽,所述隔磁槽沿所述转子铁芯(10)的周向延伸于所述永磁极(40)的 两端。
  10. 一种永磁电机,其特征在于,包括定子及如权利要求1-9任一项所述的转子(100),所述转子(100)可转动地套设于所述定子内。
PCT/CN2019/103973 2018-11-01 2019-09-02 转子及永磁电机 WO2020088086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514966A JP7230185B2 (ja) 2018-11-01 2019-09-02 ロータ及び永久磁石モータ
US17/206,127 US11984764B2 (en) 2018-11-01 2021-03-19 Rotor and permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811295293.5A CN109067046B (zh) 2018-11-01 2018-11-01 转子及永磁电机
CN201811295293.5 2018-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,127 Continuation US11984764B2 (en) 2018-11-01 2021-03-19 Rotor and permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2020088086A1 true WO2020088086A1 (zh) 2020-05-07

Family

ID=64788892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103973 WO2020088086A1 (zh) 2018-11-01 2019-09-02 转子及永磁电机

Country Status (4)

Country Link
US (1) US11984764B2 (zh)
JP (1) JP7230185B2 (zh)
CN (1) CN109067046B (zh)
WO (1) WO2020088086A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067046B (zh) * 2018-11-01 2024-06-18 珠海格力电器股份有限公司 转子及永磁电机
WO2022051778A1 (en) * 2020-09-07 2022-03-10 ElectromagnetiX LLC Electric submersible pump motor stabilized by electromagnetics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205693464U (zh) * 2016-06-08 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 铁心结构、转子组件及永磁电机
CN106300728A (zh) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机
CN107196434A (zh) * 2017-06-21 2017-09-22 珠海格力节能环保制冷技术研究中心有限公司 转子组件和永磁电机
CN108076676A (zh) * 2016-09-16 2018-05-25 株式会社东芝 旋转电机及车辆
CN109067046A (zh) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 转子及永磁电机
CN208955769U (zh) * 2018-11-01 2019-06-07 珠海格力电器股份有限公司 转子及永磁电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361260B2 (ja) * 2008-06-20 2013-12-04 株式会社東芝 永久磁石回転式電機
JP5549567B2 (ja) * 2010-12-07 2014-07-16 株式会社デンソー 電動機装置
JP5361942B2 (ja) * 2011-05-19 2013-12-04 三菱電機株式会社 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
WO2018158930A1 (ja) * 2017-03-03 2018-09-07 三菱電機株式会社 回転子、電動機、圧縮機および送風機
KR102647099B1 (ko) * 2018-06-08 2024-03-14 삼성전자주식회사 내부 영구자석 모터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300728A (zh) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机
CN205693464U (zh) * 2016-06-08 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 铁心结构、转子组件及永磁电机
CN108076676A (zh) * 2016-09-16 2018-05-25 株式会社东芝 旋转电机及车辆
CN107196434A (zh) * 2017-06-21 2017-09-22 珠海格力节能环保制冷技术研究中心有限公司 转子组件和永磁电机
CN109067046A (zh) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 转子及永磁电机
CN208955769U (zh) * 2018-11-01 2019-06-07 珠海格力电器股份有限公司 转子及永磁电机

Also Published As

Publication number Publication date
US20210211004A1 (en) 2021-07-08
CN109067046A (zh) 2018-12-21
CN109067046B (zh) 2024-06-18
JP7230185B2 (ja) 2023-02-28
US11984764B2 (en) 2024-05-14
JP2022502988A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
CN104578659B (zh) 一种磁通切换型并联混合永磁记忆电机
CN108011484B (zh) 一种磁齿轮复合电机
WO2020098339A1 (zh) 电机转子结构及永磁电机
CN107196434B (zh) 转子组件和永磁电机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN104578636B (zh) 一种双定子轴向磁场磁通切换型混合永磁记忆电机
CN103891103B (zh) 永久磁铁嵌入型电动机和压缩机
CN105656228B (zh) 一种横向磁通永磁电机
JP2007295768A (ja) アウタロータ形磁石発電機
WO2020098345A1 (zh) 电机转子、永磁电机和洗衣机
CN100454715C (zh) 自磁化电动机及其定子
CN104617727B (zh) 一种双定子轴向磁场磁通切换型混合永磁记忆电机
WO2020088086A1 (zh) 转子及永磁电机
WO2021120680A1 (zh) 电机转子和交替极电机
CN208955769U (zh) 转子及永磁电机
CN106300729B (zh) 永磁电机转子及永磁同步电机
CN108768027A (zh) 电机转子和永磁电机
WO2020088085A1 (zh) 电机转子及永磁电机
JP2014236577A (ja) 永久磁石式回転電機
JP2014533086A (ja) 厚さが異なる永久磁石を有する回転子及びそれを含むモータ
WO2020093773A1 (zh) 电机转子结构及永磁电机
CN208955768U (zh) 电机转子及永磁电机
KR101209631B1 (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
CN213937557U (zh) 一种新型磁通反向式永磁同步电机结构
JP2014241695A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514966

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878035

Country of ref document: EP

Kind code of ref document: A1