WO2020093773A1 - 电机转子结构及永磁电机 - Google Patents

电机转子结构及永磁电机 Download PDF

Info

Publication number
WO2020093773A1
WO2020093773A1 PCT/CN2019/103974 CN2019103974W WO2020093773A1 WO 2020093773 A1 WO2020093773 A1 WO 2020093773A1 CN 2019103974 W CN2019103974 W CN 2019103974W WO 2020093773 A1 WO2020093773 A1 WO 2020093773A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
motor
coercive force
slot
rotor core
Prior art date
Application number
PCT/CN2019/103974
Other languages
English (en)
French (fr)
Inventor
王敏
陈彬
肖勇
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/277,730 priority Critical patent/US11855488B2/en
Priority to JP2021514993A priority patent/JP7304411B2/ja
Publication of WO2020093773A1 publication Critical patent/WO2020093773A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the technical field of electric motors, in particular to a motor rotor structure and a permanent magnet motor.
  • the permanent magnet synchronous motor with adjustable flux can adjust the strength of the internal magnetic field of the motor according to the load condition of the motor.
  • Traditional permanent magnet motors rely on permanent magnets to provide magnetic flux, but permanent magnets provide a fixed magnetic field, and the internal magnetic field of the motor is difficult to adjust, making it difficult for permanent magnet motors to balance efficiency at high and low frequencies.
  • the maximum operating frequency of the motor is limited.
  • most permanent magnet motors can only expand the operating range through field weakening control, but the field weakening control has the problems of increasing the copper loss of the motor, reducing the motor efficiency, and limiting the speed range.
  • Two types of permanent magnets with different coercive forces one of which is installed in the first permanent magnet slot, and the other is installed in the second permanent magnet slot.
  • the permanent magnets are opposite in polarity, the rotor core is in a multi-pole state, and when two adjacent permanent magnets with different coercive forces are opposite in polarity, the rotor core is in a state with few poles.
  • the first permanent magnet slot is a radial slot arranged in the radial direction of the rotor core, and the permanent magnets installed in the first permanent magnet slot are magnetized in the tangential direction of the rotor core.
  • the second permanent magnet slot is a tangential slot arranged along the tangential direction of the rotor core, the second permanent magnet slot is close to the rotor outer circle, and the permanent magnet installed in the second permanent magnet slot is along the rotor iron
  • the core is radially magnetized.
  • the two permanent magnets with different coercive forces are a permanent magnet with a low coercive force and a permanent magnet with a high coercive force.
  • the permanent magnet with a low coercive force is installed on the first permanent magnet.
  • a permanent magnet with a higher coercive force is installed in the second permanent magnet slot.
  • the coercive force of the permanent magnet with a lower coercive force is H1 and the thickness is d1
  • the coercive force of the permanent magnet with a higher coercive force is H2 and the thickness is d2
  • the remanence of the permanent magnet with low coercive force is Br1 and the width is L1
  • the remanence of the permanent magnet with high coercive force is Br2 and the width is L2
  • the thickness of the magnetic isolation slot ranges from 2g to 10g, where g is the air gap of the motor.
  • the coercive force of the permanent magnet with a lower coercive force is H3 and the thickness is d3
  • the coercive force of the permanent magnet with a higher coercive force is H4 and the thickness is d4
  • the permanent magnet with a lower coercive force has a remanence of Br3 and a width of L3
  • the permanent magnet with a higher coercive force has a remanence of Br4 and a width of L4
  • a permanent magnet motor includes a stator iron core and a motor rotor structure.
  • the motor rotor structure is the motor rotor structure described in any of the above solutions.
  • the internal magnetic field of the motor rotor can be adjusted as needed.
  • the motor When the motor is running at low speed and high torque, the motor changes the magnetization direction of the permanent magnet with a relatively low coercive force in the rotor core through the armature current, so that the rotor core is in a multi-pole state. , The generated torque is larger.
  • the motor When the motor is running at high speed and small torque, the motor changes the magnetization direction of the permanent magnet with relatively low coercive force in the rotor core through the armature current, so that the rotor core is adjusted to a state of less magnetic poles, and the number of motor magnetic poles is reduced. , The generated torque is small, but the speed increases at the same electrical frequency.
  • the rotor structure of the motor can adjust the internal magnetic field according to the operating conditions of the motor, so that the rotor core is divided into a multi-pole state and a low-pole state, which increases the motor high-efficiency area and expands the motor operating range.
  • FIG. 1 is a schematic structural diagram of a rotor structure of a motor provided by an embodiment of the present application
  • FIG. 2 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 1 is in a multi-pole state
  • FIG. 3 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 1 is in a state of less magnetic poles;
  • FIG. 4 is a schematic structural diagram of a rotor structure of a motor provided by another embodiment of the present application.
  • FIG. 5 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 4 is in a multi-pole state
  • FIG. 6 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 4 is in a state of less magnetic poles
  • FIG. 7 is a schematic diagram of a magnetized magnetic circuit of a permanent magnet motor provided by an embodiment of the present application.
  • a motor rotor structure 10 includes a rotor core 100 and two permanent magnets with different coercive forces.
  • the rotor core 100 is provided with at least two first permanent magnet slots 110 along the circumferential direction, and at least one second permanent magnet slot 120 is provided between adjacent two first permanent magnet slots 110.
  • the two permanent magnet slots 120 are separated by a preset distance.
  • one permanent magnet is installed in the first permanent magnet slot 110 and the other permanent magnet is installed in the second permanent magnet slot 120.
  • the rotor core 100 When two adjacent permanent magnets with different coercive forces have the same polarity, the rotor core 100 is in a multi-pole state, and when two adjacent permanent magnets with different coercive forces have different polarities, the rotor core 100 is in a state of less magnetic poles.
  • two types of permanent magnets with different coercive forces refer to one of which is a permanent magnet with a relatively low coercive force (as shown in FIG. 1, a permanent magnet with a low coercive force 200), and the other It is a permanent magnet with a relatively high coercive force (as shown in FIG. 1).
  • a permanent magnet with a relatively low coercive force as shown in FIG. 1, a permanent magnet with a low coercive force 200
  • the permanent magnet with a relatively high coercive force hardly changes. Therefore, the number of magnetic poles of the rotor core 100 can be changed eventually to adapt to the operating state of the motor and improve the efficiency of the motor.
  • the rotor core 100 is in a multi-pole state, which means a state in which the number of poles of the rotor core 100 is larger than the number of poles of the rotor core 100 in a state of fewer poles.
  • the multi-pole state of the rotor core 100 corresponds to a state where the number of magnetic poles of the motor is large.
  • the rotor core 100 is in a state of fewer magnetic poles, and refers to a state in which the number of magnetic poles of the rotor core 100 is smaller than the number of magnetic poles of the rotor core 100 in a multi-pole state.
  • the less magnetic pole state of the rotor core 100 corresponds to a state where the number of magnetic poles of the motor is small.
  • the motor When the motor is running at low speed and high torque, the motor changes the magnetization direction of the permanent magnet with relatively low coercive force in the rotor core 100 through the armature current, so that the two adjacent permanent magnets with different coercive force sizes With the same polarity, the rotor core 100 is in a multi-pole state, so the number of poles in the motor is large, and the generated torque is large.
  • the motor When the motor is running at high speed and small torque, the motor changes the magnetization direction of the permanent magnets with relatively low coercive force in the rotor core 100 through the armature current, so that the two adjacent permanent magnets with different coercive force sizes
  • the opposite polarities are opposite.
  • the rotor core 100 is in a state of less magnetic poles, the number of magnetic poles of the motor is reduced, and the generated torque is smaller, but the rotation speed is increased at the same electrical frequency. Therefore, the rotor structure 10 of the motor can adjust the internal magnetic field according to the operating conditions of the motor, so that the rotor core 100 is divided into a multi-pole state and a low-pole state, which increases the motor high-efficiency area and expands the motor operating range.
  • the first permanent magnet slot 110 and the second permanent magnet slot 120 are separated by a preset distance, when the first permanent magnet slot 110 and the second permanent magnet slot 120 are respectively installed with the aforementioned two coercive force magnitudes
  • the two permanent magnets with different coercive forces are also separated by a preset distance.
  • the part of the rotor core 100 corresponding to the spaced position close to the outer circle of the rotor (hereinafter referred to as the adjustment pole) has no magnet, so when the magnetization direction of the permanent magnet with a relatively low coercive force is changed by the external armature current, The difficulty of magnetization is greatly reduced, which is beneficial to reduce the magnetization current.
  • the adjustment poles When the rotor core 100 is in a multi-pole state or a low-pole state, the adjustment poles also have different changes accordingly. 2 and 3, the rotor core 100 has two states. Inside the rotor core 100, when a permanent magnet with a relatively low coercive force and a permanent magnet with a relatively high coercive force have the same polarity, the rotor core 100 is in a multi-pole state.
  • the magnetic field of the adjustment pole is provided by the permanent magnet with relatively low coercive force and the permanent magnet with relatively high coercive force.
  • the adjustment pole has a magnetic field into the stator core.
  • the magnetization direction of the permanent magnet with a relatively low coercive force is adjusted by the stator armature current, so that the permanent magnet with a relatively low coercive force and the relatively high coercive force
  • the permanent magnets have opposite polarities.
  • the internal magnetic field of the rotor core 100 reaches a permanent magnet with a relatively low coercive force to other permanent magnets with a relatively high coercive force.
  • the magnetic poles of the adjustment pole do not enter the stator, and the number of magnetic poles of the rotor core 100 decreases.
  • the rotor structure 10 of the motor can adjust the internal magnetic field according to the operating conditions of the motor, so that the rotor core 100 is divided into a multi-pole state and a low-pole state, which increases the motor high-efficiency area and expands the motor operating range.
  • the first permanent magnet slot 110 may be a radial slot arranged in the radial direction of the rotor core 100.
  • the first permanent magnet slot 110 may also be a tangential slot arranged along the tangential direction of the rotor core 100.
  • the second permanent magnet slot 120 may be a radial slot arranged in the radial direction of the rotor core 100.
  • the second permanent magnet slot 120 may also be a tangential slot arranged along the tangential direction of the rotor core 100.
  • the first permanent magnet slot 110 is a radial slot arranged along the radial direction of the rotor core 100, and the permanent magnets installed in the first permanent magnet slot 110 are filled along the tangential direction of the rotor core 100 magnetic.
  • the second permanent magnet slot 120 may be a radial slot arranged along the radial direction of the rotor core 100 or a tangential direction arranged along the tangential direction of the rotor core 100 groove.
  • the second permanent magnet slot 120 is a tangential slot arranged along the tangential direction of the rotor core 100, the second permanent magnet slot 120 is close to the rotor outer circle, and the permanent magnet installed in the second permanent magnet slot 120
  • the rotor core 100 is magnetized in the radial direction.
  • the two permanent magnets with different coercive forces may be permanent magnets with relatively low coercive forces installed in the first permanent magnet slot 110.
  • a permanent magnet with a relatively high coercive force is installed in the second permanent magnet slot 120. It may also be that a permanent magnet with a relatively low coercive force is installed in the second permanent magnet slot 120, and a permanent magnet with a relatively high coercive force is installed in the first permanent magnet slot 110.
  • the two permanent magnets with different coercive forces are a permanent magnet 200 with a low coercive force and a permanent magnet 300 with a high coercive force, and the ones with a low coercive force are
  • the permanent magnet 200 is installed in the first permanent magnet slot 110, and the permanent magnet 300 with a high coercive force is installed in the second permanent magnet slot 120.
  • the permanent magnet 200 with a low coercive force is installed in the first permanent magnet slot 110. Since the first permanent magnet slot 110 is arranged along the radial direction of the rotor core 100, both sides of the permanent magnet 200 with a low coercive force can be made The outer circle of the rotor is empty.
  • the external magnetic field directly acts on the permanent magnet 200 with a low coercive force through the rotor cores 100 on both sides of the permanent magnet 200 with a low coercive force . Therefore, the magnetic resistance when magnetizing the permanent magnet 200 with low coercive force is reduced, the difficulty of magnetization is effectively reduced, and the permanent magnet 200 with low coercive force can be uniformly magnetized.
  • the number of the second permanent magnet slots 120 disposed between two adjacent first permanent magnet slots 110 may be one, two or more.
  • the structure of the rotor core 100 is more flexible, which facilitates arranging two types of permanent magnets with different coercive forces on the rotor core 100 according to actual design requirements, and improves the space utilization rate of the rotor core 100.
  • FIGS. 1 to 3 as an implementable manner, there are two second permanent magnet slots 120 disposed between two adjacent first permanent magnet slots 110, and the two second permanent magnet slots 120 Two permanent magnets installed in the opposite polarities are opposite, and a magnetic isolation slot 130 is provided between the two second permanent magnet slots 120. As shown in FIG.
  • two second permanent magnet slots 120 are provided between two adjacent first permanent magnet slots 110, that is, two adjacent permanent magnets 200 with lower coercivity are arranged between two A permanent magnet 300 with a high coercive force.
  • the two permanent magnets 300 with high coercivity have opposite polarities, and the magnetic isolation groove 130 is used for magnetic isolation.
  • the thickness of the magnetic isolation slot 130 ranges from 2g to 10g, where g is the air gap of the motor.
  • the thickness of the magnetic shielding groove 130 is shown by d3, that is, 2g ⁇ d3 ⁇ 10g.
  • FIG. 2 shows a schematic diagram of the magnetic circuit of the rotor core 100 in a multi-pole state
  • N and S on each side of each permanent magnet in FIG. 2 show the magnetic pole distribution of each permanent magnet
  • FIG. 2 N and S indicated by the middle arrows indicate the magnetic pole distribution of the rotor core 100 in the multi-pole state
  • FIG. 3 shows a schematic diagram of the magnetic circuit of the rotor core 100 in the state of fewer magnetic poles.
  • the N and S on both sides of each permanent magnet in FIG. 3 show the magnetic pole distribution diagram of each permanent magnet
  • the N and S indicated by the arrows in FIG. 3 show the magnetic pole distribution of the rotor core 100 in the state of less magnetic poles.
  • the number of magnetic poles of the rotor core 100 is six. As shown in FIG. 3, when the rotor core 100 is in the state of fewer magnetic poles, the number of magnetic poles of the rotor core 100 is two.
  • the permanent magnet 200 with a low coercive force has a coercive force of H1 and a thickness of d1
  • the permanent magnet 300 with a high coercive force has a coercive force of H2 and a thickness of d2.
  • the thickness of the permanent magnet 200 with a low coercivity is too large, it will increase the difficulty of magnetization during magnetization, increase the magnetization current, and make it difficult to adjust the magnetization of the motor.
  • the demagnetization resistance of the two permanent magnets with different coercive forces can be guaranteed to be basically the same, so as to avoid the problem of uncontrollable demagnetization or difficulty in motor magnetization during motor operation The problem.
  • the permanent magnet 200 with a low coercive force has a remanence of Br1 and a width of L1
  • the permanent magnet 300 with a high coercive force has a remanence of Br2 and a width of L2.
  • FIG. 4 As another implementable manner, there is one second permanent magnet slot 120 disposed between two adjacent first permanent magnet slots 110. As shown in FIG. 4, a second permanent magnet slot 120 is provided between two adjacent first permanent magnet slots 110, that is, a rectifier is arranged between two adjacent permanent magnets 200 having a lower coercive force. Permanent magnet 300 with high coercive force.
  • FIG. 5 shows a schematic diagram of the magnetic circuit of the rotor core 100 in a multi-pole state
  • N and S on each side of each permanent magnet in FIG. 5 show the magnetic pole distribution of each permanent magnet
  • FIG. 5 N and S indicated by the middle arrows indicate the magnetic pole distribution of the rotor core 100 in the multi-pole state
  • FIG. 6 shows a schematic diagram of the magnetic circuit of the rotor core 100 in the state of fewer magnetic poles.
  • the N and S on both sides of each permanent magnet in FIG. 6 show the magnetic pole distribution diagram of each permanent magnet
  • the N and S indicated by the arrows in FIG. 6 show the magnetic pole distribution of the rotor core 100 in the state of less magnetic poles.
  • the number of magnetic poles of the rotor core 100 is twelve. As shown in FIG. 6, when the rotor core 100 is in a state of fewer magnetic poles, the number of magnetic poles of the rotor core 100 is four.
  • the coercive force of the permanent magnet 200 with a low coercive force is H3 and the thickness is d3
  • the coercive force of the permanent magnet 300 with a high coercive force is H4 and the thickness is d4, Then d4 * H4 / H3 * 0.9 ⁇ d3 ⁇ d4 * H4 / H3 * 1.1. If the thickness of the permanent magnet 200 with a low coercive force is too small, the permanent magnet 200 with a low coercive force will have insufficient resistance to demagnetization, resulting in an uncontrollable demagnetization problem when the motor is running.
  • the thickness of the permanent magnet 200 with a low coercivity is too large, it will increase the difficulty of magnetization during magnetization, increase the magnetization current, and make it difficult to adjust the magnetization of the motor.
  • the demagnetization resistance of the two permanent magnets with different coercive forces can be guaranteed to be basically the same, so as to avoid the problem of uncontrollable demagnetization or difficulty in motor magnetization when the motor is running The problem.
  • the permanent magnet 200 with a low coercive force has a remanence of Br3 and a width of L3
  • the permanent magnet 300 with a high coercive force has a remanence of Br4 and a width of L4.
  • an embodiment of the present application further provides a permanent magnet motor, including a stator core 20 and a motor rotor structure 10.
  • the motor rotor structure 10 is the motor rotor structure 10 described in any one of the foregoing solutions.
  • the arrowed lines in FIG. 7 represent the external magnetic field magnetic circuit applied to the permanent magnet 200 having a low coercive force in the rotor core 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种电机转子结构,包括:转子铁芯(100),转子铁芯(100)沿圆周方向设置有至少两个第一永磁体槽(110),相邻两个第一永磁体槽(110)之间设置有至少一个第二永磁体槽(120),第一永磁体槽(110)与第二永磁体槽(120)之间间隔预设距离;以及两种矫顽力大小不同的永磁体,其中一种永磁体安装于第一永磁体槽(110)中,另一种永磁体安装于第二永磁体槽(120)中,相邻的两种矫顽力大小不同的永磁体同极性相对时,转子铁芯(100)处于多磁极状态,相邻的两种矫顽力大小不同的永磁体异极性相对时,转子铁芯(100)处于少磁极状态。该电机转子结构,能够依据电机运行工况调整内部磁场,使转子铁芯分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。

Description

电机转子结构及永磁电机
相关申请
本申请要求2018年11月8日申请的,申请号为201811324647.4,名称为“电机转子结构及永磁电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机技术领域,特别是涉及一种电机转子结构及永磁电机。
背景技术
磁通可调节的永磁同步电机依据电机的负载状况,对电机内部磁场的强弱进行调节。传统永磁电机依靠永磁体提供磁通,但永磁体提供磁场固定,电机内部磁场难以调节,使永磁电机难以兼顾高频和低频时的效率。且在供电电源电压固定的情况下,限制了电机的最高运行频率。目前,大多永磁电机只能通过弱磁控制扩大运行范围,但是弱磁控制存在增加电机铜损、降低电机效率、调速范围有限等问题。
发明内容
基于此,有必要针对传统的永磁电机通过弱磁控制扩大运行范围时,存在的电机铜损增加、电机效率降低、调速范围有限等问题,提供一种电机转子结构及永磁电机。
一种电机转子结构,包括:转子铁芯,转子铁芯沿圆周方向设置有至少两个第一永磁体槽,相邻两个第一永磁体槽之间设置有至少一个第二永磁体槽,第一永磁体槽与第二永磁体槽之间间隔预设距离;以及
两种矫顽力大小不同的永磁体,其中一种永磁体安装于第一永磁体槽中,另一种永磁体安装于第二永磁体槽中,相邻的两种矫顽力大小不同的永磁体同极性相对时,转子铁芯处于多磁极状态,相邻的两种矫顽力大小不同的永磁体异极性相对时,转子铁芯处于少磁极状态。
在其中一个实施例中,第一永磁体槽为沿转子铁芯的径向布置的径向槽,安装于第一永磁体槽中的永磁体沿转子铁芯的切向充磁。
在其中一个实施例中,第二永磁体槽为沿转子铁芯的切向布置的切向槽,第二永磁体槽靠近转子外圆,安装于第二永磁体槽中的永磁体沿转子铁芯的径向充磁。
在其中一个实施例中,两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体和矫顽力较高的永磁体,矫顽力较低的永磁体安装于第一永磁体槽中,矫顽力较高的永磁体安装于第二永磁体槽中。
在其中一个实施例中,设置于相邻的两个第一永磁体槽之间的第二永磁体槽为两个,该两个第二永磁体槽中安装的两个永磁体异极性相对,该两个第二永磁体槽之间设有隔磁槽。
在其中一个实施例中,矫顽力较低的永磁体的矫顽力为H1,厚度为d1,矫顽力较高的永磁体的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。
在其中一个实施例中,矫顽力较低的永磁体的剩磁为Br1,宽度为L1,矫顽力较高的永磁体的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.1<L1<L2*Br2/Br1*0.5。
在其中一个实施例中,隔磁槽的厚度范围为2g~10g,其中g为电机气隙。
在其中一个实施例中,设置于相邻的两个第一永磁体槽之间的第二永磁体槽为一个。
在其中一个实施例中,矫顽力较低的永磁体的矫顽力为H3,厚度为d3,矫顽力较高的永磁体的矫顽力为H4,厚度为d4,则有d4*H4/H3*0.9<d3<d4*H4/H3*1.1。
在其中一个实施例中,矫顽力较低的永磁体的剩磁为Br3,宽度为L3,矫顽力较高的永磁体的剩磁为Br4,宽度为L4,则有L4*Br4/Br3*0.3<L3<L4*Br4/Br3*0.7。
一种永磁电机,包括定子铁芯和电机转子结构,电机转子结构为上述任一方案所述的电机转子结构。
本申请的有益效果包括:
通过设置两种矫顽力大小不同的永磁体,实现了电机转子内部磁场可根据需要进行调节。当电机运行于低速大转矩工况时,电机通过电枢电流改变转子铁芯中矫顽力相对较低的永磁体的磁化方向,使转子铁芯为多磁极状态,此时电机磁极数多,产生的转矩较大。当电机运行于高速小转矩工况时,电机通过电枢电流改变转子铁芯中矫顽力相对较低的永磁体的磁化方向,使转子铁芯调节为少磁极状态,电机磁极数减小,产生的转矩较小,但是相同电频率下转速增加。从而该电机转子结构,能够依据电机运行工况调整内部磁场,使转子铁芯分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公 开的附图获得其他的附图。
图1为本申请一实施例提供的电机转子结构的结构示意图;
图2为图1所示结构的转子铁芯处于多磁极状态时的磁路图;
图3为图1所示结构的转子铁芯处于少磁极状态时的磁路图;
图4为本申请另一实施例提供的电机转子结构的结构示意图;
图5为图4所示结构的转子铁芯处于多磁极状态时的磁路图;
图6为图4所示结构的转子铁芯处于少磁极状态时的磁路图;
图7为本申请一实施例提供的永磁电机的磁化磁路示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
请参见图1所示,本申请一实施例提供的电机转子结构10,包括:转子铁芯100和两种矫顽力大小不同的永磁体。转子铁芯100沿圆周方向设置有至少两个第一永磁体槽110,相邻两个第一永磁体槽110之间设置有至少一个第二永磁体槽120,第一永磁体槽110与第二永磁体槽120之间间隔预设距离。两种矫顽力大小不同的永磁体中,其中一种永磁体安装于第一永磁体槽110中,另一种永磁体安装于第二永磁体槽120中。相邻的两种矫顽力大小不同的永磁体同极性相对时,转子铁芯100处于多磁极状态,相邻的两种矫顽力大小不同的永磁体异极性相对时,转子铁芯100处于少磁极状态。
可以理解,两种矫顽力大小不同的永磁体,指的是其中一种为矫顽力相对较低的永磁体(如图1所示矫顽力较低的永磁体200),另一种为矫顽力相对较高的永磁体(如图1所示矫顽力较高的永磁体300)。由此,矫顽力相对较低的永磁体的磁化方向发生改变时,矫顽力相对较高的永磁体几乎不发生变化。因此最终能够改变转子铁芯100的磁极数,以适应于电机的运行状态,提高电机效率。而转子铁芯100处于多磁极状态,指的是转子铁芯 100的磁极数相对于少磁极状态时的转子铁芯100的磁极数较多的状态。转子铁芯100的多磁极状态对应的也是电机磁极数较多的状态。转子铁芯100处于少磁极状态,指的是转子铁芯100的磁极数相对于多磁极状态时的转子铁芯100的磁极数较少的状态。转子铁芯100的少磁极状态对应的也是电机磁极数较少的状态。
当电机运行于低速大转矩工况时,电机通过电枢电流改变转子铁芯100中矫顽力相对较低的永磁体的磁化方向,使相邻的两种矫顽力大小不同的永磁体同极性相对,此时转子铁芯100为多磁极状态,从而电机磁极数多,产生的转矩较大。当电机运行于高速小转矩工况时,电机通过电枢电流改变转子铁芯100中矫顽力相对较低的永磁体的磁化方向,使相邻的两种矫顽力大小不同的永磁体异极性相对,此时转子铁芯100为少磁极状态,电机磁极数减小,产生的转矩较小,但是相同电频率下转速增加。从而该电机转子结构10,能够依据电机运行工况调整内部磁场,使转子铁芯100分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。
在一实施例中,第一永磁体槽110与第二永磁体槽120之间间隔预设距离,当第一永磁体槽110和第二永磁体槽120分别安装有前述两种矫顽力大小不同的永磁体时,两种矫顽力大小不同的永磁体之间也间隔预设距离。该间隔位置对应的转子铁芯100靠近转子外圆的部分(以下均称为调节磁极)由于没有磁体的存在,因此通过外部电枢电流改变矫顽力相对较低的永磁体的磁化方向时,磁化难度大大降低,利于减小磁化电流。
在转子铁芯100处于多磁极状态或者少磁极状态时,调节磁极也相应具有不同的变化。参见图2和图3,转子铁芯100具有两种状态。在转子铁芯100内部,当矫顽力相对较低的永磁体与矫顽力相对较高的永磁体同极性相对时,转子铁芯100为多磁极状态。而调节磁极的磁场由矫顽力相对较低的永磁体和矫顽力相对较高的永磁体共同提供,调节磁极有磁场进入定子铁芯中。当电机运行状态变化为高速小转矩状态时,通过定子电枢电流调节矫顽力相对较低的永磁体的磁化方向,使矫顽力相对较低的永磁体与矫顽力相对较高的永磁体异极性相对。此时转子铁芯100内部磁场由矫顽力相对较低的永磁体到达其他矫顽力相对较高的永磁体,调节磁极没有磁场进入定子,转子铁芯100磁极数减少。从而该电机转子结构10,能够依据电机运行工况调整内部磁场,使转子铁芯100分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。
在一实施例中,第一永磁体槽110可以是沿转子铁芯100的径向布置的径向槽。第一永磁体槽110也可以是沿转子铁芯100的切向布置的切向槽。第二永磁体槽120可以是沿转子铁芯100的径向布置的径向槽。第二永磁体槽120也可以是沿转子铁芯100的切向布置的切向槽。作为一种可实施的方式,第一永磁体槽110为沿转子铁芯100的径向布置的 径向槽,安装于第一永磁体槽110中的永磁体沿转子铁芯100的切向充磁。当第一永磁体槽110为径向槽时,第二永磁体槽120可以是沿转子铁芯100的径向布置的径向槽,也可以是沿转子铁芯100的切向布置的切向槽。在一个实施例中,第二永磁体槽120为沿转子铁芯100的切向布置的切向槽,第二永磁体槽120靠近转子外圆,安装于第二永磁体槽120中的永磁体沿转子铁芯100的径向充磁。
在一实施例中,当第一永磁体槽110为径向槽时,两种矫顽力大小不同的永磁体可以是矫顽力相对较低的永磁体安装在第一永磁体槽110中,而矫顽力相对较高的永磁体安装在第二永磁体槽120中。也可以是矫顽力相对较低的永磁体安装在第二永磁体槽120中,而矫顽力相对较高的永磁体安装在第一永磁体槽110中。参见图1,作为一种可实施的方式,两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体200和矫顽力较高的永磁体300,矫顽力较低的永磁体200安装于第一永磁体槽110中,矫顽力较高的永磁体300安装于第二永磁体槽120中。将矫顽力较低的永磁体200安装于第一永磁体槽110中,由于第一永磁体槽110沿转子铁芯100的径向布置,能够使得矫顽力较低的永磁体200两侧的转子外圆空出来。当需要改变矫顽力较低的永磁体200的磁化方向时,外部磁场直接通过矫顽力较低的永磁体200两侧的转子铁芯100部分对矫顽力较低的永磁体200产生作用。从而减小了对矫顽力较低的永磁体200磁化时的磁阻,有效降低磁化难度,且能够使矫顽力较低的永磁体200磁化均匀。
可选地,设置于相邻两个第一永磁体槽110之间的第二永磁体槽120的个数可以为一个、两个及以上多个。由此转子铁芯100的结构更加灵活,利于根据实际设计需要在转子铁芯100上排布两种矫顽力大小不同的永磁体,提高转子铁芯100的空间利用率。参见图1至图3,作为一种可实施的方式,设置于相邻的两个第一永磁体槽110之间的第二永磁体槽120为两个,该两个第二永磁体槽120中安装的两个永磁体异极性相对,该两个第二永磁体槽120之间设有隔磁槽130。如图1所示,相邻的两个第一永磁体槽110之间设有两个第二永磁体槽120,即相邻的两个矫顽力较低的永磁体200之间布置有两个矫顽力较高的永磁体300。该两个矫顽力较高的永磁体300异极性相对,并利用隔磁槽130进行隔磁。在一个实施例中,隔磁槽130的厚度范围为2g~10g,其中g为电机气隙。如图1所示,隔磁槽130的厚度用d3示出,即2g<d3<10g。通过合理设计隔磁槽130的厚度,可保证隔磁槽130有效隔磁。
参见图2和图3,图2示出了转子铁芯100处于多磁极状态的磁路示意图,图2中各个永磁体两侧的N、S示出了各永磁体的磁极分布图,图2中箭头所指的N、S示出的是多磁极状态下的转子铁芯100的磁极分布。图3示出了转子铁芯100处于少磁极状态的磁 路示意图。图3中各个永磁体两侧的N、S示出了各永磁体的磁极分布图,图3中箭头所指的N、S示出的是少磁极状态下的转子铁芯100的磁极分布。如图2所示,转子铁芯100处于多磁极状态时,转子铁芯100的磁极数量为6个。如图3所示,转子铁芯100处于少磁极状态时,转子铁芯100的磁极数量为2个。
参见图1,在一个实施例中,矫顽力较低的永磁体200的矫顽力为H1,厚度为d1,矫顽力较高的永磁体300的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。如果矫顽力较低的永磁体200厚度过小,会使矫顽力较低的永磁体200抗退磁能力不足,造成电机运行时不可控退磁问题。而矫顽力较低的永磁体200厚度过大,则会增加调磁时的磁化难度,增大磁化电流,使电机调磁困难。通过对矫顽力较低的永磁体200的厚度尺寸进行如此设计,可以保证两种矫顽力不同的永磁体的抗退磁能力基本相同,避免造成电机运行时不可控退磁问题或者电机调磁困难的问题。
参见图1,在一个实施例中,矫顽力较低的永磁体200的剩磁为Br1,宽度为L1,矫顽力较高的永磁体300的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.1<L1<L2*Br2/Br1*0.5。通过如此设计,可以保证两种矫顽力不同的永磁体的磁通量基本相同,保证电机转矩脉动不会过大。
请参见图4所示,作为另一种可实施的方式,设置于相邻的两个第一永磁体槽110之间的第二永磁体槽120为一个。如图4所示,相邻的两个第一永磁体槽110之间设有一个第二永磁体槽120,即相邻的两个矫顽力较低的永磁体200之间布置有一个矫顽力较高的永磁体300。
参见图5和图6,图5示出了转子铁芯100处于多磁极状态的磁路示意图,图5中各个永磁体两侧的N、S示出了各永磁体的磁极分布图,图5中箭头所指的N、S示出的是多磁极状态下的转子铁芯100的磁极分布。图6示出了转子铁芯100处于少磁极状态的磁路示意图。图6中各个永磁体两侧的N、S示出了各永磁体的磁极分布图,图6中箭头所指的N、S示出的是少磁极状态下的转子铁芯100的磁极分布。如图5所示,转子铁芯100处于多磁极状态时,转子铁芯100的磁极数量为12个。如图6所示,转子铁芯100处于少磁极状态时,转子铁芯100的磁极数量为4个。
参见图4,在一个实施例中,矫顽力较低的永磁体200的矫顽力为H3,厚度为d3,矫顽力较高的永磁体300的矫顽力为H4,厚度为d4,则有d4*H4/H3*0.9<d3<d4*H4/H3*1.1。如果矫顽力较低的永磁体200厚度过小,会使矫顽力较低的永磁体200抗退磁能力不足,造成电机运行时不可控退磁问题。而矫顽力较低的永磁体200厚度过大,则会增加调磁时的磁化难度,增大磁化电流,使电机调磁困难。通过对矫顽力较低的永磁体200的厚度尺 寸进行如此设计,可以保证两种矫顽力不同的永磁体的抗退磁能力基本相同,避免造成电机运行时不可控退磁问题或者电机调磁困难的问题。
参见图4,在一个实施例中,矫顽力较低的永磁体200的剩磁为Br3,宽度为L3,矫顽力较高的永磁体300的剩磁为Br4,宽度为L4,则有L4*Br4/Br3*0.3<L3<L4*Br4/Br3*0.7。通过如此设计,可以保证两种矫顽力不同的永磁体的磁通量基本相同,保证电机转矩脉动不会过大。
参见图7,本申请一实施例还提供了一种永磁电机,包括定子铁芯20和电机转子结构10,电机转子结构10为上述任一方案所述的电机转子结构10。图7中箭头线路代表对转子铁芯100中的矫顽力较低的永磁体200施加的外磁场磁路。通过对转子铁芯100上的矫顽力较低的永磁体施加外磁场以改变矫顽力较低的永磁体的磁化方向,在永磁电机运行状态发生变化时,实现电机转子磁极数调节,达到增加调速范围的目的。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种电机转子结构,其特征在于,包括:转子铁芯(100),所述转子铁芯(100)沿圆周方向设置有至少两个第一永磁体槽(110),相邻两个所述第一永磁体槽(110)之间设置有至少一个第二永磁体槽(120),所述第一永磁体槽(110)与所述第二永磁体槽(120)之间间隔预设距离;以及
    两种矫顽力大小不同的永磁体,其中一种永磁体安装于所述第一永磁体槽(110)中,另一种永磁体安装于所述第二永磁体槽(120)中,相邻的所述两种矫顽力大小不同的永磁体同极性相对时,所述转子铁芯(100)处于多磁极状态,相邻的所述两种矫顽力大小不同的永磁体异极性相对时,所述转子铁芯(100)处于少磁极状态。
  2. 根据权利要求1所述的电机转子结构,其特征在于,所述第一永磁体槽(110)为沿所述转子铁芯(100)的径向布置的径向槽,安装于所述第一永磁体槽(110)中的永磁体沿所述转子铁芯(100)的切向充磁。
  3. 根据权利要求2所述的电机转子结构,其特征在于,所述第二永磁体槽(120)为沿所述转子铁芯(100)的切向布置的切向槽,所述第二永磁体槽(120)靠近转子外圆,安装于所述第二永磁体槽(120)中的永磁体沿所述转子铁芯(100)的径向充磁。
  4. 根据权利要求2或3所述的电机转子结构,其特征在于,所述两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体(200)和矫顽力较高的永磁体(300),所述矫顽力较低的永磁体(200)安装于所述第一永磁体槽(110)中,所述矫顽力较高的永磁体(300)安装于所述第二永磁体槽(120)中。
  5. 根据权利要求4所述的电机转子结构,其特征在于,设置于相邻的两个所述第一永磁体槽(110)之间的所述第二永磁体槽(120)为两个,该两个所述第二永磁体槽(120)中安装的两个永磁体异极性相对,该两个所述第二永磁体槽(120)之间设有隔磁槽(130)。
  6. 根据权利要求5所述的电机转子结构,其特征在于,所述矫顽力较低的永磁体(200)的矫顽力为H1,厚度为d1,所述矫顽力较高的永磁体(300)的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。
  7. 根据权利要求5所述的电机转子结构,其特征在于,所述矫顽力较低的永磁体(200)的剩磁为Br1,宽度为L1,所述矫顽力较高的永磁体(300)的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.1<L1<L2*Br2/Br1*0.5。
  8. 根据权利要求5所述的电机转子结构,其特征在于,所述隔磁槽(130)的厚度范围为2g~10g,其中g为电机气隙。
  9. 根据权利要求4所述的电机转子结构,其特征在于,设置于相邻的两个所述第一永磁体槽(110)之间的所述第二永磁体槽(120)为一个。
  10. 根据权利要求9所述的电机转子结构,其特征在于,所述矫顽力较低的永磁体(200)的矫顽力为H3,厚度为d3,所述矫顽力较高的永磁体(300)的矫顽力为H4,厚度为d4,则有d4*H4/H3*0.9<d3<d4*H4/H3*1.1。
  11. 根据权利要求9所述的电机转子结构,其特征在于,所述矫顽力较低的永磁体(200)的剩磁为Br3,宽度为L3,所述矫顽力较高的永磁体(300)的剩磁为Br4,宽度为L4,则有L4*Br4/Br3*0.3<L3<L4*Br4/Br3*0.7。
  12. 一种永磁电机,其特征在于,包括定子铁芯(20)和电机转子结构(10),所述电机转子结构(10)为权利要求1-11任一项所述的电机转子结构(10)。
PCT/CN2019/103974 2018-11-08 2019-09-02 电机转子结构及永磁电机 WO2020093773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/277,730 US11855488B2 (en) 2018-11-08 2019-09-02 Motor rotor structure and permanent magnet motor
JP2021514993A JP7304411B2 (ja) 2018-11-08 2019-09-02 モータのロータ構造及び永久磁石モータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811324647.4A CN109301958A (zh) 2018-11-08 2018-11-08 电机转子结构及永磁电机
CN201811324647.4 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020093773A1 true WO2020093773A1 (zh) 2020-05-14

Family

ID=65146797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103974 WO2020093773A1 (zh) 2018-11-08 2019-09-02 电机转子结构及永磁电机

Country Status (4)

Country Link
US (1) US11855488B2 (zh)
JP (1) JP7304411B2 (zh)
CN (1) CN109301958A (zh)
WO (1) WO2020093773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301958A (zh) 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN111555480B (zh) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104553A1 (ja) * 2008-02-21 2009-08-27 株式会社 東芝 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
CN102118089A (zh) * 2006-08-11 2011-07-06 株式会社东芝 永久磁铁式旋转电机的转子
CN108023421A (zh) * 2017-12-21 2018-05-11 珠海格力电器股份有限公司 电机转子和永磁电机
CN108110980A (zh) * 2018-01-31 2018-06-01 哈尔滨工业大学 半串联型具有被动调磁磁障的混合永磁可调磁通电机
CN109301958A (zh) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN208849566U (zh) * 2018-11-08 2019-05-10 珠海格力电器股份有限公司 电机转子结构及永磁电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398103B2 (ja) * 2005-03-01 2014-01-29 株式会社東芝 永久磁石式回転電機
EP2061132B1 (en) * 2006-08-23 2023-07-19 Kabushiki Kaisha Toshiba Permanent magnetic type electric motor
JP5812476B2 (ja) 2011-08-02 2015-11-11 学校法人 東洋大学 永久磁石回転電機及びその運転方法
CN103441592A (zh) * 2013-08-12 2013-12-11 浙江大学 新型磁通可调永磁同步电机
JP6325857B2 (ja) * 2014-03-20 2018-05-16 東芝産業機器システム株式会社 永久磁石式回転電機
CN108599418B (zh) * 2018-05-16 2020-05-19 华中科技大学 一种磁路串联型混合永磁可控磁通电机的转子铁芯及电机
CN109347229B (zh) * 2018-11-14 2024-05-14 珠海格力电器股份有限公司 电机转子结构及永磁电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118089A (zh) * 2006-08-11 2011-07-06 株式会社东芝 永久磁铁式旋转电机的转子
WO2009104553A1 (ja) * 2008-02-21 2009-08-27 株式会社 東芝 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
CN108023421A (zh) * 2017-12-21 2018-05-11 珠海格力电器股份有限公司 电机转子和永磁电机
CN108110980A (zh) * 2018-01-31 2018-06-01 哈尔滨工业大学 半串联型具有被动调磁磁障的混合永磁可调磁通电机
CN109301958A (zh) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN208849566U (zh) * 2018-11-08 2019-05-10 珠海格力电器股份有限公司 电机转子结构及永磁电机

Also Published As

Publication number Publication date
JP2022503731A (ja) 2022-01-12
JP7304411B2 (ja) 2023-07-06
US20210351646A1 (en) 2021-11-11
CN109301958A (zh) 2019-02-01
US11855488B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020098339A1 (zh) 电机转子结构及永磁电机
US20150084468A1 (en) Rotor for permanent-magnet-embedded electric motor, electric motor including the rotor, compressor including the electric motor, and air conditioner including the compressor
WO2019119971A1 (zh) 电机转子和永磁电机
CN103441592A (zh) 新型磁通可调永磁同步电机
CN103208894B (zh) 自起动式同步磁阻电机及其转子
CN104617726B (zh) 一种永磁交错式轴向磁场磁通切换型记忆电机
KR101826126B1 (ko) 3상 전자 모터
CN104578659A (zh) 一种磁通切换型并联混合永磁记忆电机
CN110707841B (zh) 一种聚磁式双凸极混合永磁记忆电机
WO2020093773A1 (zh) 电机转子结构及永磁电机
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
US11984764B2 (en) Rotor and permanent magnet motor
CN108321999A (zh) 七相盘式永磁同步电机及方法
CN106300729A (zh) 永磁电机转子及永磁同步电机
WO2020088085A1 (zh) 电机转子及永磁电机
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
US20180145551A1 (en) Rotor for hybrid homopolar machine
CN205544648U (zh) 压缩机用电机和具有其的压缩机
CN210142972U (zh) 一种高磁阻扭矩集中绕组无刷电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
US11418072B2 (en) Permanent magnet assisted synchronous reluctance motor and electric car having the same
CN208849566U (zh) 电机转子结构及永磁电机
US20200119604A1 (en) Rotary electric machine
CN108777522A (zh) 电机转子和永磁电机
US9225213B2 (en) Electrical rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881113

Country of ref document: EP

Kind code of ref document: A1