WO2022267199A1 - 一种等离子体制备金属粉末的设备及其方法 - Google Patents

一种等离子体制备金属粉末的设备及其方法 Download PDF

Info

Publication number
WO2022267199A1
WO2022267199A1 PCT/CN2021/112223 CN2021112223W WO2022267199A1 WO 2022267199 A1 WO2022267199 A1 WO 2022267199A1 CN 2021112223 W CN2021112223 W CN 2021112223W WO 2022267199 A1 WO2022267199 A1 WO 2022267199A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling tower
metal powder
efficiency
plasma
powder
Prior art date
Application number
PCT/CN2021/112223
Other languages
English (en)
French (fr)
Inventor
严圣军
李要建
裴思鲁
孙钟华
钟雷
陈乐文
李申杰
吕浩
顾本华
Original Assignee
江苏天楹等离子体科技有限公司
中国天楹股份有限公司
江苏天楹环保能源成套设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天楹等离子体科技有限公司, 中国天楹股份有限公司, 江苏天楹环保能源成套设备有限公司 filed Critical 江苏天楹等离子体科技有限公司
Publication of WO2022267199A1 publication Critical patent/WO2022267199A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of additive manufacturing, in particular to a device for preparing metal powder by plasma and a method thereof.
  • Metal powders are widely used in advanced manufacturing industries such as additive manufacturing, and their sphericity, particle size distribution and other characteristics have a significant impact on the performance of manufactured products.
  • the particle size of metal powder is required to be below 106 ⁇ m, and the high-precision manufacturing industry even requires a particle size of 45 ⁇ m.
  • the powder is required to have characteristics such as high fluidity and low impurity content.
  • the production method of metal powder is mostly the atomization method, but the existing technology cannot obtain a large enough output while taking into account good product quality.
  • the existing technical methods to increase the output of metal powder mainly include increasing the feed rate and preheating the raw materials, and the key to improving the particle size distribution is to increase the flow rate of the atomizing medium. In fact, it is difficult for the existing technology to take care of both.
  • powder quality is also influenced by the ambient temperature during the solidification process from the droplet to the finished powder.
  • the ambient temperature should be high enough to prolong the solidification process of the metal droplets and provide sufficient time for the droplets to spheroidize; Provide rapid cooling conditions for the particles and inhibit the degree of microstructure damage.
  • the purpose of the present invention is to provide a kind of equipment and method for preparing metal powder by plasma.
  • a device for preparing metal powder by plasma characterized in that it includes a feed motor, a high-temperature plasma jet generator, a high-efficiency segmental cooling tower and a powder collector, and the top of the high-efficiency segmental cooling tower is provided with three centrosymmetric Distributed feed inlets and generator nozzles arranged in the center, the extension lines of the feed inlets intersect at one point, the feed inlet is provided with materials, the feed motor is arranged at the tail of the materials, and the materials The tail is also connected with a three-phase AC power supply, the nozzle of the generator is connected with the high-temperature plasma jet generator, and the powder collector is connected with the bottom outlet of the high-efficiency segmental cooling tower, and the tower body of the high-efficiency segmental cooling tower is from top to bottom Several air inlets are provided.
  • the three-phase AC power supply is a current-stabilized power supply, and can monitor and feed back the remote voltage of each material.
  • the feeding motor is a servo motor
  • the feeding motor is electrically connected to a three-phase AC power supply
  • the feeding motor adjusts the feeding rate to compensate for voltage fluctuations by monitoring and feeding back the remote voltage of each material.
  • the inside of the high-efficiency sectional cooling tower is provided with a high-temperature airflow acceleration nozzle at the nozzle of the generator, and the high-temperature airflow acceleration nozzle is a contraction-expansion structure, and the jet reaches the speed of sound at the throat, and then exceeds the speed of sound in the expansion section .
  • the air inlet direction of the high-efficiency sectional cooling tower is tangent to the inner wall of the tower.
  • a waste heat recovery device is provided at the bottom of the powder collector, and the air outlet at the bottom of the waste heat recovery device communicates with the air inlet of the high-efficiency sectional cooling tower body.
  • a method for preparing metal powder by plasma comprising the steps of:
  • the three-way materials are driven by the feed motor and move toward the center at a preset speed.
  • a free arc is established between the materials by a three-phase AC power supply, and the current flows through each material in turn.
  • the material is heated and melted by Joule heat, and the molten material is broken and atomized into fine metal droplets under the impact of high-temperature and high-speed plasma jets;
  • the subsequent driving speed of the feed motor in the step (1) is adjusted in real time by the voltage detection feedback of the three-phase AC power supply.
  • the recovery and preheating of the waste heat recovery device in the step (3) is reused for auxiliary heating of the fed material 7 .
  • the present invention has the following beneficial effects:
  • the present invention feeds materials in three ways at the same time, which can improve the overall working output of the equipment.
  • the present invention uses electric current to do work to make the material self-heating, with high heating efficiency, good heating effect, and more obvious effect of increasing the yield.
  • the present invention uses the three-phase alternating current that is easier to obtain in the industry as the preheating energy, and it can be put into operation only by changing the voltage, and the equipment investment cost is low.
  • the present invention uses the three-phase alternating current that is easier to obtain in the industry as the preheating energy source, and the various materials are sequentially used as the cathode and anode of the circuit to ensure that the consumption rate is similar, and it is convenient to control the feed rate.
  • the present invention adopts segmental cooling towers for segmental cooling, which effectively guarantees the time required for the spheroidization of metal droplets, suppresses the degree of damage to the metal microstructure caused by high temperature, and improves the quality of the metal powder.
  • the cooling gas is fed in a tangential direction, so that the liquid particles fall vertically in the center of the furnace cavity with the plasma jet, and the solidified powder rotates along the wall of the atomization furnace with the air flow and is carried out of the furnace cavity. Reduce the probability of collision between formed particles and liquid particles, and improve the sphericity of powder.
  • the present invention effectively improves the energy balance of the whole system and optimizes the energy efficiency of the system by setting waste heat recovery.
  • Fig. 1 is the overall structural representation of the present invention
  • Fig. 2 is a top view of the present invention
  • Fig. 3 is the circuit connection mode of three-way material to generate three-phase AC free arc.
  • the top is provided with three feeding ports 5 symmetrically distributed in the center and a generator nozzle 6 arranged in the center, as shown in Figure 2, the extension lines of the feeding ports 5 intersect at one point, and the material 7 is arranged in the feeding port 5,
  • the feed motor 1 is arranged at the tail of the material 7, and the tail of the material 7 is also connected with a three-phase AC power supply 8, the generator nozzle 6 is connected with the high-temperature plasma jet generator 2, and the powder collector 4 is connected with the outlet at the bottom of the high-efficiency segmented cooling tower 3 Connected, high-efficiency segmental cooling tower 3
  • the tower body is provided with several air inlets 9 from top to bottom.
  • the three-phase AC power supply 8 is a current-stabilized power supply, which adopts three-phase AC power that is easier to obtain in industry for voltage transformation, and can monitor and feed back the remote voltage of each material 7 at the same time.
  • the feed motor 1 is a servo motor, and The motor 1 is electrically connected to the three-phase AC power supply 8, and the feeding motor 1 adjusts the feeding rate in time to compensate for voltage fluctuations through the monitoring and feedback of the remote voltage of each material 7, thereby realizing the stability of the feeding of the materials 7.
  • the high-efficiency segmented cooling tower 3 is provided with a high-temperature airflow acceleration nozzle 11 at the nozzle 6 of the generator.
  • the high-temperature airflow acceleration nozzle 11 has a contraction-expansion structure. The jet reaches the speed of sound at the throat, and then exceeds the speed of sound in the expansion section, and the high-temperature plasma
  • the volume jet generator 2 is the energy source for crushing and atomizing the molten metal material.
  • the air inlet 9 of the high-efficiency segmental cooling tower 3 has an air inlet direction tangent to the inner wall of the tower, thereby creating a stable and gentle laminar cooling environment in the tower and reducing the probability of metal droplets colliding with each other.
  • the bottom of the powder collector 44 is provided with a waste heat recovery device 10, and the air outlet at the bottom of the waste heat recovery device 10 communicates with the air inlet 9 of the high-efficiency segmental cooling tower 3 tower body, and the waste heat recovery device 10 can recover the heat of the gas after the powder is removed , the recovered waste heat is reused to assist heating of the feed material 7 .
  • a method for preparing metal powder by plasma comprising the steps of:
  • the three-way materials 7 are driven by the feed motor 1 and move toward the center at a preset speed. As shown in Figure 3, when the three-way materials 7 approach each other, a three-phase AC power supply 8 is established between the materials 7 Free arc, the current flows through each material 7 in turn, the material 7 is heated and melted by Joule heat, the melted material 7 is broken and atomized into fine metal droplets under the impact of high-temperature and high-speed plasma jet, and the feed motor 1 follows The driving speed is adjusted in real time by the voltage detection feedback of the three-phase AC power supply 8 .
  • the present invention adopts three-way materials for simultaneous feeding, uses three-phase AC power supply to directly heat the materials, and realizes rapid spheroidization and solidification of metal droplets through segmental cooling, and the output can be greatly improved. Simultaneous heating Higher efficiency, lower investment cost, effectively guaranteeing the time required for the spheroidization of metal droplets, and can also inhibit the damage of the metal microstructure caused by high temperature, so as to obtain high-quality metal powder, and then recover through subsequent preheating, Effectively improve the energy balance of the whole system and optimize the energy efficiency of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种等离子体制备金属粉末的设备及其方法,设备包括进料电机(1)、高温等离子体射流发生器(2)、高效分段冷却塔(3)和粉末收集器(4),高效分段冷却塔(3)顶部设置有三个成中心对称分布的进料口(5)以及设置于中心位置的发生器喷口(6),进料口(5)延长线相交于一点,进料口(5)内设置有料材(7),进料电机(1)设置于料材(7)尾部,料材(7)尾部还连接有三相交流电源(8),发生器喷口(6)与高温等离子体射流发生器(2)连通,粉末收集器(4)与高效分段冷却塔(3)底部出口连通,高效分段冷却塔(3)塔体由上至下设置有数个进气口(9)。优点在于能够提升产量,加热效率更高,投资的成本也更低,并且能够得到高品质的金属粉末。

Description

一种等离子体制备金属粉末的设备及其方法 技术领域
本发明涉及增材制造技术领域,特别涉及一种等离子体制备金属粉末的设备及其方法。
背景技术
金属粉末被广泛用于增材制造等先进制造行业,其球形度、粒度分布等特征对制造产品性能有显著影响。通常要求金属粉末粒度在106μm以下,高精度的制造行业甚至要求45μm的粒度,同时要求粉末具有高流动性、低杂质含量等特性。
金属粉末的生产方式多为雾化法,但现有技术无法获得足够大的产量同时兼顾良好的产品品质。现有提升金属粉末产量的技术方法主要有增加进料速度、对原料进行预热,而改善粒度分布的关键在于提升雾化介质的流速,事实上现有技术很难兼顾。
另一方面,粉末品质还受到从液滴到成品粉末的凝固过程中环境温度的影响。具体而言,一方面环境温度应当足够高,以延长金属液滴的凝固过程,为液滴球化提供充足时间;另一方面金属在高温环境下微观结构会发生变化,影响材料性能,因此应当为颗粒提供急冷条件,抑制微观结构破坏程度。
发明内容
本发明的目的是提供一种等离子体制备金属粉末的设备及其方法。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种等离子体制备金属粉末的设备,其特征在于,包括进料电机、高温等离子体射流发生器、高效分段冷却塔和粉末收集器,所述高效分段冷却塔顶部设置有三个成中心对称分布的进料口以及设置于中心位置的发生器喷口,所述进料口延长线相交于一点,所述进料口内设置有料材,所述进料电机设置于料材尾部,所述料材尾部还连接有三相交流电源,所述发生器喷口与高温等离子体射流发生器连通,所述粉末收集器与高效分段冷却塔底部出口连通,所述高效分段冷却塔塔体由上至下设置有数个进气口。
优选的,所述三相交流电源为电流稳定型电源,同时能够对各料材远端电压进行监测回馈。
优选的,所述进料电机为伺服电机,所述进料电机与三相交流电源电性连接,所述进料电机通过各料材远端电压的监测回馈调整进料速率弥补电压波动。
优选的,所述高效分段冷却塔内部于发生器喷口处设置有高温气流加速喷管,所述高温气流加速喷管为收缩-扩张结构,射流在喉部达到音速,而后在扩张段超过音速。
优选的,所述高效分段冷却塔的进气口进气方向与塔体内壁相切。
优选的,所述粉末收集器底部设置有余热回收装置,所述余热回收装置底部出风口与高效分段冷却塔塔体的进气口连通。
一种等离子体制备金属粉末的方法,其特征在于:包括如下步骤:
(1)三路料材由进料电机驱动共同按预设定速度向中心运动,当三路料材相互迫近后由三相交流电源在料材间建立自由电弧,电流依次流过各料材,通过焦耳热使料材升温熔化,熔化的料材在高温高速等离子体射流的撞击下破碎雾化成细小的金属液滴;
(2)金属液滴下落入高效分段冷却塔,高效分段冷却塔的初段通入约300~500℃气体,使液滴缓慢冷却,以保证其球化时间,在冷却后段通入与室温相近的气体,加快液滴冷却凝固进程,最终形成球形度和微观结构良好的高品质金属粉末;
(3)高品质金属粉末通过气力输送进入粉末收集器,脱除粉末的气体则进入余热回收装置,而后被收集的气体经过处理后用于分段冷却塔的进气。
优选的,所述步骤(1)中进料电机后续驱动速度由三相交流电源的电压检测回馈进行实时调整。
优选的,所述步骤(3)中余热回收装置的回收预热重新用于对进料的料材7进行辅助加热。
综上所述,本发明具有以下有益效果:
1.本发明通过三路料材同时进行进料,能够提高设备整体的工作产量。
2.本发明通过采用电流做功使得料材进行自发热,加热效率高,加热效果好,产率提升效果更加明显。
3.本发明以工业较易获取的三相交流电作为预热能源,仅需变压即可投入工作,设备投资成本低。
4.本发明以工业较易获取的三相交流电作为预热能源,各路材料依次作为电路阴、阳极,保证消耗速率相近,便于进料速率控制。
5.本发明通过设置分段冷却塔进行分段冷却,有效保证金属液滴球化所需时间,以及抑制金属微观结构因高温造成的破坏程度,提升金属粉末品质。
6.本发明以切线方向通入冷却气,使尚处于液态的颗粒随等离子体射流于炉腔中心竖直下落,而已经固化成型的粉末随气流沿雾化炉壁面旋转并被携出炉腔,降低成型颗粒与液态颗粒的碰撞几率,提升粉末球形度。
7.本发明通过设置余热回收,有效提升全系统的能量平衡,优化系统能效。
附图说明
图1是本发明的整体结构示意图;
图2是本发明的俯视图;
图3是三路料材产生三相交流自由电弧的电路连接方式。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明,本实施例不构成对本发明的限制。
如图1至3所示的一种等离子体制备金属粉末的设备,包括进料电机1、高温等离子体射流发生器2、高效分段冷却塔3和粉末收集器4,高效分段冷却塔3顶部设置有三个成中心对称分布的进料口5以及设置于中心位置的发生器喷口6,如图2所示,进料口5延长线相交于一点,进料口5内设置有料材7,进料电机1设置于料材7尾部,料材7尾部还连接有三相交流电源8,发生器喷口6与高温等离子体射流发生器2连通,粉末收集器4与高效分段冷却塔3底部出口连通,高效分段冷却塔3塔体由上至下设置有数个进气口9。
三相交流电源8为电流稳定型电源,采用工业上较易获取的三相交流电进行变压工作,同时能够对各料材7远端电压进行监测回馈,进料电机1为伺服电机,进料电机1与三相交流电源8电性连接,进料电机1通过各料材7远端电压的监测回馈及时调整进料速率弥补电压波动,从而实现料材7进料的稳定。
高效分段冷却塔3内部于发生器喷口6处设置有高温气流加速喷管11,高温气流加速喷管11为收缩-扩张结构,射流在喉部达到音速,而后在扩张段超过音速,高温等离子体射流发生器2是破碎、雾化熔融金属料材的能量来源,通过在发生器喷口6处设置有高温气流加速喷管11,能够实现将高温气流加速至1200m/s以上。
高效分段冷却塔3的进气口9进气方向与塔体内壁相切,从而为塔内制造稳定平缓的层流冷却环境,减少金属液滴互相碰撞的几率。
粉末收集器44底部设置有余热回收装置10,余热回收装置10底部出风口与高效分段冷却塔3塔体的进气口9连通,余热回收装置10能够将脱除粉末后的气体热量进行回收,回收的余热再进行重新利用,对进料的料材7进行辅助加热。
一种等离子体制备金属粉末的方法,包括如下步骤:
(1)三路料材7由进料电机1驱动共同按预设定速度向中心运动,如图3所示当三路料材7相互迫近后由三相交流电源8在料材7间建立自由电弧,电流依次流过各料材7,通过焦耳热使料材7升温熔化,熔化的料材7在高温高速等离子体射流的撞击下破碎雾化成细小 的金属液滴,进料电机1后续驱动速度由三相交流电源8的电压检测回馈进行实时调整。
(2)金属液滴下落入高效分段冷却塔3,高效分段冷却塔3的初段通入约300~500℃气体,使液滴缓慢冷却,以保证其球化时间,在冷却后段通入与室温相近的气体,加快液滴冷却凝固进程,最终形成球形度和微观结构良好的高品质金属粉末。
(3)高品质金属粉末通过气力输送进入粉末收集器4,金属粉末被收集至粉末收集器4内,脱除粉末的气体则进入余热回收装置10,而后被收集的气体经过处理后用于高效分段冷却塔3的进气。
本发明通过采用三路料材进行同时进料,利用三相交流电源直接加热料材,并通过分段冷却的方式实现金属液滴的快速球化凝固,产量能够得到极大的提升,同时加热效率更高,投资的成本也更低,有效保证金属液滴球化需时,也能抑制金属微观结构因高温造成的破坏程度,从而得到高品质的金属粉末,再通过后续的预热回收,有效提升全系统的能量平衡,优化系统能效。
以上所述,仅是本发明的较佳实施例而已,不用于限制本发明,本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明技术方案的保护范围内。

Claims (9)

  1. 一种等离子体制备金属粉末的设备,其特征在于,包括进料电机、高温等离子体射流发生器、高效分段冷却塔和粉末收集器,所述高效分段冷却塔顶部设置有三个成中心对称分布的进料口以及设置于中心位置的发生器喷口,所述进料口延长线相交于一点,所述进料口内设置有料材,所述进料电机设置于料材尾部,所述料材尾部还连接有三相交流电源,所述发生器喷口与高温等离子体射流发生器连通,所述粉末收集器与高效分段冷却塔底部出口连通,所述高效分段冷却塔塔体由上至下设置有数个进气口。
  2. 根据权利要求1所述的一种等离子体制备金属粉末的设备,其特征在于:所述三相交流电源为电流稳定型电源,同时能够对各料材远端电压进行监测回馈。
  3. 根据权利要求1所述的一种等离子体制备金属粉末的设备,其特征在于:所述进料电机为伺服电机,所述进料电机与三相交流电源电性连接,所述进料电机通过各料材远端电压的监测回馈调整进料速率弥补电压波动。
  4. 根据权利要求1所述的一种等离子体制备金属粉末的设备,其特征在于:所述高效分段冷却塔内部于发生器喷口处设置有高温气流加速喷管,所述高温气流加速喷管为收缩一扩张结构,射流在喉部达到音速,而后在扩张段超过音速。
  5. 根据权利要求1所述的一种等离子体制备金属粉末的设备,其特征在于:所述高效分段冷却塔的进气口进气方向与塔体内壁相切。
  6. 根据权利要求1所述的一种等离子体制备金属粉末的设备,其特征在于:所述粉末收集器底部设置有余热回收装置,所述余热回收装置底部出风口与高效分段冷却塔塔体的进气口连通。
  7. 一种等离子体制备金属粉末的方法,其特征在于:包括如下步骤:
    (1)三路料材由进料电机驱动共同按预设定速度向中心运动,当三路料材相互迫近后由三相交流电源在料材间建立自由电弧,电流依次流过各料材,通过焦耳热使料材升温熔化,熔化的料材在高温高速等离子体射流的撞击下破碎雾化成细小的金属液滴;
    (2)金属液滴下落入高效分段冷却塔,高效分段冷却塔的初段通入约300~500℃气体,使液滴缓慢冷却,以保证其球化时间,在冷却后段通入与室温相近的气体,加快液滴冷却凝固进程,最终形成球形度和微观结构良好的高品质金属粉末;
    (3)高品质金属粉末通过气力输送进入粉末收集器,脱除粉末的气体则进入余热回收装置,而后被收集的气体经过处理后用于分段冷却塔的进气。
  8. 根据权利要求7所述的一种等离子体制备金属粉末的方法,其特征在于:所述步骤(1)中进料电机后续驱动速度由三相交流电源的电压检测回馈进行实时调整。
  9. 根据权利要求7所述的一种等离子体制备金属粉末的方法,其特征在于:所述步骤(3)中余热回收装置的回收预热重新用于对进料的料材7进行辅助加热。
PCT/CN2021/112223 2021-06-21 2021-08-12 一种等离子体制备金属粉末的设备及其方法 WO2022267199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110685189.2 2021-06-21
CN202110685189.2A CN113414398A (zh) 2021-06-21 2021-06-21 一种等离子体制备金属粉末的设备及其方法

Publications (1)

Publication Number Publication Date
WO2022267199A1 true WO2022267199A1 (zh) 2022-12-29

Family

ID=77789474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112223 WO2022267199A1 (zh) 2021-06-21 2021-08-12 一种等离子体制备金属粉末的设备及其方法

Country Status (2)

Country Link
CN (1) CN113414398A (zh)
WO (1) WO2022267199A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226741B (zh) * 2021-12-22 2024-06-25 江苏天楹等离子体科技有限公司 一种电预热式等离子体雾化装置
CN114406276B (zh) * 2022-02-11 2024-03-29 江苏天楹等离子体科技有限公司 一种电弧激发超声波的等离子体雾化装置
CN115213420B (zh) * 2022-07-29 2024-04-26 江苏天楹等离子体科技有限公司 一种金属粉末制备炉

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197206A (ja) * 1982-04-30 1983-11-16 Hitachi Metals Ltd 高品位金属または合金粉末の製造方法
US20070062332A1 (en) * 2005-09-22 2007-03-22 Jones Robin M F Apparatus and method for clean, rapidly solidified alloys
CN1951861A (zh) * 2005-10-21 2007-04-25 苏舍美特科(美国)公司 制备高纯度自由流动的金属氧化物粉末的方法
CN101391307A (zh) * 2008-11-20 2009-03-25 核工业西南物理研究院 一种制备精细球形钨粉的方法
CN105855560A (zh) * 2016-05-27 2016-08-17 广州纳联材料科技有限公司 球形金属粉末及其制备方法
CN106011357A (zh) * 2016-07-22 2016-10-12 航天神洁(北京)环保科技有限公司 氢等离子体熔融还原炼铁方法和系统
DE102015004474A1 (de) * 2015-04-08 2016-10-13 Kai Klinder Anlage zur Herstellung von Metallpulver mit definiertem Korngrößenspektrum
JP2017087155A (ja) * 2015-11-12 2017-05-25 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法
CN107096925A (zh) * 2017-05-10 2017-08-29 江苏天楹环保能源成套设备有限公司 一种新型的等离子体雾化制备球型粉末系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813338D0 (en) * 1988-06-06 1988-07-13 Osprey Metals Ltd Powder production
JPH11323411A (ja) * 1998-05-18 1999-11-26 Daido Steel Co Ltd 低融点金属粉末およびその製造方法
JP4030365B2 (ja) * 2001-12-21 2008-01-09 東芝機械株式会社 溶解金属供給装置、溶解金属供給方法およびダイカストマシン
CN100500339C (zh) * 2003-09-25 2009-06-17 昆明理工大学 一种生产中低熔点金属及氧或氮化物粉末的装置和方法
JP5445744B2 (ja) * 2009-04-20 2014-03-19 株式会社日向製錬所 三相交流電極式円形電気炉とその炉体の冷却方法
CN101837461B (zh) * 2010-05-18 2012-03-28 张耀平 等离子喷雾生产金属粉末的方法
CN108213449A (zh) * 2013-07-11 2018-06-29 中国科学院福建物质结构研究所 一种制备钛基粉末材料的装置
CN105057689A (zh) * 2015-08-19 2015-11-18 山西卓锋钛业有限公司 一种制备3d打印用的超细微球形钛粉的装置及其方法
CN105252012B (zh) * 2015-11-18 2017-02-08 长春工业大学 一种多电极等离子弧连续制造金属粉末的装置及方法
WO2019232612A1 (en) * 2018-06-06 2019-12-12 Pyrogenesis Canada Inc. Method and apparatus for producing high purity spherical metallic powders at high production rates from one or two wires
CN109808049A (zh) * 2019-04-01 2019-05-28 四川大学 一种高温气体气雾化制备球形粉末的方法
CN111719087B (zh) * 2020-05-19 2021-06-01 陕西斯瑞新材料股份有限公司 一种医用CuFe合金粉的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197206A (ja) * 1982-04-30 1983-11-16 Hitachi Metals Ltd 高品位金属または合金粉末の製造方法
US20070062332A1 (en) * 2005-09-22 2007-03-22 Jones Robin M F Apparatus and method for clean, rapidly solidified alloys
CN1951861A (zh) * 2005-10-21 2007-04-25 苏舍美特科(美国)公司 制备高纯度自由流动的金属氧化物粉末的方法
CN101391307A (zh) * 2008-11-20 2009-03-25 核工业西南物理研究院 一种制备精细球形钨粉的方法
DE102015004474A1 (de) * 2015-04-08 2016-10-13 Kai Klinder Anlage zur Herstellung von Metallpulver mit definiertem Korngrößenspektrum
JP2017087155A (ja) * 2015-11-12 2017-05-25 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法
CN105855560A (zh) * 2016-05-27 2016-08-17 广州纳联材料科技有限公司 球形金属粉末及其制备方法
CN106011357A (zh) * 2016-07-22 2016-10-12 航天神洁(北京)环保科技有限公司 氢等离子体熔融还原炼铁方法和系统
CN107096925A (zh) * 2017-05-10 2017-08-29 江苏天楹环保能源成套设备有限公司 一种新型的等离子体雾化制备球型粉末系统

Also Published As

Publication number Publication date
CN113414398A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2022267199A1 (zh) 一种等离子体制备金属粉末的设备及其方法
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
CN108161019B (zh) 一种感应加热与射频等离子联合雾化制粉系统的制粉方法
CN106378460B (zh) 制备球形纯钛或钛合金粉末的等离子雾化方法及设备
CN204449311U (zh) 用于制备细粒径低氧球形钛及钛合金粉末的装置
CN104308168B (zh) 一种细粒径低氧球形钛及钛合金粉末的制备方法
CN105081337B (zh) 高频超音速等离子气体制备微细球状金属粉末方法及装置
CN204396886U (zh) 用于球形稀有金属粉末的制备装置
CN107983965B (zh) 高温等离子气雾化超细球形金属粉末制备方法及装备
CN108031855A (zh) 一种感应加热与射频等离子联合雾化制粉系统
CN106670487A (zh) 一种制备微细球形金属粉末的旋转电极及其方法
CN106925786B (zh) 基于均匀金属液滴喷射的多粒径均匀球形粉体批量制备装置与方法
CN114192790B (zh) 球形钛及钛合金粉末制备装置和方法
CN113231640B (zh) 一种惰性气体与等离子联合雾化金属粉末的装置及方法
CN103056378B (zh) 一种近球形钨粉的制备方法
CN102950293A (zh) 纳米铝粉的生产方法
CN112743096A (zh) 一种等离子雾化装置、金属粉末的制备装置及制备方法
US11702522B2 (en) Polymer-based spherical powder preparation device and preparation process
CN107470642A (zh) 一种粉末制备方法
CN215392473U (zh) 一种射频等离子旋转雾化制粉设备
CN204892966U (zh) 高频超音速等离子气体制备微细球状金属粉末的装置
CN207971424U (zh) 一种感应加热与射频等离子联合雾化制粉系统
CN113145853B (zh) 一种球状金属粉的气雾化制备装置及方法
WO2024124798A1 (zh) 一种具有流动性的3d打印钛合金粉末的制备装置及方法
CN113927039B (zh) 一种基于等离子的无坩埚气雾化制粉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946683

Country of ref document: EP

Kind code of ref document: A1