WO2022265080A1 - Resin and resin composition - Google Patents

Resin and resin composition Download PDF

Info

Publication number
WO2022265080A1
WO2022265080A1 PCT/JP2022/024200 JP2022024200W WO2022265080A1 WO 2022265080 A1 WO2022265080 A1 WO 2022265080A1 JP 2022024200 W JP2022024200 W JP 2022024200W WO 2022265080 A1 WO2022265080 A1 WO 2022265080A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
group
less
parts
Prior art date
Application number
PCT/JP2022/024200
Other languages
French (fr)
Japanese (ja)
Inventor
由貴 石川
祐美子 寺口
裕司 大東
尚輝 鴨志田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020237039744A priority Critical patent/KR20240021763A/en
Priority to CN202280036400.0A priority patent/CN117377702A/en
Priority to JP2022540746A priority patent/JPWO2022265080A1/ja
Publication of WO2022265080A1 publication Critical patent/WO2022265080A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/38Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a resin used as a binder and the like, and a resin composition comprising the resin.
  • Resins such as polyvinyl acetal-based resins, acrylic-based resins, and polyvinyl alcohol-based resins are widely used as organic binders.
  • Organic binders are used in interlayer films for laminated glass, inks, paints, baking enamels, lacquers, ceramic green sheets, heat-developable photosensitive materials, ink image-receiving layers, and the like.
  • polyvinyl acetal resins are generally acetalized unmodified polyvinyl alcohol, and so-called unmodified polyvinyl acetal resins having acetyl groups, hydroxyl groups, and acetal groups in side chains are widely used.
  • modified polyvinyl acetal resins having functional groups (modifying groups) other than acetyl groups, hydroxyl groups, and acetal groups have also been investigated in order to impart various functions.
  • Patent Documents 1 to 3 disclose modified polyvinyl acetal resins containing polyoxyalkylene groups in side chains.
  • carboxyl groups may be introduced into the binder resin to ensure a certain level of cohesion.
  • acrylic resins generally have structural units derived from carboxyl group-containing monomers such as (meth)acrylic acid.
  • the organic binder is sometimes used in a slurry solution together with the inorganic powder, and in this case, the inorganic powder solution stability is required to appropriately disperse the inorganic powder without increasing the viscosity.
  • a resin composition containing an organic binder is often shaped into a sheet, film, or the like, and is often required to have shape stability so that the shape can be maintained after being made into a predetermined shape.
  • organic binders are used in ceramic green sheets and the like, they are decarbonized by firing, but if organic substances remain after decarbonization, defects will occur in the fired product and the yield after firing will decrease. Therefore, it is required to improve the decarbonization property when removing the organic binder.
  • an object of the present invention is to provide a resin that can improve stability in inorganic powder solution, shape stability after forming into a predetermined shape, and decarbonization.
  • the present invention provides the following [1] to [14].
  • [1] A resin having a chlorine atom content and a free acid content of 0.03% by mass or less, and satisfying the requirements of Formula I and Formula II below.
  • thermoplastic resin is at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins.
  • thermoplastic resin is at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins.
  • at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins has a polyalkylene oxide structure.
  • polyalkylene oxide structure is represented by the following formula (1).
  • a 1 O is an oxyalkylene group having 2 to 6 carbon atoms
  • m is the average number of repetitions, and is 10 to 200.
  • R 1 is an alkyl group having 1 to 8 carbon atoms or It is a hydrogen atom.
  • the oxyalkylene group may be one type alone, or two or more types may be mixed.* indicates the bonding position with another group.
  • a resin that can improve stability in inorganic powder solutions, shape stability after forming into a predetermined shape, and decarbonization.
  • the resin of the present invention (hereinafter also referred to as carboxyl group content)]
  • the resin of the present invention (hereinafter sometimes referred to as resin (X) for convenience) has both a chlorine atomic weight and a free acid content of 0.03% by mass or less.
  • the slurry containing the resin (X) and the inorganic powder contains chlorine atoms or free acid It is difficult to increase the stability of the inorganic powder solution because the charge becomes unstable due to the influence of the amount, which causes thickening, phase separation, and the like.
  • the chlorine atomic weight is preferably 0.024% by mass or less, more preferably 0.020% by mass or less, and even more preferably 0.016% by mass, from the viewpoint of the stability of the inorganic powder solution. The lower the chlorine atom weight, the better, and it is sufficient if it is 0.0% by mass or more.
  • the free acid content is preferably 0.024% by mass or less, more preferably 0.020% by mass or less, and preferably 0.016% by mass or less, from the viewpoint of the stability of the inorganic powder solution.
  • the amount of the free acid may be 0.0% by mass or more from the viewpoint of the stability of the inorganic powder solution, but may be contained in a certain amount or more depending on the type of the resin (X). In the resin, it is preferable to contain a certain amount or more in order to increase the cohesive force and improve the adhesiveness.
  • the chlorine atom content and the free acid content are defined as 0.0% by mass when they are below the detection limit by the measuring method described later.
  • the total amount of chlorine atoms and free acids is preferably 0.05% by mass or less, and 0.03% by mass or less, from the viewpoint of the stability of an inorganic powder solution. is more preferably 0.024% by mass or less, still more preferably 0.016% by mass or less, and 0.0% by mass or more.
  • the amount of chlorine atoms and the amount of free acid can be reduced to the above upper limits or less by appropriately adjusting the production method of resin (X) and the components that make up resin (X).
  • the chlorine atomic weight can be measured by ion analysis using ion chromatography or the like, and the free acid content can be measured by a titration method.
  • the resin (X) of the present invention meets the requirements of Formula I and Formula II below.
  • Formula II: (A ⁇ C)/A >0.87 (However, with a TG/DTA (differential thermal/thermogravimetric simultaneous measurement device), in the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min, and the thermal analysis measurement is performed by holding at 600 ° C. for 10 minutes.
  • TG/DTA differential thermal/thermogravimetric simultaneous measurement device
  • the weight at 100°C is A
  • the weight at 200°C is B
  • the weight at 600°C for 10 minutes is C.
  • the value of (AB)/A represented by formula I serves as an index representing the content of high-boiling-point, low-molecular-weight components contained in resin (X). Therefore, when (AB)/A is 0.01 or more, the high-boiling low-molecular-weight components in the resin (X) increase, and when stored for a long period of time after molding into a predetermined shape such as a sheet, storage Part of the resin (X) evaporates inside, causing a change in shape and a problem of low shape stability.
  • the weight loss during heating of resin (X) from room temperature to 100° C. is mainly due to volatilization of water. Therefore, in the present invention, the temperature when measuring the weight A is set to 100 ° C. instead of room temperature, so that the value of (AB) / A is the ratio of low molecular weight components excluding the influence of moisture. It is an index that accurately indicates the
  • the value of (AB)/A is preferably as low as possible from the viewpoint of good shape stability, preferably 0.009 or less, more preferably 0.008 or less, and even more preferably 0.007 or less. Also, the value of (AB)/A is not particularly limited as long as it is 0 or more.
  • the value of (AC)/A represented by formula II is an index showing the decomposition rate of the resin (X) when heated at a high temperature.
  • the value of (AC)/A is 0.87 or less, the resin (X) is not sufficiently decomposed even by high temperature heating. Therefore, for example, when the decarbonization treatment is carried out by firing, etc., the amount of residual carbon increases, causing defects and the like, making it difficult to obtain a fired product or the like with a high yield.
  • (AC)/A is preferably 0.88 or more, more preferably 0.9 or more, and 0.88 or more, more preferably 0.9 or more, from the viewpoint of obtaining a baked product with a high yield by reducing the amount of residual carbon when decarbonizing. 91 or more is more preferable.
  • the higher the value of (AC)/A represented by formula II the better, and there is no particular limitation as long as it is 1 or less. Typically it will be less than 1, for example 0.99 or less.
  • the value of (AB)/A can be reduced by reducing the low-molecular-weight component of the resin (X). Further, (AC)/A can be increased by appropriately adjusting the type of resin (X) and the components constituting resin (X).
  • Resin (X) used in the present invention is preferably a thermoplastic resin.
  • a thermoplastic resin By using a thermoplastic resin, it becomes easier to mold the resin composition containing the resin (X) into a predetermined shape such as a sheet.
  • thermoplastic resins include polyvinyl acetal resins, acrylic resins, polyvinyl alcohol resins, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyurethane resins, and ionomer resins. These may be used individually by 1 type, and may use 2 or more types together. By using these resins, it becomes easy to increase the value of (AC)/A while reducing (AB)/A. Moreover, both the chlorine atom weight and the free acid radical weight can be reduced by appropriately adjusting the production method of the resin (X) and the monomer components constituting the resin (X).
  • thermoplastic resins described above at least one of polyvinyl acetal-based resins and polyvinyl alcohol-based resins is preferable from the viewpoint of excellent shape stability after molding into a predetermined shape and excellent decarbonization properties. .
  • polyvinyl acetal-based resins are preferred because they are easy to improve the stability of the inorganic powder solution.
  • thermoplastic resins may be used singly or in combination of two or more.
  • the weight average molecular weight (Mw) of the resin (X) of the present invention is preferably 15,000 or more and 1,000,000 or less. By making the weight average molecular weight equal to or higher than the above lower limit, it becomes easier to reduce (AB)/A, and by making it equal to or lower than the upper limit, it becomes easy to increase (AC)/A. Further, the weight average molecular weight (Mw) of the resin (X) is more preferably 50,000 or more, more preferably 100,000 or more, from the viewpoint of improving the shape stability after being formed into a predetermined shape such as a sheet shape or a film shape. is more preferred, and 150,000 or more is even more preferred.
  • the weight average molecular weight (Mw) is more preferably 600,000 or less, even more preferably 500,000 or less, and even more preferably 400,000 or less.
  • the weight average molecular weight (Mw) indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the resin (X) contains a polyvinyl alcohol resin, the measurement is performed after reacetylating all the hydroxyl groups of the polyvinyl alcohol resin.
  • the polyvinyl acetal resin As described above, it is more preferable to use a polyvinyl acetal-based resin as the resin (X).
  • the polyvinyl acetal resin may be a modified polyvinyl acetal resin or an unmodified polyvinyl acetal resin, but a modified polyvinyl acetal resin is preferred.
  • Polyvinyl acetal-based resins may be used singly or in combination of two or more.
  • the modified polyvinyl acetal resin may have a structure (modifying group) other than an acetal group, a hydroxyl group, and an acetyl group, and preferably has a modifying group in a side chain, as will be described later.
  • the value of (AC)/A can be increased by appropriately selecting the type of modifying group.
  • the polyvinyl acetal-based resin can be produced by the production method described later, even if it is a modified polyvinyl acetal resin, so that the low-molecular-weight component can be reduced, so that the value of (AB)/A can be easily reduced.
  • the modifying group in the present invention preferably has a polyalkylene oxide structure.
  • the polyvinyl acetal resin since the polyvinyl acetal resin has a polyalkylene oxide structure, it is excellent in thermal decomposability, the value of (AC)/A tends to be large, and decarbonization is excellent.
  • the polyalkylene oxide structure is as represented by the following formula (1).
  • a 1 O is an oxyalkylene group having 2 to 6 carbon atoms
  • m is the average number of repetitions, and is 10 to 200.
  • R 1 is an alkyl group having 1 to 8 carbon atoms or It is a hydrogen atom.
  • the oxyalkylene group may be one type alone, or two or more types may be mixed.* indicates the bonding position with another group.
  • the oxyalkylene group for A 1 O is an oxyalkylene group having 2 to 6 carbon atoms, preferably an oxyalkylene group having 2 to 4 carbon atoms, and more preferably an oxyalkylene group having 2 or 3 carbon atoms.
  • the alkylene group in the oxyalkylene group may be linear or may have a branched structure.
  • the oxyalkylene group includes, for example, an oxyethylene group, an oxypropylene group, or an oxybutylene group, preferably an oxyethylene group or an oxypropylene group.
  • One type of oxyalkylene group may be used alone, but two or more types may be used in combination.
  • each oxyalkylene group may be added at random or may be added in blocks, but is more preferably added at random.
  • the random structure makes it easier to increase the value of (AC)/A compared to the block structure.
  • the oxyalkylene group in the polyalkylene oxide structure preferably contains at least one of an oxyethylene group and an oxypropylene group, and also preferably contains both an oxyethylene group and an oxypropylene group.
  • both an oxyethylene group and an oxypropylene group may constitute a block structure, but more preferably constitute a random structure as described above.
  • the oxyalkylene group in the alkylene oxide structure consists of an oxyethylene group or an oxypropylene group, or has an oxyethylene group and an oxypropylene group, and these have a random structure, )/A can be easily increased.
  • the ratio (PO/EO) of the oxypropylene group to the oxyethylene group is, for example, 1/9 or more and 9/1 or less, preferably 2 /8 or more and 8/2 or less, more preferably 3/7 or more and 7/3 or less.
  • m in formula (1) that is, the average number of repeating oxyalkylene groups in the polyalkylene oxide structure is, for example, 10-200.
  • the average repetition number (that is, m in formula (1)) is preferably 15 to 80 from the viewpoint of increasing the value of (AC)/A and improving the decarbonization property, and more It is preferably 20-78, more preferably 25-75, even more preferably 30-70.
  • by increasing the number of repetitions it becomes easier to secure flexibility and the like, and moldability when forming into a sheet or the like tends to be improved.
  • the alkyl group for R 1 may be linear or may have a branched structure.
  • alkyl groups for R 1 include branched butyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl and t-butyl groups, n-pentyl group, branched pentyl group, n branched heptyl groups such as -hexyl group, branched hexyl group, n-heptyl group, isoheptyl group and 3-heptyl group; branched octyl groups such as n-octyl group, isooctyl group and 2-ethylhexyl group; R 1 may be either an alkyl group or a hydrogen atom.
  • the alkyl group may have 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1
  • the above polyalkylene oxide structure is preferably linked to the main chain via a linking group.
  • a linking group an ether bond (-O-), an ester bond (-COO-), an amide bond (-CONR-: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), or at least any of these bonds
  • a hydrocarbon group optionally having
  • the number of carbon atoms in the linking group is not particularly limited, but may be, for example, about 10 or less, preferably 4 or less.
  • the linking group does not need to have carbon atoms, and therefore the linking group may have 0 or more carbon atoms.
  • R in -CONR- is preferably a hydrogen atom.
  • the carbon number of the hydrocarbon group in the linking group may be, for example, about 1-10, preferably 1-4.
  • the polyalkylene oxide structure is linked to the main chain via either an ether bond or —CH 2 O—.
  • the polyalkylene oxide structure is attached to the backbone either through ether linkages or -CH 2 O- to facilitate its manufacture.
  • an oxygen atom is preferably bonded to the polyalkylene oxide structure.
  • a polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group. However, the polyvinyl acetal-based resin does not have to contain a hydroxyl group by being modified with a functional group.
  • the acetal group, hydroxyl group, and acetyl group are groups bonded directly to the main chain or via an oxygen atom, as shown in formulas (3-1) to (3-3) described later.
  • a hydroxyl group, etc., possessed by the polyalkylene oxide structure is not included.
  • the polyvinyl acetal-based resin is preferably modified to have a polyalkylene oxide structure represented by the above formula (1) as described above.
  • the modified polyvinyl acetal resin preferably has a modification amount of 0.1 mol % or more and 10 mol % or less with the polyalkylene oxide structure (that is, the functional group represented by formula (1)).
  • the amount modified by the polyalkylene oxide structure is preferably 0.2 mol% or more, more preferably 0.3 mol% or more, further preferably 0.4 mol% or more, and preferably 8 mol% or less. , is more preferably 6 mol % or less, and even more preferably 4 mol % or less.
  • the amount of modification by a functional group refers to the amount of functional groups with respect to all monomer units (usually all vinyl monomer units) constituting a polyvinyl acetal resin or a polyvinyl alcohol resin described later. represents a percentage.
  • the amount of modification can be calculated from the spectrum obtained by subjecting the polyvinyl acetal-based resin or polyvinyl alcohol-based resin to proton NMR measurement.
  • the degree of acetalization, the amount of hydroxyl groups, and the degree of acetylation, which will be described later, can be calculated from the spectrum obtained by performing proton NMR measurement.
  • the polyvinyl acetal-based resin has a vinyl group-derived structural unit as a main chain, and the functional group represented by formula (1) is bonded to the vinyl group-derived structural unit that constitutes the main chain. good. Therefore, the polyvinyl acetal-based resin preferably has a structural unit represented by the following formula (2). It is more preferable to have
  • R 2 is an ether bond (-O-), an ester bond (-COO-), an amide bond (-CONR-: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), or a hydrocarbon group that may have at least one of these bonds.
  • the carbon number of R 2 in formula (2) is, for example, 0-10, preferably 0-4.
  • R 2 is preferably an ether bond (--O--) or a hydrocarbon group having at least an ether bond.
  • a 1 O, R 1 , and m in the formulas (2), (2-1), and (2-2) are as described above, so description thereof will be omitted.
  • a polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group. That is, polyvinyl acetal-based resins typically have structural units represented by the following formulas (3-1), (3-2) and (3-3). Therefore, the modified polyvinyl acetal resin contains structural units represented by the following formulas (3-1), (3-2) and (3-3) and structural units represented by the above formula (2). It is preferable to have However, the polyvinyl acetal-based resin does not have a hydroxyl group and may not have the structural unit represented by formula (3-2). That is, the polyvinyl acetal-based resin has structural units represented by the following formulas (3-1) and (3-3), and optionally has a structural unit represented by the following formula (3-2). You may
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 19 carbon atoms.
  • the polyvinyl acetal-based resin does not have to have the polyalkylene oxide structure described above.
  • a polyvinyl acetal resin may be a modified polyvinyl acetal resin having a modifying group other than a polyalkylene oxide structure, or an unmodified polyvinyl acetal resin having no modifying group.
  • the polyvinyl acetal-based resin may be a modified polyvinyl acetal resin having the above-described polyalkylene oxide structure and a modifying group other than the polyalkylene oxide structure.
  • the number of carbon atoms in the acetal group contained in the polyvinyl acetal-based resin is not particularly limited. ⁇ 6 is more preferred, and 2, 3 or 4 is even more preferred. Therefore, the number of carbon atoms in R represented by the formula (3-1) is preferably 1 to 9, more preferably 1 to 5, even more preferably 1 to 3. R is preferably linear, but may be partly alicyclic or aromatic.
  • the acetal group is particularly preferably a butyral group, and therefore, the polyvinyl acetal-based resin is preferably a polyvinyl butyral-based resin.
  • the degree of acetalization (that is, the amount of acetal) of the polyvinyl acetal-based resin is preferably 40 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, and even more preferably 64 mol% or more. Also, the degree of acetalization is preferably 90 mol % or less, more preferably 88 mol % or less, even more preferably 85 mol % or less, still more preferably 79 mol % or less. By setting the degree of acetalization within these ranges, it becomes easier to contain a certain amount of the hydroxyl group and the functional group represented by the formula (1).
  • the degree of acetalization means the degree of acetoacetalization when the acetal group of the polyvinyl acetal-based resin is an acetoacetal group, and the degree of butyralization when the acetal group is a butyral group. . Further, the degree of acetalization represents the ratio of acetalized vinyl alcohol units to all monomer units constituting the polyvinyl acetal-based resin.
  • the hydroxyl group content of the polyvinyl acetal resin is preferably 50 mol % or less, more preferably 45 mol % or less, even more preferably 40 mol % or less, and even more preferably 35 mol % or less.
  • the hydroxyl group content of the polyvinyl acetal resin is preferably 0 mol % or more, but it is preferable to contain a certain amount of hydroxyl groups, preferably 5 mol % or more, more preferably 10 mol % or more, further preferably 15 mol % or more. mol % or more, and more preferably 20 mol % or more.
  • the amount of hydroxyl groups represents the ratio of hydroxyl groups to the total monomer units constituting the polyvinyl acetal-based resin.
  • the degree of acetylation (acetyl group content) of the polyvinyl acetal resin is, for example, 0.01 mol % or more and 50 mol % or less. Therefore, the degree of acetylation should also be below a certain value. Therefore, the degree of acetylation of the polyvinyl acetal resin is preferably 20 mol % or less, more preferably 15 mol % or less, still more preferably 12 mol % or less, and even more preferably 5 mol % or less.
  • the degree of acetylation of the modified polyvinyl acetal resin (A) is, for example, 0.01 mol % or more as described above, preferably 0.1 mol % or more, and more preferably 0.5 mol % or more.
  • the polyvinyl acetal-based resin used in the present invention is a modified polyvinyl acetal-based resin
  • it is obtained by acetalizing polyvinyl alcohol (also referred to as "raw material polyvinyl alcohol") with aldehyde and then reacting it with a modifier. can be done.
  • modified polyvinyl alcohol may be used as the raw material polyvinyl alcohol, but usually unmodified polyvinyl alcohol may be used.
  • the modified polyvinyl acetal-based resin can also be obtained by using modified polyvinyl alcohol as raw material polyvinyl alcohol and acetalizing the modified polyvinyl alcohol with aldehyde.
  • the raw polyvinyl alcohol polyvinyl alcohol having a degree of saponification of 80 to 99.8 mol % is generally used.
  • the aldehyde used in producing the polyvinyl acetal-based resin is not particularly limited, and is, for example, an aldehyde having 1 to 20 carbon atoms, but generally an aldehyde having 2 to 10 carbon atoms is preferably used.
  • the aldehyde having 2 to 10 carbon atoms is not particularly limited, and examples thereof include acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, and n-octylaldehyde.
  • aldehydes having 2 to 6 carbon atoms such as acetaldehyde, n-butyraldehyde, n-hexylaldehyde and n-valeraldehyde are preferable, aldehydes having 2, 3 and 4 carbon atoms are more preferable, and n-butyraldehyde is further preferable. preferable.
  • aldehydes may be used alone or in combination of two or more.
  • the polyvinyl acetal-based resin is preferably produced by the following production method, for example, when producing a modified polyvinyl acetal resin having a polyalkylene oxide structure.
  • polyoxyalkylene-modified polyvinyl alcohol is produced as a raw polyvinyl alcohol. Specifically, it is obtained by polymerizing a vinyl ester and a monomer containing a vinyl monomer having a polyoxyalkylene group to obtain a polymer, and then saponifying the polymer.
  • Alkali or acid is generally used for saponification, and alkali is preferably used.
  • an alkali or acid containing no chlorine may be used, for example, an inorganic alkali such as sodium hydroxide or potassium hydroxide may be used.
  • an inorganic alkali such as sodium hydroxide or potassium hydroxide may be used.
  • the saponification can be appropriately performed while reducing the chlorine atom weight in the resin (X).
  • the polyoxyalkylene-modified polyvinyl alcohol only one type may be used, or two or more types may be used in combination.
  • vinyl esters used in the above production method include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl isoformate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, Vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like can be used.
  • vinyl acetate is preferred.
  • vinyl monomers having a polyoxyalkylene group used in the above production method include compounds represented by the following formula (4).
  • a polyoxyalkylene vinyl ether represented by the following formula (4-1) and a polyoxyalkylene allyl ether represented by the following formula (4-2) are preferable.
  • vinyl monomers having a polyoxyalkylene group include polyoxyethylene monovinyl ether, polyoxyethylene polyoxypropylene monovinyl ether, polyoxypropylene monovinyl ether, polyoxyethylene monoallyl ether, polyoxyethylene polyoxypropylene mono Allyl ether, polyoxypropylene monoallyl ether, polyoxyethylene alkyl vinyl ether, polyoxyethylene polyoxypropylene alkyl vinyl ether, polyoxypropylene alkyl vinyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene alkyl allyl ether, polyoxyethylene polyoxypropylene alkyl allyl ether, polyoxy and propylene alkyl allyl ether.
  • the modified polyvinyl alcohol obtained above is acetalized with an aldehyde to obtain a modified polyvinyl acetal resin.
  • an acid catalyst and an aldehyde are added to a polyvinyl alcohol solution in which modified polyvinyl alcohol is dissolved in water, and the obtained polyvinyl acetal resin is preferably precipitated as particles.
  • the acid catalyst is less likely to be incorporated into the particles, and even if hydrochloric acid is used as the acid catalyst, the chlorine atom weight in the resin (X) can be reduced.
  • the particles of the polyvinyl butyral resin to be deposited have a certain size or more, it is possible to prevent the solution from becoming an emulsion after the deposition, thereby facilitating the collection of the particles.
  • the method of adjusting the particle size is not particularly limited, but a method of adjusting the concentration of the modified polyvinyl alcohol in the polyvinyl alcohol solution, the temperature when the polyvinyl acetal resin is precipitated, and the temperature when the reaction is continued after the precipitation is adjusted. or a method of combining them.
  • modified polyvinyl alcohol is added to water and heated to obtain a polyvinyl alcohol solution in which the modified polyvinyl alcohol is dissolved in water.
  • concentration of the modified polyvinyl alcohol in the polyvinyl alcohol solution is, for example, 3% by mass or more and 15% by mass or less, preferably 5% by mass or more and 13% by mass or less, and still more preferably 7.5% by mass or more and 11% by mass or less. be.
  • concentration is equal to or higher than the lower limit, it is possible to prevent the solution from becoming an emulsion after precipitation, and to appropriately collect the precipitated polyvinyl butyral resin particles.
  • the polyvinyl alcohol solution may be heated to a temperature of, for example, 50° C. or higher and 100° C. or lower, preferably 60° C. or higher and 100° C. or lower. It is preferable to set the dissolution temperature in multiple stages according to the modified chain length, modified amount, and degree of saponification. Specifically, it is preferable to raise the temperature to 90° C. or higher after constant temperature at 60° C. for 1 hour and keep the temperature constant for 1 hour.
  • the solubility of the modified group portion and the hydroxyl group portion of the polyvinyl alcohol can be improved by dissolving at a constant temperature in multiple steps.
  • the polyvinyl alcohol solution is cooled, for example, to ⁇ 5° C. or higher and 60° C. or lower, preferably 10° C. or higher and 55° C. or lower.
  • an acid catalyst and an aldehyde are added to the polyvinyl alcohol solution maintained within the above temperature range, and after the addition, the liquid temperature is adjusted to, for example, ⁇ 10° C. or higher and 55° C. or lower, preferably 0° C. or higher and 50° C. or lower. More preferably, the temperature is lowered to 20° C. or higher and 45° C. or lower, and even more preferably 23° C. or higher and 40° C. or lower.
  • the acetalization reaction is allowed to proceed in the temperature range, for example, for 30 seconds or more and 60 minutes or less, preferably 1 minute or more and 30 minutes or less, more preferably 25 minutes or less, and even more preferably 20 minutes or less, to obtain a reaction product. should be deposited. Thereafter, for example, the liquid temperature is raised to 35° C. or higher and 80° C. or lower, preferably 40° C. or higher and 75° C. or lower, more preferably 43° C. or higher and 70° C. or lower, still more preferably 45° C. or higher and lower than 65° C., and the temperature range The reaction is allowed to proceed further for, for example, 10 minutes or more and 360 minutes or less, preferably 30 minutes or more and 300 minutes or less.
  • the temperature before the reaction is set to a relatively high range to improve the compatibility with the catalyst and aldehyde, and the temperature at which the reaction product is deposited and then the reaction is allowed to proceed further.
  • the temperature at the time is set to a relatively low temperature range, the grain size of the precipitated particles can be reduced.
  • Various inorganic acids may be used as the acid catalyst used in the acetalization reaction, but it is preferable to use hydrochloric acid or sulfuric acid in order to facilitate the acetalization reaction.
  • the amount of the acid catalyst used is, for example, 0.5% by mass or more and 6% by mass or less, preferably 1% by mass or more and 4% by mass or less with respect to 100 parts by mass of modified polyvinyl alcohol as a raw material.
  • the precipitated reaction product can be obtained as a modified polyvinyl acetal resin through neutralization, washing with water, and drying in a conventional manner.
  • washing with water and dehydration may be performed multiple times in order to reduce the amount of chlorine atoms in the modified polyvinyl butyral resin.
  • the polyvinyl alcohol-based resin (PVA) used as the resin (X) is obtained by polymerizing a vinyl ester to obtain a polymer and then saponifying, ie, hydrolyzing the polymer according to a conventionally known method.
  • PVA polyvinyl alcohol-based resin
  • only 1 type may be used independently and 2 or more types may be used together.
  • the vinyl ester used in the production of PVA is as described for the polyvinyl acetal resin, preferably vinyl acetate.
  • PVA may be unmodified PVA or modified PVA, but modified PVA is preferred.
  • the modified PVA preferably has a polyalkylene oxide structure.
  • the polyalkylene oxide structure has the structure of the formula (1) as described in the polyvinyl acetal-based resin, and details such as the amount of modification are as described above.
  • unmodified PVA examples include those obtained by saponifying polyvinyl ester.
  • Modified PVA includes saponified polymers of vinyl esters and other unsaturated monomers.
  • the degree of saponification of polyvinyl alcohol is generally 70-99.9 mol %.
  • other unsaturated monomers include unsaturated monomers having modifying groups, preferably unsaturated monomers having a polyalkylene oxide structure.
  • the unsaturated monomer having a polyalkylene oxide structure is preferably a vinyl monomer having a polyoxyalkylene group represented by the above formula (4).
  • the details of the vinyl monomer having a polyoxyalkylene group are as described above for the polyvinyl acetal resin.
  • the polyvinyl alcohol-based resin can be produced in the same manner as the raw material polyvinyl alcohol described above.
  • Polyvinyl alcohol-based resins can be produced by, for example, the above-described production method, so that the low-molecular-weight components can be reduced, so that the value of (AB)/A can be easily reduced.
  • PVA generally has a structural unit of the above formula (3-2), but in addition to the structural unit of the above formula (3-2), it has a structural unit of the above formula (3-3).
  • PVA preferably has a polyalkylene oxide structure, and therefore preferably has a structural unit represented by formula (2), among which the above formulas (2-1) and (2-2) It is more preferable to have any of the structural units represented by The details of formula (2), formula (2-1) and formula (2-2) are as described above.
  • the acrylic resin used as resin (X) is an acrylic polymer.
  • An acrylic polymer is a homopolymer of an acrylic monomer having a (meth)acryloyl group in its molecule, or a copolymer obtained by copolymerizing a monomer containing an acrylic monomer.
  • Acrylic resin may be used individually by 1 type, and may use 2 or more types together.
  • (meth)acryloyl group means acryloyl group or methacryloyl group
  • (meth)acrylate” means acrylate or methacrylate, and the same applies to other similar terms.
  • An acrylic monomer constituting an acrylic polymer is, for example, a monofunctional monomer having one (meth)acryloyloxy group.
  • acrylic monomers include alkyl (meth)acrylates, alicyclic structure-containing (meth)acrylates, and aromatic ring-containing (meth)acrylates.
  • Monofunctional monomers constituting acrylic polymers include monomers having functional groups such as cyclic ether groups, hydroxyl groups, carboxyl groups, amino groups, amide groups, polyoxyethylene groups, and alkoxy groups (hereinafter referred to as "functional group-containing (also referred to as "monomer").
  • functional group-containing monomers include cyclic ether group-containing (meth)acrylates, hydroxyl group-containing (meth)acrylates, carboxyl group-containing monomers, amino group-containing monomers, amide group-containing monomers, polyoxyethylene group-containing monomers, Examples include alkoxy-containing monomers.
  • alkyl (meth)acrylates include alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, isomyristyl (meth) Acrylate, stearyl (meth)acrylate, isostearyl (meth) (
  • the alicyclic structure-containing (meth)acrylates include cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and the like.
  • aromatic ring-containing (meth)acrylates include benzyl (meth)acrylate and phenoxyethyl (meth)acrylate.
  • Cyclic ether group-containing (meth)acrylates include those having an epoxy ring.
  • Epoxy ring-containing (meth)acrylates include, for example, glycidyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate glycidyl ether, 3-hydroxypropyl (meth)acrylate glycidyl ether, 4-hydroxybutyl acrylate glycidyl ether, 5- Hydroxypentyl (meth)acrylate glycidyl ether, 6-hydroxyhexyl (meth)acrylate glycidyl ether and the like.
  • Carboxyl group-containing monomers include acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone mono(meth)acrylate, ⁇ -carboxyethyl (meth)acrylate, 2-(meth)acryloyloxyethyl phthalate, 2-(meth) ) acryloyloxyethyl hexahydrophthalic acid and the like.
  • the number of repeating units of polycaprolactone in ⁇ -carboxy-polycaprolactone mono(meth)acrylate is about 2-5, preferably 2-3.
  • the carboxyl group-containing acrylic monomer is preferably at least one selected from the group consisting of acrylic acid and methacrylic acid.
  • hydroxyl group-containing acrylic monomers examples include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. Among these, 2-hydroxyethyl (meth)acrylate is preferable.
  • amino group-containing monomers include N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate and the like.
  • Amide group-containing monomers include N,N-dimethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-diethyl(meth)acrylamide and N-hydroxyethyl(meth)acrylamide.
  • Polyoxyethylene-containing (meth)acrylates include diethylene glycol monoethyl ether (meth)acrylate.
  • Alkoxy-containing monomers include 3-methoxybutyl (meth)acrylate.
  • the monomers constituting the acrylic polymer preferably contain one or more selected from the group consisting of alkyl (meth)acrylates and alicyclic structure-containing (meth)acrylates.
  • the total content of monomers selected from these is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total amount of monomers constituting the acrylic polymer.
  • alkyl (meth)acrylates are preferably used as monomers constituting the acrylic polymer.
  • the alkyl (meth)acrylate is more preferably used together with one selected from alicyclic structure-containing (meth)acrylates, and more preferably used together with the alicyclic structure-containing (meth)acrylate.
  • the acrylic monomer constituting the acrylic polymer preferably contains the functional group-containing monomer in addition to the acrylic monomer selected from the group consisting of alkyl (meth)acrylates and alicyclic structure-containing (meth)acrylates.
  • the total content of functional group-containing monomers is preferably 0.05% by mass or more and 50% by mass or less, more preferably 0.1% by mass or more and 40% by mass or less, and still more preferably based on the total amount of monomers constituting the acrylic polymer. is 1% by mass or more and 30% by mass or less.
  • the functional group-containing monomer preferably contains a carboxyl group-containing monomer among those described above.
  • the acrylic monomer constituting the acrylic polymer contains a carboxyl group-containing monomer, the cohesive force of the resin is improved, the adhesiveness can be improved, and the resin can be appropriately used as a binder.
  • the carboxyl group-containing monomer should be used only in a small amount in order to reduce the amount of carboxyl groups, as described above. Therefore, the content of the carboxyl group-containing monomer is preferably 0.003% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 3% by mass or less, based on the total amount of monomers constituting the acrylic polymer. It is preferably 0.01% by mass or more and 1% by mass or less.
  • Monomers other than the above-described monomers may be used in combination with the monomers that constitute the acrylic polymer.
  • polyfunctional monomers may be used as the monomers constituting the acrylic polymer as long as they do not impair the effects of the present invention.
  • a known polyfunctional (meth)acrylate may be used as the polyfunctional monomer.
  • the acrylic polymer may be polymerized by a solution polymerization method, a suspension polymerization method, or the like, but may be polymerized by irradiating an active energy ray.
  • the acrylic polymer should have a low amount of low molecular weight components in order to lower the value of (AB)/A. Therefore, the acrylic polymer is preferably polymerized by irradiation with active energy rays, particularly ultraviolet rays (UV).
  • Active energy rays particularly ultraviolet rays (UV).
  • Polymerization with active energy rays is preferably carried out in the presence of a polymerization initiator. More preferably, the polymerization is carried out by UV irradiation without containing components (solvent, etc.) other than the monomer and the initiator in the reaction system.
  • the resin composition of the present invention is a resin composition containing resin (X).
  • the resin composition may contain components other than the resin (X) depending on its use, and may contain, for example, a plasticizer and additives other than the plasticizer as appropriate.
  • Additives other than plasticizers include, specifically, ultraviolet absorbers, infrared absorbers, antioxidants, light stabilizers, adhesion modifiers, pigments, dyes, fluorescent brighteners, crystal nucleating agents, surfactants and dispersants such as agents.
  • the resin composition of the present invention may contain resin components other than the resin (X) within a range that does not impair the effects of the present invention.
  • the resin composition of the present invention contains a solvent and may be used after being diluted with a solvent.
  • the resin composition of the present invention may contain a plasticizer as described above. By containing a plasticizer, the resin composition becomes flexible and can be easily molded into a predetermined shape such as a sheet. However, the resin composition of the present invention preferably does not contain a plasticizer or contains a small amount of plasticizer. By containing only a small amount of the plasticizer or not containing it, it becomes easier to improve the shape stability after molding the resin composition into a predetermined shape such as a sheet. In addition, the resin composition of the present invention can improve the adhesiveness to various materials by using the above-described predetermined resin (X) even if the plasticizer is small or not contained, and can be used as a binder. The physical properties of are sufficiently secured.
  • X predetermined resin
  • the content of the plasticizer in the resin composition is preferably less than 40 parts by mass with respect to 100 parts by mass of the resin (X) contained in the resin composition. By setting the plasticizer to less than 40 parts by mass, it becomes easier to improve the shape stability after molding the resin composition into a predetermined shape such as a sheet.
  • the content of the plasticizer is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, even more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the content of the plasticizer may be 0 parts by mass or more, it is also preferable that the resin composition does not contain the plasticizer, that is, the content of the plasticizer is 0 parts by mass.
  • plasticizers include organic ester plasticizers, organic phosphorus plasticizers such as organic phosphate ester plasticizers and organic phosphite ester plasticizers, polyalkylene glycol plasticizers, polyoxyalkylene ether plasticizers, and the like. organic ether-based plasticizers, alcohol-based plasticizers, and the like.
  • a plasticizer may be used individually by 1 type, and may use 2 or more types together. Among them, organic ester plasticizers and polyalkylene glycol plasticizers are preferred, and organic ester plasticizers are more preferred.
  • Preferred organic ester plasticizers include monobasic organic acid esters and polybasic organic acid esters. Also, the type of plasticizer to be used may be appropriately selected depending on the type of resin (X).
  • the resin (X) is either a polyvinyl acetal resin or an acrylic resin
  • an organic ester plasticizer is preferably used. It is preferable to use a polyalkylene glycol-based plasticizer.
  • Monobasic organic acid esters include esters of glycols with monobasic organic acids.
  • Glycols include polyalkylene glycols in which each alkylene unit has 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms, and the number of repeating alkylene units is 2 to 10, preferably 2 to 4.
  • the glycol may also be a monoalkylene glycol having 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms (that is, 1 repeating unit).
  • Specific examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and butylene glycol.
  • Examples of monobasic organic acids include organic acids having 3 to 10 carbon atoms, and specific examples include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, and 2-ethylhexylic acid. , n-nonylic acid and decylic acid.
  • Specific monobasic organic acids include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, di Propylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicapryate, triethylene glycol di-n-heptanoate, tetraethylene glycol Di-n-heptanoate, triethylene glycol di-2-ethylbutyrate,
  • polybasic organic acid esters examples include ester compounds of dibasic organic acids having 4 to 12 carbon atoms such as adipic acid, sebacic acid, azelaic acid and phthalic acid and alcohols having 4 to 10 carbon atoms. is mentioned.
  • the alcohol having 4 to 10 carbon atoms may be linear, branched, or cyclic.
  • oil-modified alkyd sebacic acid may be used.
  • Mixed adipates include adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms.
  • the organic phosphorus plasticizer include phosphoric acid esters such as tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • the organic ester plasticizer is not limited to the complete ester of each ester described above, and may be a partial ester.
  • it may be a partial ester between a glycol and a monobasic organic acid, or a partial ester between a dibasic organic acid and an alcohol.
  • Specific examples include triethylene glycol-mono-2-ethylhexanoate.
  • it may be a trihydric or higher alcohol such as glycerin and a partial ester of a monobasic organic acid.
  • Monobasic organic acids include monobasic organic acids having 3 to 24 carbon atoms, preferably 6 to 18 carbon atoms.
  • partial esters of trihydric or higher alcohols and monobasic organic acids include mono- or diesters of glycerin and stearic acid and mono- or diesters of glycerin and 2-ethylhexyl acid.
  • organic ester plasticizers triethylene glycol-di-2-ethylhexanoate (3GO) and dioctyl adipate (DOA) are particularly preferably used.
  • Polyalkylene glycol-based plasticizers include polyethylene glycol, polypropylene glycol, poly(ethylene oxide/propylene oxide) block copolymer, poly(ethylene oxide/propylene oxide) random copolymer, polytetramethylene glycol and the like. Among them, polypropylene glycol is preferred.
  • a polyoxyalkylene ether-based plasticizer is an ether compound of a monohydric or polyhydric alcohol and polyoxyalkylene.
  • Specific polyoxyalkylene ether plasticizers include, for example, polyoxyethylene hexyl ether, polyoxyethylene heptyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene Ethylene decyl ether, polyoxyethylene allyl ether, polyoxypropylene allyl ether, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene diglyceryl ether, polyoxypropylene diglyceryl ether, polyoxyalkylene pentaerythritol ether, poly and caprolactone triol.
  • the polyoxyalkylene ether plasticizer is preferably an ether compound of polyhydric alcohol and polyoxyalkylene, more preferably an ether compound of glycerin or diglycerin and polyoxyalkylene, still more preferably glycerin or diglycerin. and polyoxypropylene.
  • Alcohol plasticizers include alcohols other than polyalkylene glycol plasticizers and polyoxyalkylene ether plasticizers. Specific examples include various polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, trimethylolpropane, pentaerythritol, glycerin and diglycerin. Among these, ethylene glycol is preferred.
  • the resin other than the resin (X) that can be used in combination with the resin (X) is preferably a thermoplastic resin.
  • thermoplastic resins used for resins other than resin (X) include polyvinyl acetal resins, acrylic resins, polyvinyl alcohol resins, polyvinyl acetates, ethylene-vinyl acetate copolymers, polyurethane resins, and ionomers. resin.
  • polyvinyl acetal-based resins, acrylic-based resins, and polyvinyl alcohol-based resins are preferable, and polyvinyl acetal-based resins are more preferable. These may be used individually by 1 type, and may use 2 or more types together.
  • the content of the resin other than the resin (X) may be within a range that does not impair the object of the present invention.
  • it is less than 100 parts by mass, preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 15 parts by mass or less.
  • the lower limit thereof is not particularly limited, and may be 0 parts by mass or more.
  • the resin (X) and resin composition of the present invention can be used in various applications.
  • the resin (X) and the resin composition may be used in interlayer films for laminated glass, inks, paints, baking enamels, lacquers, ceramic green sheets, electrode pastes, heat-developable photosensitive materials, ink image-receiving layers. , lithium ion batteries, solar batteries, pressure-sensitive adhesive sheets, modifiers, etc., as a binder. It may also be used as an additive or dispersant in each of these uses or other than these uses.
  • the sheet containing the resin (X) may be used as a protective sheet or the like that is attached to an adherend to protect the adherend in the manufacturing process.
  • the protective sheet is preferably attached to a wafer or the like in a semiconductor manufacturing process to protect the wafer or the like. Since the sheet containing the resin (X) of the present invention is excellent in shape stability after sheet molding, it becomes easy to protect various adherends. When used as a protective sheet, the protective sheet may have at least one layer made of the resin composition containing the resin (X).
  • the resin (X) and the resin composition are preferably used in combination with an inorganic powder, as described later, and particularly preferably used for firing.
  • the resin composition containing the inorganic powder described later is formed into a predetermined shape such as a sheet, and then fired to obtain a fired product. preferably used in a method.
  • the resin (X) and the resin composition are preferably used for ceramic green sheets or electrode pastes among the above.
  • the resin composition of the present invention preferably contains an inorganic powder in addition to the resin (X). Further, even when the resin composition contains inorganic powder, as described above, the resin composition may appropriately contain a plasticizer or an additive other than the plasticizer.
  • the resin composition containing inorganic powder will be referred to as "inorganic powder-containing resin composition”
  • the later-described inorganic powder-containing resin composition in the form of slurry will be referred to as "slurry composition”.
  • the inorganic powder-containing resin composition generally further contains a solvent and is preferably used in the form of slurry.
  • the resin (X) of the present invention has high inorganic powder solution stability, and when used in combination with an inorganic powder in a slurry, improves the dispersibility of the inorganic powder and prevents the viscosity of the slurry from increasing. can be done.
  • the content of the resin (X) in the slurry composition is preferably 1% by mass or more and 20% by mass or less with respect to the total amount of the slurry composition.
  • the content of the resin (X) in the slurry composition By setting the content of the resin (X) in the slurry composition to 1% by mass or more, the film-forming property and flexibility of the ceramic green sheet can be improved, and the occurrence of cracks and the like after sintering can be prevented. Moreover, by setting the resin (X) content to 20% by mass or less, the viscosity of the slurry composition is prevented from becoming too high, and the dispersibility of the slurry composition is prevented from deteriorating. Moreover, the decarbonization property at the time of firing can be improved.
  • the content of the resin (X) in the slurry composition is more preferably 2% by mass or more and 10% by mass or less, and still more preferably 2.5% by mass or more and 5% by mass or less.
  • the inorganic powder any suitable type can be used depending on the application, but ceramic powder is preferable.
  • ceramic powder the inorganic powder-containing resin composition can be suitably used for ceramic green sheets.
  • the ceramic powder is not particularly limited, and examples thereof include alumina, zirconia, aluminum silicate, titanium oxide, zinc oxide, barium titanate, magnesia, sialon, spinemullite, crystallized glass, silicon carbide, silicon nitride, and aluminum nitride. and other powders. These ceramic powders may be used alone or in combination of two or more.
  • the ceramic powder may be MgO—SiO 2 —CaO, B 2 O 2 —SiO 2 , PbO—B 2 O 2 —SiO 2 , CaO—SiO 2 —MgO—
  • a glass frit such as B 2 O 2 or PbO—SiO 2 —B 2 O 2 —CaO may be added.
  • the inorganic-containing resin composition can be suitably used for the electrode paste.
  • the conductive powder is not particularly limited, and examples thereof include nickel, copper, aluminum, silver, gold, platinum, palladium, solder, tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide (ITO ) and the like.
  • the content of the inorganic powder with respect to the total amount of the slurry composition is preferably 20% by mass or more and 80% by mass or less.
  • the content is 20% by mass or more, the viscosity is prevented from becoming too low, and the handleability when molding a ceramic green sheet or the like is improved.
  • the content of the inorganic powder is 80% by mass or less, the viscosity of the slurry composition is prevented from becoming too high. More preferably, the content of the inorganic powder is 30% by mass or more and 70% by mass or less.
  • the solvent contained in the slurry composition may be water or an organic solvent, but an organic solvent is preferred.
  • the organic solvent is not particularly limited, and examples include ketones such as acetone, methyl ethyl ketone, dipropyl ketone and diisobutyl ketone; alcohols such as methanol, ethanol, isopropanol and butanol; aromatic hydrocarbons such as toluene and xylene; Methyl propionate, ethyl propionate, butyl propionate, methyl butanoate, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, acetic acid 2 esters such as -ethylhexyl and 2-ethylhexyl ketone
  • the content of the solvent with respect to the total amount of the slurry composition is preferably 20% by mass or more and 80% by mass or less.
  • the slurry composition is provided with appropriate mixability, and the viscosity is set in an appropriate range, so that the handleability when molding a ceramic green sheet or the like is improved.
  • the solvent content is 30% by mass or more and 70% by mass or less.
  • the slurry composition is preferably used for ceramic green sheets or electrode pastes. Accordingly, one embodiment of the present invention also provides a ceramic green sheet or electrode paste obtained using the above slurry composition.
  • the method for producing the ceramic green sheet is not particularly limited, and the ceramic green sheet can be produced by a conventionally known production method. For example, after defoaming the slurry composition as necessary, it is applied in the form of a film onto a peelable support such as a polyethylene terephthalate film, and the solvent and the like are distilled off by heating or the like. A peeling method and the like can be mentioned.
  • the ceramic green sheet is decarbonized by firing as described below to decompose the resin (X) to obtain a fired ceramic body. A fired ceramic body is commonly used as a dielectric layer.
  • the electrode paste can be prepared by mixing the resin (X), the conductive powder, and an optional solvent.
  • Ceramic green sheets are typically used to manufacture multilayer ceramic capacitors.
  • the laminated ceramic capacitor is preferably obtained by using the above ceramic green sheets and electrode paste, and is preferably obtained by laminating ceramic green sheets coated with electrode paste.
  • a multilayer ceramic capacitor can be manufactured by a conventionally known manufacturing method.
  • the surface of the ceramic green sheet of the present invention is coated with an electrode paste to be an internal electrode by screen printing or the like, and a plurality of sheets are stacked and heat-pressed to obtain a laminate.
  • the laminate is heated to thermally decompose and remove the resin (X) and the like contained in the laminate to obtain a sintered body, and an external electrode is attached to the sintered body. can be manufactured.
  • the present invention will be described in more detail by way of examples, the present invention is not limited by these examples.
  • the measuring method of each physical-property value in this invention, and the evaluation method are as follows.
  • ⁇ Weight average molecular weight (Mw)> A polyvinyl acetal-based resin, a polyvinyl alcohol-based resin, or an acrylic resin (resin (X) or resin (x)) was dissolved in tetrahydrofuran to a concentration of 0.05% by weight. Then, after filtering using a syringe filter (Merck, Millex-LH 0.45 ⁇ m), the molecular weight was measured using gel permeation chromatography (GPC, Waters, e2690). Weight average molecular weight (Mw) was calculated using a molecular weight calibration curve prepared from monodisperse polystyrene standard samples. Shodex GPC KF-806L (manufactured by Showa Denko) was used as a column, and tetrahydrofuran was used as an eluent.
  • the resin (X) obtained in each example and the resin (x) obtained in the comparative example were set as measurement samples and measured using a thermal analyzer (TG/DTA7300, manufactured by Hitachi High-Tech Science). In the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min and held at 600 ° C. for 10 minutes. B, the weight at the time of holding at 600° C. for 10 minutes was measured as C. From the measured A, B, and C, the value of (AB)/A and the value of (AC)/A were calculated.
  • TG/DTA7300 manufactured by Hitachi High-Tech Science
  • ⁇ Inorganic powder solution stability> The slurry compositions obtained in each example and comparative example were subjected to particle size distribution measurement using a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., LA-910) to measure the average particle size. In addition, the average particle size after standing at 23° C. for one week was also measured, and the average particle size change rate was evaluated according to the following criteria. In addition, the lower the average particle size change rate, the higher the inorganic powder solution stability. I: less than 40% II: 40% or more and less than 80% III: 80% or more
  • Example 1 [Synthesis of propylene oxide-modified polyvinyl alcohol] An allyl ether monomer (1) represented by formula (4-2) was prepared.
  • the allyl ether monomer (1) has an oxypropylene group (PO) as A 1 O, an average repetition number of 25, and a hydrogen atom as a terminal group (R 1 ).
  • PO oxypropylene group
  • R 1 a hydrogen atom as a terminal group
  • 723 parts by mass of vinyl acetate, 257 parts by mass of allyl ether monomer (1), and 20 parts by mass of methanol were added to a flask equipped with a stirrer, thermometer, dropping funnel, and reflux condenser, and the system was purged with nitrogen. After that, the temperature was raised to 60°C.
  • resin solution (X') 90 parts by mass of resin (X) and 10 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer were added to 900 parts by mass of an ethanol/toluene mixed solvent (mass ratio of 1:1), A resin solution (X') was prepared by stirring and dissolving.
  • slurry composition 1 part by mass of polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd., BL-1) is added to a mixed solvent of 20 parts by mass of ethanol and 20 parts by mass of toluene, dissolved and stirred, and 100 parts by mass of barium titanate powder (Sakai BT01 manufactured by Kagaku Kogyo Co., Ltd.) was added and stirred for 60 minutes with a bead mill. Thereafter, 100 parts by mass of the previously obtained resin solution (X') was added and stirred for 180 minutes in a bead mill (manufactured by Imex, Ready Mill) to prepare an inorganic dispersion (slurry composition). Each evaluation was performed using the obtained slurry composition. Table 1 shows the evaluation results.
  • Example 2 Allyl ether monomer (2) was used as the allyl ether monomer.
  • a 1 O is a mixture of oxypropylene group (PO) and oxyethylene group (EO), and the average number of repetitions is 34 and 34, respectively.
  • rice field Moreover, the terminal group (R 1 ) was a hydrogen atom.
  • a modified polyvinyl butyral resin (EO/PO-PVB) was obtained in the same manner as in Example 1, except that 515 parts by mass of vinyl acetate, 152 parts by mass of allyl ether monomer (2), and 333 parts by mass of methanol were used.
  • Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (X)). Further, instead of PO-PVB1, the obtained modified polyvinyl butyral resin (EO/PO-PVB) is used, and the resin (X) and the plasticizer are mixed in the resin solution (X') without using a plasticizer.
  • a slurry composition was prepared in the same manner as in Example 1, except that the number of parts (mass parts) was changed as shown in Table 1. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
  • Example 3 Allyl ether monomer (3) was used as the allyl ether monomer.
  • a 1 O of allyl ether monomer (3) was an oxyethylene group (EO), and the average number of repetitions was 33.
  • the terminal group (R 1 ) was a hydrogen atom.
  • Modified polyvinyl butyral resin (EO-PVB) was prepared in the same manner as in Example 1, except that the allyl ether monomer (3), 834 parts by mass of vinyl acetate, 147 parts by mass of allyl ether monomer (3), and 20 parts by mass of methanol were used. got Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (X)).
  • modified polyvinyl butyral resin (EO-PVB) was used instead of PO-PVB1, and the number of parts (mass parts) of the resin (X) and the plasticizer in the resin solution (X') was shown in Table 1.
  • a slurry composition was prepared in the same manner as in Example 1, except for changing as described in . Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
  • Example 4 The propylene oxide-modified polyvinyl alcohol (PO-PVA) produced in Example 1 was used as resin (X).
  • Table 1 shows the structure and physical properties of PO-PVA (resin (X)).
  • the obtained PO-PVA was measured after reacetylating all the hydroxyl groups by a conventional method.
  • a resin solution ( X′) was prepared, and a composition was prepared in the same manner as in Example 1, except that the mixed solvent used for preparing the slurry composition was changed to water. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
  • Example 5 30 parts by weight of 2-ethylhexyl acrylate (2EHA), 45 parts by weight of isobornyl acrylate (IBOA), 15 parts by weight of dimethylacrylamide, 9.99 parts by weight of 2-hydroxyethyl acrylate (HEA), and 0.2 parts by weight of acrylic acid (Aac). 01 parts by mass and 0.2 parts by mass of a photopolymerization initiator ("IRGACURE 184", manufactured by BASF) were mixed. This was sandwiched between two single-sided release-treated PET sheets and a spacer was arranged so that the thickness was 100 ⁇ m. It was dissolved in THF and reprecipitated with ethanol. Acrylic polymer 1 was obtained by drying at 100° C. for 1 hour.
  • 2EHA 2-ethylhexyl acrylate
  • IBOA isobornyl acrylate
  • HOA 2-hydroxyethyl acrylate
  • Aac acrylic acid
  • Table 1 shows the physical properties of the obtained acrylic polymer 1 (resin (X)). Except that 97 parts by mass of the obtained acrylic polymer 1 was used instead of PO-PVB1, dioctyl adipate (DOA) was used as a plasticizer, and the amount was changed to 3 parts by mass.
  • a resin solution (X') was prepared in the same manner as in Example 1, and a slurry composition was obtained from the resin solution (X'). Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
  • Barium powder (BT01, manufactured by Sakai Chemical Industry Co., Ltd.) was added and dispersed using a bead mill (Ready Mill, manufactured by Imex Corporation). After that, the mixed liquid was transferred to three rolls, 100 parts by mass of nickel powder (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size 0.2 ⁇ m) was added, and kneaded for 180 minutes to prepare an inorganic dispersion (slurry composition). Each evaluation was performed.
  • a vinyl monomer represented by formula (4) was prepared.
  • a 1 O was an oxyethylene group (EO) and an oxypropylene group (PO), and the average number of repetitions was 8 and 18, respectively.
  • EO and PO were each present in blocks, and there were polyoxyethylene and polyoxypropylene blocks.
  • the terminal group (R 1 ) was a hydrogen atom.
  • the linking group (R 2 ) was an amide bond (-CONH-*). * is the bonding position with A 1 O.
  • Polymer powder of modified polyvinyl alcohol resin (EO/PO block-PVA) was prepared in the same manner as in Example 2 except that 65 parts by mass of the vinyl monomer was used and 425 parts by mass of vinyl acetate and 510 parts by mass of methanol were used. got
  • PVB-acrylic was obtained by cooling to room temperature.
  • Table 1 shows the physical properties of the obtained PVB-acrylic (resin (x)).
  • Example 1 except that the obtained PVB-acrylic was used instead of PO-PVB1, dioctyl phthalate (DOP) was used as a plasticizer, and the blending amounts were changed as shown in Table 1.
  • a resin solution (x') was prepared in the same manner as above, and a slurry composition was obtained from the resin solution (x'). Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.

Abstract

A resin according to the present invention has a chlorine atom amount of at most 0.03 mass% and a free acid amount of at most 0.03 mass% and satisfies the requirements of expression I and expression II. Expression I: (A-B)/A<0.01 Expression II: (A-C)/A>0.87 (where, in a thermal analysis measurement performed by raising the temperature from 40ºC to 600ºC at 5ºC/min in the atmosphere in TG/DTA, and maintaining the temperature at 600ºC for 10 minutes, the weight at 100ºC is defined as A, the weight at 200ºC is defined as B, and the weight when maintained at 600ºC for 10 minutes is defined as C.) According to the present invention, it is possible to provide a resin capable of improving inorganic powder solution stability, shape stability after molding into a predetermined shape, and decarbonization properties.

Description

樹脂、及び樹脂組成物Resin and resin composition
 本発明は、バインダーなどとして使用される樹脂、及び該樹脂を備える樹脂組成物に関する。 The present invention relates to a resin used as a binder and the like, and a resin composition comprising the resin.
 ポリビニルアセタール系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂等の樹脂は、有機バインダーとして広く使用されている。有機バインダーとしては、合わせガラス用中間膜をはじめ、インク、塗料、焼付け用エナメル、ラッカー、セラミックグリーンシート、熱現像性感光材料、インク受像層等で使用されることがある。  Resins such as polyvinyl acetal-based resins, acrylic-based resins, and polyvinyl alcohol-based resins are widely used as organic binders. Organic binders are used in interlayer films for laminated glass, inks, paints, baking enamels, lacquers, ceramic green sheets, heat-developable photosensitive materials, ink image-receiving layers, and the like.
 例えばポリビニルアセタール樹脂は、一般的に、未変性ポリビニルアルコールをアセタール化し、側鎖にアセチル基、水酸基、及びアセタール基を有するいわゆる未変性ポリビニルアセタール樹脂が広く使用されている。また、従来、種々の機能を付与するために、アセチル基、水酸基、及びアセタール基以外の官能基(変性基)を有する変性ポリビニルアセタール樹脂も検討されている。例えば、特許文献1~3には、ポリオキシアルキレン基を側鎖に含有する変性ポリビニルアセタール樹脂が開示されている。 For example, polyvinyl acetal resins are generally acetalized unmodified polyvinyl alcohol, and so-called unmodified polyvinyl acetal resins having acetyl groups, hydroxyl groups, and acetal groups in side chains are widely used. Conventionally, modified polyvinyl acetal resins having functional groups (modifying groups) other than acetyl groups, hydroxyl groups, and acetal groups have also been investigated in order to impart various functions. For example, Patent Documents 1 to 3 disclose modified polyvinyl acetal resins containing polyoxyalkylene groups in side chains.
 さらに、バインダー樹脂は、一定の凝集力を確保するために、カルボキシル基が導入されることがある。例えば、アクリル系樹脂は、(メタ)アクリル酸などのカルボキシル基含有モノマー由来の構成単位を有することが一般的である。 In addition, carboxyl groups may be introduced into the binder resin to ensure a certain level of cohesion. For example, acrylic resins generally have structural units derived from carboxyl group-containing monomers such as (meth)acrylic acid.
特開2014-136796号公報JP 2014-136796 A WO2012/115223号WO2012/115223 特開2019-065166号公報JP 2019-065166 A
 有機バインダーは、上記各用途では、無機粉とともにスラリー溶液で使用されることがあり、その場合、増粘することなく無機粉を適切に分散させる、無機粉溶液安定性が求められる。また、有機バインダーを含む樹脂組成物は、シート状、膜状などの形状にされることが多いが、所定の形状にした後、その形状に維持できる、形状安定性が求められることが多い。
 さらに、有機バインダーは、セラミックグリーンシートなどに使用される場合、焼成により脱炭素処理されるが、脱炭素処理後に有機物が残存すると、焼成物に欠損などが生じて焼成後の歩留まりが低下する。そのため、有機バインダーを除去する際の脱炭素性を高めることが求められる。
In each of the above applications, the organic binder is sometimes used in a slurry solution together with the inorganic powder, and in this case, the inorganic powder solution stability is required to appropriately disperse the inorganic powder without increasing the viscosity. Further, a resin composition containing an organic binder is often shaped into a sheet, film, or the like, and is often required to have shape stability so that the shape can be maintained after being made into a predetermined shape.
Furthermore, when organic binders are used in ceramic green sheets and the like, they are decarbonized by firing, but if organic substances remain after decarbonization, defects will occur in the fired product and the yield after firing will decrease. Therefore, it is required to improve the decarbonization property when removing the organic binder.
 しかしながら、従来のポリビニルアセタール樹脂やアクリル系樹脂などのバインダーとして使用される樹脂は、無機粉溶液安定性、所定の形状にした後の形状安定性、焼成などする際の脱炭素性の全てを良好にすることが難しい。 However, conventional resins used as binders such as polyvinyl acetal resins and acrylic resins have good stability in inorganic powder solutions, shape stability after forming into a predetermined shape, and decarbonization during firing. difficult to make
 そこで、本発明は、無機粉溶液安定性、所定の形状にした後の形状安定性、及び脱炭素性を良好にすることができる、樹脂を提供することを課題とする。 Therefore, an object of the present invention is to provide a resin that can improve stability in inorganic powder solution, shape stability after forming into a predetermined shape, and decarbonization.
 一般的に、樹脂の合成においては、塩酸などの塩素含有化合物を使用し、微量の塩素が混入されることが多い。また、バインダー樹脂には、一般的に凝集力などを向上させるために、カルボキシル基を有する化合物を導入することが多いが、本発明者らは、微量塩素やカルボキシル基が、無機粉溶液安定性を阻害していることを見出した。そして、本発明者らは、さらに鋭意検討の結果、上記塩素原子量及びカルボキシル基量が少なく、かつ熱分析測定において、所定の重量減少プロファイルを有する樹脂が上記課題を解決できることを見出し、以下の本発明を完成させた。 In general, when synthesizing resins, chlorine-containing compounds such as hydrochloric acid are used, and trace amounts of chlorine are often mixed in. In addition, a compound having a carboxyl group is often introduced into the binder resin in order to generally improve the cohesive force. was found to inhibit As a result of further intensive studies, the present inventors found that a resin having a low chlorine atom content and a low carboxyl group content and having a predetermined weight loss profile in thermal analysis measurement can solve the above problems. perfected the invention.
 本発明は、以下の[1]~[14]を提供する。
[1]塩素原子量及び遊離酸量がいずれも0.03質量%以下であり、以下の式I及び式IIの要件を満たす、樹脂。
 式I:(A-B)/A <0.01
 式II:(A-C)/A >0.87
(ただし、TG/DTAで、大気下で、40℃から600℃まで5℃/分で昇温させ、600℃で10分間保持して行う熱分析測定において、100℃時点での重量をA、200℃時点での重量をB、600℃で10分保持した時点の重量をCとする。)
[2]熱可塑性樹脂である、上記[1]に記載の樹脂。
[3]前記熱可塑性樹脂がポリビニルアセタール系樹脂及びポリビニルアルコール系樹脂からなる群から選択される少なくとも1種である、上記[2]に記載の樹脂。
[4]前記ポリビニルアセタール系樹脂及びポリビニルアルコール系樹脂からなる群から選択される少なくとも1種は、ポリアルキレンオキサイド構造を有する、上記[3]に記載の樹脂。
[5]前記ポリアルキレンオキサイド構造が以下の式(1)で表される、上記[4]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000001

(式(1)において、AOは炭素数2~6のオキシアルキレン基であり、mは平均繰り返し数であり、10~200である。Rは炭素数が1~8のアルキル基又は水素原子である。なお、オキシアルキレン基は1種単独でもよいし、2種類以上が混在していてもよい。*は他の基との結合位置である。)
[6]前記ポリアルキレンオキサイド構造におけるオキシアルキレン基の平均繰り返し数が15~80である、上記[4]または[5]に記載の樹脂。
[7]前記ポリアルキレンオキサイド構造におけるオキシアルキレン基は、オキシエチレン基及びオキシプロピレン基の少なくともいずれかを含む、上記[4]~[6]のいずれか1項に記載の樹脂。
[8]前記ポリアルキレンオキサイド構造による変性量は、0.2モル%以上8モル%以下である、上記[4]~[7]のいずれか1項に記載の樹脂。
[9]重量平均分子量が15,000以上1,000,000以下である、上記[1]~[8]のいずれか1項に記載の樹脂。
[10]セラミックグリーンシートまたは電極ペーストに使用される上記[1]~[9]のいずれか1項に記載の樹脂。
[11]上記[1]~[10]の少なくともいずれか1項に記載の樹脂を含有する樹脂組成物。
[12]可塑剤を含有せず、または前記樹脂100質量部に対して可塑剤を40質量部未満の含有量で含有する上記[11]に記載の樹脂組成物。
[13]無機粉を含有する上記[11]又は[12]に記載の樹脂組成物。
[14]前記無機粉がセラミック粉末である、上記[13]に記載の樹脂組成物。
The present invention provides the following [1] to [14].
[1] A resin having a chlorine atom content and a free acid content of 0.03% by mass or less, and satisfying the requirements of Formula I and Formula II below.
Formula I: (AB)/A <0.01
Formula II: (A−C)/A >0.87
(However, with TG/DTA, in the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min and held at 600 ° C. for 10 minutes, and the weight at 100 ° C. is measured by A, The weight at 200°C is B, and the weight at 600°C for 10 minutes is C.)
[2] The resin according to [1] above, which is a thermoplastic resin.
[3] The resin according to [2] above, wherein the thermoplastic resin is at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins.
[4] The resin according to [3] above, wherein at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins has a polyalkylene oxide structure.
[5] The resin according to [4] above, wherein the polyalkylene oxide structure is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

(In formula (1), A 1 O is an oxyalkylene group having 2 to 6 carbon atoms, m is the average number of repetitions, and is 10 to 200. R 1 is an alkyl group having 1 to 8 carbon atoms or It is a hydrogen atom.In addition, the oxyalkylene group may be one type alone, or two or more types may be mixed.* indicates the bonding position with another group.)
[6] The resin according to [4] or [5] above, wherein the average number of repeating oxyalkylene groups in the polyalkylene oxide structure is 15 to 80.
[7] The resin according to any one of [4] to [6] above, wherein the oxyalkylene group in the polyalkylene oxide structure includes at least one of an oxyethylene group and an oxypropylene group.
[8] The resin according to any one of [4] to [7] above, wherein the amount of modification with the polyalkylene oxide structure is 0.2 mol % or more and 8 mol % or less.
[9] The resin according to any one of [1] to [8] above, which has a weight average molecular weight of 15,000 or more and 1,000,000 or less.
[10] The resin according to any one of [1] to [9], which is used for ceramic green sheets or electrode pastes.
[11] A resin composition containing the resin according to at least any one of [1] to [10] above.
[12] The resin composition according to the above [11], which does not contain a plasticizer or contains a plasticizer in a content of less than 40 parts by mass based on 100 parts by mass of the resin.
[13] The resin composition according to the above [11] or [12], which contains an inorganic powder.
[14] The resin composition according to [13] above, wherein the inorganic powder is a ceramic powder.
 本発明によれば、無機粉溶液安定性、所定の形状にした後の形状安定性、及び脱炭素性を良好にできる樹脂を提供する。 According to the present invention, a resin is provided that can improve stability in inorganic powder solutions, shape stability after forming into a predetermined shape, and decarbonization.
<樹脂>
[塩素原子量及び遊離酸量(以下、カルボキシル基量ともいう)]
 本発明の樹脂(以下、便宜上、樹脂(X)ということがある)は、塩素原子量及び遊離酸量がいずれも0.03質量%以下である。本発明では、塩素原子量が0.03質量%より高くなったり、遊離酸量が0.03質量%より高くなったりすると、樹脂(X)と無機粉とを含むスラリーが、塩素原子又は遊離酸量の影響により電荷が不安定になることなどに起因して増粘や相分離などが生じて、無機粉溶液安定性を高くすることが難しい。また、焼成時の脱炭素性が低くなり、歩留まりが低下することがある。
 上記塩素原子量は、無機粉溶液安定性の観点から、0.024質量%以下が好ましく、0.020質量%以下がより好ましく、0.016質量%がさらに好ましい。塩素原子量は、低ければ低いほどよく0.0質量%以上であればよい。
<Resin>
[Chlorine atom weight and free acid content (hereinafter also referred to as carboxyl group content)]
The resin of the present invention (hereinafter sometimes referred to as resin (X) for convenience) has both a chlorine atomic weight and a free acid content of 0.03% by mass or less. In the present invention, when the chlorine atom content is higher than 0.03% by mass or the free acid content is higher than 0.03% by mass, the slurry containing the resin (X) and the inorganic powder contains chlorine atoms or free acid It is difficult to increase the stability of the inorganic powder solution because the charge becomes unstable due to the influence of the amount, which causes thickening, phase separation, and the like. In addition, the decarbonization property during firing is lowered, and the yield may be lowered.
The chlorine atomic weight is preferably 0.024% by mass or less, more preferably 0.020% by mass or less, and even more preferably 0.016% by mass, from the viewpoint of the stability of the inorganic powder solution. The lower the chlorine atom weight, the better, and it is sufficient if it is 0.0% by mass or more.
 上記遊離酸量は、無機粉溶液安定性の観点から、0.024質量%以下が好ましく、0.020質量%以下がより好ましく、0.016質量%以下であることが好ましい。
 上記遊離酸量は、無機粉溶液安定性の観点から、0.0質量%以上であればよいが、樹脂(X)の種類によっては一定量以上含有してもよく、例えば、後述するアクリル系樹脂では、凝集力を高めて接着性を向上させるために一定量以上含有することが好ましく、例えば0.005質量%以上であってもよいし、0.01質量%以上であってもよい。
 なお、塩素原子量及び遊離酸量は、後述する測定方法で検出限界以下である場合には、本明細書では0.0質量%とする。
The free acid content is preferably 0.024% by mass or less, more preferably 0.020% by mass or less, and preferably 0.016% by mass or less, from the viewpoint of the stability of the inorganic powder solution.
The amount of the free acid may be 0.0% by mass or more from the viewpoint of the stability of the inorganic powder solution, but may be contained in a certain amount or more depending on the type of the resin (X). In the resin, it is preferable to contain a certain amount or more in order to increase the cohesive force and improve the adhesiveness.
In this specification, the chlorine atom content and the free acid content are defined as 0.0% by mass when they are below the detection limit by the measuring method described later.
 本発明の樹脂(X)は、塩素原子量及び遊離酸量の合計量が、無機粉溶液安定性の観点から、0.05質量%以下であることが好ましく、0.03質量%以下であることがより好ましく、0.024質量%以下であることがさらに好ましく、0.016質量%以下がさらに好ましく、また0.0質量%以上であればよい。 In the resin (X) of the present invention, the total amount of chlorine atoms and free acids is preferably 0.05% by mass or less, and 0.03% by mass or less, from the viewpoint of the stability of an inorganic powder solution. is more preferably 0.024% by mass or less, still more preferably 0.016% by mass or less, and 0.0% by mass or more.
 塩素原子量及び遊離酸量は、樹脂(X)の製造方法や、樹脂(X)を構成する成分を適宜調整することで、上記した上限値以下にできる。また、塩素原子量は、イオンクロマトグラフによるイオン分析等により、また、遊離酸量は滴定法により測定することができるが、詳細には、実施例記載の方法により測定するとよい。 The amount of chlorine atoms and the amount of free acid can be reduced to the above upper limits or less by appropriately adjusting the production method of resin (X) and the components that make up resin (X). The chlorine atomic weight can be measured by ion analysis using ion chromatography or the like, and the free acid content can be measured by a titration method.
[熱分析測定]
 本発明の樹脂(X)は、以下の式I及び式IIの要件を満たすものである。
 式I:(A-B)/A <0.01
 式II:(A-C)/A >0.87
(ただし、TG/DTA(示差熱・熱重量同時測定装置)で、大気下で、40℃から600℃まで5℃/分で昇温させ、かつ600℃で10分間保持して行う熱分析測定において、100℃時点での重量をA、200℃時点での重量をB、600℃で10分保持した時点の重量をCとする。)
 本発明では、上記の通り、塩素原子量及び遊離酸量を所定値以下としつつ、式I、IIの要件を充足することで、無機粉溶液安定性を良好にしつつ、シート状などの所定の形状にした後の形状安定性、及び脱炭素性も良好にできる。
[Thermal analysis measurement]
The resin (X) of the present invention meets the requirements of Formula I and Formula II below.
Formula I: (AB)/A <0.01
Formula II: (A−C)/A >0.87
(However, with a TG/DTA (differential thermal/thermogravimetric simultaneous measurement device), in the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min, and the thermal analysis measurement is performed by holding at 600 ° C. for 10 minutes. , the weight at 100°C is A, the weight at 200°C is B, and the weight at 600°C for 10 minutes is C.)
In the present invention, as described above, by satisfying the requirements of the formulas I and II while keeping the chlorine atom content and the free acid content at or below the predetermined values, the stability of the inorganic powder solution is improved, and the predetermined shape such as a sheet is obtained. The shape stability and decarbonization after being made into can also be improved.
 式Iで示される(A-B)/Aの値は、樹脂(X)に含まれる高沸点の低分子量成分の含有量を表す指標となるものである。したがって、(A-B)/Aが0.01以上となると、樹脂(X)中の高沸点の低分子量成分が多くなり、シート状などの所定の形状に成形した後に長期間保管すると、保管中に樹脂(X)の一部が揮発することで、形状が変化して、形状安定性が低くなるという不具合が生じる。
 なお、室温から100℃に樹脂(X)を加熱する際の重量減少は、主に水分の揮発に起因するものである。したがって、本発明では、重量Aを測定する際の温度を、室温とせずに100℃とすることで、(A-B)/Aの値は、水分の影響を排除した、低分子量成分の割合を正確に示す指標となる。
The value of (AB)/A represented by formula I serves as an index representing the content of high-boiling-point, low-molecular-weight components contained in resin (X). Therefore, when (AB)/A is 0.01 or more, the high-boiling low-molecular-weight components in the resin (X) increase, and when stored for a long period of time after molding into a predetermined shape such as a sheet, storage Part of the resin (X) evaporates inside, causing a change in shape and a problem of low shape stability.
The weight loss during heating of resin (X) from room temperature to 100° C. is mainly due to volatilization of water. Therefore, in the present invention, the temperature when measuring the weight A is set to 100 ° C. instead of room temperature, so that the value of (AB) / A is the ratio of low molecular weight components excluding the influence of moisture. It is an index that accurately indicates the
 (A-B)/Aの値は、形状安定性を良好にする観点から低ければ低いほどよく、0.009以下が好ましく、0.008以下がより好ましく、0.007以下がさらに好ましい。また、(A-B)/Aの値は、0以上であれば特に限定されない。 The value of (AB)/A is preferably as low as possible from the viewpoint of good shape stability, preferably 0.009 or less, more preferably 0.008 or less, and even more preferably 0.007 or less. Also, the value of (AB)/A is not particularly limited as long as it is 0 or more.
 式IIで示される(A-C)/Aの値は、高温加熱して際の樹脂(X)の分解率を示す指標となるものである。(A-C)/Aの値が、0.87以下となると、高温加熱しても樹脂(X)が十分に分解しない。したがって、例えば焼成などにより脱炭素処理する際の残炭素量が多くなり欠損などが生じて、焼成物などを高い歩留まりで得ることが難しくなる。
 (A-C)/Aは、脱炭素処理する際の残炭素量を少なくして焼成物などを高い歩留まりで得る観点から、0.88以上が好ましく、0.9以上がより好ましく、0.91以上がさらに好ましい。式IIで示される(A-C)/Aの値は高ければ高いほどよく、1以下であれば特に限定されないが、一般的に焼成時の残炭素量を0にすることは難しく、したがって、典型的には1未満となり、例えば0.99以下である。
The value of (AC)/A represented by formula II is an index showing the decomposition rate of the resin (X) when heated at a high temperature. When the value of (AC)/A is 0.87 or less, the resin (X) is not sufficiently decomposed even by high temperature heating. Therefore, for example, when the decarbonization treatment is carried out by firing, etc., the amount of residual carbon increases, causing defects and the like, making it difficult to obtain a fired product or the like with a high yield.
(AC)/A is preferably 0.88 or more, more preferably 0.9 or more, and 0.88 or more, more preferably 0.9 or more, from the viewpoint of obtaining a baked product with a high yield by reducing the amount of residual carbon when decarbonizing. 91 or more is more preferable. The higher the value of (AC)/A represented by formula II, the better, and there is no particular limitation as long as it is 1 or less. Typically it will be less than 1, for example 0.99 or less.
 なお、本発明において、(A-B)/Aの値は、樹脂(X)の低分子量成分を少なくすることで小さくできる。また、(A-C)/Aは、樹脂(X)の種類や、樹脂(X)を構成する成分を適宜調整することで大きくできる。 In addition, in the present invention, the value of (AB)/A can be reduced by reducing the low-molecular-weight component of the resin (X). Further, (AC)/A can be increased by appropriately adjusting the type of resin (X) and the components constituting resin (X).
 本発明で使用する樹脂(X)は、熱可塑性樹脂であることが好ましい。熱可塑性樹脂を使用することにより、樹脂(X)を含む樹脂組成物を、シート状などの所定の形状に成形しやすくなる。
 熱可塑性樹脂の具体例としては、ポリビニルアセタール系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリウレタン樹脂、アイオノマー樹脂が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これら樹脂を使用することで、(A-B)/Aを小さくしつつ、(A-C)/Aの値を大きくしやすくなる。また、樹脂(X)の製造方法や、樹脂(X)を構成するモノマー成分を適宜調整することで、塩素原子量及び遊離酸基量の値のいずれも小さくすることができる。
Resin (X) used in the present invention is preferably a thermoplastic resin. By using a thermoplastic resin, it becomes easier to mold the resin composition containing the resin (X) into a predetermined shape such as a sheet.
Specific examples of thermoplastic resins include polyvinyl acetal resins, acrylic resins, polyvinyl alcohol resins, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyurethane resins, and ionomer resins. These may be used individually by 1 type, and may use 2 or more types together. By using these resins, it becomes easy to increase the value of (AC)/A while reducing (AB)/A. Moreover, both the chlorine atom weight and the free acid radical weight can be reduced by appropriately adjusting the production method of the resin (X) and the monomer components constituting the resin (X).
 上記した熱可塑性樹脂の中では、所定の形状に成形した後の形状安定性、及び脱炭素性を優れたものにする観点から、ポリビニルアセタール系樹脂、及びポリビニルアルコール系樹脂の少なくともいずれかが好ましい。また、これらの中でも、さらに無機粉溶液安定性を良好にする簡単から、ポリビニルアセタール系樹脂が好ましい。
 これら熱可塑性樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
Among the thermoplastic resins described above, at least one of polyvinyl acetal-based resins and polyvinyl alcohol-based resins is preferable from the viewpoint of excellent shape stability after molding into a predetermined shape and excellent decarbonization properties. . Among these, polyvinyl acetal-based resins are preferred because they are easy to improve the stability of the inorganic powder solution.
These thermoplastic resins may be used singly or in combination of two or more.
 本発明の樹脂(X)の重量平均分子量(Mw)は、好ましくは15,000以上1,000,000以下である。重量平均分子量を上記下限値以上とすることで、(A-B)/Aを小さくしやすくなり、また、上限値以下とすることで(A-C)/Aを大きくしやすくなる。また、シート状、膜状などの所定の形状にした後、形状安定性の向上の観点からも樹脂(X)の重量平均分子量(Mw)は、50,000以上がより好ましく、100,000以上がさらに好ましく、150,000以上がよりさらに好ましい。また、重量平均分子量(Mw)は、600,000以下がより好ましく、500,000以下がさらに好ましく、400,000以下がよりさらに好ましい。
 なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。ただし、樹脂(X)がポリビニルアルコール樹脂を含む場合には、ポリビニルアルコール樹脂が有する水酸基をすべて再酢化した後に測定を行うものである。
The weight average molecular weight (Mw) of the resin (X) of the present invention is preferably 15,000 or more and 1,000,000 or less. By making the weight average molecular weight equal to or higher than the above lower limit, it becomes easier to reduce (AB)/A, and by making it equal to or lower than the upper limit, it becomes easy to increase (AC)/A. Further, the weight average molecular weight (Mw) of the resin (X) is more preferably 50,000 or more, more preferably 100,000 or more, from the viewpoint of improving the shape stability after being formed into a predetermined shape such as a sheet shape or a film shape. is more preferred, and 150,000 or more is even more preferred. Also, the weight average molecular weight (Mw) is more preferably 600,000 or less, even more preferably 500,000 or less, and even more preferably 400,000 or less.
The weight average molecular weight (Mw) indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). However, when the resin (X) contains a polyvinyl alcohol resin, the measurement is performed after reacetylating all the hydroxyl groups of the polyvinyl alcohol resin.
[ポリビニルアセタール系樹脂]
 上記の通り樹脂(X)としては、ポリビニルアセタール系樹脂を使用することがより好ましい。ポリビニルアセタール系樹脂は、変性ポリビニルアセタール樹脂であってもよいし、未変性ポリビニルアセタール樹脂であってもよいが、変性ポリビニルアセタール樹脂が好ましい。ポリビニルアセタール系樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 変性ポリビニルアセタール樹脂は、後述する通り、アセタール基、水酸基、を及びアセチル基以外の構造(変性基)を有すればよく、好ましくは変性基を側鎖に有する。本発明では、変性基の種類を適宜選択することで、(A-C)/Aの値を大きくすることができる。
 また、ポリビニルアセタール系樹脂は、後述する製造方法で製造することで変性ポリビニルアセタール樹脂であっても、低分子量成分を少なくできるので、(A-B)/Aの値も小さくしやすくなる。
[Polyvinyl acetal resin]
As described above, it is more preferable to use a polyvinyl acetal-based resin as the resin (X). The polyvinyl acetal resin may be a modified polyvinyl acetal resin or an unmodified polyvinyl acetal resin, but a modified polyvinyl acetal resin is preferred. Polyvinyl acetal-based resins may be used singly or in combination of two or more.
The modified polyvinyl acetal resin may have a structure (modifying group) other than an acetal group, a hydroxyl group, and an acetyl group, and preferably has a modifying group in a side chain, as will be described later. In the present invention, the value of (AC)/A can be increased by appropriately selecting the type of modifying group.
In addition, the polyvinyl acetal-based resin can be produced by the production method described later, even if it is a modified polyvinyl acetal resin, so that the low-molecular-weight component can be reduced, so that the value of (AB)/A can be easily reduced.
 本発明において変性基は、ポリアルキレンオキサイド構造であることが好ましい。本発明では、ポリビニルアセタール系樹脂がポリアルキレンオキサイド構造を有することで、熱分解性に優れて(A-C)/Aの値が大きくなりやすくなり、脱炭素性が優れたものとなる。 The modifying group in the present invention preferably has a polyalkylene oxide structure. In the present invention, since the polyvinyl acetal resin has a polyalkylene oxide structure, it is excellent in thermal decomposability, the value of (AC)/A tends to be large, and decarbonization is excellent.
 ポリアルキレンオキサイド構造は、具体的には、以下の式(1)で示すとおりである。
Figure JPOXMLDOC01-appb-C000002

(式(1)において、AOは炭素数2~6のオキシアルキレン基であり、mは平均繰り返し数であり、10~200である。Rは炭素数が1~8のアルキル基又は水素原子である。なお、オキシアルキレン基は1種単独でもよいし、2種類以上が混在していてもよい。*は他の基との結合位置である。)
Specifically, the polyalkylene oxide structure is as represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002

(In formula (1), A 1 O is an oxyalkylene group having 2 to 6 carbon atoms, m is the average number of repetitions, and is 10 to 200. R 1 is an alkyl group having 1 to 8 carbon atoms or It is a hydrogen atom.In addition, the oxyalkylene group may be one type alone, or two or more types may be mixed.* indicates the bonding position with another group.)
 AOにおけるオキシアルキレン基は、炭素数2~6のオキシアルキレン基であり、好ましくは炭素数2~4のオキシアルキレン基であり、より好ましくは炭素数2又は3のオキシアルキレン基である。
 オキシアルキレン基におけるアルキレン基は、直鎖であってもよいし、分岐構造を有してもよい。オキシアルキレン基としては、例えばオキシエチレン基、オキシプロピレン基、又はオキシブチレン基が挙げられ、好ましくはオキシエチレン基、オキシプロピレン基である。オキシアルキレン基は1種単独で使用してよいが、2種以上を併用してもよい。2種以上を併用する場合、各オキシアルキレン基は、ランダムに付加してもよいし、ブロックで付加してもよいが、ランダムに付加されることがより好ましい。ポリアルキレンオキサイド構造は、オキシアルキレン基を2種以上有する場合、ランダム構造を有することで、ブロック構造を有する場合に比べて、(A-C)/Aの値を大きくしやすくなる。
The oxyalkylene group for A 1 O is an oxyalkylene group having 2 to 6 carbon atoms, preferably an oxyalkylene group having 2 to 4 carbon atoms, and more preferably an oxyalkylene group having 2 or 3 carbon atoms.
The alkylene group in the oxyalkylene group may be linear or may have a branched structure. The oxyalkylene group includes, for example, an oxyethylene group, an oxypropylene group, or an oxybutylene group, preferably an oxyethylene group or an oxypropylene group. One type of oxyalkylene group may be used alone, but two or more types may be used in combination. When two or more types are used in combination, each oxyalkylene group may be added at random or may be added in blocks, but is more preferably added at random. When the polyalkylene oxide structure has two or more oxyalkylene groups, the random structure makes it easier to increase the value of (AC)/A compared to the block structure.
 ポリアルキレンオキサイド構造におけるオキシアルキレン基は、オキシエチレン基及びオキシプロピレン基の少なくともいずれかを含むことが好ましく、また、オキシエチレン基及びオキシプロピレン基の両方を含有することも好ましい。オキシエチレン基及びオキシプロピレン基の両方を含む場合、これらはブロック構造を構成してもよいが、上記の通りランダム構造を構成することがより好ましい。
 本発明では、アルキレンオキサイド構造におけるオキシアルキレン基が、オキシエチレン基又はオキシプロピレン基からなり、または、オキシエチレン基とオキシプロピレン基を有し、かつこれらがランダム構造を有することで、(A-C)/Aの値を大きくしやすくなる。
 オキシエチレン基(EO)及びオキシプロピレン基(PO)を含む場合、オキシプロピレン基のオキシエチレン基に対する比(PO/EO)は、モル比で、例えば1/9以上9/1以下、好ましくは2/8以上8/2以下であり、より好ましくは3/7以上7/3以下である。
The oxyalkylene group in the polyalkylene oxide structure preferably contains at least one of an oxyethylene group and an oxypropylene group, and also preferably contains both an oxyethylene group and an oxypropylene group. When both an oxyethylene group and an oxypropylene group are included, they may constitute a block structure, but more preferably constitute a random structure as described above.
In the present invention, the oxyalkylene group in the alkylene oxide structure consists of an oxyethylene group or an oxypropylene group, or has an oxyethylene group and an oxypropylene group, and these have a random structure, )/A can be easily increased.
When an oxyethylene group (EO) and an oxypropylene group (PO) are included, the ratio (PO/EO) of the oxypropylene group to the oxyethylene group is, for example, 1/9 or more and 9/1 or less, preferably 2 /8 or more and 8/2 or less, more preferably 3/7 or more and 7/3 or less.
 式(1)におけるm、すなわち、ポリアルキレンオキサイド構造におけるオキシアルキレン基の平均繰り返し数は、例えば10~200である。
 また、平均繰り返し数(すなわち、式(1)ではm)は、(A-C)/Aの値を大きくして、脱炭素性を良好にする観点から、好ましくは15~80であり、より好ましくは20~78、より好ましくは25~75、さらにより好ましくは30~70である。また、繰り返し数を大きくすることで、柔軟性などを確保しやすくなり、シートなどに成形する際の成形性も良好となりやすい。
m in formula (1), that is, the average number of repeating oxyalkylene groups in the polyalkylene oxide structure is, for example, 10-200.
In addition, the average repetition number (that is, m in formula (1)) is preferably 15 to 80 from the viewpoint of increasing the value of (AC)/A and improving the decarbonization property, and more It is preferably 20-78, more preferably 25-75, even more preferably 30-70. In addition, by increasing the number of repetitions, it becomes easier to secure flexibility and the like, and moldability when forming into a sheet or the like tends to be improved.
 Rにおけるアルキル基は、直鎖であってもよいし、分岐構造を有していてもよい。Rにおけるアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル、t-ブチル基どの分岐ブチル基、n-ペンチル基、分岐ペンチル基、n-ヘキシル基、分岐ヘキシル基、n-ヘプチル基、イソヘプチル基、3-ヘプチル基などの分岐ヘプチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基などの分岐オクチル基などが挙げられる。
 Rは、アルキル基及び水素原子のいずれでもよい。アルキル基の炭素数は、上記のとおり、炭素数1~8であればよいが、好ましくは炭素数1~6、より好ましは炭素数1~4である。
The alkyl group for R 1 may be linear or may have a branched structure. Examples of alkyl groups for R 1 include branched butyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl and t-butyl groups, n-pentyl group, branched pentyl group, n branched heptyl groups such as -hexyl group, branched hexyl group, n-heptyl group, isoheptyl group and 3-heptyl group; branched octyl groups such as n-octyl group, isooctyl group and 2-ethylhexyl group;
R 1 may be either an alkyl group or a hydrogen atom. As described above, the alkyl group may have 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
 上記ポリアルキレンオキサイド構造は、連結基を介して、主鎖に連結するとよい。
 連結基としては、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-CONR-:Rは水素原子又は炭素数1~4のアルキル基)、又はこれら結合のうち少なくともいずれかを有してもよい炭化水素基が挙げられる。該連結基の炭素数は、特に限定されないが、例えば10以下程度であればよく、好ましくは4以下である。また、連結基は、炭素原子を有する必要はなく、したがって、連結基の炭素数は0以上であればよい。また、-CONR-におけるRは水素原子が好ましい。さらに、連結基における炭化水素基の炭素数は、例えば1~10程度であればよく、好ましくは1~4である。
 また、上記の中では、上記ポリアルキレンオキサイド構造は、エーテル結合又は-CHO-のいずれかを介して、主鎖に結合されることがより好ましい。ポリアルキレンオキサイド構造は、エーテル結合又は-CHO-のいずれかを介して主鎖に結合することで、その製造が容易になる。なお、-CHO-においては、酸素原子が上記ポリアルキレンオキサイド構造に結合するとよい。
The above polyalkylene oxide structure is preferably linked to the main chain via a linking group.
As the linking group, an ether bond (-O-), an ester bond (-COO-), an amide bond (-CONR-: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), or at least any of these bonds A hydrocarbon group optionally having The number of carbon atoms in the linking group is not particularly limited, but may be, for example, about 10 or less, preferably 4 or less. Also, the linking group does not need to have carbon atoms, and therefore the linking group may have 0 or more carbon atoms. Further, R in -CONR- is preferably a hydrogen atom. Furthermore, the carbon number of the hydrocarbon group in the linking group may be, for example, about 1-10, preferably 1-4.
Among the above, more preferably, the polyalkylene oxide structure is linked to the main chain via either an ether bond or —CH 2 O—. The polyalkylene oxide structure is attached to the backbone either through ether linkages or -CH 2 O- to facilitate its manufacture. In --CH 2 O--, an oxygen atom is preferably bonded to the polyalkylene oxide structure.
 ポリビニルアセタール系樹脂は、典型的には、アセタール基、水酸基、及びアセチル基を有する。ただし、ポリビニルアセタール系樹脂は、官能基により変性されることで水酸基を含有しなくてもよい。なお、アセタール基、水酸基、及びアセチル基とは、後述する式(3-1)~式(3-3)に示すとおりに、主鎖に直接又は酸素原子を介して結合される基であり、ポリアルキレンオキサイド構造が有する水酸基などは含まれない。
 また、ポリビニルアセタール系樹脂は、変性することで、上記の通り、上記式(1)で示されるポリアルキレンオキサイド構造を有することが好ましい。
A polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group. However, the polyvinyl acetal-based resin does not have to contain a hydroxyl group by being modified with a functional group. The acetal group, hydroxyl group, and acetyl group are groups bonded directly to the main chain or via an oxygen atom, as shown in formulas (3-1) to (3-3) described later. A hydroxyl group, etc., possessed by the polyalkylene oxide structure is not included.
Further, the polyvinyl acetal-based resin is preferably modified to have a polyalkylene oxide structure represented by the above formula (1) as described above.
 変性ポリビニルアセタール樹脂は、ポリアルキレンオキサイド構造(すなわち、式(1)で示される官能基)による変性量が、好ましくは0.1モル%以上10モル%以下である。上記変性量を上記範囲内とすることで、(A-C)/Aの値を高くしつつ、接着性などの樹脂(X)の各種物性を良好にしやすくなる。
 これら観点から、ポリアルキレンオキサイド構造による変性量は、0.2モル%以上が好ましく、0.3モル%以上がより好ましく、0.4モル%以上がさらに好ましく、また、8モル%以下が好ましく、6モル%以下がより好ましく、4モル%以下がさらに好ましい。
The modified polyvinyl acetal resin preferably has a modification amount of 0.1 mol % or more and 10 mol % or less with the polyalkylene oxide structure (that is, the functional group represented by formula (1)). By adjusting the amount of modification within the above range, it becomes easy to improve various physical properties of the resin (X) such as adhesiveness while increasing the value of (AC)/A.
From these viewpoints, the amount modified by the polyalkylene oxide structure is preferably 0.2 mol% or more, more preferably 0.3 mol% or more, further preferably 0.4 mol% or more, and preferably 8 mol% or less. , is more preferably 6 mol % or less, and even more preferably 4 mol % or less.
 なお、本明細書において、官能基による変性量とは、ポリビニルアセタール系樹脂又は後述するポリビニルアルコール系樹脂を構成する全単量体単位(通常は、全ビニル単量体単位)に対する、官能基の割合を表す。変性量は、ポリビニルアセタール系樹脂又はポリビニルアルコール系樹脂に対してプロトンNMR測定を行い、得られたスペクトルから算出することができる。後述するアセタール化度、水酸基量、及びアセチル化度も同様に、プロトンNMR測定を行い、得られたスペクトルから算出することができる。 In this specification, the amount of modification by a functional group refers to the amount of functional groups with respect to all monomer units (usually all vinyl monomer units) constituting a polyvinyl acetal resin or a polyvinyl alcohol resin described later. represents a percentage. The amount of modification can be calculated from the spectrum obtained by subjecting the polyvinyl acetal-based resin or polyvinyl alcohol-based resin to proton NMR measurement. Similarly, the degree of acetalization, the amount of hydroxyl groups, and the degree of acetylation, which will be described later, can be calculated from the spectrum obtained by performing proton NMR measurement.
 ポリビニルアセタール系樹脂は、主鎖としてビニル基由来の構成単位を有するものであり、式(1)で示される官能基は、主鎖を構成するビニル基由来の構成単位に結合するものであるとよい。したがって、ポリビニルアセタール系樹脂は、以下の式(2)で示される構成単位を有することが好ましく、中でも以下の式(2-1)及び式(2-2)で示される構成単位のいずれかを有することがより好ましい。 The polyvinyl acetal-based resin has a vinyl group-derived structural unit as a main chain, and the functional group represented by formula (1) is bonded to the vinyl group-derived structural unit that constitutes the main chain. good. Therefore, the polyvinyl acetal-based resin preferably has a structural unit represented by the following formula (2). It is more preferable to have
Figure JPOXMLDOC01-appb-C000003

(式(2)において、AO、R、mは上記と同様である。Rは、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-CONR-:Rは水素原子又は炭素数1~4のアルキル基)、又はこれらのうち少なくともいずれかの結合を有してもよい炭化水素基が挙げられる。)
 式(2)におけるRの炭素数は、例えば0~10、好ましくは0~4である。Rは、上記のうち、エーテル結合(-O-)であるか、又はエーテル結合を少なくとも有する炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000003

(In formula (2), A 1 O, R 1 and m are the same as above. R 2 is an ether bond (-O-), an ester bond (-COO-), an amide bond (-CONR-: R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), or a hydrocarbon group that may have at least one of these bonds.)
The carbon number of R 2 in formula (2) is, for example, 0-10, preferably 0-4. Of the above, R 2 is preferably an ether bond (--O--) or a hydrocarbon group having at least an ether bond.
Figure JPOXMLDOC01-appb-C000004

(式(2-1)、(2-2)において、AO、R、mは上記と同様である。)
Figure JPOXMLDOC01-appb-C000004

(In formulas (2-1) and (2-2), A 1 O, R 1 and m are the same as above.)
 なお、式(2)、(2-1)、(2-2)におけるAO、R、mは上述した通りであるのでその説明は省略する。 A 1 O, R 1 , and m in the formulas (2), (2-1), and (2-2) are as described above, so description thereof will be omitted.
 ポリビニルアセタール系樹脂は、典型的には、アセタール基、水酸基、及びアセチル基を有する。すなわち、ポリビニルアセタール系樹脂は、典型的には、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位を有する。したがって、変性ポリビニルアセタール樹脂は、以下の式(3-1)、式(3-2)及び式(3-3)で示される構成単位と、上記した式(2)で示される構成単位とを有することが好ましい。
 ただし、ポリビニルアセタール系樹脂は、水酸基を有さず、式(3-2)で示される構成単位を有さなくてもよい。すなわち、ポリビニルアセタール系樹脂は、以下の式(3-1)及び式(3-3)で示される構成単位を有し、さらに任意で以下の式(3-2)で示される構成単位を有してもよい。
A polyvinyl acetal-based resin typically has an acetal group, a hydroxyl group, and an acetyl group. That is, polyvinyl acetal-based resins typically have structural units represented by the following formulas (3-1), (3-2) and (3-3). Therefore, the modified polyvinyl acetal resin contains structural units represented by the following formulas (3-1), (3-2) and (3-3) and structural units represented by the above formula (2). It is preferable to have
However, the polyvinyl acetal-based resin does not have a hydroxyl group and may not have the structural unit represented by formula (3-2). That is, the polyvinyl acetal-based resin has structural units represented by the following formulas (3-1) and (3-3), and optionally has a structural unit represented by the following formula (3-2). You may
Figure JPOXMLDOC01-appb-C000005

(式(3-1)において、Rは水素原子又は炭素数1~19の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000005

(In formula (3-1), R represents a hydrogen atom or a hydrocarbon group having 1 to 19 carbon atoms.)
 ポリビニルアセタール系樹脂は、上記したポリアルキレンオキサイド構造を有さなくてもよい。そのようなポリビニルアセタール系樹脂は、ポリアルキレンオキサイド構造以外の変性基を有する変性ポリビニルアセタール樹脂でもよいし、変性基を有さない未変性ポリビニルアセタール樹脂でもよい。また、ポリビニルアセタール系樹脂は、上記したポリアルキレンオキサイド構造と、ポリアルキレンオキサイド構造以外の変性基を有する変性ポリビニルアセタール樹脂であってもよい。 The polyvinyl acetal-based resin does not have to have the polyalkylene oxide structure described above. Such a polyvinyl acetal resin may be a modified polyvinyl acetal resin having a modifying group other than a polyalkylene oxide structure, or an unmodified polyvinyl acetal resin having no modifying group. Further, the polyvinyl acetal-based resin may be a modified polyvinyl acetal resin having the above-described polyalkylene oxide structure and a modifying group other than the polyalkylene oxide structure.
 ポリビニルアセタール系樹脂に含まれているアセタール基の炭素数は特に限定されないが、上記式(3-1)で示した通り、例えば1~20であるが、2~10であることが好ましく、2~6であることがより好ましく、2、3又は4であることがさらに好ましい。したがって、上記式(3-1)で示すRの炭素数は、1~9が好ましく、1~5がより好ましく、1~3であることがさらに好ましい。Rは、直鎖であることが好ましいが、一部が脂環式であっても芳香族であっても構わない。
 アセタール基としては、具体的にはブチラール基が特に好ましく、したがって、ポリビニルアセタール系樹脂としては、ポリビニルブチラール系樹脂が好ましい。
The number of carbon atoms in the acetal group contained in the polyvinyl acetal-based resin is not particularly limited. ~6 is more preferred, and 2, 3 or 4 is even more preferred. Therefore, the number of carbon atoms in R represented by the formula (3-1) is preferably 1 to 9, more preferably 1 to 5, even more preferably 1 to 3. R is preferably linear, but may be partly alicyclic or aromatic.
Specifically, the acetal group is particularly preferably a butyral group, and therefore, the polyvinyl acetal-based resin is preferably a polyvinyl butyral-based resin.
 ポリビニルアセタール系樹脂のアセタール化度(すなわち、アセタール量)は、40モル%以上が好ましく、55モル%以上がより好ましく、60モル%以上がさらに好ましく、64モル%以上がよりさらに好ましい。
 また、アセタール化度は、好ましくは90モル%以下、より好ましくは88モル%以下であり、さらに好ましくは85モル%以下、より更に好ましくは79モル%以下である。アセタール化度をこれら範囲内とすることで、水酸基の量や、式(1)で示される官能基を一定量含有させやすくなる。
 なお、アセタール化度とは、ポリビニルアセタール系樹脂のアセタール基がアセトアセタール基である場合には、アセトアセタール化度を意味し、アセタール基がブチラール基である場合には、ブチラール化度を意味する。
 また、アセタール化度は、ポリビニルアセタール系樹脂を構成する全単量体単位に対する、アセタール化されたビニルアルコール単位の割合を表す。
The degree of acetalization (that is, the amount of acetal) of the polyvinyl acetal-based resin is preferably 40 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, and even more preferably 64 mol% or more.
Also, the degree of acetalization is preferably 90 mol % or less, more preferably 88 mol % or less, even more preferably 85 mol % or less, still more preferably 79 mol % or less. By setting the degree of acetalization within these ranges, it becomes easier to contain a certain amount of the hydroxyl group and the functional group represented by the formula (1).
The degree of acetalization means the degree of acetoacetalization when the acetal group of the polyvinyl acetal-based resin is an acetoacetal group, and the degree of butyralization when the acetal group is a butyral group. .
Further, the degree of acetalization represents the ratio of acetalized vinyl alcohol units to all monomer units constituting the polyvinyl acetal-based resin.
 ポリビニルアセタール系樹脂の水酸基量は、好ましくは50モル%以下、より好ましくは45モル%以下、さらに好ましくは40モル%以下、よりさらに好ましくは35モル%以下である。また、ポリビニルアセタール系樹脂の水酸基量は、0モル%以上であるとよいが、一定量の水酸基量を含有するとよく、好ましくは5モル%以上、より好ましくは10モル%以上、さらに好ましくは15モル%以上、よりさらに好ましくは20モル%以上である。
 水酸基量を上記範囲内とすることで、シート状、膜状に成形した際の強度が強くあることや、セラミックグリーンシート等に用いられる場合に分散性に優れるという利点がある。
 なお、水酸基量は、ポリビニルアセタール系樹脂を構成する全単量体単位に対する、水酸基の割合を表す。
The hydroxyl group content of the polyvinyl acetal resin is preferably 50 mol % or less, more preferably 45 mol % or less, even more preferably 40 mol % or less, and even more preferably 35 mol % or less. In addition, the hydroxyl group content of the polyvinyl acetal resin is preferably 0 mol % or more, but it is preferable to contain a certain amount of hydroxyl groups, preferably 5 mol % or more, more preferably 10 mol % or more, further preferably 15 mol % or more. mol % or more, and more preferably 20 mol % or more.
By setting the amount of hydroxyl groups within the above range, there are advantages such as high strength when formed into a sheet or film, and excellent dispersibility when used in ceramic green sheets and the like.
In addition, the amount of hydroxyl groups represents the ratio of hydroxyl groups to the total monomer units constituting the polyvinyl acetal-based resin.
 上記ポリビニルアセタール系樹脂のアセチル化度(アセチル基量)は、例えば0.01モル%以上50モル%以下であるが、例えば、式(1)で示される官能基による変性量を一定値以上とするために、アセチル化度も一定値以下としたほうがよい。したがって、ポリビニルアセタール系樹脂のアセチル化度は、好ましくは20モル%以下、より好ましくは15モル%以下、さらに好ましくは12モル%以下、よりさらに好ましくは5モル%以下である。
 また、変性ポリビニルアセタール樹脂(A)のアセチル化度は、上記のとおり例えば0.01モル%以上であるが、好ましくは0.1モル%以上、より好ましくは0.5モル%以上である。
The degree of acetylation (acetyl group content) of the polyvinyl acetal resin is, for example, 0.01 mol % or more and 50 mol % or less. Therefore, the degree of acetylation should also be below a certain value. Therefore, the degree of acetylation of the polyvinyl acetal resin is preferably 20 mol % or less, more preferably 15 mol % or less, still more preferably 12 mol % or less, and even more preferably 5 mol % or less.
The degree of acetylation of the modified polyvinyl acetal resin (A) is, for example, 0.01 mol % or more as described above, preferably 0.1 mol % or more, and more preferably 0.5 mol % or more.
[ポリビニルアセタール系樹脂の製造方法]
 本発明で使用するポリビニルアセタール系樹脂は、変性ポリビニルアセタール系樹脂である場合には、ポリビニルアルコール(「原料ポリビニルアルコール」ともいう)をアルデヒドでアセタール化し、その後、変性剤と反応させることで得ることができる。この場合、原料ポリビニルアルコールは、変性ポリビニルアルコールを使用してもよいが、通常は未変性ポリビニルアルコールを使用すればよい。
 また、変性ポリビニルアセタール系樹脂は、原料ポリビニルアルコールとして変性ポリビニルアルコールを使用して、変性ポリビニルアルコールをアルデヒドでアセタール化して得ることもできる。
 原料ポリビニルアルコールとしては、鹸化度80~99.8モル%のポリビニルアルコールが一般的に用いられる。
[Method for producing polyvinyl acetal-based resin]
When the polyvinyl acetal-based resin used in the present invention is a modified polyvinyl acetal-based resin, it is obtained by acetalizing polyvinyl alcohol (also referred to as "raw material polyvinyl alcohol") with aldehyde and then reacting it with a modifier. can be done. In this case, modified polyvinyl alcohol may be used as the raw material polyvinyl alcohol, but usually unmodified polyvinyl alcohol may be used.
The modified polyvinyl acetal-based resin can also be obtained by using modified polyvinyl alcohol as raw material polyvinyl alcohol and acetalizing the modified polyvinyl alcohol with aldehyde.
As the raw polyvinyl alcohol, polyvinyl alcohol having a degree of saponification of 80 to 99.8 mol % is generally used.
 ポリビニルアセタール系樹脂を製造する際に用いるアルデヒドは特に限定されず、例えば炭素数1~20のアルデヒドであるが、一般には炭素数が2~10のアルデヒドが好適に用いられる。上記炭素数が2~10のアルデヒドは特に限定されず、例えば、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、アセトアルデヒド、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドなどの炭素数2~6のアルデヒドが好ましく、炭素数2、3,4のアルデヒドがより好ましく、n-ブチルアルデヒドがさらに好ましい。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。 The aldehyde used in producing the polyvinyl acetal-based resin is not particularly limited, and is, for example, an aldehyde having 1 to 20 carbon atoms, but generally an aldehyde having 2 to 10 carbon atoms is preferably used. The aldehyde having 2 to 10 carbon atoms is not particularly limited, and examples thereof include acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, and n-octylaldehyde. , n-nonylaldehyde, n-decylaldehyde, benzaldehyde and the like. Among them, aldehydes having 2 to 6 carbon atoms such as acetaldehyde, n-butyraldehyde, n-hexylaldehyde and n-valeraldehyde are preferable, aldehydes having 2, 3 and 4 carbon atoms are more preferable, and n-butyraldehyde is further preferable. preferable. These aldehydes may be used alone or in combination of two or more.
 ポリビニルアセタール系樹脂は、例えば、ポリアルキレンオキサイド構造を有する変性ポリビニルアセタール樹脂を製造する際には、以下の製造方法により製造することが好ましい。 The polyvinyl acetal-based resin is preferably produced by the following production method, for example, when producing a modified polyvinyl acetal resin having a polyalkylene oxide structure.
 本製造方法では、まず、原料ポリビニルアルコールとしてポリオキシアルキレン変性ポリビニルアルコールを製造する。具体的には、ビニルエステルと、ポリオキシアルキレン基を有するビニルモノマーを含むモノマーを重合してポリマーを得た後、ポリマーをケン化することにより得られる。ケン化には、一般に、アルカリ又は酸が用いられるが、アルカリを用いることが好ましい。また、アルカリ又は酸としては、塩素を含有しないアルカリ又は酸を用いればよく、例えば水酸化ナトリウム、水酸化カリウムなどの無機アルカリを使用すればよい。塩素を含有しない無機アルカリを使用することで、樹脂(X)における塩素原子量を少なくしつつ、ケン化を適切に行うことができる。
 ポリオキシアルキレン変性ポリビニルアルコールとしては、1種のみが用いられてもよく、2種以上が併用されてもよい。
In this production method, first, polyoxyalkylene-modified polyvinyl alcohol is produced as a raw polyvinyl alcohol. Specifically, it is obtained by polymerizing a vinyl ester and a monomer containing a vinyl monomer having a polyoxyalkylene group to obtain a polymer, and then saponifying the polymer. Alkali or acid is generally used for saponification, and alkali is preferably used. As the alkali or acid, an alkali or acid containing no chlorine may be used, for example, an inorganic alkali such as sodium hydroxide or potassium hydroxide may be used. By using a chlorine-free inorganic alkali, the saponification can be appropriately performed while reducing the chlorine atom weight in the resin (X).
As the polyoxyalkylene-modified polyvinyl alcohol, only one type may be used, or two or more types may be used in combination.
 上記製造方法で使用するビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ絡酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどを用いることができる。これらの中では酢酸ビニルが好ましい。 Examples of vinyl esters used in the above production method include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl isoformate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, Vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like can be used. Among these, vinyl acetate is preferred.
 また、上記製造方法で使用するポリオキシアルキレン基を有するビニルモノマーとしては、具体的には、以下の式(4)で示される化合物が挙げられる。中でも、以下の式(4-1)で示されるポリオキシアルキレンビニルエーテル、式(4-2)で示されるポリオキシアルキレンアリルエーテルが好ましい。 Further, specific examples of vinyl monomers having a polyoxyalkylene group used in the above production method include compounds represented by the following formula (4). Among them, a polyoxyalkylene vinyl ether represented by the following formula (4-1) and a polyoxyalkylene allyl ether represented by the following formula (4-2) are preferable.
Figure JPOXMLDOC01-appb-C000006

(式(4)において、AO、R、R、mは上記と同様である。)
Figure JPOXMLDOC01-appb-C000006

(In formula (4), A 1 O, R 1 , R 2 and m are the same as above.)
Figure JPOXMLDOC01-appb-C000007

(式(4-1)、(4-2)において、AO、m、及びRはそれぞれ上記と同じである。)
Figure JPOXMLDOC01-appb-C000007

(In formulas (4-1) and (4-2), A 1 O, m, and R 1 are the same as above.)
 ポリオキシアルキレン基を有するビニルモノマーの好ましい具体例としては、ポリオキシエチレンモノビニルエーテル、ポリオキシエチレンポリオキシプロピレンモノビニルエーテル、ポリオキシプロピレンモノビニルエーテル、ポリオキシエチレンモノアリルエーテル、ポリオキシエチレンポリオキシプロピレンモノアリルエーテル、ポリオキシプロピレンモノアリルエーテル、ポリオキシエチレンアルキルビニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルビニルエーテル、ポリオキシプロピレンアルキルビニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアリルエーテル、ポリオキシプロピレンアルキルアリルエーテルなどが挙げられる。 Preferred specific examples of vinyl monomers having a polyoxyalkylene group include polyoxyethylene monovinyl ether, polyoxyethylene polyoxypropylene monovinyl ether, polyoxypropylene monovinyl ether, polyoxyethylene monoallyl ether, polyoxyethylene polyoxypropylene mono Allyl ether, polyoxypropylene monoallyl ether, polyoxyethylene alkyl vinyl ether, polyoxyethylene polyoxypropylene alkyl vinyl ether, polyoxypropylene alkyl vinyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene alkyl allyl ether, polyoxy and propylene alkyl allyl ether.
 次いで、上記で得られた変性ポリビニルアルコールに対して、アルデヒドでアセタール化して、変性ポリビニルアセタール樹脂を得る。アセタール化反応は、変性ポリビニルアルコールを水に溶解させたポリビニルアルコール溶液に、酸触媒とアルデヒドを加えて、得られるポリビニルアセタール系樹脂を粒子として析出させるとよい。
 ここで、析出されるポリビニルアセタール系樹脂の粒子の粒径は適度な大きさに調整することが好ましい。析出されるポリビニルブチラール樹脂の粒径を小さくすると、粒子中に酸触媒が取り込まれにくくなり、酸触媒として塩酸を使用しても、樹脂(X)中の塩素原子量を低くできる。また、析出されるポリビニルブチラール樹脂の粒子を一定の大きさ以上とすることで、析出後に溶液がエマルジョンになることを防止して、粒子を回収しやすくなる。
 粒径を調整する手法としては、特に限定されないが、ポリビニルアルコール溶液における変性ポリビニルアルコールの濃度を調整する方法、ポリビニルアセタール樹脂を析出する際の温度や、析出後に反応を継続する際の温度を調整する方法、又は、これらを組み合わせる方法などが挙げられる。
Next, the modified polyvinyl alcohol obtained above is acetalized with an aldehyde to obtain a modified polyvinyl acetal resin. In the acetalization reaction, an acid catalyst and an aldehyde are added to a polyvinyl alcohol solution in which modified polyvinyl alcohol is dissolved in water, and the obtained polyvinyl acetal resin is preferably precipitated as particles.
Here, it is preferable to adjust the particle size of the polyvinyl acetal-based resin particles to be deposited to an appropriate size. If the particle size of the precipitated polyvinyl butyral resin is reduced, the acid catalyst is less likely to be incorporated into the particles, and even if hydrochloric acid is used as the acid catalyst, the chlorine atom weight in the resin (X) can be reduced. In addition, by making the particles of the polyvinyl butyral resin to be deposited have a certain size or more, it is possible to prevent the solution from becoming an emulsion after the deposition, thereby facilitating the collection of the particles.
The method of adjusting the particle size is not particularly limited, but a method of adjusting the concentration of the modified polyvinyl alcohol in the polyvinyl alcohol solution, the temperature when the polyvinyl acetal resin is precipitated, and the temperature when the reaction is continued after the precipitation is adjusted. or a method of combining them.
 以下、アセタール化反応についてより詳細に説明する。アセタール化は、まず、変性ポリビニルアルコールを水に添加して加温して、変性ポリビニルアルコールを水に溶解させたポリビニルアルコール溶液を得るとよい。
 このとき、ポリビニルアルコール溶液における変性ポリビニルアルコールの濃度は、例えば3質量%以上15質量%以下、好ましくは5質量%以上13質量%以下、さらにより好ましくは7.5質量%以上11質量%以下である。濃度を下限値以上とすると、析出後に溶液がエマルジョンになることを防止して、析出されるポリビニルブチラール樹脂の粒子を適切に回収できるようになる。また、上限値以下とすると、粒径が適度に小さくしやすくなり、酸触媒として塩酸を使用しても、樹脂中の塩素原子量を低くできる。
 また、変性ポリビニルアルコールを水に溶解させる際、ポリビニルアルコール溶液は、例えば、50℃以上100℃以下の温度、好ましくは60℃以上100℃以下に加温すればよい。変性鎖長や変性量、ケン化度に応じて、溶解温度は多段階にするほうが好ましい。具体的には60℃1時間恒温後に90℃以上にあげて1時間恒温させるほうが好ましい。多段階で恒温をとって溶解させることで変性基部分およびポリビニルアルコールの水酸基部分の溶解性を改善させることができる。
The acetalization reaction will be described in more detail below. For acetalization, first, modified polyvinyl alcohol is added to water and heated to obtain a polyvinyl alcohol solution in which the modified polyvinyl alcohol is dissolved in water.
At this time, the concentration of the modified polyvinyl alcohol in the polyvinyl alcohol solution is, for example, 3% by mass or more and 15% by mass or less, preferably 5% by mass or more and 13% by mass or less, and still more preferably 7.5% by mass or more and 11% by mass or less. be. When the concentration is equal to or higher than the lower limit, it is possible to prevent the solution from becoming an emulsion after precipitation, and to appropriately collect the precipitated polyvinyl butyral resin particles. Further, when the content is below the upper limit, the particle size tends to be moderately small, and even if hydrochloric acid is used as the acid catalyst, the chlorine atom weight in the resin can be reduced.
Further, when the modified polyvinyl alcohol is dissolved in water, the polyvinyl alcohol solution may be heated to a temperature of, for example, 50° C. or higher and 100° C. or lower, preferably 60° C. or higher and 100° C. or lower. It is preferable to set the dissolution temperature in multiple stages according to the modified chain length, modified amount, and degree of saponification. Specifically, it is preferable to raise the temperature to 90° C. or higher after constant temperature at 60° C. for 1 hour and keep the temperature constant for 1 hour. The solubility of the modified group portion and the hydroxyl group portion of the polyvinyl alcohol can be improved by dissolving at a constant temperature in multiple steps.
 次に、ポリビニルアルコール溶液を例えば-5℃以上60℃以下、好ましくは10℃以上55℃以下まで冷却する。そして、上記温度範囲に維持されたポリビニルアルコール溶液に対して、酸触媒と、アルデヒドを添加したうえで、添加後に液温を例えば-10℃以上55℃以下、好ましくは0℃以上50℃以下、より好ましくは20℃以上45℃以下、さらにより好ましくは23℃以上40℃以下に下げる。そして、該温度範囲にて例えば30秒間以上60分間以下、好ましくは1分間以上30分間以下、より好ましくは25分間以下、さらにより好ましくは20分間以下、アセタール化反応を進行させて、反応生成物を析出させるとよい。
 その後、例えば35℃以上80℃以下、好ましくは40℃以上75℃以下、より好ましくは43℃以上70℃以下、さらにより好ましくは45℃以上65℃未満まで液温を上昇させて、該温度範囲に維持して例えば10分間以上360分間以下、好ましくは30分間以上300分間以下、反応を更に進行させるとよい。
 上記のとおり、反応を生成させる前の温度を比較的高い範囲に設定し触媒やアルデヒドと相溶性を良くしておき、さらに反応生成物を析出する際の温度や、その後、反応を更に進行させる際の温度を比較的低い温度範囲とすることで、析出される粒子の粒径を小さくできる。また、析出される粒子が小さなりすぎて、エマルジョンになったりすることを防止できる。
Next, the polyvinyl alcohol solution is cooled, for example, to −5° C. or higher and 60° C. or lower, preferably 10° C. or higher and 55° C. or lower. Then, an acid catalyst and an aldehyde are added to the polyvinyl alcohol solution maintained within the above temperature range, and after the addition, the liquid temperature is adjusted to, for example, −10° C. or higher and 55° C. or lower, preferably 0° C. or higher and 50° C. or lower. More preferably, the temperature is lowered to 20° C. or higher and 45° C. or lower, and even more preferably 23° C. or higher and 40° C. or lower. Then, the acetalization reaction is allowed to proceed in the temperature range, for example, for 30 seconds or more and 60 minutes or less, preferably 1 minute or more and 30 minutes or less, more preferably 25 minutes or less, and even more preferably 20 minutes or less, to obtain a reaction product. should be deposited.
Thereafter, for example, the liquid temperature is raised to 35° C. or higher and 80° C. or lower, preferably 40° C. or higher and 75° C. or lower, more preferably 43° C. or higher and 70° C. or lower, still more preferably 45° C. or higher and lower than 65° C., and the temperature range The reaction is allowed to proceed further for, for example, 10 minutes or more and 360 minutes or less, preferably 30 minutes or more and 300 minutes or less.
As described above, the temperature before the reaction is set to a relatively high range to improve the compatibility with the catalyst and aldehyde, and the temperature at which the reaction product is deposited and then the reaction is allowed to proceed further. By setting the temperature at the time to a relatively low temperature range, the grain size of the precipitated particles can be reduced. In addition, it is possible to prevent the precipitated particles from becoming too small to form an emulsion.
 アセタール化反応で使用される酸触媒としては、各種の無機酸を使用すればよいが、アセタール化反応を容易に進行させるために塩酸もしくは硫酸を使用することが好ましい。酸触媒の使用量は、原料である変性ポリビニルアルコール100質量部に対して、例えば0.5質量%以上6質量%以下、好ましくは1質量%以上4質量%以下である。 Various inorganic acids may be used as the acid catalyst used in the acetalization reaction, but it is preferable to use hydrochloric acid or sulfuric acid in order to facilitate the acetalization reaction. The amount of the acid catalyst used is, for example, 0.5% by mass or more and 6% by mass or less, preferably 1% by mass or more and 4% by mass or less with respect to 100 parts by mass of modified polyvinyl alcohol as a raw material.
 アセタール化反応後、常法により中和、水洗、及び乾燥を経て、析出された反応生成物を変性ポリビニルアセタール樹脂として得ることができる。また、水洗は、酸触媒として塩酸などを使用した場合において変性ポリビニルブチラール樹脂中の塩素原子量を低くするために、水洗および脱水の作業を複数回行ってもよい。 After the acetalization reaction, the precipitated reaction product can be obtained as a modified polyvinyl acetal resin through neutralization, washing with water, and drying in a conventional manner. In addition, when hydrochloric acid or the like is used as an acid catalyst, washing with water and dehydration may be performed multiple times in order to reduce the amount of chlorine atoms in the modified polyvinyl butyral resin.
[ポリビニルアルコール系樹脂]
 樹脂(X)として使用されるポリビニルアルコール系樹脂(PVA)は、従来公知の方法に従って、ビニルエステルを重合してポリマーを得た後、ポリマーをケン化、すなわち加水分解することにより得られる。PVAとしては、1種のみが単独で用いられてもよく、2種以上が併用されてもよい。なお、PVAを製造する際に使用されるビニルエステルとしては、ポリビニルアセタール系樹脂で述べたとおりであり、好ましくは酢酸ビニルである。
[Polyvinyl alcohol resin]
The polyvinyl alcohol-based resin (PVA) used as the resin (X) is obtained by polymerizing a vinyl ester to obtain a polymer and then saponifying, ie, hydrolyzing the polymer according to a conventionally known method. As PVA, only 1 type may be used independently and 2 or more types may be used together. The vinyl ester used in the production of PVA is as described for the polyvinyl acetal resin, preferably vinyl acetate.
 PVAは、未変性PVAであってもよいし、変性PVAであってもよいが、変性PVAであることが好ましい。変性PVAは、ポリアルキレンオキサイド構造を有することが好ましい。本発明では、PVAがポリアルキレンオキサイド構造を有することで(A-C)/Aの値を大きくしやすくなり、脱炭素性が優れたものとやりやすい。
 ポリアルキレンオキサイド構造は、上記のポリビニルアセタール系樹脂で述べたとおりに、式(1)の構成を有するものであり、その変性量などの詳細は、上記で述べたとおりである。
PVA may be unmodified PVA or modified PVA, but modified PVA is preferred. The modified PVA preferably has a polyalkylene oxide structure. In the present invention, since the PVA has a polyalkylene oxide structure, it becomes easy to increase the value of (AC)/A, and it is easy to achieve excellent decarbonization.
The polyalkylene oxide structure has the structure of the formula (1) as described in the polyvinyl acetal-based resin, and details such as the amount of modification are as described above.
 未変性PVAはポリビニルエステルをケン化したものが挙げられる。また、変性PVAは、ビニルエステルと他の不飽和モノマーとの重合体をケン化したものが挙げられる。ポリビニルアルコールのけん化度は、一般に70~99.9モル%である。
 ここで、他の不飽和モノマーは、変性基を有する不飽和モノマーが挙げられるが、好ましくはポリアルキレンオキサイド構造を有する不飽和モノマーである。ポリアルキレンオキサイド構造を有する不飽和モノマーは、上記式(4)で示すポリオキシアルキレン基を有するビニルモノマーが好ましい。なお、ポリオキシアルキレン基を有するビニルモノマーの詳細は、上記のポリビニルアセタール系樹脂で述べたとおりである。
 そして、ポリビニルアルコール系樹脂は、上記で述べた原料ポリビニルアルコールと同様に製造できる。ポリビニルアルコール系樹脂は、例えば上記した製造方法で製造することで、低分子量成分を少なくできるので、(A-B)/Aの値も小さくしやすくなる。
Examples of unmodified PVA include those obtained by saponifying polyvinyl ester. Modified PVA includes saponified polymers of vinyl esters and other unsaturated monomers. The degree of saponification of polyvinyl alcohol is generally 70-99.9 mol %.
Here, other unsaturated monomers include unsaturated monomers having modifying groups, preferably unsaturated monomers having a polyalkylene oxide structure. The unsaturated monomer having a polyalkylene oxide structure is preferably a vinyl monomer having a polyoxyalkylene group represented by the above formula (4). The details of the vinyl monomer having a polyoxyalkylene group are as described above for the polyvinyl acetal resin.
The polyvinyl alcohol-based resin can be produced in the same manner as the raw material polyvinyl alcohol described above. Polyvinyl alcohol-based resins can be produced by, for example, the above-described production method, so that the low-molecular-weight components can be reduced, so that the value of (AB)/A can be easily reduced.
 PVAは、一般的に上記式(3-2)の構成単位を有するものであるが、上記式(3-2)の構成単位に加えて、上記式(3-3)の構成単位を有してもよい。また、上記のとおりPVAは、ポリアルキレンオキサイド構造を有することが好ましく、したがって、式(2)に示される構成単位を有することが好ましく、中でも上記式(2-1)及び式(2-2)で示される構成単位のいずれかを有することがより好ましい。式(2)、式(2-1)及び式(2-2)の詳細は、上記の通りである。 PVA generally has a structural unit of the above formula (3-2), but in addition to the structural unit of the above formula (3-2), it has a structural unit of the above formula (3-3). may Further, as described above, PVA preferably has a polyalkylene oxide structure, and therefore preferably has a structural unit represented by formula (2), among which the above formulas (2-1) and (2-2) It is more preferable to have any of the structural units represented by The details of formula (2), formula (2-1) and formula (2-2) are as described above.
[アクリル系樹脂]
 樹脂(X)として使用されるアクリル系樹脂は、アクリル重合体である。アクリル重合体は、(メタ)アクリロイル基を分子内に有するアクリルモノマーの単独重合体、又は、アクリルモノマーを含むモノマーを共重合体してなる共重合体である。アクリル系樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、本明細書において、「(メタ)アクリロイル基」は、アクリロイル基又はメタクリロイル基を意味し、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、他の類似する用語も同様である。
[Acrylic resin]
The acrylic resin used as resin (X) is an acrylic polymer. An acrylic polymer is a homopolymer of an acrylic monomer having a (meth)acryloyl group in its molecule, or a copolymer obtained by copolymerizing a monomer containing an acrylic monomer. Acrylic resin may be used individually by 1 type, and may use 2 or more types together.
In this specification, "(meth)acryloyl group" means acryloyl group or methacryloyl group, "(meth)acrylate" means acrylate or methacrylate, and the same applies to other similar terms.
 アクリル重合体を構成するアクリルモノマーは、例えば、(メタ)アクリロイルオキシ基を1つ有する単官能モノマーである。そのようなアクリルモノマーとしては、例えば、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、芳香環含有(メタ)アクリレートなどが挙げられる。
 また、アクリル重合体を構成する単官能モノマーとしては、環状エーテル基、水酸基、カルボキシル基、アミノ基、アミド基、ポリオキシエチレン基、アルコキシ基などの官能基を有するモノマー(以下、「官能基含有モノマー」ともいう)であってもよい。官能基含有モノマーとしては、具体的には、環状エーテル基含有(メタ)アクリレート、水酸基含有(メタ)アクリレート、カルボキシル基含有モノマー、アミノ基含有モノマー、アミド基含有モノマー、ポリオキシエチレン基含有モノマー、アルコキシ含有モノマーなどが挙げられる。
An acrylic monomer constituting an acrylic polymer is, for example, a monofunctional monomer having one (meth)acryloyloxy group. Examples of such acrylic monomers include alkyl (meth)acrylates, alicyclic structure-containing (meth)acrylates, and aromatic ring-containing (meth)acrylates.
Monofunctional monomers constituting acrylic polymers include monomers having functional groups such as cyclic ether groups, hydroxyl groups, carboxyl groups, amino groups, amide groups, polyoxyethylene groups, and alkoxy groups (hereinafter referred to as "functional group-containing (also referred to as "monomer"). Specific examples of functional group-containing monomers include cyclic ether group-containing (meth)acrylates, hydroxyl group-containing (meth)acrylates, carboxyl group-containing monomers, amino group-containing monomers, amide group-containing monomers, polyoxyethylene group-containing monomers, Examples include alkoxy-containing monomers.
 アルキル(メタ)アクリレートとしては、例えば炭素数が1~18であるアルキル基を有するアルキル(メタ)アクリレートが挙げられる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等が挙げられる。これらの中では、アルキル基の炭素数が1~8のアルキル(メタ)アクリレートが好ましい。 Examples of alkyl (meth)acrylates include alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, isomyristyl (meth) Acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate and the like. Among these, alkyl (meth)acrylates in which the alkyl group has 1 to 8 carbon atoms are preferred.
 脂環構造含有(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。芳香環含有(メタ)アクリレートとしては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。なお、これら脂環構造含有(メタ)アクリレート、芳香環含有(メタ)アクリレートは、上記した官能基を有さない(メタ)アクリレートである。 The alicyclic structure-containing (meth)acrylates include cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and the like. Examples of aromatic ring-containing (meth)acrylates include benzyl (meth)acrylate and phenoxyethyl (meth)acrylate. These alicyclic structure-containing (meth)acrylates and aromatic ring-containing (meth)acrylates are (meth)acrylates having no functional group as described above.
 環状エーテル基含有(メタ)アクリレートとしては、エポキシ環を有するものが挙げられる。エポキシ環含有(メタ)アクリレートとしては、例えば、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、3-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチルアクリレートグリシジルエーテル、5-ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、6-ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテルなどが挙げられる。  Cyclic ether group-containing (meth)acrylates include those having an epoxy ring. Epoxy ring-containing (meth)acrylates include, for example, glycidyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate glycidyl ether, 3-hydroxypropyl (meth)acrylate glycidyl ether, 4-hydroxybutyl acrylate glycidyl ether, 5- Hydroxypentyl (meth)acrylate glycidyl ether, 6-hydroxyhexyl (meth)acrylate glycidyl ether and the like.
 カルボキシル基含有モノマーとしては、アクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸等が挙げられる。ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートにおけるポリカプロラクトンの繰り返し単位数は、2~5程度であるが、好ましくは2~3である。カルボキシル基含有アクリルモノマーは、好ましくはアクリル酸又はメタクリル酸からなる群から選択される少なくとも1種である。
 水酸基含有アクリルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらの中でも2-ヒドロキシエチル(メタ)アクリレートが好ましい。
 アミノ基含有モノマーとしては、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)メタクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートなどが挙げられる。
 アミド基含有モノマーとしては、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN-ヒドロキシエチル(メタ)アクリルアミド等が挙げられる。
 ポリオキシエチレン含有(メタ)アクリレートとしてはジエチレングリコールモノエチルエーテル(メタ)アクリレートが挙げられる。
 アルコキシ含有モノマーとしては、3-メトキシブチル(メタ)アクリレートが挙げられる。
Carboxyl group-containing monomers include acrylic acid, methacrylic acid, ω-carboxy-polycaprolactone mono(meth)acrylate, β-carboxyethyl (meth)acrylate, 2-(meth)acryloyloxyethyl phthalate, 2-(meth) ) acryloyloxyethyl hexahydrophthalic acid and the like. The number of repeating units of polycaprolactone in ω-carboxy-polycaprolactone mono(meth)acrylate is about 2-5, preferably 2-3. The carboxyl group-containing acrylic monomer is preferably at least one selected from the group consisting of acrylic acid and methacrylic acid.
Examples of hydroxyl group-containing acrylic monomers include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like. Among these, 2-hydroxyethyl (meth)acrylate is preferable.
Examples of amino group-containing monomers include N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate and the like.
Amide group-containing monomers include N,N-dimethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-diethyl(meth)acrylamide and N-hydroxyethyl(meth)acrylamide.
Polyoxyethylene-containing (meth)acrylates include diethylene glycol monoethyl ether (meth)acrylate.
Alkoxy-containing monomers include 3-methoxybutyl (meth)acrylate.
 また、アクリル重合体を構成するモノマーは、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレートからなる群から選択される1種以上を含有することが好ましい。
 これらから選択されるモノマーの含有量合計は、アクリル重合体を構成するモノマー全量基準で、好ましくは50質量%以上、より好ましくは70質量%以上である。
 また、アクリル重合体を構成するモノマーは、上記の中でも、アルキル(メタ)アクリレートを使用することが好ましい。また、アルキル(メタ)アクリレートは、脂環構造含有(メタ)アクリレートから選択される1種と併用することがより好ましく、中でも脂環構造含有(メタ)アクリレートと併用することが好ましい。
Moreover, the monomers constituting the acrylic polymer preferably contain one or more selected from the group consisting of alkyl (meth)acrylates and alicyclic structure-containing (meth)acrylates.
The total content of monomers selected from these is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total amount of monomers constituting the acrylic polymer.
Among the above monomers, alkyl (meth)acrylates are preferably used as monomers constituting the acrylic polymer. In addition, the alkyl (meth)acrylate is more preferably used together with one selected from alicyclic structure-containing (meth)acrylates, and more preferably used together with the alicyclic structure-containing (meth)acrylate.
 アクリル重合体を構成するアクリルモノマーは、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレートからなる群から選択されるアクリルモノマーに加えて、上記官能基含有モノマーを含有することが好ましい。
 官能基含有モノマーの含有量合計は、アクリル重合体を構成するモノマー全量基準で、好ましくは0.05質量%以上50質量%以下、より好ましくは0.1質量%以上40質量%以下、さらに好ましくは1質量%以上30質量%以下である。
The acrylic monomer constituting the acrylic polymer preferably contains the functional group-containing monomer in addition to the acrylic monomer selected from the group consisting of alkyl (meth)acrylates and alicyclic structure-containing (meth)acrylates.
The total content of functional group-containing monomers is preferably 0.05% by mass or more and 50% by mass or less, more preferably 0.1% by mass or more and 40% by mass or less, and still more preferably based on the total amount of monomers constituting the acrylic polymer. is 1% by mass or more and 30% by mass or less.
 官能基含有モノマーは、上記した中では、カルボキシル基含有モノマーを含むことが好ましい。アクリル重合体を構成するアクリルモノマーがカルボキシル基含有モノマーを含有すことで、樹脂の凝集力が向上し、接着性を良好でき、バインダーとして適切に使用できるようになる。ただし、カルボキシル基含有モノマーは、上記の通り、カルボキシル基量が少なくするために少量のみ使用する必要がある。
 したがって、カルボキシル基含有モノマーの含有量は、アクリル重合体を構成するモノマー全量基準で、好ましくは0.003質量%以上5質量%以下、より好ましくは0.05質量%以上3質量%以下、さらに好ましくは0.01質量%以上1質量%以下である。
The functional group-containing monomer preferably contains a carboxyl group-containing monomer among those described above. When the acrylic monomer constituting the acrylic polymer contains a carboxyl group-containing monomer, the cohesive force of the resin is improved, the adhesiveness can be improved, and the resin can be appropriately used as a binder. However, the carboxyl group-containing monomer should be used only in a small amount in order to reduce the amount of carboxyl groups, as described above.
Therefore, the content of the carboxyl group-containing monomer is preferably 0.003% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 3% by mass or less, based on the total amount of monomers constituting the acrylic polymer. It is preferably 0.01% by mass or more and 1% by mass or less.
 アクリル重合体を構成するモノマーは、上記したモノマー以外のモノマーを併用してもよい。また、アクリル重合体を構成するモノマーは、本発明の効果を阻害しない範囲であれば、単官能モノマーに加えて、多官能モノマーを使用してもよい。多官能モノマーとしては、公知の多官能(メタ)アクリレートを使用すればよい。 Monomers other than the above-described monomers may be used in combination with the monomers that constitute the acrylic polymer. In addition to monofunctional monomers, polyfunctional monomers may be used as the monomers constituting the acrylic polymer as long as they do not impair the effects of the present invention. A known polyfunctional (meth)acrylate may be used as the polyfunctional monomer.
 アクリル重合体は、溶液重合法、懸濁重合法などで重合させてもよいが、活性エネルギー線を照射することで重合させてもよい。
 アクリル重合体は、上記の通り、(A-B)/Aの値を低くするために、低分子量成分の量を少なくする必要がある。そのため、アクリル重合体は、活性エネルギー線、特に紫外線(UV)を照射することにより重合することが好ましい。活性エネルギー線による重合は、重合開始剤存在下で行うとよい。より好ましくはモノマーと開始剤以外の成分(溶媒等)を反応系内に含有させずにUV照射により重合を行うことが好ましい。このような方法を用いることで重合における停止反応などの副反応を減らすことができるため低分子量成分を減らすことができる。
The acrylic polymer may be polymerized by a solution polymerization method, a suspension polymerization method, or the like, but may be polymerized by irradiating an active energy ray.
As described above, the acrylic polymer should have a low amount of low molecular weight components in order to lower the value of (AB)/A. Therefore, the acrylic polymer is preferably polymerized by irradiation with active energy rays, particularly ultraviolet rays (UV). Polymerization with active energy rays is preferably carried out in the presence of a polymerization initiator. More preferably, the polymerization is carried out by UV irradiation without containing components (solvent, etc.) other than the monomer and the initiator in the reaction system. By using such a method, side reactions such as termination reactions in polymerization can be reduced, so that low-molecular-weight components can be reduced.
<樹脂組成物>
 本発明の樹脂組成物は、樹脂(X)を含有する樹脂組成物である。また、樹脂組成物は、その用途に応じて樹脂(X)以外の成分を含有してもよく、例えば、可塑剤、可塑剤以外の添加剤を適宜含有してもよい。可塑剤以外の添加剤としては、具体的には、紫外線吸収剤、赤外線吸収剤、酸化防止剤、光安定剤、接着力調整剤、顔料、染料、蛍光増白剤、結晶核剤、界面活性剤などの分散剤等が挙げられる。また、本発明の樹脂組成物は、樹脂(X)以外の樹脂成分を本発明の効果を損なわない範囲で含有してもよい。また、本発明の樹脂組成物は、溶媒を含み、溶媒により希釈されて使用されてもよい。
<Resin composition>
The resin composition of the present invention is a resin composition containing resin (X). Moreover, the resin composition may contain components other than the resin (X) depending on its use, and may contain, for example, a plasticizer and additives other than the plasticizer as appropriate. Additives other than plasticizers include, specifically, ultraviolet absorbers, infrared absorbers, antioxidants, light stabilizers, adhesion modifiers, pigments, dyes, fluorescent brighteners, crystal nucleating agents, surfactants and dispersants such as agents. Moreover, the resin composition of the present invention may contain resin components other than the resin (X) within a range that does not impair the effects of the present invention. In addition, the resin composition of the present invention contains a solvent and may be used after being diluted with a solvent.
 本発明の樹脂組成物は、上記の通り可塑剤を含有してもよい。樹脂組成物は、可塑剤を含有することにより柔軟となり、シート状などの所定の形状に成形しやすくなる。ただし、本発明の樹脂組成物は、可塑剤を含有しないか、含有していても少量であることが好ましい。可塑剤を少量のみ含有し又は含有させないことで、樹脂組成物をシート状などの所定の形状に成形した後の形状安定性を高めやすくなる。
 また、本発明の樹脂組成物は、可塑剤が少量であり又は含有しなくても、上記した所定の樹脂(X)を使用することで、各種材料に対する接着性などを良好にでき、バインダーとしての物性は十分に確保できる。
The resin composition of the present invention may contain a plasticizer as described above. By containing a plasticizer, the resin composition becomes flexible and can be easily molded into a predetermined shape such as a sheet. However, the resin composition of the present invention preferably does not contain a plasticizer or contains a small amount of plasticizer. By containing only a small amount of the plasticizer or not containing it, it becomes easier to improve the shape stability after molding the resin composition into a predetermined shape such as a sheet.
In addition, the resin composition of the present invention can improve the adhesiveness to various materials by using the above-described predetermined resin (X) even if the plasticizer is small or not contained, and can be used as a binder. The physical properties of are sufficiently secured.
 樹脂組成物における可塑剤の含有量は、樹脂組成物に含まれる樹脂(X)100質量部に対して、40質量部未満であるとよい。可塑剤を40質量部未満とすることで、樹脂組成物をシート状などの所定の形状に成形した後の形状安定性を高めやすくなる。
 可塑剤の上記含有量は、好ましくは30質量部以下であり、より好ましくは15質量部以下、さらに好ましくは10質量部以下、よりさらに好ましくは5質量部以下である。また、可塑剤の上記含有量は、0質量部以上であればよいが、樹脂組成物は、可塑剤を含有しない、すなわち、可塑剤の含有量が0質量部である態様も好ましい。
The content of the plasticizer in the resin composition is preferably less than 40 parts by mass with respect to 100 parts by mass of the resin (X) contained in the resin composition. By setting the plasticizer to less than 40 parts by mass, it becomes easier to improve the shape stability after molding the resin composition into a predetermined shape such as a sheet.
The content of the plasticizer is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, even more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less. Moreover, although the content of the plasticizer may be 0 parts by mass or more, it is also preferable that the resin composition does not contain the plasticizer, that is, the content of the plasticizer is 0 parts by mass.
 可塑剤としては、例えば、有機エステル可塑剤、並びに有機リン酸エステル可塑剤及び有機亜リン酸エステル可塑剤などの有機リン系可塑剤、ポリアルキレングリコール系可塑剤、ポリオキシアルキレンエーテル系可塑剤などの有機エーテル系可塑剤、アルコール系可塑剤などが挙げられる。可塑剤は1種単独で使用してもよいし、2種以上を併用してもよい。上記したなかでも、有機エステル可塑剤、ポリアルキレングリコール系可塑剤が好ましく、中でも有機エステル可塑剤がより好ましい。好ましい有機エステル可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等が挙げられる。
 また、樹脂(X)の種類によって、使用する可塑剤の種類を適宜選択してもよい。例えば樹脂(X)がポリビニルアセタール系樹脂及びアクリル系樹脂のいずれかの場合には、有機エステル可塑剤を使用することが好ましく、樹脂(X)がポリビニルアルコール系樹脂である場合には有機エステル可塑剤、ポリアルキレングリコール系可塑剤を使用することが好ましい。
Examples of plasticizers include organic ester plasticizers, organic phosphorus plasticizers such as organic phosphate ester plasticizers and organic phosphite ester plasticizers, polyalkylene glycol plasticizers, polyoxyalkylene ether plasticizers, and the like. organic ether-based plasticizers, alcohol-based plasticizers, and the like. A plasticizer may be used individually by 1 type, and may use 2 or more types together. Among them, organic ester plasticizers and polyalkylene glycol plasticizers are preferred, and organic ester plasticizers are more preferred. Preferred organic ester plasticizers include monobasic organic acid esters and polybasic organic acid esters.
Also, the type of plasticizer to be used may be appropriately selected depending on the type of resin (X). For example, when the resin (X) is either a polyvinyl acetal resin or an acrylic resin, it is preferable to use an organic ester plasticizer, and when the resin (X) is a polyvinyl alcohol resin, an organic ester plasticizer is preferably used. It is preferable to use a polyalkylene glycol-based plasticizer.
 一塩基性有機酸エステルとしては、グリコールと、一塩基性有機酸とのエステルが挙げられる。グリコールとしては、各アルキレン単位が炭素数2~4、好ましくは炭素数2又は3であり、アルキレン単位の繰り返し数が2~10、好ましくは2~4であるポリアルキレングリコールが挙げられる。また、グリコールとしては、炭素数2~4、好ましくは炭素数2又は3のモノアルキレングリコール(すなわち、繰り返し単位が1)でもよい。
 グリコールとしては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ブチレングリコールなどが挙げられる。
 一塩基性有機酸としては、炭素数3~10の有機酸が挙げられ、具体的には、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸などが挙げられる。
Monobasic organic acid esters include esters of glycols with monobasic organic acids. Glycols include polyalkylene glycols in which each alkylene unit has 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms, and the number of repeating alkylene units is 2 to 10, preferably 2 to 4. The glycol may also be a monoalkylene glycol having 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms (that is, 1 repeating unit).
Specific examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and butylene glycol.
Examples of monobasic organic acids include organic acids having 3 to 10 carbon atoms, and specific examples include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, and 2-ethylhexylic acid. , n-nonylic acid and decylic acid.
 具体的な一塩基性有機酸としては、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-2-エチルヘキサノエート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、トリエチレングリコールジ-2-エチルブチレート、エチレングリコールジ-2-エチルブチレート、1,2-プロピレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、1,2-ブチレングリコールジ-2-エチルブチレートなどが挙げられる。 Specific monobasic organic acids include triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, di Propylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicapryate, triethylene glycol di-n-heptanoate, tetraethylene glycol Di-n-heptanoate, triethylene glycol di-2-ethylbutyrate, ethylene glycol di-2-ethylbutyrate, 1,2-propylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2 -ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, 1,2-butylene glycol di-2-ethyl butyrate and the like.
 また、多塩基性有機酸エステルとしては、例えば、アジピン酸、セバシン酸、アゼライン酸、フタル酸等の炭素数4~12の二塩基性有機酸と、炭素数4~10のアルコールとのエステル化合物が挙げられる。炭素数4~10のアルコールは、直鎖でもよいし、分岐構造を有していてもよいし、環状構造を有してもよい。
 具体的には、セバシン酸ジブチル、アゼライン酸ジオクチル、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、ジブチルカルビトールアジペート、混合型アジピン酸エステル、フタル酸ジオクチル、フタル酸ジブチルなどが挙げられる。また、油変性セバシン酸アルキドなどでもよい。混合型アジピン酸エステルとしては、炭素数4~9のアルキルアルコール及び炭素数4~9の環状アルコールから選択される2種以上のアルコールから作製されたアジピン酸エステルが挙げられる。
 上記有機リン系可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等のリン酸エステルなどが挙げられる。
Examples of polybasic organic acid esters include ester compounds of dibasic organic acids having 4 to 12 carbon atoms such as adipic acid, sebacic acid, azelaic acid and phthalic acid and alcohols having 4 to 10 carbon atoms. is mentioned. The alcohol having 4 to 10 carbon atoms may be linear, branched, or cyclic.
Specifically, dibutyl sebacate, dioctyl azelate, dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, hexyl cyclohexyl adipate, diisononyl adipate, heptyl nonyl adipate, dibutyl carbitol adipate, mixed adipates, dioctyl phthalate, dibutyl phthalate and the like. Alternatively, oil-modified alkyd sebacic acid may be used. Mixed adipates include adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms.
Examples of the organic phosphorus plasticizer include phosphoric acid esters such as tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
 有機エステル可塑剤としては、上記した各エステルの完全エステルに限定されず、部分エステルであってもよい。例えば、グリコールと、一塩基性有機酸との部分エステルであってもよいし、二塩基性有機酸と、アルコールとの部分エステルであってもよい。具体的には、トリエチレングリコール-モノ-2-エチルヘキサノエートなどが挙げられる。
 さらに、グリセリンなどの3価以上のアルコールと、一塩基性有機酸の部分エステルなどであってよい。一塩基性有機酸としては、炭素数3~24、好ましくは炭素数6~18の一塩基性有機酸が挙げられる。3価以上のアルコールと、一塩基性有機酸の部分エステルの具体例としては、グリセリンとステアリン酸のモノ又はジエステル、グリセリンと2-エチルヘキシル酸とのモノ又はジエステルなどが挙げられる。
 有機エステル可塑剤としては、上記したなかでも、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)、アジピン酸ジオクチル(DOA)が特に好適に用いられる。
The organic ester plasticizer is not limited to the complete ester of each ester described above, and may be a partial ester. For example, it may be a partial ester between a glycol and a monobasic organic acid, or a partial ester between a dibasic organic acid and an alcohol. Specific examples include triethylene glycol-mono-2-ethylhexanoate.
Further, it may be a trihydric or higher alcohol such as glycerin and a partial ester of a monobasic organic acid. Monobasic organic acids include monobasic organic acids having 3 to 24 carbon atoms, preferably 6 to 18 carbon atoms. Specific examples of partial esters of trihydric or higher alcohols and monobasic organic acids include mono- or diesters of glycerin and stearic acid and mono- or diesters of glycerin and 2-ethylhexyl acid.
Among the above organic ester plasticizers, triethylene glycol-di-2-ethylhexanoate (3GO) and dioctyl adipate (DOA) are particularly preferably used.
 ポリアルキレングリコール系可塑剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキシド/プロピレンオキシド)ブロック共重合体、ポリ(エチレンオキシド/プロピレンオキシド)ランダム共重合体、ポリテトラメチレングリコールなどが挙げられ、これらの中では、ポリプロピレングリコール、が好ましい。 Polyalkylene glycol-based plasticizers include polyethylene glycol, polypropylene glycol, poly(ethylene oxide/propylene oxide) block copolymer, poly(ethylene oxide/propylene oxide) random copolymer, polytetramethylene glycol and the like. Among them, polypropylene glycol is preferred.
 ポリオキシアルキレンエーテル系可塑剤は、1価又は多価アルコールとポリオキシアルキレンとのエーテル化合物である。
 具体的なポリオキシアルキレンエーテル系可塑剤としては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンアリルエーテル、ポリオキシプロピレンアリルエーテル、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、ポリオキシエチレンジグリセリルエーテル、ポリオキシプロピレンジグリセリルエーテル、ポリオキシアルキレンペンタエリスリトールエーテル、ポリカプロラクトントリオールなどが挙げられる。
 ポリオキシアルキレンエーテル系可塑剤は、好ましくは多価アルコールとポリオキシアルキレンとのエーテル化合物であり、より好ましくはグリセリン又はジグリセリンとポリオキシアルキレンとのエーテル化合物であり、更に好ましくはグリセリン又はジグリセリンとポリオキシプロピレンとのエーテル化合物である。
 アルコール系可塑剤としては、ポリアルキレングリコール可塑剤、ポリオキシアルキレンエーテル可塑剤以外のアルコールが挙げられる。具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、グリセリン、ジグリセリンなどの各種の多価アルコールが挙げられる。これらの中では、エチレングリコールが好ましい。
A polyoxyalkylene ether-based plasticizer is an ether compound of a monohydric or polyhydric alcohol and polyoxyalkylene.
Specific polyoxyalkylene ether plasticizers include, for example, polyoxyethylene hexyl ether, polyoxyethylene heptyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene Ethylene decyl ether, polyoxyethylene allyl ether, polyoxypropylene allyl ether, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene diglyceryl ether, polyoxypropylene diglyceryl ether, polyoxyalkylene pentaerythritol ether, poly and caprolactone triol.
The polyoxyalkylene ether plasticizer is preferably an ether compound of polyhydric alcohol and polyoxyalkylene, more preferably an ether compound of glycerin or diglycerin and polyoxyalkylene, still more preferably glycerin or diglycerin. and polyoxypropylene.
Alcohol plasticizers include alcohols other than polyalkylene glycol plasticizers and polyoxyalkylene ether plasticizers. Specific examples include various polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, trimethylolpropane, pentaerythritol, glycerin and diglycerin. Among these, ethylene glycol is preferred.
 樹脂(X)と併用可能な樹脂(X)以外の樹脂としては、熱可塑性樹脂であることが好ましい。樹脂(X)以外の樹脂に使用される熱可塑性樹脂の具体例としては、ポリビニルアセタール系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリウレタン樹脂、アイオノマー樹脂が挙げられる。これらの中では、ポリビニルアセタール系樹脂、アクリルが系樹脂、ポリビニルアルコール系樹脂が好ましく、ポリビニルアセタール系樹脂がより好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
 樹脂組成物において、樹脂(X)以外の樹脂を併用する場合、樹脂(X)以外の樹脂の含有量は、本発明の目的を損なわない範囲内の量であればよく、樹脂(X)100質量部に対して、例えば100質量部未満、好ましくは50質量部以下、より好ましくは30質量部以下、さらに好ましくは15質量部以下である。その下限値は特に限定されず0質量部以上であればよい。
The resin other than the resin (X) that can be used in combination with the resin (X) is preferably a thermoplastic resin. Specific examples of thermoplastic resins used for resins other than resin (X) include polyvinyl acetal resins, acrylic resins, polyvinyl alcohol resins, polyvinyl acetates, ethylene-vinyl acetate copolymers, polyurethane resins, and ionomers. resin. Among these, polyvinyl acetal-based resins, acrylic-based resins, and polyvinyl alcohol-based resins are preferable, and polyvinyl acetal-based resins are more preferable. These may be used individually by 1 type, and may use 2 or more types together.
In the resin composition, when a resin other than the resin (X) is used in combination, the content of the resin other than the resin (X) may be within a range that does not impair the object of the present invention. For example, it is less than 100 parts by mass, preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 15 parts by mass or less. The lower limit thereof is not particularly limited, and may be 0 parts by mass or more.
 本発明の樹脂(X)、及び樹脂組成物は、様々な用途で使用することができる。樹脂(X)、及び樹脂組成物は、合わせガラス用中間膜において使用してもよいが、インク、塗料、焼付け用エナメル、ラッカー、セラミックグリーンシート、電極ペースト、熱現像性感光材料、インク受像層、リチウムイオン電池、太陽電池、粘着シート、改質剤などにおいてバインダーとして使用することが好ましい。また、これら各用途又はこれら用途以外において添加剤や分散剤として使用してもよい。
 また、上記用途以外でも、上記樹脂(X)を含有するシートは、製造工程において、被着体に貼付されて、被着体を保護する保護シートなどとして使用してもよい。保護シートは、半導体製造工程でウエハなどに貼付されてウエハなどを保護するとよい。本発明の樹脂(X)を含有するシートは、シート成形後の形状安定性に優れるから、各種被着体を保護しやすくなる。保護シートとして使用する場合には、保護シートは、上記樹脂(X)を含有する樹脂組成物からなる層を少なくとも1層有すればよい。
The resin (X) and resin composition of the present invention can be used in various applications. The resin (X) and the resin composition may be used in interlayer films for laminated glass, inks, paints, baking enamels, lacquers, ceramic green sheets, electrode pastes, heat-developable photosensitive materials, ink image-receiving layers. , lithium ion batteries, solar batteries, pressure-sensitive adhesive sheets, modifiers, etc., as a binder. It may also be used as an additive or dispersant in each of these uses or other than these uses.
In addition to the above applications, the sheet containing the resin (X) may be used as a protective sheet or the like that is attached to an adherend to protect the adherend in the manufacturing process. The protective sheet is preferably attached to a wafer or the like in a semiconductor manufacturing process to protect the wafer or the like. Since the sheet containing the resin (X) of the present invention is excellent in shape stability after sheet molding, it becomes easy to protect various adherends. When used as a protective sheet, the protective sheet may have at least one layer made of the resin composition containing the resin (X).
 樹脂(X)、及び樹脂組成物は、上記の中でも、特に、後述する通り、無機粉と併用して使用される用途であることが好ましく、中でも焼成用に使用することが好ましい。樹脂(X)又は樹脂組成物が焼成用に使用される場合、後述する無機粉を含有する樹脂組成物を、シート状などの所定の形状に成形したうえで、焼成することで焼成物を得る方法で使用することが好ましい。
 また、樹脂(X)、及び樹脂組成物は、上記の中でも、特に、セラミックグリーンシートまたは電極ペーストに使用されることが好ましい。
Among the above, the resin (X) and the resin composition are preferably used in combination with an inorganic powder, as described later, and particularly preferably used for firing. When the resin (X) or the resin composition is used for firing, the resin composition containing the inorganic powder described later is formed into a predetermined shape such as a sheet, and then fired to obtain a fired product. preferably used in a method.
In addition, the resin (X) and the resin composition are preferably used for ceramic green sheets or electrode pastes among the above.
(無機粉)
 本発明の上記樹脂組成物は、上記樹脂(X)に加えて無機粉を含有することが好ましい。また、樹脂組成物は、無機粉を含有する場合も、上記の通り、可塑剤や、可塑剤以外の添加剤を適宜含有してもよい。なお、以下の説明においては、無機粉を含有する樹脂組成物を便宜上、「無機粉含有樹脂組成物」として説明し、後述するスラリーの形態の無機粉含有樹脂組成物を「スラリー組成物」ということがある。
(inorganic powder)
The resin composition of the present invention preferably contains an inorganic powder in addition to the resin (X). Further, even when the resin composition contains inorganic powder, as described above, the resin composition may appropriately contain a plasticizer or an additive other than the plasticizer. In the following description, for the sake of convenience, the resin composition containing inorganic powder will be referred to as "inorganic powder-containing resin composition", and the later-described inorganic powder-containing resin composition in the form of slurry will be referred to as "slurry composition". Sometimes.
 無機粉含有樹脂組成物は、一般的にさらに溶媒を含有し、スラリーの形態で使用されることが好ましい。本発明の樹脂(X)は、上記の通り、無機粉溶液安定性が高く、スラリーにおいて無機粉と併用されることで、無機粉の分散性を良好にして、スラリーの増粘などを防ぐことができる。
 スラリー組成物における樹脂(X)の含有量は、スラリー組成物全量に対して、1質量%以上20質量%以下が好ましい。スラリー組成物における樹脂(X)の含有量を1質量%以上とすることで、セラミックグリーンシートなどの成膜性や柔軟性が良好となり、焼結後にクラック等が発生することが防止できる。また、樹脂(X)含有量を20質量%以下とすることで、スラリー組成物の粘度が高くなり過ぎることを防止して、スラリー組成物の分散性が低下することを防止する。また、焼成時の脱炭素性を良好にできる。スラリー組成物における樹脂(X)の含有量は、より好ましくは2質量%以上10質量%以下、さらにより好ましくは2.5質量%以上5質量%以下である。
The inorganic powder-containing resin composition generally further contains a solvent and is preferably used in the form of slurry. As described above, the resin (X) of the present invention has high inorganic powder solution stability, and when used in combination with an inorganic powder in a slurry, improves the dispersibility of the inorganic powder and prevents the viscosity of the slurry from increasing. can be done.
The content of the resin (X) in the slurry composition is preferably 1% by mass or more and 20% by mass or less with respect to the total amount of the slurry composition. By setting the content of the resin (X) in the slurry composition to 1% by mass or more, the film-forming property and flexibility of the ceramic green sheet can be improved, and the occurrence of cracks and the like after sintering can be prevented. Moreover, by setting the resin (X) content to 20% by mass or less, the viscosity of the slurry composition is prevented from becoming too high, and the dispersibility of the slurry composition is prevented from deteriorating. Moreover, the decarbonization property at the time of firing can be improved. The content of the resin (X) in the slurry composition is more preferably 2% by mass or more and 10% by mass or less, and still more preferably 2.5% by mass or more and 5% by mass or less.
 無機粉としては、その用途に応じてその種類を適宜使用できるが、セラミック粉末であることが好ましい。セラミック粉末を使用することで、無機粉含有樹脂組成物をセラミックグリーンシート用に好適に使用することができる。
 セラミック粉末としては、特に限定されず、例えば、アルミナ、ジルコニア、ケイ酸アルミニウム、酸化チタン、酸化亜鉛、チタン酸バリウム、マグネシア、サイアロン、スピネムルライト、結晶化ガラス、炭化ケイ素、窒化ケイ素、窒化アルミニウム等の粉末が挙げられる。これらのセラミック粉末は単独で用いられてもよく、2種以上を併用してもよい。また、セラミック粉末は、上記した各種のセラミック粉末に、さらにMgO-SiO-CaO系、B-SiO系、PbO-B-SiO系、CaO-SiO-MgO-B系又はPbO-SiO-B-CaO系等のガラスフリットが添加されてもよい。
As the inorganic powder, any suitable type can be used depending on the application, but ceramic powder is preferable. By using ceramic powder, the inorganic powder-containing resin composition can be suitably used for ceramic green sheets.
The ceramic powder is not particularly limited, and examples thereof include alumina, zirconia, aluminum silicate, titanium oxide, zinc oxide, barium titanate, magnesia, sialon, spinemullite, crystallized glass, silicon carbide, silicon nitride, and aluminum nitride. and other powders. These ceramic powders may be used alone or in combination of two or more. In addition to the various ceramic powders described above, the ceramic powder may be MgO—SiO 2 —CaO, B 2 O 2 —SiO 2 , PbO—B 2 O 2 —SiO 2 , CaO—SiO 2 —MgO— A glass frit such as B 2 O 2 or PbO—SiO 2 —B 2 O 2 —CaO may be added.
 無機粉として、導電粉末を使用することで、無機含有樹脂組成物を電極ペースト用に好適に使用することができる。
 導電粉末としては、特に限定されず、例えば、ニッケル、銅、アルミ二ウム、銀、金、白金、パラジウム、半田、酸化錫、アンチモンドープ酸化錫(ATO)、酸化インジウム、錫ドープ酸化インジウム(ITO)等が挙げられる。
By using a conductive powder as the inorganic powder, the inorganic-containing resin composition can be suitably used for the electrode paste.
The conductive powder is not particularly limited, and examples thereof include nickel, copper, aluminum, silver, gold, platinum, palladium, solder, tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide (ITO ) and the like.
 スラリー組成物の全量に対する無機粉の含有量は20質量%以上80質量%以下であることが好ましい。含有量を20質量%以上とすることで、粘度が低くなりすぎることを防止し、セラミックグリーンシートなどを成形する際のハンドリング性が良好となる。また、無機粉の含有量が80質量%以下であると、スラリー組成物の粘度が高くなり過ぎることを防止する。無機粉の含有量は、30質量%以上70質量%以下であることがより好ましい。 The content of the inorganic powder with respect to the total amount of the slurry composition is preferably 20% by mass or more and 80% by mass or less. When the content is 20% by mass or more, the viscosity is prevented from becoming too low, and the handleability when molding a ceramic green sheet or the like is improved. Moreover, when the content of the inorganic powder is 80% by mass or less, the viscosity of the slurry composition is prevented from becoming too high. More preferably, the content of the inorganic powder is 30% by mass or more and 70% by mass or less.
 スラリー組成物(すなわち、樹脂組成物)に含有される溶媒は、水でもよいし、有機溶媒であってもよいが、有機溶媒が好ましい。有機溶媒としては、特に限定されず、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、α-テルピネオール、ブチルセルソルブアセテート、ブチルカルビトールアセテート等のグリコール系、テルペン系が挙げられる。これらの有機溶媒は単独で用いられてもよく、2種以上を併用してもよい。 The solvent contained in the slurry composition (that is, the resin composition) may be water or an organic solvent, but an organic solvent is preferred. The organic solvent is not particularly limited, and examples include ketones such as acetone, methyl ethyl ketone, dipropyl ketone and diisobutyl ketone; alcohols such as methanol, ethanol, isopropanol and butanol; aromatic hydrocarbons such as toluene and xylene; Methyl propionate, ethyl propionate, butyl propionate, methyl butanoate, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, acetic acid 2 esters such as -ethylhexyl and 2-ethylhexyl butyrate; glycol-based and terpene-based solvents such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, α-terpineol, butyl cellosolve acetate and butyl carbitol acetate; These organic solvents may be used alone or in combination of two or more.
 スラリー組成物の全量に対する溶媒の含有量は20質量%以上80質量%以下であることが好ましい。上記範囲内であれば、スラリー組成物に適度な混合性を与え、また、粘度が適切な範囲にして、セラミックグリーンシートなどを成形する際のハンドリング性が良好となる。溶媒の含有量は、30質量%以上70質量%以下であることがより好ましい。 The content of the solvent with respect to the total amount of the slurry composition is preferably 20% by mass or more and 80% by mass or less. When the content is within the above range, the slurry composition is provided with appropriate mixability, and the viscosity is set in an appropriate range, so that the handleability when molding a ceramic green sheet or the like is improved. More preferably, the solvent content is 30% by mass or more and 70% by mass or less.
 上記の通り、スラリー組成物は、セラミックグリーンシート用又は電極ペースト用に使用することが好ましい。したがって、本発明の一実施形態は、上記スラリー組成物を用いて得られるセラミックグリーンシート又は電極ペーストも提供する。
 セラミックグリーンシートの製造方法としては特に限定されず、従来公知の製造方法により製造することができる。例えば、上記スラリー組成物を、必要に応じて脱泡処理した後、ポリエチレンテレフタレートフィルム等の剥離性の支持体上に膜状に塗布し、加熱等により溶媒等を留去した後、支持体から剥離する方法等が挙げられる。
 また、セラミックグリーンシートは、後述する通りに焼成などして、樹脂(X)を分解することで、脱炭素化してセラミック焼成体を得るとよい。セラミック焼成体は、一般的に誘電層として使用される。
 電極ペーストは、樹脂(X)、導電粉末、及び必要に応じて配合される溶媒を混合して作製することができる。
As described above, the slurry composition is preferably used for ceramic green sheets or electrode pastes. Accordingly, one embodiment of the present invention also provides a ceramic green sheet or electrode paste obtained using the above slurry composition.
The method for producing the ceramic green sheet is not particularly limited, and the ceramic green sheet can be produced by a conventionally known production method. For example, after defoaming the slurry composition as necessary, it is applied in the form of a film onto a peelable support such as a polyethylene terephthalate film, and the solvent and the like are distilled off by heating or the like. A peeling method and the like can be mentioned.
Also, the ceramic green sheet is decarbonized by firing as described below to decompose the resin (X) to obtain a fired ceramic body. A fired ceramic body is commonly used as a dielectric layer.
The electrode paste can be prepared by mixing the resin (X), the conductive powder, and an optional solvent.
 セラミックグリーンシートは、典型的には積層セラミックコンデンサを製造するために使用される。積層セラミックコンデンサは、上記セラミックグリーンシートと、電極ペーストを用いて得られるものであることが好ましく、セラミックグリーンシートに電極ペーストを塗布したものを積層したものより得られることが好ましい。  Ceramic green sheets are typically used to manufacture multilayer ceramic capacitors. The laminated ceramic capacitor is preferably obtained by using the above ceramic green sheets and electrode paste, and is preferably obtained by laminating ceramic green sheets coated with electrode paste.
 積層セラミックコンデンサは、従来公知の製造方法により製造することができる。例えば、本発明のセラミックグリーンシートの表面に内部電極となる電極ペーストをスクリーン印刷等により塗布したものを複数枚積み重ね、加熱圧着して積層体を得る。次に、積層体を加熱して、積層体中に含まれる樹脂(X)等を熱分解して除去することで焼成して、焼成体を得て、該焼成体に外部電極を付けることで製造できる。 A multilayer ceramic capacitor can be manufactured by a conventionally known manufacturing method. For example, the surface of the ceramic green sheet of the present invention is coated with an electrode paste to be an internal electrode by screen printing or the like, and a plurality of sheets are stacked and heat-pressed to obtain a laminate. Next, the laminate is heated to thermally decompose and remove the resin (X) and the like contained in the laminate to obtain a sintered body, and an external electrode is attached to the sintered body. can be manufactured.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、本発明における各物性値の測定方法、及び評価方法は、以下の通りである。 Although the present invention will be described in more detail by way of examples, the present invention is not limited by these examples. In addition, the measuring method of each physical-property value in this invention, and the evaluation method are as follows.
<重量平均分子量(Mw)>
 ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂又はアクリル樹脂(樹脂(X)又は樹脂(x))をテトラヒドロフランに0.05重量%の濃度に溶解させた。次いで、シリンジフィルター(メルク社製、Millex-LH 0.45μm)を用いてろ過した後、ゲルパーミエーションクロマトグラフィー(GPC、Waters社製、e2690)を用いて、分子量を測定した。重量平均分子量(Mw)は、単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出した。また、カラムはShodex GPC KF-806L(昭和電工社製)を用い、溶離液としてテトラヒドロフランを用いた。
<Weight average molecular weight (Mw)>
A polyvinyl acetal-based resin, a polyvinyl alcohol-based resin, or an acrylic resin (resin (X) or resin (x)) was dissolved in tetrahydrofuran to a concentration of 0.05% by weight. Then, after filtering using a syringe filter (Merck, Millex-LH 0.45 μm), the molecular weight was measured using gel permeation chromatography (GPC, Waters, e2690). Weight average molecular weight (Mw) was calculated using a molecular weight calibration curve prepared from monodisperse polystyrene standard samples. Shodex GPC KF-806L (manufactured by Showa Denko) was used as a column, and tetrahydrofuran was used as an eluent.
<塩素原子量、及び遊離酸量>
 塩素原子量については、自動燃焼装置付イオンクロマトグラフィー(ダイオネクス社製「ICS-2000型」)を用いて、塩素原子の含有量を測定した。
 遊離酸量についてはポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂又はアクリル樹脂(樹脂(X)又は樹脂(x))1.0gを精秤し、エタノール/水(容量比9:1)混合溶剤、40mLを加えて5時間振とうした。得られた溶液を、フェノールフタレイン0.5%エタノール溶液を指示薬とし、0.02mol/L水酸化カリウムエタノール溶液で滴定した。別途空試験を行い、得られた結果の差から、遊離酸量(樹脂に含まれるカルボキシル基の質量%として求めカルボキシル基量として表記)を測定した。
<Chlorine atomic weight and free acid content>
Regarding the chlorine atomic weight, the content of chlorine atoms was measured using an ion chromatography with an automatic combustion device (“ICS-2000 type” manufactured by Dionex Co., Ltd.).
Regarding the amount of free acid, 1.0 g of polyvinyl acetal-based resin, polyvinyl alcohol-based resin or acrylic resin (resin (X) or resin (x)) was precisely weighed, and ethanol/water (volume ratio 9:1) mixed solvent, 40 mL. was added and shaken for 5 hours. The resulting solution was titrated with a 0.02 mol/L potassium hydroxide ethanol solution using a 0.5% ethanol solution of phenolphthalein as an indicator. Separately, a blank test was performed, and from the difference in the obtained results, the amount of free acid (determined as % by mass of carboxyl groups contained in the resin and expressed as the amount of carboxyl groups) was measured.
<変性量、アセタール化度、アセチル基量、及び水酸基量>
 ポリビニルアセタール系樹脂又はポリビニルアルコール系樹脂を、DMSO-d6に溶解し、1H-NMR(核磁気共鳴スペクトル)を用いて測定し、各ユニットのモル比を分析することで求めた。
<Amount of modification, degree of acetalization, amount of acetyl groups, and amount of hydroxyl groups>
Polyvinyl acetal-based resin or polyvinyl alcohol-based resin was dissolved in DMSO-d6, measured using 1H-NMR (nuclear magnetic resonance spectrum), and the molar ratio of each unit was analyzed.
<熱分析測定>
 各実施例で得られた樹脂(X)、及び比較例で得られた樹脂(x)を測定サンプルとしてセットし、熱分析装置(日立ハイテクサイエンス社製、TG/DTA7300)を用いて測定した。大気下で、40℃から600℃まで5℃/分で昇温させ、かつ600℃で10分間保持して行う熱分析測定において、100℃時点での重量をA、200℃時点での重量をB、600℃で10分保持した時点の重量をCとして測定した。測定されたA,B,Cより、(A-B)/Aの値、及び(A-C)/Aの値を算出した。
<Thermal analysis measurement>
The resin (X) obtained in each example and the resin (x) obtained in the comparative example were set as measurement samples and measured using a thermal analyzer (TG/DTA7300, manufactured by Hitachi High-Tech Science). In the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min and held at 600 ° C. for 10 minutes. B, the weight at the time of holding at 600° C. for 10 minutes was measured as C. From the measured A, B, and C, the value of (AB)/A and the value of (AC)/A were calculated.
<無機粉溶液安定性>
 各実施例、比較例で得られたスラリー組成物について、レーザー回折式粒度分布計(堀場製作所社製、LA-910)を用いて粒度分布測定を行い、平均粒子径を測定した。また、23℃で一週間放置した後の平均粒子径についても測定し、平均粒子径変化率を以下の基準で評価した。なお、平均粒子径変化率が低いほど、無機粉溶液安定性が高い。
 I:40%未満
 II:40%以上、80%未満
 III:80%以上
<Inorganic powder solution stability>
The slurry compositions obtained in each example and comparative example were subjected to particle size distribution measurement using a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd., LA-910) to measure the average particle size. In addition, the average particle size after standing at 23° C. for one week was also measured, and the average particle size change rate was evaluated according to the following criteria. In addition, the lower the average particle size change rate, the higher the inorganic powder solution stability.
I: less than 40% II: 40% or more and less than 80% III: 80% or more
<シートの形状安定性>
 得られたスラリー組成物を、コーターを用いて乾燥後の厚みが20μmとなるように離型処理したPETフィルム上に塗工した後、溶媒がエタノール/トルエン混合溶媒の場合は70℃で30分加熱乾燥、ターピネオールの場合は120℃で30分間加熱乾燥させることにより、無機粉含有シートを作製した。得られた無機粉含有シートを40℃のオーブンにて1か月保管後にその外観を目視観察により以下の評価基準にて評価した。
 I:外観異常なし
 II:ごくわずかなシワが認められた
 III:シワやクラックなどの外観異常が認められた
<Shape stability of sheet>
After coating the obtained slurry composition on a release-treated PET film so that the thickness after drying is 20 μm using a coater, when the solvent is an ethanol / toluene mixed solvent, the solvent is 70 ° C. for 30 minutes. An inorganic powder-containing sheet was produced by drying by heating, and by drying by heating at 120° C. for 30 minutes in the case of terpineol. After the obtained inorganic powder-containing sheet was stored in an oven at 40° C. for one month, its appearance was visually observed and evaluated according to the following evaluation criteria.
I: No appearance abnormality II: Very slight wrinkles were observed III: Appearance abnormalities such as wrinkles and cracks were observed
<誘電層外観>
 上記のシートの形状安定性評価と同様の方法で作製した無機粉含有シートを10層積層し、温度80℃、圧力20MPa/cmの条件で加熱・加圧した後、大気下で昇温速度0.5℃/分で温度350℃になるまで昇温し、8時間温度保持した。その後、昇温速度5℃/分で温度1000℃になるまで昇温し、2時間温度保持後、室温まで冷却した。得られた焼成物の垂直な面で切断および研磨し、SEM(走査電子顕微鏡)で観察したときに以下の評価基準で評価した。なお、誘電層は、欠損などの外観異常があれば、性能異常が起こりやすくなり、製品の歩留まりが低下する。また、欠損は、一般的には焼成時の脱炭素性が低いことで生じる。
 I:外観異常が見られない
 III:欠損あり
<Appearance of dielectric layer>
10 layers of inorganic powder-containing sheets prepared by the same method as the shape stability evaluation of the sheet were laminated, heated and pressurized under the conditions of a temperature of 80 ° C. and a pressure of 20 MPa / cm 2 , and then the temperature rising rate in the atmosphere. The temperature was raised to 350°C at a rate of 0.5°C/min, and the temperature was maintained for 8 hours. After that, the temperature was raised to 1000° C. at a rate of temperature rise of 5° C./min, and after the temperature was maintained for 2 hours, it was cooled to room temperature. The obtained baked product was cut and polished on a vertical plane, and evaluated according to the following evaluation criteria when observed with a SEM (scanning electron microscope). Note that if the dielectric layer has an appearance abnormality such as a defect, performance abnormality is likely to occur, resulting in a decrease in product yield. In addition, defects generally occur due to low decarbonization during firing.
I: No appearance abnormality III: Defective
(実施例1)
[プロピレンオキサイド変性ポリビニルアルコールの合成]
 式(4-2)に示すアリルエーテルモノマー(1)を用意した。アリルエーテルモノマー(1)は、式(4-2)において、AOがオキシプロピレン基(PO)であり、その平均繰り返し数が25、及び末端基(R)が水素原子である。
攪拌機、温度計、滴下ロートおよび還流冷却器を付したフラスコ中に酢酸ビニル723質量部、アリルエーテルモノマー(1)257質量部、及びメタノール20質量部を添加し、系内の窒素置換を行った後、温度を60℃まで昇温した。この系に2,2-アゾビスイソブチロニトリル1質量部を添加し、重合を開始した。重合開始から5時間で重合を停止した。オーブンで加熱を行い、未反応のモノマーとメタノールを除去した後、共重合体の40質量%メタノール溶液を調製した。減圧下に未反応のモノマーを除去した後、共重合体の40質量%メタノール溶液を得た。
 得られた共重合体のメタノール溶液100質量部を40℃で攪拌しながら、3質量%のNaOHメタノール溶液7.4質量部を添加して、よく混合した後に放置した。2時間後、固化したポリマーを粉砕機で粉砕し、メタノールで洗浄後、乾燥してポリマー粉末(プロピレンオキサイド変性ポリビニルアルコール(PO-PVA))を得た。
(Example 1)
[Synthesis of propylene oxide-modified polyvinyl alcohol]
An allyl ether monomer (1) represented by formula (4-2) was prepared. In the formula (4-2), the allyl ether monomer (1) has an oxypropylene group (PO) as A 1 O, an average repetition number of 25, and a hydrogen atom as a terminal group (R 1 ).
723 parts by mass of vinyl acetate, 257 parts by mass of allyl ether monomer (1), and 20 parts by mass of methanol were added to a flask equipped with a stirrer, thermometer, dropping funnel, and reflux condenser, and the system was purged with nitrogen. After that, the temperature was raised to 60°C. 1 part by mass of 2,2-azobisisobutyronitrile was added to this system to initiate polymerization. Polymerization was stopped 5 hours after the start of polymerization. After heating in an oven to remove unreacted monomers and methanol, a 40% by mass methanol solution of the copolymer was prepared. After removing unreacted monomers under reduced pressure, a 40% by mass methanol solution of the copolymer was obtained.
While stirring 100 parts by mass of the obtained methanol solution of the copolymer at 40° C., 7.4 parts by mass of a 3% by mass NaOH methanol solution was added, mixed well, and then allowed to stand. After 2 hours, the solidified polymer was pulverized with a pulverizer, washed with methanol, and dried to obtain polymer powder (propylene oxide-modified polyvinyl alcohol (PO-PVA)).
[変性ポリビニルブチラール樹脂(PO-PVB1)の合成]
 得られたポリマー粉末280質量部、純水2300質量部に加え、60℃の温度で約1時間攪拌した後、90℃の温度で約1時間撹拌して溶解させた。この溶液を50℃に冷却し、濃度35質量%の塩酸160質量部とn-ブチルアルデヒド150質量部を添加し、添加後に液温を30℃まで下げ、温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を60℃として3時間保持して反応を完了させ、常法により中和した後抜き出した。その後水洗し、脱水処理を行う作業を3回繰り返した。その後乾燥を経て、変性ポリビニルブチラール樹脂(PO-PVB1)の白色粉末を得た。得られた変性ポリビニルブチラール樹脂(樹脂(X))の構造及び各物性を表1に示す。
[Synthesis of modified polyvinyl butyral resin (PO-PVB1)]
280 parts by mass of the obtained polymer powder and 2300 parts by mass of pure water were added, stirred at a temperature of 60° C. for about 1 hour, and then stirred at a temperature of 90° C. for about 1 hour to dissolve. This solution is cooled to 50° C., 160 parts by mass of hydrochloric acid having a concentration of 35% by mass and 150 parts by mass of n-butyraldehyde are added, and after the addition, the liquid temperature is lowered to 30° C., and the temperature is maintained to carry out the acetalization reaction. , precipitated the reaction product. Thereafter, the liquid temperature was maintained at 60° C. for 3 hours to complete the reaction, and the liquid was extracted after being neutralized by a conventional method. After that, the operation of washing with water and performing dehydration treatment was repeated three times. After drying, a white powder of modified polyvinyl butyral resin (PO-PVB1) was obtained. Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (X)).
[樹脂溶液(X´)の作製]
 樹脂(X)90質量部、及び可塑剤としてのトリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)10質量部をエタノール/トルエン混合溶媒(質量比1:1)900質量部に加え、攪拌溶解することにより、樹脂溶液(X´)を作製した。
[Preparation of resin solution (X')]
90 parts by mass of resin (X) and 10 parts by mass of triethylene glycol-di-2-ethylhexanoate (3GO) as a plasticizer were added to 900 parts by mass of an ethanol/toluene mixed solvent (mass ratio of 1:1), A resin solution (X') was prepared by stirring and dissolving.
[スラリー組成物の調製]
 ポリビニルアセタール樹脂(積水化学工業社製、BL-1)1質量部を、エタノール20質量部とトルエン20質量部との混合溶媒に加え、溶解撹拌し、100質量部のチタン酸バリウムの粉末(堺化学工業社製、BT01)を加えてビーズミルで60分間撹拌させた。その後、先に得られた樹脂溶液(X´)100質量部を添加しビーズミル(アイメックス社製、レデイーミル)にて180分間撹拌して、無機分散液(スラリー組成物)を作製した。
 得られたスラリー組成物を用いて各評価を行った。評価結果を表1に示す。
[Preparation of slurry composition]
1 part by mass of polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd., BL-1) is added to a mixed solvent of 20 parts by mass of ethanol and 20 parts by mass of toluene, dissolved and stirred, and 100 parts by mass of barium titanate powder (Sakai BT01 manufactured by Kagaku Kogyo Co., Ltd.) was added and stirred for 60 minutes with a bead mill. Thereafter, 100 parts by mass of the previously obtained resin solution (X') was added and stirred for 180 minutes in a bead mill (manufactured by Imex, Ready Mill) to prepare an inorganic dispersion (slurry composition).
Each evaluation was performed using the obtained slurry composition. Table 1 shows the evaluation results.
(実施例2)
 使用するアリルエーテルモノマーはアリルエーテルモノマー(2)を用いた。アリルエーテルモノマー(2)は、式(4-2)において、AOがオキシプロピレン基(PO)とオキシエチレン基(EO)が混在しており、その平均繰り返し数はそれぞれ34、34であった。また、末端基(R)は、水素原子であった。
 酢酸ビニル515質量部、アリルエーテルモノマー(2)152質量部、及びメタノール333質量部に変更した以外は実施例1と同様にして、変性ポリビニルブチラール樹脂(EO/PO-PVB)を得た。得られた変性ポリビニルブチラール樹脂(樹脂(X))の構造及び物性を表1に示す。
 また、PO-PVB1の代わりに、得られた変性ポリビニルブチラール樹脂(EO/PO-PVB)を使用し、かつ可塑剤を使用せずに樹脂溶液(X´)における樹脂(X)と可塑剤の配合部数(質量部)を表1に記載したように変更した以外は実施例1と同様に、スラリー組成物を作製した。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Example 2)
Allyl ether monomer (2) was used as the allyl ether monomer. In the allyl ether monomer (2), in formula (4-2), A 1 O is a mixture of oxypropylene group (PO) and oxyethylene group (EO), and the average number of repetitions is 34 and 34, respectively. rice field. Moreover, the terminal group (R 1 ) was a hydrogen atom.
A modified polyvinyl butyral resin (EO/PO-PVB) was obtained in the same manner as in Example 1, except that 515 parts by mass of vinyl acetate, 152 parts by mass of allyl ether monomer (2), and 333 parts by mass of methanol were used. Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (X)).
Further, instead of PO-PVB1, the obtained modified polyvinyl butyral resin (EO/PO-PVB) is used, and the resin (X) and the plasticizer are mixed in the resin solution (X') without using a plasticizer. A slurry composition was prepared in the same manner as in Example 1, except that the number of parts (mass parts) was changed as shown in Table 1. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(実施例3)
 使用するアリルエーテルモノマーはアリルエーテルモノマー(3)を用いた。アリルエーテルモノマー(3)は、式(4-2)において、AOはオキシエチレン基(EO)であり、その平均繰り返し数は33であった。また、末端基(R)は、水素原子であった。
 アリルエーテルモノマー(3)、酢酸ビニル834質量部、アリルエーテルモノマー(3)147質量部、及びメタノール20質量部に変更した以外は実施例1と同様にして、変性ポリビニルブチラール樹脂(EO-PVB)を得た。得られた変性ポリビニルブチラール樹脂(樹脂(X))の構造及び物性を表1に示す。
 また、PO-PVB1の代わりに、得られた変性ポリビニルブチラール樹脂(EO-PVB)を使用し、かつ樹脂溶液(X´)における樹脂(X)と可塑剤の配合部数(質量部)を表1に記載したように変更した以外は実施例1と同様にスラリー組成物を作製した。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Example 3)
Allyl ether monomer (3) was used as the allyl ether monomer. In formula (4-2), A 1 O of allyl ether monomer (3) was an oxyethylene group (EO), and the average number of repetitions was 33. Moreover, the terminal group (R 1 ) was a hydrogen atom.
Modified polyvinyl butyral resin (EO-PVB) was prepared in the same manner as in Example 1, except that the allyl ether monomer (3), 834 parts by mass of vinyl acetate, 147 parts by mass of allyl ether monomer (3), and 20 parts by mass of methanol were used. got Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (X)).
In addition, the obtained modified polyvinyl butyral resin (EO-PVB) was used instead of PO-PVB1, and the number of parts (mass parts) of the resin (X) and the plasticizer in the resin solution (X') was shown in Table 1. A slurry composition was prepared in the same manner as in Example 1, except for changing as described in . Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(実施例4)
 実施例1で製造したプロピレンオキサイド変性ポリビニルアルコール(PO-PVA)を樹脂(X)とした。PO-PVA(樹脂(X))の構造及び各物性を表1に示す。
 なお、重量平均分子量を測定する際には、得られたPO-PVAを常法にて水酸基をすべて再酢化した後に測定を行った。
 PO-PVB1の代わりに、プロピレンオキサイド変性ポリビニルアルコール(PO-PVA)を90質量部、可塑剤としてエチレングリコール(EG)10質量部を水900質量部に加え、撹拌溶解することにより、樹脂溶液(X´)を作製し、さらにスラリー組成物調整に用いる混合溶媒を水に変更した以外は、実施例1と同様に組成物を作製した。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Example 4)
The propylene oxide-modified polyvinyl alcohol (PO-PVA) produced in Example 1 was used as resin (X). Table 1 shows the structure and physical properties of PO-PVA (resin (X)).
In addition, when measuring the weight average molecular weight, the obtained PO-PVA was measured after reacetylating all the hydroxyl groups by a conventional method.
A resin solution ( X′) was prepared, and a composition was prepared in the same manner as in Example 1, except that the mixed solvent used for preparing the slurry composition was changed to water. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(実施例5)
 2-エチルヘキシルアクリレート(2EHA)30質量部、イソボルニルアクリレート(IBOA)45質量部、ジメチルアクリルアミド15質量部、2-ヒドロキシエチルアクリレート(HEA)9.99質量部、及びアクリル酸(Aac)0.01質量部、光重合開始剤(「IRGACURE184」、BASF社製)0.2質量部を混合した。これを、2枚の片面離型処理されたPETシートに挟みこんで厚み100μmとなるようにスペーサーを配置した後、ケミカルランプを用いて3mWで照射量3000mJ/cmで紫外線を照射した後、THFに溶解しエタノールで再沈殿した。100℃1時間乾燥することにより、アクリル重合体1を得た。得られたアクリル重合体1(樹脂(X))の各物性を表1に示す。
 PO-PVB1の代わりに、得られたアクリル重合体1を97質量部使用して、可塑剤としてアジピン酸ジオクチル(DOA)を使用し、かつその配合量を3質量部に変更した以外は、実施例1と同様に、樹脂溶液(X´)を作製し、樹脂溶液(X´)からスラリー組成物を得た。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Example 5)
30 parts by weight of 2-ethylhexyl acrylate (2EHA), 45 parts by weight of isobornyl acrylate (IBOA), 15 parts by weight of dimethylacrylamide, 9.99 parts by weight of 2-hydroxyethyl acrylate (HEA), and 0.2 parts by weight of acrylic acid (Aac). 01 parts by mass and 0.2 parts by mass of a photopolymerization initiator ("IRGACURE 184", manufactured by BASF) were mixed. This was sandwiched between two single-sided release-treated PET sheets and a spacer was arranged so that the thickness was 100 μm. It was dissolved in THF and reprecipitated with ethanol. Acrylic polymer 1 was obtained by drying at 100° C. for 1 hour. Table 1 shows the physical properties of the obtained acrylic polymer 1 (resin (X)).
Except that 97 parts by mass of the obtained acrylic polymer 1 was used instead of PO-PVB1, dioctyl adipate (DOA) was used as a plasticizer, and the amount was changed to 3 parts by mass. A resin solution (X') was prepared in the same manner as in Example 1, and a slurry composition was obtained from the resin solution (X'). Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(実施例6)
[樹脂溶液(X´)の作製]
 実施例3で得られた変性ポリビニルブチラール樹脂(EO-PVB)5質量部を、ターピネオール溶媒90質量部に加え、攪拌溶解することにより、樹脂溶液(X´)を作製した。なお、可塑剤は使用しなかった。
[スラリー組成物の調製]
 エチルセルロース樹脂(ダウケミカル社製、STD45)1質量部を、ターピネオール溶媒10質量部に加え、溶解撹拌し、先に得られた樹脂溶液(X´)95質量部を添加し20質量部のチタン酸バリウムの粉末(堺化学工業社製、BT01)を加えてビーズミル(アイメックス社製、レデイーミル)を用いて分散させた。その後、混合液をスリーロールに移し、ニッケル粉末100質量部(住友金属鉱山社製、平均粒径0.2μm)を加えて180分間混錬して、無機分散液(スラリー組成物)を作製した各評価を行った。
(Example 6)
[Preparation of resin solution (X')]
5 parts by mass of the modified polyvinyl butyral resin (EO-PVB) obtained in Example 3 was added to 90 parts by mass of the terpineol solvent and dissolved with stirring to prepare a resin solution (X'). No plasticizer was used.
[Preparation of slurry composition]
1 part by mass of ethyl cellulose resin (manufactured by Dow Chemical Co., STD45) is added to 10 parts by mass of terpineol solvent, dissolved and stirred, and 95 parts by mass of resin solution (X′) obtained previously is added to 20 parts by mass of titanic acid. Barium powder (BT01, manufactured by Sakai Chemical Industry Co., Ltd.) was added and dispersed using a bead mill (Ready Mill, manufactured by Imex Corporation). After that, the mixed liquid was transferred to three rolls, 100 parts by mass of nickel powder (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size 0.2 μm) was added, and kneaded for 180 minutes to prepare an inorganic dispersion (slurry composition). Each evaluation was performed.
(比較例1)
 式(4)に示すビニルモノマーを用意した。比較例1で使用したビニルモノマーは、式(4)において、AOがオキシエチレン基(EO)とオキシプロピレン基(PO)であり、その平均繰り返し数はそれぞれ8、18であった。EOとPOは、それぞれブロックに存在しており、ポリオキシエチレンブロックとポリオキシプロピレンブロックがあった。また、末端基(R)は、水素原子であった。結合基(R)は、アミド結合(-CONH-*)であった。*はAOとの結合位置である。
 上記ビニルモノマーを65質量部使用して、酢酸ビニル425質量部、及びメタノール510質量部に変更した以外は実施例2と同様の方法で変性ポリビニルアルコール樹脂(EO/POブロック-PVA)のポリマー粉末を得た。
(Comparative example 1)
A vinyl monomer represented by formula (4) was prepared. In the vinyl monomer used in Comparative Example 1, in formula (4), A 1 O was an oxyethylene group (EO) and an oxypropylene group (PO), and the average number of repetitions was 8 and 18, respectively. EO and PO were each present in blocks, and there were polyoxyethylene and polyoxypropylene blocks. Moreover, the terminal group (R 1 ) was a hydrogen atom. The linking group (R 2 ) was an amide bond (-CONH-*). * is the bonding position with A 1 O.
Polymer powder of modified polyvinyl alcohol resin (EO/PO block-PVA) was prepared in the same manner as in Example 2 except that 65 parts by mass of the vinyl monomer was used and 425 parts by mass of vinyl acetate and 510 parts by mass of methanol were used. got
[変性ポリビニルブチラール樹脂(EO/POブロック-PVB)の合成]
 得られたポリマー粉末200質量部、純水2800質量部に加え、90℃の温度で約2時間撹拌して溶解させた。この溶液を38℃に冷却し、濃度20質量%の塩酸150質量部とn-ブチルアルデヒド110質量部を添加し、添加後に液温を30℃まで下げ、温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を75℃として3時間保持して反応を完了させ、常法により中和した後抜き出した。その後水洗し、脱水処理を行った。その後乾燥を経て、変性ポリビニルブチラール樹脂(EO/POブロック-PVB)の白色粉末を得た。得られた変性ポリビニルブチラール樹脂(樹脂(x))の構造及び各物性を表1に示す。
 PO-PVB1の代わりに、得られた変性ポリビニルブチラール樹脂(EO/POブロック-PVB)を使用した以外は実施例1と同様にスラリー組成物を作製した。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
[Synthesis of modified polyvinyl butyral resin (EO/PO block-PVB)]
200 parts by mass of the obtained polymer powder and 2800 parts by mass of pure water were added and dissolved by stirring at a temperature of 90° C. for about 2 hours. This solution is cooled to 38° C., 150 parts by mass of hydrochloric acid having a concentration of 20% by mass and 110 parts by mass of n-butyraldehyde are added, and after the addition, the liquid temperature is lowered to 30° C., and the temperature is maintained to carry out the acetalization reaction. , precipitated the reaction product. Thereafter, the liquid temperature was kept at 75° C. for 3 hours to complete the reaction, and the liquid was extracted after being neutralized by a conventional method. After that, it was washed with water and dehydrated. After drying, a white powder of modified polyvinyl butyral resin (EO/PO block-PVB) was obtained. Table 1 shows the structure and physical properties of the resulting modified polyvinyl butyral resin (resin (x)).
A slurry composition was prepared in the same manner as in Example 1, except that the resulting modified polyvinyl butyral resin (EO/PO block-PVB) was used instead of PO-PVB1. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(比較例2)
 変性ポリビニルブチラール樹脂(PO-PVB1)の代わりに、表1に示す未変性ポリビニルブチラール樹脂(PVB1)を樹脂(x)として用意し、PVB1の各物性を測定した。
 また、ポリビニルブチラール樹脂(PVB1)を65質量部使用し、かつ可塑剤の量を35質量部に変更した以外は実施例1と同様に、樹脂溶液(x´)を作製し、樹脂溶液(x´)からスラリー組成物を得た。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Comparative example 2)
Instead of modified polyvinyl butyral resin (PO-PVB1), unmodified polyvinyl butyral resin (PVB1) shown in Table 1 was prepared as resin (x), and each physical property of PVB1 was measured.
Further, a resin solution (x′) was prepared in the same manner as in Example 1 except that 65 parts by mass of polyvinyl butyral resin (PVB1) was used and the amount of plasticizer was changed to 35 parts by mass. ') to obtain a slurry composition. Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(比較例3)
 ポリビニルブチラール樹脂(PVB1)を150質量部、2-エチルヘキシルアクリレート(2EHA)180質量部、2-ヒドロキシエチルメタアクリレート(HEMA)20質量部、グリシジルメタクリレート16質量部、及びアクリル酸(Aac)8質量部、酢酸ブチル500重量部を反応容器に入れた。次いで、窒素バブリングを30分間行った後、窒素フロー、撹拌しながら70℃に加熱し、熱重合開始剤(「パーブチルPV」日油社製)を0.8質量部添加した。熱重合開始剤添加開始後、1時間おきに5時間まで0.8質量部ずつ(添加開始を含め計6回、計4.8質量部)添加し、はじめの重合開始剤添加から7時間後に室温まで冷却することでPVB-アクリルを得た。得られたPVB-アクリル(樹脂(x))の各物性を表1に示す。
 PO-PVB1の代わりに、得られたPVB-アクリルを使用して、可塑剤としてフタル酸ジオクチル(DOP)を使用し、かつこれらの配合量を表1の通りに変更した以外は、実施例1と同様に、樹脂溶液(x´)を作製し、樹脂溶液(x´)からスラリー組成物を得た。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Comparative Example 3)
150 parts by mass of polyvinyl butyral resin (PVB1), 180 parts by mass of 2-ethylhexyl acrylate (2EHA), 20 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 16 parts by mass of glycidyl methacrylate, and 8 parts by mass of acrylic acid (Aac) , and 500 parts by weight of butyl acetate were placed in a reactor. Next, after bubbling nitrogen for 30 minutes, the mixture was heated to 70° C. while stirring under nitrogen flow, and 0.8 parts by mass of a thermal polymerization initiator (“Perbutyl PV” manufactured by NOF CORPORATION) was added. After starting the addition of the thermal polymerization initiator, add 0.8 parts by mass every hour until 5 hours (6 times including the start of addition, total 4.8 parts by mass), and 7 hours after the initial addition of the polymerization initiator. PVB-acrylic was obtained by cooling to room temperature. Table 1 shows the physical properties of the obtained PVB-acrylic (resin (x)).
Example 1, except that the obtained PVB-acrylic was used instead of PO-PVB1, dioctyl phthalate (DOP) was used as a plasticizer, and the blending amounts were changed as shown in Table 1. A resin solution (x') was prepared in the same manner as above, and a slurry composition was obtained from the resin solution (x'). Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
(比較例4)
 2-エチルヘキシルアクリレート(2EHA)180質量部、2-ヒドロキシエチルメタアクリレート(HEMA)20質量部、グリシジルメタクリレート16質量部、及びアクリル酸(Aac)8質量部、酢酸ブチル500重量部を反応容器に入れた。次いで、窒素バブリングを30分間行った後、窒素フロー、撹拌しながら70℃に加熱し、熱重合開始剤(「パーブチルPV」日油社製)を0.8質量部添加した。熱重合開始剤添加開始後、1時間おきに5時間まで熱重合開始剤を0.8質量部ずつ(添加開始を含め計6回、計4.8質量部)添加し、はじめの重合開始剤添加から7時間後に室温まで冷却することでアクリル重合体を得た。得られたアクリル重合体(樹脂(x))の各物性を表1に示す。
 PO-PVB1の代わりに、得られたアクリル重合体を使用して、可塑剤としてフタル酸ジオクチル(DOP)を使用し、かつこれらの配合量を表1の通りに変更した以外は、実施例1と同様に、樹脂溶液(x´)を作製し、樹脂溶液(x´)からスラリー組成物を得た。作製したスラリー組成物を用いて、各評価を行った。評価結果を表1に示す。
(Comparative Example 4)
180 parts by weight of 2-ethylhexyl acrylate (2EHA), 20 parts by weight of 2-hydroxyethyl methacrylate (HEMA), 16 parts by weight of glycidyl methacrylate, 8 parts by weight of acrylic acid (Aac), and 500 parts by weight of butyl acetate were placed in a reaction vessel. rice field. Next, after bubbling nitrogen for 30 minutes, the mixture was heated to 70° C. while stirring under nitrogen flow, and 0.8 parts by mass of a thermal polymerization initiator (“Perbutyl PV” manufactured by NOF CORPORATION) was added. After starting the addition of the thermal polymerization initiator, 0.8 parts by mass of the thermal polymerization initiator was added every hour until 5 hours (6 times including the start of addition, total 4.8 parts by mass), and the initial polymerization initiator was added. An acrylic polymer was obtained by cooling to room temperature 7 hours after the addition. Table 1 shows the physical properties of the obtained acrylic polymer (resin (x)).
Example 1 except that the obtained acrylic polymer was used instead of PO-PVB1, dioctyl phthalate (DOP) was used as a plasticizer, and the blending amounts of these were changed as shown in Table 1. A resin solution (x') was prepared in the same manner as above, and a slurry composition was obtained from the resin solution (x'). Each evaluation was performed using the produced slurry composition. Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~6では、樹脂(X)の塩素原子量及びカルボキシル基量がいずれも低く、かつ(A-B)/Aが0.01未満、(A-C)/Aが0.87より大きいため、樹脂(X)を含有する樹脂組成物の無機粉溶液安定性、及びシートにした後の形状安定性が良好となった。また、樹脂(X)の脱炭素性が良好であるため、シートを焼成して得た誘電層には、欠損などなく、歩留まりを高くすることができる。
 それに対して、比較例1,2では、(A-C)/Aが0.87以下であるため、樹脂(x)の脱炭素性が不十分で、シートを焼成して得た誘電層には、欠損が生じて、歩留まりを高くできない。また、比較例1、3、4では、塩素原子量及びカルボキシル基量のいずれかが0.03質量%を超えたことで、無機粉溶液安定性が良好にならず、また、比較例3、4では脱炭素性も低下して、焼成時の歩留まりが低下する。さらに、比較例3、4では、(A-B)/Aが0.01以上と高くなったので、シートにした後の形状安定性も不十分であった。
In Examples 1 to 6, both the chlorine atom weight and the carboxyl group weight of the resin (X) are low, and (AB)/A is less than 0.01 and (AC)/A is greater than 0.87. Therefore, the stability of the resin composition containing the resin (X) in an inorganic powder solution and the shape stability after forming into a sheet were improved. In addition, since the decarbonization property of the resin (X) is good, the dielectric layer obtained by firing the sheet is free from defects and the yield can be increased.
On the other hand, in Comparative Examples 1 and 2, since (AC)/A is 0.87 or less, the decarbonization property of the resin (x) is insufficient, and the dielectric layer obtained by firing the sheet However, defects occur and the yield cannot be increased. In Comparative Examples 1, 3, and 4, either the chlorine atom weight or the carboxyl group weight exceeded 0.03% by mass, so that the stability of the inorganic powder solution was not improved. In this case, the decarbonization property is also lowered, and the yield at the time of firing is lowered. Furthermore, in Comparative Examples 3 and 4, (AB)/A was as high as 0.01 or more, so the shape stability after being made into a sheet was also insufficient.

Claims (9)

  1.  塩素原子量及び遊離酸量がいずれも0.03質量%以下であり、以下の式I及び式IIの要件を満たす、樹脂。
     式I:(A-B)/A <0.01
     式II:(A-C)/A >0.87
    (ただし、TG/DTAで、大気下で、40℃から600℃まで5℃/分で昇温させ、600℃で10分間保持して行う熱分析測定において、100℃時点での重量をA、200℃時点での重量をB、600℃で10分保持した時点の重量をCとする。)
    A resin having a chlorine atomic content and a free acid content of 0.03 mass % or less, and satisfying the requirements of Formula I and Formula II below.
    Formula I: (AB)/A <0.01
    Formula II: (A−C)/A >0.87
    (However, with TG/DTA, in the atmosphere, the temperature is raised from 40 ° C. to 600 ° C. at a rate of 5 ° C./min and held at 600 ° C. for 10 minutes, and the weight at 100 ° C. is measured by A, The weight at 200°C is B, and the weight at 600°C for 10 minutes is C.)
  2.  熱可塑性樹脂である、請求項1に記載の樹脂。 The resin according to claim 1, which is a thermoplastic resin.
  3.  前記熱可塑性樹脂がポリビニルアセタール系樹脂及びポリビニルアルコール系樹脂からなる群から選択される少なくとも1種である、請求項2に記載の樹脂。 The resin according to claim 2, wherein the thermoplastic resin is at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins.
  4.  前記ポリビニルアセタール系樹脂及びポリビニルアルコール系樹脂からなる群から選択される少なくとも1種は、ポリアルキレンオキサイド構造を有する、請求項3に記載の樹脂。 The resin according to claim 3, wherein at least one selected from the group consisting of polyvinyl acetal-based resins and polyvinyl alcohol-based resins has a polyalkylene oxide structure.
  5.  前記ポリアルキレンオキサイド構造におけるオキシアルキレン基の平均繰り返し数が15~80である、請求項4に記載の樹脂。 The resin according to claim 4, wherein the average repeating number of oxyalkylene groups in the polyalkylene oxide structure is 15-80.
  6.  セラミックグリーンシートまたは電極ペーストに使用される請求項1~5のいずれか1項に記載の樹脂。 The resin according to any one of claims 1 to 5, which is used for ceramic green sheets or electrode pastes.
  7.  請求項1~6の少なくともいずれか1項に記載の樹脂を含有する樹脂組成物。 A resin composition containing the resin according to at least any one of claims 1 to 6.
  8.  可塑剤を含有せず、または前記樹脂100質量部に対して可塑剤を40質量部未満の含有量で含有する請求項7に記載の樹脂組成物。 The resin composition according to claim 7, which does not contain a plasticizer or contains a plasticizer in a content of less than 40 parts by mass with respect to 100 parts by mass of the resin.
  9.  無機粉を含有する請求項7又は8に記載の樹脂組成物。 The resin composition according to claim 7 or 8, which contains inorganic powder.
PCT/JP2022/024200 2021-06-18 2022-06-16 Resin and resin composition WO2022265080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237039744A KR20240021763A (en) 2021-06-18 2022-06-16 Resins and resin compositions
CN202280036400.0A CN117377702A (en) 2021-06-18 2022-06-16 Resin and resin composition
JP2022540746A JPWO2022265080A1 (en) 2021-06-18 2022-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021102033 2021-06-18
JP2021-102033 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022265080A1 true WO2022265080A1 (en) 2022-12-22

Family

ID=84527535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024200 WO2022265080A1 (en) 2021-06-18 2022-06-16 Resin and resin composition

Country Status (5)

Country Link
JP (1) JPWO2022265080A1 (en)
KR (1) KR20240021763A (en)
CN (1) CN117377702A (en)
TW (1) TW202313726A (en)
WO (1) WO2022265080A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263188A (en) * 2008-04-28 2009-11-12 Sekisui Chem Co Ltd Inorganic microparticle dispersion paste, manufacturing method of laminate, and laminate
JP2011230943A (en) * 2010-04-26 2011-11-17 Kyocera Corp Ceramic green sheet and method for manufacturing the same
JP2015088487A (en) * 2013-09-27 2015-05-07 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2019065166A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Aqueous polyvinyl acetal resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9410003B2 (en) 2011-02-25 2016-08-09 Kuraray Co., Ltd. Polyoxyalkylene-modified vinyl acetal polymer, and composition comprising same
JP6162962B2 (en) 2013-01-18 2017-07-12 株式会社クラレ Polyoxyalkylene-modified vinyl acetal polymer, production method and composition thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263188A (en) * 2008-04-28 2009-11-12 Sekisui Chem Co Ltd Inorganic microparticle dispersion paste, manufacturing method of laminate, and laminate
JP2011230943A (en) * 2010-04-26 2011-11-17 Kyocera Corp Ceramic green sheet and method for manufacturing the same
JP2015088487A (en) * 2013-09-27 2015-05-07 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2019065166A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Aqueous polyvinyl acetal resin composition

Also Published As

Publication number Publication date
CN117377702A (en) 2024-01-09
TW202313726A (en) 2023-04-01
KR20240021763A (en) 2024-02-19
JPWO2022265080A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101696947B1 (en) Method for producing slurry composition
JP6162962B2 (en) Polyoxyalkylene-modified vinyl acetal polymer, production method and composition thereof
EP2692749B1 (en) Alkyl-modified vinyl acetal polymer and composition
TWI637994B (en) Binders for molding ceramic or conductive paste, and use thereof,and ceramic green sheet and coated sheet, and method of producing thereof
KR20150091313A (en) Paste composition, and sintered body and method for producing same
TW201144254A (en) Slurry composition for ceramic green sheet, ceramic green sheet, and multilayer ceramic capacitor
WO2012115223A1 (en) Polyoxyalkylene-modified vinyl acetal polymer, and composition comprising same
JP6239841B2 (en) Slurry composition for ceramic green sheet
JP5224722B2 (en) Resin composition, conductive paste and ceramic paste
CN110168021B (en) Slurry composition, ceramic green sheet and coated sheet
JP7060351B2 (en) Polyvinyl acetal resin composition
JP5767923B2 (en) Conductive paste
US20230002286A1 (en) Polyvinyl acetal resin
KR20180135925A (en) Copolymer, process for its preparation, and copolymer composition
WO2022265080A1 (en) Resin and resin composition
JPWO2018021439A1 (en) Ceramic green sheet and coated sheet
JP2023068062A (en) polyvinyl acetal resin
JP5824388B2 (en) Conductive paste
WO2013081077A1 (en) Conductive paste and multilayer ceramic capacitor
KR20220076415A (en) conductive paste
JP6732588B2 (en) Inorganic compound dispersing agent, slurry composition, ceramic green sheet, conductive paste and coating sheet
JP2006244922A (en) Vehicle for coating paste and the coating paste
JP2020056015A (en) Polyvinyl acetal resin, composition for ceramic green sheet, ceramic green sheet and laminated ceramic capacitor
JP7432051B1 (en) Polyvinyl acetal resin and resin composition for ceramic green sheets
JP2012072256A (en) Epoxy modified polyvinyl acetal resin, ceramic slurry, and ceramic green sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022540746

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825068

Country of ref document: EP

Kind code of ref document: A1