WO2022264467A1 - テラヘルツ装置用部材 - Google Patents

テラヘルツ装置用部材 Download PDF

Info

Publication number
WO2022264467A1
WO2022264467A1 PCT/JP2022/001401 JP2022001401W WO2022264467A1 WO 2022264467 A1 WO2022264467 A1 WO 2022264467A1 JP 2022001401 W JP2022001401 W JP 2022001401W WO 2022264467 A1 WO2022264467 A1 WO 2022264467A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
substrate body
terahertz device
main surface
reflection suppressing
Prior art date
Application number
PCT/JP2022/001401
Other languages
English (en)
French (fr)
Inventor
健太郎 谷
順悟 近藤
政彦 滑川
芳郎 菊池
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112022001517.9T priority Critical patent/DE112022001517T5/de
Priority to JP2022535813A priority patent/JP7220333B1/ja
Publication of WO2022264467A1 publication Critical patent/WO2022264467A1/ja
Priority to JP2023011632A priority patent/JP2023055810A/ja
Priority to US18/536,342 priority patent/US20240125986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the present invention relates to members for terahertz devices.
  • terahertz wave devices devices that can emit and/or detect terahertz waves
  • a terahertz wave device (also referred to as a terahertz device or a terahertz apparatus) is typically assumed to be used in terahertz radio.
  • Terahertz radio is expected to be a technology capable of realizing short-distance high-speed radio communication.
  • Terahertz wireless applications include, for example, proximity data download (kiosk model), device-to-device communication, rack-to-rack communication in a data center, and communication for mobile phone networks.
  • Terahertz wave devices are also expected to be applied to body scanners, pharmaceutical inspections, and the like.
  • Various issues remain to be investigated for the practical use of terahertz wave devices.
  • a main object of the present invention is to provide a member for a terahertz device that suppresses the loss of terahertz waves due to reflection and is excellent in handleability.
  • a terahertz device member comprises a substrate body having a first principal surface and a second principal surface, and a and a reflection suppressor.
  • the reflection suppressing portion includes a plurality of projections arranged in a grid pattern and having a tapered portion in a vertical cross section.
  • the protrusions are conical, pyramidal, truncated conical, truncated pyramidal, cylindrical and conical, cylindrical and truncated conical, prismatic and pyramidal, and prismatic. and a truncated pyramid.
  • the height of the protrusions in the antireflection portion is 0.5Ho (mm) to 2Ho (mm), and the period of the protrusions is 0.4Ho (mm) to 1.3Ho (mm).
  • f (GHz) is the frequency of the terahertz wave passing through the first main surface
  • ⁇ r is the dielectric constant of the substrate body.
  • the substrate body is made of a material selected from quartz glass, aluminum nitride, aluminum oxide, silicon carbide, magnesium oxide, spinel and silicon.
  • the substrate body is made of quartz glass, and the porosity of the substrate body with a pore size of 1 ⁇ m or more is 0.5 ppm to 3000 ppm. In one embodiment, the substrate body has a thickness of 50 ⁇ m to 250 ⁇ m.
  • the antireflection portion is provided only on the first main surface.
  • the terahertz device member further includes a terahertz element provided at a position corresponding to the antireflection section on the second main surface of the substrate body. In one embodiment, the member for a terahertz device is provided with a reinforcing portion in a portion of the first main surface of the substrate body where the antireflection portion is not provided.
  • the reinforcing portion has a thickness of 0.5Ho (mm) to 2Ho (mm). In one embodiment, the reinforcing portion is configured integrally with the substrate body. In one embodiment, the reinforcing portion is fixed to the substrate body. In this case, the reinforcing portion is made of a material selected from quartz glass, silicon, alumina, copper, SUS and brass.
  • the antireflection portion is provided only on the second main surface, and a convex portion is provided on the first main surface. In one embodiment, the antireflection portion is further provided on the convex portion. In one embodiment, the antireflection portion is provided only on the first main surface, and a recess is provided on the second main surface. In one embodiment, the antireflection portion is further provided in the concave portion.
  • a terahertz device member that suppresses the loss of terahertz waves due to reflection and is excellent in handleability.
  • FIG. 1 is a schematic plan view of a terahertz device component according to one embodiment of the present invention
  • FIG. FIG. 2 is a schematic cross-sectional view of the terahertz device member of FIG. 1 taken along line II-II.
  • FIG. 4 is a partial schematic cross-sectional view for explaining projections of a reflection suppressing portion in the member for a terahertz device according to the embodiment of the present invention
  • FIG. 4(a) is a schematic cross-sectional view for explaining an example of a reinforcing portion that can be provided in a terahertz device member according to an embodiment of the present invention
  • It is a schematic sectional drawing explaining.
  • FIG. 5(a) is a schematic cross-sectional view of a terahertz device member according to another embodiment of the present invention
  • FIG. 5(b) is a schematic cross-sectional view of a terahertz device member according to yet another embodiment of the present invention
  • FIG. 5(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and the active element of FIG. 5(a) are used in combination.
  • FIG. 6(a) is a schematic cross-sectional view of a terahertz device member according to yet another embodiment of the present invention
  • FIG. 6(b) is a schematic cross-sectional view of a terahertz device member according to still another embodiment of the present invention;
  • FIG. 6(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member of FIG. 6(a) and an active element are used in combination.
  • FIG. 7(a) is a schematic sectional view of a main part for explaining an example of a terahertz element that can be provided in a terahertz device member according to an embodiment of the present invention
  • FIG. 7(b) is a schematic cross-sectional view of FIG. 7(a).
  • 1 is a schematic cross-sectional view of a main part for explaining an example of an active element which is a constituent element of the terahertz element of FIG.
  • FIG. 1 is a schematic plan view of a terahertz device member according to one embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the terahertz device member of FIG. 1 taken along line II-II.
  • the illustrated terahertz device member 100 includes a substrate body 10 having a first principal surface 10a and a second principal surface 10b, and a and a reflection suppressing portion 20 provided (in the illustrated example, the reflection suppressing portion is provided on the first main surface 10a).
  • the antireflection part 20 can be provided at any appropriate position on the substrate body 10 depending on the purpose (in the illustrated example, the antireflection part is provided at the central portion of the substrate body).
  • the antireflection section 20 may be configured integrally with the substrate body 10, or may be attached to the substrate body 10 by any appropriate means.
  • the antireflection portion 20 includes a plurality of protrusions 21, 21, . . . arranged in a grid pattern.
  • the protrusion 21 may have a tapered shape over the entire vertical cross section; although not shown, it may have a partial tapered shape in the vertical cross section. Specifically, when the protrusion 21 has a tapered shape over the entire vertical cross section, it may be conical or pyramidal (for example, triangular pyramidal, square pyramidal, pentagonal pyramidal, hexagonal pyramidal, heptagonal pyramidal, etc.). , octagonal), truncated conical or truncated pyramidal.
  • the protrusion 21 When the protrusion 21 has a partially tapered shape in the vertical cross section, it may have, for example, a combination of a cylinder and a cone or a truncated cone, or a combination of a prism and a pyramid or a truncated pyramid.
  • the protrusions may have, for example, an R shape with curvature in the vertical cross section, other than cones, truncated cones, pyramids, truncated pyramids, and combinations thereof.
  • the illustrated example shows a form in which the projections are in the shape of a quadrangular pyramid. Each projection preferably has the same shape. With such a configuration, the refractive index can be changed more smoothly.
  • Any appropriate shape can be adopted as the overall plan view shape of the reflection suppressing portion. Specific examples include a rectangle (illustrated example), a circle, an ellipse, and a polygon.
  • the terahertz device member can be produced by any appropriate method.
  • the terahertz device member may be produced by casting or imprinting, or may be produced by shaving or etching from a solid base material.
  • Cast molding is typically performed by preparing a mold having protrusions corresponding to the shape of the reflection suppressing portion; firing the cast slurry after it has solidified in the mold;
  • silica or alumina is used as the raw material powder, contamination of OH groups, which may cause absorption of terahertz waves, can be suppressed as much as possible.
  • ordinary synthetic quartz glass uses a chloride-based silicon compound as a raw material, hydrolysis treatment is required in the manufacturing process, and OH groups remain.
  • the OH group can be removed by reduction treatment with thionyl chloride or the like or by plasma firing, but there is a problem that the material cost increases.
  • Cast molding can suppress the contamination of OH groups, can correspond to complicated substrate shapes and lens shapes, and can integrally mold the reflection suppressing part, so it is a very excellent manufacturing method from the viewpoint of performance, mass production, and low cost. is. Cast molding can be performed, for example, by the procedure described in WO2018/100775.
  • the terahertz device member 100 may further have a terahertz element 30 depending on the purpose.
  • the terahertz element 30 can be provided on the second main surface 10 b of the substrate main body 10 at a position corresponding to the reflection suppressing portion 20 .
  • the terahertz element 30 is typically provided such that one main surface (rear surface) 30 a faces the substrate body 10 .
  • a terahertz element is an element that converts electrical energy into terahertz waves (electromagnetic waves with a frequency of 0.1 THz to 10 THz).
  • a terahertz element can convert supplied electrical energy into a terahertz wave by oscillation.
  • a terahertz element can radiate terahertz waves.
  • a terahertz element can receive terahertz waves and convert the electromagnetic waves into electrical energy. This allows the terahertz element to detect terahertz waves.
  • corresponding positions means that two members or components (here, the antireflection section 20 and the terahertz element 30) overlap when the terahertz device member is viewed from above.
  • the antireflection section 20 and the terahertz element 30 may overlap completely or may overlap partially.
  • the reflection suppressing portion 20 and the terahertz element 30 may have the same or different planar shape.
  • the reflection suppressor 20 and the terahertz element 30 preferably have the same shape in plan view.
  • the reflection suppressor 20 and the terahertz element 30 may have the same size in plan view, or one may have a larger size than the other.
  • the size of the reflection suppressor 20 is larger than the terahertz element 30 in plan view.
  • the electromagnetic waves generated from the terahertz element 30 spread while propagating. Further, in the waveguide, the electromagnetic wave spreads all over the inside of the pipe. Therefore, the electric field distribution of the terahertz wave is larger than that of the terahertz element when it reaches the reflection suppressing portion. Therefore, by making the planar view size of the reflection suppressor larger than the planar view size of the terahertz element, it is possible to reduce the loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element.
  • the reflection suppressing portion may be provided over the entire first main surface of the substrate body, and the terahertz element may be provided in the central portion of the second main surface.
  • the terahertz device member is provided in a portion of the first main surface 10a of the substrate body 10 where the antireflection section 20 is not provided. It may further have a reinforcing portion 40 .
  • the thickness of the substrate body can be set to be very thin (eg, on the order of 100 ⁇ m as described below). With such a configuration, loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element can be reduced.
  • the handleability of the entire terahertz device member may become insufficient. Specifically, it is difficult to maintain the shape of the substrate body, the substrate body is fragile, the mechanical strength is insufficient, and it is difficult to attach to the terahertz device body (substantially, the housing). problems may occur.
  • the reinforcing portion it is possible to maintain the effect of thinning the substrate body (suppression of terahertz wave loss), achieve excellent handleability, and avoid the above problems.
  • the reinforcement part 40 may be fixed to the substrate body 10 as shown in FIG. 4(a); or may be configured integrally with the substrate body 10 as shown in FIG. 4(b). If the stiffener is attached to the substrate body, attachment may be by any suitable means.
  • the reinforcing portion can be attached to the substrate body via an adhesive applied to the first main surface of the substrate body. Fixing means other than adhesives include, for example, direct bonding methods such as surface activation methods, plasma methods, and atomic diffusion methods.
  • the entire terahertz device member substrate main body, reflection suppressing portion and reinforcing portion
  • the entire terahertz device member can be manufactured by cutting out from a solid base material.
  • the reinforcing portion is provided on the first main surface of the substrate main body. It is clear to a person skilled in the art that it has a technical meaning equivalent to .
  • a terahertz device member according to another embodiment of the present invention will be described with reference to FIGS. 5(a) to 5(c).
  • the antireflection portion 20 is typically provided on the second main surface 10b.
  • the reflection suppressing portion 20 is further provided on the convex portion 70 in addition to the second main surface 10b.
  • the convex portion 70 can have a lens function with respect to terahertz waves incident on or emitted from the terahertz element.
  • one convex portion 70 is provided on substantially the entire surface of the first principal surface 10a, and the reflection suppressing portion 20 corresponds to the convex portion 70 of the second principal surface 10b. It is provided at a position (substantially the entire surface in the illustrated example).
  • the reflection suppressing portion 20 is further provided on substantially the entire surface of the convex portion 70 .
  • the region where the convex portion 70 and the antireflection portion 20 are provided is not limited to the illustrated example, and can be appropriately set according to the purpose.
  • a terahertz device member having such a convex portion can be suitably used as a lid member or a window member of a package in which a terahertz element is mounted.
  • FIG. 5(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and active element of FIG. 5(a) are used in combination.
  • the illustrated terahertz device package 200 includes any suitable supporting member (for example, substrate) 120, a terahertz device 30 provided on the supporting member 120, and a terahertz device integrated with the supporting member 120 via a spacer portion 130. and a device member 103 .
  • the terahertz device member 103 is integrated with the supporting member 120 so that the reflection suppressing portion 20 faces the terahertz element 30 .
  • the height of the spacer section 130 it is possible to adjust the size of the space in which the terahertz element 30 is arranged and adjust the distance between the terahertz element 30 and the reflection suppressing section 20 .
  • the terahertz element can be arranged according to the focal length of the lens, and highly efficient light reception/radiation becomes possible.
  • Terahertz device package 200 may be integrated by any suitable means.
  • the terahertz device package 200 may be integrally molded (for example, the above-described cast molding) using a mold corresponding to the overall shape, and each component (substantially, the terahertz device member, the support member, and the spacer portion) may be directly bonded or glued.
  • the contact surfaces of each component may be metallized. When metallized, each component may be joined by soldering.
  • the support member and the spacer section can typically be made of an inorganic material (eg, ceramics) or metal, and in one embodiment can be made of the same material as the terahertz device member.
  • the constituent material of the terahertz device member may be ceramics, for example, as described later.
  • the terahertz device member By forming the terahertz device member (and accordingly, the supporting member and the spacer portion together) from ceramics, airtightness is significantly superior to the case of forming from an organic material (for example, a resin such as polypropylene (PP)). can ensure the integrity of the As a result, durability and reliability of the device can be improved. Furthermore, ceramics have a higher dielectric constant than resin, so when forming protrusions having the same function, ceramics can reduce the size of protrusions compared to resin. As a result, miniaturization of the terahertz device package can be achieved. The shape of the protrusion can be appropriately set according to the purpose.
  • a resin such as polypropylene (PP)
  • Examples of the shape of the convex portion include a semispherical shape and a semicylindrical shape (cylindrical shape).
  • the number of protrusions can be appropriately set according to the purpose, shape and size of the protrusions.
  • the size of the protrusions can be appropriately set according to the purpose, shape and number of protrusions.
  • the illustrated example shows a configuration in which one protrusion (which may be semispherical or semicylindrical) is formed on the first main surface, but the number of protrusions is two. There may be more (eg, two, three, four, or more).
  • a terahertz device member according to still another embodiment of the present invention will be described with reference to FIGS. 6(a) to 6(c).
  • the antireflection portion 20 is typically provided on the first main surface 10a.
  • the reflection suppressing portion 20 is further provided in the concave portion 80 in addition to the first main surface 10a.
  • the concave portion 80 can have a lens function with respect to terahertz waves incident on or emitted from the terahertz element, like the convex portion 70 shown in FIGS. 5(a) to 5(c). As a result, the propagation efficiency of terahertz waves can be further improved.
  • one recessed portion 80 is provided on substantially the entire surface of the second main surface 10b, and the reflection suppressing portion 20 is positioned ( In the illustrated example, it is provided substantially on the entire surface).
  • the antireflection portion 20 is further provided substantially over the entire surface of the concave portion 80 .
  • FIG. 6(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and active element of FIG. 6(a) are used in combination.
  • the terahertz device package 201 of the illustrated example includes any suitable supporting member (eg, substrate) 120, the terahertz device 30 provided on the supporting member 120, the terahertz device member 105 integrated with the supporting member 120, have In the illustrated example, the terahertz device member 105 is integrated with the support member 120 so that the terahertz element 30 is accommodated in the recess 80 .
  • Terahertz device package 201 may be integrated by any suitable means.
  • the terahertz device package 201 may be integrally molded (for example, the above-described flow molding) using a mold corresponding to the overall shape, and each component (substantially, the terahertz device member and the support member) is directly bonded. Or you can glue it.
  • each component may be metallized. When metallized, each component may be joined by soldering.
  • the support member and spacer section may typically be made of an inorganic material (eg, ceramics) or metal, and in one embodiment may be made of the same material as the terahertz device member. Constituent materials of the terahertz device members and their effects are as described with reference to FIGS. 5(a) to 5(c). Examples of the shape of the concave portion include a semispherical shape and a semicylindrical shape (cylindrical shape). The number of recesses can be appropriately set according to the purpose, shape and size of the recesses.
  • the size of the recesses can be appropriately set according to the purpose, shape and number of the recesses.
  • the illustrated example shows a configuration in which one concave portion (which may be semispherical or semi-cylindrical) is formed on the second main surface, but the number of concave portions may be two or more (for example, two, three, four, or more).
  • the constituent elements of the terahertz device member will be specifically described below.
  • the substrate body may be made of any suitable material as long as the effects of the embodiments of the present invention are obtained.
  • Materials constituting the substrate body include, for example, quartz glass, aluminum nitride (AlN), aluminum oxide (alumina: Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), spinel (MgAl 2 O 4 ), silicon.
  • the crystal axis may be oriented in a direction parallel to the optical axis direction. Quartz glass and alumina are preferred, and quartz glass is more preferred.
  • the constituent material is ceramics, it is preferably polycrystalline or amorphous. With such a configuration, since the anisotropy can be eliminated, the difference in loss due to polarization and propagation direction can be suppressed. Therefore, quartz glass may be amorphous or polycrystalline quartz.
  • the thickness of the substrate body is, for example, 50 ⁇ m to 250 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m, more preferably 70 ⁇ m to 130 ⁇ m, still more preferably 80 ⁇ m to 120 ⁇ m, Especially preferred is 90 ⁇ m to 110 ⁇ m. If the thickness of the substrate main body is within such a range, it is possible to reduce loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element. Moreover, the strength of the substrate body can be ensured.
  • the thickness of the substrate body is, for example, 250 ⁇ m to 3000 ⁇ m, preferably 300 ⁇ m to 2000 ⁇ m, more preferably 330 ⁇ m to 1500 ⁇ m in the configurations shown in FIGS.
  • the thickness of the substrate main body in the configuration shown in FIG. 5 means the thickness from the second main surface to the highest portion of the projection; the thickness of the substrate main body in the configuration shown in FIG. It means the thickness up to two main surfaces. Therefore, both the thickness (height) of the projection and the recess (depth) of the projection are typically the same as the thickness of the substrate main body in the configurations shown in FIGS. can be represented by the difference between the thickness of the substrate body at
  • the porosity of the substrate body is preferably 0.5 ppm to 3000 ppm, more preferably 0.5 ppm to 1000 ppm, still more preferably 0.5 ppm to 100 ppm for pores with a pore size of 1 ⁇ m or more. If the porosity is in this range, densification is possible, and there are advantages of suppressing scattering of terahertz waves by pores and suppressing residual OH groups by pores.
  • the pore size is the diameter when the pore is approximately spherical, the diameter when viewed from above when the pore is approximately cylindrical, and the pore inscribed when the pore is of another shape. is the diameter of the circle.
  • the presence or absence of pores can be confirmed by, for example, optical CT (Computed Tomography) or a transmittance measuring instrument. Pore size can be measured, for example, by scanning electron microscopy (SEM).
  • the OH group of the substrate body absorbs terahertz waves, so it is preferable to reduce it.
  • the OH group of the substrate body is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 20 ppm or less.
  • OH groups can be reduced by forming the substrate body from quartz glass or alumina using casting. OH groups can also be reduced by using anhydrous glass.
  • each of Al, Fe and Na may be mixed at a mass ratio of preferably 1000 ppm or less, more preferably 10 ppm or less. It is believed that the inclusion of the above impurities improves sinterability and contributes to a reduction in dielectric loss and a low dielectric constant in terahertz waves.
  • the surface roughness Ra of the substrate body can typically be flattened to several nm or less. Such a configuration can appropriately suppress scattering of light or electromagnetic waves. Since the terahertz wave has a wavelength of several tens of ⁇ m to several mm, Ra may be 5 nm to 0.5 ⁇ m. Also, Ra can be defined and measured as ⁇ 10 ⁇ m arithmetic mean roughness.
  • the recesses on the surface of the substrate body can typically be flattened to several nanometers or less. Such a configuration can appropriately suppress scattering of light or electromagnetic waves. Since the terahertz wave has a wavelength of several tens of ⁇ m to several mm, the width of the dents may be 0.1 ⁇ m to 20 ⁇ m, the depth may be 3 nm to 1 ⁇ m, and the frequency of existence may be 5,000/mm 2 to 3,000,000. / mm2 . Also, the width and depth of the depression can be defined as the arithmetic mean value within ⁇ 30 ⁇ m and can be measured using an AFM (atomic force microscope).
  • Quartz glass that satisfies the above characteristics can be typically produced by casting as described above.
  • Such quartz glass can exhibit dielectric properties such as a dielectric constant of 3.8 and a dielectric loss (tan ⁇ ) of 0.001 at 300 GHz.
  • ordinary synthetic quartz glass (OH group content is typically 50 ppm or more) exhibits dielectric properties such as a dielectric constant of 3.9 and a dielectric loss tan ⁇ of 0.01. .
  • the silica glass used in the embodiment of the present invention can reduce the dielectric loss by one order of magnitude compared to ordinary synthetic silica glass.
  • the dielectric constant of the substrate body at 100 GHz to 10 THz is preferably 3.6 to 11.5, preferably 3.7 to 10.0, and more preferably 3.8 to 9.0. If the dielectric constant of the substrate body is within this range, there are advantages in that the substrate can be miniaturized, can be manufactured by machining or molding, and can propagate terahertz wave signals without delay. If the dielectric constant is too small, the thickness of the substrate must be increased, and the height and/or period of the projections of the reflection suppressor must be increased, resulting in an excessively large substrate size, as well as machining and molding. A problem may arise that molding takes a long time.
  • the dielectric constant is too high, the thickness of the substrate must be reduced, and the height and/or period of the projections of the anti-reflection portion must be reduced. It may be difficult to manufacture by molding. In addition, there may be a problem that the delay of the terahertz wave signal increases. Furthermore, the substrate body having the dielectric constant as described above can exhibit remarkably excellent terahertz wave propagation characteristics compared to a substrate body made of resin (having a dielectric constant of about 2.4).
  • the resistivity of the substrate body is preferably 10 k ⁇ cm or more, more preferably 100 k ⁇ cm or more, still more preferably 500 k ⁇ cm or more, and particularly preferably 700 k ⁇ cm or more. If the resistivity is within this range, electromagnetic waves can propagate through the material with low loss without affecting electronic conduction. Although this phenomenon is not clear in detail, it can be inferred that when the resistivity is small, electromagnetic waves are coupled with electrons and the energy of the electromagnetic waves is lost to electron conduction, resulting in loss. From this point of view, the higher the resistivity, the better.
  • the resistivity can be, for example, 3000 k ⁇ (3 M ⁇ ) cm or less.
  • the dielectric loss (tan ⁇ ) of the substrate body is preferably 0.01 or less, more preferably 0.008 or less, still more preferably 0.006 or less, and particularly preferably 0.004 or less at the frequency used. is. If the dielectric loss is within this range, the terahertz wave propagation loss in the substrate body can be reduced. A smaller dielectric loss is more preferable. Dielectric loss can be, for example, 0.001 or greater. From this point of view, quartz glass can reduce dielectric loss very well.
  • the bending strength of the substrate body is preferably 50 MPa or more, more preferably 60 MPa or more. If the bending strength is within such a range, it is possible to ensure acceptable handleability even if the thickness of the substrate body is reduced to about 100 ⁇ m. The higher the bending strength, the better.
  • the flexural strength can be, for example, 700 MPa or less.
  • the thermal expansion coefficient (linear expansion coefficient) of the substrate body is preferably 10 ⁇ 10 ⁇ 6 /K or less, more preferably 8 ⁇ 10 ⁇ 6 /K or less. If the coefficient of thermal expansion is within this range, thermal deformation (typically, warpage) of the substrate body (and consequently, the entire terahertz device member) can be suppressed satisfactorily.
  • the water absorption rate of the substrate body is preferably 0.008% or less, more preferably 0.007% or less, and still more preferably 0.005% or less. If the water absorption rate of the substrate body is within this range, the durability and reliability of the device can be improved.
  • the lower limit of water absorption of the substrate body can be, for example, 0.001%.
  • the substrate body may be formed with a feed line (not shown).
  • the feed line is typically connected to the terahertz element. Therefore, the feed line can typically be formed on the second main surface of the substrate body.
  • the feed line may have any suitable configuration. Examples of power supply lines include coplanar lines, microstrip lines, strip lines, and slot lines.
  • the feeder line can be typically formed on support member 120. As shown in FIG.
  • the reflection suppressing part may be made of the same material as the substrate main body, or may be made of a different material.
  • the antireflection section is preferably made of the same material as the substrate body.
  • the antireflection part includes a plurality of projections arranged in a lattice.
  • the protrusion has a tapered portion in vertical cross-section, and may have a tapered shape throughout in vertical cross-section, for example, as shown in FIG.
  • the change in the refractive index near the first main surface (interface with air) of the substrate body is controlled (typically, the refractive index is changed continuously). ) can be changed to As a result, loss due to reflection of the terahertz wave oscillated and emitted from the terahertz element can be significantly reduced.
  • the reflection suppressing section for example, the configuration described in Japanese Patent Application Laid-Open No. 2013-130609 may be employed.
  • the height H of the projections is preferably 0.5Ho (mm) to 2Ho (mm), and the period P of the projections is preferably 0.4Ho (mm) to 1.3Ho (mm).
  • the height of the projections is preferably 250 ⁇ m to 750 ⁇ m, and the period of the projections is It is preferably 200 ⁇ m to 650 ⁇ m.
  • the height H of the protrusions is more preferably 0.7Ho (mm) to 1.3Ho (mm), still more preferably 0.75Ho (mm) to 1.25Ho (mm), and particularly preferably 0.7Ho (mm) to 1.25Ho (mm). 9 Ho (mm) to 1.1 Ho (mm).
  • the period P of the protrusions is more preferably 0.5Ho (mm) to 1.35Ho (mm), still more preferably 0.6Ho (mm) to 1.3Ho (mm), and particularly preferably 0.65Ho (mm) to 1.25 Ho (mm).
  • the taper angle ⁇ is preferably 45° to 70°, more preferably 55° to 68°, still more preferably 60° to 65°.
  • the number of protrusions can be appropriately set according to the purpose, the shape and period of the protrusions, and the like. In the illustrated example, 4 in the first direction (eg, vertical direction) and 4 in the second direction (eg, horizontal direction), for a total of 16, are drawn. The number of protrusions in the first direction and the number of protrusions in the second direction may be the same or different.
  • the ratio H/T of the projection height H of the reflection suppressing portion to the thickness T of the substrate body is preferably 1.6 to 9.4, more preferably 2.7 to 8.0, and even more preferably 3.1 to 6.0. If the ratio H/T is within such a range, loss due to reflection of terahertz waves can be suppressed more satisfactorily.
  • terahertz Element Any suitable configuration capable of emitting and/or detecting terahertz waves may be adopted as the terahertz element.
  • An outline of an example of a terahertz element will be described with reference to FIGS. 7(a) and 7(b). Details of such a terahertz element are described, for example, in International Publication No. 2021/070921.
  • the terahertz element for example, the configurations described in International Publication No. 2020/110814 and International Publication No. 2015/170425 may be adopted.
  • the terahertz element 30 typically includes an element substrate 31, an active element 32, a first conductor layer 33 and a second conductor layer .
  • the element substrate 31 can be composed of any suitable semiconductor.
  • InP indium phosphide
  • silicon is a typical example of a semiconductor that forms the element substrate.
  • the active element 32 converts terahertz waves and electric energy. Any suitable configuration can be employed as the active element. Specific examples of active elements include resonant tunneling diodes, tannet diodes, impud diodes, GaAs field effect transistors, GaN field effect transistors, high electron mobility transistors, heterojunction bipolar transistors, and CMOS transistors. An example of a specific configuration of the active element will be described below with reference to FIG. 7(b).
  • a semiconductor layer 61 a is formed on the element substrate 31 .
  • the semiconductor layer 61a is made of GaInAs, for example.
  • the semiconductor layer 61a is heavily doped with an n-type impurity.
  • a GaInAs layer 62a is laminated on the semiconductor layer 61a.
  • the GaInAs layer 62a is doped with an n-type impurity.
  • a GaInAs layer 63a is laminated on the GaInAs layer 62a.
  • the GaInAs layer 63a is not doped with impurities.
  • An AlAs layer 64a is laminated on the GaInAs layer 63a, an InGaAs layer 65 is laminated on the AlAs layer 64a, and an AlAs layer 64b is laminated on the InGaAs layer 65.
  • the AlAs layer 64a, the InGaAs layer 65 and the AlAs layer 64b constitute a resonant tunneling section.
  • a GaInAs layer 63b not doped with impurities is laminated on the AlAs layer 64b.
  • a GaInAs layer 62b doped with an n-type impurity is laminated on the GaInAs layer 63b.
  • a GaInAs layer 61b is laminated on the GaInAs layer 62b.
  • the GaInAs layer 61b is heavily doped with an n-type impurity. For example, the impurity concentration of the GaInAs layer 61b is higher than that of the GaInAs layer 62b.
  • the first conductor layer 33 and the second conductor layer 34 can function as antennas.
  • the first conductor layer 33 and the second conductor layer 34 are each formed on one main surface of the element substrate 31 (the main surface opposite to the main surface 30a on the substrate main body 10 side).
  • the first conductor layer 33 and the second conductor layer 34 are insulated from each other.
  • the first conductor layer 33 and the second conductor layer 34 each have a metal laminate structure. Examples of the laminated structure include a laminated structure of Au (gold)/Pd (palladium)/Ti (titanium) and a laminated structure of Au/Ti.
  • the reinforcing portion may be fixed to the substrate body (Fig. 4(a)), or may be configured integrally with the substrate body (Fig. 4(b)).
  • the material forming the reinforcing portion may be the same as or different from the material forming the substrate body.
  • examples of the material forming the reinforcing portion include quartz glass, silicon, and alumina. Copper, SUS, and brass used in metal housings and waveguides may also be used, and a film or plating film of highly conductive gold or copper is formed on the surface or side surface of the above materials. good too.
  • the material forming the reinforcing portion is inevitably the same as the material forming the substrate body.
  • the thickness of the reinforcing portion is preferably 0.5Ho (mm) to 2Ho (mm), more preferably 0.7Ho (mm) to 1.3Ho (mm), and still more preferably 0.75Ho (mm). 1.25 Ho (mm), particularly preferably 0.9 Ho (mm) to 1.1 Ho (mm). Furthermore, the thickness of the reinforcing portion is preferably equal to the height of the projection of the antireflection portion. With such a configuration, the projecting portion does not hit the waveguide when mounted, and terahertz waves can be prevented from traveling through the reinforcing portion and radiating to the outside.
  • a terahertz device member according to an embodiment of the present invention can be suitably used for a terahertz device. Any suitable configuration capable of emitting and/or detecting terahertz waves can be adopted as the terahertz device.
  • the terahertz device component according to the embodiments of the present invention includes a terahertz element
  • the terahertz device may employ any suitable configuration capable of incorporating and functioning with the substrate.
  • a specific configuration of the terahertz device is described, for example, in International Publication No. 2021/070921, Japanese Patent Application Laid-Open No. 2017-143347, and Japanese Patent Application Laid-Open No. 2012-49862. The descriptions of these patent documents are incorporated herein by reference.
  • Example 1 A terahertz device member having a structure modified from FIG. 1 (specifically, a structure in which a reflection suppressing portion is provided on the entire first main surface of the substrate body and a terahertz element is provided in the central portion of the second main surface).
  • a simulation was performed for Quartz glass having a dielectric constant of 3.8 and a dielectric loss tan .delta.
  • the structure of the antireflection portion was such that the height of the projection was 0.51 mm and the period was 0.41 mm.
  • the simulation used the FDTD method.
  • the reflectance was calculated for the frequencies of 250 GHz and 300 GHz of the terahertz wave for each incident angle of 30 degrees and 45 degrees, with normal incidence being 0 degrees. Table 1 shows the results.
  • Example 1 A simulation was performed on the same terahertz device member as in Example 1, except that the reflection suppressing portion was not provided. Table 1 shows the results.
  • Example 2 The simulation was performed in the same manner as in Example 1, except that the constituent material was alumina having a dielectric constant of 9 and a dielectric loss tan ⁇ of 0.007, the height of the protrusions of the reflection suppressing portion was 0.33 mm, and the period was 0.26 mm. carried out. Table 1 shows the results.
  • Example 2 A simulation was performed on the same terahertz device member as in Example 2, except that the reflection suppressing portion was not provided. Table 1 shows the results.
  • Example 3 A simulation was performed for the terahertz device member having the structure shown in FIG. 5(a). Quartz glass having a dielectric constant of 3.8 and a dielectric loss tan .delta. The structure of the antireflection portion was such that the height of the projection was 0.51 mm and the period was 0.41 mm. The simulation used the FDTD method. The relationship between the diameter of the projection and the focused diameter of the terahertz wave was investigated by changing the diameter of the projection. A 300 GHz resonant tunneling diode was used as a terahertz light source. The condensed light diameter was evaluated using TZcam manufactured by IR Systems. The required condensing diameter was set to 1.1 mm. The lens diameter (diameter of the convex portion) required to realize a converging diameter of 1.1 mm was 3 mm.
  • Example 3 (Comparative Example 3) Implemented except that the constituent material of the terahertz device members (substantially, the substrate body and the antireflection portion) was changed from quartz glass to polypropylene (PP: dielectric constant 2.4, dielectric loss tan ⁇ 0.002). A simulation was performed in the same manner as in Example 3. The lens diameter (diameter of the convex portion) required to realize a converging diameter of 1.1 mm was 3.6 mm.
  • the member for a terahertz device of the example of the present invention is provided with a reflection suppressing portion, thereby reducing high-frequency electromagnetic waves. Reflection loss when incident at a high incident angle can be significantly suppressed, and total loss of high-frequency electromagnetic waves can be significantly suppressed. Furthermore, as is clear from a comparison of Example 1 and Example 2, while silica glass has a larger reflection loss than alumina, it has a significantly smaller propagation loss, resulting in a smaller total loss than alumina. The reason why the reflection loss of quartz glass is large is that the interface reflection between the substrate body and the terahertz element is large. On the other hand, since silica glass has significantly smaller dielectric loss than alumina, propagation loss can be reduced.
  • Example 3 when trying to achieve the same condensed diameter, the use of an inorganic material (quartz glass) is about 20% higher than that of an organic material (PP). It can be seen that the lens diameter (the diameter of the convex portion) can be reduced, and as a result, the miniaturization of the terahertz device package can be realized.
  • an inorganic material quartz glass
  • PP organic material
  • a terahertz device member according to an embodiment of the present invention can be suitably used for a terahertz device.
  • Terahertz devices are expected to have applications in, for example, proximity data download (kiosk model), device-to-device communication, rack-to-rack communication in a data center, terahertz radio such as communication for mobile phone networks, body scanners, and pharmaceutical testing.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

反射によるテラヘルツ波の損失が抑制され、かつ、取り扱い性に優れたテラヘルツ装置用部材が提供される。本発明の実施形態によるテラヘルツ装置用部材は、第1主面および第2主面を有する基板本体と、基板本体の第1主面および第2主面の少なくとも一方の主面に設けられた反射抑制部と、を有する。反射抑制部は、格子状に配置された、鉛直方向断面においてテーパー部を有する複数の突起を含む。

Description

テラヘルツ装置用部材
 本発明は、テラヘルツ装置用部材に関する。
 現在、テラヘルツ波デバイス(テラヘルツ波を放射および/または検出し得るデバイス)の開発が進められている。テラヘルツ波デバイス(テラヘルツデバイス、テラヘルツ装置とも称される場合がある)は、代表的には、テラヘルツ無線における使用が想定されている。テラヘルツ無線は、近距離高速無線通信を実現し得る技術として期待されている。テラヘルツ無線の用途としては、例えば、近接データダウンロード(キオスクモデル)、デバイス間通信、データセンタ内ラック間通信、携帯電話ネットワーク用通信が挙げられる。また、テラヘルツ波デバイスは、ボディースキャナー、製薬検査等への応用も期待されている。テラヘルツ波デバイスの実用化に向けて、種々の検討課題が残されている。
国際公開第2021/070921号
 本発明の主たる目的は、反射によるテラヘルツ波の損失が抑制され、かつ、取り扱い性に優れたテラヘルツ装置用部材を提供することにある。
 本発明の実施形態によるテラヘルツ装置用部材は、第1主面および第2主面を有する基板本体と、該基板本体の第1主面および第2主面の少なくとも一方の主面に設けられた反射抑制部と、を有する。該反射抑制部は、格子状に配置された、鉛直方向断面においてテーパー部を有する複数の突起を含む。
 1つの実施形態においては、上記突起は、円錐状、角錐状、円錐台状、角錐台状、円柱と円錐との組み合わせ、円柱と円錐台との組み合わせ、角柱と角錐との組み合わせ、および、角柱と角錐台との組み合わせから選択される形状を有する。
 1つの実施形態においては、上記反射抑制部における突起の高さは0.5Ho(mm)~2Ho(mm)であり、突起の周期は0.4Ho(mm)~1.3Ho(mm)である:ここで、Hoは式:Ho=300/(f×√εr)で表され、f(GHz)は前記第1主面を通過するテラヘルツ波の周波数であり、εrは前記基板本体の誘電率である。
 1つの実施形態においては、上記基板本体は、石英ガラス、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸化マグネシウム、スピネルおよびシリコンから選択される材料で構成されている。
 1つの実施形態においては、上記基板本体は石英ガラスで構成され、該基板本体における気孔サイズが1μm以上の気孔率は0.5ppm~3000ppmである。
 1つの実施形態においては、上記基板本体の厚みは50μm~250μmである。
 1つの実施形態においては、上記反射抑制部は上記第1主面のみに設けられている。
 1つの実施形態においては、上記テラヘルツ装置用部材は、上記基板本体の第2主面の上記反射抑制部に対応する位置に設けられたテラヘルツ素子をさらに有する。
 1つの実施形態においては、上記テラヘルツ装置用部材は、上記基板本体の第1主面の上記反射抑制部が設けられていない部分に、補強部が設けられている。
 1つの実施形態においては、上記補強部の厚みは0.5Ho(mm)~2Ho(mm)である。
 1つの実施形態においては、上記補強部は上記基板本体と一体で構成されている。
 1つの実施形態においては、上記補強部は上記基板本体に固着されている。この場合、上記補強部は、石英ガラス、シリコン、アルミナ、銅、SUSおよび真鍮から選択される材料で構成されている。
 1つの実施形態においては、上記反射抑制部は上記第2主面のみに設けられており、上記第1主面には凸部が設けられている。1つの実施形態においては、上記反射抑制部が上記凸部にさらに設けられている。
 1つの実施形態においては、上記反射抑制部は上記第1主面のみに設けられており、上記第2主面には凹部が設けられている。1つの実施形態においては、上記反射抑制部が上記凹部にさらに設けられている。
 本発明の実施形態によれば、反射によるテラヘルツ波の損失が抑制され、かつ、取り扱い性に優れたテラヘルツ装置用部材を実現することができる。
本発明の1つの実施形態によるテラヘルツ装置用部材の概略平面図である。 図1のテラヘルツ装置用部材のII-II線による概略断面図である。 本発明の実施形態によるテラヘルツ装置用部材における反射抑制部の突起を説明するための部分概略断面図である。 図4(a)は、本発明の実施形態によるテラヘルツ装置用部材に設けられ得る補強部の一例を説明するための概略断面図であり;図4(b)は、補強部の別の例を説明する概略断面図である。 図5(a)は、本発明の別の実施形態によるテラヘルツ装置用部材の概略断面図であり;図5(b)は、本発明のさらに別の実施形態によるテラヘルツ装置用部材の概略断面図であり;図5(c)は、図5(a)のテラヘルツ装置用部材と能動素子とを組み合わせて用いる場合の構成の一例を説明する概略断面図である。 図6(a)は、本発明のさらに別の実施形態によるテラヘルツ装置用部材の概略断面図であり;図6(b)は、本発明のさらに別の実施形態によるテラヘルツ装置用部材の概略断面図であり;図6(c)は、図6(a)のテラヘルツ装置用部材と能動素子とを組み合わせて用いる場合の構成の一例を説明する概略断面図である。 図7(a)は、本発明の実施形態によるテラヘルツ装置用部材に設けられ得るテラヘルツ素子の一例を説明するための要部概略断面図であり;図7(b)は、図7(a)のテラヘルツ素子の構成要素である能動素子の一例を説明するための要部概略断面図である。
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、見やすくするために図面は模式的に表されており、縦、横および厚みの比率、形状、角度、ならびに個数等は実際とは異なっている場合がある。
A.テラヘルツ装置用部材の全体構成
 図1は、本発明の1つの実施形態によるテラヘルツ装置用部材の概略平面図であり;図2は、図1のテラヘルツ装置用部材のII-II線による概略断面図である。図示例のテラヘルツ装置用部材100は、第1主面10aおよび第2主面10bを有する基板本体10と、基板本体10の第1主面10aおよび第2主面10bの少なくとも一方の主面に設けられた反射抑制部20と、を有する(図示例では、反射抑制部は第1主面10aに設けられている)。反射抑制部20は、目的に応じて基板本体10の任意の適切な位置に設けられ得る(図示例では、反射抑制部は基板本体の中央部に設けられている)。反射抑制部20は、基板本体10と一体で構成されていてもよく、基板本体10に任意の適切な手段により取り付けられていてもよい。本発明の実施形態においては、反射抑制部20は、格子状に配置された複数の突起21、21、・・・を含む。このような構成であれば、基板本体の第1主面(空気との界面)近傍の屈折率を連続的に変化させることができるので、テラヘルツ素子から発振および放射されたテラヘルツ波の反射による損失を顕著に小さくすることができる。基板本体の第1主面(空気との界面)近傍の屈折率を連続的に変化させるという観点から、突起21は、鉛直方向断面においてテーパー部を有する。突起21は、図3に示すように、鉛直方向断面において全体にわたってテーパー形状を有していてもよく;図示しないが、鉛直方向断面において一部にテーパー形状を有していてもよい。具体的には、突起21は、鉛直方向断面において全体にわたってテーパー形状を有する場合には、円錐状、角錐状(例えば、三角錐状、四角錐状、五角錐状、六角錐状、七角錐状、八角錐状)、円錐台状または角錐台状であり得る。突起21は、鉛直方向断面において一部にテーパー形状を有する場合には、例えば、円柱と円錐または円錐台との組み合わせ、あるいは、角柱と角錐または角錐台との組み合わせ形状を有し得る。また、突起は、円錐、円錐台、角錐、角錐台およびこれらの組み合わせ以外に、例えば鉛直方向断面において曲率のあるR形状を有していてもよい。図示例は、突起が四角錐状である形態を示している。それぞれの突起は、好ましくは同一形状を有する。このような構成であれば、屈折率をより滑らかに変化させることができる。反射抑制部の全体的な平面視形状としては、任意の適切な形状が採用され得る。具体例としては、矩形(図示例)、円形、楕円形、多角形が挙げられる。
 テラヘルツ装置用部材は、任意の適切な方法により作製され得る。例えば、テラヘルツ装置用部材は、流し込み成形またはインプリントにより作製してもよく、無垢の母材からの削り出しまたはエッチングにより作製してもよい。流し込み成形は、代表的には、反射抑制部の形状に対応した突起部を有する成形型を準備すること;当該成形型に原料粉末と所定の分散剤および分散媒とを含むスラリーを流し込むこと;流し込んだスラリーを成形型内で固化した後に焼成すること;を含む。このようにして作製する場合、原料粉末はシリカまたはアルミナを使用するのでテラヘルツ波の吸収の原因となり得るOH基の混入を極力抑えることができる。これに対して、通常の合成石英ガラスは塩化物系のシリコン化合物を原料として使用するために、作製過程で加水分解処理が必要となりOH基が残留する。合成石英ガラスでは、塩化チオニール等で還元処理することやプラズマ焼成することでOH基を除去することができるが、材料コストが高くなるという課題がある。流し込み成形は、OH基の混入を抑制でき、かつ、複雑な基板形状やレンズ形状に対応でき、反射抑制部を一体成形できるので、性能、量産性および低コストの観点から非常に優れた製造方法である。流し込み成形は、例えば国際公開第2018/100775号に記載の手順で行うことができる。
 テラヘルツ装置用部材100は、目的に応じて、テラヘルツ素子30をさらに有していてもよい。例えば反射抑制部20が基板本体10の第1主面10aに設けられる場合には、テラヘルツ素子30は、基板本体10の第2主面10bの反射抑制部20に対応する位置に設けられ得る。テラヘルツ素子30は、代表的には、一方の主面(裏面)30aが基板本体10に対向するようにして設けられている。テラヘルツ素子は、電気エネルギーとテラヘルツ波(周波数0.1THz~10THzの電磁波)との変換を行う素子である。テラヘルツ素子は、発振により、供給される電気エネルギーをテラヘルツ波に変換し得る。これにより、テラヘルツ素子は、テラヘルツ波を放射し得る。一方、テラヘルツ素子は、テラヘルツ波を受信し、当該電磁波を電気エネルギーに変換し得る。これにより、テラヘルツ素子は、テラヘルツ波を検出し得る。
 本明細書において「対応する位置」とは、テラヘルツ装置用部材を平面視した場合に2つの部材または構成要素(ここでは、反射抑制部20およびテラヘルツ素子30)が重なっていることをいう。反射抑制部20およびテラヘルツ素子30は完全に重なっていてもよく、一部が重なっていてもよい。反射抑制部20およびテラヘルツ素子30は、平面視形状が同一であってもよく異なっていてもよい。反射抑制部20およびテラヘルツ素子30は、好ましくは、平面視で同一形状である。さらに、反射抑制部20およびテラヘルツ素子30は、平面視で同一サイズであってもよく、一方が他方よりも大きいサイズであってもよい。好ましくは、反射抑制部20のサイズは、平面視でテラヘルツ素子30よりも大きい。このような構成であれば、以下の利点がある。一般的に、テラヘルツ素子30から発生する電磁波は広がりながら伝搬する。また、導波管内では管内一面に電磁波が広がる。このために反射抑制部に到達した時点では、テラヘルツ波の電界分布はテラヘルツ素子よりも大きくなっている。したがって、反射抑制部の平面視サイズをテラヘルツ素子の平面視サイズよりも大きくすることにより、テラヘルツ素子から発振および放射されたテラヘルツ波の伝搬および/または反射による損失を小さくすることができる。例えば、基板本体の第1主面全面に反射抑制部を設け、第2主面の中央部にテラヘルツ素子を設けてもよい。
 1つの実施形態においては、テラヘルツ装置用部材は、図4(a)および図4(b)に示すように、基板本体10の第1主面10aの反射抑制部20が設けられていない部分に補強部40をさらに有していてもよい。補強部を設けることにより、以下のような効果を奏し得る。本発明の実施形態によれば、基板本体の厚みは非常に薄く(例えば、後述するように100μm程度に)設定され得る。このような構成であれば、テラヘルツ素子から発振および放射されたテラヘルツ波の伝搬および/または反射による損失を小さくすることができる。一方で、基板本体の厚みを薄くすると、テラヘルツ装置用部材全体の取り扱い性が不十分となる場合がある。具体的には、基板本体の形状維持が困難である、基板本体が割れやすい、機械的強度が不十分である、テラヘルツ装置本体(実質的には、筐体)への取り付けが困難である、といった問題が生じ得る。補強部を設けることにより、基板本体を薄くする効果(テラヘルツ波の損失抑制)を維持しつつ、優れた取り扱い性を実現し、上記のような問題を回避することができる。
 補強部40は、図4(a)に示すように、基板本体10に固着されていてもよく;図4(b)に示すように、基板本体10と一体で構成されていてもよい。補強部が基板本体に固着されている場合、固着は任意の適切な手段により行われる。補強部は、例えば、基板本体の第1主面に配された接着剤を介して基板本体に貼り合わせられ得る。接着剤以外の固着手段としては、例えば、表面活性化法、プラズマ法、原子拡散法等の直接接合法が挙げられる。補強部が基板本体と一体で構成されている場合、好ましくは、テラヘルツ装置用部材全体(基板本体、反射抑制部および補強部)は、無垢の母材から削り出して作製され得る。なお、図4(b)に示すテラヘルツ装置用部材102においては、基板本体の第1主面が明確には存在しなくなるが、「補強部が基板本体の第1主面に設けられている」ことと同等の技術的意味を有することは当業者に明らかである。
 図5(a)~図5(c)を参照して、本発明の別の実施形態によるテラヘルツ装置用部材を説明する。図5(a)のテラヘルツ装置用部材103は、基板本体10の第1主面10aに凸部70が設けられている。この場合、反射抑制部20は、代表的には第2主面10bに設けられる。図5(b)のテラヘルツ装置用部材104は、反射抑制部20が第2主面10bに加えて凸部70にさらに設けられている。反射抑制部を第2主面および凸部の2カ所に設けることにより、さらに優れた反射抑制機能を実現することができる。凸部70は、テラヘルツ素子に入射するまたはテラヘルツ素子から出射されるテラヘルツ波に対するレンズ機能を有し得る。その結果、テラヘルツ波の伝搬効率をさらに向上させることができる。図5(a)に示す例においては、1つの凸部70が第1主面10aの実質的に全面に設けられており、反射抑制部20が第2主面10bの凸部70に対応する位置(図示例では実質的に全面)に設けられている。図5(b)に示す例においては、反射抑制部20がさらに凸部70の実質的に全面に設けられている。凸部70および反射抑制部20が設けられる領域は図示例に限られず、目的に応じて適切に設定され得る。このような凸部を有するテラヘルツ装置用部材は、テラヘルツ素子を実装するパッケージの蓋部材または窓部材として好適に用いることができる。図5(c)は、図5(a)のテラヘルツ装置用部材と能動素子とを組み合わせて用いる場合の構成の一例を説明する概略断面図である。図示例のテラヘルツ素子パッケージ200は、任意の適切な支持部材(例えば、基板)120と、支持部材120に設けられたテラヘルツ素子30と、スペーサー部130を介して支持部材120と一体化されたテラヘルツ装置用部材103と、を有する。図示例においては、テラヘルツ装置用部材103は、反射抑制部20がテラヘルツ素子30に対向するようにして支持部材120と一体化されている。スペーサー部130の高さを調整することにより、テラヘルツ素子30が配置される空間の広さを調整するとともに、テラヘルツ素子30と反射抑制部20との距離を調整することができる。これにより、レンズの焦点距離に合わせてテラヘルツ素子を配置することができ、高効率な受光・放射が可能となる。テラヘルツ素子パッケージ200は、任意の適切な手段により一体化され得る。テラヘルツ素子パッケージ200は、全体形状に対応した型を用いて一体成形(例えば、上記の流し込み成形)してもよく、各構成要素(実質的には、テラヘルツ装置用部材、支持部材およびスペーサー部)を直接接合または接着してもよい。各構成要素の接触面をメタライズしてもよい。メタライズした場合には、各構成要素をハンダにより接合してもよい。支持部材およびスペーサー部は、代表的には無機材料(例えば、セラミックス)または金属で構成され得、1つの実施形態においてはテラヘルツ装置用部材と同一の材料で構成され得る。テラヘルツ装置用部材の構成材料は、後述するように、例えばセラミックスであり得る。テラヘルツ装置用部材(したがって、あわせて支持部材およびスペーサー部)をセラミックスで構成することにより、有機材料(例えば、ポリプロピレン(PP)のような樹脂)で構成する場合に比べて、格段に優れた気密性を確保することができる。その結果、デバイスの耐久性・信頼性を向上させることができる。さらに、セラミックスは誘電率が樹脂より大きいので、同一機能の凸部を形成する場合に、セラミックスによれば樹脂に比べて凸部のサイズを小さくすることができる。その結果、テラヘルツ素子パッケージの小型化を実現することができる。凸部の形状は、目的に応じて適切に設定され得る。凸部の形状としては、例えば、半球状、半円柱状(かまぼこ状)が挙げられる。凸部の数は、目的、凸部の形状およびサイズに応じて適切に設定され得る。凸部のサイズは、目的、凸部の形状および数に応じて適切に設定され得る。図示例では、第1主面に1つの凸部(半球状であってもよく半円柱状であってもよい)が形成されている構成が示されているが、凸部の数は2つ以上(例えば、2つ、3つ、4つ、またはそれ以上)であってもよい。
 図6(a)~図6(c)を参照して、本発明のさらに別の実施形態によるテラヘルツ装置用部材を説明する。図6(a)のテラヘルツ装置用部材105は、基板本体10の第2主面10bに凹部80が設けられている。この場合、反射抑制部20は、代表的には第1主面10aに設けられる。図6(b)のテラヘルツ装置用部材106は、反射抑制部20が第1主面10aに加えて凹部80にさらに設けられている。反射抑制部を第1主面および凹部の2カ所に設けることにより、さらに優れた反射抑制機能を実現することができる。凹部80は、図5(a)~図5(c)に示した凸部70と同様に、テラヘルツ素子に入射するまたはテラヘルツ素子から出射されるテラヘルツ波に対するレンズ機能を有し得る。その結果、テラヘルツ波の伝搬効率をさらに向上させることができる。図6(a)に示す例においては、1つの凹部80が第2主面10bの実質的に全面に設けられており、反射抑制部20が第1主面10aの凹部80に対応する位置(図示例では実質的に全面)に設けられている。図6(b)に示す例においては、反射抑制部20がさらに凹部80の実質的に全面に設けられている。凹部80および反射抑制部20が設けられる領域は図示例に限られず、目的に応じて適切に設定され得る。このような凹部を有するテラヘルツ装置用部材は、テラヘルツ素子を実装するパッケージの蓋部材または窓部材として好適に用いることができる。図6(c)は、図6(a)のテラヘルツ装置用部材と能動素子とを組み合わせて用いる場合の構成の一例を説明する概略断面図である。図示例のテラヘルツ素子パッケージ201は、任意の適切な支持部材(例えば、基板)120と、支持部材120に設けられたテラヘルツ素子30と、支持部材120と一体化されたテラヘルツ装置用部材105と、を有する。図示例においては、テラヘルツ装置用部材105は、テラヘルツ素子30を凹部80に収容するようにして支持部材120と一体化されている。テラヘルツ素子パッケージ201は、任意の適切な手段により一体化され得る。テラヘルツ素子パッケージ201は、全体形状に対応した型を用いて一体成形(例えば、上記の流し込み成形)してもよく、各構成要素(実質的には、テラヘルツ装置用部材および支持部材)を直接接合または接着してもよい。各構成要素の接触面をメタライズしてもよい。メタライズした場合には、各構成要素をハンダにより接合してもよい。支持部材およびスペーサー部は、代表的には無機材料(例えば、セラミックス)または金属で構成され得、1つの実施形態においてはテラヘルツ装置用部材と同一の材料で構成され得る。テラヘルツ装置用部材の構成材料およびその効果については、図5(a)~図5(c)の構成について説明したとおりである。凹部の形状としては、例えば、半球状、半円柱状(かまぼこ状)が挙げられる。凹部の数は、目的、凹部の形状およびサイズに応じて適切に設定され得る。凹部のサイズは、目的、凹部の形状および数に応じて適切に設定され得る。図示例では、第2主面に1つの凹部(半球状であってもよく半円柱状であってもよい)が形成されている構成が示されているが、凹部の数は2つ以上(例えば、2つ、3つ、4つ、またはそれ以上)であってもよい。
 以下、テラヘルツ装置用部材の構成要素について具体的に説明する。
B.基板本体
 基板本体は、本発明の実施形態による効果が得られる限りにおいて任意の適切な材料で構成され得る。基板本体の構成材料としては、例えば、石英ガラス、窒化アルミニウム(AlN)、酸化アルミニウム(アルミナ:Al)、炭化ケイ素(SiC)、酸化マグネシウム(MgO)、スピネル(MgAl)、シリコンが挙げられる。透明性向上や散乱抑制という観点で光軸方向に平行な方向については結晶軸が配向していてもよい。好ましくは、石英ガラス、アルミナであり、より好ましくは石英ガラスである。構成材料がセラミックスである場合、多結晶またはアモルファスであることが好ましい。このような構成であれば、異方性を消失できるために偏光や伝搬方向による損失の差を抑制することができる。したがって、石英ガラスは、アモルファスであってもよく多結晶石英であってもよい。
 基板本体の厚みは、図1~図4に示す構成においては、例えば50μm~250μmであり、好ましくは50μm~150μmであり、より好ましくは70μm~130μmであり、さらに好ましくは80μm~120μmであり、特に好ましくは90μm~110μmである。基板本体の厚みがこのような範囲であれば、テラヘルツ素子から発振および放射されたテラヘルツ波の伝搬および/または反射による損失を小さくすることができる。また、基板本体の強度を確保することができる。基板本体の厚みは、図5および図6に示す構成においては、例えば250μm~3000μmであり、好ましくは300μm~2000μmであり、より好ましくは330μm~1500μmである。なお、図5に示す構成における基板本体の厚みは、第2主面から凸部の最も高い部分までの厚みを意味し;図6に示す構成における基板本体の厚みは、第1主面から第2主面までの厚みを意味する。したがって、凸部の厚み(高さ)および凸部のへこみ(深さ)はいずれも、代表的には、図5および図6に示す構成における基板本体の厚みと図1~図4に示す構成における基板本体の厚みとの差で表され得る。
 基板本体の気孔率は、気孔サイズ1μm以上の気孔が、好ましくは0.5ppm~3000ppmであり、より好ましくは0.5ppm~1000ppmであり、さらに好ましくは0.5ppm~100ppmである。気孔率がこのような範囲であれば緻密化が可能であり、さらに、気孔によるテラヘルツ波の散乱の抑制、気孔によるOH基残留の抑制という利点がある。なお、気孔のサイズとは、気孔が略球状である場合には直径であり、略円柱状である場合には平面視した場合の直径であり、その他の形状である場合には気孔に内接する円の直径である。気孔の有無は、例えば、光CT(Computed Tomograohy)または透過率測定器により確認することができる。気孔のサイズは、例えば、走査型電子顕微鏡(SEM)により測定することができる。
 基板本体のOH基は、テラヘルツ波を吸収するため、低減化することが好ましい。基板本体のOH基は、好ましくは100ppm以下であり、より好ましくは50ppm以下であり、さらに好ましくは20ppm以下である。上記のとおり、流し込み成形を利用して石英ガラスまたはアルミナで基板本体を形成することにより、OH基を低減することができる。また、無水ガラスを用いてもOH基を低減することができる。
 不純物については、光学用では吸収の原因になるとされているので、一般的には除去される。一方、基板本体においては、Al、FeおよびNaがそれぞれ、質量比で好ましくは1000ppm以下、より好ましくは10ppm以下のレベルで混入していてよい。上記不純物が混入していることにより、焼結性が向上しテラヘルツ波での誘電損失低減と低誘電率化に寄与し得ると考えられる。
 基板本体の表面粗さRaは、代表的には、数nm以下に平坦化処理され得る。このような構成であれば、光または電磁波の散乱を適切に抑制することができる。テラヘルツ波は波長が数10μmから数mmになるので、Raは5nm~0.5μmであってよい。また、Raは、□10μm算術平均粗さと定義し測定することができる。
 基板本体の表面の凹みは、代表的には、数nm以下に平坦化処理され得る。このような構成であれば、光または電磁波の散乱を適切に抑制することができる。テラヘルツ波は波長が数10μmから数mmになるので、凹みの幅は0.1μm~20μm、深さは3nm~1μmであってよく、存在頻度は0.5万個/mm~300万個/mmであってよい。また、凹みの幅と深さは、□30μm内の算術平均値として定義でき、AFM(原子間力顕微鏡)を用いて測定することができる。
 上記のような特性を満足する石英ガラスは、代表的には上記のとおり流し込み成形により作製され得る。このような石英ガラスについては、300GHzにおいて誘電率が3.8、誘電損失(tanδ)が0.001の誘電特性を示し得る。これに対して、通常の合成石英ガラス(OH基の含有量が代表的には50ppm以上)は、誘電率が3.9、誘電損tanδが0.01の誘電特性を示すことがわかっている。すなわち、本発明の実施形態に用いられる石英ガラスは、通常の合成石英ガラスに比べて誘電損失を1桁小さくすることができる。
 基板本体の100GHz~10THzにおける誘電率は、好ましくは3.6~11.5であり、好ましくは3.7~10.0であり、さらに好ましくは3.8~9.0である。基板本体の誘電率がこのような範囲であれば、基板の小型化が可能であり、機械加工や型成形による製造が可能であり、かつ、テラヘルツ波信号を遅延なく伝搬できるという利点がある。誘電率が小さすぎると、基板の厚みを大きくする必要があり、反射抑制部の突起の高さおよび/または周期を大きくする必要があるので、基板サイズが大きくなり過ぎる、ならびに、機械加工や型成形に長時間を要するという問題が生じる場合がある。誘電率が大きすぎると、基板の厚みを小さくする必要があり、反射抑制部の突起の高さおよび/または周期を小さくする必要があるので、過度に微細な加工が必要となり、機械加工や型成形にて製造することが困難になる場合がある。また、テラヘルツ波の信号の遅延が大きくなるという問題が生じる場合がある。さらに、上記のような誘電率を有する基板本体は、樹脂製の基板本体(誘電率が2.4程度)に比べて、顕著に優れたテラヘルツ波の伝搬特性を示し得る。
 基板本体の抵抗率は、好ましくは10kΩ・cm以上であり、より好ましくは100kΩ・cm以上であり、さらに好ましくは500kΩ・cm以上であり、特に好ましくは700kΩ・cm以上である。抵抗率がこのような範囲であれば、電磁波が電子伝導に影響を与えることなく、材料中を低損失で伝搬することができる。この現象は、詳細には明らかではないが、抵抗率が小さいと電磁波が電子と結合し電磁波のエネルギーが電子伝導に奪われるために損失となると推察され得る。この観点から、抵抗率は大きいほど好ましい。抵抗率は、例えば3000kΩ(3MΩ)・cm以下であり得る。
 基板本体の誘電損失(tanδ)は、使用する周波数において好ましくは0.01以下であり、より好ましくは0.008以下であり、さらに好ましくは0.006以下であり、特に好ましくは0.004以下である。誘電損失がこのような範囲であれば、基板本体におけるテラヘルツ波の伝搬損失を小さくすることができる。誘電損失は小さいほど好ましい。誘電損失は、例えば0.001以上であり得る。この観点から、石英ガラスはきわめて良好に誘電損失を低減することができる。
 基板本体の曲げ強度は、好ましくは50MPa以上であり、より好ましくは60MPa以上である。曲げ強度がこのような範囲であれば、基板本体の厚みを100μm程度まで薄くしても許容可能な取り扱い性を確保することができる。曲げ強度は大きいほど好ましい。曲げ強度は、例えば700MPa以下であり得る。
 基板本体の熱膨張係数(線膨張係数)は、好ましくは10×10-6/K以下であり、より好ましくは8×10-6/K以下である。熱膨張係数がこのような範囲であれば、基板本体(結果として、テラヘルツ装置用部材全体)の熱変形(代表的には、反り)を良好に抑制することができる。
 基板本体の吸水率は、好ましくは0.008%以下であり、より好ましくは0.007%以下であり、さらに好ましくは0.005%以下である。基板本体の吸水率がこのような範囲であれば、デバイスの耐久性・信頼性を向上させることができる。基板本体の吸水率の下限は、例えば0.001%であり得る。
 図1~図4に示す構成においては、基板本体には、給電用線路(図示せず)が形成されていてもよい。給電用線路は、代表的には、テラヘルツ素子に接続される。したがって、給電用線路は、代表的には基板本体の第2主面に形成され得る。給電用線路は、任意の適切な構成を有し得る。給電用線路としては、例えば、コプレーナ線路、マイクロストリップ線路、ストリップ線路、スロット線路が挙げられる。なお、図5および図6に示す構成においては、給電用線路は、代表的には支持部材120に形成され得る。
C.反射抑制部
 反射抑制部は、基板本体と同一材料で構成されていてもよく、異なる材料で構成されていてもよい。反射抑制部は、好ましくは、基板本体と同一材料で構成されている。反射抑制部と基板本体とを同一材料で構成することにより、基板本体から反射抑制部にかけての屈折率の急激な変化を抑制することができ、かつ、テラヘルツ装置用部材を簡便安価に製造することができる。
 反射抑制部は、上記のとおり、格子状に配置された複数の突起を含む。これも上記のとおり、突起は、鉛直方向断面においてテーパー部を有し、例えば図3に示すように、鉛直方向断面において全体にわたってテーパー形状を有し得る。突起の高さH、周期Pおよびテーパー角θを調整することにより、基板本体の第1主面(空気との界面)近傍の屈折率変化を制御する(代表的には、屈折率を連続的に変化させる)ことができる。その結果、テラヘルツ素子から発振および放射されたテラヘルツ波の反射による損失を顕著に小さくすることができる。反射抑制部としては、例えば特開2013-130609号公報に記載の構成を採用してもよい。
 突起の高さHは好ましくは0.5Ho(mm)~2Ho(mm)であり、突起の周期Pは好ましくは0.4Ho(mm)~1.3Ho(mm)である。ここで、Hoは式:Ho=300/(f×√εr)で表され、f(GHz)は第1主面を通過するテラヘルツ波の周波数であり、εrは基板本体の誘電率である。より詳細には、Hoは、屈折率の急激な変化による反射損失を十分に抑制できるように定められる指標であり、反射抑制部の構成材料に対する実効的な電磁波の波長の大きさによって決定され得る。具体的には、使用される電磁波の周波数が300GHzであり、反射抑制部の構成材料が石英ガラスである場合には、突起の高さは、好ましくは250μm~750μmであり、突起の周期は、好ましくは200μm~650μmである。突起の高さHは、より好ましくは0.7Ho(mm)~1.3Ho(mm)であり、さらに好ましくは0.75Ho(mm)~1.25Ho(mm)であり、特に好ましくは0.9Ho(mm)~1.1Ho(mm)である。突起の周期Pは、より好ましくは0.5Ho(mm)~1.35Ho(mm)であり、さらに好ましくは0.6Ho(mm)~1.3Ho(mm)であり、特に好ましくは0.65Ho(mm)~1.25Ho(mm)である。テーパー角θは、好ましくは45°~70°であり、より好ましくは55°~68°であり、さらに好ましくは60°~65°である。突起の数は、目的、ならびに突起の形状および周期等に応じて適切に設定され得る。図示例では、第1の方向(例えば、縦方向)に4個、第2の方向(例えば、横方向)に4個の合計16個が描かれている。第1の方向の突起の数と第2の方向の突起の数とは、同一であってもよく異なっていてもよい。
 反射抑制部の突起の高さHの基板本体の厚みTに対する比H/Tは、好ましくは1.6~9.4であり、より好ましくは2.7~8.0であり、さらに好ましくは3.1~6.0である。比H/Tがこのような範囲であれば、テラヘルツ波の反射による損失をより良好に抑制することができる。
D.テラヘルツ素子
 テラヘルツ素子としては、テラヘルツ波を放射および/または検出し得る任意の適切な構成が採用され得る。テラヘルツ素子の一例の概略を、図7(a)および図7(b)を参照して説明する。このようなテラヘルツ素子の詳細は、例えば国際公開第2021/070921号に記載されている。テラヘルツ素子としては、例えば、国際公開第2020/110814号、国際公開第2015/170425号に記載の構成を採用してもよい。
 テラヘルツ素子30は、代表的には、素子基板31と能動素子32と第1導電体層33と第2導電体層34とを含む。
 素子基板31は、任意の適切な半導体で構成され得る。素子基板を構成する半導体の代表例としては、InP(リン化インジウム)またはシリコンが挙げられる。
 能動素子32は、テラヘルツ波と電気エネルギーとの変換を行う。能動素子としては、任意の適切な構成が採用され得る。能動素子の具体例としては、共鳴トンネルダイオード、タンネットダイオード、インパットダイオード、GaAs系電界効果トランジスタ、GaN系電界効果トランジスタ、高電子移動度トランジスタ、ヘテロ接合バイポーラトランジスタ、CMOSトランジスタが挙げられる。以下、能動素子の具体的な構成の一例を、図7(b)を参照して説明する。
 素子基板31上には、半導体層61aが形成されている。半導体層61aは、例えばGaInAsで構成されている。半導体層61aには、n型不純物が高濃度にドープされている。半導体層61a上には、GaInAs層62aが積層されている。GaInAs層62aには、n型不純物がドープされている。GaInAs層62a上には、GaInAs層63aが積層されている。GaInAs層63aには、不純物はドープされていない。
 GaInAs層63a上には、AlAs層64aが積層されており、AlAs層64a上には、InGaAs層65が積層されており、InGaAs層65上には、AlAs層64bが積層されている。AlAs層64aとInGaAs層65とAlAs層64bとにより、共鳴トンネル部が構成されている。
 AlAs層64b上には、不純物がドープされていないGaInAs層63bが積層されている。GaInAs層63b上には、n型不純物がドープされているGaInAs層62bが積層されている。GaInAs層62b上には、GaInAs層61bが積層されている。GaInAs層61bには、n型不純物が高濃度にドープされている。例えば、GaInAs層61bの不純物濃度は、GaInAs層62bの不純物濃度よりも高い。
 第1導電体層33および第2導電体層34はアンテナとして機能し得る。第1導電体層33および第2導電体層34はそれぞれ、素子基板31の一方の主面(基板本体10側の主面30aと反対側の主面)に形成されている。第1導電体層33と第2導電体層34とは、互いに絶縁されている。第1導電体層33および第2導電体層34はそれぞれ、金属の積層構造を有する。積層構造としては、例えば、Au(金)/Pd(パラジウム)/Ti(チタン)の積層構造、Au/Tiの積層構造が挙げられる。
E.補強部
 補強部としては、上記所望の取り扱い性を付与し得る限りにおいて、任意の適切な構成が採用され得る。上記のとおり、補強部は、基板本体に固着されていてもよく(図4(a))、基板本体と一体で構成されていてもよい(図4(b))。図4(a)の構成においては、補強部を構成する材料は、基板本体を構成する材料と同一であってもよく異なっていてもよい。この場合、補強部を構成する材料としては、例えば、石英ガラス、シリコン、アルミナが挙げられる。また、金属筐体や導波管で使用される銅、SUS、真鍮であってもよく、上記の材料の表面や側面に導電性の高い金や銅の成膜やメッキ膜を形成していてもよい。図4(b)の構成においては、補強部を構成する材料は、必然的に、基板本体を構成する材料と同一となる。
 補強部の厚みとしては、上記所望の取り扱い性を付与し得る限りにおいて、任意の適切な厚みが設定され得る。補強部の厚みは、好ましくは0.5Ho(mm)~2Ho(mm)であり、より好ましくは0.7Ho(mm)~1.3Ho(mm)であり、さらに好ましくは0.75Ho(mm)~1.25Ho(mm)であり、特に好ましくは0.9Ho(mm)~1.1Ho(mm)である。さらに、補強部の厚みは、好ましくは反射抑制部の突起の高さと同等である。このような構成であれば、実装する場合に突起部分が導波管に当たることがなく、かつ、テラヘルツ波が補強部を伝って外部へ放射されるのを抑制できる。
F.テラヘルツ装置
 本発明の実施形態によるテラヘルツ装置用部材は、テラヘルツ装置に好適に用いられ得る。テラヘルツ装置としては、テラヘルツ波を放射および/または検出し得る任意の適切な構成が採用され得る。本発明の実施形態によるテラヘルツ装置用部材がテラヘルツ素子を含む場合には、テラヘルツ装置としては、当該基板を組み込みかつ機能させることができる任意の適切な構成が採用され得る。テラヘルツ装置の具体的な構成は、例えば、国際公開第2021/070921号、特開2017-143347号公報、特開2012-49862号公報に記載されている。これらの特許文献の記載は、本明細書に参考として援用される。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
(実施例1)
 図1を改変した構造(具体的には、基板本体の第1主面全面に反射抑制部が設けられ、第2主面の中央部にテラヘルツ素子が設けられている構造)のテラヘルツ装置用部材について、シミュレーションを実施した。基板本体および反射抑制部の構成材料は、誘電率が3.8、誘電損tanδが0.001の石英ガラスとした。反射抑制部の構造は、突起の高さが0.51mm、周期が0.41mmとした。シミュレーションは、FDTD法を使用した。反射率は、垂直入射を0度として、30度、45度の各入射角に対してテラヘルツ波の周波数250GHzと300GHzについて計算した。結果を表1に示す。
(比較例1)
 反射抑制部が設けられていないこと以外は実施例1と同様のテラヘルツ装置用部材について、シミュレーションを実施した。結果を表1に示す。
(実施例2)
 構成材料を誘電率が9、誘電損tanδが0.007のアルミナとし、反射抑制部の突起の高さを0.33mm、周期を0.26mmとしたこと以外は実施例1と同様にしてシミュレーションを実施した。結果を表1に示す。
(比較例2)
 反射抑制部が設けられていないこと以外は実施例2と同様のテラヘルツ装置用部材について、シミュレーションを実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例3)
 図5(a)の構造のテラヘルツ装置用部材について、シミュレーションを実施した。基板本体および反射抑制部の構成材料は、誘電率が3.8、誘電損tanδが0.001の石英ガラスとした。反射抑制部の構造は、突起の高さが0.51mm、周期が0.41mmとした。シミュレーションは、FDTD法を使用した。凸部の径を変化させて、凸部の径とテラヘルツ波の集光径との関係を調べた。テラヘルツ光源として、300GHzの共鳴トンネルダイオードを用いた。集光径はアイ・アール・システム製TZcamを用いて評価した。必要な集光径は1.1mmに設定した。1.1mmの集光径を実現するに必要なレンズ径(凸部の径)は3mmであった。
(比較例3)
 テラヘルツ装置用部材(実質的には、基板本体および反射抑制部)の構成材料を石英ガラスからポリプロピレン(PP:誘電率が2.4、誘電損tanδが0.002)に変更したこと以外は実施例3と同様にしてシミュレーションを実施した。1.1mmの集光径を実現するに必要なレンズ径(凸部の径)は3.6mmであった。
 実施例1と比較例1、ならびに、実施例2と比較例2とを比較すると明らかなとおり、本発明の実施例のテラヘルツ装置用部材は、反射抑制部を設けることにより、高周波数の電磁波が高入射角で入射した場合の反射損を顕著に抑制することができ、高周波数の電磁波の全損失を顕著に抑制することができる。さらに、実施例1と実施例2とを比較すると明らかなとおり、石英ガラスはアルミナよりも反射損が大きい一方で、伝搬損が顕著に小さく、その結果、全損失もアルミナより小さくなっている。石英ガラスの反射損が大きい理由は、基板本体とテラヘルツ素子との界面反射が大きいことに起因する。一方、石英ガラスはアルミナに比べて誘電損失が顕著に小さいので、伝搬損を小さくすることができる。
 さらに、実施例3と比較例3とを比較すると明らかなとおり、同一の集光径を実現しようとする場合、無機材料(石英ガラス)を用いることにより有機材料(PP)に比べて約20%レンズ径(凸部の径)を小さくでき、結果として、テラヘルツ素子パッケージの小型化を実現できることがわかる。
 本発明の実施形態によるテラヘルツ装置用部材は、テラヘルツ装置に好適に用いられ得る。テラヘルツ装置は、例えば、近接データダウンロード(キオスクモデル)、デバイス間通信、データセンタ内ラック間通信、携帯電話ネットワーク用通信のようなテラヘルツ無線、ボディースキャナー、製薬検査への応用が期待されている。
 10   基板本体
 20   反射抑制部
 21   突起
 30   テラヘルツ素子
 40   補強部
 70   凸部
 80   凹部
100、101、102、103、104、105、106   テラヘルツ装置用部材
200、201   テラヘルツ素子パッケージ
 

Claims (17)

  1.  第1主面および第2主面を有する基板本体と、該基板本体の第1主面および第2主面の少なくとも一方の主面に設けられた反射抑制部と、を有し、
     該反射抑制部が、格子状に配置された、鉛直方向断面においてテーパー部を有する複数の突起を含む、
     テラヘルツ装置用部材。
  2.  前記突起が、円錐状、角錐状、円錐台状、角錐台状、円柱と円錐との組み合わせ、円柱と円錐台との組み合わせ、角柱と角錐との組み合わせ、および、角柱と角錐台との組み合わせから選択される形状を有する、請求項1に記載のテラヘルツ装置用部材。
  3.  前記反射抑制部における突起の高さが0.5Ho(mm)~2Ho(mm)であり、突起の周期が0.4Ho(mm)~1.3Ho(mm)である、請求項1または2に記載のテラヘルツ装置用部材:
     ここで、Hoは式:Ho=300/(f×√εr)で表され、f(GHz)は前記第1主面を通過するテラヘルツ波の周波数であり、εrは前記基板本体の誘電率である。
  4.  前記基板本体が、石英ガラス、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸化マグネシウム、スピネルおよびシリコンから選択される材料で構成されている、請求項1から3のいずれかに記載のテラヘルツ装置用部材。
  5.  前記基板本体が石英ガラスで構成され、該基板本体における気孔サイズが1μm以上の気孔率が0.5ppm~3000ppmである、請求項4に記載のテラヘルツ装置用部材。
  6.  前記基板本体の厚みが50μm~250μmである、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
  7.  前記反射抑制部が前記第1主面のみに設けられている、請求項1から6のいずれかに記載のテラヘルツ装置用部材。
  8.  前記基板本体の第2主面の前記反射抑制部に対応する位置に設けられたテラヘルツ素子をさらに有する、請求項7に記載のテラヘルツ装置用部材。
  9.  前記基板本体の第1主面の前記反射抑制部が設けられていない部分に、補強部が設けられている、請求項7または8に記載のテラヘルツ装置用部材。
  10.  前記補強部の厚みが0.5Ho(mm)~2Ho(mm)である、請求項9に記載のテラヘルツ装置用部材。
  11.  前記補強部が前記基板本体と一体で構成されている、請求項9または10に記載のテラヘルツ装置用部材。
  12.  前記補強部が前記基板本体に固着されている、請求項9または10に記載のテラヘルツ装置用部材。
  13.  前記補強部が、石英ガラス、シリコン、アルミナ、銅、SUSおよび真鍮から選択される材料で構成されている、請求項12に記載のテラヘルツ装置用部材。
  14.  前記反射抑制部が前記第2主面のみに設けられており、前記第1主面に凸部が設けられている、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
  15.  前記反射抑制部が前記凸部にさらに設けられている、請求項14に記載のテラヘルツ装置用部材。
  16.  前記反射抑制部が前記第1主面のみに設けられており、前記第2主面に凹部が設けられている、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
  17.  前記反射抑制部が前記凹部にさらに設けられている、請求項16に記載のテラヘルツ装置用部材。
PCT/JP2022/001401 2021-06-18 2022-01-17 テラヘルツ装置用部材 WO2022264467A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022001517.9T DE112022001517T5 (de) 2021-06-18 2022-01-17 Bauteil für eine Terahertz-Vorrichtung
JP2022535813A JP7220333B1 (ja) 2021-06-18 2022-01-17 テラヘルツ装置用部材
JP2023011632A JP2023055810A (ja) 2021-06-18 2023-01-30 テラヘルツ装置用部材
US18/536,342 US20240125986A1 (en) 2021-06-18 2023-12-12 Member for terahertz equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-101361 2021-06-18
JP2021101361 2021-06-18
JP2021121400 2021-07-26
JP2021-121400 2021-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/536,342 Continuation US20240125986A1 (en) 2021-06-18 2023-12-12 Member for terahertz equipment

Publications (1)

Publication Number Publication Date
WO2022264467A1 true WO2022264467A1 (ja) 2022-12-22

Family

ID=84526000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001401 WO2022264467A1 (ja) 2021-06-18 2022-01-17 テラヘルツ装置用部材

Country Status (4)

Country Link
US (1) US20240125986A1 (ja)
JP (2) JP7220333B1 (ja)
DE (1) DE112022001517T5 (ja)
WO (1) WO2022264467A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003034A1 (ja) * 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345903A (ja) * 2003-05-22 2004-12-09 Fujikura Ltd 石英ガラスの製造方法、石英ガラス、光学部品及び光ファイバ
JP2007290950A (ja) * 2006-04-20 2007-11-08 Heraeus Quarzglas Gmbh & Co Kg マイクロリソグラフィーに使用する光学素子に特に適した材料、およびこの材料からブランクを製造する方法
JP2009204900A (ja) * 2008-02-28 2009-09-10 Epson Toyocom Corp 光学素子の反射防止構造、その反射防止構造を備えた光学素子および反射防止構造の加工方法
JP2009217085A (ja) * 2008-03-12 2009-09-24 Tochigi Nikon Corp 光学部品
KR20110015107A (ko) * 2009-08-07 2011-02-15 한국전자통신연구원 파라메트릭 테라헤르츠파의 발생 장치 및 그의 생성 방법
WO2012005220A1 (ja) * 2010-07-05 2012-01-12 旭硝子株式会社 光学部材
JP2013130609A (ja) * 2011-12-20 2013-07-04 Ngk Insulators Ltd 電磁波放射素子およびその製造方法
JP2016157049A (ja) * 2015-02-26 2016-09-01 大学共同利用機関法人自然科学研究機構 サブ波長構造素子
JP2017173690A (ja) * 2016-03-25 2017-09-28 大日本印刷株式会社 反射防止物品の製造方法、賦型用金型の製造方法
WO2018066636A1 (ja) * 2016-10-05 2018-04-12 信越化学工業株式会社 透明スピネル焼結体、光学部材並びに透明スピネル焼結体の製造方法
JP2020166225A (ja) * 2018-09-28 2020-10-08 浜松ホトニクス株式会社 テラヘルツ波用光学素子及びその製造方法
CN112505807A (zh) * 2020-12-01 2021-03-16 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 太赫兹波准直聚焦透镜及太赫兹波系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597065B2 (ja) 2010-08-27 2014-10-01 国立大学法人 名古屋工業大学 導波管・平面線路変換器及び高周波回路
KR20170004965A (ko) 2014-05-08 2017-01-11 도오쿄 인스티튜드 오브 테크놀로지 주파수 가변 테라헤르츠 발진기 및 그 제조 방법
JP6623805B2 (ja) 2016-02-08 2019-12-25 富士通株式会社 無線通信装置
DE112017007401B4 (de) 2017-04-06 2023-07-06 Ngk Insulators, Ltd. Optische komponente und transparenter körper
WO2020110814A1 (ja) 2018-11-28 2020-06-04 国立大学法人広島大学 送受信機及び信号生成方法
CN114503360B (zh) 2019-10-10 2023-11-03 罗姆股份有限公司 太赫兹装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345903A (ja) * 2003-05-22 2004-12-09 Fujikura Ltd 石英ガラスの製造方法、石英ガラス、光学部品及び光ファイバ
JP2007290950A (ja) * 2006-04-20 2007-11-08 Heraeus Quarzglas Gmbh & Co Kg マイクロリソグラフィーに使用する光学素子に特に適した材料、およびこの材料からブランクを製造する方法
JP2009204900A (ja) * 2008-02-28 2009-09-10 Epson Toyocom Corp 光学素子の反射防止構造、その反射防止構造を備えた光学素子および反射防止構造の加工方法
JP2009217085A (ja) * 2008-03-12 2009-09-24 Tochigi Nikon Corp 光学部品
KR20110015107A (ko) * 2009-08-07 2011-02-15 한국전자통신연구원 파라메트릭 테라헤르츠파의 발생 장치 및 그의 생성 방법
WO2012005220A1 (ja) * 2010-07-05 2012-01-12 旭硝子株式会社 光学部材
JP2013130609A (ja) * 2011-12-20 2013-07-04 Ngk Insulators Ltd 電磁波放射素子およびその製造方法
JP2016157049A (ja) * 2015-02-26 2016-09-01 大学共同利用機関法人自然科学研究機構 サブ波長構造素子
JP2017173690A (ja) * 2016-03-25 2017-09-28 大日本印刷株式会社 反射防止物品の製造方法、賦型用金型の製造方法
WO2018066636A1 (ja) * 2016-10-05 2018-04-12 信越化学工業株式会社 透明スピネル焼結体、光学部材並びに透明スピネル焼結体の製造方法
JP2020166225A (ja) * 2018-09-28 2020-10-08 浜松ホトニクス株式会社 テラヘルツ波用光学素子及びその製造方法
CN112505807A (zh) * 2020-12-01 2021-03-16 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 太赫兹波准直聚焦透镜及太赫兹波系统

Also Published As

Publication number Publication date
US20240125986A1 (en) 2024-04-18
JP2023055810A (ja) 2023-04-18
JP7220333B1 (ja) 2023-02-09
JPWO2022264467A1 (ja) 2022-12-22
DE112022001517T5 (de) 2024-01-11

Similar Documents

Publication Publication Date Title
US10865955B1 (en) Wavelength conversion element and light emitting device
TW201924485A (zh) 用於準直發光二極體之光發射之奈米結構的超材料及超表面
US7615398B2 (en) Pyramidal photonic crystal light emitting device
US10422499B2 (en) Integrated planar reflective LARP package and method
US20120086028A1 (en) Wavelength conversion chip for use with light emitting diodes and method for making same
US20150236201A1 (en) Optical device
CN107272216A (zh) 透射式金属超材料光束偏振分布变换器件
JP2008518474A (ja) 複合光学素子を有する高輝度ledパッケージ
JP2008518465A (ja) 高輝度ledパッケージ
JP2008518466A (ja) 多数の光学要素を有する高輝度ledパッケージ
JP7220333B1 (ja) テラヘルツ装置用部材
US10481307B2 (en) Optical antenna
US10320147B2 (en) Wavelength conversion member and light emitting device
US10907773B2 (en) Wavelength conversion device and light source device
WO2019003535A1 (ja) 透明封止部材及びその製造方法
KR101281504B1 (ko) 피라미드형 광 결정 발광 소자
Wu et al. Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range
CN210719422U (zh) 背面光耦合超导纳米线单光子探测器件及测试装置
TWI472819B (zh) 超穎材料結構及其製造方法
CN103955022A (zh) 一种楔型表面等离子体波导
US20130128366A1 (en) Optical nanoantenna using single-crystalline silver nanowire, method of manufacturing the same and optical nanoantenna using single-crystalline metal nanowire
JPWO2017183606A1 (ja) 蛍光体素子および照明装置
CN110726484A (zh) 背面光耦合超导纳米线单光子探测器件、制备及测试装置
TWI295383B (en) Lens, laser-arrangement and method for the production of a laser-arrangement
CN110265785A (zh) 球形腔天线辐射器及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535813

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001517

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824470

Country of ref document: EP

Kind code of ref document: A1