WO2022264467A1 - テラヘルツ装置用部材 - Google Patents
テラヘルツ装置用部材 Download PDFInfo
- Publication number
- WO2022264467A1 WO2022264467A1 PCT/JP2022/001401 JP2022001401W WO2022264467A1 WO 2022264467 A1 WO2022264467 A1 WO 2022264467A1 JP 2022001401 W JP2022001401 W JP 2022001401W WO 2022264467 A1 WO2022264467 A1 WO 2022264467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terahertz
- substrate body
- terahertz device
- main surface
- reflection suppressing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 112
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 30
- 230000003014 reinforcing effect Effects 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 230000001629 suppression Effects 0.000 abstract description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 18
- 239000004020 conductor Substances 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 239000000470 constituent Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1861—Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/008—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
Definitions
- the present invention relates to members for terahertz devices.
- terahertz wave devices devices that can emit and/or detect terahertz waves
- a terahertz wave device (also referred to as a terahertz device or a terahertz apparatus) is typically assumed to be used in terahertz radio.
- Terahertz radio is expected to be a technology capable of realizing short-distance high-speed radio communication.
- Terahertz wireless applications include, for example, proximity data download (kiosk model), device-to-device communication, rack-to-rack communication in a data center, and communication for mobile phone networks.
- Terahertz wave devices are also expected to be applied to body scanners, pharmaceutical inspections, and the like.
- Various issues remain to be investigated for the practical use of terahertz wave devices.
- a main object of the present invention is to provide a member for a terahertz device that suppresses the loss of terahertz waves due to reflection and is excellent in handleability.
- a terahertz device member comprises a substrate body having a first principal surface and a second principal surface, and a and a reflection suppressor.
- the reflection suppressing portion includes a plurality of projections arranged in a grid pattern and having a tapered portion in a vertical cross section.
- the protrusions are conical, pyramidal, truncated conical, truncated pyramidal, cylindrical and conical, cylindrical and truncated conical, prismatic and pyramidal, and prismatic. and a truncated pyramid.
- the height of the protrusions in the antireflection portion is 0.5Ho (mm) to 2Ho (mm), and the period of the protrusions is 0.4Ho (mm) to 1.3Ho (mm).
- f (GHz) is the frequency of the terahertz wave passing through the first main surface
- ⁇ r is the dielectric constant of the substrate body.
- the substrate body is made of a material selected from quartz glass, aluminum nitride, aluminum oxide, silicon carbide, magnesium oxide, spinel and silicon.
- the substrate body is made of quartz glass, and the porosity of the substrate body with a pore size of 1 ⁇ m or more is 0.5 ppm to 3000 ppm. In one embodiment, the substrate body has a thickness of 50 ⁇ m to 250 ⁇ m.
- the antireflection portion is provided only on the first main surface.
- the terahertz device member further includes a terahertz element provided at a position corresponding to the antireflection section on the second main surface of the substrate body. In one embodiment, the member for a terahertz device is provided with a reinforcing portion in a portion of the first main surface of the substrate body where the antireflection portion is not provided.
- the reinforcing portion has a thickness of 0.5Ho (mm) to 2Ho (mm). In one embodiment, the reinforcing portion is configured integrally with the substrate body. In one embodiment, the reinforcing portion is fixed to the substrate body. In this case, the reinforcing portion is made of a material selected from quartz glass, silicon, alumina, copper, SUS and brass.
- the antireflection portion is provided only on the second main surface, and a convex portion is provided on the first main surface. In one embodiment, the antireflection portion is further provided on the convex portion. In one embodiment, the antireflection portion is provided only on the first main surface, and a recess is provided on the second main surface. In one embodiment, the antireflection portion is further provided in the concave portion.
- a terahertz device member that suppresses the loss of terahertz waves due to reflection and is excellent in handleability.
- FIG. 1 is a schematic plan view of a terahertz device component according to one embodiment of the present invention
- FIG. FIG. 2 is a schematic cross-sectional view of the terahertz device member of FIG. 1 taken along line II-II.
- FIG. 4 is a partial schematic cross-sectional view for explaining projections of a reflection suppressing portion in the member for a terahertz device according to the embodiment of the present invention
- FIG. 4(a) is a schematic cross-sectional view for explaining an example of a reinforcing portion that can be provided in a terahertz device member according to an embodiment of the present invention
- It is a schematic sectional drawing explaining.
- FIG. 5(a) is a schematic cross-sectional view of a terahertz device member according to another embodiment of the present invention
- FIG. 5(b) is a schematic cross-sectional view of a terahertz device member according to yet another embodiment of the present invention
- FIG. 5(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and the active element of FIG. 5(a) are used in combination.
- FIG. 6(a) is a schematic cross-sectional view of a terahertz device member according to yet another embodiment of the present invention
- FIG. 6(b) is a schematic cross-sectional view of a terahertz device member according to still another embodiment of the present invention;
- FIG. 6(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member of FIG. 6(a) and an active element are used in combination.
- FIG. 7(a) is a schematic sectional view of a main part for explaining an example of a terahertz element that can be provided in a terahertz device member according to an embodiment of the present invention
- FIG. 7(b) is a schematic cross-sectional view of FIG. 7(a).
- 1 is a schematic cross-sectional view of a main part for explaining an example of an active element which is a constituent element of the terahertz element of FIG.
- FIG. 1 is a schematic plan view of a terahertz device member according to one embodiment of the present invention
- FIG. 2 is a schematic cross-sectional view of the terahertz device member of FIG. 1 taken along line II-II.
- the illustrated terahertz device member 100 includes a substrate body 10 having a first principal surface 10a and a second principal surface 10b, and a and a reflection suppressing portion 20 provided (in the illustrated example, the reflection suppressing portion is provided on the first main surface 10a).
- the antireflection part 20 can be provided at any appropriate position on the substrate body 10 depending on the purpose (in the illustrated example, the antireflection part is provided at the central portion of the substrate body).
- the antireflection section 20 may be configured integrally with the substrate body 10, or may be attached to the substrate body 10 by any appropriate means.
- the antireflection portion 20 includes a plurality of protrusions 21, 21, . . . arranged in a grid pattern.
- the protrusion 21 may have a tapered shape over the entire vertical cross section; although not shown, it may have a partial tapered shape in the vertical cross section. Specifically, when the protrusion 21 has a tapered shape over the entire vertical cross section, it may be conical or pyramidal (for example, triangular pyramidal, square pyramidal, pentagonal pyramidal, hexagonal pyramidal, heptagonal pyramidal, etc.). , octagonal), truncated conical or truncated pyramidal.
- the protrusion 21 When the protrusion 21 has a partially tapered shape in the vertical cross section, it may have, for example, a combination of a cylinder and a cone or a truncated cone, or a combination of a prism and a pyramid or a truncated pyramid.
- the protrusions may have, for example, an R shape with curvature in the vertical cross section, other than cones, truncated cones, pyramids, truncated pyramids, and combinations thereof.
- the illustrated example shows a form in which the projections are in the shape of a quadrangular pyramid. Each projection preferably has the same shape. With such a configuration, the refractive index can be changed more smoothly.
- Any appropriate shape can be adopted as the overall plan view shape of the reflection suppressing portion. Specific examples include a rectangle (illustrated example), a circle, an ellipse, and a polygon.
- the terahertz device member can be produced by any appropriate method.
- the terahertz device member may be produced by casting or imprinting, or may be produced by shaving or etching from a solid base material.
- Cast molding is typically performed by preparing a mold having protrusions corresponding to the shape of the reflection suppressing portion; firing the cast slurry after it has solidified in the mold;
- silica or alumina is used as the raw material powder, contamination of OH groups, which may cause absorption of terahertz waves, can be suppressed as much as possible.
- ordinary synthetic quartz glass uses a chloride-based silicon compound as a raw material, hydrolysis treatment is required in the manufacturing process, and OH groups remain.
- the OH group can be removed by reduction treatment with thionyl chloride or the like or by plasma firing, but there is a problem that the material cost increases.
- Cast molding can suppress the contamination of OH groups, can correspond to complicated substrate shapes and lens shapes, and can integrally mold the reflection suppressing part, so it is a very excellent manufacturing method from the viewpoint of performance, mass production, and low cost. is. Cast molding can be performed, for example, by the procedure described in WO2018/100775.
- the terahertz device member 100 may further have a terahertz element 30 depending on the purpose.
- the terahertz element 30 can be provided on the second main surface 10 b of the substrate main body 10 at a position corresponding to the reflection suppressing portion 20 .
- the terahertz element 30 is typically provided such that one main surface (rear surface) 30 a faces the substrate body 10 .
- a terahertz element is an element that converts electrical energy into terahertz waves (electromagnetic waves with a frequency of 0.1 THz to 10 THz).
- a terahertz element can convert supplied electrical energy into a terahertz wave by oscillation.
- a terahertz element can radiate terahertz waves.
- a terahertz element can receive terahertz waves and convert the electromagnetic waves into electrical energy. This allows the terahertz element to detect terahertz waves.
- corresponding positions means that two members or components (here, the antireflection section 20 and the terahertz element 30) overlap when the terahertz device member is viewed from above.
- the antireflection section 20 and the terahertz element 30 may overlap completely or may overlap partially.
- the reflection suppressing portion 20 and the terahertz element 30 may have the same or different planar shape.
- the reflection suppressor 20 and the terahertz element 30 preferably have the same shape in plan view.
- the reflection suppressor 20 and the terahertz element 30 may have the same size in plan view, or one may have a larger size than the other.
- the size of the reflection suppressor 20 is larger than the terahertz element 30 in plan view.
- the electromagnetic waves generated from the terahertz element 30 spread while propagating. Further, in the waveguide, the electromagnetic wave spreads all over the inside of the pipe. Therefore, the electric field distribution of the terahertz wave is larger than that of the terahertz element when it reaches the reflection suppressing portion. Therefore, by making the planar view size of the reflection suppressor larger than the planar view size of the terahertz element, it is possible to reduce the loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element.
- the reflection suppressing portion may be provided over the entire first main surface of the substrate body, and the terahertz element may be provided in the central portion of the second main surface.
- the terahertz device member is provided in a portion of the first main surface 10a of the substrate body 10 where the antireflection section 20 is not provided. It may further have a reinforcing portion 40 .
- the thickness of the substrate body can be set to be very thin (eg, on the order of 100 ⁇ m as described below). With such a configuration, loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element can be reduced.
- the handleability of the entire terahertz device member may become insufficient. Specifically, it is difficult to maintain the shape of the substrate body, the substrate body is fragile, the mechanical strength is insufficient, and it is difficult to attach to the terahertz device body (substantially, the housing). problems may occur.
- the reinforcing portion it is possible to maintain the effect of thinning the substrate body (suppression of terahertz wave loss), achieve excellent handleability, and avoid the above problems.
- the reinforcement part 40 may be fixed to the substrate body 10 as shown in FIG. 4(a); or may be configured integrally with the substrate body 10 as shown in FIG. 4(b). If the stiffener is attached to the substrate body, attachment may be by any suitable means.
- the reinforcing portion can be attached to the substrate body via an adhesive applied to the first main surface of the substrate body. Fixing means other than adhesives include, for example, direct bonding methods such as surface activation methods, plasma methods, and atomic diffusion methods.
- the entire terahertz device member substrate main body, reflection suppressing portion and reinforcing portion
- the entire terahertz device member can be manufactured by cutting out from a solid base material.
- the reinforcing portion is provided on the first main surface of the substrate main body. It is clear to a person skilled in the art that it has a technical meaning equivalent to .
- a terahertz device member according to another embodiment of the present invention will be described with reference to FIGS. 5(a) to 5(c).
- the antireflection portion 20 is typically provided on the second main surface 10b.
- the reflection suppressing portion 20 is further provided on the convex portion 70 in addition to the second main surface 10b.
- the convex portion 70 can have a lens function with respect to terahertz waves incident on or emitted from the terahertz element.
- one convex portion 70 is provided on substantially the entire surface of the first principal surface 10a, and the reflection suppressing portion 20 corresponds to the convex portion 70 of the second principal surface 10b. It is provided at a position (substantially the entire surface in the illustrated example).
- the reflection suppressing portion 20 is further provided on substantially the entire surface of the convex portion 70 .
- the region where the convex portion 70 and the antireflection portion 20 are provided is not limited to the illustrated example, and can be appropriately set according to the purpose.
- a terahertz device member having such a convex portion can be suitably used as a lid member or a window member of a package in which a terahertz element is mounted.
- FIG. 5(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and active element of FIG. 5(a) are used in combination.
- the illustrated terahertz device package 200 includes any suitable supporting member (for example, substrate) 120, a terahertz device 30 provided on the supporting member 120, and a terahertz device integrated with the supporting member 120 via a spacer portion 130. and a device member 103 .
- the terahertz device member 103 is integrated with the supporting member 120 so that the reflection suppressing portion 20 faces the terahertz element 30 .
- the height of the spacer section 130 it is possible to adjust the size of the space in which the terahertz element 30 is arranged and adjust the distance between the terahertz element 30 and the reflection suppressing section 20 .
- the terahertz element can be arranged according to the focal length of the lens, and highly efficient light reception/radiation becomes possible.
- Terahertz device package 200 may be integrated by any suitable means.
- the terahertz device package 200 may be integrally molded (for example, the above-described cast molding) using a mold corresponding to the overall shape, and each component (substantially, the terahertz device member, the support member, and the spacer portion) may be directly bonded or glued.
- the contact surfaces of each component may be metallized. When metallized, each component may be joined by soldering.
- the support member and the spacer section can typically be made of an inorganic material (eg, ceramics) or metal, and in one embodiment can be made of the same material as the terahertz device member.
- the constituent material of the terahertz device member may be ceramics, for example, as described later.
- the terahertz device member By forming the terahertz device member (and accordingly, the supporting member and the spacer portion together) from ceramics, airtightness is significantly superior to the case of forming from an organic material (for example, a resin such as polypropylene (PP)). can ensure the integrity of the As a result, durability and reliability of the device can be improved. Furthermore, ceramics have a higher dielectric constant than resin, so when forming protrusions having the same function, ceramics can reduce the size of protrusions compared to resin. As a result, miniaturization of the terahertz device package can be achieved. The shape of the protrusion can be appropriately set according to the purpose.
- a resin such as polypropylene (PP)
- Examples of the shape of the convex portion include a semispherical shape and a semicylindrical shape (cylindrical shape).
- the number of protrusions can be appropriately set according to the purpose, shape and size of the protrusions.
- the size of the protrusions can be appropriately set according to the purpose, shape and number of protrusions.
- the illustrated example shows a configuration in which one protrusion (which may be semispherical or semicylindrical) is formed on the first main surface, but the number of protrusions is two. There may be more (eg, two, three, four, or more).
- a terahertz device member according to still another embodiment of the present invention will be described with reference to FIGS. 6(a) to 6(c).
- the antireflection portion 20 is typically provided on the first main surface 10a.
- the reflection suppressing portion 20 is further provided in the concave portion 80 in addition to the first main surface 10a.
- the concave portion 80 can have a lens function with respect to terahertz waves incident on or emitted from the terahertz element, like the convex portion 70 shown in FIGS. 5(a) to 5(c). As a result, the propagation efficiency of terahertz waves can be further improved.
- one recessed portion 80 is provided on substantially the entire surface of the second main surface 10b, and the reflection suppressing portion 20 is positioned ( In the illustrated example, it is provided substantially on the entire surface).
- the antireflection portion 20 is further provided substantially over the entire surface of the concave portion 80 .
- FIG. 6(c) is a schematic cross-sectional view illustrating an example of a configuration in which the terahertz device member and active element of FIG. 6(a) are used in combination.
- the terahertz device package 201 of the illustrated example includes any suitable supporting member (eg, substrate) 120, the terahertz device 30 provided on the supporting member 120, the terahertz device member 105 integrated with the supporting member 120, have In the illustrated example, the terahertz device member 105 is integrated with the support member 120 so that the terahertz element 30 is accommodated in the recess 80 .
- Terahertz device package 201 may be integrated by any suitable means.
- the terahertz device package 201 may be integrally molded (for example, the above-described flow molding) using a mold corresponding to the overall shape, and each component (substantially, the terahertz device member and the support member) is directly bonded. Or you can glue it.
- each component may be metallized. When metallized, each component may be joined by soldering.
- the support member and spacer section may typically be made of an inorganic material (eg, ceramics) or metal, and in one embodiment may be made of the same material as the terahertz device member. Constituent materials of the terahertz device members and their effects are as described with reference to FIGS. 5(a) to 5(c). Examples of the shape of the concave portion include a semispherical shape and a semicylindrical shape (cylindrical shape). The number of recesses can be appropriately set according to the purpose, shape and size of the recesses.
- the size of the recesses can be appropriately set according to the purpose, shape and number of the recesses.
- the illustrated example shows a configuration in which one concave portion (which may be semispherical or semi-cylindrical) is formed on the second main surface, but the number of concave portions may be two or more (for example, two, three, four, or more).
- the constituent elements of the terahertz device member will be specifically described below.
- the substrate body may be made of any suitable material as long as the effects of the embodiments of the present invention are obtained.
- Materials constituting the substrate body include, for example, quartz glass, aluminum nitride (AlN), aluminum oxide (alumina: Al 2 O 3 ), silicon carbide (SiC), magnesium oxide (MgO), spinel (MgAl 2 O 4 ), silicon.
- the crystal axis may be oriented in a direction parallel to the optical axis direction. Quartz glass and alumina are preferred, and quartz glass is more preferred.
- the constituent material is ceramics, it is preferably polycrystalline or amorphous. With such a configuration, since the anisotropy can be eliminated, the difference in loss due to polarization and propagation direction can be suppressed. Therefore, quartz glass may be amorphous or polycrystalline quartz.
- the thickness of the substrate body is, for example, 50 ⁇ m to 250 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m, more preferably 70 ⁇ m to 130 ⁇ m, still more preferably 80 ⁇ m to 120 ⁇ m, Especially preferred is 90 ⁇ m to 110 ⁇ m. If the thickness of the substrate main body is within such a range, it is possible to reduce loss due to propagation and/or reflection of the terahertz wave oscillated and radiated from the terahertz element. Moreover, the strength of the substrate body can be ensured.
- the thickness of the substrate body is, for example, 250 ⁇ m to 3000 ⁇ m, preferably 300 ⁇ m to 2000 ⁇ m, more preferably 330 ⁇ m to 1500 ⁇ m in the configurations shown in FIGS.
- the thickness of the substrate main body in the configuration shown in FIG. 5 means the thickness from the second main surface to the highest portion of the projection; the thickness of the substrate main body in the configuration shown in FIG. It means the thickness up to two main surfaces. Therefore, both the thickness (height) of the projection and the recess (depth) of the projection are typically the same as the thickness of the substrate main body in the configurations shown in FIGS. can be represented by the difference between the thickness of the substrate body at
- the porosity of the substrate body is preferably 0.5 ppm to 3000 ppm, more preferably 0.5 ppm to 1000 ppm, still more preferably 0.5 ppm to 100 ppm for pores with a pore size of 1 ⁇ m or more. If the porosity is in this range, densification is possible, and there are advantages of suppressing scattering of terahertz waves by pores and suppressing residual OH groups by pores.
- the pore size is the diameter when the pore is approximately spherical, the diameter when viewed from above when the pore is approximately cylindrical, and the pore inscribed when the pore is of another shape. is the diameter of the circle.
- the presence or absence of pores can be confirmed by, for example, optical CT (Computed Tomography) or a transmittance measuring instrument. Pore size can be measured, for example, by scanning electron microscopy (SEM).
- the OH group of the substrate body absorbs terahertz waves, so it is preferable to reduce it.
- the OH group of the substrate body is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 20 ppm or less.
- OH groups can be reduced by forming the substrate body from quartz glass or alumina using casting. OH groups can also be reduced by using anhydrous glass.
- each of Al, Fe and Na may be mixed at a mass ratio of preferably 1000 ppm or less, more preferably 10 ppm or less. It is believed that the inclusion of the above impurities improves sinterability and contributes to a reduction in dielectric loss and a low dielectric constant in terahertz waves.
- the surface roughness Ra of the substrate body can typically be flattened to several nm or less. Such a configuration can appropriately suppress scattering of light or electromagnetic waves. Since the terahertz wave has a wavelength of several tens of ⁇ m to several mm, Ra may be 5 nm to 0.5 ⁇ m. Also, Ra can be defined and measured as ⁇ 10 ⁇ m arithmetic mean roughness.
- the recesses on the surface of the substrate body can typically be flattened to several nanometers or less. Such a configuration can appropriately suppress scattering of light or electromagnetic waves. Since the terahertz wave has a wavelength of several tens of ⁇ m to several mm, the width of the dents may be 0.1 ⁇ m to 20 ⁇ m, the depth may be 3 nm to 1 ⁇ m, and the frequency of existence may be 5,000/mm 2 to 3,000,000. / mm2 . Also, the width and depth of the depression can be defined as the arithmetic mean value within ⁇ 30 ⁇ m and can be measured using an AFM (atomic force microscope).
- Quartz glass that satisfies the above characteristics can be typically produced by casting as described above.
- Such quartz glass can exhibit dielectric properties such as a dielectric constant of 3.8 and a dielectric loss (tan ⁇ ) of 0.001 at 300 GHz.
- ordinary synthetic quartz glass (OH group content is typically 50 ppm or more) exhibits dielectric properties such as a dielectric constant of 3.9 and a dielectric loss tan ⁇ of 0.01. .
- the silica glass used in the embodiment of the present invention can reduce the dielectric loss by one order of magnitude compared to ordinary synthetic silica glass.
- the dielectric constant of the substrate body at 100 GHz to 10 THz is preferably 3.6 to 11.5, preferably 3.7 to 10.0, and more preferably 3.8 to 9.0. If the dielectric constant of the substrate body is within this range, there are advantages in that the substrate can be miniaturized, can be manufactured by machining or molding, and can propagate terahertz wave signals without delay. If the dielectric constant is too small, the thickness of the substrate must be increased, and the height and/or period of the projections of the reflection suppressor must be increased, resulting in an excessively large substrate size, as well as machining and molding. A problem may arise that molding takes a long time.
- the dielectric constant is too high, the thickness of the substrate must be reduced, and the height and/or period of the projections of the anti-reflection portion must be reduced. It may be difficult to manufacture by molding. In addition, there may be a problem that the delay of the terahertz wave signal increases. Furthermore, the substrate body having the dielectric constant as described above can exhibit remarkably excellent terahertz wave propagation characteristics compared to a substrate body made of resin (having a dielectric constant of about 2.4).
- the resistivity of the substrate body is preferably 10 k ⁇ cm or more, more preferably 100 k ⁇ cm or more, still more preferably 500 k ⁇ cm or more, and particularly preferably 700 k ⁇ cm or more. If the resistivity is within this range, electromagnetic waves can propagate through the material with low loss without affecting electronic conduction. Although this phenomenon is not clear in detail, it can be inferred that when the resistivity is small, electromagnetic waves are coupled with electrons and the energy of the electromagnetic waves is lost to electron conduction, resulting in loss. From this point of view, the higher the resistivity, the better.
- the resistivity can be, for example, 3000 k ⁇ (3 M ⁇ ) cm or less.
- the dielectric loss (tan ⁇ ) of the substrate body is preferably 0.01 or less, more preferably 0.008 or less, still more preferably 0.006 or less, and particularly preferably 0.004 or less at the frequency used. is. If the dielectric loss is within this range, the terahertz wave propagation loss in the substrate body can be reduced. A smaller dielectric loss is more preferable. Dielectric loss can be, for example, 0.001 or greater. From this point of view, quartz glass can reduce dielectric loss very well.
- the bending strength of the substrate body is preferably 50 MPa or more, more preferably 60 MPa or more. If the bending strength is within such a range, it is possible to ensure acceptable handleability even if the thickness of the substrate body is reduced to about 100 ⁇ m. The higher the bending strength, the better.
- the flexural strength can be, for example, 700 MPa or less.
- the thermal expansion coefficient (linear expansion coefficient) of the substrate body is preferably 10 ⁇ 10 ⁇ 6 /K or less, more preferably 8 ⁇ 10 ⁇ 6 /K or less. If the coefficient of thermal expansion is within this range, thermal deformation (typically, warpage) of the substrate body (and consequently, the entire terahertz device member) can be suppressed satisfactorily.
- the water absorption rate of the substrate body is preferably 0.008% or less, more preferably 0.007% or less, and still more preferably 0.005% or less. If the water absorption rate of the substrate body is within this range, the durability and reliability of the device can be improved.
- the lower limit of water absorption of the substrate body can be, for example, 0.001%.
- the substrate body may be formed with a feed line (not shown).
- the feed line is typically connected to the terahertz element. Therefore, the feed line can typically be formed on the second main surface of the substrate body.
- the feed line may have any suitable configuration. Examples of power supply lines include coplanar lines, microstrip lines, strip lines, and slot lines.
- the feeder line can be typically formed on support member 120. As shown in FIG.
- the reflection suppressing part may be made of the same material as the substrate main body, or may be made of a different material.
- the antireflection section is preferably made of the same material as the substrate body.
- the antireflection part includes a plurality of projections arranged in a lattice.
- the protrusion has a tapered portion in vertical cross-section, and may have a tapered shape throughout in vertical cross-section, for example, as shown in FIG.
- the change in the refractive index near the first main surface (interface with air) of the substrate body is controlled (typically, the refractive index is changed continuously). ) can be changed to As a result, loss due to reflection of the terahertz wave oscillated and emitted from the terahertz element can be significantly reduced.
- the reflection suppressing section for example, the configuration described in Japanese Patent Application Laid-Open No. 2013-130609 may be employed.
- the height H of the projections is preferably 0.5Ho (mm) to 2Ho (mm), and the period P of the projections is preferably 0.4Ho (mm) to 1.3Ho (mm).
- the height of the projections is preferably 250 ⁇ m to 750 ⁇ m, and the period of the projections is It is preferably 200 ⁇ m to 650 ⁇ m.
- the height H of the protrusions is more preferably 0.7Ho (mm) to 1.3Ho (mm), still more preferably 0.75Ho (mm) to 1.25Ho (mm), and particularly preferably 0.7Ho (mm) to 1.25Ho (mm). 9 Ho (mm) to 1.1 Ho (mm).
- the period P of the protrusions is more preferably 0.5Ho (mm) to 1.35Ho (mm), still more preferably 0.6Ho (mm) to 1.3Ho (mm), and particularly preferably 0.65Ho (mm) to 1.25 Ho (mm).
- the taper angle ⁇ is preferably 45° to 70°, more preferably 55° to 68°, still more preferably 60° to 65°.
- the number of protrusions can be appropriately set according to the purpose, the shape and period of the protrusions, and the like. In the illustrated example, 4 in the first direction (eg, vertical direction) and 4 in the second direction (eg, horizontal direction), for a total of 16, are drawn. The number of protrusions in the first direction and the number of protrusions in the second direction may be the same or different.
- the ratio H/T of the projection height H of the reflection suppressing portion to the thickness T of the substrate body is preferably 1.6 to 9.4, more preferably 2.7 to 8.0, and even more preferably 3.1 to 6.0. If the ratio H/T is within such a range, loss due to reflection of terahertz waves can be suppressed more satisfactorily.
- terahertz Element Any suitable configuration capable of emitting and/or detecting terahertz waves may be adopted as the terahertz element.
- An outline of an example of a terahertz element will be described with reference to FIGS. 7(a) and 7(b). Details of such a terahertz element are described, for example, in International Publication No. 2021/070921.
- the terahertz element for example, the configurations described in International Publication No. 2020/110814 and International Publication No. 2015/170425 may be adopted.
- the terahertz element 30 typically includes an element substrate 31, an active element 32, a first conductor layer 33 and a second conductor layer .
- the element substrate 31 can be composed of any suitable semiconductor.
- InP indium phosphide
- silicon is a typical example of a semiconductor that forms the element substrate.
- the active element 32 converts terahertz waves and electric energy. Any suitable configuration can be employed as the active element. Specific examples of active elements include resonant tunneling diodes, tannet diodes, impud diodes, GaAs field effect transistors, GaN field effect transistors, high electron mobility transistors, heterojunction bipolar transistors, and CMOS transistors. An example of a specific configuration of the active element will be described below with reference to FIG. 7(b).
- a semiconductor layer 61 a is formed on the element substrate 31 .
- the semiconductor layer 61a is made of GaInAs, for example.
- the semiconductor layer 61a is heavily doped with an n-type impurity.
- a GaInAs layer 62a is laminated on the semiconductor layer 61a.
- the GaInAs layer 62a is doped with an n-type impurity.
- a GaInAs layer 63a is laminated on the GaInAs layer 62a.
- the GaInAs layer 63a is not doped with impurities.
- An AlAs layer 64a is laminated on the GaInAs layer 63a, an InGaAs layer 65 is laminated on the AlAs layer 64a, and an AlAs layer 64b is laminated on the InGaAs layer 65.
- the AlAs layer 64a, the InGaAs layer 65 and the AlAs layer 64b constitute a resonant tunneling section.
- a GaInAs layer 63b not doped with impurities is laminated on the AlAs layer 64b.
- a GaInAs layer 62b doped with an n-type impurity is laminated on the GaInAs layer 63b.
- a GaInAs layer 61b is laminated on the GaInAs layer 62b.
- the GaInAs layer 61b is heavily doped with an n-type impurity. For example, the impurity concentration of the GaInAs layer 61b is higher than that of the GaInAs layer 62b.
- the first conductor layer 33 and the second conductor layer 34 can function as antennas.
- the first conductor layer 33 and the second conductor layer 34 are each formed on one main surface of the element substrate 31 (the main surface opposite to the main surface 30a on the substrate main body 10 side).
- the first conductor layer 33 and the second conductor layer 34 are insulated from each other.
- the first conductor layer 33 and the second conductor layer 34 each have a metal laminate structure. Examples of the laminated structure include a laminated structure of Au (gold)/Pd (palladium)/Ti (titanium) and a laminated structure of Au/Ti.
- the reinforcing portion may be fixed to the substrate body (Fig. 4(a)), or may be configured integrally with the substrate body (Fig. 4(b)).
- the material forming the reinforcing portion may be the same as or different from the material forming the substrate body.
- examples of the material forming the reinforcing portion include quartz glass, silicon, and alumina. Copper, SUS, and brass used in metal housings and waveguides may also be used, and a film or plating film of highly conductive gold or copper is formed on the surface or side surface of the above materials. good too.
- the material forming the reinforcing portion is inevitably the same as the material forming the substrate body.
- the thickness of the reinforcing portion is preferably 0.5Ho (mm) to 2Ho (mm), more preferably 0.7Ho (mm) to 1.3Ho (mm), and still more preferably 0.75Ho (mm). 1.25 Ho (mm), particularly preferably 0.9 Ho (mm) to 1.1 Ho (mm). Furthermore, the thickness of the reinforcing portion is preferably equal to the height of the projection of the antireflection portion. With such a configuration, the projecting portion does not hit the waveguide when mounted, and terahertz waves can be prevented from traveling through the reinforcing portion and radiating to the outside.
- a terahertz device member according to an embodiment of the present invention can be suitably used for a terahertz device. Any suitable configuration capable of emitting and/or detecting terahertz waves can be adopted as the terahertz device.
- the terahertz device component according to the embodiments of the present invention includes a terahertz element
- the terahertz device may employ any suitable configuration capable of incorporating and functioning with the substrate.
- a specific configuration of the terahertz device is described, for example, in International Publication No. 2021/070921, Japanese Patent Application Laid-Open No. 2017-143347, and Japanese Patent Application Laid-Open No. 2012-49862. The descriptions of these patent documents are incorporated herein by reference.
- Example 1 A terahertz device member having a structure modified from FIG. 1 (specifically, a structure in which a reflection suppressing portion is provided on the entire first main surface of the substrate body and a terahertz element is provided in the central portion of the second main surface).
- a simulation was performed for Quartz glass having a dielectric constant of 3.8 and a dielectric loss tan .delta.
- the structure of the antireflection portion was such that the height of the projection was 0.51 mm and the period was 0.41 mm.
- the simulation used the FDTD method.
- the reflectance was calculated for the frequencies of 250 GHz and 300 GHz of the terahertz wave for each incident angle of 30 degrees and 45 degrees, with normal incidence being 0 degrees. Table 1 shows the results.
- Example 1 A simulation was performed on the same terahertz device member as in Example 1, except that the reflection suppressing portion was not provided. Table 1 shows the results.
- Example 2 The simulation was performed in the same manner as in Example 1, except that the constituent material was alumina having a dielectric constant of 9 and a dielectric loss tan ⁇ of 0.007, the height of the protrusions of the reflection suppressing portion was 0.33 mm, and the period was 0.26 mm. carried out. Table 1 shows the results.
- Example 2 A simulation was performed on the same terahertz device member as in Example 2, except that the reflection suppressing portion was not provided. Table 1 shows the results.
- Example 3 A simulation was performed for the terahertz device member having the structure shown in FIG. 5(a). Quartz glass having a dielectric constant of 3.8 and a dielectric loss tan .delta. The structure of the antireflection portion was such that the height of the projection was 0.51 mm and the period was 0.41 mm. The simulation used the FDTD method. The relationship between the diameter of the projection and the focused diameter of the terahertz wave was investigated by changing the diameter of the projection. A 300 GHz resonant tunneling diode was used as a terahertz light source. The condensed light diameter was evaluated using TZcam manufactured by IR Systems. The required condensing diameter was set to 1.1 mm. The lens diameter (diameter of the convex portion) required to realize a converging diameter of 1.1 mm was 3 mm.
- Example 3 (Comparative Example 3) Implemented except that the constituent material of the terahertz device members (substantially, the substrate body and the antireflection portion) was changed from quartz glass to polypropylene (PP: dielectric constant 2.4, dielectric loss tan ⁇ 0.002). A simulation was performed in the same manner as in Example 3. The lens diameter (diameter of the convex portion) required to realize a converging diameter of 1.1 mm was 3.6 mm.
- the member for a terahertz device of the example of the present invention is provided with a reflection suppressing portion, thereby reducing high-frequency electromagnetic waves. Reflection loss when incident at a high incident angle can be significantly suppressed, and total loss of high-frequency electromagnetic waves can be significantly suppressed. Furthermore, as is clear from a comparison of Example 1 and Example 2, while silica glass has a larger reflection loss than alumina, it has a significantly smaller propagation loss, resulting in a smaller total loss than alumina. The reason why the reflection loss of quartz glass is large is that the interface reflection between the substrate body and the terahertz element is large. On the other hand, since silica glass has significantly smaller dielectric loss than alumina, propagation loss can be reduced.
- Example 3 when trying to achieve the same condensed diameter, the use of an inorganic material (quartz glass) is about 20% higher than that of an organic material (PP). It can be seen that the lens diameter (the diameter of the convex portion) can be reduced, and as a result, the miniaturization of the terahertz device package can be realized.
- an inorganic material quartz glass
- PP organic material
- a terahertz device member according to an embodiment of the present invention can be suitably used for a terahertz device.
- Terahertz devices are expected to have applications in, for example, proximity data download (kiosk model), device-to-device communication, rack-to-rack communication in a data center, terahertz radio such as communication for mobile phone networks, body scanners, and pharmaceutical testing.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
1つの実施形態においては、上記突起は、円錐状、角錐状、円錐台状、角錐台状、円柱と円錐との組み合わせ、円柱と円錐台との組み合わせ、角柱と角錐との組み合わせ、および、角柱と角錐台との組み合わせから選択される形状を有する。
1つの実施形態においては、上記反射抑制部における突起の高さは0.5Ho(mm)~2Ho(mm)であり、突起の周期は0.4Ho(mm)~1.3Ho(mm)である:ここで、Hoは式:Ho=300/(f×√εr)で表され、f(GHz)は前記第1主面を通過するテラヘルツ波の周波数であり、εrは前記基板本体の誘電率である。
1つの実施形態においては、上記基板本体は、石英ガラス、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸化マグネシウム、スピネルおよびシリコンから選択される材料で構成されている。
1つの実施形態においては、上記基板本体は石英ガラスで構成され、該基板本体における気孔サイズが1μm以上の気孔率は0.5ppm~3000ppmである。
1つの実施形態においては、上記基板本体の厚みは50μm~250μmである。
1つの実施形態においては、上記反射抑制部は上記第1主面のみに設けられている。
1つの実施形態においては、上記テラヘルツ装置用部材は、上記基板本体の第2主面の上記反射抑制部に対応する位置に設けられたテラヘルツ素子をさらに有する。
1つの実施形態においては、上記テラヘルツ装置用部材は、上記基板本体の第1主面の上記反射抑制部が設けられていない部分に、補強部が設けられている。
1つの実施形態においては、上記補強部の厚みは0.5Ho(mm)~2Ho(mm)である。
1つの実施形態においては、上記補強部は上記基板本体と一体で構成されている。
1つの実施形態においては、上記補強部は上記基板本体に固着されている。この場合、上記補強部は、石英ガラス、シリコン、アルミナ、銅、SUSおよび真鍮から選択される材料で構成されている。
1つの実施形態においては、上記反射抑制部は上記第2主面のみに設けられており、上記第1主面には凸部が設けられている。1つの実施形態においては、上記反射抑制部が上記凸部にさらに設けられている。
1つの実施形態においては、上記反射抑制部は上記第1主面のみに設けられており、上記第2主面には凹部が設けられている。1つの実施形態においては、上記反射抑制部が上記凹部にさらに設けられている。
図1は、本発明の1つの実施形態によるテラヘルツ装置用部材の概略平面図であり;図2は、図1のテラヘルツ装置用部材のII-II線による概略断面図である。図示例のテラヘルツ装置用部材100は、第1主面10aおよび第2主面10bを有する基板本体10と、基板本体10の第1主面10aおよび第2主面10bの少なくとも一方の主面に設けられた反射抑制部20と、を有する(図示例では、反射抑制部は第1主面10aに設けられている)。反射抑制部20は、目的に応じて基板本体10の任意の適切な位置に設けられ得る(図示例では、反射抑制部は基板本体の中央部に設けられている)。反射抑制部20は、基板本体10と一体で構成されていてもよく、基板本体10に任意の適切な手段により取り付けられていてもよい。本発明の実施形態においては、反射抑制部20は、格子状に配置された複数の突起21、21、・・・を含む。このような構成であれば、基板本体の第1主面(空気との界面)近傍の屈折率を連続的に変化させることができるので、テラヘルツ素子から発振および放射されたテラヘルツ波の反射による損失を顕著に小さくすることができる。基板本体の第1主面(空気との界面)近傍の屈折率を連続的に変化させるという観点から、突起21は、鉛直方向断面においてテーパー部を有する。突起21は、図3に示すように、鉛直方向断面において全体にわたってテーパー形状を有していてもよく;図示しないが、鉛直方向断面において一部にテーパー形状を有していてもよい。具体的には、突起21は、鉛直方向断面において全体にわたってテーパー形状を有する場合には、円錐状、角錐状(例えば、三角錐状、四角錐状、五角錐状、六角錐状、七角錐状、八角錐状)、円錐台状または角錐台状であり得る。突起21は、鉛直方向断面において一部にテーパー形状を有する場合には、例えば、円柱と円錐または円錐台との組み合わせ、あるいは、角柱と角錐または角錐台との組み合わせ形状を有し得る。また、突起は、円錐、円錐台、角錐、角錐台およびこれらの組み合わせ以外に、例えば鉛直方向断面において曲率のあるR形状を有していてもよい。図示例は、突起が四角錐状である形態を示している。それぞれの突起は、好ましくは同一形状を有する。このような構成であれば、屈折率をより滑らかに変化させることができる。反射抑制部の全体的な平面視形状としては、任意の適切な形状が採用され得る。具体例としては、矩形(図示例)、円形、楕円形、多角形が挙げられる。
基板本体は、本発明の実施形態による効果が得られる限りにおいて任意の適切な材料で構成され得る。基板本体の構成材料としては、例えば、石英ガラス、窒化アルミニウム(AlN)、酸化アルミニウム(アルミナ:Al2O3)、炭化ケイ素(SiC)、酸化マグネシウム(MgO)、スピネル(MgAl2O4)、シリコンが挙げられる。透明性向上や散乱抑制という観点で光軸方向に平行な方向については結晶軸が配向していてもよい。好ましくは、石英ガラス、アルミナであり、より好ましくは石英ガラスである。構成材料がセラミックスである場合、多結晶またはアモルファスであることが好ましい。このような構成であれば、異方性を消失できるために偏光や伝搬方向による損失の差を抑制することができる。したがって、石英ガラスは、アモルファスであってもよく多結晶石英であってもよい。
反射抑制部は、基板本体と同一材料で構成されていてもよく、異なる材料で構成されていてもよい。反射抑制部は、好ましくは、基板本体と同一材料で構成されている。反射抑制部と基板本体とを同一材料で構成することにより、基板本体から反射抑制部にかけての屈折率の急激な変化を抑制することができ、かつ、テラヘルツ装置用部材を簡便安価に製造することができる。
テラヘルツ素子としては、テラヘルツ波を放射および/または検出し得る任意の適切な構成が採用され得る。テラヘルツ素子の一例の概略を、図7(a)および図7(b)を参照して説明する。このようなテラヘルツ素子の詳細は、例えば国際公開第2021/070921号に記載されている。テラヘルツ素子としては、例えば、国際公開第2020/110814号、国際公開第2015/170425号に記載の構成を採用してもよい。
補強部としては、上記所望の取り扱い性を付与し得る限りにおいて、任意の適切な構成が採用され得る。上記のとおり、補強部は、基板本体に固着されていてもよく(図4(a))、基板本体と一体で構成されていてもよい(図4(b))。図4(a)の構成においては、補強部を構成する材料は、基板本体を構成する材料と同一であってもよく異なっていてもよい。この場合、補強部を構成する材料としては、例えば、石英ガラス、シリコン、アルミナが挙げられる。また、金属筐体や導波管で使用される銅、SUS、真鍮であってもよく、上記の材料の表面や側面に導電性の高い金や銅の成膜やメッキ膜を形成していてもよい。図4(b)の構成においては、補強部を構成する材料は、必然的に、基板本体を構成する材料と同一となる。
本発明の実施形態によるテラヘルツ装置用部材は、テラヘルツ装置に好適に用いられ得る。テラヘルツ装置としては、テラヘルツ波を放射および/または検出し得る任意の適切な構成が採用され得る。本発明の実施形態によるテラヘルツ装置用部材がテラヘルツ素子を含む場合には、テラヘルツ装置としては、当該基板を組み込みかつ機能させることができる任意の適切な構成が採用され得る。テラヘルツ装置の具体的な構成は、例えば、国際公開第2021/070921号、特開2017-143347号公報、特開2012-49862号公報に記載されている。これらの特許文献の記載は、本明細書に参考として援用される。
図1を改変した構造(具体的には、基板本体の第1主面全面に反射抑制部が設けられ、第2主面の中央部にテラヘルツ素子が設けられている構造)のテラヘルツ装置用部材について、シミュレーションを実施した。基板本体および反射抑制部の構成材料は、誘電率が3.8、誘電損tanδが0.001の石英ガラスとした。反射抑制部の構造は、突起の高さが0.51mm、周期が0.41mmとした。シミュレーションは、FDTD法を使用した。反射率は、垂直入射を0度として、30度、45度の各入射角に対してテラヘルツ波の周波数250GHzと300GHzについて計算した。結果を表1に示す。
反射抑制部が設けられていないこと以外は実施例1と同様のテラヘルツ装置用部材について、シミュレーションを実施した。結果を表1に示す。
構成材料を誘電率が9、誘電損tanδが0.007のアルミナとし、反射抑制部の突起の高さを0.33mm、周期を0.26mmとしたこと以外は実施例1と同様にしてシミュレーションを実施した。結果を表1に示す。
反射抑制部が設けられていないこと以外は実施例2と同様のテラヘルツ装置用部材について、シミュレーションを実施した。結果を表1に示す。
図5(a)の構造のテラヘルツ装置用部材について、シミュレーションを実施した。基板本体および反射抑制部の構成材料は、誘電率が3.8、誘電損tanδが0.001の石英ガラスとした。反射抑制部の構造は、突起の高さが0.51mm、周期が0.41mmとした。シミュレーションは、FDTD法を使用した。凸部の径を変化させて、凸部の径とテラヘルツ波の集光径との関係を調べた。テラヘルツ光源として、300GHzの共鳴トンネルダイオードを用いた。集光径はアイ・アール・システム製TZcamを用いて評価した。必要な集光径は1.1mmに設定した。1.1mmの集光径を実現するに必要なレンズ径(凸部の径)は3mmであった。
テラヘルツ装置用部材(実質的には、基板本体および反射抑制部)の構成材料を石英ガラスからポリプロピレン(PP:誘電率が2.4、誘電損tanδが0.002)に変更したこと以外は実施例3と同様にしてシミュレーションを実施した。1.1mmの集光径を実現するに必要なレンズ径(凸部の径)は3.6mmであった。
20 反射抑制部
21 突起
30 テラヘルツ素子
40 補強部
70 凸部
80 凹部
100、101、102、103、104、105、106 テラヘルツ装置用部材
200、201 テラヘルツ素子パッケージ
Claims (17)
- 第1主面および第2主面を有する基板本体と、該基板本体の第1主面および第2主面の少なくとも一方の主面に設けられた反射抑制部と、を有し、
該反射抑制部が、格子状に配置された、鉛直方向断面においてテーパー部を有する複数の突起を含む、
テラヘルツ装置用部材。 - 前記突起が、円錐状、角錐状、円錐台状、角錐台状、円柱と円錐との組み合わせ、円柱と円錐台との組み合わせ、角柱と角錐との組み合わせ、および、角柱と角錐台との組み合わせから選択される形状を有する、請求項1に記載のテラヘルツ装置用部材。
- 前記反射抑制部における突起の高さが0.5Ho(mm)~2Ho(mm)であり、突起の周期が0.4Ho(mm)~1.3Ho(mm)である、請求項1または2に記載のテラヘルツ装置用部材:
ここで、Hoは式:Ho=300/(f×√εr)で表され、f(GHz)は前記第1主面を通過するテラヘルツ波の周波数であり、εrは前記基板本体の誘電率である。 - 前記基板本体が、石英ガラス、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸化マグネシウム、スピネルおよびシリコンから選択される材料で構成されている、請求項1から3のいずれかに記載のテラヘルツ装置用部材。
- 前記基板本体が石英ガラスで構成され、該基板本体における気孔サイズが1μm以上の気孔率が0.5ppm~3000ppmである、請求項4に記載のテラヘルツ装置用部材。
- 前記基板本体の厚みが50μm~250μmである、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
- 前記反射抑制部が前記第1主面のみに設けられている、請求項1から6のいずれかに記載のテラヘルツ装置用部材。
- 前記基板本体の第2主面の前記反射抑制部に対応する位置に設けられたテラヘルツ素子をさらに有する、請求項7に記載のテラヘルツ装置用部材。
- 前記基板本体の第1主面の前記反射抑制部が設けられていない部分に、補強部が設けられている、請求項7または8に記載のテラヘルツ装置用部材。
- 前記補強部の厚みが0.5Ho(mm)~2Ho(mm)である、請求項9に記載のテラヘルツ装置用部材。
- 前記補強部が前記基板本体と一体で構成されている、請求項9または10に記載のテラヘルツ装置用部材。
- 前記補強部が前記基板本体に固着されている、請求項9または10に記載のテラヘルツ装置用部材。
- 前記補強部が、石英ガラス、シリコン、アルミナ、銅、SUSおよび真鍮から選択される材料で構成されている、請求項12に記載のテラヘルツ装置用部材。
- 前記反射抑制部が前記第2主面のみに設けられており、前記第1主面に凸部が設けられている、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
- 前記反射抑制部が前記凸部にさらに設けられている、請求項14に記載のテラヘルツ装置用部材。
- 前記反射抑制部が前記第1主面のみに設けられており、前記第2主面に凹部が設けられている、請求項1から5のいずれかに記載のテラヘルツ装置用部材。
- 前記反射抑制部が前記凹部にさらに設けられている、請求項16に記載のテラヘルツ装置用部材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022001517.9T DE112022001517T5 (de) | 2021-06-18 | 2022-01-17 | Bauteil für eine Terahertz-Vorrichtung |
JP2022535813A JP7220333B1 (ja) | 2021-06-18 | 2022-01-17 | テラヘルツ装置用部材 |
JP2023011632A JP2023055810A (ja) | 2021-06-18 | 2023-01-30 | テラヘルツ装置用部材 |
US18/536,342 US20240125986A1 (en) | 2021-06-18 | 2023-12-12 | Member for terahertz equipment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-101361 | 2021-06-18 | ||
JP2021101361 | 2021-06-18 | ||
JP2021121400 | 2021-07-26 | ||
JP2021-121400 | 2021-07-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/536,342 Continuation US20240125986A1 (en) | 2021-06-18 | 2023-12-12 | Member for terahertz equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022264467A1 true WO2022264467A1 (ja) | 2022-12-22 |
Family
ID=84526000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001401 WO2022264467A1 (ja) | 2021-06-18 | 2022-01-17 | テラヘルツ装置用部材 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240125986A1 (ja) |
JP (2) | JP7220333B1 (ja) |
DE (1) | DE112022001517T5 (ja) |
WO (1) | WO2022264467A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023003034A1 (ja) * | 2021-07-21 | 2023-01-26 | 日東電工株式会社 | 電磁波シールド |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345903A (ja) * | 2003-05-22 | 2004-12-09 | Fujikura Ltd | 石英ガラスの製造方法、石英ガラス、光学部品及び光ファイバ |
JP2007290950A (ja) * | 2006-04-20 | 2007-11-08 | Heraeus Quarzglas Gmbh & Co Kg | マイクロリソグラフィーに使用する光学素子に特に適した材料、およびこの材料からブランクを製造する方法 |
JP2009204900A (ja) * | 2008-02-28 | 2009-09-10 | Epson Toyocom Corp | 光学素子の反射防止構造、その反射防止構造を備えた光学素子および反射防止構造の加工方法 |
JP2009217085A (ja) * | 2008-03-12 | 2009-09-24 | Tochigi Nikon Corp | 光学部品 |
KR20110015107A (ko) * | 2009-08-07 | 2011-02-15 | 한국전자통신연구원 | 파라메트릭 테라헤르츠파의 발생 장치 및 그의 생성 방법 |
WO2012005220A1 (ja) * | 2010-07-05 | 2012-01-12 | 旭硝子株式会社 | 光学部材 |
JP2013130609A (ja) * | 2011-12-20 | 2013-07-04 | Ngk Insulators Ltd | 電磁波放射素子およびその製造方法 |
JP2016157049A (ja) * | 2015-02-26 | 2016-09-01 | 大学共同利用機関法人自然科学研究機構 | サブ波長構造素子 |
JP2017173690A (ja) * | 2016-03-25 | 2017-09-28 | 大日本印刷株式会社 | 反射防止物品の製造方法、賦型用金型の製造方法 |
WO2018066636A1 (ja) * | 2016-10-05 | 2018-04-12 | 信越化学工業株式会社 | 透明スピネル焼結体、光学部材並びに透明スピネル焼結体の製造方法 |
JP2020166225A (ja) * | 2018-09-28 | 2020-10-08 | 浜松ホトニクス株式会社 | テラヘルツ波用光学素子及びその製造方法 |
CN112505807A (zh) * | 2020-12-01 | 2021-03-16 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | 太赫兹波准直聚焦透镜及太赫兹波系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5597065B2 (ja) | 2010-08-27 | 2014-10-01 | 国立大学法人 名古屋工業大学 | 導波管・平面線路変換器及び高周波回路 |
KR20170004965A (ko) | 2014-05-08 | 2017-01-11 | 도오쿄 인스티튜드 오브 테크놀로지 | 주파수 가변 테라헤르츠 발진기 및 그 제조 방법 |
JP6623805B2 (ja) | 2016-02-08 | 2019-12-25 | 富士通株式会社 | 無線通信装置 |
DE112017007401B4 (de) | 2017-04-06 | 2023-07-06 | Ngk Insulators, Ltd. | Optische komponente und transparenter körper |
WO2020110814A1 (ja) | 2018-11-28 | 2020-06-04 | 国立大学法人広島大学 | 送受信機及び信号生成方法 |
CN114503360B (zh) | 2019-10-10 | 2023-11-03 | 罗姆股份有限公司 | 太赫兹装置 |
-
2022
- 2022-01-17 JP JP2022535813A patent/JP7220333B1/ja active Active
- 2022-01-17 WO PCT/JP2022/001401 patent/WO2022264467A1/ja active Application Filing
- 2022-01-17 DE DE112022001517.9T patent/DE112022001517T5/de active Pending
-
2023
- 2023-01-30 JP JP2023011632A patent/JP2023055810A/ja active Pending
- 2023-12-12 US US18/536,342 patent/US20240125986A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345903A (ja) * | 2003-05-22 | 2004-12-09 | Fujikura Ltd | 石英ガラスの製造方法、石英ガラス、光学部品及び光ファイバ |
JP2007290950A (ja) * | 2006-04-20 | 2007-11-08 | Heraeus Quarzglas Gmbh & Co Kg | マイクロリソグラフィーに使用する光学素子に特に適した材料、およびこの材料からブランクを製造する方法 |
JP2009204900A (ja) * | 2008-02-28 | 2009-09-10 | Epson Toyocom Corp | 光学素子の反射防止構造、その反射防止構造を備えた光学素子および反射防止構造の加工方法 |
JP2009217085A (ja) * | 2008-03-12 | 2009-09-24 | Tochigi Nikon Corp | 光学部品 |
KR20110015107A (ko) * | 2009-08-07 | 2011-02-15 | 한국전자통신연구원 | 파라메트릭 테라헤르츠파의 발생 장치 및 그의 생성 방법 |
WO2012005220A1 (ja) * | 2010-07-05 | 2012-01-12 | 旭硝子株式会社 | 光学部材 |
JP2013130609A (ja) * | 2011-12-20 | 2013-07-04 | Ngk Insulators Ltd | 電磁波放射素子およびその製造方法 |
JP2016157049A (ja) * | 2015-02-26 | 2016-09-01 | 大学共同利用機関法人自然科学研究機構 | サブ波長構造素子 |
JP2017173690A (ja) * | 2016-03-25 | 2017-09-28 | 大日本印刷株式会社 | 反射防止物品の製造方法、賦型用金型の製造方法 |
WO2018066636A1 (ja) * | 2016-10-05 | 2018-04-12 | 信越化学工業株式会社 | 透明スピネル焼結体、光学部材並びに透明スピネル焼結体の製造方法 |
JP2020166225A (ja) * | 2018-09-28 | 2020-10-08 | 浜松ホトニクス株式会社 | テラヘルツ波用光学素子及びその製造方法 |
CN112505807A (zh) * | 2020-12-01 | 2021-03-16 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | 太赫兹波准直聚焦透镜及太赫兹波系统 |
Also Published As
Publication number | Publication date |
---|---|
US20240125986A1 (en) | 2024-04-18 |
JP2023055810A (ja) | 2023-04-18 |
JP7220333B1 (ja) | 2023-02-09 |
JPWO2022264467A1 (ja) | 2022-12-22 |
DE112022001517T5 (de) | 2024-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10865955B1 (en) | Wavelength conversion element and light emitting device | |
TW201924485A (zh) | 用於準直發光二極體之光發射之奈米結構的超材料及超表面 | |
US7615398B2 (en) | Pyramidal photonic crystal light emitting device | |
US10422499B2 (en) | Integrated planar reflective LARP package and method | |
US20120086028A1 (en) | Wavelength conversion chip for use with light emitting diodes and method for making same | |
US20150236201A1 (en) | Optical device | |
CN107272216A (zh) | 透射式金属超材料光束偏振分布变换器件 | |
JP2008518474A (ja) | 複合光学素子を有する高輝度ledパッケージ | |
JP2008518465A (ja) | 高輝度ledパッケージ | |
JP2008518466A (ja) | 多数の光学要素を有する高輝度ledパッケージ | |
JP7220333B1 (ja) | テラヘルツ装置用部材 | |
US10481307B2 (en) | Optical antenna | |
US10320147B2 (en) | Wavelength conversion member and light emitting device | |
US10907773B2 (en) | Wavelength conversion device and light source device | |
WO2019003535A1 (ja) | 透明封止部材及びその製造方法 | |
KR101281504B1 (ko) | 피라미드형 광 결정 발광 소자 | |
Wu et al. | Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range | |
CN210719422U (zh) | 背面光耦合超导纳米线单光子探测器件及测试装置 | |
TWI472819B (zh) | 超穎材料結構及其製造方法 | |
CN103955022A (zh) | 一种楔型表面等离子体波导 | |
US20130128366A1 (en) | Optical nanoantenna using single-crystalline silver nanowire, method of manufacturing the same and optical nanoantenna using single-crystalline metal nanowire | |
JPWO2017183606A1 (ja) | 蛍光体素子および照明装置 | |
CN110726484A (zh) | 背面光耦合超导纳米线单光子探测器件、制备及测试装置 | |
TWI295383B (en) | Lens, laser-arrangement and method for the production of a laser-arrangement | |
CN110265785A (zh) | 球形腔天线辐射器及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022535813 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824470 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022001517 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22824470 Country of ref document: EP Kind code of ref document: A1 |