WO2022264335A1 - 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法 - Google Patents

六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法 Download PDF

Info

Publication number
WO2022264335A1
WO2022264335A1 PCT/JP2021/022924 JP2021022924W WO2022264335A1 WO 2022264335 A1 WO2022264335 A1 WO 2022264335A1 JP 2021022924 W JP2021022924 W JP 2021022924W WO 2022264335 A1 WO2022264335 A1 WO 2022264335A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
hexagonal boron
powder
nitride powder
gas
Prior art date
Application number
PCT/JP2021/022924
Other languages
English (en)
French (fr)
Inventor
隆貴 松井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202180099409.1A priority Critical patent/CN117545712A/zh
Priority to KR1020247001174A priority patent/KR20240021268A/ko
Priority to PCT/JP2021/022924 priority patent/WO2022264335A1/ja
Publication of WO2022264335A1 publication Critical patent/WO2022264335A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • A61K8/022Powders; Compacted Powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present disclosure relates to a hexagonal boron nitride powder and a method for producing the same, as well as a cosmetic and a method for producing the same.
  • Boron nitride has lubricating properties, high thermal conductivity, insulating properties, etc., and is used as a raw material for solid lubricants, release agents, resin and rubber fillers, cosmetics (also called cosmetics), and heat resistance. It is used for a wide range of applications such as insulating sintered bodies with
  • hexagonal boron nitride powder that is blended in cosmetics include improving the slipperiness, spreadability, and concealability of cosmetics, and imparting gloss.
  • hexagonal boron nitride powder has excellent lubricity as compared with talc powder and mica powder, which have similar functions, and is therefore widely used in cosmetics that require excellent lubricity.
  • Patent Literature 1 proposes setting the average particle size and the maximum particle size within predetermined numerical ranges in order to improve the lubricity of the hexagonal boron nitride powder.
  • the present disclosure provides a hexagonal boron nitride powder and a method for producing the same that enable the production of cosmetics with excellent elongation.
  • the present disclosure provides a cosmetic having excellent spreadability by using the hexagonal boron nitride powder described above, and a method for producing the same.
  • the hexagonal boron nitride powder according to one aspect of the present disclosure includes secondary particles formed by agglomeration of primary particles of hexagonal boron nitride, and is measured by a laser diffraction/scattering method.
  • the ratio of D50 to the BET specific surface area is 5 [ ⁇ g/m] or more, where D50 is the particle diameter when the integrated value from the small particle diameter reaches 50% of the total.
  • the BET specific surface area of the hexagonal boron nitride powder mainly depends on the particle size of the primary particles of the hexagonal boron nitride powder.
  • D50 mainly depends on the particle size of secondary particles formed by aggregation of the primary particles. Therefore, it can be said that the ratio of D50 to the BET specific surface area has a correlation with the size of the secondary particles to the primary particles and the ratio of the secondary particles to the entire hexagonal boron nitride powder. Since the ratio of the hexagonal boron nitride powder is 5 [ ⁇ g / m] or more, the ratio of secondary particles formed by agglomeration of primary particles and / or the size of the secondary particles to the primary particles You can make it bigger.
  • hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance.
  • hexagonal boron nitride powder is spread, it is spread while the agglomerated secondary particles are broken. Therefore, it has excellent extensibility.
  • Such a hexagonal boron nitride powder is suitable as a raw material for cosmetics.
  • the BET specific surface area of the hexagonal boron nitride powder may be less than 3 [m 2 /g]. As a result, the particle size of the primary particles is increased, and the lubricity can be sufficiently improved.
  • the D50 of the hexagonal boron nitride powder may be 12 ⁇ m or more. Such hexagonal boron nitride powder has better elongation.
  • the hexagonal boron nitride powder may be used as a raw material for cosmetics.
  • the hexagonal boron nitride powder is excellent in extensibility, and therefore suitable as a raw material for cosmetics.
  • a method for producing a hexagonal boron nitride powder according to one aspect of the present disclosure is to prepare a mixed powder containing hexagonal boron nitride and an auxiliary agent in an atmosphere of inert gas, ammonia gas, or a mixed gas thereof at 1600 ° C. or higher and A firing step of obtaining a fired product containing hexagonal boron nitride having higher crystallinity than hexagonal boron nitride in the mixed powder by firing at less than 1900 ° C., pulverizing, washing, and drying the fired product to obtain a dry powder. and an annealing step of annealing the dry powder at 1900 to 2100 ° C. in an atmosphere of inert gas, ammonia gas, or a mixed gas thereof. The temperature is raised at the above temperature elevation rate and the heating time to 1900 to 2100° C. is 2 hours or less.
  • a fired product containing hexagonal boron nitride with high crystallinity can be obtained by firing at a temperature of 1700°C or more and less than 1900°C using an auxiliary agent.
  • auxiliary agent By washing the fired product after pulverization, residual auxiliary agents and the like can be reduced, and grain growth during the subsequent annealing can be suppressed.
  • the primary particles After drying, since the baked product containing already crystallized hexagonal boron nitride is annealed under predetermined conditions, the primary particles are aggregated while suppressing the grain growth of the primary particles of hexagonal boron nitride. Formation of secondary particles can be promoted. Therefore, the ratio of secondary particles and/or the size of secondary particles to primary particles can be increased.
  • hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance.
  • hexagonal boron nitride powder having excellent elongation can be produced.
  • This hexagonal boron nitride powder is suitable as a raw material for cosmetics.
  • the raw material powder containing the powder of the compound containing boron and the powder of the compound containing nitrogen is heated to 600 to 1300 ° C. in an atmosphere of an inert gas, ammonia gas, or a mixed gas thereof. to obtain a calcined product containing hexagonal boron nitride with low crystallinity.
  • the mixed powder in the firing step may contain a calcined material and an auxiliary agent.
  • the integrated value from the small particle size reached 50% of the total.
  • the ratio of D50 to the BET specific surface area may be 5 [ ⁇ g/m] or more, where D50 is the particle diameter of the powder.
  • a cosmetic according to one aspect of the present disclosure contains the hexagonal boron nitride powder described above.
  • the hexagonal boron nitride powder described above has excellent extensibility when spread. Therefore, a cosmetic containing such a hexagonal boron nitride powder has excellent spreadability.
  • a method for producing a cosmetic according to one aspect of the present disclosure produces a cosmetic using the hexagonal boron nitride powder obtained by any of the above-described production methods as a raw material.
  • the hexagonal boron nitride powder obtained by the production method described above has excellent elongation when spread. Therefore, a cosmetic produced using such a hexagonal boron nitride powder as a raw material has excellent spreadability.
  • the present disclosure it is possible to provide a hexagonal boron nitride powder and a method for producing the same that enable the production of cosmetics with excellent spreadability. Further, according to the present disclosure, it is possible to provide a cosmetic having excellent spreadability by using the hexagonal boron nitride powder described above, and a method for producing the same.
  • the integrated value from the small particle size is 50 of the total %
  • the ratio of D50 to the BET specific surface area is 5 [ ⁇ g/m] or more.
  • the ratio (D50/BET) may be 6 [ ⁇ g/m] or more, or may be 7 [ ⁇ g/m] or more.
  • the ratio (D50/BET) may be less than 30 [ ⁇ g/m] or less than 20 [ ⁇ g/m]. This makes it possible to reduce rough feeling when used as a raw material for cosmetics.
  • Examples of the range of the above ratio (D50/BET) may be 5 [ ⁇ g/m] or more and less than 30 [ ⁇ g/m], or 7 [ ⁇ g/m] or more and less than 20 [ ⁇ g/m].
  • D50 in the present disclosure is measured with a commercially available laser diffraction particle size distribution analyzer.
  • D50 may be 12 ⁇ m or more, or may be 14 ⁇ m or more, from the viewpoint of further improving slipperiness when used as a raw material for cosmetics.
  • D50 may be 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less from the viewpoint of reducing glare in appearance when used as a raw material for cosmetics.
  • D50 can be adjusted by, for example, the particle size distribution of the raw material powder, the calcining temperature and calcining time, the calcining temperature and calcining time, the annealing temperature and annealing time, the heating rate, and the like.
  • An example range for D50 may be 12-30 ⁇ m.
  • the BET specific surface area is a value measured using a commercially available specific surface area measuring device using nitrogen as the adsorbed gas.
  • the BET specific surface area may be less than 3 [m 2 /g] and may be less than 2.5 [m 2 /g]. Thereby, not only stretchability but also slipperiness can be sufficiently enhanced.
  • the BET specific surface area may be 0.5 [m 2 /g] or more, or may be 1 [m 2 /g] or more. This can improve adhesion to the skin and wrinkles.
  • An example range of the BET specific surface area may be 0.5 to 3 [m 2 /g].
  • the bulk density of the hexagonal boron nitride powder may be 0.47 g/cm 3 or less, 0.43 cm 3 or less, or 0.37 cm 3 or less. Having such a low bulk density can result in a hexagonal boron nitride powder having a fluffier appearance.
  • the bulk density can be measured in accordance with JIS R1628-1997 "Method for measuring bulk density of fine ceramic powder".
  • the ratio of secondary particles in the hexagonal boron nitride powder and/or the size of the secondary particles relative to the primary particles can be increased.
  • Secondary particles can have larger voids within the particles than primary particles. Therefore, the hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance. When such a hexagonal boron nitride powder is spread, it is spread while the agglomerated secondary particles are broken. Therefore, it has excellent extensibility.
  • Such a hexagonal boron nitride powder is suitable as a raw material for cosmetics. That is, the present disclosure can also provide a method of using hexagonal boron nitride as a raw material for cosmetics.
  • a cosmetic according to one embodiment contains the hexagonal boron nitride powder described above. Therefore, the cosmetic containing this hexagonal boron nitride powder has excellent spreadability.
  • examples of cosmetics include foundation (powder foundation, liquid foundation, cream foundation), face powder, point makeup, eye shadow, eyeliner, nail polish, lipstick, blush, and mascara.
  • hexagonal boron nitride powder is particularly well suited for foundation and eyeshadow.
  • the content of hexagonal boron nitride powder in cosmetics is, for example, 0.1 to 70% by mass.
  • Cosmetics can be manufactured by a known method.
  • a method for producing cosmetics includes, for example, a step of blending and mixing hexagonal boron nitride powder and other raw materials.
  • a method for producing a hexagonal boron nitride powder is to prepare a raw material powder containing a powder of a compound containing boron and a powder of a compound containing nitrogen in an atmosphere of an inert gas, an ammonia gas, or a mixed gas thereof, A calcination step of obtaining a calcined product containing hexagonal boron nitride by calcining at 600 to 1300 ° C., and a mixed powder containing hexagonal boron nitride and an auxiliary agent is subjected to an inert gas, ammonia gas, or a mixed gas thereof.
  • a firing step of firing at 1600° C. or more and less than 1900° C.
  • a fired product containing hexagonal boron nitride having higher crystallinity than the hexagonal boron nitride in the mixed powder in an atmosphere to obtain a fired product containing hexagonal boron nitride having higher crystallinity than the hexagonal boron nitride in the mixed powder; and drying to obtain a dry powder; and an annealing step of annealing the dry powder at a temperature of 1900 to 2100° C. in an inert atmosphere such as nitrogen gas, helium gas, or argon gas.
  • Compounds containing boron include boric acid, boron oxide and borax.
  • Nitrogen-containing compounds include cyandiamide, melamine, and urea.
  • the raw material powder may contain components other than the above compounds. For example, carbonates such as lithium carbonate and sodium carbonate may be included as calcination aids. It may also contain a reducing substance such as carbon.
  • a raw material powder containing the above-described components is calcined in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, in an ammonia atmosphere, or in a mixed gas atmosphere in which these are mixed, using an electric furnace, for example.
  • the calcination temperature may be 600-1300°C, 800-1200°C, or 900-1100°C.
  • the calcination time may be, for example, 0.5 to 5 hours, or 1 to 4 hours.
  • the calcined material obtained by calcining contains at least one selected from the group consisting of low-crystalline hexagonal boron nitride and amorphous hexagonal boron nitride.
  • the reaction of boron nitride proceeds at a lower temperature than in the later-described firing process. Therefore, grain growth can be suppressed, and the particle size of the primary particles in the finally obtained boron nitride powder can be reduced.
  • auxiliary agent examples include borates such as sodium borate and carbonates such as sodium carbonate, calcium carbonate and lithium carbonate.
  • the amount of the auxiliary agent may be 2 to 20 parts by mass, or may be 2 to 8 parts by mass, with respect to 100 parts by mass of the calcined material containing hexagonal boron nitride.
  • Such a mixed powder is fired, for example, in an electric furnace, in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, in an ammonia atmosphere, or in a mixed gas atmosphere containing these.
  • the firing temperature is 1600°C or more and less than 1900°C.
  • the firing temperature may be 1650-1850°C or 1650-1750°C.
  • the firing time may be, for example, 0.5 to 5 hours, or 1 to 4 hours.
  • the firing temperature is too low, it tends to be difficult to generate sufficient secondary particles of hexagonal boron nitride.
  • the size and/or ratio of the secondary particles is small, the lubricating property tends to be lowered when used as a raw material for cosmetics. The same tendency is observed when the baking time is too short.
  • the firing temperature is too high, crystal growth and aggregation of hexagonal boron nitride proceed excessively, and when used as a raw material for cosmetics, there is a tendency for the glare to become strong.
  • the fired product obtained in the firing process may contain impurities other than hexagonal boron nitride.
  • Impurities include residual auxiliary agents, water-soluble boron compounds, and the like.
  • the cleaning liquid used for cleaning includes water, an aqueous solution containing an acidic substance, an organic solvent, a mixed liquid of an organic solvent and water, and the like. From the viewpoint of avoiding secondary contamination of impurities, water having an electric conductivity of 1 mS/m or less may be used.
  • acidic substances include inorganic acids such as hydrochloric acid and nitric acid.
  • organic solvents include water-soluble organic solvents such as methanol, ethanol, propanol, isopropyl alcohol and acetone.
  • the washing method is not particularly limited, and for example, the baked product may be washed by immersing it in a washing liquid and stirring it, or it may be washed by spraying the washing liquid on the baked product.
  • the washing liquid may be solid-liquid separated using a decantation, a suction filter, a pressure filter, a rotary filter, a sedimentation separator, or a combination of these.
  • a dry powder may be obtained by drying the separated solid content in a conventional dryer. Dryers include, for example, tray dryers, fluid bed dryers, spray dryers, rotary dryers, belt dryers, and combinations thereof. After drying, classification, for example with a sieve, may be carried out in order to remove coarse particles.
  • the dry powder is heated to 1900 to 2100° C. in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, in an ammonia atmosphere, or in a mixed gas atmosphere of these, using an electric furnace, for example. heat up.
  • the annealing temperature may be 1950° C. or higher from the viewpoint of sufficiently aggregating the primary particles. Also, the annealing temperature may be 2050° C. or lower from the viewpoint of suppressing grain growth of primary grains.
  • the substrate is heated to the same temperature as in the firing step, secondary particles in which primary particles are aggregated can be sufficiently formed.
  • the time for heating to a temperature of 1900 to 2100°C in the annealing step is 2 hours or less, and may be 1 hour or less.
  • the time for heating to a temperature of 1900 to 2100° C. in the annealing step may be 0.5 hours or longer.
  • the dry powder is heated at a heating rate of 5°C/min or more.
  • the rate of temperature rise can be obtained by dividing the temperature difference (temperature rise range) between the temperature at the start of temperature rise and 1900° C. by the time required to reach 1900° C. from the time the temperature was started.
  • the upper limit of the temperature increase rate may be, for example, 15°C/min.
  • the hexagonal boron nitride powder described above can be obtained.
  • the description relating to the embodiment of the hexagonal boron nitride powder can be applied to the above manufacturing method.
  • the method for producing hexagonal boron nitride powder is not limited to the above-described embodiments.
  • the annealing process may be repeated multiple times.
  • a crushing step may be performed in which the hexagonal boron nitride powder is crushed to such an extent that the secondary particles are not broken using a homogenizer or the like that applies ultrasonic vibrations.
  • Example 1 [Preparation of hexagonal boron nitride powder] ⁇ Temporary firing process> 100.0 g of boric acid powder (purity of 99.8% by mass or more, manufactured by Kanto Chemical Co., Ltd.) and 90.0 g of melamine powder (purity of 99.0% by mass or more, manufactured by Wako Pure Chemical Industries, Ltd.) were added using an alumina mortar. Mixed for 10 minutes to obtain a mixed raw material. The mixed raw material after drying was placed in a container made of hexagonal boron nitride and placed in an electric furnace. The temperature was raised from room temperature to 1000° C. at a rate of 10° C./min while nitrogen gas was circulated in the electric furnace. After holding at 1000° C. for 2 hours, the heating was stopped and the mixture was allowed to cool naturally. The electric furnace was opened when the temperature became 100° C. or lower. Thus, a calcined product containing low-crystalline hexagonal boron nitride was obtained.
  • ⁇ Purification process> In order to remove impurities contained in the hexagonal boron nitride coarse powder, 30 g of the coarse powder was added to 500 g of dilute nitric acid (nitric acid concentration: 5% by mass) and stirred at room temperature for 60 minutes. After stirring, solid-liquid separation was performed by suction filtration, and water (electrical conductivity: 1 mS/m) was replaced to wash until the filtrate became neutral. After washing, it was dried at 120° C. for 3 hours using a dryer to obtain a dry powder. Coarse particles were removed from the obtained dry powder using an ultrasonic vibrating sieve (KFS-1000, manufactured by Kowa Kogyosho Co., Ltd., opening 250 ⁇ m).
  • KFS-1000 ultrasonic vibrating sieve
  • ⁇ Crushing process> 30 g of the obtained hexagonal boron nitride coarse powder and 300 ml of water were charged, and ultrasonically dispersed for 5 minutes at 500 W and 20 kHz using a homogenizer (manufactured by SONIC & MATERIALS, INC., trade name: VC505). . The dispersion was then filtered to separate the solids and dried. From the obtained dry powder, coarse particles were removed using an ultrasonic vibrating sieve (KFS-1000, manufactured by Kowa Kogyosho Co., Ltd., opening 250 ⁇ m, manufactured by Kowa Kogyosho Co., Ltd.), and the hexagonal boron nitride of Example 1. A powder was obtained.
  • KFS-1000 manufactured by Kowa Kogyosho Co., Ltd., opening 250 ⁇ m, manufactured by Kowa Kogyosho Co., Ltd.
  • the BET specific surface area of the hexagonal boron nitride powder prepared in Example 1 was measured by the BET one-point method using a specific surface area measuring device (manufactured by Yuasa Ionics, device name: MONOSORB). Nitrogen gas was used as the adsorption gas, and helium gas was used as the carrier gas. 1 g of the sample was dried and degassed at 300° C. for 15 minutes before measurement. The measurement results were as shown in Table 2. In Table 2, the ratio of D50 to BET specific surface area is shown in the "D50/BET" column.
  • Example 2 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the heating time at 2000° C. in the annealing step was set to 1 hour. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.
  • Example 3 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the heating rate from room temperature to 2000° C. in the annealing step was 10° C./min. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.
  • Example 4 In the same manner as in Example 1, except that 3.0 g of sodium carbonate (purity of 99.5% by mass or more) was added as an auxiliary agent to the mixed raw material after drying, and the firing step was performed without performing the calcining step. A hexagonal boron nitride powder was produced. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.
  • Comparative example 1 A hexagonal boron nitride powder of Comparative Example 1 was obtained by removing coarse particles in the refining step without performing the annealing step of Example 1. Each measurement and evaluation of the hexagonal boron nitride powder was carried out in the same manner as in Example 1. The results were as shown in Table 2.
  • Example 2 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the heating rate from room temperature to 2000° C. in the annealing step was 2° C./min. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.
  • Examples 1 to 4 contained secondary particles in which primary particles aggregated. Examples 1 to 4 had a larger D50/BET value than Comparative Examples 1 and 2, and had a fluffy appearance. Therefore, Examples 1 to 4 contained more secondary particles that contribute to the improvement of elongation than Comparative Examples 1 and 2, and had excellent elongation.
  • the D50 of Example 1 was lower than that of Example 2. This is presumably because the annealing time in Example 1 was longer, so that the grain growth of the primary particles progressed and the agglomeration was broken. It is thought that if the annealing time is longer than in Example 1, the effect of grain growth of primary particles disappears, aggregation proceeds, and D50 increases.
  • a hexagonal boron nitride powder and a method for producing the same are provided, which enable the production of cosmetics having excellent spreadability. Further, a cosmetic having excellent spreadability by using the hexagonal boron nitride powder described above and a method for producing the same are provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である、六方晶窒化ホウ素粉末を提供する。

Description

六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
 本開示は、六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法に関する。
 窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等を有しており、固体潤滑剤、離型剤、樹脂及びゴムの充填材、化粧料(化粧品ともいう)の原料、並びに耐熱性を有する絶縁性焼結体等、幅広い用途に利用されている。
 化粧料に配合される六方晶窒化ホウ素粉末の機能としては、化粧料への滑り性、伸び性、隠ぺい性の向上、及び、光沢性の付与等が挙げられる。特に、六方晶窒化ホウ素粉末は、同様の機能を有するタルク粉末及びマイカ粉末に比べて滑り性に優れているため、優れた滑り性が求められる化粧料に汎用されている。特許文献1では、六方晶窒化ホウ素粉末の滑り性を改善するために、平均粒子径と最大粒子径を所定の数値範囲にすることが提案されている。
特開2018-165241号公報
 化粧料に対する顧客の要求レベルの高水準化に対応するため、化粧料に用いられる原料特性もさらなる向上が求められている。例えば、ファンデーション等に用いられる原料は、一層優れた伸び性を有することが必要であると考えられる。伸び性を改善するためには、粉末をある程度嵩高くすることが有効であると考えられる。
 本開示では、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供する。また、本開示では、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供する。
 本開示の一側面に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である。
 上記六方晶窒化ホウ素粉末におけるBET比表面積は、主として六方晶窒化ホウ素粉末の一次粒子の粒径に依存する。一方、D50は、主として当該一次粒子が凝集して形成される二次粒子の粒径に依存する。したがって、BET比表面積に対するD50の比は、一次粒子に対する二次粒子の大きさ及び上記六方晶窒化ホウ素粉末全体に対する二次粒子の割合と相関があるといえる。上記六方晶窒化ホウ素粉末は、上記比が5[μg/m]以上であるため、一次粒子が凝集して構成される二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。
 上記六方晶窒化ホウ素粉末のBET比表面積は3[m/g]未満であってよい。これによって、一次粒子の粒径が大きくなり、滑り性を十分に高くすることができる。
 上記六方晶窒化ホウ素粉末のD50は12μm以上であってよい。このような六方晶窒化ホウ素粉末は、一層優れた伸び性を有する。
 上記六方晶窒化ホウ素粉末は、化粧料の原料用であってよい。上記六方晶窒化ホウ素粉末は、伸び性に優れることから、化粧料の原料用に好適である。
 本開示の一側面に係る六方晶窒化ホウ素粉末の製造方法は、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である。
 上記製造方法では、助剤を用いて1700℃以上且つ1900℃未満の温度で焼成することによって、結晶性の高い六方晶窒化ホウ素を含む焼成物を得ることができる。この焼成物を粉砕後、洗浄することによって、残存する助剤等が低減され、その後のアニール時の粒成長を抑制できる。そして、乾燥後、既に結晶化した六方晶窒化ホウ素を含む焼成物を所定条件でアニールをしていることから、六方晶窒化ホウ素の一次粒子の粒成長を抑制しつつ、一次粒子を凝集させて二次粒子の形成を促進することができる。したがって、二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。
 二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。したがって、上記製造方法によれば、伸び性に優れる六方晶窒化ホウ素粉末を製造することができる。この六方晶窒化ホウ素粉末は化粧料の原料用として好適である。
 上記製造方法は、焼成工程の前に、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、低結晶性の六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有してよい。そして、焼成工程における混合粉末は仮焼物と助剤とを含んでよい。このように、焼成工程よりも低い温度で仮焼を行うことによって、粒成長が抑制され、伸び性の向上に寄与する二次粒子を形成し易い一次粒子が得られやすくなる。
 上記製造方法のアニール工程で得られる六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上であってよい。
 本開示の一側面に係る化粧料は、上述の六方晶窒化ホウ素粉末を含む。上述の六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を含む化粧料は、優れた伸び性を有する。
 本開示の一側面に係る化粧料の製造方法は、上述のいずれかの製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する。上述の製造方法で得られる六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を原料として用いて製造された化粧料は、優れた伸び性を有する。
 本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供することができる。また、本開示によれば、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供することができる。
 以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたとき、BET比表面積に対するD50の比が5[μg/m]以上である。当該比(D50/BET)は、6[μg/m]以上であってよく、7[μg/m]以上であってもよい。これによって、二次粒子のサイズ及び割合が一層大きくなり、伸び性を一層向上することができる。
 上記比(D50/BET)は、30[μg/m]未満であってよく、20[μg/m]未満であってもよい。これによって、化粧料の原料として用いたときのざらつき感を低減することができる。上記比(D50/BET)の範囲の例は、5[μg/m]以上且つ30[μg/m]未満であってよく、7[μg/m]以上且つ20[μg/m]未満であってもよい。
 本開示におけるD50は、市販のレーザー回折式粒子径分布測定装置で測定される。D50は、化粧料の原料として用いたときの滑り性を一層向上する観点から、12μm以上であってよいし、14μm以上であってもよい。D50は、化粧料の原料として用いたときに外観上のぎらつきを低減する観点から、30μm以下であってよく、25μm以下であってもよく、20μm以下であってもよい。D50は、例えば、原料粉末の粒度分布、仮焼温度及び仮焼時間、焼成温度及び焼成時間、アニール温度及びアニール時間、並びに昇温速度等によって調整することができる。D50の範囲の例は、12~30μmであってよい。
 BET比表面積は、吸着ガスを窒素として、市販の比表面積測定装置を用いて測定される値である。BET比表面積は、3[m/g]未満であってよく、2.5[m/g]未満であってもよい。これによって、伸び性のみならず、滑り性も十分に高くすることができる。BET比表面積は、0.5[m/g]以上であってよく、1[m/g]以上であってもよい。これによって、皮膚及びシワへの付着性を高めることができる。BET比表面積の範囲の例は、0.5~3[m/g]であってもよい。
 六方晶窒化ホウ素粉末のかさ密度は、0.47g/cm以下であってよく、0.43cm以下であってよく、0.37cm以下であってもよい。このように低いかさ密度を有することによって、一層ふわふわとした外観を有する六方晶窒化ホウ素粉末とすることができる。かさ密度は、JIS R1628-1997の「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定することができる。
 本実施形態によれば、六方晶窒化ホウ素粉末における二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙を大きくすることができる。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。すなわち、本開示は、六方晶窒化ホウ素を化粧料の原料として使用する使用方法も提供することができる。
 一実施形態に係る化粧料は、上述の六方晶窒化ホウ素粉末を含有する。したがって、この六方晶窒化ホウ素粉末を含有する化粧料は、伸び性に優れる。化粧料としては、例えば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、及びマスカラ等が挙げられる。これらのうち、ファンデーション及びアイシャドーには、六方晶窒化ホウ素粉末が特に良く適合する。化粧料における六方晶窒化ホウ素粉末の含有量は、例えば0.1~70質量%である。化粧料は公知の方法によって製造することができる。化粧料の製造方法は、例えば、六方晶窒化ホウ素粉末と他の原料とを配合して混合する工程を有する。
 一実施形態に係る六方晶窒化ホウ素粉末の製造方法は、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程と、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、1900~2100℃の温度でアニールするアニール工程と、を含む。
 ホウ素を含む化合物としては、ホウ酸、酸化ホウ素及びホウ砂等が挙げられる。窒素を含む化合物としては、シアンジアミド、メラミン、及び尿素が挙げられる。ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末におけるホウ素原子と窒素原子のモル比は、ホウ素原子:窒素原子=2:8~8:2であってよく、3:7~7:3であってもよい。原料粉末は、上記化合物以外の成分を含んでもよい。例えば、仮焼用助剤として炭酸リチウム及び炭酸ナトリウムなどの炭酸塩を含んでよい。また、炭素等の還元性物質を含んでよい。
 上述の成分を含有する原料粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で仮焼する。仮焼温度は、600~1300℃であってよく、800~1200℃であってよく、900~1100℃であってもよい。仮焼時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。
 仮焼によって得られる仮焼物は、低結晶性の六方晶窒化ホウ素、及び非晶質の六方晶窒化ホウ素からなる群より選ばれる少なくとも一方を含む。仮焼工程は、後述の焼成工程よりも低温で窒化ホウ素の反応を進行させる。このため、粒成長を抑制し、最終的に得られる窒化ホウ素粉末における一次粒子の粒径を小さくすることができる。
 次に、得られた仮焼物と助剤とを配合して混合し、混合粉末を得る。助剤としては、ホウ酸ナトリウム等のホウ酸塩、並びに、炭酸ナトリウム、炭酸カルシウム及び炭酸リチウム等の炭酸塩が挙げられる。六方晶窒化ホウ素を含む仮焼物100質量部に対する、助剤の配合量は2~20質量部であってよく、2~8質量部であってもよい。このような混合粉末を、例えば電気炉中、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを含む混合ガス雰囲気中で焼成する。
 焼成工程では、助剤の存在下、窒化ホウ素の生成及び結晶化が進行する。これによって、仮焼物に含まれる窒化ホウ素の結晶性を高めることができる。焼成温度は、1600℃以上且つ1900℃未満である。この焼成温度は、1650~1850℃であってもよく、1650~1750℃であってもよい。焼成時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。
 焼成温度が低くなり過ぎると、六方晶窒化ホウ素の二次粒子が十分に生成し難くなる傾向にある。二次粒子のサイズ、及び/又は、割合が小さくなると、化粧料の原料に用いた場合に滑り性が低下する傾向にある。焼成時間が短くなり過ぎたときも同様の傾向にある。一方、焼成温度が高くなり過ぎると、六方晶窒化ホウ素の結晶成長及び凝集が進み過ぎて、化粧料の原料に用いた場合にぎらつきが強くなる傾向にある。
 焼成工程で得られた焼成物は、六方晶窒化ホウ素以外に不純物を含む場合がある。不純物としては、残存する助剤、及び水溶性ホウ素化合物等が挙げられる。精製工程では、このような不純物を、洗浄によって低減する。洗浄後、固液分離して乾燥し、乾燥粉末を得る。洗浄に用いる洗浄液としては、水、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液等が挙げられる。不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用してよい。酸性物質としては、例えば塩酸、硝酸等の無機酸が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール及びアセトン等の水溶性の有機溶媒が挙げられる。洗浄方法に特に制限はなく、例えば、焼成物を洗浄液中に浸漬し撹拌して洗浄してよく、焼成物に洗浄液をスプレーして洗浄してもよい。
 洗浄終了後、デカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機又はこれらを組み合わせた装置を用いて洗浄液を固液分離してよい。分離した固形分を通常の乾燥機で乾燥して乾燥粉末を得てもよい。乾燥機は、例えば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機、及びこれらの組み合わせが挙げられる。乾燥後に、粗大粒子を除去するために、例えば篩による分級を行ってもよい。
 アニール工程では、乾燥粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で1900~2100℃に加熱する。このアニール温度は、一次粒子を十分に凝集させる観点から、1950℃以上であってよい。また、アニール温度は、一次粒子の粒成長を抑制する観点から2050℃以下であってよい。アニール工程では、焼成工程と同等の温度に加熱していることから、一次粒子が凝集した二次粒子を十分に形成することができる。
 一次粒子の粒成長及び過度な凝集を抑制するため、アニール工程において1900~2100℃の温度に加熱する時間は2時間以下であり、1時間以下であってもよい。一方、十分な二次粒子を形成する観点から、アニール工程において1900~2100℃の温度に加熱する時間は0.5時間以上であってよい。
 アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温する。このような昇温速度で昇温することによって、一次粒子の粒成長及び一次粒子の過度な凝集を抑制することができる。なお、昇温速度は、昇温開始時の温度と1900℃の温度差(昇温幅)を、昇温開始時点から1900℃に到達するまでの所要時間で割って求めることができる。上記昇温速度の上限は、例えば15℃/分であってよい。
 このようにして、上述の六方晶窒化ホウ素粉末を得ることができる。上記製造方法には、六方晶窒化ホウ素粉末の実施形態に係る説明を適用することができる。六方晶窒化ホウ素粉末の製造方法は、上述の実施形態に限定されない。例えば、アニール工程は複数回繰り返して行ってもよい。また、アニール工程の後に、超音波振動を与えるホモジナイザ等を用いて、二次粒子を破壊しない程度に六方晶窒化ホウ素粉末を解砕する解砕工程を行ってもよい。
 以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
[六方晶窒化ホウ素粉末の調製]
<仮焼工程>
 ホウ酸粉末(純度99.8質量%以上、関東化学社製)100.0g、及びメラミン粉末(純度99.0質量%以上、和光純薬社製)90.0gを、アルミナ製乳鉢を用いて10分間混合し混合原料を得た。乾燥後の混合原料を、六方晶窒化ホウ素製の容器に入れ、電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1000℃に昇温した。1000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。このようにして、低結晶性の六方晶窒化ホウ素を含む仮焼物を得た。
<焼成工程>
 仮焼物100.0gに、助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、アルミナ製乳鉢を用いて10分間混合した。混合物を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1700℃に昇温した。1700℃の焼成温度で4時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。得られた焼成物を回収し、アルミナ製乳鉢で3分間粉砕して、六方晶窒化ホウ素の粗粉を得た。
<精製工程>
 六方晶窒化ホウ素の粗粉中に含まれる不純物を除くため、希硝酸500g(硝酸濃度:5質量%)に、粗粉を30g投入し、室温で60分間撹拌した。撹拌後、吸引ろ過によって固液分離し、ろ液が中性になるまで水(電気伝導度1mS/m)を入れ替えて洗浄した。洗浄後、乾燥機を用いて120℃で3時間乾燥して乾燥粉末を得た。得られた乾燥粉末から、超音波振動篩(KFS-1000、興和工業所社製、目開き250μm)を用いて、粗粒を除去した。
<アニール工程>
 粗粒を除去した乾燥粉末を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、5℃/分の速度で室温から2000℃に昇温した。2000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。
<解砕工程>
 得られた六方晶窒化ホウ素の粗粉30gと水300mlに投入し、ホモジナイザ(SONIC & MATERIALS,INC.製、商品名:VC505)を用いて、500W、20kHzの条件で5分間超音波分散させた。その後、分散液を濾過して固形分を分離して乾燥した。得られた乾燥粉末から、超音波振動篩(株式会社興和工業所製、KFS-1000、興和工業所社製、目開き250μm)を用いて粗粒を除去し、実施例1の六方晶窒化ホウ素粉末を得た。
[六方晶窒化ホウ素粉末の評価]
<粒度分布の測定>
 実施例1で調製した六方晶窒化ホウ素粉末の体積基準の粒度分布を、レーザー回折式粒子径分布測定装置(日機装株式会社製、装置名:MT3300EX)を用いて測定した。体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径(D50)を求めた。結果は表2に示すとおりであった。
<比表面積(N)の測定>
 実施例1で作製した六方晶窒化ホウ素粉末のBET比表面積を、比表面積測定装置(ユアサアイオニクス社製、装置名:MONOSORB)を用いて、BET1点法により測定した。吸着ガスとして窒素ガスを、キャリアガスとしてヘリウムガスを用いた。試料1gを300℃、15分間の条件で乾燥脱気してから測定を行った。測定結果は、表2に示すとおりであった。また、表2には、BET比表面積に対するD50の比を、「D50/BET」の欄に示した。
<伸び性の評価>
 人工皮膚(縦×横=10mm×50mm)の一端に、六方晶窒化ホウ素粉末0.2gを載せた。人工皮膚の表面に六方晶窒化ホウ素粉末を塗り付けるように、ヘラを用いて六方晶窒化ホウ素粉末を縦方向に沿って伸ばした。市販の画像解析ソフトウェア(WinROOF)を用いて画像解析を行って、人工皮膚の全面積に対する、六方晶窒化ホウ素粉末の塗布面積の割合を求めた。この面積割合が大きいほど伸び性が優れている。伸び性の評価基準は、面積割合に応じて表1に示すとおりとした。伸び性の評価結果は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 アニール工程における2000℃での加熱時間を1時間にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(実施例3)
 アニール工程における室温から2000℃までの昇温速度を10℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(実施例4)
 乾燥後の混合原料に助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、仮焼工程を行わずに焼成工程を行ったこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を製造した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(比較例1)
 実施例1のアニール工程を行わず、精製工程で粗粒を除去して得られた乾燥粉末を、比較例1の六方晶窒化ホウ素粉末とした。実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(比較例2)
 アニール工程における室温から2000℃までの昇温速度を2℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 実施例1~4は、いずれも一次粒子が凝集した二次粒子を含有していた。実施例1~4は、比較例1,2よりも、D50/BETの値が大きく、ふわふわ感のある外観を有していた。このため、実施例1~4の方が、比較例1,2よりも、伸び性の向上に寄与する二次粒子を多く含有しており、優れた伸び性を有していた。実施例1のD50は実施例2よりも小さかった。これは、実施例1の方がアニール時間が長かったため、一次粒子の粒成長が進行して凝集が解れたことによるためと考えられる。実施例1よりもアニール時間をさらに長くすれば、一次粒子の粒成長の影響がなくなって凝集が進行し、D50は大きくなると考えられる。
 本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法が提供される。また、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法が提供される。

 

Claims (9)

  1.  六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、
     レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である、六方晶窒化ホウ素粉末。
  2.  BET比表面積が3[m/g]未満である、請求項1に記載の六方晶窒化ホウ素粉末。
  3.  D50が12μm以上である、請求項1又は2に記載の六方晶窒化ホウ素粉末。
  4.  化粧料の原料用である、請求項1~3のいずれか一項に記載の六方晶窒化ホウ素粉末。
  5.  六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、前記混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、
     前記焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、
     前記乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、
     前記アニール工程では、前記乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である、六方晶窒化ホウ素粉末の製造方法。
  6.  前記焼成工程の前に、
     ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有し、
     前記焼成工程における前記混合粉末は前記仮焼物と前記助剤とを含む、請求項5に記載の六方晶窒化ホウ素粉末の製造方法。
  7.  前記アニール工程で得られる前記六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である、請求項5又は6に記載の六方晶窒化ホウ素粉末の製造方法。
  8.  請求項1~4のいずれか一項の六方晶窒化ホウ素粉末を含む化粧料。
  9.  請求項5~7のいずれか一項に記載の製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する、化粧料の製造方法。

     
PCT/JP2021/022924 2021-06-16 2021-06-16 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法 WO2022264335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180099409.1A CN117545712A (zh) 2021-06-16 2021-06-16 六方晶氮化硼粉末及其制造方法以及化妆品及其制造方法
KR1020247001174A KR20240021268A (ko) 2021-06-16 2021-06-16 육방정 질화붕소 분말 및 그 제조 방법, 그리고 화장료 및 그 제조 방법
PCT/JP2021/022924 WO2022264335A1 (ja) 2021-06-16 2021-06-16 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022924 WO2022264335A1 (ja) 2021-06-16 2021-06-16 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022264335A1 true WO2022264335A1 (ja) 2022-12-22

Family

ID=84527307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022924 WO2022264335A1 (ja) 2021-06-16 2021-06-16 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Country Status (3)

Country Link
KR (1) KR20240021268A (ja)
CN (1) CN117545712A (ja)
WO (1) WO2022264335A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199193A (zh) * 2023-01-20 2023-06-02 天津大学 盐模板制备三维六方氮化硼材料的方法及其在固态电池中的应用
JP7372140B2 (ja) 2019-12-25 2023-10-31 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料
WO2020196643A1 (ja) * 2019-03-27 2020-10-01 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2021102538A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料
WO2020196643A1 (ja) * 2019-03-27 2020-10-01 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP2021102538A (ja) * 2019-12-25 2021-07-15 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372140B2 (ja) 2019-12-25 2023-10-31 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
CN116199193A (zh) * 2023-01-20 2023-06-02 天津大学 盐模板制备三维六方氮化硼材料的方法及其在固态电池中的应用

Also Published As

Publication number Publication date
CN117545712A (zh) 2024-02-09
KR20240021268A (ko) 2024-02-16

Similar Documents

Publication Publication Date Title
JP6745293B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、及び化粧料
JP2019043792A (ja) 六方晶窒化ホウ素粉末及び化粧料
WO2022264335A1 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
KR102662015B1 (ko) 질화붕소 분말, 질화붕소 분말의 제조 방법, 및 화장료
JP7002196B2 (ja) 六方晶窒化ホウ素粉末及び化粧料
JP7372140B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP7372142B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP7431577B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JPH0741311A (ja) 六方晶窒化硼素粉末の製造方法
JP7372139B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料
JP7360962B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに、化粧料及びその製造方法
JP7372141B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP6279638B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法並びに化粧料
WO2022264324A1 (ja) 六方晶窒化ホウ素粉末及びその製造方法、化粧料及びその製造方法、並びに品質評価方法
WO2022264327A1 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
KR101551616B1 (ko) 소편상 알루미나의 제조방법
WO2022264326A1 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
JP7429532B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
TW202304808A (zh) 六方晶氮化硼粉末及其製造方法、以及化粧料及其製造方法
TW202300443A (zh) 六方晶氮化硼粉末及其製造方法、以及化粧料及其製造方法
WO2022264325A1 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
WO2022224674A1 (ja) 化粧料用の六方晶窒化ホウ素粉末、及び化粧料
TW202300444A (zh) 六方晶氮化硼粉末及其製造方法、化粧料及其製造方法、以及品質評價方法
KR101579890B1 (ko) 나노사이즈의 고분산성 α-알루미나의 합성방법 및 이에 의해 합성된 절연성 고열전도성 α-알루미나졸
TW202300442A (zh) 六方晶氮化硼粉末及其製造方法、以及化粧料及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099409.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001174

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE