WO2022264329A1 - Optical connection structure and method for manufacturing same - Google Patents

Optical connection structure and method for manufacturing same Download PDF

Info

Publication number
WO2022264329A1
WO2022264329A1 PCT/JP2021/022912 JP2021022912W WO2022264329A1 WO 2022264329 A1 WO2022264329 A1 WO 2022264329A1 JP 2021022912 W JP2021022912 W JP 2021022912W WO 2022264329 A1 WO2022264329 A1 WO 2022264329A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
connection structure
light
optical connection
Prior art date
Application number
PCT/JP2021/022912
Other languages
French (fr)
Japanese (ja)
Inventor
昇男 佐藤
光太 鹿間
洋平 齊藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023528855A priority Critical patent/JPWO2022264329A1/ja
Priority to PCT/JP2021/022912 priority patent/WO2022264329A1/en
Publication of WO2022264329A1 publication Critical patent/WO2022264329A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to an optical connection structure using a self-forming waveguide and a manufacturing method thereof.
  • Non-Patent Document 1 Planar Lightwave Circuit (PLC) equipped with optical waveguides, Silicon Photonics (SiPh), Indium Phosphorus (InP) compound semiconductor chips, etc. are used to connect different types of substrates to advance functionality. Efforts have been made (Non-Patent Document 1).
  • Non-Patent Document 2 the light from the optical element chip is emitted into space.
  • concave portions 515 are formed to expose the silicon of the substrate.
  • a laser diode (not shown) is formed on another indium phosphide substrate and diced into chips.
  • the LD chip 52 is mounted and fixed so that the optical waveguide 523 for propagating light from the LD of the LD chip 52 is connected to the glass waveguide 513 of the PLC chip 51 (FIG. 14B).
  • image recognition can be used for alignment, and intermolecular force can be used for fixation, and there is a bonding device dedicated to this process.
  • chips made of different materials can be integrated and mounted on a wafer for collective manufacturing.
  • the width of the optical waveguide is about 10 microns, so if the positions of the optical waveguides to be connected are shifted by 3 microns, the optical connection loss increases.
  • the width of the optical waveguide becomes narrow, so there is a problem that the optical connection cannot be made with an accuracy of ⁇ 3 microns due to the large loss. rice field.
  • an optical connection structure is arranged on a first substrate and includes a first optical element having a first optical waveguide and a second optical element having a second optical waveguide. 2 optical elements, a self-forming waveguide connecting one end of the first optical waveguide and one end of the second optical waveguide, and a first receiver disposed at the other end of the first optical waveguide. and a light guide.
  • a method for manufacturing an optical connection structure includes: a first optical element having a first optical waveguide and a first light receiving light guide portion disposed at the other end of the first optical waveguide; A method for manufacturing an optical connection structure for optically connecting a second optical element having a second optical waveguide and a second light receiving light guide portion arranged at the other end of the second optical waveguide, the method comprising: a step of collectively forming a plurality of said first optical elements on one substrate; collectively forming a plurality of said second optical elements on a second substrate to form said second optical elements as a chip; fixing the first optical element and the second optical element by bringing the end face of the first optical waveguide and the end face of the second optical waveguide close to each other; a step of filling a photocurable resin between the end face of the first optical waveguide and the end face of the second optical waveguide; forming a self-formed waveguide by exposing to light so as to be incident on the portion and the second light-receiving
  • a low-loss optical connection structure using a self-forming waveguide and a manufacturing method thereof can be provided.
  • FIG. 1A is a schematic top view showing the configuration of the optical connection structure according to the first embodiment of the invention.
  • 1B is a schematic side view showing the configuration of the optical connection structure according to the first embodiment of the present invention
  • FIG. 1C is a schematic top view showing the configuration of the second optical element in the optical connection structure according to the first embodiment of the present invention
  • FIG. 2A is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the invention.
  • FIG. 2B is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention;
  • FIG. 2C is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention;
  • FIG. 1A is a schematic top view showing the configuration of the optical connection structure according to the first embodiment of the invention.
  • 1B is a schematic side view showing the configuration of the optical connection structure according to the first embodiment of the present invention
  • FIG. 1C
  • FIG. 2D is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention
  • FIG. 2E is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention
  • FIG. 2F is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention
  • FIG. 2G is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention
  • FIG. 2H is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention
  • FIG. 3 is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the invention.
  • FIG. 4A is a schematic top view for explaining the effects of the optical connection structure and its manufacturing method according to the first embodiment of the present invention.
  • FIG. 4B is a schematic top view for explaining the effects of the optical connection structure and its manufacturing method according to the first embodiment of the present invention.
  • FIG. 5A is a schematic top view showing an example of the configuration of a light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention;
  • FIG. 5B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention;
  • FIG. 5A is a schematic top view showing an example of the configuration of a light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 5B is a schematic side view showing an example of the configuration of the
  • FIG. 6A is a schematic top view showing an example of the configuration of a light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 6B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 7A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 7B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 8A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 8B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 9A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention
  • 9B is a schematic side view showing an example of the configuration of the light receiving light guide section in the optical connection structure according to the first embodiment of the present invention
  • FIG. 10A is a schematic top view for explaining an optical connection structure according to a second embodiment of the invention.
  • FIG. 10B is a schematic side view for explaining the configuration of the optical connection structure according to the second embodiment of the invention.
  • FIG. 10C is a schematic top view for explaining the optical connection structure according to the second embodiment of the invention.
  • FIG. 10D is a schematic side view for explaining the configuration of the optical connection structure according to the second embodiment of the present invention;
  • FIG. 11 is a schematic side view for explaining the configuration of the second element in the optical connection structure according to the second embodiment of the invention.
  • FIG. 13A is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13B is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13C is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13D is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13E is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13A is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13B is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13C is a schematic side view for explaining an example of the
  • FIG. 13F is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 13G is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention
  • FIG. 14A is a schematic top view for explaining the configuration of a conventional optical connection structure.
  • FIG. 14B is a schematic top view for explaining the configuration of a conventional optical connection structure.
  • the optical connection structure 10 includes a first substrate 111, a first element 11, a second element 12, and a first element 11 and a second element 11.
  • a self-formed waveguide 131 (Self Written Waveguide: SWW) is provided between the element 12 of .
  • the first element 11 is a PLC chip and has a glass waveguide 113 .
  • the glass waveguide 113 functions as a waveguide core and has a clad 112 around it.
  • glass waveguide end face An end face (hereinafter referred to as “glass waveguide end face”) 117 at one end of the glass waveguide 113 is exposed toward the second element 12, and the other end is the first light receiving light guide part. 114.
  • PLC end face the end face having the glass waveguide end face 117 is referred to as "PLC end face”.
  • a waveguide branched from the glass waveguide 113 is connected to an optical circuit (not shown).
  • the optical circuit has functions such as multiplexing/demultiplexing and wavelength separation by the glass waveguide 113 .
  • the longitudinal direction (X direction in the drawing) of the glass waveguide 113 of the PLC chip 11 is defined as "waveguide direction”
  • the direction perpendicular to the longitudinal direction (Y direction in the drawing) is defined as "
  • the direction (Z direction) perpendicular to the horizontal plane (substrate surface) is defined as the vertical (thickness) direction
  • the side on which the glass waveguide 113 is arranged in the PLC chip 11 is defined as the “upper” direction.
  • the substrate 111 side is the "downward" direction.
  • the first light-receiving light guide section 114 has a function of changing the course of a part of the light incident from the upper surface of the PLC chip 11 and making it exit from the glass waveguide end face 117 via the glass waveguide 113. formed by
  • the first substrate 111 on which the PLC chip 11 is formed has a recess 115, and the glass waveguide end face 117 is arranged above the side wall 115_2 of the recess 115.
  • the second element 12 is an LD chip and is formed on the second substrate 121 .
  • the bottom surface (back surface) of the second substrate 121 of the LD chip 12 and the top surface of the recess 115 are brought into contact with each other and fixed.
  • the LD chip 12 includes an LD active layer 126, an InP waveguide 125, an SiN waveguide 123, and a second light receiving light guide section 124, as shown in FIG. 1C.
  • the surface on the InP waveguide 125 side is the front surface of the LD chip 12
  • the surface on the second substrate 121 side is the back surface of the LD chip 12 .
  • An InP waveguide 125 is connected to the LD active layer 126 , and the InP waveguide 125 is connected to the SiN waveguide 123 .
  • the tip of the InP waveguide 125 has a tapered spot size converter (SSC).
  • the InP waveguide 125 is covered with the SiN waveguide 123 and connected. Not limited to this, the InP waveguide 125 may be arranged close to the SiN waveguide 123, and may be arranged so that the laser light guided through the InP waveguide 125 is optically coupled to the SiN waveguide 123. .
  • SiN waveguide end face An end face (hereinafter referred to as “SiN waveguide end face”) 127 at one end of the SiN waveguide 123 is exposed toward the first element (PLC chip) 11, and the other end faces the second receiving end. It connects to the light guide section 124 .
  • the end face having the SiN waveguide end face 127 is referred to as "LD end face”.
  • the second light-receiving light-guiding portion 124 converts the optical path of the light incident from the upper surface, guides it to the SiN waveguide 123 , emitted from
  • one end face is connected to the glass waveguide end face 117 of the first element 11 and the other end face is connected to the SiN waveguide end face 127 of the second element 12 .
  • the laser light emitted from the LD active layer 126 is guided through the InP waveguide 125 and the SiN waveguide 123 in order, is guided through the self-formed waveguide 131, and is guided through the glass. Incident into waveguide 113 .
  • the reason why the InP waveguide 125 is connected to the SiN waveguide 123 is that the transmittance of visible light and ultraviolet light is low in InP but high in SiN, and is necessary for forming a self-forming waveguide described later. .
  • the light receiving light guide section is arranged at the other end of both the first optical waveguide and the second waveguide, but it may be arranged at either one.
  • a photocurable resin is filled between the PLC end face of the PLC chip 11 and the LD end face of the LD chip 12, and the first light receiving light guide portion 114 and the second light receiving light guide portion are formed. Visible light (resin curing light) is incident on 124 from above.
  • This visible light (resin curing light) is emitted from the glass waveguide end surface 117 and the SiN waveguide end surface 127 on the wafer, and the photocurable resin is locally irradiated and cured to obtain the glass waveguide end surface 117 and the SiN waveguide end surface. 127 are connected in a self-aligning manner. After that, the self-forming waveguide 131 is formed by removing the unreacted photocurable resin. Finally, by dicing the wafer, the PLC chips 11 on which the LD chips 12 are mounted are formed.
  • FIG. 1 Details of the method for manufacturing the optical connection structure 10 will be described below with reference to FIGS. 2A to 3.
  • FIG. 2A Details of the method for manufacturing the optical connection structure 10 will be described below with reference to FIGS. 2A to 3.
  • the PLC chips 11 are formed on the wafer 1_1, and the concave portions 115 are formed in the substrate (FIGS. 2A and 2B).
  • the LD chip 12 made from another wafer is mounted and fixed in the concave portion 115 (FIGS. 2C and 2D).
  • the mounting device can use a die bonder device, a flip chip device, a transfer printing device, etc. that can pick up a chip and mount it in a predetermined place by image recognition.
  • a bonding method bonding using intermolecular force, bonding using epoxy resin, ultrasonic bonding of metal bumps for electrical conduction, fusion bonding using a thin solder film, and the like can be used.
  • a photocurable resin 14 is formed by spin coating, and mask-exposed with an exposure device (FIG. 2E).
  • the upper surface of the exposure mask 161 is exposed from the upper surface of the exposure mask 161 with the resin curing light 15 of g-line (wavelength of 436 nm) in the exposure apparatus, and the resin curing light 15 passing through the opening 162 of the exposure mask 161 is the second The light is incident on the first light receiving light guide portion 114 and the second light receiving light guide portion 124 .
  • the openings 162 are periodically arranged so as to correspond to the positions of the first light receiving light guiding portion 114 and the second light receiving light guiding portion 124 .
  • a fine linear pattern is formed in the opening 162 to form a diffraction grating so that the resin curing light 15 passing through the exposure mask 161 has a directional component other than the vertical direction.
  • the resin curing light 15 enters the first light-receiving light guide portion 114 and the second light-receiving light guide portion 124 .
  • the resin curing light 15 incident on the first light receiving light guide portion 114 is guided by the glass waveguide 113 and emitted from the glass waveguide end surface 117 .
  • the resin curing light 15 incident on the second light receiving light guide portion 124 of the LD chip 12 is guided by the SiN waveguide 123 and emitted from the SiN waveguide end surface 127 .
  • the photocurable resin 14 is irradiated with the resin curing light 15 from both the glass waveguide 113 and the SiN waveguide 123, the self-forming waveguide 131 is formed, and the light is transmitted between the glass waveguide 113 and the SiN waveguide 123.
  • a connection is made (FIG. 2F).
  • a self-formed waveguide clad is formed around the self-formed waveguide 131 .
  • a self-forming waveguide cladding can be formed by using, as the photocurable resin 14, a resin that produces a difference in refractive index between a portion that is cured with ultraviolet rays and a portion that is cured with heat.
  • the refractive index of the heat-cured portion is lower than the refractive index of the ultraviolet-cured portion.
  • the photocurable resin 14 is cured, and the self-formed waveguide 131 is formed.
  • the unreacted portion of the photocurable resin 14 is liquid, the entire resin including the liquid unreacted portion is thermally cured.
  • the surrounding portion has a lower refractive index than the self-forming waveguide 131 and becomes a cladding.
  • a self-formed waveguide clad may be formed around the self-formed waveguide 131 after removing the unreacted portion of the photocurable resin 14 .
  • the unreacted photocurable resin 14 is removed by a developer device using a developer (FIG. 2G).
  • a cladding 132 of the self-formed waveguide 131 can then be formed by spin-coating and curing a material having a refractive index lower than that of the self-formed waveguide 131 (FIG. 2H).
  • electrical connection can be made from above by a rewiring process, wire bonding, or the like.
  • the optical connection structure 10 is formed on the wafer. Finally, the wafer (described later, FIG. 4A) on which the optical connection structure 10 is formed is diced.
  • the resin curing light 15 can be condensed and expanded.
  • FIG. 4A shows the wafer 1_2 on which the optical connection structure 10 is manufactured by the method described above. Also, FIG. 4B shows an enlarged view of a part of the wafer 1_2 (inside the dotted line in FIG. 4A).
  • the self-forming waveguide 131 allows the PLC chip 11 and the SiN waveguide 123 of the LD chip 12 are connected.
  • the self-formed waveguide 131 is formed so as to correct the positional deviation in this way, the mounting error (about ⁇ 3 microns) of the LD chip 12 is absorbed, and the LD chip 12 and the PLC chip 11 are connected with low loss. can be connected.
  • the same process and apparatus as the wafer process of a normal electric circuit can be used as a collective manufacturing method of the self-forming waveguide 131. It is advantageous for integrated mounting of chips made of different materials.
  • the glass waveguide 113 and the SiN waveguide 123 are provided, but other materials may be used in combination as long as they transmit light having a wavelength that cures the photocurable resin 14 .
  • Si and InP have a high transmittance of infrared light used for communication, but a low transmittance of visible light for curing. If a waveguide made of InP is connected, it can be used for communication.
  • the end of the glass waveguide 113 is provided with the first light-receiving light guiding portion 114 .
  • One end of another glass waveguide 116 is connected to the glass waveguide 113, and the other end of the other glass waveguide 116 is connected to an optical circuit (not shown).
  • the refractive index of the other glass waveguide 116 may be the same as or different from the refractive index of the glass waveguide 113. If the refractive index of the other glass waveguide 116 is higher than that of the glass waveguide 113, the tip of the other glass waveguide 116 may have a tapered spot size converter (SSC). Further, the other glass waveguide 116 may be covered with the glass waveguide 113 and connected, or they may be arranged close to each other, and the glass waveguides 113 and 116 are arranged so as to be optically coupled to each other. I wish I could.
  • SSC tapered spot size converter
  • the first light receiving light guide section 114 in the PLC chip 11 is taken as an example, but it may be applied to the second light receiving light guide section 124 in the LD12 chip.
  • the first light-receiving light guide section 114 may use a diffraction grating 21 as shown in FIGS. 5A and 5B.
  • a metal film pattern is formed as the diffraction grating 21 .
  • the resin curing light 15 incident from above the first light receiving light guide portion 114 is interfered (reflected) by the diffraction grating 21 and part of the resin curing light 15 is introduced into the glass waveguide 113 .
  • a mirror 22 may be used for the first light receiving light guiding section 114.
  • the mirror 22 is formed in a part of the first light receiving light guiding section 114 .
  • part of the resin curing light 15 reflected by the mirror 22 is introduced into the glass waveguide 113 .
  • the mirror 22 is configured by tilting the other end face of the PLC chip including the other end face of the glass waveguide 113 toward the substrate 111 .
  • a configuration using a lens structure 231 may be used.
  • a condensing mirror is formed on the substrate 111 as the lens structure 231 .
  • recesses 233 are formed in the substrate 111 by etching.
  • a condensing mirror (lens structure) 231 made of resin is formed.
  • a portion of the resin curing light 15 incident on the concave portion 233 is condensed toward the glass waveguide 113 by the condensing mirror 231 and is incident on the glass waveguide 113 .
  • a metal mirror 232 may be arranged on the upper surface of the glass waveguide 113.
  • a crystal orientation plane (facet) 241 formed by wet etching the silicon substrate 111 may be used as a mirror. Considering that the angle 242 between the crystal orientation plane 241 and the horizontal plane is about 55 degrees, the crystal orientation is adjusted so that the resin curing light 15 reflected by the crystal orientation plane (mirror) 241 is incident on the glass waveguide 113. Design the position of the surface (mirror) 241 .
  • a mirror 243 made of metal may be arranged on the upper surface of the glass waveguide 113 in order to confine the resin curing light 15 in the glass waveguide 113 .
  • a mirror 251 which is an individual component, may be arranged on the substrate 111 as shown in FIGS. 9A and 9B.
  • the resin curing light 15 from above is reflected in a direction of about 90 degrees with respect to the incident direction, so there is no need to consider the light path of the light receiving light guide section.
  • the process conditions are adjusted so that the mirror 251 does not come off during spin coating and can be removed after exposure and development.
  • the self-forming waveguide 131 is formed and connected after mounting the first optical element (PLC chip) and the second optical element (LD chip).
  • the structure of the self-formed waveguide 131 is used to improve the positional accuracy.
  • Other configurations are the same as those of the first embodiment.
  • the optical connection structure 20 includes a PLC chip 11, an LD chip 12, and a self-forming waveguide 131 between the PLC chip 11 and the LD chip 12, as shown in FIGS. 10A-D.
  • the LD end face of the LD chip 12 is provided with a concave groove 31 having openings 311 and 312 on the upper surface of the LD chip 12 and the LD end face, respectively. Also, the groove 31 is fitted with the self-forming waveguide 131 . Also, the LD chip 12 does not require a substrate. Other configurations are the same as those of the first embodiment.
  • a self-forming waveguide 131 connected to the PLC chip 11 is formed with an appropriate length.
  • the LD chip 12 is mounted so that the SiN waveguide end surface 127 is connected to the self-formed waveguide 131. Then, as shown in FIGS.
  • the LD chip 12 has a layered structure including an LD active layer 126 other than the substrate, an InP waveguide 125, an SiN waveguide 123, and a clad by a wafer bonding method or the like. Here, it is not necessary to provide the LD chip 12 with the second light receiving light guide section 124 .
  • the LD chip 12 has a groove 31 as shown in FIG. A SiN waveguide end surface 127 is exposed on the side surface of the groove 31 parallel to the LD end surface.
  • the self-formed waveguide 131 is fitted (inserted) into the groove 31 of the LD chip 12 to connect the exposed portion of the LD chip 12 and the self-formed waveguide 131 . At this time, the chips are mounted and bonded together with image recognition.
  • the LD chip 12 may be mounted with the opening 311 on the upper surface of the groove 31 facing the substrate 111 side.
  • the position of the LD chip 12 in the vertical direction (perpendicular to the substrate surface) can be improved compared to the case where the opening 311 on the upper surface of the groove 31 of the LD chip 12 is directed upward (opposite to the substrate 111 side). Margins in alignment can be improved.
  • the LD chip 12 from which the substrate has been removed is formed into a thin film so as to transmit visible light, so that the LD chip 12 can be mounted close to the self-formed waveguide 131 from above using image recognition. can be done.
  • the self-forming waveguide 131 formed in one optical element (PLC chip) 11 and the concave groove 31 formed in the other optical element (LD chip) 12 optical connection can be made with high accuracy, and one optical element (PLC chip) 11 and the other optical element (LD chip) 12 can be mounted.
  • the self-forming waveguide 131 is formed and connected after mounting the chip.
  • the optical connection structure according to the present embodiment is different in that after the self-formed waveguide 131 is formed in one chip (LD chip), the positional accuracy is enhanced using the structure of the self-formed waveguide 131 .
  • Other configurations are the same as those of the first embodiment.
  • the optical connection structure includes a PLC chip 11, an LD chip 12, and a self-forming waveguide 131 between the PLC chip 11 and the LD chip 12, as shown in FIG. 13G.
  • the PLC end surface of the PLC chip 11 is provided with a concave groove 41 having openings on the upper surface of the PLC chip 11 and the PLC end surface.
  • the groove 41 is fitted with the self-forming waveguide 131 .
  • Other configurations are the same as those of the first embodiment.
  • the substrate 121 is half-cut along the scribe lines to the middle of the substrate 121 to form the LD wafer grooves 42 .
  • the resin curing light 15 is incident from the second light receiving light guide portion 124 and emitted from the SiN waveguide end surface 127 to the LD wafer groove 42.
  • the filled photocurable resin 14 is irradiated. Thereby, the resin is cured to form the self-formed waveguide 131 with an appropriate length.
  • the uncured portion around the self-formed waveguide 131 is removed (FIGS. 13A, B).
  • the LD chip 12 is singulated by cleaving or the like (Fig. 13C).
  • FIGS. 13D and 13E PLC chips 11 are formed on the wafer, and concave grooves 41 are formed on the PLC end faces.
  • the concave groove 41 has openings on the PLC end surface and the upper surface of the PLC chip 11 .
  • the upper surface of the LD chip 12 is directed (flipped) to the substrate 111 side, and the self-formed waveguide 131 is fitted into the concave groove 41 of the PLC end face, and the LD chip 12 is mounted and bonded to the concave portion 115 of the wafer (Fig. 13F, G).
  • the position of the SiN waveguide 123 on the LD chip 12 side cannot be grasped by direct image recognition from the back surface (substrate 121 side) of the LD chip 12, but since the self-formed waveguide 131 protrudes from the LD end face, image recognition , the position of the SiN waveguide 123 can be detected.
  • optical connection structure by fitting the self-forming waveguide 131 formed in one chip and the concave portion formed in the other chip, optical connection can be achieved with high accuracy. , can be loaded with one chip and the other. Further, when recognizing an image from the substrate side of the chip to be mounted, the position of the waveguide of the chip to be mounted can be grasped by the self-formed waveguide 131 projecting from the chip end and the image can be recognized.
  • the present invention relates to an optical connection structure, and can be applied to devices and systems such as optical communication.

Abstract

This optical connection structure (10) comprises: a first optical element (11) disposed on a first substrate (111) and having a first waveguide (113); a second optical element (12) having a second waveguide (123); a self-formed waveguide (131) connecting one end of the first waveguide (113) and one end of the second waveguide (123); and a first received light guiding part (114) disposed at the other end of the first optical waveguide (113). Consequently, the present invention can provide a low-loss optical connection structure using a self-formed waveguide.

Description

光接続構造およびその製造方法Optical connection structure and its manufacturing method
 本発明は、自己形成導波路を用いた光接続構造およびその製造方法に関する。 The present invention relates to an optical connection structure using a self-forming waveguide and a manufacturing method thereof.
 光導波路を備えた平面光回路(Planar Lightwave Circuit:PLC)、シリコンフォトニクス回路(Silicon Photonics:SiPh)、インジウムリン(InP)化合物半導体チップなどを用いて、異種基板を接続して高機能化を進める取り組みがなされている(非特許文献1)。 Planar Lightwave Circuit (PLC) equipped with optical waveguides, Silicon Photonics (SiPh), Indium Phosphorus (InP) compound semiconductor chips, etc. are used to connect different types of substrates to advance functionality. Efforts have been made (Non-Patent Document 1).
 また、電気回路と同様にウェハレベルの低コスト一括製造技術の検討として、他の基板で作成した光素子チップを他方の基板に接合してファンアウトパッケージ化する研究も進められている(非特許文献2)。非特許文献2では、光素子チップからの光は空間に放出されている。 In addition, research is also underway on fan-out packaging by joining optical element chips made on another substrate to the other substrate as a study of low-cost batch manufacturing technology at the wafer level, similar to electric circuits (non-patented). Reference 2). In Non-Patent Document 2, the light from the optical element chip is emitted into space.
 これらの技術を用いて、たとえば、図14Aに示すように、ウェハ5_1上にガラス導波路513を有するPLCチップ51を周期的に形成した後、基板のシリコンを露出させた凹部515を形成する。 Using these techniques, for example, as shown in FIG. 14A, after periodically forming PLC chips 51 having glass waveguides 513 on a wafer 5_1, concave portions 515 are formed to expose the silicon of the substrate.
 一方、他のインジウムリン基板でレーザーダイオード(LD)(図示せず)を形成し、ダイシングしてチップ化する。LDチップ52のLDからの光を伝搬させる光導波路523が、PLCチップ51のガラス導波路513に接続するように、LDチップ52を搭載して固定する(図14B)。 On the other hand, a laser diode (LD) (not shown) is formed on another indium phosphide substrate and diced into chips. The LD chip 52 is mounted and fixed so that the optical waveguide 523 for propagating light from the LD of the LD chip 52 is connected to the glass waveguide 513 of the PLC chip 51 (FIG. 14B).
 このとき、たとえば位置合わせには画像認識を用いて、固定には分子間力を用いて結合させることができ、このプロセス専用の接合装置が存在する。これにより、ウェハ上に異種材料からなるチップを集積実装して一括製造することができる。 At this time, for example, image recognition can be used for alignment, and intermolecular force can be used for fixation, and there is a bonding device dedicated to this process. As a result, chips made of different materials can be integrated and mounted on a wafer for collective manufacturing.
 しかしながら、画像認識には可視光を用いるため、可視光波長に比べて十分高い位置精度で位置決めして、実装することが困難であった。 However, since visible light is used for image recognition, it was difficult to position and mount with sufficiently high positional accuracy compared to visible light wavelengths.
 また、機械的なチップハンドリングツールの位置再現性の確保が困難であり、位置精度は±3ミクロン程度が限界であった。この精度は、空間に光を放出する場合や、電気的な接続を確保する場合には問題はないが、導波路同士を接続する場合には精度不足である。 In addition, it was difficult to ensure the positional reproducibility of mechanical chip handling tools, and the positional accuracy was limited to about ±3 microns. This accuracy does not pose a problem when emitting light into space or when securing electrical connection, but it is insufficient when connecting waveguides.
 例えば、ガラス材料を用いたPLCにおいて、光導波路の幅は10ミクロン幅程度なので、接続する光導波路同士の位置が3ミクロンずれると光接続損失が増加する。 For example, in a PLC using a glass material, the width of the optical waveguide is about 10 microns, so if the positions of the optical waveguides to be connected are shifted by 3 microns, the optical connection loss increases.
 さらに、SiN導波路、InP導波路、SiPh導波路など導波路材料の屈折率が大きい場合、光導波路の幅は狭くなるので、±3ミクロンの精度では損失が大きく光接続ができないという問題があった。 Furthermore, when the refractive index of a waveguide material such as a SiN waveguide, an InP waveguide, or a SiPh waveguide is high, the width of the optical waveguide becomes narrow, so there is a problem that the optical connection cannot be made with an accuracy of ±3 microns due to the large loss. rice field.
 上述したような課題を解決するために、本発明に係る光接続構造は、第1の基板に配置され、第1の光導波路を有する第1の光素子と、第2の光導波路を有する第2の光素子と、前記第1の光導波路の一端と前記第2の光導波路の一端とを接続する自己形成導波路と、前記第1の光導波路の他端に配置される第1の受光導光部とを備える。 In order to solve the above-described problems, an optical connection structure according to the present invention is arranged on a first substrate and includes a first optical element having a first optical waveguide and a second optical element having a second optical waveguide. 2 optical elements, a self-forming waveguide connecting one end of the first optical waveguide and one end of the second optical waveguide, and a first receiver disposed at the other end of the first optical waveguide. and a light guide.
 また、本発明に係る光接続構造の製造方法は、第1の光導波路と前記第1の光導波路の他端に配置される第1の受光導光部とを有する第1の光素子と、第2の光導波路と前記第2の光導波路の他端に配置される第2の受光導光部とを有する第2の光素子とを光接続する光接続構造の製造方法であって、第1の基板に、複数の前記第1の光素子を一括で形成する工程と、第2の基板に、複数の前記第2の光素子を一括で形成して、前記第2の光素子をチップ化する工程と、前記第1の光導波路の端面と、前記第2の光導波路の端面とを近接させて、前記第1の光素子と前記第2の光素子を固定する工程と、前記第1の光導波路の端面と、前記第2の光導波路の端面との間に、光硬化樹脂を充填するする工程と、樹脂硬化光が、露光マスクの開口部を通して、前記第1の受光導光部と前記第2の受光導光部に入射するように露光し、前記樹脂硬化光を前記光硬化樹脂に照射し、自己形成導波路を形成する工程と、前記自己形成導波路の周囲に、前記自己形成導波路の屈折率より低い屈折率を有するクラッドを形成する工程とを備える。 In addition, a method for manufacturing an optical connection structure according to the present invention includes: a first optical element having a first optical waveguide and a first light receiving light guide portion disposed at the other end of the first optical waveguide; A method for manufacturing an optical connection structure for optically connecting a second optical element having a second optical waveguide and a second light receiving light guide portion arranged at the other end of the second optical waveguide, the method comprising: a step of collectively forming a plurality of said first optical elements on one substrate; collectively forming a plurality of said second optical elements on a second substrate to form said second optical elements as a chip; fixing the first optical element and the second optical element by bringing the end face of the first optical waveguide and the end face of the second optical waveguide close to each other; a step of filling a photocurable resin between the end face of the first optical waveguide and the end face of the second optical waveguide; forming a self-formed waveguide by exposing to light so as to be incident on the portion and the second light-receiving light guide portion, and irradiating the photo-curing resin with the resin-curing light to form a self-formed waveguide; forming a cladding having a refractive index lower than that of the self-forming waveguide.
 本発明によれば、自己形成導波路を用いた低損失の光接続構造およびその製造方法を提供できる。 According to the present invention, a low-loss optical connection structure using a self-forming waveguide and a manufacturing method thereof can be provided.
図1Aは、本発明の第1の実施の形態に係る光接続構造の構成を示す概略上面図である。FIG. 1A is a schematic top view showing the configuration of the optical connection structure according to the first embodiment of the invention. 図1Bは、本発明の第1の実施の形態に係る光接続構造の構成を示す概略側面図である。1B is a schematic side view showing the configuration of the optical connection structure according to the first embodiment of the present invention; FIG. 図1Cは、本発明の第1の実施の形態に係る光接続構造における第2の光素子の構成を示す概略上面図である。FIG. 1C is a schematic top view showing the configuration of the second optical element in the optical connection structure according to the first embodiment of the present invention; 図2Aは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略上面図である。FIG. 2A is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the invention. 図2Bは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2B is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Cは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2C is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Dは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2D is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Eは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2E is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Fは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2F is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Gは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2G is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図2Hは、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 2H is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the present invention; 図3は、本発明の第1の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 3 is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the first embodiment of the invention. 図4Aは、本発明の第1の実施の形態に係る光接続構造およびその製造方法の効果を説明するための概略上面図である。FIG. 4A is a schematic top view for explaining the effects of the optical connection structure and its manufacturing method according to the first embodiment of the present invention. 図4Bは、本発明の第1の実施の形態に係る光接続構造およびその製造方法の効果を説明するための概略上面図である。FIG. 4B is a schematic top view for explaining the effects of the optical connection structure and its manufacturing method according to the first embodiment of the present invention. 図5Aは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略上面図である。FIG. 5A is a schematic top view showing an example of the configuration of a light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図5Bは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略側面図である。FIG. 5B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図6Aは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略上面図である。FIG. 6A is a schematic top view showing an example of the configuration of a light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図6Bは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略側面図である。FIG. 6B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図7Aは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略上面図である。FIG. 7A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention; 図7Bは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略側面図である。FIG. 7B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図8Aは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略上面図である。FIG. 8A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention; 図8Bは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略側面図である。FIG. 8B is a schematic side view showing an example of the configuration of the light-receiving light guide section in the optical connection structure according to the first embodiment of the present invention; 図9Aは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略上面図である。FIG. 9A is a schematic top view showing an example of the configuration of a light-receiving light guiding section in the optical connection structure according to the first embodiment of the present invention; 図9Bは、本発明の第1の実施の形態に係る光接続構造における受光導光部の構成の一例を示す概略側面図である。9B is a schematic side view showing an example of the configuration of the light receiving light guide section in the optical connection structure according to the first embodiment of the present invention; FIG. 図10Aは、本発明の第2の実施の形態に係る光接続構造を説明するための概略上面図である。FIG. 10A is a schematic top view for explaining an optical connection structure according to a second embodiment of the invention. 図10Bは、本発明の第2の実施の形態に係る光接続構造の構成を説明するための概略側面図である。FIG. 10B is a schematic side view for explaining the configuration of the optical connection structure according to the second embodiment of the invention. 図10Cは、本発明の第2の実施の形態に係る光接続構造を説明するための概略上面図である。FIG. 10C is a schematic top view for explaining the optical connection structure according to the second embodiment of the invention. 図10Dは、本発明の第2の実施の形態に係る光接続構造の構成を説明するための概略側面図である。FIG. 10D is a schematic side view for explaining the configuration of the optical connection structure according to the second embodiment of the present invention; 図11は、本発明の第2の実施の形態に係る光接続構造における第2の素子の構成を説明するための概略側面図である。FIG. 11 is a schematic side view for explaining the configuration of the second element in the optical connection structure according to the second embodiment of the invention. 図12Aは、本発明の第2の実施の形態に係る光接続構造の構成の一例を説明するための概略側面図である。FIG. 12A is a schematic side view for explaining an example of the configuration of the optical connection structure according to the second embodiment of the invention; 図12Bは、本発明の第2の実施の形態に係る光接続構造の構成の一例を説明するための概略側面図である。12B is a schematic side view for explaining an example of the configuration of the optical connection structure according to the second embodiment of the present invention; FIG. 図13Aは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略上面図である。FIG. 13A is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Bは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 13B is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Cは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 13C is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Dは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略上面図である。FIG. 13D is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Eは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 13E is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Fは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略上面図である。FIG. 13F is a schematic top view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図13Gは、本発明の第3の実施の形態に係る光接続構造の製造方法の一例を説明するための概略側面図である。FIG. 13G is a schematic side view for explaining an example of the method for manufacturing the optical connection structure according to the third embodiment of the present invention; 図14Aは、従来の光接続構造の構成を説明するための概略上面図である。FIG. 14A is a schematic top view for explaining the configuration of a conventional optical connection structure. 図14Bは、従来の光接続構造の構成を説明するための概略上面図である。FIG. 14B is a schematic top view for explaining the configuration of a conventional optical connection structure.
<第1の実施の形態>
 本発明の第1の実施の形態に係る光接続構造について、図1A~図9Bを用いて説明する。
<First embodiment>
An optical connection structure according to a first embodiment of the present invention will be described with reference to FIGS. 1A to 9B.
<光接続構造の構成>
 本実施の形態に係る光接続構造10は、図1A、Bに示すように、第1の基板111に、第1の素子11と、第2の素子12と、第1の素子11と第2の素子12との間に自己形成導波路131(Self Written Waveguide:SWW)とを備える。
<Configuration of Optical Connection Structure>
As shown in FIGS. 1A and 1B, the optical connection structure 10 according to the present embodiment includes a first substrate 111, a first element 11, a second element 12, and a first element 11 and a second element 11. A self-formed waveguide 131 (Self Written Waveguide: SWW) is provided between the element 12 of .
 光接続構造10において、第1の素子11は、PLCチップであり、ガラス導波路113を備える。ガラス導波路113は導波路コアとして機能し、その周囲にクラッド112を有する。 In the optical connection structure 10 , the first element 11 is a PLC chip and has a glass waveguide 113 . The glass waveguide 113 functions as a waveguide core and has a clad 112 around it.
 ガラス導波路113の一方の端部の端面(以下、「ガラス導波路端面」という。)117は、第2の素子12に向かって露出し、他方の端部は、第1の受光導光部114と接続する。以下、PLCチップ11において、ガラス導波路端面117を有する端面を「PLC端面」という。 An end face (hereinafter referred to as "glass waveguide end face") 117 at one end of the glass waveguide 113 is exposed toward the second element 12, and the other end is the first light receiving light guide part. 114. Hereinafter, in the PLC chip 11, the end face having the glass waveguide end face 117 is referred to as "PLC end face".
 また、ガラス導波路113から分岐した導波路が光回路と接続する(図示せず)。ここで、光回路は、ガラス導波路113により合分波や波長分離などの機能を有する。 A waveguide branched from the glass waveguide 113 is connected to an optical circuit (not shown). Here, the optical circuit has functions such as multiplexing/demultiplexing and wavelength separation by the glass waveguide 113 .
 以下、水平面(基板表面)において、PLCチップ11のガラス導波路113の長手方向(図中、X方向)を「導波路方向」とし、長手方向に垂直な方向(図中、Y方向)を「幅方向」、水平面(基板表面)に垂直な方向(Z方向)を鉛直(厚さ)方向とし、PLCチップ11において、ガラス導波路113が配置される側を「上」方向とし、第1の基板111側を「下」方向とする。 Hereinafter, in the horizontal plane (substrate surface), the longitudinal direction (X direction in the drawing) of the glass waveguide 113 of the PLC chip 11 is defined as "waveguide direction", and the direction perpendicular to the longitudinal direction (Y direction in the drawing) is defined as " The direction (Z direction) perpendicular to the horizontal plane (substrate surface) is defined as the vertical (thickness) direction, and the side on which the glass waveguide 113 is arranged in the PLC chip 11 is defined as the “upper” direction. The substrate 111 side is the "downward" direction.
 第1の受光導光部114は、PLCチップ11の上面から入射した光の一部の進路を変えガラス導波路113を経由して、ガラス導波路端面117から出射させる機能をもち、たとえばミラーなどで形成される。 The first light-receiving light guide section 114 has a function of changing the course of a part of the light incident from the upper surface of the PLC chip 11 and making it exit from the glass waveguide end face 117 via the glass waveguide 113. formed by
 PLCチップ11が形成された第1の基板111は、凹部115を備え、ガラス導波路端面117が、凹部115の側壁115_2の上方に配置される。 The first substrate 111 on which the PLC chip 11 is formed has a recess 115, and the glass waveguide end face 117 is arranged above the side wall 115_2 of the recess 115.
 第2の素子12は、LDチップであり、第2の基板121上に形成される。LDチップ12の第2の基板121の底面(裏面)と、凹部115の上面とを接触させ固定される。 The second element 12 is an LD chip and is formed on the second substrate 121 . The bottom surface (back surface) of the second substrate 121 of the LD chip 12 and the top surface of the recess 115 are brought into contact with each other and fixed.
 LDチップ12は、図1Cに示すように、LD活性層126と、InP導波路125と、SiN導波路123と、第2の受光導光部124とを備える。ここで、InP導波路125側の面をLDチップ12の表面とし、第2の基板121側の面をLDチップ12の裏面とする。 The LD chip 12 includes an LD active layer 126, an InP waveguide 125, an SiN waveguide 123, and a second light receiving light guide section 124, as shown in FIG. 1C. Here, the surface on the InP waveguide 125 side is the front surface of the LD chip 12 , and the surface on the second substrate 121 side is the back surface of the LD chip 12 .
 LD活性層126にInP導波路125が接続し、InP導波路125がSiN導波路123に接続する。InP導波路125の先端は、テーパ形状のスポットサイズコンバータ(SSC)を有する。 An InP waveguide 125 is connected to the LD active layer 126 , and the InP waveguide 125 is connected to the SiN waveguide 123 . The tip of the InP waveguide 125 has a tapered spot size converter (SSC).
 本実施の形態では、InP導波路125がSiN導波路123に覆われて接続される。これに限らず、InP導波路125がSiN導波路123に近接して配置されてもよく、InP導波路125を導波するレーザ光がSiN導波路123に光結合するように配置されればよい。 In this embodiment, the InP waveguide 125 is covered with the SiN waveguide 123 and connected. Not limited to this, the InP waveguide 125 may be arranged close to the SiN waveguide 123, and may be arranged so that the laser light guided through the InP waveguide 125 is optically coupled to the SiN waveguide 123. .
 SiN導波路123の一方の端部の端面(以下、「SiN導波路端面」という。)127は、第1の素子(PLCチップ)11に向かって露出し、他方の端部は第2の受光導光部124に接続する。以下、LDチップ12において、SiN導波路端面127を有する端面を「LD端面」という。 An end face (hereinafter referred to as “SiN waveguide end face”) 127 at one end of the SiN waveguide 123 is exposed toward the first element (PLC chip) 11, and the other end faces the second receiving end. It connects to the light guide section 124 . Hereinafter, in the LD chip 12, the end face having the SiN waveguide end face 127 is referred to as "LD end face".
 また、第2の受光導光部124は、第1の受光導光部114と同様に、上面から入射する光の光路を変換して、SiN導波路123に導波させ、SiN導波路端面127から出射する。 Similarly to the first light-receiving light-guiding portion 114 , the second light-receiving light-guiding portion 124 converts the optical path of the light incident from the upper surface, guides it to the SiN waveguide 123 , emitted from
 自己形成導波路131では、一方の端面が、第1の素子11のガラス導波路端面117に接続し、他方の端面が、第2の素子12のSiN導波路端面127に接続する。 In the self-formed waveguide 131 , one end face is connected to the glass waveguide end face 117 of the first element 11 and the other end face is connected to the SiN waveguide end face 127 of the second element 12 .
 光接続構造10において、LD活性層126から出射されたレーザ光は、順に、InP導波路125とSiN導波路123を導波して出射して、自己形成導波路131を導波して、ガラス導波路113に入射する。 In the optical connection structure 10, the laser light emitted from the LD active layer 126 is guided through the InP waveguide 125 and the SiN waveguide 123 in order, is guided through the self-formed waveguide 131, and is guided through the glass. Incident into waveguide 113 .
 ここで、InP導波路125をSiN導波路123に接続する理由は、可視光・紫外光の透過率がInPでは低いがSiNでは高く、後述の自己形成導波路の形成に必要であるためである。 Here, the reason why the InP waveguide 125 is connected to the SiN waveguide 123 is that the transmittance of visible light and ultraviolet light is low in InP but high in SiN, and is necessary for forming a self-forming waveguide described later. .
 本発明の実施の形態では、第1の光導波路と第2の導波路の両方の他端に受光導光部が配置される例を示したが、いずれか一方に配置されてもよい。 In the embodiment of the present invention, an example is shown in which the light receiving light guide section is arranged at the other end of both the first optical waveguide and the second waveguide, but it may be arranged at either one.
<光接続構造の製造方法>
 光接続構造10の製造方法において、まず、PLCチップ11のPLC端面とLDチップ12のLD端面の間に光硬化樹脂を充填し、第1の受光導光部114および第2の受光導光部124に上面から可視光(樹脂硬化光)を入射する。
<Method for Manufacturing Optical Connection Structure>
In the method for manufacturing the optical connection structure 10, first, a photocurable resin is filled between the PLC end face of the PLC chip 11 and the LD end face of the LD chip 12, and the first light receiving light guide portion 114 and the second light receiving light guide portion are formed. Visible light (resin curing light) is incident on 124 from above.
 この可視光(樹脂硬化光)を、ウェハ上のガラス導波路端面117およびSiN導波路端面127から出射させ、光硬化樹脂に局所的に照射し硬化させ、ガラス導波路端面117およびSiN導波路端面127とを自己整合的に接続させる。その後、未反応の光硬化樹脂を除去することで、自己形成導波路131を形成する。最後に、ウェハをダイシングすることで、LDチップ12が搭載されたPLCチップ11が形成される。 This visible light (resin curing light) is emitted from the glass waveguide end surface 117 and the SiN waveguide end surface 127 on the wafer, and the photocurable resin is locally irradiated and cured to obtain the glass waveguide end surface 117 and the SiN waveguide end surface. 127 are connected in a self-aligning manner. After that, the self-forming waveguide 131 is formed by removing the unreacted photocurable resin. Finally, by dicing the wafer, the PLC chips 11 on which the LD chips 12 are mounted are formed.
 以下に、光接続構造10の製造方法の詳細を、図2A~図3を参照して説明する。 Details of the method for manufacturing the optical connection structure 10 will be described below with reference to FIGS. 2A to 3. FIG.
 まず、ウェハ1_1上にPLCチップ11を形成し、凹部115を基板に形成する(図2A、B)。 First, the PLC chips 11 are formed on the wafer 1_1, and the concave portions 115 are formed in the substrate (FIGS. 2A and 2B).
 次に、他のウェハで作成したLDチップ12を凹部115に搭載・固定する(図2C、D)。 Next, the LD chip 12 made from another wafer is mounted and fixed in the concave portion 115 (FIGS. 2C and 2D).
 搭載装置はチップをピックアップして画像認識により所定の場所に搭載することができるダイボンダ装置、フリップチップ装置、トランスファプリンティング装置などを使用することができる。接合方式は分子間力による接合、エポキシ樹脂などを用いた接着、電気的導通をとるために金属ばんぷの超音波接合、はんだ薄膜を用いた溶融接合などが利用できる。 The mounting device can use a die bonder device, a flip chip device, a transfer printing device, etc. that can pick up a chip and mount it in a predetermined place by image recognition. As a bonding method, bonding using intermolecular force, bonding using epoxy resin, ultrasonic bonding of metal bumps for electrical conduction, fusion bonding using a thin solder film, and the like can be used.
 この工程で、凹部の加工誤差やLDチップ12の基板厚さばらつきなどにより、基板鉛直方向の高さにばらつきが生じている。また、ウェハ水平面内方向の位置ずれも3ミクロン程度発生する。 In this process, variations occur in the height of the substrate in the vertical direction due to processing errors in the recesses and variations in substrate thickness of the LD chip 12 . Also, a positional deviation of about 3 microns occurs in the horizontal direction of the wafer.
 次に、光硬化樹脂14をスピン塗布形成し、露光装置でマスク露光する(図2E)。 Next, a photocurable resin 14 is formed by spin coating, and mask-exposed with an exposure device (FIG. 2E).
 本実施の形態では、露光装置にてg線(波長436nm)の樹脂硬化光15で、露光マスク161の上面から露光し、露光マスク161の開口部162を通過してきた樹脂硬化光15が、第1の受光導光部114と第2の受光導光部124に入射する構造とした。 In the present embodiment, the upper surface of the exposure mask 161 is exposed from the upper surface of the exposure mask 161 with the resin curing light 15 of g-line (wavelength of 436 nm) in the exposure apparatus, and the resin curing light 15 passing through the opening 162 of the exposure mask 161 is the second The light is incident on the first light receiving light guide portion 114 and the second light receiving light guide portion 124 .
 露光マスク161において、開口部162は、第1の受光導光部114と第2の受光導光部124との位置に対応するように、周期的に配置される。 In the exposure mask 161 , the openings 162 are periodically arranged so as to correspond to the positions of the first light receiving light guiding portion 114 and the second light receiving light guiding portion 124 .
 このとき、たとえば開口部162に微細な直線パターンを形成して回折格子とし、露光マスク161を通過する樹脂硬化光15が、鉛直以外の方向成分を有するようにする。 At this time, for example, a fine linear pattern is formed in the opening 162 to form a diffraction grating so that the resin curing light 15 passing through the exposure mask 161 has a directional component other than the vertical direction.
 樹脂硬化光15が、第1の受光導光部114と第2の受光導光部124に入射する。 The resin curing light 15 enters the first light-receiving light guide portion 114 and the second light-receiving light guide portion 124 .
 第1の受光導光部114に入射した樹脂硬化光15は、ガラス導波路113に誘導されて、ガラス導波路端面117から出射する。 The resin curing light 15 incident on the first light receiving light guide portion 114 is guided by the glass waveguide 113 and emitted from the glass waveguide end surface 117 .
 一方、LDチップ12の第2の受光導光部124に入射した樹脂硬化光15は、SiN導波路123に誘導されてSiN導波路端面127から出射する。 On the other hand, the resin curing light 15 incident on the second light receiving light guide portion 124 of the LD chip 12 is guided by the SiN waveguide 123 and emitted from the SiN waveguide end surface 127 .
 その結果、ガラス導波路113とSiN導波路123両方から樹脂硬化光15が光硬化樹脂14に照射され、自己形成導波路131が形成され、ガラス導波路113とSiN導波路123との間で光接続がなされる(図2F)。 As a result, the photocurable resin 14 is irradiated with the resin curing light 15 from both the glass waveguide 113 and the SiN waveguide 123, the self-forming waveguide 131 is formed, and the light is transmitted between the glass waveguide 113 and the SiN waveguide 123. A connection is made (FIG. 2F).
 次に、自己形成導波路131の周囲に自己形成導波路クラッドを形成する。例えば、光硬化樹脂14に、紫外線で硬化される部分と熱で硬化される部分との間に屈折率の差が生じる樹脂を用いて、自己形成導波路クラッドを形成できる。ここで、熱で硬化される部分の屈折率が、紫外線で硬化される部分の屈折率より低い。 Next, a self-formed waveguide clad is formed around the self-formed waveguide 131 . For example, a self-forming waveguide cladding can be formed by using, as the photocurable resin 14, a resin that produces a difference in refractive index between a portion that is cured with ultraviolet rays and a portion that is cured with heat. Here, the refractive index of the heat-cured portion is lower than the refractive index of the ultraviolet-cured portion.
 詳細には、露光に伴う化学反応が進行して、光硬化樹脂14が硬化して自己形成導波路131が形成される。一方、光硬化樹脂14における未反応部分が液状の場合、液状の未反応部分を含めた全樹脂を熱硬化させる。 Specifically, a chemical reaction accompanying exposure progresses, the photocurable resin 14 is cured, and the self-formed waveguide 131 is formed. On the other hand, when the unreacted portion of the photocurable resin 14 is liquid, the entire resin including the liquid unreacted portion is thermally cured.
 その結果、紫外線で硬化される部分と熱で硬化される部分との間に屈折率の差が生じるので、光硬化樹脂14における未反応部分であり熱硬化される部分(自己形成導波路131の周囲の部分)の屈折率が、自己形成導波路131の屈折率より低くなり、クラッドとなる。 As a result, a difference in refractive index occurs between the portion cured by ultraviolet light and the portion cured by heat. The surrounding portion) has a lower refractive index than the self-forming waveguide 131 and becomes a cladding.
 または、光硬化樹脂14における未反応部分を除去後、自己形成導波路131の周囲に自己形成導波路クラッドを形成してもよい。 Alternatively, a self-formed waveguide clad may be formed around the self-formed waveguide 131 after removing the unreacted portion of the photocurable resin 14 .
 詳細には、未反応の光硬化樹脂14を、現像液を用いてディベロッパ装置で除去する(図2G)。 Specifically, the unreacted photocurable resin 14 is removed by a developer device using a developer (FIG. 2G).
 次に、自己形成導波路131の屈折率よりも低い屈折率を有する材料をスピン塗布して硬化させることで、自己形成導波路131のクラッド132を形成できる(図2H)。 A cladding 132 of the self-formed waveguide 131 can then be formed by spin-coating and curing a material having a refractive index lower than that of the self-formed waveguide 131 (FIG. 2H).
 さらに、この工程の後に、再配線工程やワイヤボンディングなどにより上部から電気的接続をとることもできる。 Furthermore, after this process, electrical connection can be made from above by a rewiring process, wire bonding, or the like.
 以上のように、ウェハ上に、光接続構造10が形成される。最後に、光接続構造10が形成されたウェハ(後述、図4A)をダイシングする。 As described above, the optical connection structure 10 is formed on the wafer. Finally, the wafer (described later, FIG. 4A) on which the optical connection structure 10 is formed is diced.
 また、上述の露光装置でマスク露光する工程において、図3に示すように、開口部162を回折格子とせずに、露光マスク161上でレンズ163を配置することで、露光機からの照射光(樹脂硬化光15)を集光、拡大することができる。 Also, in the process of performing mask exposure with the exposure apparatus described above, as shown in FIG. The resin curing light 15) can be condensed and expanded.
 図4Aに、上述の方法で、光接続構造10が製造されたウエハ1_2を示す。また、図4Bに、ウェハ1_2の一部(図4Aにおける点線内)の拡大図を示す。 FIG. 4A shows the wafer 1_2 on which the optical connection structure 10 is manufactured by the method described above. Also, FIG. 4B shows an enlarged view of a part of the wafer 1_2 (inside the dotted line in FIG. 4A).
 光接続構造10において、LDチップ12が水平面方向で導波路方向に角度をもって(傾斜されて)搭載された場合、換言すれば搭載位置が誤差を含む場合でも、自己形成導波路131により、PLCチップ11のガラス導波路113とLDチップ12のSiN導波路123が接続されている。 In the optical connection structure 10, when the LD chip 12 is mounted at an angle (tilted) in the waveguide direction in the horizontal plane direction, in other words, even if the mounting position contains an error, the self-forming waveguide 131 allows the PLC chip 11 and the SiN waveguide 123 of the LD chip 12 are connected.
 このように、位置ずれを補正するように、自己形成導波路131が形成されるので、LDチップ12の搭載誤差(±3ミクロン程度)が吸収され、LDチップ12とPLCチップ11を低損失で接続することができる。 Since the self-formed waveguide 131 is formed so as to correct the positional deviation in this way, the mounting error (about ±3 microns) of the LD chip 12 is absorbed, and the LD chip 12 and the PLC chip 11 are connected with low loss. can be connected.
 本実施の形態では、自己形成導波路131の一括製造方法として、通常の電気回路のウェハプロセスと同様のプロセスや装置を用いることができるので、特殊な装置の開発などが不要で電気チップや光の異種材料からなるチップの集積実装に有利である。 In the present embodiment, the same process and apparatus as the wafer process of a normal electric circuit can be used as a collective manufacturing method of the self-forming waveguide 131. It is advantageous for integrated mounting of chips made of different materials.
 なお、本形態ではガラス導波路113とSiN導波路123をもつ形態としたが、光硬化樹脂14を硬化する波長の光が透過する材料であれば、他の材料の組み合わせでもよい。また、SiやInPは通信に用いる赤外光の透過率は高いが硬化するための可視光の透過率は低いので、そのような場合は、ガラスやSiNやSiOxからなる導波路に、SiやInPからなる導波路を接続しておけば通信用途に供することができる。 In this embodiment, the glass waveguide 113 and the SiN waveguide 123 are provided, but other materials may be used in combination as long as they transmit light having a wavelength that cures the photocurable resin 14 . In addition, Si and InP have a high transmittance of infrared light used for communication, but a low transmittance of visible light for curing. If a waveguide made of InP is connected, it can be used for communication.
<変形例>
 本発明の第1の実施の形態の変形例に係る光接続構造を、図5A~図9Bを参照して説明する。本変形例では、第1の実施の形態と、光接続構造における受光導光部の構成が異なる。
<Modification>
An optical connection structure according to a modification of the first embodiment of the present invention will be described with reference to FIGS. 5A to 9B. This modification differs from the first embodiment in the configuration of the light-receiving light guide section in the optical connection structure.
 本変形例に係る光接続構造では、図5A~図9Bに示すように、ガラス導波路113の端部に第1の受光導光部114を備える。また、ガラス導波路113に、他のガラス導波路116の一方の端部が接続し、他のガラス導波路116の他方の端部が光回路(図示せず)に接続する。 In the optical connection structure according to this modified example, as shown in FIGS. 5A to 9B, the end of the glass waveguide 113 is provided with the first light-receiving light guiding portion 114 . One end of another glass waveguide 116 is connected to the glass waveguide 113, and the other end of the other glass waveguide 116 is connected to an optical circuit (not shown).
 他のガラス導波路116の屈折率は、ガラス導波路113の屈折率と同等でもよく、異なってもよい。他のガラス導波路116の屈折率は、ガラス導波路113の屈折率より高い場合には、他のガラス導波路116の先端は、テーパ形状のスポットサイズコンバータ(SSC)を有してもよい。また、他のガラス導波路116がガラス導波路113に覆われて接続されてもよく、それぞれが近接して配置されてもよく、それぞれのガラス導波路113、116同士が光結合するように配置されればよい。 The refractive index of the other glass waveguide 116 may be the same as or different from the refractive index of the glass waveguide 113. If the refractive index of the other glass waveguide 116 is higher than that of the glass waveguide 113, the tip of the other glass waveguide 116 may have a tapered spot size converter (SSC). Further, the other glass waveguide 116 may be covered with the glass waveguide 113 and connected, or they may be arranged close to each other, and the glass waveguides 113 and 116 are arranged so as to be optically coupled to each other. I wish I could.
 本変形例では、PLCチップ11における第1の受光導光部114を例とするが、LD12チップの第2の受光導光部124に適用してもよい。 In this modified example, the first light receiving light guide section 114 in the PLC chip 11 is taken as an example, but it may be applied to the second light receiving light guide section 124 in the LD12 chip.
 第1の受光導光部114は、図5A、Bに示すように、回折格子21を用いてもよい。回折格子21として、金属膜パターンが形成される。第1の受光導光部114の上方から入射した樹脂硬化光15を、回折格子21で干渉(反射)して、樹脂硬化光15の一部をガラス導波路113に導入させる。 The first light-receiving light guide section 114 may use a diffraction grating 21 as shown in FIGS. 5A and 5B. A metal film pattern is formed as the diffraction grating 21 . The resin curing light 15 incident from above the first light receiving light guide portion 114 is interfered (reflected) by the diffraction grating 21 and part of the resin curing light 15 is introduced into the glass waveguide 113 .
 また、図6A、Bに示すように、第1の受光導光部114に、ミラー22を用いてもよい。ここで、第1の受光導光部114の一部にミラー22を形成する。これにより、ミラー22で反射された樹脂硬化光15の一部をガラス導波路113に導入させる。 In addition, as shown in FIGS. 6A and 6B, a mirror 22 may be used for the first light receiving light guiding section 114. FIG. Here, the mirror 22 is formed in a part of the first light receiving light guiding section 114 . As a result, part of the resin curing light 15 reflected by the mirror 22 is introduced into the glass waveguide 113 .
 ミラー22は、ガラス導波路113の他方の端面を含むPLCチップの他方の端面が基板111に向かって傾斜させることで構成される。 The mirror 22 is configured by tilting the other end face of the PLC chip including the other end face of the glass waveguide 113 toward the substrate 111 .
 また、図7A、Bに示すように、レンズ構造231を用いた構成としてもよい。この構成では、レンズ構造231として、基板111に集光ミラーが形成される。 Also, as shown in FIGS. 7A and 7B, a configuration using a lens structure 231 may be used. In this configuration, a condensing mirror is formed on the substrate 111 as the lens structure 231 .
 初めに、基板111にエッチングにより凹部233を形成する。 First, recesses 233 are formed in the substrate 111 by etching.
 次に、凹部233の底面の角部に樹脂を配置して、樹脂の表面張力により、樹脂の表面を曲面にする。 Next, resin is placed on the corners of the bottom surface of the recess 233, and the surface tension of the resin makes the surface of the resin curved.
 最後に、この曲面形状の樹脂表面に金属膜を薄く蒸着する。 Finally, a thin metal film is deposited on the curved resin surface.
 これにより、樹脂からなる集光ミラー(レンズ構造)231が形成される。この集光ミラー231により、凹部233に入射した樹脂硬化光15の一部を、ガラス導波路113に向けて集光して、ガラス導波路113に入射する。この入射光をガラス導波路113に閉じ込めるため、ガラス導波路113の上面に金属からなるミラー232を配置してもよい。 Thereby, a condensing mirror (lens structure) 231 made of resin is formed. A portion of the resin curing light 15 incident on the concave portion 233 is condensed toward the glass waveguide 113 by the condensing mirror 231 and is incident on the glass waveguide 113 . In order to confine this incident light in the glass waveguide 113, a metal mirror 232 may be arranged on the upper surface of the glass waveguide 113. FIG.
 また、図8A、Bに示すように、シリコン基板111をウェットエッチングすることにより形成される結晶方位面(ファセット)241をミラーとして用いてもよい。結晶方位面241の水平面との角度242は約55度であることを考慮して、この結晶方位面(ミラー)241で反射した樹脂硬化光15がガラス導波路113に入射するように、結晶方位面(ミラー)241の位置を設計する。樹脂硬化光15をガラス導波路113に閉じ込めるため、ガラス導波路113の上面に金属からなるミラー243を配置してもよい。 Also, as shown in FIGS. 8A and 8B, a crystal orientation plane (facet) 241 formed by wet etching the silicon substrate 111 may be used as a mirror. Considering that the angle 242 between the crystal orientation plane 241 and the horizontal plane is about 55 degrees, the crystal orientation is adjusted so that the resin curing light 15 reflected by the crystal orientation plane (mirror) 241 is incident on the glass waveguide 113. Design the position of the surface (mirror) 241 . A mirror 243 made of metal may be arranged on the upper surface of the glass waveguide 113 in order to confine the resin curing light 15 in the glass waveguide 113 .
 また、LDチップ等において加工が難しい場合、図9A、Bに示すように、個別部品のミラー251を基板111上に配置してもよい。これにより、上方からの樹脂硬化光15が、入射方向に対して90度程度の方向に反射するので、受光導光部の光の経路が考える必要がない。ここで、ミラー251がスピン塗布時に外れないようにし、露光後・現像後に取り外せるようにプロセス条件を調整する。 In addition, if it is difficult to process an LD chip or the like, a mirror 251, which is an individual component, may be arranged on the substrate 111 as shown in FIGS. 9A and 9B. As a result, the resin curing light 15 from above is reflected in a direction of about 90 degrees with respect to the incident direction, so there is no need to consider the light path of the light receiving light guide section. Here, the process conditions are adjusted so that the mirror 251 does not come off during spin coating and can be removed after exposure and development.
<第2の実施の形態>
 本発明の第2の実施の形態に係る光接続構造とその製造方法について、図10A~図12Bを参照して説明する。
<Second Embodiment>
An optical connection structure and a manufacturing method thereof according to a second embodiment of the present invention will be described with reference to FIGS. 10A to 12B.
 第1の実施の形態では、第1の光素子(PLCチップ)と第2の光素子(LDチップ)とを搭載してから自己形成導波路131を形成して接続する例を示した。本実施の形態に係る光接続構造20では、一方のチップ(PLCチップ)に自己形成導波路131を形成させた後、その自己形成導波路131の構造を用いて、位置精度を高める点が異なる。その他の構成は、第1の実施の形態と同様である。 In the first embodiment, an example is shown in which the self-forming waveguide 131 is formed and connected after mounting the first optical element (PLC chip) and the second optical element (LD chip). In the optical connection structure 20 according to the present embodiment, after forming the self-formed waveguide 131 on one chip (PLC chip), the structure of the self-formed waveguide 131 is used to improve the positional accuracy. . Other configurations are the same as those of the first embodiment.
<光接続構造の構成>
 光接続構造20は、図10A~Dに示すように、PLCチップ11と、LDチップ12と、PLCチップ11とLDチップ12との間に自己形成導波路131とを備える。
<Configuration of Optical Connection Structure>
The optical connection structure 20 includes a PLC chip 11, an LD chip 12, and a self-forming waveguide 131 between the PLC chip 11 and the LD chip 12, as shown in FIGS. 10A-D.
 ここで、図11に示すように、LDチップ12のLD端面に、LDチップ12の上面とLD端面それぞれに開口部311、312を有する凹溝31を備える。また、凹溝31は、自己形成導波路131と嵌合する。また、LDチップ12は基板を要さない。他の構成は、第1の実施の形態と同様である。 Here, as shown in FIG. 11, the LD end face of the LD chip 12 is provided with a concave groove 31 having openings 311 and 312 on the upper surface of the LD chip 12 and the LD end face, respectively. Also, the groove 31 is fitted with the self-forming waveguide 131 . Also, the LD chip 12 does not require a substrate. Other configurations are the same as those of the first embodiment.
<光接続構造の製造方法>
 本実施の形態に係る光接続構造20の製造方法を、図10A~図12Bを参照して説明する。
<Method for Manufacturing Optical Connection Structure>
A method for manufacturing the optical connection structure 20 according to this embodiment will be described with reference to FIGS. 10A to 12B.
 初めに、図10A、Bに示すように、PLCチップ11を形成した後、LDチップ12を搭載する前に、PLCチップ11に接続する自己形成導波路131が適当な長さで形成される。 First, as shown in FIGS. 10A and 10B, after forming the PLC chip 11 and before mounting the LD chip 12, a self-forming waveguide 131 connected to the PLC chip 11 is formed with an appropriate length.
 次に、図10C、Dに示すように、LDチップ12が、SiN導波路端面127が自己形成導波路131に接続するように搭載される。ここで、LDチップ12は、ウェハボンディング法などにより、基板以外のLD活性層126と、InP導波路125と、SiN導波路123と、クラッドとを備える層構造が搭載される。ここで、LDチップ12に第2の受光導光部124を備える必要はない。 Next, as shown in FIGS. 10C and 10D, the LD chip 12 is mounted so that the SiN waveguide end surface 127 is connected to the self-formed waveguide 131. Then, as shown in FIGS. Here, the LD chip 12 has a layered structure including an LD active layer 126 other than the substrate, an InP waveguide 125, an SiN waveguide 123, and a clad by a wafer bonding method or the like. Here, it is not necessary to provide the LD chip 12 with the second light receiving light guide section 124 .
 また、LDチップ12は、図11に示すように、凹溝31を有する。凹溝31におけるLD端面と平行な側面に、SiN導波路端面127が露出される。 Also, the LD chip 12 has a groove 31 as shown in FIG. A SiN waveguide end surface 127 is exposed on the side surface of the groove 31 parallel to the LD end surface.
 LDチップ12の凹溝31に自己形成導波路131を嵌合(挿入)して、LDチップ12の露出部と自己形成導波路131とを接続する。このとき、画像認識を併用しながらチップを搭載・接合する。 The self-formed waveguide 131 is fitted (inserted) into the groove 31 of the LD chip 12 to connect the exposed portion of the LD chip 12 and the self-formed waveguide 131 . At this time, the chips are mounted and bonded together with image recognition.
 また、図12A、Bに示すように、LDチップ12の凹溝31の上面の開口部311を基板111側に向けて搭載してもよい。これにより、LDチップ12の凹溝31の上面の開口部311を上方(基板111側の反対)に向けて搭載する場合に比べて、搭載時の鉛直方向(基板表面の垂直方向)での位置合わせにおけるマージンを向上できる。 Also, as shown in FIGS. 12A and 12B, the LD chip 12 may be mounted with the opening 311 on the upper surface of the groove 31 facing the substrate 111 side. As a result, the position of the LD chip 12 in the vertical direction (perpendicular to the substrate surface) can be improved compared to the case where the opening 311 on the upper surface of the groove 31 of the LD chip 12 is directed upward (opposite to the substrate 111 side). Margins in alignment can be improved.
 このとき、基板を除去したLDチップ12を薄膜フィルム状にして可視光が透過するようにすることで、画像認識を用いて自己形成導波路131の上方からLDチップ12を近接させて搭載することができる。 At this time, the LD chip 12 from which the substrate has been removed is formed into a thin film so as to transmit visible light, so that the LD chip 12 can be mounted close to the self-formed waveguide 131 from above using image recognition. can be done.
 また、鉛直方向の製造誤差が生じた場合に、自己形成導波路131が破壊されない範囲で基板側に屈曲(または湾曲)させることで、良好な光接続を得ることができる。 Also, if there is a manufacturing error in the vertical direction, by bending (or curving) the self-forming waveguide 131 toward the substrate side within a range that does not destroy it, good optical connection can be obtained.
 本実施の形態に係る光接続構造によれば、一方の光素子(PLCチップ)11に形成された自己形成導波路131と、他方の光素子(LDチップ)12に形成された凹溝31とを嵌合させることにより、高精度で光接続して、一方の光素子(PLCチップ)11と他、他方の光素子(LDチップ)12を搭載できる。 According to the optical connection structure according to the present embodiment, the self-forming waveguide 131 formed in one optical element (PLC chip) 11 and the concave groove 31 formed in the other optical element (LD chip) 12 , optical connection can be made with high accuracy, and one optical element (PLC chip) 11 and the other optical element (LD chip) 12 can be mounted.
<第3の実施の形態>
 本発明の第3の実施の形態に係る光接続構造について、図13A~Gを参照して説明する。
<Third Embodiment>
An optical connection structure according to a third embodiment of the present invention will be described with reference to FIGS. 13A to 13G.
 第1の実施の形態では、チップを搭載してから自己形成導波路131を形成して接続する例を示した。本実施の形態に係る光接続構造では、一方のチップ(LDチップ)に自己形成導波路131を形成させた後、その自己形成導波路131の構造を用いて位置精度を高める点が異なる。その他の構成は、第1の実施の形態と同様である。 In the first embodiment, an example is shown in which the self-forming waveguide 131 is formed and connected after mounting the chip. The optical connection structure according to the present embodiment is different in that after the self-formed waveguide 131 is formed in one chip (LD chip), the positional accuracy is enhanced using the structure of the self-formed waveguide 131 . Other configurations are the same as those of the first embodiment.
<光接続構造の構成>
 光接続構造は、図13Gに示すように、PLCチップ11と、LDチップ12と、PLCチップ11とLDチップ12との間に自己形成導波路131とを備える。ここで、PLCチップ11のPLC端面に、PLCチップ11の上面とPLC端面に開口部を有する凹溝41を備える。また、凹溝41は、自己形成導波路131と嵌合する。他の構成は、第1の実施の形態と同様である。
<Configuration of Optical Connection Structure>
The optical connection structure includes a PLC chip 11, an LD chip 12, and a self-forming waveguide 131 between the PLC chip 11 and the LD chip 12, as shown in FIG. 13G. Here, the PLC end surface of the PLC chip 11 is provided with a concave groove 41 having openings on the upper surface of the PLC chip 11 and the PLC end surface. Also, the groove 41 is fitted with the self-forming waveguide 131 . Other configurations are the same as those of the first embodiment.
<光接続構造の製造方法>
 初めに、ウェハ上にLDチップ12を周期的に配置して一括形成した後、スクライブラインに従って、基板121の途中までダイシング装置でハーフカットし、LDウェハ溝42を形成する。
<Method for Manufacturing Optical Connection Structure>
First, after the LD chips 12 are periodically arranged on the wafer and collectively formed, the substrate 121 is half-cut along the scribe lines to the middle of the substrate 121 to form the LD wafer grooves 42 .
 次に、第1の実施の形態における製造工程と同様に、樹脂硬化光15を、第2の受光導光部124から光を入射し、SiN導波路端面127から出射し、LDウェハ溝42に充填された光硬化樹脂14に照射する。これにより、樹脂を硬化させて自己形成導波路131を適当な長さに形成する。次に、自己形成導波路131の周囲の未硬化部分を除去する(図13A、B)。 Next, similarly to the manufacturing process in the first embodiment, the resin curing light 15 is incident from the second light receiving light guide portion 124 and emitted from the SiN waveguide end surface 127 to the LD wafer groove 42. The filled photocurable resin 14 is irradiated. Thereby, the resin is cured to form the self-formed waveguide 131 with an appropriate length. Next, the uncured portion around the self-formed waveguide 131 is removed (FIGS. 13A, B).
 次に、へき開などによりLDチップ12を個片化する(図13C)。 Next, the LD chip 12 is singulated by cleaving or the like (Fig. 13C).
 一方、ウェハに、図13D、Eに示すように、PLCチップ11を形成し、PLC端面に凹溝41を形成する。ここで、凹溝41は、PLCチップ11のPLC端面と上面に開口部を有する。 On the other hand, as shown in FIGS. 13D and 13E, PLC chips 11 are formed on the wafer, and concave grooves 41 are formed on the PLC end faces. Here, the concave groove 41 has openings on the PLC end surface and the upper surface of the PLC chip 11 .
 LDチップ12上面を基板111側に向けて(フリップして)、PLC端面の凹溝41に自己形成導波路131を嵌合させて、LDチップ12をウェハの凹部115に搭載・接合する(図13F、G)。 The upper surface of the LD chip 12 is directed (flipped) to the substrate 111 side, and the self-formed waveguide 131 is fitted into the concave groove 41 of the PLC end face, and the LD chip 12 is mounted and bonded to the concave portion 115 of the wafer (Fig. 13F, G).
 このとき、LDチップ12の裏面(基板121側)からLDチップ12側のSiN導波路123の位置を直接画像認識で把握できないが、自己形成導波路131がLD端面から突出しているので、画像認識でSiN導波路123の位置を検出することができる。 At this time, the position of the SiN waveguide 123 on the LD chip 12 side cannot be grasped by direct image recognition from the back surface (substrate 121 side) of the LD chip 12, but since the self-formed waveguide 131 protrudes from the LD end face, image recognition , the position of the SiN waveguide 123 can be detected.
 さらに、自己形成導波路131が凹溝41に嵌合することで、構造的に位置精度を高めることができる。 Furthermore, by fitting the self-formed waveguide 131 into the groove 41, it is possible to structurally improve the positional accuracy.
 本実施の形態に係る光接続構造によれば、一方のチップに形成された自己形成導波路131と、他方のチップに形成された凹部とを嵌合させることにより、高精度で光接続して、一方のチップと他方のチップを搭載できる。また、搭載するチップの基板側から画像認識する場合に、チップ端から突出する自己形成導波路131により、搭載するチップの導波路位置を把握して画像認識できる。 According to the optical connection structure according to the present embodiment, by fitting the self-forming waveguide 131 formed in one chip and the concave portion formed in the other chip, optical connection can be achieved with high accuracy. , can be loaded with one chip and the other. Further, when recognizing an image from the substrate side of the chip to be mounted, the position of the waveguide of the chip to be mounted can be grasped by the self-formed waveguide 131 projecting from the chip end and the image can be recognized.
 本発明の実施の形態では、光接続構造の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光接続構造の機能を発揮し効果を奏するものであればよい。 In the embodiment of the present invention, an example of the structure, dimensions, materials, etc. of each component is shown in the configuration, manufacturing method, etc. of the optical connection structure, but the present invention is not limited to this. Any material may be used as long as it exhibits the function of the optical connection structure and produces an effect.
 本発明は、光接続構造に関するものであり、光通信等の機器・システムに適用することができる。 The present invention relates to an optical connection structure, and can be applied to devices and systems such as optical communication.
10 光接続構造
11 第1光素子
111 第1の基板
113 第1の導波路
114 第1の受光導光部
12 第2光素子
123 第2の導波路
131 自己形成導波路
10 Optical Connection Structure 11 First Optical Element 111 First Substrate 113 First Waveguide 114 First Light Receiving Light Guide Section 12 Second Optical Element 123 Second Waveguide 131 Self-formed Waveguide

Claims (6)

  1.  第1の基板に配置され、第1の光導波路を有する第1の光素子と、
     第2の光導波路を有する第2の光素子と、
     前記第1の光導波路の一端と前記第2の光導波路の一端とを接続する自己形成導波路と、
     前記第1の光導波路の他端に配置される第1の受光導光部と
    を備える光接続構造。
    a first optical element disposed on a first substrate and having a first optical waveguide;
    a second optical element having a second optical waveguide;
    a self-forming waveguide connecting one end of the first optical waveguide and one end of the second optical waveguide;
    an optical connection structure comprising: a first light receiving light guiding portion arranged at the other end of the first optical waveguide;
  2.  前記第2の光導波路の他端に配置される第2の受光導光部を備える
     ことを特徴とする請求項1に記載の光接続構造。
    2. The optical connection structure according to claim 1, further comprising a second light-receiving light guide section arranged at the other end of the second optical waveguide.
  3.  前記第1の受光導光部と前記第2の受光導光部との少なくともいずれか一方は、前記第1の基板の鉛直方向に入射した光の少なくとも一部を、前記第1の基板の水平方向に変換する変換構造を有する
     ことを特徴とする請求項2記載の光接続構造。
    At least one of the first light-receiving light guide section and the second light-receiving light guide section redirects at least a part of the light incident in the vertical direction of the first substrate to the horizontal direction of the first substrate. 3. The optical connection structure according to claim 2, further comprising a conversion structure for changing direction.
  4.  前記第1の光素子と前記第2の光素子といずれか一方の端部に、いずれか他方の端面と対向する一の端面と上面に開口部を有する溝を備え、
     前記一方の端面と平行な、前記溝の側面に、前記第1の光導波路と前記第2の光導波路といずれか一方の端面が露出され、
     前記自己形成導波路が前記溝に機械的に嵌合する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の光接続構造。
    One end of the first optical element and the second optical element has a groove having an opening on one end surface facing the other end surface and on the upper surface,
    Either one of the first optical waveguide and the second optical waveguide is exposed on a side surface of the groove parallel to the one end face,
    The optical connection structure according to any one of claims 1 to 3, wherein the self-forming waveguide is mechanically fitted into the groove.
  5.  第1の光導波路と前記第1の光導波路の他端に配置される第1の受光導光部とを有する第1の光素子と、第2の光導波路と前記第2の光導波路の他端に配置される第2の受光導光部とを有する第2の光素子とを光接続する光接続構造の製造方法であって、
     第1の基板に、複数の前記第1の光素子を一括で形成する工程と、
     第2の基板に、複数の前記第2の光素子を一括で形成して、前記第2の光素子をチップ化する工程と、
     前記第1の光導波路の端面と、前記第2の光導波路の端面とを近接させて、前記第1の光素子と前記第2の光素子を固定する工程と、
     前記第1の光導波路の端面と、前記第2の光導波路の端面との間に、光硬化樹脂を充填するする工程と、
     樹脂硬化光が、露光マスクの開口部を通して、前記第1の受光導光部と前記第2の受光導光部に入射するように露光し、前記樹脂硬化光を前記光硬化樹脂に照射し、自己形成導波路を形成する工程と、
     前記自己形成導波路の周囲に、前記自己形成導波路の屈折率より低い屈折率を有するクラッドを形成する工程と
     を備える光接続構造の製造方法。
    a first optical element having a first optical waveguide and a first light receiving light guide portion arranged at the other end of the first optical waveguide; a second optical waveguide; A method for manufacturing an optical connection structure for optically connecting a second optical element having a second light-receiving light guide portion arranged at an end, comprising:
    collectively forming a plurality of the first optical elements on a first substrate;
    a step of collectively forming a plurality of the second optical elements on a second substrate and chipping the second optical elements;
    bringing the end surface of the first optical waveguide and the end surface of the second optical waveguide close to each other to fix the first optical element and the second optical element;
    filling a photocurable resin between the end face of the first optical waveguide and the end face of the second optical waveguide;
    exposing the resin curing light to enter the first light receiving light guide portion and the second light receiving light guide portion through the openings of the exposure mask, irradiating the photocurable resin with the resin curing light; forming a self-forming waveguide;
    forming a clad having a lower refractive index than the self-formed waveguide around the self-formed waveguide.
  6.  前記露光マスクの開口部に回折格子を備える
     ことを特徴とする請求項5に記載の光接続構造の製造方法。
    6. The method of manufacturing an optical connection structure according to claim 5, wherein a diffraction grating is provided in the opening of the exposure mask.
PCT/JP2021/022912 2021-06-16 2021-06-16 Optical connection structure and method for manufacturing same WO2022264329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023528855A JPWO2022264329A1 (en) 2021-06-16 2021-06-16
PCT/JP2021/022912 WO2022264329A1 (en) 2021-06-16 2021-06-16 Optical connection structure and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022912 WO2022264329A1 (en) 2021-06-16 2021-06-16 Optical connection structure and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2022264329A1 true WO2022264329A1 (en) 2022-12-22

Family

ID=84526470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022912 WO2022264329A1 (en) 2021-06-16 2021-06-16 Optical connection structure and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2022264329A1 (en)
WO (1) WO2022264329A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187432A1 (en) * 2001-05-07 2002-12-12 Dawes Steven B. Waveguides and method of making them
JP2007505355A (en) * 2003-09-09 2007-03-08 ゼネラル・エレクトリック・カンパニイ Waveguide forming method and waveguide formed thereby
JP2008107750A (en) * 2006-09-27 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Method of connecting optical component
JP2020052269A (en) * 2018-09-27 2020-04-02 沖電気工業株式会社 Optical chip, optical integrated circuit and optical module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187432A1 (en) * 2001-05-07 2002-12-12 Dawes Steven B. Waveguides and method of making them
JP2007505355A (en) * 2003-09-09 2007-03-08 ゼネラル・エレクトリック・カンパニイ Waveguide forming method and waveguide formed thereby
JP2008107750A (en) * 2006-09-27 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Method of connecting optical component
JP2020052269A (en) * 2018-09-27 2020-04-02 沖電気工業株式会社 Optical chip, optical integrated circuit and optical module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAHLVES, MAIK ET AL.: "Polymer-based transmission path for communication and sensing applications", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 37, no. 3, 31 October 2018 (2018-10-31), pages 729 - 735, XP011711477, DOI: 10.1109/JLT.2018.2878291 *
SAITO, YOHEI ET AL.: "Tapered self-written waveguide between silicon photonics chip and standard single-mode fiber", 2020 OPTICAL FIBER COMMUNICATION CONFERENCES AND EXHIBITION (2020, 8 March 2020 (2020-03-08), pages 1 - 3, XP033767590, DOI: 10.1364/OFC.2020.W1A.2 *

Also Published As

Publication number Publication date
JPWO2022264329A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US20180306991A1 (en) Optical module including silicon photonics chip and coupler chip
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
JP6461786B2 (en) Opto-electric hybrid device and manufacturing method thereof
KR100277695B1 (en) Method for manufacturing a substrate for hybrid optical integrated circuit using S-O optical waveguide
US8542963B2 (en) Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system
US7627210B2 (en) Manufacturing method of optical-electrical substrate and optical-electrical substrate
US20050196094A1 (en) Optical bridge for chip-to-board interconnection and methods of fabrication
US8100589B2 (en) Optical module and optical waveguide
JP6770361B2 (en) Optical wiring module, optical transceiver, and optical connection method
JP3731542B2 (en) Optical module and optical module mounting method
KR19980030121A (en) Optical module with lens aligned in V-groove and manufacturing method thereof
US6791675B2 (en) Optical waveguide path, manufacturing method and coupling method of the same, and optical waveguide path coupling structure
JP2020533632A (en) Hybrid integration of photonic chips that combine on a single side
US10996405B2 (en) Fiber coupler with an optical window
JPH08264748A (en) Optical waveguide integrated circuit device and its manufacture
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
WO2022264329A1 (en) Optical connection structure and method for manufacturing same
JP2001272565A (en) Method for forming optical waveguide and method for manufacturing optical transmitter-receiver
JP2017198778A (en) Optical wiring packaging structure, optical module, and electronic apparatus
JP2006039255A (en) Optical coupling device and its manufacturing method
KR20000004926A (en) Process for the hybrid intergration of at least one opto electronic component,a waveguide and an intergrated electro optical device.
WO2022190351A1 (en) Optical connection structure, package structure, optical module, and method for manufacturing package structure
WO2022264322A1 (en) Optical circuit device
WO2022208662A1 (en) Optical connection structure, package structure, and optical module
WO2022264321A1 (en) Package structure of optical circuit device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE