WO2022264322A1 - Optical circuit device - Google Patents

Optical circuit device Download PDF

Info

Publication number
WO2022264322A1
WO2022264322A1 PCT/JP2021/022897 JP2021022897W WO2022264322A1 WO 2022264322 A1 WO2022264322 A1 WO 2022264322A1 JP 2021022897 W JP2021022897 W JP 2021022897W WO 2022264322 A1 WO2022264322 A1 WO 2022264322A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
resin
circuit device
optical circuit
curing light
Prior art date
Application number
PCT/JP2021/022897
Other languages
French (fr)
Japanese (ja)
Inventor
光太 鹿間
洋平 齊藤
昇男 佐藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/022897 priority Critical patent/WO2022264322A1/en
Priority to JP2023528848A priority patent/JPWO2022264322A1/ja
Publication of WO2022264322A1 publication Critical patent/WO2022264322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Definitions

  • the present invention relates to optical circuit devices using self-forming waveguides.
  • optical transmission such as an optical waveguide or an optical fiber is performed between a light emitting element such as a laser diode (LD) and a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • a light emitting element such as a laser diode (LD)
  • a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • Signal processing is realized by transmission using a medium.
  • the optical light emitting element is integrated with an optical modulation element or the like, or connected discretely, and further connected to a driver or the like that performs electrical-to-optical conversion.
  • a configuration including these light emitting elements, light modulating elements, drivers, etc. is mounted as an optical transmitter on an electrical mounting board such as a printed circuit board (PCB).
  • PCB printed circuit board
  • the light-receiving element is appropriately integrated with an optical processor or the like, or connected discretely, and further connected with an electric amplifier circuit for performing optical-electrical conversion.
  • a configuration including these light receiving element, optical processor, electric amplifier circuit, etc. is mounted on a printed circuit board as an optical receiver.
  • Optical interconnection is achieved by mounting an optical transceiver, which integrates an optical transmitter and an optical receiver, in a package or on a printed circuit board and optically connecting it to an optical transmission medium such as an optical fiber. It is also, depending on the topology, it is realized through a repeater such as an optical switch.
  • III-V group semiconductors such as indium phosphide (InP), gallium arsenide (GaAs), and indium gallium arsenide (InGaAs) are used as light emitting devices, light receiving devices, and light modulation devices.
  • optical waveguide type optical transceivers have been developed in which a silicon optical circuit (silicon photonics) having a light propagation mechanism, an indium phosphorous optical circuit, or the like are integrated.
  • materials such as ferroelectrics such as lithium niobate and polymers may also be used as light modulation elements.
  • optical functional elements such as planar lightwave circuits made of silica glass are sometimes integrated together with the above light emitting elements, light receiving elements, and light modulating elements.
  • Optical functional devices include splitters, wavelength multiplexers/demultiplexers, optical switches, polarization control devices, optical filters, and the like.
  • an optical waveguide device a device in which a light emitting device, a light receiving device, an optical modulation device, an optical functional device, a light amplifying device, etc. having the above light propagation and waveguiding mechanisms are integrated will be referred to as an optical waveguide device.
  • optical waveguide devices optical waveguide devices using silicon photonics excel in integration, mass production, and compatibility with electrical components, and are attracting attention as key devices in realizing next-generation optical interconnection.
  • One of the representative methods for connecting an optical circuit device and an optical waveguide such as an optical fiber is to butt the optical circuit and the optical waveguide against one or more end faces that are responsible for the optical input/output of the optical circuit. It is a structure to connect.
  • an optical fiber array which is one of the optical waveguides, is integrated with glass or the like in which a V-groove is formed, and each core of the optical fiber and each core of the optical circuit device in this array structure are positioned. connected.
  • alignment position
  • An optical connection technology using a self-forming waveguide has been proposed as a technology for connecting while relaxing this positioning accuracy.
  • This technique forms a self-forming waveguide by filling a photocurable resin between waveguide cores to be connected and irradiating the photocurable resin with resin curing light from the cores to be connected. At this time, by emitting resin curing light from both waveguide cores to be connected, self-forming waveguides are formed so as to absorb the positional error of each core, and connection loss is reduced.
  • a self-forming waveguide core 821 is formed by irradiating resin curing light from a core 814 of an optical circuit device 81, and one side of the self-forming waveguide core 821 is formed.
  • the end face is connected to the core 814 end face of the optical circuit device 81 .
  • one end face of the self-forming waveguide core is connected to the optical fiber to be connected (not shown).
  • the optical circuit device may be any known optical circuit device, but in silicon photonics, for example, it is difficult to propagate light in the visible to ultraviolet range, which is the wavelength of general resin curing light. Therefore, as shown in FIGS. 14A and 14B, a second waveguide core 814 made of SiON, SiN, SiO2, or the like, which is transparent in the same wavelength range, is provided. A second waveguide core 814 is provided on top of the first waveguide core 813 and functions as a spot size converter at the signal wavelength.
  • the resin curing light 84 propagates through the second waveguide cores 814 and 814_2 and is emitted from the end surface of the optical circuit core. At this time, as a method of inputting the resin curing light to the second waveguide core 814 , the resin curing light 84 is input by abutting the optical fiber 83 against one end of the second waveguide core 814 .
  • an optical fiber having a core coaxial with the optical circuit core at one end of the waveguide core is used to form a resin. It was necessary to enter for hardening.
  • a self-forming waveguide core hereinafter referred to as a "resin core"
  • the input optical fiber, the optical circuit device, the resin core, and the other to be connected are separated from each other. Since optical fibers and optical circuit devices (not shown) are arranged, a large footprint is required.
  • an optical circuit device includes a waveguide substrate, An optical circuit device comprising: an undercladding; a core through which resin curing light is guided; and a resin clad having a refractive index smaller than that of the resin core, the resin curing light being guided at one end of the optical circuit device. It is characterized in that the surface of the other end portion of the optical circuit device, which is emitted from the core, is inclined toward the waveguide substrate side.
  • an optical circuit device is an optical circuit device comprising, in order, a waveguide substrate, an undercladding, a core through which resin curing light is guided, and an overcladding, wherein the resin is added to the photocurable resin.
  • a resin core that is cured by being irradiated with curing light; and a resin clad that is disposed around the resin core and has a lower refractive index than the resin core, wherein the resin curing light is irradiated with the At one end of the optical circuit device, the resin curing light is emitted from the core through which the resin curing light is guided, and a part of the surface of the optical circuit device is inclined toward the core through which the resin curing light is guided. characterized by
  • an optical circuit device is an optical circuit device comprising, in order, a waveguide substrate, an undercladding, a core through which resin curing light is guided, and an overcladding, wherein the resin is added to the photocurable resin.
  • a resin core that is cured by being irradiated with curing light; and a resin clad that is disposed around the resin core and has a lower refractive index than the resin core, wherein the resin curing light is irradiated with the At one end of the optical circuit device, the core through which the resin curing light is guided is emitted, and an optical path changing component is connected to or close to the core through which the resin curing light is guided at the other end surface of the optical circuit device. characterized by
  • an optical circuit device capable of improving manufacturing process efficiency can be provided.
  • FIG. 1 is a schematic side sectional view showing the configuration of an optical circuit device according to the first embodiment of the present invention.
  • FIG. 2A is a schematic side sectional view showing the configuration of the optical circuit device according to the first embodiment of the invention.
  • FIG. 2B is a schematic top cross-sectional see-through view showing the configuration of the optical circuit device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic side sectional view showing an example of the configuration of the optical circuit device according to the first embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a second embodiment of the invention.
  • FIG. 5 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a third embodiment of the invention.
  • FIG. 1 is a schematic side sectional view showing the configuration of an optical circuit device according to the first embodiment of the present invention.
  • FIG. 2A is a schematic side sectional view showing the configuration of the optical circuit device according to the first embodiment
  • FIG. 6 is a schematic cross-sectional side view showing an example of the configuration of an optical circuit device according to the third embodiment of the invention.
  • FIG. 7A is a schematic side cross-sectional view showing the configuration of an optical circuit device according to a fourth embodiment of the present invention;
  • FIG. 7B is a schematic side sectional view showing an example of the configuration of the optical circuit device according to the fourth embodiment of the invention.
  • FIG. 8 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a fifth embodiment of the invention.
  • FIG. 9 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to the sixth embodiment of the invention.
  • FIG. 10 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to the sixth embodiment of the invention.
  • FIG. 11 is a schematic cross-sectional side view showing an example of the configuration of an optical circuit device according to the sixth embodiment of the invention.
  • FIG. 12 is a schematic side sectional view showing the configuration of an optical circuit device according to the seventh embodiment of the invention.
  • FIG. 13A is a schematic side cross-sectional view showing an example of the configuration of an optical circuit device according to the seventh embodiment of the present invention;
  • FIG. 13B is a schematic side cross-sectional view showing an example of the configuration of the optical circuit device according to the seventh embodiment of the present invention;
  • FIG. 13C is a schematic side cross-sectional view showing an example of the configuration of an optical circuit device according to the seventh embodiment of the present invention;
  • FIG. 13A is a schematic side cross-sectional view showing an example of the configuration of an optical circuit device according to the seventh embodiment of the present invention.
  • FIG. 13B is a schematic side cross-sectional view showing an example of the configuration of the optical circuit device according to the seventh embodiment of the present invention;
  • FIG. 13C
  • FIG. 13D is a schematic cross-sectional side view showing an example of the configuration of the optical circuit device according to the seventh embodiment of the present invention.
  • FIG. 14A is a schematic side sectional view showing the configuration of a conventional optical circuit device.
  • FIG. 14B is a schematic top sectional perspective view showing the configuration of a conventional optical circuit device.
  • FIG. 1 An optical circuit device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 An optical circuit device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 An optical circuit device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 An optical circuit device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the optical circuit device 11 includes, in order, a waveguide substrate 111, an undercladding 112, a first waveguide core 113, a second waveguide core 114, and an overcladding. 115 , and a photocurable resin core (hereinafter referred to as “resin core”) 121 and a photocurable resin clad (hereinafter referred to as “resin clad”) 122 of the self-formed waveguide.
  • resin core photocurable resin core
  • resin clad photocurable resin clad
  • the waveguide layer of the optical circuit device 11 is composed of an undercladding 112 , a first waveguide core 113 , a second waveguide core 114 and an overcladding 115 .
  • the resin curing light emitted from the second waveguide core 114 of the optical circuit device 11 is applied to the photocurable resin arranged on the emitting surface, and the photocurable resin core (hereinafter referred to as “resin core”) .) 121 is formed. As a result, the resin core 121 is connected to the surface from which the resin curing light is emitted.
  • resin curing light is incident from an arbitrary end face (referred to as a “resin curing light incident end face” or “incidence end face”) near 116 (including the end face), and other end faces (“resin curing light 117 (including the end face).
  • a resin curing light incident end face or “incidence end face”
  • other end faces resin curing light 117 (including the end face).
  • the end surface 116 for incidence of resin curing light and the end surface 117 for emission of resin curing light are arranged at positions facing each other.
  • the direction in which light is guided in the second waveguide core 114 in the vicinity of the resin curing light output end face 117 in the optical circuit device 11 (the X direction in the drawing) is defined as " The direction perpendicular to the longitudinal direction (the Y direction in the drawing, the depth direction on the paper surface) is defined as the "width direction,” and the direction perpendicular to the horizontal plane (surface of the waveguide substrate 111) (the Z direction) is defined as the "longitudinal direction of the optical circuit core.” "thickness direction”.
  • the resin core 121 is connected to the end surface of the second waveguide core 114 at the output end surface 117 .
  • the surface of the incident end surface 116 is inclined so as to face the waveguide substrate 111 side (downward in this embodiment) as the optical path conversion structure.
  • the "surface” of the surface refers to the surface facing the outside of the optical circuit device 11 and the surface on the side that comes into contact with the external environment such as the atmosphere.
  • a plurality of first waveguide cores 113 and second waveguide cores 114 are arranged in the width direction (Y direction) (not shown).
  • the optical circuit device 11 is a known silicon photonics chip, an optical waveguide layer is formed on a BOX layer 112 on a waveguide substrate 111, and the thickness of the waveguide substrate 111 is, for example, a standard silicon wafer thickness. It is 625 ⁇ m, which is the height.
  • the light-emitting element, light-receiving element, modulation element, optical functional element, etc. described in the background are integrated, and electrical wiring layers, electrical pads, etc. are also integrated as necessary.
  • the optical circuit device 11 is integrated in a hybrid manner with an optical transmission element, an optical modulation element, and the like made of a compound semiconductor or the like, if necessary.
  • the optical circuit device 11 is mounted and fixed on a subcarrier, a package, an electric wiring board, or the like.
  • a silicon photonics chip is equipped with an optical input/output unit for inputting/outputting light to the outside on at least one optical input/output end face, and a spot size converter (SSC, arrow 113_2 in FIG. 2B) as an edge coupler is an optical circuit. accumulated within.
  • SSC spot size converter
  • the mode field diameter of the light propagation mode in the optical circuit of silicon photonics is very small, 1 ⁇ m or less. ) is done.
  • the Si fine wire 113 which is the first waveguide core, is formed in a tapered shape such that the tip shape becomes thinner.
  • a second waveguide core 114 is formed to cover the first waveguide core (Si wire) 113 or to be close to the first waveguide core (Si wire) 113 .
  • the tapered Si wire it becomes difficult for light to be confined in the Si core, and the mode field diameter widens. transitions to the second waveguide core 114 .
  • the second waveguide core 114 is arranged to be optically coupled to the first waveguide core 113 .
  • the material of the second waveguide core 114 is SiON, for example.
  • the shape of the Si wire 113 As for the shape of the Si wire 113, a non-linear tapered shape, a multi-stage tapered shape, or an SSC structure consisting of a discontinuous body of a Si core and a glass material, known as segmented SSC, may be used as needed.
  • the second waveguide core 114 is made of a material capable of propagating the curing wavelength of the photocurable resin, and may be made of glass, SiON, polymer, or the like other than SiON.
  • a resin core 121 made of a photocurable resin extends along the length of the optical circuit core so as to be in contact with the end surface of a core (second waveguide core) 114 responsible for optical input/output of the optical circuit device 11. formed in the direction
  • the photocurable resin is a known resin that reacts to a specific wavelength and undergoes a curing reaction.
  • acrylic resin, epoxy resin, silicone resin, urethane resin, oxetane resin, organic-inorganic hybrid, modified products thereof, or Substituents and the like can be used, and materials known as photoresists may be used.
  • the curing wavelength can be arbitrarily designed by adding an initiator, a dye, and the like, and for example, wavelengths from ultraviolet light to visible light can be used.
  • the photocurable resin core 121 is formed by gradually curing uncured resin by resin curing light emitted from the end surface of the second waveguide core 114, and is in contact with the second waveguide core 114.
  • a resin clad 122 is arranged around the resin core 121 .
  • the refractive index of the resin clad 122 is lower than that of the photocurable resin core 121 in the signal wavelength band.
  • Known acrylic resins, epoxy resins, silicone resins, urethane resins, oxetane resins, and the like can be used as the resin clad material, and halogen-substituted compounds such as fluorination may be used as appropriate to adjust the refractive index.
  • the cross-sectional shape of the photo-curing resin core 121 is arbitrary, it is formed to have a shape similar to the mode distribution from the optical circuit core.
  • a Gaussian beam has a shape close to a circular cross section.
  • the mode shape may be elliptical.
  • the resin core 121 is connected to an optical component such as an optical fiber to be connected or a second optical circuit device, and functions as an intermediary waveguide.
  • optical component such as an optical fiber to be connected or a second optical circuit device, and functions as an intermediary waveguide.
  • optical fibers, optical circuit devices, polymer waveguides, etc., to be connected are omitted in the drawings.
  • FIG. It As the layout of the optical circuit of this embodiment, as shown in FIG. It is configured to receive light.
  • the end face (incidence end face) 116 on the resin curing light input side is arranged at a position facing the emission end face 117 on which the resin core 121 is formed, but it may be arranged on any surface. good.
  • the end face in the depth direction (Y+ direction) or the front direction (Y ⁇ direction) of the paper surface may be used as the incident end face 116 .
  • the resin curing light input portion of the second waveguide core 114 may be arranged on the same surface as the surface in contact with the resin core 121 or may be provided inside the optical circuit device 11 .
  • the incident end surface 116 is inclined toward the waveguide substrate 111 side (downward in FIG. 1).
  • the end surface has an inclination angle such that the overcladding 115 of the optical circuit device 11 protrudes relative to the waveguide substrate 111 in the X-direction.
  • This inclined end face (hereinafter referred to as "resin curing light incident oblique end face” or “incident oblique end face”) 116 is formed by machining such as dicing or polishing, and is set at an angle of, for example, 45°.
  • the input optical fiber 21 is arranged on the upper surface of the optical circuit device 11 (waveguide layer) near the incident oblique end face 116, and the resin curing light 22 is input.
  • the resin curing light 22 is emitted light from an LD with a wavelength of 405 nm, for example, and propagates through the input optical fiber 21 .
  • the resin curing light 22 is reflected at the rear surface of the oblique end face 116 for incidence, is converted by 90°, is coupled to the second waveguide core 114, and propagates through the second waveguide core 114. Later, the light is emitted from the emission end face 117 filled with uncured photocurable resin.
  • a resin core 121 is formed as a self-forming waveguide according to the resin curing light 22 .
  • the photocurable resin may be used as it is as the clad material.
  • the refractive index difference of the waveguide can be obtained by the resin characteristics
  • the photocurable resin may be used as it is as the clad material.
  • the refractive index is kept lower than that of the photocurable resin core 121, and the resin is used as it is as a clad material.
  • a lens or the like may be inserted between the input optical fiber 21 and the optical circuit device 11 .
  • a lens may be provided on the top surface of the optical circuit or on the end surface of the input optical fiber 21 .
  • the width of the second waveguide core 114 is designed to be widened as necessary in the vicinity of the resin curing light input portion, that is, the optical path changing structure.
  • the second waveguide core 114 has a width of about 2 to 4 ⁇ m in the SSC portion, but is expanded to about 10 to 50 ⁇ m in the vicinity of the resin curing light input portion.
  • the positioning accuracy of the resin curing light can be designed looser than the positioning accuracy of the conventional method.
  • the alignment accuracy of the resin curing light can be aligned based on the image observation accuracy from the top surface, for example, even if the alignment accuracy is not active alignment.
  • the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, so that the footprint can be significantly reduced.
  • the core position can be adjusted and positioned by image observation from the upper surface of the optical circuit device, mounting workability (manufacturing process efficiency) can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • optical circuit devices other than silicon photonics, such as InP integrated circuits, quartz PLCs, and LN circuits.
  • a quartz-based PLC may be used as the optical circuit device 11.
  • Si wires and InP waveguides strongly absorb visible light to ultraviolet light, which is resin curing light, but quartz PLC, LN, polymer, etc. can propagate resin curing light, and the second waveguide is unnecessary.
  • the entire optical circuit device 11 and resin core 121 may be covered with a clad (resin) 122 .
  • the oblique end face 116 for incidence of resin curing light may be coated with a high reflection film 118 .
  • a highly reflective film coat can be easily formed by vapor-depositing a dielectric multilayer film, metal, or the like. Thereby, the reflection efficiency of reflection can be made sufficiently high.
  • any known optical fiber may be used as the optical fiber.
  • an optical waveguide device such as a polymer waveguide may be used as an optical component other than an optical fiber.
  • an optical path conversion of 90° by a 45° mirror is shown as an example, the angle may be changed to a predetermined design value if it is possible to input light to the waveguide core and resin curing light can be input from the upper surface.
  • the angle of inclination of the reflecting surface is not limited to this. Any angle may be used as long as the curing light can be incident on the waveguide core.
  • the basic components are the same as in the first embodiment, the optical circuit device is an InP circuit, and the second waveguide core 114 is polymer.
  • an oblique end surface 131 for resin curing light incidence is formed in the optical circuit device as an optical path conversion structure.
  • the surface of the oblique end surface 131 for incidence of resin curing light is inclined toward the overcladding 115 side.
  • a certain gap is provided between the oblique end surface 131 for incidence of resin curing light and the second waveguide core 114 through which the resin curing light is propagated.
  • the resin curing light is input from the upper surface of the optical circuit device 11 (waveguide), and is reflected by the highly reflective film 132 on the oblique end surface 131 for resin curing light incidence, so that the optical path is converted, and the light path is changed to the second waveguide core 114. is entered.
  • any known method may be used for forming a mirror structure in such an optical circuit device.
  • it can be formed by machining with a blade having a specified angle using dicing or the like.
  • it can be formed using an etching technique in a wafer process.
  • another rectangular groove may be formed and then resin may be applied to utilize surface tension to form a similar mirror shape.
  • the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • manufacturing efficiency can be greatly improved because the oblique end face can be formed in a batch process, such as a wafer process, rather than for each chip.
  • manufacturing efficiency can be greatly improved because the oblique end faces can be formed in a batch process, such as a wafer process, rather than for each chip.
  • the size of the optical circuit device can be reduced.
  • FIG. 5 An optical circuit device according to a third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • FIG. 5 An optical circuit device according to a third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • FIG. 5 An optical circuit device according to a third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • FIG. 5 An optical circuit device according to a third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • the difference from the first embodiment is that, as shown in FIG. 5, as an optical path conversion structure, an oblique end surface for resin curing light incidence is not provided in the optical circuit device, and an optical path conversion component 31 is provided on the end surface of the optical circuit device. 116 and integrated.
  • the surface of the inclined surface of the optical path conversion component 31 is inclined downward.
  • the optical path conversion component is, for example, a mirror component such as a prism mirror, and is made of glass, Si, polymer, or the like.
  • the optical path conversion component 31 is fixed to the optical circuit device 11 with an adhesive.
  • the resin curing light is input from the end face parallel to the top surface of the optical circuit device in the optical path changing component, reflected on the back surface of the inclined surface of the optical path changing component, and the optical path is changed, and is input to the second waveguide core 114. be done.
  • the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
  • a beam diameter adjusting component 33 may be provided by connecting to the end face of the optical path converting component 31 on the resin curing light incident side.
  • the beam diameter of the light expands, so the beam diameter is likely to be mismatched with the second waveguide core.
  • a beam diameter adjusting component 33 such as a lens, a GRIN lens, a GI fiber, or the like is used to adjust the beam diameter to a desired beam diameter at the second waveguide core 114 coupling portion. Resin curing light can be easily input to the second waveguide core 114 without diameter mismatch.
  • the difference from the first embodiment is that, as shown in FIGS. 7A and 7B, as an optical path conversion structure, an oblique end surface for resin curing light incidence is not provided in the optical circuit device, and an optical path conversion component 41 is provided in the optical circuit device. is arranged close to the end face of the Here, the surface of the oblique end surface of the optical path conversion component 41 is inclined toward the overcladding 115 side.
  • the optical path conversion component 41 is a mirror component such as a triangular prism mirror (FIG. 7A) or a cube prism mirror (FIG. 7B), and is made of glass, Si, polymer, or the like.
  • the optical path conversion component 41 and the optical circuit device 11 are mounted on a mounting board 42 and fixed by an arbitrary method.
  • the resin curing light is input from the upper surface of the optical path conversion component 41 (upper side in FIGS. 7A and 7B), is reflected by the optical path conversion component 41 to change the optical path, and is input to the second waveguide core 114.
  • a lens, a GRIN lens, a GI fiber, or the like may be used as the beam diameter adjusting component 43 .
  • resin curing light can be easily input to the second waveguide core 114 by adjusting the beam diameter to a desired beam diameter at the coupling portion of the second waveguide core 114 .
  • the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
  • an electrical wiring substrate such as a PCB or a buildup, an electrical rewiring layer made of a thin film made of resin, a ceramic substrate, or an interposer made of Si, glass, glass epoxy, resin, or the like may be used.
  • the figure shows an example of face-up mounting in which the waveguide layer is on the upper surface as mounting of the chip on the substrate, it is of course possible to apply face-down mounting.
  • an optical path conversion component 51 is integrated in the optical circuit device 11 as an optical path conversion structure.
  • the surface of the oblique end surface of the optical path conversion component 51 is inclined toward the overcladding 115 side.
  • the optical path conversion component 51 is, for example, a microprism mirror.
  • the optical circuit device 11 has a groove (terrace, cavity) 52 in which a mirror can be mounted inside the optical circuit device 11, and an optical path conversion component 51 is mounted in this groove 52 and fixed by an arbitrary method.
  • the grooves 52 in the optical circuit device 11 can be formed by any method such as known etching.
  • the resin curing light is input from the upper surface (upper side in FIG. 8) of the optical path changing component 51, and is reflected by the optical path changing component 51 to change the optical path. It is input to the second waveguide core 114 after propagating through the air gap.
  • a lens, a GRIN lens, a GI fiber, etc. are used to adjust the desired beam diameter at the coupling portion of the second waveguide core 114. good too.
  • the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
  • the optical circuit device can be made smaller by integrating the optical path changer in the circuit.
  • FIG. 9 An optical circuit device according to a sixth embodiment of the present invention will be described with reference to FIGS. 9 to 11.
  • FIG. 9
  • the optical circuit device 11 is mounted face down on the mounting substrate 63 as shown in FIG.
  • a known flip-chip connection is used as a face-down mounting method, and connection is made via electrical contacts such as metal.
  • electrical wiring (not shown) and electrical contact pads (not shown) on the mounting substrate 63, which are electrically connected to the electrical wiring (not shown) and electrical contact pads of the optical circuit device. .
  • a reflective structure 61 is provided between the overcladding 115 of the waveguide layer and the electrical contact 62 .
  • Reflective structure 61 is, for example, a gold or aluminum pad for flip-chip bonding.
  • the oblique end surface 116 for resin curing light incidence is inclined toward the waveguide substrate 111 side (upward in FIG. 9).
  • the end faces are formed such that the overcladding 115 of the optical circuit device protrudes relative to the waveguide substrate 111 in the X-direction.
  • the resin curing light 22 is refracted after being input from the waveguide substrate 111 side and is transmitted (propagated) through the waveguide layer.
  • the resin curing light 22 transmitted through the waveguide layer is reflected by the reflecting structure 61 and then transmitted through the waveguide layer again. After that, it is input to the second waveguide core 114 by being reflected by the back surface of the oblique end surface 116 .
  • the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • resin curing light can be input from the thickness direction (upper in FIG. 10) without using an additional mirror component, increasing the degree of freedom in the mounting method of the optical circuit device. can be expanded.
  • through vias may be formed in the mounting substrate, and resin curing light may be input from the through via side.
  • the optical path changing structure 71 is also provided on the output end face 117 side where the resin core is formed.
  • the optical path changing structure 71 can be applied by any method such as total reflection, a mirror, or an oblique end surface.
  • the optical path of the resin curing light emitted after propagating through the second waveguide core 114 is changed by the optical path conversion structure 71 in the vicinity of the output end face 117 including the output end face 117 .
  • the photocurable resin core 121 extends perpendicularly to the longitudinal direction of the optical circuit core (in the thickness direction) and is formed in contact with the upper surface of the overcladding 115 .
  • the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
  • the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
  • connection target on the upper surface, further improve the mounting workability, and increase the degree of freedom in the mounting layout.
  • new structures such as integration of optical circuit devices and optical fibers at the wafer level, integration of optical circuit devices, and exposure of a resin core from the upper surface of a resin mold package can be realized.
  • the resin core 121 can be formed on the upper surface of the overcladding 115 by making the outgoing end face 117 as well as the incoming end face 116 of the resin curing light oblique.
  • another optical path conversion component 72 may be integrated with the output end surface 117.
  • another optical path conversion component 72 may be integrated with the output end surface 117.
  • the optical path conversion component 73 is mounted on the mounting substrate 42, and the resin curing light is input while the photocurable resin is filled between the second waveguide core 114 and the optical path conversion component 73.
  • an optical path changing structure may be formed by the photocurable core 121 by emitting the light.
  • the second waveguide core 114 may be laid out so as to provide a loop circuit, and the end face for inputting and emitting the resin curing light may be arranged on the same end face.
  • the resin curing light input core (optical fiber) and the output core (optical fiber) are arranged side by side in the width direction (Y direction).
  • the reflection is total reflection or reflection with high reflectance. is desirable. It is sufficient that the incident resin curing light is reflected so as to be emitted with an intensity capable of curing the photocurable resin.
  • the present invention relates to optical circuit devices, and can be applied to equipment and systems such as optical communication.

Abstract

This optical circuit device (11) is provided with, in order, a waveguide substrate (111), an undercladding (112), a core through which resin curing light is guided, and an overcladding (115), and is provided with a resin core (121) cured by irradiating a photocurable resin with the resin curing light, and a resin cladding (122) disposed around the resin core and having a lower refractive index than the refractive index of the resin core. The resin curing light is emitted from the core through which the resin curing light is guided at one end of the optical circuit device (11), and the surface of the other end of the optical circuit device (11) is inclined toward the waveguide substrate side. Consequently, the present invention can provide an optical circuit device with which it is possible to improve manufacturing process efficiency.

Description

光回路デバイスOptical circuit device
 本発明は、自己形成導波路を用いる光回路デバイスに関する。 The present invention relates to optical circuit devices using self-forming waveguides.
 近年のインターネットトラフィックの急増に対応すべく、データセンタネットワークの通信容量の拡大が求められる。伝送容量のさらなる拡大および低消費電力化に対応すべく短中距離用途においても光で伝送する光インタコネクションの導入が進んでいる。 In order to respond to the rapid increase in Internet traffic in recent years, it is necessary to expand the communication capacity of the data center network. In order to cope with further expansion of transmission capacity and reduction of power consumption, the introduction of optical interconnection for transmission by light is progressing even for short and medium distance applications.
 光インタコネクションの代表的な方式においては、プリント基板上に配置されたレーザダイオード(LD)などの光発光素子とフォトダイオード(PD)などの光受光素子間を光導波路や光ファイバなどの光伝送媒体を用いて伝送することで信号処理が実現されている。 In a typical optical interconnection system, optical transmission such as an optical waveguide or an optical fiber is performed between a light emitting element such as a laser diode (LD) and a light receiving element such as a photodiode (PD) arranged on a printed circuit board. Signal processing is realized by transmission using a medium.
 伝送方式によっては、光発光素子には、光変調素子などが集積されるか、あるいはディスクリートに接続され、さらに電気-光変換を行うドライバなどが接続される。これら光発光素子、光変調素子、ドライバなどを含む構成が光送信機としてプリント基板(PCB:Printed circuit board)などの電気実装基板上に搭載されている。 Depending on the transmission method, the optical light emitting element is integrated with an optical modulation element or the like, or connected discretely, and further connected to a driver or the like that performs electrical-to-optical conversion. A configuration including these light emitting elements, light modulating elements, drivers, etc. is mounted as an optical transmitter on an electrical mounting board such as a printed circuit board (PCB).
 同様に、光受光素子には、光処理機などが適宜集積されるか、あるいはディスクリートに接続され、さらに光-電気変換を行う電気増幅回路などが接続される。これら光受光素子、光処理機、電気増幅回路などを含む構成が光受信機としてプリント基板上に実装されている。これら光送信機と光受信機とを一体化した光送受信機などがパッケージ内やプリント基板上に搭載され、光ファイバなどの光伝送媒体と光学的に接続されることで、光インタコネクションが実現されている。また、トポロジーによっては、光スイッチなどの中継器などを介して実現されている。 Similarly, the light-receiving element is appropriately integrated with an optical processor or the like, or connected discretely, and further connected with an electric amplifier circuit for performing optical-electrical conversion. A configuration including these light receiving element, optical processor, electric amplifier circuit, etc. is mounted on a printed circuit board as an optical receiver. Optical interconnection is achieved by mounting an optical transceiver, which integrates an optical transmitter and an optical receiver, in a package or on a printed circuit board and optically connecting it to an optical transmission medium such as an optical fiber. It is Also, depending on the topology, it is realized through a repeater such as an optical switch.
 光発光素子や光受光素子、光変調素子としては、シリコンやゲルマニウムなどの半導体や、インジウムリン(InP)やガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs)等に代表されるIII-V族半導体などの材料を用いる素子が実用化されている。近年では、これらの素子と共に、光の伝播機構を有するシリコン光回路(シリコンフォトニクス)やインジウムリン光回路などを集積した光導波路型の光送受信機が発展している。また光変調素子としては、半導体の他に、ニオブ酸リチウムなどの強誘電体系やポリマーなどの材料を用いる場合もある。 Semiconductors such as silicon and germanium, III-V group semiconductors such as indium phosphide (InP), gallium arsenide (GaAs), and indium gallium arsenide (InGaAs) are used as light emitting devices, light receiving devices, and light modulation devices. Devices using materials such as are put into practical use. In recent years, along with these elements, optical waveguide type optical transceivers have been developed in which a silicon optical circuit (silicon photonics) having a light propagation mechanism, an indium phosphorous optical circuit, or the like are integrated. In addition to semiconductors, materials such as ferroelectrics such as lithium niobate and polymers may also be used as light modulation elements.
 更に、上記の光発光素子や光受光素子、光変調素子と共に、石英ガラスなどからなる平面光波回路(Planar Lightwave Circuit)などからなる光機能素子が集積されることがある。光機能素子としてはスプリッタ、波長合分波器、光スイッチ、偏波制御素子、光フィルタなどがある。以降、上記の光の伝播、導波機構を有する光発光素子、光受光素子、光変調素子、光機能素子、光増幅素子などを集積したデバイスを光導波路デバイスと呼ぶこととする。光導波路デバイスの中でもシリコンフォトニクスを用いた光導波路デバイスは集積性、量産性、電気部品との親和性に優れ、次世代の光インタコネクションを実現する上でのキーデバイスとして着目されている。 Furthermore, optical functional elements such as planar lightwave circuits made of silica glass are sometimes integrated together with the above light emitting elements, light receiving elements, and light modulating elements. Optical functional devices include splitters, wavelength multiplexers/demultiplexers, optical switches, polarization control devices, optical filters, and the like. Hereinafter, a device in which a light emitting device, a light receiving device, an optical modulation device, an optical functional device, a light amplifying device, etc. having the above light propagation and waveguiding mechanisms are integrated will be referred to as an optical waveguide device. Among optical waveguide devices, optical waveguide devices using silicon photonics excel in integration, mass production, and compatibility with electrical components, and are attracting attention as key devices in realizing next-generation optical interconnection.
 光回路デバイスと光ファイバをはじめとする光導波路とを接続する代表的な方法の一つは、光回路の光入出力を担う1以上の端面に対して、光回路と光導波路とを突き合わせて接続する構造である。例えば、光導波路の一つである光ファイバを、V溝を形成したガラスなどと一体化された光ファイバアレイとし、このアレイ構造における光ファイバの各コアと光回路デバイスの各コアとを位置決めして接続される。このとき、接続損失を最小化するためには、サブミクロン単位で光回路デバイスの各コアと光ファイバの各コアとを位置決め(以下、調心と呼ぶ)・固定することが必要である。この位置決めでは、光を入出力させてパワーのモニタと同時に調心(光学調心)し、接着剤などを充填させて固定する(アクティブアライメント、非特許文献1)。 One of the representative methods for connecting an optical circuit device and an optical waveguide such as an optical fiber is to butt the optical circuit and the optical waveguide against one or more end faces that are responsible for the optical input/output of the optical circuit. It is a structure to connect. For example, an optical fiber array, which is one of the optical waveguides, is integrated with glass or the like in which a V-groove is formed, and each core of the optical fiber and each core of the optical circuit device in this array structure are positioned. connected. At this time, in order to minimize the connection loss, it is necessary to position (hereinafter referred to as alignment) and fix each core of the optical circuit device and each core of the optical fiber in submicron units. In this positioning, light is input and output, alignment is performed simultaneously with power monitoring (optical alignment), and adhesive or the like is filled and fixed (active alignment, Non-Patent Document 1).
 この位置決め精度を緩和して接続する技術として、自己形成導波路による光接続技術が提案されている。この技術は、光硬化性樹脂を接続対象の導波路コア間に充填させ、接続対象コアから樹脂硬化光を光硬化性樹脂に照射することによって、自己形成導波路を形成する技術である。このとき、それぞれの接続対象である導波路コアの双方から樹脂硬化光を出射することで、それぞれのコアの位置誤差を吸収するように自己形成導波路が形成され、接続損失が低減される。 An optical connection technology using a self-forming waveguide has been proposed as a technology for connecting while relaxing this positioning accuracy. This technique forms a self-forming waveguide by filling a photocurable resin between waveguide cores to be connected and irradiating the photocurable resin with resin curing light from the cores to be connected. At this time, by emitting resin curing light from both waveguide cores to be connected, self-forming waveguides are formed so as to absorb the positional error of each core, and connection loss is reduced.
 これにより、アクティブアライメントを用いない機械的な位置決め精度でも良好な接続損失が得られるので、自己形成導波路技術は、光回路デバイスの実装性向上に向けて期待されている。自己形成導波路技術では、図14A、Bに示すように、自己形成導波路コア821が光回路デバイス81のコア814からの樹脂硬化光の照射により形成され、自己形成導波路コア821の一方の端面が、光回路デバイス81のコア814端面に接続される。また、自己形成導波路コアの一方の端面が、接続対象の光ファイバに接続される(図示せず)。 As a result, good connection loss can be obtained even with mechanical positioning accuracy that does not use active alignment, so self-forming waveguide technology is expected to improve the mountability of optical circuit devices. In the self-forming waveguide technology, as shown in FIGS. 14A and 14B, a self-forming waveguide core 821 is formed by irradiating resin curing light from a core 814 of an optical circuit device 81, and one side of the self-forming waveguide core 821 is formed. The end face is connected to the core 814 end face of the optical circuit device 81 . Also, one end face of the self-forming waveguide core is connected to the optical fiber to be connected (not shown).
 光回路デバイスは、公知の光回路デバイスいずれでもよいが、例えばシリコンフォトニクスでは一般的な樹脂硬化光の波長である可視~紫外域の光を伝搬することが困難である。そこで、図14A、Bに示すように、同波長域で透明なSiONやSiN、SiO2などからなる第2導波路コア814を備えている。第2導波路コア814は、第1導波路コア813の上部に備えられており、信号波長においてはスポットサイズ変換器として機能している。樹脂硬化光84は、第2導波路コア814、814_2を伝搬して光回路コア端面から出射されている。このとき、第2導波路コア814に樹脂硬化光を入力する方法として、第2導波路コア814の一端に光ファイバ83を突き合わせて樹脂硬化光84が入力されている。 The optical circuit device may be any known optical circuit device, but in silicon photonics, for example, it is difficult to propagate light in the visible to ultraviolet range, which is the wavelength of general resin curing light. Therefore, as shown in FIGS. 14A and 14B, a second waveguide core 814 made of SiON, SiN, SiO2, or the like, which is transparent in the same wavelength range, is provided. A second waveguide core 814 is provided on top of the first waveguide core 813 and functions as a spot size converter at the signal wavelength. The resin curing light 84 propagates through the second waveguide cores 814 and 814_2 and is emitted from the end surface of the optical circuit core. At this time, as a method of inputting the resin curing light to the second waveguide core 814 , the resin curing light 84 is input by abutting the optical fiber 83 against one end of the second waveguide core 814 .
 しかしながら、従来の自己形成導波路を有する光回路デバイスで、光回路デバイスに樹脂硬化光を入力するためには、導波路コアの一端において光回路コアと同軸にコアを有する光ファイバを用いて樹脂硬化用を入力する必要があった。ここで、自己形成導波路コア(以下、「樹脂コア」という。)を形成する際には、光回路コアの長手方向において入力用光ファイバ、光回路デバイス、樹脂コア、接続対象である他方の光ファイバや光回路デバイス(図示せず)が配置されるので、大きなフットプリントを必要とした。 However, in a conventional optical circuit device having a self-forming waveguide, in order to input resin curing light into the optical circuit device, an optical fiber having a core coaxial with the optical circuit core at one end of the waveguide core is used to form a resin. It was necessary to enter for hardening. Here, when forming a self-forming waveguide core (hereinafter referred to as a "resin core"), in the longitudinal direction of the optical circuit core, the input optical fiber, the optical circuit device, the resin core, and the other to be connected are separated from each other. Since optical fibers and optical circuit devices (not shown) are arranged, a large footprint is required.
 さらに、従来の自己形成導波路技術では、複数のシリコンフォトニクスチップそれぞれに一括で自己形成導波路を形成することは困難であり、例えば複数チップレベルやウェハレベルでの自己形成導波路の形成は実現困難であった。 Furthermore, with conventional self-forming waveguide technology, it is difficult to form self-forming waveguides on multiple silicon photonics chips at once. It was difficult.
 以上のように、従来の自己形成導波路を用いた光回路デバイスでは、自己形成導波路を形成して接続する際の実装作業に要する面積(フットプリント)が大きいこと、一括で複数の自己形成導波路を形成できないこと等の製造プロセス効率における課題があった。 As described above, in optical circuit devices using conventional self-forming waveguides, the area (footprint) required for mounting work when forming and connecting self-forming waveguides is large, and multiple self-forming waveguides are formed at once. There was a problem in manufacturing process efficiency such as inability to form a waveguide.
 上述したような課題を解決するために、本発明に係る光回路デバイスは、導波路基板と、
 アンダークラッドと、樹脂硬化光が導波するコアと、オーバクラッドとを備える光回路デバイスであって、光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドとを備え、前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、前記光回路デバイスの他方の端部の表面が前記導波路基板側に向かって傾斜していることを特徴とする。
In order to solve the above-described problems, an optical circuit device according to the present invention includes a waveguide substrate,
An optical circuit device comprising: an undercladding; a core through which resin curing light is guided; and a resin clad having a refractive index smaller than that of the resin core, the resin curing light being guided at one end of the optical circuit device. It is characterized in that the surface of the other end portion of the optical circuit device, which is emitted from the core, is inclined toward the waveguide substrate side.
 また、本発明に係る光回路デバイスは、順に、導波路基板と、アンダークラッドと、樹脂硬化光が導波するコアと、オーバクラッドとを備える光回路デバイスであって、光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドとを備え、前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、前記光回路デバイスの一部の表面が、前記樹脂硬化光が導波するコア側に向かって傾斜することを特徴とする。 Further, an optical circuit device according to the present invention is an optical circuit device comprising, in order, a waveguide substrate, an undercladding, a core through which resin curing light is guided, and an overcladding, wherein the resin is added to the photocurable resin. a resin core that is cured by being irradiated with curing light; and a resin clad that is disposed around the resin core and has a lower refractive index than the resin core, wherein the resin curing light is irradiated with the At one end of the optical circuit device, the resin curing light is emitted from the core through which the resin curing light is guided, and a part of the surface of the optical circuit device is inclined toward the core through which the resin curing light is guided. characterized by
 また、本発明に係る光回路デバイスは、順に、導波路基板と、アンダークラッドと、樹脂硬化光が導波するコアと、オーバクラッドとを備える光回路デバイスであって、光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドとを備え、前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、前記光回路デバイスの他方の端面における前記樹脂硬化光が導波するコアに、光路変換部品が接続または近接することを特徴とする。 Further, an optical circuit device according to the present invention is an optical circuit device comprising, in order, a waveguide substrate, an undercladding, a core through which resin curing light is guided, and an overcladding, wherein the resin is added to the photocurable resin. a resin core that is cured by being irradiated with curing light; and a resin clad that is disposed around the resin core and has a lower refractive index than the resin core, wherein the resin curing light is irradiated with the At one end of the optical circuit device, the core through which the resin curing light is guided is emitted, and an optical path changing component is connected to or close to the core through which the resin curing light is guided at the other end surface of the optical circuit device. characterized by
 本発明によれば、製造プロセス効率を向上できる光回路デバイスを提供できる。 According to the present invention, an optical circuit device capable of improving manufacturing process efficiency can be provided.
図1は、本発明の第1の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 1 is a schematic side sectional view showing the configuration of an optical circuit device according to the first embodiment of the present invention. 図2Aは、本発明の第1の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 2A is a schematic side sectional view showing the configuration of the optical circuit device according to the first embodiment of the invention. 図2Bは、本発明の第1の実施の形態に係る光回路デバイスの構成を示す概略上面断面透視図である。FIG. 2B is a schematic top cross-sectional see-through view showing the configuration of the optical circuit device according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 3 is a schematic side sectional view showing an example of the configuration of the optical circuit device according to the first embodiment of the invention. 図4は、本発明の第2の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 4 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a second embodiment of the invention. 図5は、本発明の第3の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 5 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a third embodiment of the invention. 図6は、本発明の第3の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 6 is a schematic cross-sectional side view showing an example of the configuration of an optical circuit device according to the third embodiment of the invention. 図7Aは、本発明の第4の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 7A is a schematic side cross-sectional view showing the configuration of an optical circuit device according to a fourth embodiment of the present invention; 図7Bは、本発明の第4の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 7B is a schematic side sectional view showing an example of the configuration of the optical circuit device according to the fourth embodiment of the invention. 図8は、本発明の第5の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 8 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to a fifth embodiment of the invention. 図9は、本発明の第6の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 9 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to the sixth embodiment of the invention. 図10は、本発明の第6の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 10 is a schematic cross-sectional side view showing the configuration of an optical circuit device according to the sixth embodiment of the invention. 図11は、本発明の第6の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 11 is a schematic cross-sectional side view showing an example of the configuration of an optical circuit device according to the sixth embodiment of the invention. 図12は、本発明の第7の実施の形態に係る光回路デバイスの構成を示す概略側面断面図である。FIG. 12 is a schematic side sectional view showing the configuration of an optical circuit device according to the seventh embodiment of the invention. 図13Aは、本発明の第7の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 13A is a schematic side cross-sectional view showing an example of the configuration of an optical circuit device according to the seventh embodiment of the present invention; 図13Bは、本発明の第7の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 13B is a schematic side cross-sectional view showing an example of the configuration of the optical circuit device according to the seventh embodiment of the present invention; 図13Cは、本発明の第7の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 13C is a schematic side cross-sectional view showing an example of the configuration of an optical circuit device according to the seventh embodiment of the present invention; 図13Dは、本発明の第7の実施の形態に係る光回路デバイスの構成の一例を示す概略側面断面図である。FIG. 13D is a schematic cross-sectional side view showing an example of the configuration of the optical circuit device according to the seventh embodiment of the present invention; 図14Aは、従来の光回路デバイスの構成を示す概略側面断面図である。FIG. 14A is a schematic side sectional view showing the configuration of a conventional optical circuit device. 図14Bは、従来の光回路デバイスの構成を示す概略上面断面透視図である。FIG. 14B is a schematic top sectional perspective view showing the configuration of a conventional optical circuit device.
<第1の実施の形態>
 本発明の第1の実施の形態に係る光回路デバイスについて、図1~図3を参照して説明する。
<First Embodiment>
An optical circuit device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイス11は、図1に示すように、順に、導波路基板111と、アンダークラッド112と、第1導波路コア113と、第2導波路コア114と、オーバクラッド115とを備え、自己形成導波路の光硬化性樹脂コア(以下、「樹脂コア」という。)121と、光硬化樹脂クラッド(以下、「樹脂クラッド」という。)122とを備える。
<Structure of optical circuit device>
As shown in FIG. 1, the optical circuit device 11 according to the present embodiment includes, in order, a waveguide substrate 111, an undercladding 112, a first waveguide core 113, a second waveguide core 114, and an overcladding. 115 , and a photocurable resin core (hereinafter referred to as “resin core”) 121 and a photocurable resin clad (hereinafter referred to as “resin clad”) 122 of the self-formed waveguide.
 ここで、光回路デバイス11の導波路層は、アンダークラッド112と、第1導波路コア113と、第2導波路コア114と、オーバクラッド115とから構成される。 Here, the waveguide layer of the optical circuit device 11 is composed of an undercladding 112 , a first waveguide core 113 , a second waveguide core 114 and an overcladding 115 .
 ここで、光回路デバイス11の第2導波路コア114から出射する樹脂硬化光が、出射する面に配置される光硬化性樹脂に照射され、光硬化性樹脂コア(以下、「樹脂コア」という。)121が形成される。その結果、樹脂硬化光が出射する面に、樹脂コア121が接続して形成される。 Here, the resin curing light emitted from the second waveguide core 114 of the optical circuit device 11 is applied to the photocurable resin arranged on the emitting surface, and the photocurable resin core (hereinafter referred to as “resin core”) .) 121 is formed. As a result, the resin core 121 is connected to the surface from which the resin curing light is emitted.
 光回路デバイス11において、樹脂硬化光が、任意の端面(「樹脂硬化光入射用端面」または「入射用端面」という。)116近傍(端面を含む)から入射し、他の端面(「樹脂硬化光出射用端面」または「出射用端面」という。)117近傍(端面を含む)から出射する。本実施の形態では、樹脂硬化光入射用端面116と樹脂硬化光出射用端面117とは対向する位置に配置される。 In the optical circuit device 11, resin curing light is incident from an arbitrary end face (referred to as a “resin curing light incident end face” or “incidence end face”) near 116 (including the end face), and other end faces (“resin curing light 117 (including the end face). In this embodiment, the end surface 116 for incidence of resin curing light and the end surface 117 for emission of resin curing light are arranged at positions facing each other.
 以下、水平面(導波路基板111表面)において、光回路デバイス11内で樹脂硬化光が出射用端面117近傍の第2導波路コア114で光が導波する方向(図中、X方向)を「光回路コアの長手方向」とし、長手方向に垂直な方向(図中、Y方向、紙面奥行き方向)を「幅方向」、水平面(導波路基板111表面)に垂直な方向(Z方向)を「厚さ方向」とする。 Hereinafter, in the horizontal plane (waveguide substrate 111 surface), the direction in which light is guided in the second waveguide core 114 in the vicinity of the resin curing light output end face 117 in the optical circuit device 11 (the X direction in the drawing) is defined as " The direction perpendicular to the longitudinal direction (the Y direction in the drawing, the depth direction on the paper surface) is defined as the "width direction," and the direction perpendicular to the horizontal plane (surface of the waveguide substrate 111) (the Z direction) is defined as the "longitudinal direction of the optical circuit core." "thickness direction".
 光回路デバイス11において、樹脂コア121は、出射用端面117における第2導波路コア114の端面に接続する。 In the optical circuit device 11 , the resin core 121 is connected to the end surface of the second waveguide core 114 at the output end surface 117 .
 また、光回路デバイス11において、光路変換構造として、入射用端面116の表面が導波路基板111側(本実施の形態では、下方)に向くように傾斜している。ここで、面の「表面」とは、光回路デバイス11の外側を向く面であり、大気等の外部環境と接する側の面をいう。 Further, in the optical circuit device 11, the surface of the incident end surface 116 is inclined so as to face the waveguide substrate 111 side (downward in this embodiment) as the optical path conversion structure. Here, the "surface" of the surface refers to the surface facing the outside of the optical circuit device 11 and the surface on the side that comes into contact with the external environment such as the atmosphere.
 光回路デバイス11では、複数の第1導波路コア113および第2導波路コア114とが幅方向(Y方向)に配置されている(図示せず)。 In the optical circuit device 11, a plurality of first waveguide cores 113 and second waveguide cores 114 are arranged in the width direction (Y direction) (not shown).
 光回路デバイス11は、公知のシリコンフォトニクスチップであり、光導波路層は導波路基板111上のBOX層112上に形成されており、導波路基板111の厚さは、例えば標準的なシリコンウェハ厚さである625μmである。 The optical circuit device 11 is a known silicon photonics chip, an optical waveguide layer is formed on a BOX layer 112 on a waveguide substrate 111, and the thickness of the waveguide substrate 111 is, for example, a standard silicon wafer thickness. It is 625 μm, which is the height.
 図面上では省略するが、背景で述べたような発光素子、受光素子、変調素子、光機能素子などが集積されており、必要に応じて電気配線層や電気パッドなども集積されている。 Although not shown in the drawings, the light-emitting element, light-receiving element, modulation element, optical functional element, etc. described in the background are integrated, and electrical wiring layers, electrical pads, etc. are also integrated as necessary.
 また、光回路デバイス11は、必要に応じて化合物半導体などからなる光送信素子や光変調素子などとハイブリッドに一体化されている。また、図面上では省略するが光回路デバイス11はサブキャリアやパッケージ、電気配線基板などに搭載されて固定されている。 In addition, the optical circuit device 11 is integrated in a hybrid manner with an optical transmission element, an optical modulation element, and the like made of a compound semiconductor or the like, if necessary. Although not shown in the drawings, the optical circuit device 11 is mounted and fixed on a subcarrier, a package, an electric wiring board, or the like.
 以下、シリコンフォトニクスチップからの光出射を例に説明するが、シリコンフォトニクスチップに入射する場合の動作についても可逆的に動作し、本発明は当然光の入出力方向に依らない。 In the following, light emitted from a silicon photonics chip will be described as an example, but the operation when incident on a silicon photonics chip is also reversible, and the present invention naturally does not depend on the input/output direction of light.
 シリコンフォトニクスチップは、少なくとも1つの光入出力端面において外部へ光を入出力する光入出力部を備えており、エッジカップラーとしてスポットサイズ変換器(SSC、図2B中、矢印113_2)などが光回路内に集積されている。一般に、シリコンフォトニクスの光回路内での光伝搬モードのモードフィールド径は1μm以下と非常に小さいが、エッジカップラーにより3μmから10μm程度までそのモードフィールド径が拡大された状態で光ビームは出射(入射)される。 A silicon photonics chip is equipped with an optical input/output unit for inputting/outputting light to the outside on at least one optical input/output end face, and a spot size converter (SSC, arrow 113_2 in FIG. 2B) as an edge coupler is an optical circuit. accumulated within. In general, the mode field diameter of the light propagation mode in the optical circuit of silicon photonics is very small, 1 μm or less. ) is done.
 このとき、SSC部においては、第1導波路コアであるSi細線113は先端形状が細くなるようなテーパ状に形成されている。第2導波路コア114が、第1導波路コア(Si細線)113を覆うように、または第1導波路コア(Si細線)113に近接するように形成されている。テーパ状のSi細線において、光がSiコア内への閉じ込めが困難になり、モードフィールド径が広がるが、次第に第2導波路コア114に遷移していき、光入出力端面近傍ではほぼすべての光が第2導波路コア114に遷移している。このように、第2導波路コア114は、第1導波路コア113に光結合するように配置される。第2導波路コア114の材料としては、例えばSiONである。 At this time, in the SSC portion, the Si fine wire 113, which is the first waveguide core, is formed in a tapered shape such that the tip shape becomes thinner. A second waveguide core 114 is formed to cover the first waveguide core (Si wire) 113 or to be close to the first waveguide core (Si wire) 113 . In the tapered Si wire, it becomes difficult for light to be confined in the Si core, and the mode field diameter widens. transitions to the second waveguide core 114 . Thus, the second waveguide core 114 is arranged to be optically coupled to the first waveguide core 113 . The material of the second waveguide core 114 is SiON, for example.
 なお、Si細線113の形状は、必要に応じて非線形テーパ形状や多段のテーパ形状、あるいはセグメンテッドSSCとして知られるようなSiコアとガラス材料の非連続体からなるSSC構造を用いてもよい。また、第2導波路コア114は光硬化性樹脂の硬化波長を伝搬することが可能な材料であり、SiON以外でも例えばガラス、SiON、ポリマーなどで構成してもよい。 As for the shape of the Si wire 113, a non-linear tapered shape, a multi-stage tapered shape, or an SSC structure consisting of a discontinuous body of a Si core and a glass material, known as segmented SSC, may be used as needed. Further, the second waveguide core 114 is made of a material capable of propagating the curing wavelength of the photocurable resin, and may be made of glass, SiON, polymer, or the like other than SiON.
 図1~図2Bに示すように、光回路デバイス11の光入出力を担うコア(第2導波路コア)114の端面と接するように、光硬化性樹脂からなる樹脂コア121が光回路コア長手方向に形成されている。光硬化性樹脂は、特定の波長に対して反応し硬化反応が進む公知の樹脂であり、例えばアクリル樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、オキセタン樹脂、有機無機ハイブリッドや、それらの変性体や置換体などを用いることができ、フォトレジストとして知られる材料を用いてもよい。硬化波長は開始材や色素などの添加により任意に設計できるが、例えば紫外光から可視光程度の波長を用いることができる。 As shown in FIGS. 1 to 2B, a resin core 121 made of a photocurable resin extends along the length of the optical circuit core so as to be in contact with the end surface of a core (second waveguide core) 114 responsible for optical input/output of the optical circuit device 11. formed in the direction The photocurable resin is a known resin that reacts to a specific wavelength and undergoes a curing reaction. For example, acrylic resin, epoxy resin, silicone resin, urethane resin, oxetane resin, organic-inorganic hybrid, modified products thereof, or Substituents and the like can be used, and materials known as photoresists may be used. The curing wavelength can be arbitrarily designed by adding an initiator, a dye, and the like, and for example, wavelengths from ultraviolet light to visible light can be used.
 光硬化性樹脂コア121は、第2導波路コア114端面から出射される樹脂硬化光により未硬化の樹脂が次第に硬化することで形成されており、第2導波路コア114と接している。 The photocurable resin core 121 is formed by gradually curing uncured resin by resin curing light emitted from the end surface of the second waveguide core 114, and is in contact with the second waveguide core 114.
 また、樹脂コア121の周囲に樹脂クラッド122が配置される。樹脂クラッド122の屈折率は、光硬化性樹脂コア121の屈折率より信号波長帯において低い。樹脂クラッド材として、公知のアクリル樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、オキセタン樹脂などを用いることができ、屈折率を調整するために適宜フッ素化などのハロゲン置換体を用いてもよい。 A resin clad 122 is arranged around the resin core 121 . The refractive index of the resin clad 122 is lower than that of the photocurable resin core 121 in the signal wavelength band. Known acrylic resins, epoxy resins, silicone resins, urethane resins, oxetane resins, and the like can be used as the resin clad material, and halogen-substituted compounds such as fluorination may be used as appropriate to adjust the refractive index.
 光硬化性樹脂コア121の断面形状は任意の形状であるが、おおよそ光回路コアからのモード分布に類似した形状として形成される。例えば、ガウシアンビームであれば、円形断面に近い形状になる。実際はモード形状によって楕円形状になってもよい。 Although the cross-sectional shape of the photo-curing resin core 121 is arbitrary, it is formed to have a shape similar to the mode distribution from the optical circuit core. For example, a Gaussian beam has a shape close to a circular cross section. In practice, the mode shape may be elliptical.
 樹脂コア121は、接続対象である光ファイバや第2の光回路デバイスなどの光部品と接続されており、その仲介の導波路として機能している。なお図面上では接続対象である光ファイバや光回路デバイス、ポリマー導波路などは省略する。 The resin core 121 is connected to an optical component such as an optical fiber to be connected or a second optical circuit device, and functions as an intermediary waveguide. Note that optical fibers, optical circuit devices, polymer waveguides, etc., to be connected are omitted in the drawings.
 本実施の形態の光回路のレイアウトとしては、図2Bに示すように、第2導波路コア114の分岐部などを必要に応じて備えており、第2導波路コア114の端部から樹脂硬化光が入力される構成となっている。 As the layout of the optical circuit of this embodiment, as shown in FIG. It is configured to receive light.
 本実施の形態では、樹脂硬化光入力側の端面(入射用端面)116は、樹脂コア121が形成される出射用端面117と対向する位置に配置されるが、任意の面に配置されてもよい。例えば、第2導波路コア114を90度屈曲または湾曲等することで、紙面奥行方向(Y+方向)や紙面手前方向(Y-方向)の端面を入射用端面116としてもよい。また、後述するように、第2導波路コア114の樹脂硬化光入力部は、樹脂コア121と接する面と同一の面に配置してもよいし、光回路デバイス11内に設けてもよい。 In the present embodiment, the end face (incidence end face) 116 on the resin curing light input side is arranged at a position facing the emission end face 117 on which the resin core 121 is formed, but it may be arranged on any surface. good. For example, by bending or curving the second waveguide core 114 by 90 degrees, the end face in the depth direction (Y+ direction) or the front direction (Y− direction) of the paper surface may be used as the incident end face 116 . Further, as will be described later, the resin curing light input portion of the second waveguide core 114 may be arranged on the same surface as the surface in contact with the resin core 121 or may be provided inside the optical circuit device 11 .
 ここで、本実施の形態では、入射用端面116は、図1に示すように、導波路基板111側(図1における下方)を向いて傾斜している。換言すれば、端面は、X-方向に光回路デバイス11のオーバクラッド115が導波路基板111に比べて突き出るように傾斜角度を有している。この傾斜端面(以下、「樹脂硬化光入射用斜め端面」または「入射用斜め端面」という。)116は、ダイシングあるいは研磨などの機械加工で形成されており、例えば45°の角度に設定されている。 Here, in the present embodiment, as shown in FIG. 1, the incident end surface 116 is inclined toward the waveguide substrate 111 side (downward in FIG. 1). In other words, the end surface has an inclination angle such that the overcladding 115 of the optical circuit device 11 protrudes relative to the waveguide substrate 111 in the X-direction. This inclined end face (hereinafter referred to as "resin curing light incident oblique end face" or "incident oblique end face") 116 is formed by machining such as dicing or polishing, and is set at an angle of, for example, 45°. there is
 図2A、Bに示すように、入力用光ファイバ21は、入射用斜め端面116近傍の光回路デバイス11(導波路層)上面に配置され、樹脂硬化光22が入力される。樹脂硬化光22は、例えば波長405nmのLDからの出射光であり、入力用光ファイバ21を伝搬している。 As shown in FIGS. 2A and 2B, the input optical fiber 21 is arranged on the upper surface of the optical circuit device 11 (waveguide layer) near the incident oblique end face 116, and the resin curing light 22 is input. The resin curing light 22 is emitted light from an LD with a wavelength of 405 nm, for example, and propagates through the input optical fiber 21 .
 図2Aに示すように、樹脂硬化光22は、入射用斜め端面116の裏面において反射し、光路が90°変換され、第2導波路コア114に結合し、第2導波路コア114を伝搬した後に未硬化の光硬化性樹脂が充填された出射用端面117から出射される。この樹脂硬化光22に従い、自己形成導波路として樹脂コア121が形成される。 As shown in FIG. 2A , the resin curing light 22 is reflected at the rear surface of the oblique end face 116 for incidence, is converted by 90°, is coupled to the second waveguide core 114, and propagates through the second waveguide core 114. Later, the light is emitted from the emission end face 117 filled with uncured photocurable resin. A resin core 121 is formed as a self-forming waveguide according to the resin curing light 22 .
 その後、樹脂コアの周囲を覆うクラッド樹脂を充填する前に、光硬化性樹脂の未硬化分は除去され、異なる材料が充填されて固定されいる。なお、樹脂特性によって導波路の屈折率差が得られるようであれば、光硬化性樹脂をクラッド材料としてそのまま用いてもよい。例えば、硬化波長や硬化のメカニズム、共重合物の添加などによって、硬化後の樹脂屈折率が異なる樹脂を用いることで、光硬化性樹脂コア121よりも屈折率を低く保ち、クラッド材料としてそのまま用いることもできる。 After that, before filling the clad resin that covers the resin core, the uncured portion of the photocurable resin is removed, and a different material is filled and fixed. If the refractive index difference of the waveguide can be obtained by the resin characteristics, the photocurable resin may be used as it is as the clad material. For example, by using a resin with a different resin refractive index after curing depending on the curing wavelength, curing mechanism, addition of a copolymer, etc., the refractive index is kept lower than that of the photocurable resin core 121, and the resin is used as it is as a clad material. can also
 なお、ここで入力用光ファイバ21と光回路デバイス11のオーバクラッド115が接する例を示したが、レンズなどを入力用光ファイバ21と光回路デバイス11間に挿入してもよい。また、光回路上面あるいは入力用光ファイバ21端面にレンズを設けてもよい。 Although an example in which the input optical fiber 21 and the overcladding 115 of the optical circuit device 11 are in contact is shown here, a lens or the like may be inserted between the input optical fiber 21 and the optical circuit device 11 . Also, a lens may be provided on the top surface of the optical circuit or on the end surface of the input optical fiber 21 .
 図2Bに示すように、樹脂硬化光入力部、すなわち光路変換構造の近傍においては、必要に応じて第2導波路コア114の幅が広くなるよう設計されている。例えば、第2導波路コア114はSSC部で2~4μm程度の幅であるが、樹脂硬化光入力部近傍においては10~50μm程度に拡大されている。 As shown in FIG. 2B, the width of the second waveguide core 114 is designed to be widened as necessary in the vicinity of the resin curing light input portion, that is, the optical path changing structure. For example, the second waveguide core 114 has a width of about 2 to 4 μm in the SSC portion, but is expanded to about 10 to 50 μm in the vicinity of the resin curing light input portion.
 この構造により、樹脂硬化光の位置決め精度は、従来法の位置精度よりも緩く設計できる。また、一般に樹脂硬化に必要な光出力は微小でよいため、樹脂硬化光のアライメント精度はアクティブアライメントでなくても、例えば上面からの画像観察精度を基準に位置合わせできる。 With this structure, the positioning accuracy of the resin curing light can be designed looser than the positioning accuracy of the conventional method. In general, since the light output required for curing the resin is very small, the alignment accuracy of the resin curing light can be aligned based on the image observation accuracy from the top surface, for example, even if the alignment accuracy is not active alignment.
<効果>
 本実施の形態に係る光回路デバイスの効果を、以下に説明する。
<effect>
Effects of the optical circuit device according to the present embodiment will be described below.
 従来の樹脂コアを備える光回路デバイスにおいては、樹脂硬化光を入力するためには、導波路コアの一端部において光回路コアと同軸にコアを有する光ファイバを用いて樹脂硬化用を入力する必要があった。その結果、入力用ファイバの調心スペースを含めて大きなフットプリントを必要とし、複数のシリコンフォトニクスチップに一括で自己形成導波路を形成することが困難であり、製造プロセス効率における課題があった。 In a conventional optical circuit device having a resin core, in order to input resin curing light, it is necessary to input the resin curing light using an optical fiber having a core coaxial with the optical circuit core at one end of the waveguide core. was there. As a result, a large footprint is required, including the alignment space for the input fiber, and it is difficult to form self-assembled waveguides on multiple silicon photonics chips at once, creating problems in manufacturing process efficiency.
 一方、本実施の形態に係る光回路デバイスによれば、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性(製造プロセス効率)を大幅に向上できる。 On the other hand, according to the optical circuit device according to the present embodiment, the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, so that the footprint can be significantly reduced. . In addition, since the core position can be adjusted and positioned by image observation from the upper surface of the optical circuit device, mounting workability (manufacturing process efficiency) can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 なお、本発明は、光回路デバイスとしてシリコンフォトニクス以外、例えばInP集積回路や石英PLC、LN回路などを用いても同様に適用できる。 It should be noted that the present invention can be similarly applied to optical circuit devices other than silicon photonics, such as InP integrated circuits, quartz PLCs, and LN circuits.
 図3に示すように、光回路デバイス11として石英系PLCを用いてもよい。Si細線やInP導波路は樹脂硬化光である可視光~紫外光での吸収が強いが、石英PLC、LN、ポリマーなどでは樹脂硬化光を伝搬可能であり、第2導波路は不要である。 As shown in FIG. 3, a quartz-based PLC may be used as the optical circuit device 11. Si wires and InP waveguides strongly absorb visible light to ultraviolet light, which is resin curing light, but quartz PLC, LN, polymer, etc. can propagate resin curing light, and the second waveguide is unnecessary.
 また、光回路デバイス11と樹脂コア121全体をクラッド(樹脂)122で覆ってもよい。 Alternatively, the entire optical circuit device 11 and resin core 121 may be covered with a clad (resin) 122 .
 また、図3に示すように、樹脂硬化光入射用斜め端面116に高反射膜118をコートしてもよい。高反射膜コートは、誘電体多層膜や金属などを蒸着することで容易に形成できる。これにより、反射の反射効率を十分に高くすることができる。 Further, as shown in FIG. 3, the oblique end face 116 for incidence of resin curing light may be coated with a high reflection film 118 . A highly reflective film coat can be easily formed by vapor-depositing a dielectric multilayer film, metal, or the like. Thereby, the reflection efficiency of reflection can be made sufficiently high.
 また、クラッド樹脂やその他モールド樹脂などが存在する場合、高反射効率での反射に必要な屈折率差をとれない恐れがあるが、高反射膜をコートすることで、樹脂に全体が覆われた場合でも樹脂硬化光の高反射効率での反射を実現することが可能となる。なお、当然これらと図1の構成は任意に組み合わせを選択できる。 In addition, if there is a clad resin or other mold resin, there is a risk that the refractive index difference necessary for reflection with high reflection efficiency cannot be obtained, but by coating the highly reflective film, the entire surface is covered with resin. Even in this case, it is possible to achieve reflection of resin curing light with high reflection efficiency. Of course, any combination of these and the configuration of FIG. 1 can be selected.
 また、光ファイバとして公知のいずれの光ファイバを用いてもよい。また、光ファイバ以外の光部品として、光導波路デバイス、例えばポリマー導波路を用いてもよい。 Also, any known optical fiber may be used as the optical fiber. Also, an optical waveguide device such as a polymer waveguide may be used as an optical component other than an optical fiber.
 また、45°ミラーによる90°の光路変換を例に示したが、導波路コアに入力可能でかつ上面から樹脂硬化光を入力できる場合であれば角度を所定の設計値に変更してもよい。また、樹脂硬化光入射用斜め端面やミラー部品の反射面の傾斜角度は45°で光路を90°変換する例を示したが、反射面の傾斜角度はこれに限らず、上方から入射する樹脂硬化光を導波路コアに入射できる角度であればよい。 Also, although an optical path conversion of 90° by a 45° mirror is shown as an example, the angle may be changed to a predetermined design value if it is possible to input light to the waveguide core and resin curing light can be input from the upper surface. . In addition, an example in which the oblique end surface for resin curing light incidence and the reflecting surface of the mirror component are inclined at an angle of 45° and the optical path is converted by 90° has been shown, but the angle of inclination of the reflecting surface is not limited to this. Any angle may be used as long as the curing light can be incident on the waveguide core.
<第2の実施の形態>
 本発明の第2の実施の形態に係る光回路デバイスについて、図4を参照して説明する。
<Second Embodiment>
An optical circuit device according to a second embodiment of the present invention will be described with reference to FIG.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスにおいて、基本的な構成要素は、第1の実施の形態と同様であり、光回路デバイスはInP回路であり、第2導波路コア114はポリマーである。
<Structure of optical circuit device>
In the optical circuit device according to this embodiment, the basic components are the same as in the first embodiment, the optical circuit device is an InP circuit, and the second waveguide core 114 is polymer.
 第1の実施の形態との差異は、図4に示すように、光路変換構造として、樹脂硬化光入射用斜め端面131が、光回路デバイス内に形成されていることにある。ここで、樹脂硬化光入射用斜め端面131の表面は、オーバクラッド115側に向かって傾斜する。また、樹脂硬化光入射用斜め端面131と、樹脂硬化光を伝搬する第2導波路コア114との間に一定の間隙が設けてある。 The difference from the first embodiment is that, as shown in FIG. 4, an oblique end surface 131 for resin curing light incidence is formed in the optical circuit device as an optical path conversion structure. Here, the surface of the oblique end surface 131 for incidence of resin curing light is inclined toward the overcladding 115 side. A certain gap is provided between the oblique end surface 131 for incidence of resin curing light and the second waveguide core 114 through which the resin curing light is propagated.
 樹脂硬化光は、光回路デバイス11(導波路)上面から入力され、樹脂硬化光入射用斜め端面131上の高反射膜132で反射されることで光路が変換され、第2導波路コア114に入力される。 The resin curing light is input from the upper surface of the optical circuit device 11 (waveguide), and is reflected by the highly reflective film 132 on the oblique end surface 131 for resin curing light incidence, so that the optical path is converted, and the light path is changed to the second waveguide core 114. is entered.
 このような光回路デバイス内のミラー構造形成方法は公知のいずれの方法を用いてもよい。例えば、ダイシングなどを用いて指定角度を持つブレードで機械加工することで形成できる。または、ウェハプロセスにおけるエッチング技術を用いても形成できる。または、別の矩形溝を形成後に樹脂を塗布して表面張力を利用して、同様のミラー形状にしてもよい。 Any known method may be used for forming a mirror structure in such an optical circuit device. For example, it can be formed by machining with a blade having a specified angle using dicing or the like. Alternatively, it can be formed using an etching technique in a wafer process. Alternatively, another rectangular groove may be formed and then resin may be applied to utilize surface tension to form a similar mirror shape.
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、斜め端面形成をチップごとでなくウェハプロセスなどで一括で形成できるため、製造効率を大幅に向上できる。また、斜め端面を回路内に集積することで、光回路デバイスを小さくできる。 In addition, manufacturing efficiency can be greatly improved because the oblique end face can be formed in a batch process, such as a wafer process, rather than for each chip. In addition, by integrating the oblique end faces in the circuit, the size of the optical circuit device can be reduced.
<第3の実施の形態>
 本発明の第3の実施の形態に係る光回路デバイスについて、図5、図6を参照して説明する。
<Third Embodiment>
An optical circuit device according to a third embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスにおいて、基本的な構成要素は、第1の実施の形態と同様である。
<Structure of optical circuit device>
The basic components of the optical circuit device according to this embodiment are the same as those of the first embodiment.
 第1の実施の形態との差異は、図5に示すように、光路変換構造として、樹脂硬化光入射用斜め端面が光回路デバイスに設けておらず、光路変換部品31が光回路デバイスの端面116に配置され一体化されている。ここで、光路変換部品31の傾斜面の表面が、下方向に向かって傾斜する。光路変換部品は、例えばプリズムミラー等のミラー部品であり、ガラスやSi、ポリマーなどからなる。光路変換部品31は光回路デバイス11に接着剤により固定されている。 The difference from the first embodiment is that, as shown in FIG. 5, as an optical path conversion structure, an oblique end surface for resin curing light incidence is not provided in the optical circuit device, and an optical path conversion component 31 is provided on the end surface of the optical circuit device. 116 and integrated. Here, the surface of the inclined surface of the optical path conversion component 31 is inclined downward. The optical path conversion component is, for example, a mirror component such as a prism mirror, and is made of glass, Si, polymer, or the like. The optical path conversion component 31 is fixed to the optical circuit device 11 with an adhesive.
 樹脂硬化光は、光路変換部品における光回路デバイスの上面と平行な端面から入力されて、光路変換部品の傾斜面の裏面で反射されることで光路が変換され、第2導波路コア114に入力される。 The resin curing light is input from the end face parallel to the top surface of the optical circuit device in the optical path changing component, reflected on the back surface of the inclined surface of the optical path changing component, and the optical path is changed, and is input to the second waveguide core 114. be done.
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、光路変換を斜め端面でなく別部品で行うことで、光回路デバイス自体への加工を行う必要がなくなり、光回路デバイスの量産性が向上する。光路変換部品は別途用意することになるが、所望のミラー部品を量産性高く製造することは容易であり、光回路デバイスとの一体化も容易に行うことができる。その結果、光回路デバイス全体の歩留まりを向上させることができる。 In addition, by performing the optical path conversion with a separate component instead of the oblique end face, there is no need to process the optical circuit device itself, and the mass productivity of the optical circuit device is improved. Although the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
 また、図6に示すように、光路変換部品31の樹脂硬化光入射側の端面に接続して、ビーム径調整部品33を備えてもよい。 Further, as shown in FIG. 6, a beam diameter adjusting component 33 may be provided by connecting to the end face of the optical path converting component 31 on the resin curing light incident side.
 従来、光が光路変換部品を伝搬するとき、光のビーム径が拡大するため、第2導波路コアとのビーム径の不整合が生じやすい。 Conventionally, when light propagates through the optical path changing component, the beam diameter of the light expands, so the beam diameter is likely to be mismatched with the second waveguide core.
 一方、図6に示すように、ビーム径調整部品33、例えばレンズやGRINレンズ、GIファイバなどを用いて、第2導波路コア114結合部において所望のビーム径になるよう調整することで、ビーム径不整合が生じず、容易に第2導波路コア114へ樹脂硬化光を入力することができる。 On the other hand, as shown in FIG. 6, a beam diameter adjusting component 33 such as a lens, a GRIN lens, a GI fiber, or the like is used to adjust the beam diameter to a desired beam diameter at the second waveguide core 114 coupling portion. Resin curing light can be easily input to the second waveguide core 114 without diameter mismatch.
<第4の実施の形態>
 本発明の第4の実施の形態に係る光回路デバイスについて、図7A、Bを参照して説明する。
<Fourth Embodiment>
An optical circuit device according to a fourth embodiment of the present invention will be described with reference to FIGS. 7A and 7B.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスにおいて、基本的な構成要素は、第1の実施の形態と同様である。
<Structure of optical circuit device>
The basic components of the optical circuit device according to this embodiment are the same as those of the first embodiment.
 第1の実施の形態との差異は、図7A、Bに示すように、光路変換構造として、樹脂硬化光入射用斜め端面は光回路デバイスに設けておらず、光路変換部品41が光回路デバイスの端面から近接して配置されている。ここで、光路変換部品41の斜め端面の表面は、オーバクラッド115側に向かって傾斜する。光路変換部品41は、例えば三角プリズムミラー(図7A)、キューブ型プリズムミラー(図7B)等のミラー部品であり、ガラスやSi、ポリマーなどからなる。光路変換部品41と光回路デバイス11は、搭載基板42上に搭載されて、任意の方法で固定されている。 The difference from the first embodiment is that, as shown in FIGS. 7A and 7B, as an optical path conversion structure, an oblique end surface for resin curing light incidence is not provided in the optical circuit device, and an optical path conversion component 41 is provided in the optical circuit device. is arranged close to the end face of the Here, the surface of the oblique end surface of the optical path conversion component 41 is inclined toward the overcladding 115 side. The optical path conversion component 41 is a mirror component such as a triangular prism mirror (FIG. 7A) or a cube prism mirror (FIG. 7B), and is made of glass, Si, polymer, or the like. The optical path conversion component 41 and the optical circuit device 11 are mounted on a mounting board 42 and fixed by an arbitrary method.
 樹脂硬化光は、光路変換部品41の上面(図7A、Bにおいて上方)から入力されて、光路変換部品41で反射されることで光路が変換され、第2導波路コア114に入力される。 The resin curing light is input from the upper surface of the optical path conversion component 41 (upper side in FIGS. 7A and 7B), is reflected by the optical path conversion component 41 to change the optical path, and is input to the second waveguide core 114.
 また、図7Bに示すように、ビーム径の広がりを考慮し、ビーム径調整部品43として、例えばレンズやGRINレンズ、GIファイバなどを用いてもよい。これにより、第2導波路コア114結合部において所望のビーム径になるよう調整することで、容易に第2導波路コア114へ樹脂硬化光を入力することができる。 Also, as shown in FIG. 7B, considering the spread of the beam diameter, a lens, a GRIN lens, a GI fiber, or the like may be used as the beam diameter adjusting component 43 . As a result, resin curing light can be easily input to the second waveguide core 114 by adjusting the beam diameter to a desired beam diameter at the coupling portion of the second waveguide core 114 .
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、光路変換を斜め端面でなく別部品で行うことで、光回路デバイス自体への加工を行う必要がなくなり、光回路デバイスの量産性が向上する。光路変換部品は別途用意することになるが、所望のミラー部品を量産性高く製造することは容易であり、光回路デバイスとの一体化も容易に行うことができる。その結果、光回路デバイス全体の歩留まりを向上させることができるる。 In addition, by performing the optical path conversion with a separate component instead of the oblique end face, there is no need to process the optical circuit device itself, and the mass productivity of the optical circuit device is improved. Although the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
 また、光路変換部品の基板上への搭載を、チップマウンタなどの電子部品搭載機で量産性良く実装することができ、実装作業性をさらに向上できる。 In addition, it is possible to mount the optical path conversion parts on the substrate with good mass production efficiency using an electronic component mounting machine such as a chip mounter, further improving the mounting workability.
 なお、搭載基板としては、PCBやビルドアップなどの電気配線基板や樹脂からなる薄膜の電気再配線層、セラミック基板や、Si、ガラス、ガラエポ、樹脂などのインタポーザを用いてもよい。また、図ではチップの基板上への搭載として導波路層が上面となるFace up実装を例に示したが、当然Face down実装でも適用することができる。 As the mounting substrate, an electrical wiring substrate such as a PCB or a buildup, an electrical rewiring layer made of a thin film made of resin, a ceramic substrate, or an interposer made of Si, glass, glass epoxy, resin, or the like may be used. In addition, although the figure shows an example of face-up mounting in which the waveguide layer is on the upper surface as mounting of the chip on the substrate, it is of course possible to apply face-down mounting.
<第5の実施の形態>
 本発明の第5の実施の形態に係る光回路デバイスについて、図8を参照して説明する。
<Fifth Embodiment>
An optical circuit device according to a fifth embodiment of the present invention will be described with reference to FIG.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスにおいて、基本的な構成要素は、第4の実施の形態と同様である。
<Structure of optical circuit device>
The basic components of the optical circuit device according to this embodiment are the same as those of the fourth embodiment.
 第4の実施の形態との差異は、図8に示すように、光路変換構造として、光路変換部品51を光回路デバイス11内に集積している点にある。ここで、光路変換部品51の斜め端面の表面は、オーバクラッド115側に向かって傾斜する。光路変換部品51は、例えばマイクロプリズムミラーである。 The difference from the fourth embodiment is that, as shown in FIG. 8, an optical path conversion component 51 is integrated in the optical circuit device 11 as an optical path conversion structure. Here, the surface of the oblique end surface of the optical path conversion component 51 is inclined toward the overcladding 115 side. The optical path conversion component 51 is, for example, a microprism mirror.
 光回路デバイス11は、光回路デバイス11内にミラーを搭載可能な溝(テラス、キャビティ)52を有しており、この溝52に光路変換部品51が搭載されて任意の方法で固定されている。光回路デバイス11内の溝52は、公知のエッチングなど任意の方法で形成できる。 The optical circuit device 11 has a groove (terrace, cavity) 52 in which a mirror can be mounted inside the optical circuit device 11, and an optical path conversion component 51 is mounted in this groove 52 and fixed by an arbitrary method. . The grooves 52 in the optical circuit device 11 can be formed by any method such as known etching.
 樹脂硬化光は、光路変換部品51の上面(図8において上方)から入力されて、光路変換部品51で反射されることで光路が変換され、光路変換部品51と第2導波路コア114間の空隙を伝搬した後に第2導波路コア114に入力される。 The resin curing light is input from the upper surface (upper side in FIG. 8) of the optical path changing component 51, and is reflected by the optical path changing component 51 to change the optical path. It is input to the second waveguide core 114 after propagating through the air gap.
 第5の実施の形態と同様に、ビーム径の広がりを考慮し、例えばレンズやGRINレンズ、GIファイバなどを用いて、第2導波路コア114結合部において所望のビーム径になるよう調整してもよい。 As in the fifth embodiment, considering the spread of the beam diameter, for example, a lens, a GRIN lens, a GI fiber, etc. are used to adjust the desired beam diameter at the coupling portion of the second waveguide core 114. good too.
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、光回路デバイス自体への斜め端面加工を行う必要がなくなり、光回路デバイスの量産性が向上する。光路変換部品は別途用意することになるが、所望のミラー部品を量産性高く製造することは容易であり、光回路デバイスとの一体化も容易に行うことができる。その結果、光回路デバイス全体の歩留まりを向上させることができる。 In addition, it is no longer necessary to process the oblique end face of the optical circuit device itself, which improves the mass productivity of the optical circuit device. Although the optical path conversion component is separately prepared, it is easy to manufacture a desired mirror component with high mass productivity, and integration with an optical circuit device can be easily performed. As a result, the yield of the entire optical circuit device can be improved.
 また、光路変換部品の光回路デバイス上への搭載を、チップマウンタなどの電子部品搭載機で量産性良く実装することができ、実装作業性をさらに向上できる。さらに、光路変換部を回路内に集積することで、光回路デバイスを小さくできる。 In addition, it is possible to mount the optical path conversion component on the optical circuit device with good mass productivity using an electronic component mounting machine such as a chip mounter, further improving the mounting workability. Furthermore, the optical circuit device can be made smaller by integrating the optical path changer in the circuit.
<第6の実施の形態>
 本発明の第6の実施の形態に係る光回路デバイスについて、図9~図11を参照して説明する。
<Sixth Embodiment>
An optical circuit device according to a sixth embodiment of the present invention will be described with reference to FIGS. 9 to 11. FIG.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスは、基本的な構成要素は、第1の実施の形態と同様である。
<Structure of optical circuit device>
The basic components of the optical circuit device according to this embodiment are the same as those of the first embodiment.
 第1の実施の形態との差異は、図9に示すように、光回路デバイス11が搭載基板63上にFace downで実装されている。ここで、Face downの実装方法として公知のフリップチップ接続が用いられており、金属などの電気接点を介して接続されている。 The difference from the first embodiment is that the optical circuit device 11 is mounted face down on the mounting substrate 63 as shown in FIG. Here, a known flip-chip connection is used as a face-down mounting method, and connection is made via electrical contacts such as metal.
 搭載基板63上には電気配線(図示せず)および電気接点用パッド(図示せず)があり、光回路デバイスの電気配線(図示せず)および電気接点用パッドと電気的に接続されている。 There are electrical wiring (not shown) and electrical contact pads (not shown) on the mounting substrate 63, which are electrically connected to the electrical wiring (not shown) and electrical contact pads of the optical circuit device. .
 光回路デバイスにおいて、導波路層のオーバクラッド115と電気接点62との間に、反射構造体61が設けられている。反射構造体61は、例えばフリップチップ接続用の金またはアルミパッドである。 In the optical circuit device, a reflective structure 61 is provided between the overcladding 115 of the waveguide layer and the electrical contact 62 . Reflective structure 61 is, for example, a gold or aluminum pad for flip-chip bonding.
 また、本実施の形態では、光路変換構造として、樹脂硬化光入射用斜め端面116が、導波路基板111側(図9において上方)を向いて傾斜している。換言すれば、端面は、X-方向に光回路デバイスのオーバクラッド115が導波路基板111に比べて突き出るように形成されている。 In addition, in the present embodiment, as the optical path conversion structure, the oblique end surface 116 for resin curing light incidence is inclined toward the waveguide substrate 111 side (upward in FIG. 9). In other words, the end faces are formed such that the overcladding 115 of the optical circuit device protrudes relative to the waveguide substrate 111 in the X-direction.
 図10に示すように、樹脂硬化光22は、導波路基板111側から入力された後に屈折して導波路層を透過(伝搬)する。導波路層を透過した樹脂硬化光22は、反射構造体61により反射された後に再度導波路層を透過する。その後、斜め端面116の裏面で反射されることで第2導波路コア114に入力される。 As shown in FIG. 10, the resin curing light 22 is refracted after being input from the waveguide substrate 111 side and is transmitted (propagated) through the waveguide layer. The resin curing light 22 transmitted through the waveguide layer is reflected by the reflecting structure 61 and then transmitted through the waveguide layer again. After that, it is input to the second waveguide core 114 by being reflected by the back surface of the oblique end surface 116 .
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, the same effect as in the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、フリップチップ接続などのFace Down実装において、追加のミラー部品を用いることなく樹脂硬化光を厚さ方向(図10における上方)から入力することができ、光回路デバイスの実装方法の自由度を拡大することができる。 In addition, in face-down mounting such as flip chip connection, resin curing light can be input from the thickness direction (upper in FIG. 10) without using an additional mirror component, increasing the degree of freedom in the mounting method of the optical circuit device. can be expanded.
 本実施の形態では、反射構造体にフリップチップ接続用の金属パッドを用いる例を示したが、金属パッドでなくともオーバクラッド上面に金属膜や誘電体による高反射膜を形成しても同様の効果を奏する。 In this embodiment, an example of using a metal pad for flip-chip connection as the reflective structure is shown. Effective.
 また、図11に示すように、搭載基板に貫通ビアが形成され、貫通ビア側から樹脂硬化光が入力されてもよい。 Further, as shown in FIG. 11, through vias may be formed in the mounting substrate, and resin curing light may be input from the through via side.
<第7の実施の形態>
 本発明の第7の実施の形態に係る光回路デバイスについて、図12~図13Dを参照して説明する。
<Seventh Embodiment>
An optical circuit device according to a seventh embodiment of the present invention will be described with reference to FIGS. 12 to 13D.
<光回路デバイスの構成>
 本実施の形態に係る光回路デバイスにおいて、基本的な構成要素は、第1の実施の形態と同様である。
<Structure of optical circuit device>
The basic components of the optical circuit device according to this embodiment are the same as those of the first embodiment.
 第1の実施の形態との差異は、樹脂コアが形成される出射用端面117側においても光路変換構造71を備えていることにある。光路変換構造71は、第1~第6の実施の形態と同様に、全反射やミラー、斜め端面などいずれの方法でも適用できる。 The difference from the first embodiment is that the optical path changing structure 71 is also provided on the output end face 117 side where the resin core is formed. As in the first to sixth embodiments, the optical path changing structure 71 can be applied by any method such as total reflection, a mirror, or an oblique end surface.
 また、本実施の形態では、第2導波路コア114を伝搬して出射された樹脂硬化光は、出射用端面117を含む出射用端面117近傍における光路変換構造71により光路が変換される。その結果、光硬化性樹脂コア121は、光回路コアの長手方向に直交して(厚さ方向に)延在し、オーバクラッド115上面と接して形成される。 Further, in the present embodiment, the optical path of the resin curing light emitted after propagating through the second waveguide core 114 is changed by the optical path conversion structure 71 in the vicinity of the output end face 117 including the output end face 117 . As a result, the photocurable resin core 121 extends perpendicularly to the longitudinal direction of the optical circuit core (in the thickness direction) and is formed in contact with the upper surface of the overcladding 115 .
 本実施の形態では、第1の実施の形態と同様の効果を発現できる。すなわち、樹脂硬化光を入力する際に光回路デバイス上面から入力用光ファイバを配置することができるため、フットプリントを大幅に小さくできる効果を奏する。 In this embodiment, effects similar to those of the first embodiment can be obtained. That is, since the input optical fiber can be arranged from the upper surface of the optical circuit device when resin curing light is input, the footprint can be greatly reduced.
 また、光回路デバイス上面から画像観察によってコア位置を調整し、位置決めできるため実装作業性を大幅に向上できる。 In addition, since the core position can be adjusted and positioned by observing the image from the top of the optical circuit device, mounting workability can be greatly improved.
 さらに、上面から入力用光ファイバを入力できるため、複数チップを並べた実装が可能であり、ウェハレベルでの樹脂コア形成が可能であり、実装作業性を大幅に向上できる効果を奏する。 In addition, since the input optical fiber can be input from the top surface, it is possible to mount multiple chips side by side, and it is possible to form a resin core at the wafer level, which has the effect of greatly improving mounting workability.
 また、樹脂コアを光回路デバイスの上面に接続して形成することで、接続対象を上面に配置することができ、実装作業性をさらに向上でき、実装レイアウトの自由度を増加させることができる。例えば、ウェハレベルでの光回路デバイスと光ファイバとの一体化や光回路デバイス同士の一体化、樹脂モールドパッケージおける上面から樹脂コアの露出などの新規構造を実現できる。 In addition, by connecting the resin core to the upper surface of the optical circuit device and forming it, it is possible to arrange the connection target on the upper surface, further improve the mounting workability, and increase the degree of freedom in the mounting layout. For example, new structures such as integration of optical circuit devices and optical fibers at the wafer level, integration of optical circuit devices, and exposure of a resin core from the upper surface of a resin mold package can be realized.
 本実施の形態では、図13Aに示すように、樹脂硬化光の入射用端面116とともに、出射用端面117を斜め端面とすることで、オーバクラッド115上面に樹脂コア121を形成することができる。 In the present embodiment, as shown in FIG. 13A, the resin core 121 can be formed on the upper surface of the overcladding 115 by making the outgoing end face 117 as well as the incoming end face 116 of the resin curing light oblique.
 また、図13Bに示すように、他の光路変換部品72を出射用端面117に一体化してもよい。 Further, as shown in FIG. 13B, another optical path conversion component 72 may be integrated with the output end surface 117. In addition, as shown in FIG.
 また、図13Cに示すように、搭載基板42上に光路変換部品73を搭載し、第2導波路コア114と光路変換部品73の間に光硬化性樹脂を充填した状態で樹脂硬化光を入力、出射することで光硬化性コア121による光路変換構造を形成してもよい。このとき、光硬化性樹脂との屈折率差を十分にとるため、光路変換部品に金属や誘電体による高反射膜74を形成することが望ましい。 Further, as shown in FIG. 13C, the optical path conversion component 73 is mounted on the mounting substrate 42, and the resin curing light is input while the photocurable resin is filled between the second waveguide core 114 and the optical path conversion component 73. , an optical path changing structure may be formed by the photocurable core 121 by emitting the light. At this time, it is desirable to form a highly reflective film 74 made of metal or dielectric on the optical path changing component in order to obtain a sufficient refractive index difference with the photocurable resin.
 また、図13Dのように、第2導波路コア114にループ回路を設けるようにレイアウトし、樹脂硬化光を入力する端面と出射する端面を同一の端面に配置してもよい。このとき、樹脂硬化光入力用コア(光ファイバ)と出力用コア(光ファイバ)は、幅方向(Y方向)に並列して配置される。 Alternatively, as shown in FIG. 13D, the second waveguide core 114 may be laid out so as to provide a loop circuit, and the end face for inputting and emitting the resin curing light may be arranged on the same end face. At this time, the resin curing light input core (optical fiber) and the output core (optical fiber) are arranged side by side in the width direction (Y direction).
 図示は省略するが、本実施の形態では、第1~第6の実施の形態と同様に、例えば光回路デバイス内に出射用斜め端面を形成する構成、または光路変換部品を配置する構成としてもよい。 Although illustration is omitted, in this embodiment, as in the first to sixth embodiments, for example, a configuration in which an output oblique end surface is formed in the optical circuit device, or a configuration in which an optical path conversion component is arranged may be employed. good.
 本発明の実施の形態において、光回路デバイスの斜め端面や光路変換部品等の構成により、樹脂硬化光を反射させて導波路コアに入射させるとき、その反射は全反射または高反射率での反射であることが望ましい。入射される樹脂硬化光が、光硬化性樹脂を硬化できる強度で出射するように反射されればよい。 In the embodiment of the present invention, when the resin curing light is reflected and made incident on the waveguide core due to the configuration of the oblique end face of the optical circuit device, the optical path changing part, etc., the reflection is total reflection or reflection with high reflectance. is desirable. It is sufficient that the incident resin curing light is reflected so as to be emitted with an intensity capable of curing the photocurable resin.
 本発明の実施の形態では、光回路デバイスの構成などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光回路デバイスの機能を発揮し効果を奏するものであればよい。 In the embodiments of the present invention, an example of the structure, dimensions, materials, etc. of each component is shown in the configuration of the optical circuit device, etc., but the present invention is not limited to this. Any material may be used as long as it exhibits the function of the optical circuit device and produces an effect.
 本発明は、光回路デバイスに関するものであり、光通信等の機器・システムに適用することができる。 The present invention relates to optical circuit devices, and can be applied to equipment and systems such as optical communication.
11 光回路デバイス
111 導波路基板と、
112 アンダークラッド
113 第1の導波路コア
114 第2の導波路コア
115 オーバクラッド
121 樹脂コア
122 樹脂クラッド
 
11 optical circuit device 111 waveguide substrate,
112 under clad 113 first waveguide core 114 second waveguide core 115 over clad 121 resin core 122 resin clad

Claims (9)

  1.  順に、導波路基板と、
     アンダークラッドと、
     樹脂硬化光が導波するコアと、
     オーバクラッドと
     を備える光回路デバイスであって、
     光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、
     前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドと
     を備え、
     前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、
     前記光回路デバイスの他方の端部の表面が前記導波路基板側に向かって傾斜している
     ことを特徴とする光回路デバイス。
    in turn a waveguide substrate;
    an undercladding;
    a core through which resin curing light is guided;
    An optical circuit device comprising an overcladding and
    a resin core in which a photocurable resin is cured by being irradiated with the resin curing light;
    a resin clad having a refractive index smaller than that of the resin core and disposed around the resin core;
    the resin curing light is emitted from a core in which the resin curing light is guided at one end of the optical circuit device;
    An optical circuit device, wherein the surface of the other end portion of the optical circuit device is inclined toward the waveguide substrate.
  2.  上面に電気接点を有する搭載基板と、
     前記光回路デバイスの前記オーバクラッドと前記電気接点との間に配置される反射構造体とを備える
     ことを特徴とする請求項1に記載の光回路デバイス。
    a mounting substrate having electrical contacts on its top surface;
    2. The optical circuit device of claim 1, comprising a reflective structure disposed between the overcladding and the electrical contact of the optical circuit device.
  3.  順に、導波路基板と、
     アンダークラッドと、
     樹脂硬化光が導波するコアと、
     オーバクラッドと
     を備える光回路デバイスであって、
     光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、
     前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドと
     を備え、
     前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、
     前記光回路デバイスの一部の表面が、前記樹脂硬化光が導波するコア側に向かって傾斜する
     ことを特徴とする光回路デバイス。
    in turn a waveguide substrate;
    an undercladding;
    a core through which resin curing light is guided;
    An optical circuit device comprising an overcladding and
    a resin core in which a photocurable resin is cured by being irradiated with the resin curing light;
    a resin clad having a refractive index smaller than that of the resin core and disposed around the resin core;
    the resin curing light is emitted from a core in which the resin curing light is guided at one end of the optical circuit device;
    An optical circuit device, wherein a part of the surface of the optical circuit device is inclined toward a core side through which the resin curing light is guided.
  4.  順に、導波路基板と、
     アンダークラッドと、
     樹脂硬化光が導波するコアと、
     オーバクラッドと
     を備える光回路デバイスであって、
     光硬化樹脂に前記樹脂硬化光が照射されて硬化されている樹脂コアと、
     前記樹脂コアの周囲に配置される、前記樹脂コアの屈折率よりも小さい屈折率を有する樹脂クラッドと
     を備え、
     前記樹脂硬化光が、前記光回路デバイスの一方の端部で、前記樹脂硬化光が導波するコアから出射され、
     前記光回路デバイスの他方の端面における前記樹脂硬化光が導波するコアに、光路変換部品が接続または近接する
     ことを特徴とする光回路デバイス。
    in turn a waveguide substrate;
    an undercladding;
    a core through which resin curing light is guided;
    An optical circuit device comprising an overcladding and
    a resin core in which a photocurable resin is cured by being irradiated with the resin curing light;
    a resin clad having a refractive index smaller than that of the resin core and disposed around the resin core;
    the resin curing light is emitted from a core in which the resin curing light is guided at one end of the optical circuit device;
    An optical circuit device, wherein an optical path converting component is connected to or located close to a core in the other end face of the optical circuit device through which the resin curing light is guided.
  5.  前記光路変換部品が、ミラー部品である
     ことを特徴とする請求項4に記載の光回路デバイス。
    5. The optical circuit device according to claim 4, wherein the optical path conversion component is a mirror component.
  6.  前記樹脂硬化光の入力部近傍領域における前記樹脂硬化光が導波するコアの幅が、前記入力部近傍領域以外での前記樹脂硬化光が導波するコアの幅より広い
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の光回路デバイス。
    A width of a core through which the resin curing light is guided in a region near the input portion of the resin curing light is wider than a width of a core through which the resin curing light is guided in a region other than the input portion near-by region. The optical circuit device according to any one of claims 1 to 5.
  7.  前記樹脂コアは光回路コアの長手方向に平行に延在している
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の光回路デバイス。
    The optical circuit device according to any one of claims 1 to 6, wherein the resin core extends parallel to the longitudinal direction of the optical circuit core.
  8.  前記樹脂コアが、光回路コアの長手方向に直交して延在している
     ことを特徴とする請求項1から請求項7のいずれか一項に記載の光回路デバイス。
    The optical circuit device according to any one of claims 1 to 7, wherein the resin core extends perpendicularly to the longitudinal direction of the optical circuit core.
  9.  前記樹脂硬化光が導波するコアが、第1の導波路コアと、前記第1の導波路コアと光結合する第2の導波路コアとを備える
     ことを特徴とする請求項1から請求項8のいずれか一項に記載の光回路デバイス。
    1. The core through which the resin curing light is guided includes a first waveguide core and a second waveguide core optically coupled to the first waveguide core. 9. The optical circuit device according to any one of 8.
PCT/JP2021/022897 2021-06-16 2021-06-16 Optical circuit device WO2022264322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/022897 WO2022264322A1 (en) 2021-06-16 2021-06-16 Optical circuit device
JP2023528848A JPWO2022264322A1 (en) 2021-06-16 2021-06-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022897 WO2022264322A1 (en) 2021-06-16 2021-06-16 Optical circuit device

Publications (1)

Publication Number Publication Date
WO2022264322A1 true WO2022264322A1 (en) 2022-12-22

Family

ID=84526290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022897 WO2022264322A1 (en) 2021-06-16 2021-06-16 Optical circuit device

Country Status (2)

Country Link
JP (1) JPWO2022264322A1 (en)
WO (1) WO2022264322A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277694A (en) * 2001-03-19 2002-09-25 Mitsubishi Electric Corp Substrate having optical waveguide and electric circuit and method for manufacturing the substrate
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2005215529A (en) * 2004-01-30 2005-08-11 Ngk Spark Plug Co Ltd Device with optical waveguide structure and manufacturing method therefor
JP2006078606A (en) * 2004-09-07 2006-03-23 Tokai Univ Method for manufacturing optical connection device, and optical connection device thereof
JP2008275770A (en) * 2007-04-26 2008-11-13 Kyocera Corp Optical path conversion body, optical path conversion structure, composite optical transmission substrate, and optical module
JP2009069658A (en) * 2007-09-14 2009-04-02 Shinko Electric Ind Co Ltd Optical waveguide mounting substrate and method of manufacturing the same
US20160334572A1 (en) * 2013-12-03 2016-11-17 Ams Ag Semiconductor device with integrated mirror and method of producing a semiconductor device with integrated mirror

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277694A (en) * 2001-03-19 2002-09-25 Mitsubishi Electric Corp Substrate having optical waveguide and electric circuit and method for manufacturing the substrate
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2005215529A (en) * 2004-01-30 2005-08-11 Ngk Spark Plug Co Ltd Device with optical waveguide structure and manufacturing method therefor
JP2006078606A (en) * 2004-09-07 2006-03-23 Tokai Univ Method for manufacturing optical connection device, and optical connection device thereof
JP2008275770A (en) * 2007-04-26 2008-11-13 Kyocera Corp Optical path conversion body, optical path conversion structure, composite optical transmission substrate, and optical module
JP2009069658A (en) * 2007-09-14 2009-04-02 Shinko Electric Ind Co Ltd Optical waveguide mounting substrate and method of manufacturing the same
US20160334572A1 (en) * 2013-12-03 2016-11-17 Ams Ag Semiconductor device with integrated mirror and method of producing a semiconductor device with integrated mirror

Also Published As

Publication number Publication date
JPWO2022264322A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US10545300B2 (en) Three-dimensional WDM with 1×M output ports on SOI based straight waveguides combined with wavelength filters on 45 degree reflectors
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
US10185086B2 (en) Method and system for coupling optical signals into silicon optoelectronic chips
US9575253B2 (en) Method and system for grating couplers incorporating perturbed waveguides
US9379276B2 (en) Optical interconnection module and optical-electrical hybrid board
US11531171B2 (en) Photonic chip with integrated collimation structure
US8503843B2 (en) Hybrid integrated optical module
JPWO2002073256A1 (en) Optical circuit element, method of manufacturing the same, arrayed optical circuit element, and optical circuit device using the same
WO2022264322A1 (en) Optical circuit device
JP2008020720A (en) Optical waveguide and parallel optical transmitter-receiver
WO2022264321A1 (en) Package structure of optical circuit device and method for manufacturing same
WO2022259521A1 (en) Optical coupling structure and manufacturing method therefor
WO2020080196A1 (en) Optical connection structure
WO2022259518A1 (en) Packaging structure for optical waveguide device
WO2022190351A1 (en) Optical connection structure, package structure, optical module, and method for manufacturing package structure
WO2022208662A1 (en) Optical connection structure, package structure, and optical module
WO2022102053A1 (en) Optical connection structure, optical module, and method for manufacturing optical connection structure
WO2023084610A1 (en) Optical module and creation method for same
KR100398045B1 (en) Module for transmitting and receiving an optic signal
WO2022264329A1 (en) Optical connection structure and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528848

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE