WO2022259521A1 - Optical coupling structure and manufacturing method therefor - Google Patents

Optical coupling structure and manufacturing method therefor Download PDF

Info

Publication number
WO2022259521A1
WO2022259521A1 PCT/JP2021/022299 JP2021022299W WO2022259521A1 WO 2022259521 A1 WO2022259521 A1 WO 2022259521A1 JP 2021022299 W JP2021022299 W JP 2021022299W WO 2022259521 A1 WO2022259521 A1 WO 2022259521A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
resin
optical circuit
circuit device
Prior art date
Application number
PCT/JP2021/022299
Other languages
French (fr)
Japanese (ja)
Inventor
光太 鹿間
洋平 齊藤
昇男 佐藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023526804A priority Critical patent/JPWO2022259521A1/ja
Priority to PCT/JP2021/022299 priority patent/WO2022259521A1/en
Publication of WO2022259521A1 publication Critical patent/WO2022259521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to an optical coupling structure that is simple and has good optical coupling efficiency and a manufacturing method thereof.
  • optical transmission such as an optical waveguide or an optical fiber is performed between a light emitting element such as a laser diode (LD) and a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • a light emitting element such as a laser diode (LD)
  • a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • Signal processing is realized by transmission using a medium.
  • the optical light emitting element is integrated with an optical modulation element or the like, or connected discretely, and further connected to a driver or the like that performs electrical-to-optical conversion.
  • a configuration including these light emitting elements, light modulating elements, drivers, etc. is mounted as an optical transmitter on an electrical mounting board such as a printed circuit board (PCB).
  • the light-receiving element is appropriately integrated with an optical processor or the like, or connected discretely, and further connected with an electric amplifier circuit or the like for performing optical-electrical conversion.
  • a configuration including these light receiving element, optical processor, electric amplifier circuit, etc. is mounted on a printed circuit board as an optical receiver.
  • Optical interconnection is achieved by mounting an optical transceiver, which integrates an optical transmitter and an optical receiver, in a package or on a printed circuit board and optically connecting it to an optical transmission medium such as an optical fiber. It is also, depending on the topology, it is realized through a repeater such as an optical switch.
  • semiconductors such as silicon and germanium, III-V group represented by indium phosphide (InP), gallium arsenide (GaAs), indium gallium arsenide (InGaAs), etc.
  • InP indium phosphide
  • GaAs gallium arsenide
  • InGaAs indium gallium arsenide
  • devices using materials such as semiconductors have been put to practical use.
  • optical waveguide type optical transceivers have been developed in which a silicon optical circuit (silicon photonics) having a light propagation mechanism, an indium phosphorous optical circuit, or the like are integrated.
  • materials such as ferroelectrics such as lithium niobate and polymers may also be used as light modulation elements.
  • optical functional elements such as planar lightwave circuits made of silica glass are sometimes integrated together with the light emitting elements, light receiving elements, and light modulating elements.
  • Optical functional devices include splitters, wavelength multiplexers/demultiplexers, optical switches, polarization control devices, optical filters, and the like.
  • devices integrated with light emitting devices, light receiving devices, light modulating devices, optical functional devices, light amplifying devices, etc. having the above light propagation and waveguiding mechanisms will be collectively referred to as optical circuit devices (or simply optical circuits). shall be called.
  • optical circuit devices optical circuit devices using silicon photonics excel in integration, mass production, and compatibility with electrical components, and are attracting attention as key components for realizing next-generation optical interconnection.
  • One of the representative methods for connecting this optical circuit device and an optical fiber is an optical fiber array integrated with glass or the like having V-grooves formed on one or more end surfaces responsible for optical input/output of the optical circuit. It is a structure that matches and connects with. In this structure, each core of the optical fiber and each core of the optical circuit device are required to be connected with low loss. For this low-loss connection, it is necessary to position (hereinafter referred to as "alignment”) and fix the optical circuit device and the optical fiber in submicron units. In this positioning, light is input and output, power is monitored, alignment (optical alignment) is performed, and an adhesive or the like is filled and fixed.
  • Non-Patent Document 1 discloses an optical coupling structure using adiabatic coupling.
  • this optical coupling structure as shown in FIGS. 17A and 17B, the optical circuit device and the optical waveguide are connected.
  • the optical circuit device 81 is a silicon photonics chip.
  • An oxide film on a Si substrate is used as an undercladding 812, and an optical circuit made of Si fine wires made up of a Si core 813 is formed thereon. Further, a glass-based material such as quartz glass is deposited on the upper portion of the Si fine wire to serve as an overcladding 814 to confine the Si core 813 .
  • part of the overcladding 814 of the optical circuit device 81 has not been removed or deposited, leaving the core 813 exposed.
  • the optical waveguide 82 is not an optical fiber but a polymer optical waveguide.
  • a part of the clad 823 is also removed from the optical waveguide 82, and the core 821 is exposed.
  • the cores 813 and 821 of the optical circuit device 81 and the optical waveguide 82 are positioned close to each other in the substrate direction.
  • the Si wire has a structure in which light leaks out by forming a tapered shape or the like in the adiabatic coupling region. At this time, as the light propagates, it is adiabatically transitioned to the polymer core, ideally achieving a coupling efficiency of nearly 100%, thereby achieving highly efficient optical coupling between the optical waveguide and the optical circuit. is realized.
  • a resin material is filled around the cores of the optical circuit device 81 and the optical waveguide 82 as an adiabatic coupling clad 83 with an adjusted refractive index.
  • the filling material is made of an adhesive material or the like, and is cured after positioning to integrate the optical circuit device 81 and the optical waveguide (polymer optical waveguide) 82 in an optically coupled state.
  • the process load can be minimized based on the normal process.
  • it is necessary to remove the cladding of the optical fiber, and removing only a portion of the cladding with high precision or reducing the thickness of the cladding is a process burden. becomes a problem because it increases
  • the optical coupling structure includes an optical circuit device having an optical circuit core and an overcladding, an optical component having a waveguide core, and a photocurable resin irradiated with light.
  • a resin core that is cured by heating the optical circuit device has an exposed core portion where the optical circuit core is exposed, the resin core is arranged to be optically coupled to the exposed core portion, It is characterized by being connected to or close to the waveguide core.
  • an optical coupling structure includes an optical circuit device having an optical circuit core and an overcladding, an optical component having a waveguide core, and a resin core which is cured by irradiating a photocurable resin with light. a part of the overcladding on the side where the optical component is arranged is thin, the resin core is arranged to be optically coupled to the optical circuit core under the part of the overcladding, and the waveguide It is characterized by being connected to or close to the core.
  • a method for manufacturing an optical coupling structure is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit
  • a step of exposing the optical circuit core by removing a part of the overcladding or partially not forming the overcladding to form an exposed core portion a step of arranging and positioning components, a step of applying uncured photocurable resin to the core exposed portion, and inputting resin curing light from the waveguide core and irradiating the photocurable resin.
  • a resin core and forming a resin clad around the resin core.
  • a method for manufacturing an optical coupling structure is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit In a device, thinning a portion of the overcladding on the side where the optical component is arranged; arranging and positioning the optical circuit device and the optical component; a step of applying a curing photocurable resin; a step of inputting resin curing light from the waveguide core and irradiating the photocurable resin to form a resin core; and forming a resin clad.
  • a method for manufacturing an optical coupling structure is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit
  • the method includes a step of inputting resin curing light from a waveguide core and irradiating the photocurable resin to form a resin core, and a step of forming a resin clad around the resin core.
  • FIG. 1A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 1B is a schematic front cross-sectional view taken along line IB-IB' showing the configuration of the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 2A is a schematic top cross-sectional view for explaining the method for manufacturing the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 2B is a schematic top cross-sectional view for explaining the method of manufacturing the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 2C is a schematic top cross-sectional view for explaining the method of manufacturing the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 1A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the first embodiment of the present invention.
  • FIG. 1B is a schematic front cross-sectional view taken along line IB-IB' showing the configuration of the optical
  • FIG. 3A is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention
  • FIG. 3B is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention
  • FIG. 3C is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention
  • FIG. 3D is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention
  • FIG. 4A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention
  • FIG. 4B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 4C is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 4D is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 5A is a schematic front cross-sectional view taken along line VA-VA' showing the configuration of an optical coupling structure according to a modification of the first embodiment of the present invention.
  • FIG. 5B is a schematic front cross-sectional view taken along VB-VB' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 5C is a schematic front sectional view taken along line VC-VC' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 5D is a schematic front cross-sectional view taken along line VD-VD' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 6A is a schematic front cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • 6B is a schematic front cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention;
  • FIG. 6C is a front cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 7A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • 7B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention;
  • FIG. 8A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • 8B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention;
  • FIG. 9A is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • 9B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention;
  • FIG. 9C is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 9D is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention.
  • FIG. 10A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the second embodiment of the present invention.
  • FIG. 10B is an XB-XB' front sectional schematic diagram showing the configuration of the optical coupling structure according to the second embodiment of the present invention.
  • FIG. 10C is a front cross-sectional schematic diagram showing an example of the configuration of the optical coupling structure according to the second embodiment of the present invention.
  • FIG. 11A is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the third embodiment of the present invention.
  • FIG. 11B is a schematic front cross-sectional view taken along line XIB-XIB' showing the configuration of the optical coupling structure according to the third embodiment of the present invention.
  • FIG. 12 is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the fourth embodiment of the present invention.
  • FIG. 11A is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the third embodiment of the present invention.
  • FIG. 11B is a schematic front cross-sectional view taken along line XIB-XIB'
  • FIG. 13 is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the fifth embodiment of the present invention.
  • FIG. 14 is a schematic side sectional view showing the configuration of the optical coupling structure according to the sixth embodiment of the present invention.
  • FIG. 15 is a side cross-sectional schematic diagram showing an example of the configuration of the optical coupling structure according to the sixth embodiment of the present invention.
  • FIG. 16A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the seventh embodiment of the present invention.
  • FIG. 16B is a schematic top cross-sectional view showing the configuration of the optical coupling structure according to the seventh embodiment of the present invention;
  • FIG. 17A is a side cross-sectional schematic diagram showing a conventional optical coupling structure configuration.
  • FIG. 17B is a schematic cross-sectional view taken along line XVIIB-XVIIB' showing the configuration of a conventional optical coupling structure.
  • the optical coupling structure 10 includes an optical circuit device 11, an optical waveguide 12, and an adiabatic coupling portion 13 between the optical circuit device 11 and the optical waveguide 12. Prepare.
  • the input/output end surfaces of the guided light in the optical circuit device 11 and the optical waveguide 12 face each other.
  • the optical circuit device 11 is a known silicon photonics chip, and includes an undercladding 112 made of a silicon oxide film, an optical circuit core 113 and an overcladding 114 on a silicon substrate 111 in this order.
  • a Si fine line pattern is formed as an optical circuit core 113, and a glass film is deposited as an overcladding 114 to form a confined optical circuit.
  • the direction in which light is guided on the horizontal plane (substrate surface) (the X direction in the drawing) is defined as the “longitudinal direction”, the direction perpendicular to the longitudinal direction (the Y direction in the drawing) is defined as the “width direction”, and the horizontal plane (substrate surface)
  • the direction (Z direction in the drawing) perpendicular to the surface) is defined as the thickness direction
  • the overcladding 114 side is defined as the "upward" direction (Z+ direction) with respect to the optical circuit core 113 of the optical circuit device 11
  • the substrate side is defined as the "up” direction (Z+ direction).
  • the optical light emitting element, the light receiving element, the optical modulation element, the optical functional element, and the optical amplifying element as described in the background are integrated on the optical circuit.
  • the optical circuit device 11 is integrated in a hybrid manner with an optical transmission element, an optical modulation element, or the like made of a compound semiconductor or the like, as required.
  • the thickness of the waveguide substrate 111 is, for example, 625 ⁇ m, which is the standard silicon wafer thickness.
  • the silicon photonics chip does not have the overcladding 114 in the vicinity of at least one connection end surface, and has a portion (hereinafter referred to as "core exposed portion") 115 where the optical circuit core 113 is exposed.
  • the core exposed portion can be produced by partially removing the overcladding 114 by etching or the like after forming the overcladding 114 entirely. Alternatively, it can be fabricated by partially masking and forming the overcladding 114 .
  • the length of the core exposed portion 115 in the core longitudinal direction (X direction) is approximately 1 mm. As will be described later, this can be appropriately changed according to the coupling length required for adiabatic coupling, and can be appropriately set to about 0.1 mm to 3 mm in consideration of the refractive index difference, positioning tolerance, and the like.
  • the silicon wire (optical circuit core) 113 has a tapered shape at the core exposed portion 115 .
  • the tapered shape is a shape in which the width of the fine line becomes thinner from the optical circuit device 11 side toward the optical waveguide 12 side along the longitudinal direction (X direction) like a known spot size converter (SSC). is used.
  • the tapered shape may be a non-linear tapered shape, a multistage tapered shape, or an SSC structure such as a segmented SSC, which consists of a discontinuous body of a Si core and a glass material.
  • the tip of the silicon wire (optical circuit core) 113 and the end face of the optical waveguide 12 are arranged apart is shown, but the tip of the silicon wire and the end face of the optical waveguide 12 may be in contact. Guided light leaks from the tapered portion of the silicon wire, and the silicon wire (optical circuit core) 113 and the optical waveguide 12 are optically coupled.
  • the optical waveguide 12 has a waveguide core 121 and a waveguide clad 122 .
  • the optical waveguide 12 uses a known single-mode fiber (SMF) made of silica glass.
  • SMF single-mode fiber
  • the SMF has a core (hereinafter also referred to as "fiber core”) 121 and a clad (hereinafter also referred to as "fiber clad”) 122, the core diameter is approximately 8.2 ⁇ m, and the relative refractive index difference is 0. .3%.
  • the heat-insulating coupling portion 13 includes a core (hereinafter referred to as “resin core”) 131 made of photocurable resin and a clad (hereinafter referred to as “resin clad”) 132 arranged around the resin core 131 . .
  • the resin core 131 is formed in the core longitudinal direction (X direction) so as to be in contact with the end face of the core 121 of the optical fiber that is the optical waveguide 12, and is close to the core of the optical circuit.
  • Resin core 131 is formed in contact with the upper surface of the exposed core portion 115 .
  • Resin core 131 may be arranged so as to be coupled with guided light leaking from core exposed portion 115 .
  • it is formed on or near the upper surface of the tapered portion of the core exposed portion 115 .
  • a plurality of optical fibers 12 and a plurality of optical circuit devices 11 are arranged. be done.
  • a photocurable resin is a known resin that reacts to a specific wavelength and undergoes a curing reaction. Materials known as photoresists may be used.
  • the curing wavelength can be arbitrarily designed by adding an initiator, a dye, or the like, and wavelengths from ultraviolet light to visible light can be used.
  • the resin clad 132 is a resin having a lower refractive index than the resin core 131 in the signal wavelength band, and is filled around the resin core 131 .
  • Known acrylic resins, epoxy resins, silicone resins, urethane resins, oxetane resins, and the like can be used as the resin clad material, and halogen-substituted compounds such as fluorination may be used as appropriate to adjust the refractive index.
  • the clad is partially removed to expose the optical circuit core 113 and form the exposed core portion 115 .
  • the optical circuit device 11 and the optical waveguide (optical fiber) 12 are arranged and positioned, and the uncured photocurable resin 14 is applied to the exposed core portion 115 of the optical circuit device 11 .
  • resin curing light 15 is input from the optical fiber core 121 (FIG. 2A).
  • Any input method can be used as an input method for the resin curing light 15.
  • input can be performed by connecting a resin curing light source from the end face opposite to the connection end face of the optical fiber.
  • the resin curing light 15 is emitted from the end of the optical fiber core 121 (connection end face) after propagating through the core 121 of the optical fiber.
  • a curing reaction of the photocurable resin 14 is induced by irradiating the photocurable resin with the resin curing light 15 .
  • a resin core 131 is formed in the longitudinal direction (X direction) so as to be in contact with the optical fiber core 121 (Fig. 2B).
  • the cross section of the resin core 131 in the core longitudinal direction (X direction) is formed to have a shape similar to the mode distribution of the resin curing light 15 from the optical fiber core 121 .
  • a Gaussian beam has a shape close to a circular cross section.
  • the mode shape may result in an elliptical shape.
  • the mode distribution of the resin curing light 15 extends to a structure such as the optical circuit board 111, the mode distribution is formed in a circular cross-sectional shape with a part missing.
  • the resin clad 132 material is filled around the resin core 131 in the core exposed portion 115 of the optical circuit and cured to form the resin clad 132 (FIG. 2C).
  • a photocurable resin or a thermosetting resin may be used for the material of the resin clad 132 .
  • the uncured portion of the photocurable resin 14 is removed.
  • the photocurable resin can be used as a resin clad material without removing the uncured portion of the photocurable resin. can.
  • a refractive index difference may be formed in the cured photocurable resin by using a difference in curing wavelength or by using two-photon absorption and one-photon absorption.
  • a resin having a different refractive index after being cured by photocuring or heat curing may be used.
  • the photocurable resin may be a mixture of two or more different resin materials, or may be used so as to form a copolymer after curing.
  • 3A to 3D respectively show the propagation modes in the IIIA-IIIA', IIIB-IIIB', IIIC-IIIC', and IIID-IIID' cross sections in FIG. 2C. These propagation modes are calculated by the FDTD (Finite-difference-time-domain) method.
  • the signal wavelength is 1.55 ⁇ m
  • the refractive index of the resin core 131 is 1.5
  • the refractive index of the adiabatic coupling clad is 1.46 at the same wavelength.
  • the light propagation mode is confined in the Si wire (Fig. 3A).
  • the confinement of the light propagation mode expands towards the resin core 131 above the Si wire (FIG. 3B).
  • the IIIC-IIIC' section most of the light propagation modes are confined in the resin core 131 (Fig. 3C).
  • the IIID-IIID' section the light propagation mode is confined in the resin core 131 (Fig. 3D).
  • the propagation mode of light leaks to the outside and transitions to the resin core 131 as it propagates in the longitudinal direction (X direction) due to the tapered structure of the Si fine wire.
  • the guided light is completely transferred to the resin core 131 by propagating in the longitudinal direction (X direction) over a certain length. According to the calculations above, 95% of the guided light propagates through the resin core 131 .
  • Light from the resin core 131 is then coupled with the optical fiber core 121 .
  • optical coupling structure According to the optical coupling structure according to the present embodiment, it is not necessary to remove the clad partially from one of the optical waveguides in the conventional method, or to form a structure having no clad partially.
  • Optical coupling can be achieved by adiabatic coupling with the resin core 131 formed in .
  • the adiabatic coupling can relax the positioning accuracy of the optical waveguide core and the optical circuit core 113 compared to the conventional butt connection, so it is possible to achieve optical coupling easily and highly efficiently.
  • optical coupling structure according to this embodiment has the following effects.
  • Adiabatic coupling utilizes the property that light transitions to the high refractive index side. Therefore, in order to efficiently cause optical transition, it was necessary to set the refractive index of the core of the optical waveguide to be connected to be larger than that of the oxide film, which is the undercladding of the optical circuit board, by a certain amount or more.
  • the refractive index of the core of the optical waveguide can be relatively freely selected.
  • the clad is made of silica glass
  • the core is made of a material with a slightly higher refractive index than silica glass (for example, a relative refractive index difference of 0.3% to 2%). Therefore, since there is only a slight difference in refractive index between the core material and the undercladding (oxide film), it has been difficult to set the refractive index of the core of the optical waveguide (optical fiber) higher than that of the undercladding by a certain amount or more.
  • the refractive index of the optical fiber is very close to that of the undercladding (oxide film)
  • the refractive index of the optical fiber is set to about 1.5 so that the difference between the refractive index of the optical fiber and that of the undercladding (oxide film) becomes large. It is difficult to do so even by adding a dopant to quartz glass. Therefore, it has been difficult to realize adiabatic coupling with optical fibers in the conventional structure.
  • an optical waveguide core when arranging an optical waveguide core so as to be in contact with a core of an optical circuit device, if the cores are excessively pressed against each other, one of the cores may be damaged. I needed it.
  • the resin core can be formed by simply bringing the thin wire of the optical circuit device core and the core of the optical waveguide (optical fiber) close to each other, the optical waveguide and the core of the optical circuit device or the cores of the optical circuit devices The pressing process becomes unnecessary, and the process control conditions can be relaxed.
  • the resin core 131 is formed in part of the core exposed portion 115 of the optical circuit device 11.
  • the resin core 131 is formed so that the lower surface of the resin core 131 is in contact with the upper surface of the core exposed portion 115, as shown in FIGS. 4A and 5A.
  • the resin core 131 may be spaced apart from the end surface of the overcladding 114 .
  • the optical circuit core 113 may be partially embedded in the resin core 131 .
  • the optical circuit core 113 may be entirely embedded in the resin core 131 .
  • the shape of the cross section of the resin core 131 is circular with the lower part missing, and the cross-sectional area is smaller than in the case of a circular shape.
  • the FDTD can achieve low-loss adiabatic coupling without impairing the coupling efficiency.
  • the resin core 131 and the optical circuit core 113 may be arranged separately without being in contact with each other. It is calculated by FDTD that, in this configuration, the clad 132 of the adiabatic coupling portion 13 has a small refractive index, so that optical coupling can be similarly achieved.
  • the distance between the bottom surface of the resin core 131 and the top surface of the optical circuit core 113 must be shorter than the thickness of the undercladding 112 .
  • the thickness of the under clad 112 is desirably within 3 ⁇ m.
  • the effect is obtained not only when the resin core 131 and the optical circuit core 113 are arranged in contact with each other, but also when the resin core 131 and the optical circuit core 113 are arranged apart from each other. Play.
  • the distance between the resin core 131 and the optical circuit core 113 should be shorter than the thickness of the undercladding 112 . In other words, it is sufficient that the resin core 131 and the optical circuit core 113 are spaced apart from each other within the range of optical coupling.
  • the guided light can be sufficiently coupled.
  • the arrangement of the resin core 131 and the optical circuit core 113 shown in FIGS. 5A to 5D should be appropriately designed in consideration of the positioning accuracy, the length of the core in the longitudinal direction (X direction), the difference in refractive index of each core, and the like. Just do it.
  • the cross-sectional shape of the resin core 131 is not limited to a circular cross-section, and may be any cross-sectional shape that allows adiabatic coupling.
  • it may be elliptical as shown in FIG. 6A, nearly rectangular as shown in FIG. 6B, or as shown in FIG. 6C.
  • These shapes can be arbitrarily designed according to the mode distribution of the resin curing light 15 from the optical waveguide 12, the input power of the curing light, the wavelength of the curing light, and the degree of curing of the resin.
  • the core diameter of the resin core 131 is not necessarily the same as the core diameter of the optical waveguide 12, and may be larger than the core diameter of the optical waveguide 12 as shown in FIG. 7A. It may be smaller than the core diameter of the optical waveguide 12 .
  • These diameters can be arbitrarily designed according to the mode distribution of the resin curing light 15 from the optical waveguide 12, the input power of the curing light, the wavelength of the curing light, and the degree of curing of the resin.
  • the resin core 131 and the resin clad 132 connect the optical circuit device 11 and the optical waveguide 12 .
  • the optical circuit device 11 and the optical waveguide 12 may be fixedly connected with an adhesive or the like.
  • the end face of the optical waveguide 12 and the end face of the optical circuit device 11 are arranged so as to face each other in parallel, but the present invention is not limited to this.
  • the end face of the optical waveguide 12 may be arranged so as to be inclined with respect to the end face of the optical waveguide 12, and the resin core 131 may also be arranged so as to be inclined with respect to the traveling direction. It suffices if an overlapping portion between the core of the optical circuit device 11 and the core required for adiabatic coupling can be secured.
  • the resin core 131 may be formed to cover the overclad 114 in the vicinity of the end face of the overclad 114 or may be formed to contact the side surface of the overclad 114 .
  • the side cross-sectional shape of the resin core 131 may be tapered along the longitudinal direction (X direction).
  • the resin core 131 may be terminated apart from the end surface of the overclad 114 in the longitudinal direction (X direction) as long as the heat insulating connection can be secured. may be pointed.
  • optical circuit device 11 other than silicon photonics, for example, an InP integrated circuit, quartz PLC, LN circuit, etc. may be used as the optical circuit device 11 .
  • an example using a general SMF for communication wavelengths as an optical fiber has been shown, but the type of optical fiber may be changed as necessary.
  • an optical fiber with a high refractive index difference known as high NA fiber, may be used.
  • the optical waveguide is exemplified by connection with an optical fiber, but as will be described later, another optical waveguide device such as a polymer waveguide may be used instead of the optical fiber. Also, the present invention can be similarly applied to the connection between optical circuit devices.
  • a resin such as an adhesive can be additionally used as appropriate for integration of each part.
  • an adhesive may be filled between the end surfaces of the optical waveguide device and the optical circuit device to fix them.
  • the positioning structure shown in FIG. 2A may be used in combination with any known positioning structure. These are the same for the embodiments described later.
  • the end face of the optical circuit or optical waveguide is polished as necessary.
  • the optical coupling structure 20 differs from the first embodiment in the configuration of the exposed core portion 115 .
  • Other configurations are the same as in the first embodiment, the optical circuit device is a silicon photonics chip, and the optical waveguide is SMF.
  • the optical circuit core is covered with a thin protective clad layer 116 at the core exposed portion 115 of the optical circuit device 11.
  • FIG. 10A the optical circuit core is covered with a thin protective clad layer 116 at the core exposed portion 115 of the optical circuit device 11.
  • the protective clad layer 116 can be formed, for example, by partially controlling the removal amount of the overcladding 114 so that the optical circuit core 113 is not completely exposed when the overcladding is removed.
  • the overcladding 114 is CMP polishing is performed, and after forming a thin etching protection film such as SiN on a part, the overcladding is again formed as a protective cladding layer 116, and only a part is etched.
  • a protective cladding layer 116 can also be fabricated, and the same structure can be realized by combining known process techniques such as those described above.
  • a part of the overcladding on the side where the optical component 12 is arranged is thin (protective clad layer 116), and the resin core 131 is thicker than a part of the overcladding (protective clad layer 116). It is arranged so as to be optically coupled with the optical circuit core 113 below.
  • the photocurable resin core 131 is formed by the resin curing light 15 of the optical fiber, which is the optical waveguide 12.
  • the resin core 131 is arranged above the clad protective layer, and the resin core 131 is filled with the resin clad 132. It is
  • the refractive index of the protective clad layer 116 is preferably approximately the same as the refractive index of the resin clad 132 or the refractive index of the underclad 112 in order to efficiently achieve adiabatic coupling.
  • the refractive index of the resin clad 132 and the refractive index of the protective clad layer 116 are the same, it is optically equivalent to when there is a slight distance between the resin core 131 and the optical circuit core 113 as shown in FIG. 5D. can be regarded as As a result, the light from the optical circuit core 113 can adiabatically transit to the resin core 131 and can be optically coupled with high efficiency.
  • the thickness of the protective clad layer 116 in order to suppress light transition to the Si substrate 111 with a high refractive index, the thickness of the protective clad layer 116 must be smaller than the thickness of the undercladding 112 layer. In particular, in order to ensure high coupling efficiency, the thickness of the protective clad layer 116 is preferably less than half the thickness of the undercladding layer 112 .
  • the protective clad layer 116 may be formed of a material similar to the silicon oxide film 112, which is the underclad, and an etching protective film 116_2 such as SiN may be provided thereon (FIG. 10C).
  • the thickness of the etching protection film is less than the signal wavelength (for example, about several nanometers) so that the guided light is not affected by the etching protection film.
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • handling in the mounting process and storage process on the optical circuit side is facilitated. That is, in the manufacturing process of the configuration in which the optical circuit core is exposed in the first embodiment, a cleaning process for preventing dust from adhering to the optical circuit core and removing dust is required. In addition, since the optical circuit core is exposed to the air, it is necessary to strictly control deterioration around the core, for example, humidity control and storage atmosphere.
  • the optical circuit core and the resin core are not in direct contact with each other. While the core needs to be lengthened, the storage, cleaning, and mounting process conditions accompanying the exposure of the optical circuit core can be relaxed.
  • the present embodiment can be similarly applied to various modifications and configuration changes in the first embodiment.
  • it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
  • optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
  • optical circuit device it can be applied to various optical circuit devices other than silicon photonics.
  • the optical coupling structure 30 according to this embodiment differs from the first embodiment in the configuration of the optical waveguide. Other configurations are substantially the same as in the first embodiment, and the optical waveguide device is a silicon photonics chip.
  • a high NA fiber is used as the optical waveguide 12 shown in FIGS. 11A and 11B.
  • a high NA fiber has, for example, a core diameter of 3 ⁇ m, which is smaller than that of an SMF, and a ⁇ of about 2%.
  • the resin core 131 is formed by the resin curing light 15 from the high NA fiber 12, the resin core 131 is arranged on the upper surface of the core exposed portion 115 of the optical circuit, and the resin core 131 is filled with the resin clad 132. there is Alternatively, when the core exposed portion 115 has a clad protective layer, the resin core 131 is arranged on the upper surface thereof.
  • the cross-sectional area of the resin core 131 formed from the end faces is smaller than those of the first and second embodiments. For example, if it is formed with the same diameter as the core 121 of the high NA fiber 12, the resin core 131 has a diameter of about 3 ⁇ m ⁇ .
  • the resin core 131 and the resin clad 132 can be appropriately set in consideration of the diameter of the resin core 131 so as to realize appropriate thermal insulation coupling.
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • the resin core diameter is small, the mode diameter of light propagating through the resin core is also small. Therefore, the distance between the center positions of the mode diameters of the resin core and the optical circuit core with respect to the substrate thickness direction (Z direction) is smaller than when the SMF is used. As a result, optical transition due to adiabatic coupling occurs more easily, so even if the core in the longitudinal direction (X direction) required for adiabatic coupling is short, optical coupling can be realized with sufficiently high efficiency.
  • the distance between the centers of the mode diameters of the resin core 131 and the optical circuit core 113 is small. Even if the height accuracy of the position is low (even if the resin core 131 and the optical circuit core 113 are separated), good optical coupling can be achieved.
  • this embodiment can be similarly applied to various modifications and configuration changes in the first and second embodiments.
  • it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
  • optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
  • optical circuit device it can be applied to various optical circuit devices other than silicon photonics.
  • the optical coupling structure 40 according to the present embodiment differs from the first to third embodiments in that optical circuit devices are connected to each other. Other configurations are substantially the same as those of the first embodiment.
  • one optical circuit device 11 is, for example, silicon photonics, and has a core exposed portion 115 as in the first to third embodiments.
  • the thin silicon wire is formed in a tapered shape.
  • the core exposed portion 115 may have a thin clad protective layer on the upper surface of the optical circuit core 113 .
  • the other optical circuit device (second optical circuit device) 21 does not have an exposed core portion and is handled in the same way as a normal optical circuit.
  • the optical circuit devices 11 and 12 are roughly positioned in advance, and are mounted on an adhesive (not shown) filled between the end surfaces or a holding substrate as necessary. Although the optical circuit devices 11 and 12 are arranged in contact with each other in this embodiment, the optical circuit devices 11 and 12 may be arranged apart from each other.
  • a photocurable resin core 131 is formed by the resin curing light 15 from the second optical circuit device 21, and the resin core 131 is arranged on the exposed core portion 115 (or above the cladding protective layer). A resin clad 132 is filled around it.
  • the second optical circuit device 21 can use the various optical circuits described above, has an input section (not shown) for the resin curing light 15, and has a core 213 for propagating the resin curing light 15. , the resin curing light 15 is emitted from the emitting end surface.
  • the core 213 of the second optical circuit device 21 is preferably made of a core material transparent to ultraviolet light, such as quartz PLC, polymer circuits, silicon photonics, or InP conductors. Even if it is a wave path, it is preferable to partially have a second core or the like having a structure transparent to resin curing light such as SiON or SiN.
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • optical coupling can be achieved through adiabatic coupling between optical circuit devices.
  • the resin core can be satisfactorily formed if the in-plane thickness error is within a predetermined error range. More simply, optical coupling can be achieved by adiabatic coupling through the resin core.
  • the optical coupling structure 50 differs from the first to fourth embodiments in that it includes a positioning structure between the optical circuit device and the optical waveguide.
  • Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide. Adiabatic coupling between the resin core in contact with the SMF and the optical circuit realizes highly efficient optical coupling between the SMF and the Si wire.
  • the silicon photonics chip which is the optical circuit device 11 has a groove 117 capable of accommodating the optical fiber 12 on the optical circuit board 111.
  • FIG. 13 By mounting the optical fiber 12 in the groove 117, the optical fiber core 121 and the optical circuit core 113 are positioned.
  • the optical fiber 12 may be pre-fixed in the groove 117 with an adhesive or the like.
  • the groove 117 is a U-groove or a V-groove, and has a long configuration in the longitudinal direction (X direction) of the optical circuit core. formed on top. This can be achieved by known trench integration techniques used in passive alignment of silicon photonics chips.
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • the optical coupling structure according to the present embodiment since the positioning accuracy of the optical circuit core and the optical waveguide core is determined only by the member accuracy, it is possible to realize good optical coupling more easily.
  • each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 ⁇ m. realizable. As a result, it is possible to relax the manufacturing accuracy of the grooves.
  • this embodiment can be similarly applied to various modifications and structural changes in the first to fourth embodiments.
  • it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
  • optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
  • optical circuit device it can be applied to various optical circuit devices other than silicon photonics.
  • the optical coupling structure 60 differs from the first to fifth embodiments in the positioning structure between the optical circuit device and the optical waveguide. Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide 12 . Highly efficient optical coupling between the optical waveguide 12 and the optical circuit device is realized by adiabatic coupling between the resin core in contact with the SMF and the optical circuit.
  • the silicon photonics chip which is the optical circuit device 11, is mounted on the electrical mounting substrate 31, as shown in FIG.
  • the surface of the optical circuit on the side of the core and overcladding 114 faces the upper surface of the electrical mounting board 31, so-called facedown.
  • the distance between the optical circuit core 113 and the electrical mounting board 31 in the board thickness direction (Z direction) is defined by the electrical contact (height determining structure) 32 .
  • the electrical contact (height-determining structure) 32 is, for example, metal or solder, and can have the same structure as the electrical contact in the known flip-chip connection. Note that electrical wiring and electrical pads are not shown.
  • optical fiber 12 is mounted and fixed in a groove (cavity) 311 on the electrical mounting board 31 .
  • the optical circuit core 113 and the optical waveguide core are positioned in advance only by mechanical accuracy (such as machining accuracy of grooves on the electrical mounting board 31).
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • the positioning of the optical circuit core and the optical waveguide core can be determined only by the accuracy of the members, and optical coupling can be realized more easily.
  • each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 ⁇ m. realizable. This makes it possible to relax the manufacturing accuracy of the groove, the height determination structure, and the thickness of the electrical contact.
  • This embodiment can be applied to the connection between optical circuit devices as shown in FIG. 15, and has the same effect.
  • Each optical circuit device 11 is mounted face down on the electrical mounting board 31, and each core position is determined in advance by electrical contacts or a height determination structure.
  • this embodiment can be similarly applied to various modifications and structural changes in the first to sixth embodiments.
  • optical circuit devices and optical waveguides it can also be applied to optical coupling between optical circuit devices.
  • optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
  • optical circuit device it can be applied to various optical circuit devices other than silicon photonics.
  • the optical coupling structure 70 according to this embodiment differs from the first to sixth embodiments in the positioning structure between the optical circuit device and the optical waveguide. Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide. Highly efficient optical coupling between the optical waveguide and the optical circuit device is realized by adiabatic coupling between the resin core in contact with the SMF and the optical circuit.
  • the optical fibers which are the optical waveguides 12 are aligned and fixed by the first holding member 41.
  • FIG. 16A and 16B the optical fibers, which are the optical waveguides 12, are aligned and fixed by the first holding member 41.
  • the first holding part 41 has a hole or groove for accommodating the optical fiber 12, for example a glass block with a V-groove and a lid or a known MT ferrule.
  • the optical circuit device 11 is mounted and fixed on the second holding component 42 .
  • the mounting of the second holding component 42 and the optical circuit device 11 may be either face-up mounting or the aforementioned face-down mounting.
  • the first holding component 41 has a positioning structure 43 whose relative position with respect to the optical fiber 12 is defined with high accuracy.
  • the positioning structure 43 for example, the MT ferrule is provided with two guide pins.
  • the second holding part 42 is provided with a positioning guide 44 .
  • the positioning guide 44 is, for example, a hole or groove structure into which a guide pin can be fitted.
  • the positioning structure 43 and the positioning guide 44 fit together, so that the optical circuit core 113 and the optical waveguide core 121 are positioned only with mechanical accuracy.
  • optical coupling structure According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
  • the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
  • the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
  • the positioning of the optical circuit core and the optical waveguide core can be determined only by the accuracy of the members, and optical coupling can be realized more easily.
  • each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 ⁇ m. realizable. This makes it possible to relax the manufacturing accuracy of the grooves and the guide pins.
  • This embodiment can be similarly applied to various modifications and configuration changes in the first to sixth embodiments.
  • it can also be applied to optical coupling between optical circuit devices.
  • optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
  • optical circuit device it can be applied to various optical circuit devices other than silicon photonics.
  • an optical fiber or an optical circuit device as an optical component connected to an optical circuit device is shown, but other optical components such as a polymer optical waveguide or a glass optical waveguide may be used.
  • the present invention is not limited to this, and the waveguide core and the resin core of the optical component may be adjacent to each other. It is sufficient that the waveguide core and the resin core can be optically coupled.
  • the present invention relates to an optical coupling structure of optical components, and can be applied to devices and systems such as optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical coupling structure (10) according to the present invention comprises: an optical circuit device (12) having an optical circuit core (113) and an overcladding (114); an optical component (12) having a waveguide core (121); and a resin core (131) formed by irradiating a photocurable resin (14) with light. The optical circuit device (11) has a core exposed part (115) in which the optical circuit core (113) is exposed. The resin core (131) is disposed so as to optically couple with the core exposed part (115), and connects to or is in close proximity with an end surface of the waveguide core (121). The present invention can thereby provide a simple optical coupling structure having favorable optical coupling efficiency.

Description

光結合構造およびその製造方法Optical coupling structure and manufacturing method thereof
 本発明は、簡易で良好な光結合効率を有する光結合構造およびその製造方法に関する。 The present invention relates to an optical coupling structure that is simple and has good optical coupling efficiency and a manufacturing method thereof.
 近年のインターネットトラフィックの急増に対応すべく、データセンタネットワークの通信容量の拡大が求められる。伝送容量のさらなる拡大および低消費電力化に対応すべく、短中距離の伝送においても光で伝送する光インタコネクションの導入が進んでいる。 In order to respond to the rapid increase in Internet traffic in recent years, it is necessary to expand the communication capacity of the data center network. In order to cope with further expansion of transmission capacity and reduction of power consumption, the introduction of optical interconnection that transmits light even in short-to-medium-distance transmission is progressing.
 光インタコネクションの代表的な方式においては、プリント基板上に配置されたレーザダイオード(LD)などの光発光素子とフォトダイオード(PD)などの光受光素子間を光導波路や光ファイバなどの光伝送媒体を用いて伝送することで、信号処理が実現されている。 In a typical optical interconnection system, optical transmission such as an optical waveguide or an optical fiber is performed between a light emitting element such as a laser diode (LD) and a light receiving element such as a photodiode (PD) arranged on a printed circuit board. Signal processing is realized by transmission using a medium.
 伝送方式によっては、光発光素子には、光変調素子などが集積されるか、あるいはディスクリートに接続され、さらに電気-光変換を行うドライバなどが接続される。これら光発光素子、光変調素子、ドライバなどを含む構成が光送信機としてプリント基板(PCB:Printed circuit board)などの電気実装基板上に搭載されている。同様に、光受光素子には、光処理機などが適宜集積されるか、あるいはディスクリートに接続され、さらに光-電気変換を行う電気増幅回路などが接続される。これら光受光素子、光処理機、電気増幅回路などを含む構成が光受信機としてプリント基板上に実装されている。 Depending on the transmission method, the optical light emitting element is integrated with an optical modulation element or the like, or connected discretely, and further connected to a driver or the like that performs electrical-to-optical conversion. A configuration including these light emitting elements, light modulating elements, drivers, etc. is mounted as an optical transmitter on an electrical mounting board such as a printed circuit board (PCB). Similarly, the light-receiving element is appropriately integrated with an optical processor or the like, or connected discretely, and further connected with an electric amplifier circuit or the like for performing optical-electrical conversion. A configuration including these light receiving element, optical processor, electric amplifier circuit, etc. is mounted on a printed circuit board as an optical receiver.
 これら光送信機と光受信機とを一体化した光送受信機などがパッケージ内やプリント基板上に搭載され、光ファイバなどの光伝送媒体と光学的に接続されることで、光インタコネクションが実現されている。また、トポロジーによっては、光スイッチなどの中継器などを介して実現されている。 Optical interconnection is achieved by mounting an optical transceiver, which integrates an optical transmitter and an optical receiver, in a package or on a printed circuit board and optically connecting it to an optical transmission medium such as an optical fiber. It is Also, depending on the topology, it is realized through a repeater such as an optical switch.
 前記光発光素子や光受光素子、光変調素子としては、シリコンやゲルマニウムなどの半導体や、インジウムリン(InP)やガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs)等に代表されるIII-V族半導体などの材料を用いる素子が実用化されている。近年では、これらの素子と共に、光の伝播機構を有するシリコン光回路(シリコンフォトニクス)やインジウムリン光回路などを集積した光導波路型の光送受信機が発展している。また、光変調素子としては、半導体の他に、ニオブ酸リチウムなどの強誘電体系やポリマーなどの材料を用いる場合もある。 As the light emitting device, the light receiving device, and the light modulation device, semiconductors such as silicon and germanium, III-V group represented by indium phosphide (InP), gallium arsenide (GaAs), indium gallium arsenide (InGaAs), etc. Devices using materials such as semiconductors have been put to practical use. In recent years, along with these elements, optical waveguide type optical transceivers have been developed in which a silicon optical circuit (silicon photonics) having a light propagation mechanism, an indium phosphorous optical circuit, or the like are integrated. In addition to semiconductors, materials such as ferroelectrics such as lithium niobate and polymers may also be used as light modulation elements.
 さらに、上記の光発光素子や光受光素子、光変調素子と共に、石英ガラスなどからなる平面光波回路(Planar Lightwave Circuit)などからなる光機能素子が集積されることがある。光機能素子としてはスプリッタ、波長合分波器、光スイッチ、偏波制御素子、光フィルタなどがある。以降、上記の光の伝播、導波機構を有する光発光素子、光受光素子、光変調素子、光機能素子、光増幅素子などを集積したデバイスを総称して光回路デバイス(あるいは単に光回路)と呼ぶこととする。光回路デバイスの中でもシリコンフォトニクスを用いた光回路デバイスは集積性、量産性、電気部品との親和性に優れ、次世代の光インタコネクションを実現する上でのキー部品として着目されている。 Furthermore, optical functional elements such as planar lightwave circuits made of silica glass are sometimes integrated together with the light emitting elements, light receiving elements, and light modulating elements. Optical functional devices include splitters, wavelength multiplexers/demultiplexers, optical switches, polarization control devices, optical filters, and the like. Hereinafter, devices integrated with light emitting devices, light receiving devices, light modulating devices, optical functional devices, light amplifying devices, etc. having the above light propagation and waveguiding mechanisms will be collectively referred to as optical circuit devices (or simply optical circuits). shall be called. Among optical circuit devices, optical circuit devices using silicon photonics excel in integration, mass production, and compatibility with electrical components, and are attracting attention as key components for realizing next-generation optical interconnection.
 この光回路デバイスと光ファイバを接続する代表的な方法の一つは、光回路の光入出力を担う1以上の端面に対して、V溝を形成したガラスなどと一体化された光ファイバアレイとを突き合わせて接続する構造である。この構造においては、光ファイバの各コアと、光回路デバイスの各コアとが低損失で接続することが求められる。この低損失の接続のためには、サブミクロン単位で光回路デバイスと光ファイバとを位置決め(以下、「調心」という)・固定することが必要である。この位置決めにおいて、光を入出力してパワーをモニタして調芯(光学調心)し、接着剤などを充填させて固定する。 One of the representative methods for connecting this optical circuit device and an optical fiber is an optical fiber array integrated with glass or the like having V-grooves formed on one or more end surfaces responsible for optical input/output of the optical circuit. It is a structure that matches and connects with. In this structure, each core of the optical fiber and each core of the optical circuit device are required to be connected with low loss. For this low-loss connection, it is necessary to position (hereinafter referred to as "alignment") and fix the optical circuit device and the optical fiber in submicron units. In this positioning, light is input and output, power is monitored, alignment (optical alignment) is performed, and an adhesive or the like is filled and fixed.
 また、非特許文献1に、断熱結合を利用した光結合構造が開示されている。この光結合構造では、図17A、Bに示すように、光回路デバイスと光導波路とが接続される。 In addition, Non-Patent Document 1 discloses an optical coupling structure using adiabatic coupling. In this optical coupling structure, as shown in FIGS. 17A and 17B, the optical circuit device and the optical waveguide are connected.
 光回路デバイス81は、シリコンフォトニクスチップであり、Si基板上の酸化膜をアンダークラッド812とし、その上にSiコア813からなるSi細線による光回路が形成されている。また、Si細線上部には石英ガラスなどのガラス系材料が堆積されオーバクラッド814としてSiコア813を閉じ込めている。 The optical circuit device 81 is a silicon photonics chip. An oxide film on a Si substrate is used as an undercladding 812, and an optical circuit made of Si fine wires made up of a Si core 813 is formed thereon. Further, a glass-based material such as quartz glass is deposited on the upper portion of the Si fine wire to serve as an overcladding 814 to confine the Si core 813 .
 断熱結合においては、図17Aのように、光回路デバイス81の一部のオーバクラッド814が除去または堆積されておらず、コア813が露出されている。 In adiabatic bonding, as in FIG. 17A, part of the overcladding 814 of the optical circuit device 81 has not been removed or deposited, leaving the core 813 exposed.
 光導波路82は、光ファイバではなく、ポリマー光導波路である。 The optical waveguide 82 is not an optical fiber but a polymer optical waveguide.
 また、光導波路82でも一部のクラッド823が除去されており、コア821が露出されている。ここで、図17Bに示すように、光回路デバイス81と光導波路82とのコア同士813、821が、基板方向に対して近接するように位置決めされている。 A part of the clad 823 is also removed from the optical waveguide 82, and the core 821 is exposed. Here, as shown in FIG. 17B, the cores 813 and 821 of the optical circuit device 81 and the optical waveguide 82 are positioned close to each other in the substrate direction.
 ここで、Si細線は、断熱結合領域において、テーパ形状などが形成されることで光が漏れ出す構造としている。このとき、光が伝搬するに従い、断熱的にポリマーコアに遷移されることで、理想的には100%近い結合効率をとることができ、これにより光導波路と光回路間の高効率な光結合を実現している。 Here, the Si wire has a structure in which light leaks out by forming a tapered shape or the like in the adiabatic coupling region. At this time, as the light propagates, it is adiabatically transitioned to the polymer core, ideally achieving a coupling efficiency of nearly 100%, thereby achieving highly efficient optical coupling between the optical waveguide and the optical circuit. is realized.
 このとき、光回路デバイス81と光導波路82におけるコアの周囲には、屈折率を調整した断熱結合部クラッド83として樹脂材料が充填されている。充填材料は接着材料などからなり、位置決め後に硬化することにより、光回路デバイス81と光導波路(ポリマー光導波路)82とを光結合した状態で一体化させる。 At this time, a resin material is filled around the cores of the optical circuit device 81 and the optical waveguide 82 as an adiabatic coupling clad 83 with an adjusted refractive index. The filling material is made of an adhesive material or the like, and is cured after positioning to integrate the optical circuit device 81 and the optical waveguide (polymer optical waveguide) 82 in an optically coupled state.
 しかしながら、上述の光結合構造では、断熱結合において光回路デバイスと光導波路とのコア同士を近接させる必要があるため、それぞれにおいて部分的にクラッドを除去する工程、または部分的にクラッドを有さない構造を形成する工程を必要とする。さらに、これらの工程を施した状態を維持して光回路または光導波路を取り扱う必要があるので、追加のプロセス負荷や実装時の工程制約(例えばゴミ付着防止の工程管理など)が生じるという問題があった。 However, in the optical coupling structure described above, it is necessary to bring the cores of the optical circuit device and the optical waveguide close to each other for adiabatic coupling. A step of forming a structure is required. Furthermore, since it is necessary to handle the optical circuit or optical waveguide while maintaining the state in which these processes have been performed, there is the problem of additional process load and process restrictions during mounting (for example, process control to prevent dust from adhering). there were.
 また、光回路デバイスやポリマー光導波路に対して、ウェハ一括のプロセスで光結合構造を製造する場合、通常のプロセスに基づき、プロセス負荷を極力最小化することができる。しかしながら、例えば、光導波路に公知の光ファイバを用いる場合、光ファイバのクラッドを除去する必要があり、一部のクラッドのみを高精度に除去すること、またはクラッド厚を薄くすることは、プロセス負荷を増加させるので問題となる。 In addition, when manufacturing an optical coupling structure for an optical circuit device or a polymer optical waveguide by a wafer batch process, the process load can be minimized based on the normal process. However, for example, when using a known optical fiber for an optical waveguide, it is necessary to remove the cladding of the optical fiber, and removing only a portion of the cladding with high precision or reducing the thickness of the cladding is a process burden. becomes a problem because it increases
 上述したような課題を解決するために、本発明に係る光結合構造は、光回路コアとオーバクラッドとを有する光回路デバイスと、導波路コアを有する光部品と、光硬化性樹脂に光照射されて硬化される樹脂コアとを備え、前記光回路デバイスは、前記光回路コアが露出されるコア露出部を有し、前記樹脂コアが、前記コア露出部と光結合するように配置され、前記導波路コアに接続または近接することを特徴とする。 In order to solve the above-described problems, the optical coupling structure according to the present invention includes an optical circuit device having an optical circuit core and an overcladding, an optical component having a waveguide core, and a photocurable resin irradiated with light. a resin core that is cured by heating, the optical circuit device has an exposed core portion where the optical circuit core is exposed, the resin core is arranged to be optically coupled to the exposed core portion, It is characterized by being connected to or close to the waveguide core.
 また、本発明に係る光結合構造は、光回路コアとオーバクラッドとを有する光回路デバイスと、導波路コアを有する光部品と、光硬化性樹脂に光照射されて硬化される樹脂コアとを備え、前記光部品が配置される側の前記オーバクラッドの一部が薄く、前記樹脂コアが、前記一部のオーバクラッドの下の前記光回路コアと光結合するように配置され、前記導波路コアに接続または近接することを特徴とする。 Further, an optical coupling structure according to the present invention includes an optical circuit device having an optical circuit core and an overcladding, an optical component having a waveguide core, and a resin core which is cured by irradiating a photocurable resin with light. a part of the overcladding on the side where the optical component is arranged is thin, the resin core is arranged to be optically coupled to the optical circuit core under the part of the overcladding, and the waveguide It is characterized by being connected to or close to the core.
 また、本発明に係る光結合構造の製造方法は、光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、前記光回路デバイスにおいて、前記オーバクラッドの一部を除去する、或いは部分的にオーバクラッドを成膜しないことで、前記光回路コアを露出させ、コア露出部を形成する工程と、前記光回路デバイスと前記光部品とを配置して位置決めする工程と、前記コア露出部に未硬化の光硬化性樹脂を塗布する工程と、前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、前記樹脂コアの周囲に、樹脂クラッドを形成する工程とを備える。 A method for manufacturing an optical coupling structure according to the present invention is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit In the device, a step of exposing the optical circuit core by removing a part of the overcladding or partially not forming the overcladding to form an exposed core portion; a step of arranging and positioning components, a step of applying uncured photocurable resin to the core exposed portion, and inputting resin curing light from the waveguide core and irradiating the photocurable resin. forming a resin core; and forming a resin clad around the resin core.
 また、本発明に係る光結合構造の製造方法は、光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、前記光回路デバイスにおいて、前記光部品が配置される側の前記オーバクラッドの一部を薄くする工程と、前記光回路デバイスと前記光部品とを配置して位置決めする工程と、前記オーバクラッドの一部に未硬化の光硬化性樹脂を塗布する工程と、前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、前記樹脂コアの周囲に、樹脂クラッドを形成する工程とを備える。 A method for manufacturing an optical coupling structure according to the present invention is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit In a device, thinning a portion of the overcladding on the side where the optical component is arranged; arranging and positioning the optical circuit device and the optical component; a step of applying a curing photocurable resin; a step of inputting resin curing light from the waveguide core and irradiating the photocurable resin to form a resin core; and forming a resin clad.
 また、本発明に係る光結合構造の製造方法は、光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、前記光回路デバイスにおいて、前記オーバクラッドの一部を除去する、或いは部分的にオーバクラッドを成膜しないことで、前記光回路コアを露出させ、コア露出部を形成する工程と、前記コア露出部の上に薄層のクラッド層を形成する工程と、前記光回路デバイスと前記光部品とを配置して位置決めする工程と、前記薄層のクラッド層に未硬化の光硬化性樹脂を塗布する工程と、前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、前記樹脂コアの周囲に、樹脂クラッドを形成する工程とを備える。 A method for manufacturing an optical coupling structure according to the present invention is a method for manufacturing an optical coupling structure including an optical circuit device having an optical circuit core and an overcladding, and an optical component having a waveguide core, wherein the optical circuit In the device, a step of exposing the optical circuit core by removing a part of the overcladding or partially not forming the overcladding to form an exposed core portion; forming a thin clad layer; arranging and positioning the optical circuit device and the optical component; applying an uncured photocurable resin to the thin clad layer; The method includes a step of inputting resin curing light from a waveguide core and irradiating the photocurable resin to form a resin core, and a step of forming a resin clad around the resin core.
 本発明によれば、簡易かつ良好な光結合効率を有する光結合構造およびその製造方法を提供できる。 According to the present invention, it is possible to provide an optical coupling structure that is simple and has good optical coupling efficiency and a method for manufacturing the same.
図1Aは、本発明の第1の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 1A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the first embodiment of the present invention. 図1Bは、本発明の第1の実施の形態に係る光結合構造の構成を示すIB-IB’正面断面模式図である。FIG. 1B is a schematic front cross-sectional view taken along line IB-IB' showing the configuration of the optical coupling structure according to the first embodiment of the present invention. 図2Aは、本発明の第1の実施の形態に係る光結合構造の製造方法を説明するための上面断面模式図である。FIG. 2A is a schematic top cross-sectional view for explaining the method for manufacturing the optical coupling structure according to the first embodiment of the present invention. 図2Bは、本発明の第1の実施の形態に係る光結合構造の製造方法を説明するための上面断面模式図である。FIG. 2B is a schematic top cross-sectional view for explaining the method of manufacturing the optical coupling structure according to the first embodiment of the present invention. 図2Cは、本発明の第1の実施の形態に係る光結合構造の製造方法を説明するための上面断面模式図である。FIG. 2C is a schematic top cross-sectional view for explaining the method of manufacturing the optical coupling structure according to the first embodiment of the present invention. 図3Aは、本発明の第1の実施の形態に係る光結合構造の動作を説明するための図である。FIG. 3A is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention; 図3Bは、本発明の第1の実施の形態に係る光結合構造の動作を説明するための図である。FIG. 3B is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention; 図3Cは、本発明の第1の実施の形態に係る光結合構造の動作を説明するための図である。FIG. 3C is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention; 図3Dは、本発明の第1の実施の形態に係る光結合構造の動作を説明するための図である。FIG. 3D is a diagram for explaining the operation of the optical coupling structure according to the first embodiment of the present invention; 図4Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 4A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図4Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 4B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図4Cは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 4C is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図4Dは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 4D is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図5Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示すVA-VA’正面断面模式図である。FIG. 5A is a schematic front cross-sectional view taken along line VA-VA' showing the configuration of an optical coupling structure according to a modification of the first embodiment of the present invention. 図5Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示すVB-VB’正面断面模式図である。FIG. 5B is a schematic front cross-sectional view taken along VB-VB' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図5Cは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示すVC-VC’正面断面模式図である。FIG. 5C is a schematic front sectional view taken along line VC-VC' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図5Dは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示すVD-VD’正面断面模式図である。FIG. 5D is a schematic front cross-sectional view taken along line VD-VD' showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図6Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す正面断面模式図である。FIG. 6A is a schematic front cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図6Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す正面断面模式図である。6B is a schematic front cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention; FIG. 図6Cは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す正面断面模式図である。FIG. 6C is a front cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図7Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 7A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図7Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。7B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention; FIG. 図8Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 8A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図8Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。8B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention; FIG. 図9Aは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 9A is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図9Bは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。9B is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention; FIG. 図9Cは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 9C is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図9Dは、本発明の第1の実施の形態の変形例に係る光結合構造の構成を示す側面断面模式図である。FIG. 9D is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the modification of the first embodiment of the present invention. 図10Aは、本発明の第2の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 10A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the second embodiment of the present invention. 図10Bは、本発明の第2の実施の形態に係る光結合構造の構成を示すXB-XB’正面断面模式図である。FIG. 10B is an XB-XB' front sectional schematic diagram showing the configuration of the optical coupling structure according to the second embodiment of the present invention. 図10Cは、本発明の第2の実施の形態に係る光結合構造の構成の一例を示す正面断面模式図である。FIG. 10C is a front cross-sectional schematic diagram showing an example of the configuration of the optical coupling structure according to the second embodiment of the present invention. 図11Aは、本発明の第3の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 11A is a side cross-sectional schematic diagram showing the configuration of the optical coupling structure according to the third embodiment of the present invention. 図11Bは、本発明の第3の実施の形態に係る光結合構造の構成を示すXIB-XIB’正面断面模式図である。FIG. 11B is a schematic front cross-sectional view taken along line XIB-XIB' showing the configuration of the optical coupling structure according to the third embodiment of the present invention. 図12は、本発明の第4の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 12 is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the fourth embodiment of the present invention. 図13は、本発明の第5の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 13 is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the fifth embodiment of the present invention. 図14は、本発明の第6の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 14 is a schematic side sectional view showing the configuration of the optical coupling structure according to the sixth embodiment of the present invention. 図15は、本発明の第6の実施の形態に係る光結合構造の構成の一例を示す側面断面模式図である。FIG. 15 is a side cross-sectional schematic diagram showing an example of the configuration of the optical coupling structure according to the sixth embodiment of the present invention. 図16Aは、本発明の第7の実施の形態に係る光結合構造の構成を示す側面断面模式図である。FIG. 16A is a schematic side cross-sectional view showing the configuration of the optical coupling structure according to the seventh embodiment of the present invention. 図16Bは、本発明の第7の実施の形態に係る光結合構造の構成を示す上面断面模式図である。FIG. 16B is a schematic top cross-sectional view showing the configuration of the optical coupling structure according to the seventh embodiment of the present invention; 図17Aは、従来の光結合構造構成を示す側面断面模式図である。FIG. 17A is a side cross-sectional schematic diagram showing a conventional optical coupling structure configuration. 図17Bは、従来の光結合構造の構成を示すXVIIB-XVIIB’断面模式図である。FIG. 17B is a schematic cross-sectional view taken along line XVIIB-XVIIB' showing the configuration of a conventional optical coupling structure.
<第1の実施の形態>
 本発明の第1の実施の形態に係る光結合構造について、図1A~図9Dを参照して説明する。
<First Embodiment>
An optical coupling structure according to a first embodiment of the present invention will be described with reference to FIGS. 1A to 9D.
<光結合構造の構成>
 本実施の形態に係る光結合構造10は、図1A、Bに示すように、光回路デバイス11と、光導波路12と、光回路デバイス11と光導波路12との間に断熱結合部13とを備える。ここで、光回路デバイス11と光導波路12それぞれにおける導波光の入出力端面が対向する。
<Configuration of Optical Coupling Structure>
As shown in FIGS. 1A and 1B, the optical coupling structure 10 according to the present embodiment includes an optical circuit device 11, an optical waveguide 12, and an adiabatic coupling portion 13 between the optical circuit device 11 and the optical waveguide 12. Prepare. Here, the input/output end surfaces of the guided light in the optical circuit device 11 and the optical waveguide 12 face each other.
 光回路デバイス11は、公知のシリコンフォトニクスチップであり、シリコン基板111上に、順に、シリコン酸化膜からなるアンダークラッド112と、光回路コア113と、オーバクラッド114とを備える。光回路コア113としてSi細線パターンが形成されており、オーバクラッド114としてガラス膜が堆積され、閉じ込め型の光回路が形成されている。 The optical circuit device 11 is a known silicon photonics chip, and includes an undercladding 112 made of a silicon oxide film, an optical circuit core 113 and an overcladding 114 on a silicon substrate 111 in this order. A Si fine line pattern is formed as an optical circuit core 113, and a glass film is deposited as an overcladding 114 to form a confined optical circuit.
 以下、水平面(基板表面)において光が導波する方向(図中、X方向)を「長手方向」とし、長手方向に垂直な方向(図中、Y方向)を「幅方向」、水平面(基板表面)に垂直な方向(図中、Z方向)を厚さ方向とし、光回路デバイス11の光回路コア113に対して、オーバクラッド114側を「上」方向(Z+方向)とし、基板側を「下」方向(Z-方向)とする。 Hereinafter, the direction in which light is guided on the horizontal plane (substrate surface) (the X direction in the drawing) is defined as the “longitudinal direction”, the direction perpendicular to the longitudinal direction (the Y direction in the drawing) is defined as the “width direction”, and the horizontal plane (substrate surface) The direction (Z direction in the drawing) perpendicular to the surface) is defined as the thickness direction, the overcladding 114 side is defined as the "upward" direction (Z+ direction) with respect to the optical circuit core 113 of the optical circuit device 11, and the substrate side is defined as the "up" direction (Z+ direction). Let us refer to the “down” direction (Z-direction).
 図面上では省略するが、光回路上には、背景で述べたような光発光素子、光受光素子、光変調素子、光機能素子、光増幅素子が集積されている。 Although not shown in the drawings, the optical light emitting element, the light receiving element, the optical modulation element, the optical functional element, and the optical amplifying element as described in the background are integrated on the optical circuit.
 また、光回路デバイス11は、必要に応じて、化合物半導体などからなる光送信素子や光変調素子などとハイブリッドに一体化されている。導波路基板111の厚さは例えば標準的なシリコンウェハ厚さである625μmである。 In addition, the optical circuit device 11 is integrated in a hybrid manner with an optical transmission element, an optical modulation element, or the like made of a compound semiconductor or the like, as required. The thickness of the waveguide substrate 111 is, for example, 625 μm, which is the standard silicon wafer thickness.
 シリコンフォトニクスチップは、少なくとも1つの接続端面の近傍において、オーバクラッド114を有さず、光回路コア113が露出される部分(以下、「コア露出部」という。)115を有する。コア露出部は、オーバクラッド114を全体に製膜したのちにエッチングなどで部分的に除去することで作製できる。または、部分的にマスクしてオーバクラッド114を製膜することによって作製できる。 The silicon photonics chip does not have the overcladding 114 in the vicinity of at least one connection end surface, and has a portion (hereinafter referred to as "core exposed portion") 115 where the optical circuit core 113 is exposed. The core exposed portion can be produced by partially removing the overcladding 114 by etching or the like after forming the overcladding 114 entirely. Alternatively, it can be fabricated by partially masking and forming the overcladding 114 .
 コア露出部115のコア長手方向(X方向)の長さは、およそ1mm程度である。これは、後述するように、断熱結合に必要な結合長さに応じて適宜変更でき、屈折率差や位置決めトレランスなどを考慮して、0.1mm~3mm程度に適宜設定することができる。 The length of the core exposed portion 115 in the core longitudinal direction (X direction) is approximately 1 mm. As will be described later, this can be appropriately changed according to the coupling length required for adiabatic coupling, and can be appropriately set to about 0.1 mm to 3 mm in consideration of the refractive index difference, positioning tolerance, and the like.
 シリコン細線(光回路コア)113は、コア露出部115においてテーパ形状を有する。テーパ形状としては、公知のスポットサイズ変換器(SSC)のように、長手方向(X方向)に沿って、光回路デバイス11側から光導波路12側に向けて、細線幅が細くなるような形状が用いられる。テーパ形状には、非線形テーパ形状や多段のテーパ形状、またはセグメンテッドSSC等のSiコアとガラス材料の非連続体からなるSSC構造を用いてもよい。 The silicon wire (optical circuit core) 113 has a tapered shape at the core exposed portion 115 . The tapered shape is a shape in which the width of the fine line becomes thinner from the optical circuit device 11 side toward the optical waveguide 12 side along the longitudinal direction (X direction) like a known spot size converter (SSC). is used. The tapered shape may be a non-linear tapered shape, a multistage tapered shape, or an SSC structure such as a segmented SSC, which consists of a discontinuous body of a Si core and a glass material.
 ここで、シリコン細線(光回路コア)113の先端と光導波路12の端面とが離間して配置される例を示すが、シリコン細線の先端と光導波路12の端面とが接していてもよい。シリコン細線のテーパ形状の部分から導波光が漏れ出し、シリコン細線(光回路コア)113と光導波路12とが光結合されればよい。 Here, an example in which the tip of the silicon wire (optical circuit core) 113 and the end face of the optical waveguide 12 are arranged apart is shown, but the tip of the silicon wire and the end face of the optical waveguide 12 may be in contact. Guided light leaks from the tapered portion of the silicon wire, and the silicon wire (optical circuit core) 113 and the optical waveguide 12 are optically coupled.
 光導波路12は、導波路コア121と導波路クラッド122とを有する。本実施の形態では、光導波路12に、石英ガラスからなる公知のシングルモードファイバ(SMF)が用いられている。SMFはコア(以下、「ファイバコア」ともいう。)121とクラッド(以下、「ファイバクラッド」ともいう。)122とを有し、コア径はおよそ8.2μmであり、比屈折率差は0.3%程度である。 The optical waveguide 12 has a waveguide core 121 and a waveguide clad 122 . In this embodiment, the optical waveguide 12 uses a known single-mode fiber (SMF) made of silica glass. The SMF has a core (hereinafter also referred to as "fiber core") 121 and a clad (hereinafter also referred to as "fiber clad") 122, the core diameter is approximately 8.2 μm, and the relative refractive index difference is 0. .3%.
 断熱結合部13は、光硬化性樹脂からなるコア(以下、「樹脂コア」という。)131と、樹脂コア131の周囲に配置されるクラッド(以下、「樹脂クラッド」という。)132とを備える。 The heat-insulating coupling portion 13 includes a core (hereinafter referred to as “resin core”) 131 made of photocurable resin and a clad (hereinafter referred to as “resin clad”) 132 arranged around the resin core 131 . .
 樹脂コア131は、光導波路12である光ファイバのコア121端面と接するように、コア長手方向(X方向)に形成されており、光回路のコアと近接している。 The resin core 131 is formed in the core longitudinal direction (X direction) so as to be in contact with the end face of the core 121 of the optical fiber that is the optical waveguide 12, and is close to the core of the optical circuit.
 本実施の形態では、樹脂コア131は、コア露出部115の上面に接するように形成される例を示すが、これに限らず、コア露出部115の上面と離間して配置されてもよい。樹脂コア131は、コア露出部115から漏れ出す導波光と結合できるように配置されればよい。例えば、コア露出部115におけるテーパ形状の部分の上面またはその近傍に形成される。 In the present embodiment, an example in which the resin core 131 is formed in contact with the upper surface of the exposed core portion 115 is shown. Resin core 131 may be arranged so as to be coupled with guided light leaking from core exposed portion 115 . For example, it is formed on or near the upper surface of the tapered portion of the core exposed portion 115 .
 光結合構造10では、複数の光ファイバ12および複数の光回路デバイス11が配置されており、光ファイバのコア121と光回路コア113とが近接するように配置され、それぞれが樹脂コア131により接続される。 In the optical coupling structure 10, a plurality of optical fibers 12 and a plurality of optical circuit devices 11 are arranged. be done.
 光硬化性樹脂は、特定の波長に対して反応し硬化反応が進む公知の樹脂であり、例えばアクリル樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、オキセタン樹脂や、それらの変性体や置換体などを用いることができ、フォトレジストとして知られる材料を用いてもよい。硬化波長は開始材や色素などの添加により任意に設計できるが、紫外光から可視光程度の波長を用いることができる。 A photocurable resin is a known resin that reacts to a specific wavelength and undergoes a curing reaction. Materials known as photoresists may be used. The curing wavelength can be arbitrarily designed by adding an initiator, a dye, or the like, and wavelengths from ultraviolet light to visible light can be used.
 また、樹脂クラッド132は、信号波長帯において樹脂コア131より屈折率が低い樹脂であり、樹脂コア131の周囲に充填されている。樹脂クラッド材として、公知のアクリル樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、オキセタン樹脂などを用いることができ、屈折率を調整するために適宜フッ素化などのハロゲン置換体を用いてもよい。 The resin clad 132 is a resin having a lower refractive index than the resin core 131 in the signal wavelength band, and is filled around the resin core 131 . Known acrylic resins, epoxy resins, silicone resins, urethane resins, oxetane resins, and the like can be used as the resin clad material, and halogen-substituted compounds such as fluorination may be used as appropriate to adjust the refractive index.
<光結合構造の製造方法>
 本実施の形態に係る光結合構造の製造方法の一例を、図2A~Cを参照して説明する。
<Method for manufacturing optical coupling structure>
An example of a method for manufacturing an optical coupling structure according to this embodiment will be described with reference to FIGS. 2A to 2C.
 初めに、光回路デバイス11において、クラッドの一部を除去して光回路コア113を露出させ、コア露出部115を形成する。 First, in the optical circuit device 11 , the clad is partially removed to expose the optical circuit core 113 and form the exposed core portion 115 .
 次に、光回路デバイス11と光導波路(光ファイバ)12を配置して位置決めして、光回路デバイス11のコア露出部115に未硬化の光硬化性樹脂14を塗布する。次に、光ファイバコア121から樹脂硬化光15が入力される(図2A)。 Next, the optical circuit device 11 and the optical waveguide (optical fiber) 12 are arranged and positioned, and the uncured photocurable resin 14 is applied to the exposed core portion 115 of the optical circuit device 11 . Next, resin curing light 15 is input from the optical fiber core 121 (FIG. 2A).
 樹脂硬化光15の入力方法としては、任意の入力方法を用いることができ、例えば光ファイバの接続端面と反対側の端面から樹脂硬化光源を接続することで入力できる。 Any input method can be used as an input method for the resin curing light 15. For example, input can be performed by connecting a resin curing light source from the end face opposite to the connection end face of the optical fiber.
 樹脂硬化光15は、光ファイバのコア121を伝搬した後に光ファイバコア121端部(接続端面)から出射される。樹脂硬化光15を光硬化性樹脂に照射することにより、光硬化性樹脂14の硬化反応が誘起される。 The resin curing light 15 is emitted from the end of the optical fiber core 121 (connection end face) after propagating through the core 121 of the optical fiber. A curing reaction of the photocurable resin 14 is induced by irradiating the photocurable resin with the resin curing light 15 .
 次に、光ファイバコア121と接するようにして、長手方向(X方向)に樹脂コア131が形成される(図2B)。 Next, a resin core 131 is formed in the longitudinal direction (X direction) so as to be in contact with the optical fiber core 121 (Fig. 2B).
 このとき、樹脂コア131のコア長手方向(X方向)の断面は、光ファイバコア121からの樹脂硬化光15のモード分布に類似した形状として形成される。例えば、ガウシアンビームであれば、円形断面に近い形状になる。または、モード形状によって楕円形状になる場合もある。 At this time, the cross section of the resin core 131 in the core longitudinal direction (X direction) is formed to have a shape similar to the mode distribution of the resin curing light 15 from the optical fiber core 121 . For example, a Gaussian beam has a shape close to a circular cross section. Alternatively, the mode shape may result in an elliptical shape.
 また、樹脂硬化光15のモード分布が光回路基板111などの構造物に及ぶ場合は、モード分布は円形の一部が欠けたような断面形状で形成される。 Also, when the mode distribution of the resin curing light 15 extends to a structure such as the optical circuit board 111, the mode distribution is formed in a circular cross-sectional shape with a part missing.
 その後、光回路のコア露出部115における樹脂コア131の周囲に、樹脂クラッド132材が充填され硬化され、樹脂クラッド132が形成される(図2C)。樹脂クラッド132材には、光硬化性樹脂又は熱硬化性樹脂を用いてもよい。 After that, the resin clad 132 material is filled around the resin core 131 in the core exposed portion 115 of the optical circuit and cured to form the resin clad 132 (FIG. 2C). A photocurable resin or a thermosetting resin may be used for the material of the resin clad 132 .
 ここで、樹脂クラッド132材を充填する前に、光硬化性樹脂14の未硬化分は除去される。 Here, before filling the resin clad 132 material, the uncured portion of the photocurable resin 14 is removed.
 または、樹脂特性によって硬化させた光硬化性樹脂において、屈折率差を形成できる場合には、光硬化性樹脂の未硬化分は除去することなく、光硬化性樹脂を樹脂クラッド材として用いることができる。 Alternatively, if a refractive index difference can be formed in a photocurable resin cured by resin characteristics, the photocurable resin can be used as a resin clad material without removing the uncured portion of the photocurable resin. can.
 例えば、硬化波長の差異を用いることまたは2光子吸収と1光子吸収を用いることにより、硬化させた光硬化性樹脂に屈折率差を形成してもよい。または、光硬化や熱硬化で硬化後の屈折率が異なる樹脂を用いてもよい。また、光硬化性樹脂は異なる2種以上の樹脂材料の混合物でもよく、硬化後に共重合体となるように用いてもよい。 For example, a refractive index difference may be formed in the cured photocurable resin by using a difference in curing wavelength or by using two-photon absorption and one-photon absorption. Alternatively, a resin having a different refractive index after being cured by photocuring or heat curing may be used. Moreover, the photocurable resin may be a mixture of two or more different resin materials, or may be used so as to form a copolymer after curing.
<光結合構造の動作>
 図3A~Dそれぞれに、図2CにおけるIIIA-IIIA’、IIIB-IIIB’、IIIC-IIIC’、IIID-IIID’各断面における伝搬モードを示す。これらの伝搬モードはFDTD(Finite-difference-time-domain)法により計算される。
<Operation of Optical Coupling Structure>
3A to 3D respectively show the propagation modes in the IIIA-IIIA', IIIB-IIIB', IIIC-IIIC', and IIID-IIID' cross sections in FIG. 2C. These propagation modes are calculated by the FDTD (Finite-difference-time-domain) method.
 通常のシリコンフォトニクスチップとSMFを用いる場合を想定して、信号波長は1.55μm、樹脂コア131の屈折率は同波長において1.5、断熱結合部クラッドの屈折率は1.46を用いる。 Assuming that a normal silicon photonics chip and SMF are used, the signal wavelength is 1.55 μm, the refractive index of the resin core 131 is 1.5, and the refractive index of the adiabatic coupling clad is 1.46 at the same wavelength.
 シリコンフォトニクスチップ側のIIIA-IIIA’断面では、光の伝搬モードはSi細線に閉じ込められている(図3A)。IIIB-IIIB’断面で、光の伝搬モードの閉じ込めはSi細線の上方の樹脂コア131に向けて拡大する(図3B)。IIIC-IIIC’断面で、ほとんどの光の伝搬モードが樹脂コア131に閉じ込められる(図3C)。IIID-IIID’断面で、光の伝搬モードは樹脂コア131に閉じ込められる(図3D)。 In the IIIA-IIIA' cross section on the silicon photonics chip side, the light propagation mode is confined in the Si wire (Fig. 3A). In the IIIB-IIIB' section, the confinement of the light propagation mode expands towards the resin core 131 above the Si wire (FIG. 3B). At the IIIC-IIIC' section, most of the light propagation modes are confined in the resin core 131 (Fig. 3C). In the IIID-IIID' section, the light propagation mode is confined in the resin core 131 (Fig. 3D).
 このように、光の伝搬モードは、Si細線のテーパ構造により、長手方向(X方向)に伝搬するに従い、外部に漏れ出し、樹脂コア131に遷移する。導波光は、一定の長さ以上、長手方向(X方向)に伝搬することにより、完全に光が樹脂コア131に遷移する。上述の計算によれば、導波光の95%が樹脂コア131に伝搬する。その後、樹脂コア131からの光は光ファイバコア121と結合する。 Thus, the propagation mode of light leaks to the outside and transitions to the resin core 131 as it propagates in the longitudinal direction (X direction) due to the tapered structure of the Si fine wire. The guided light is completely transferred to the resin core 131 by propagating in the longitudinal direction (X direction) over a certain length. According to the calculations above, 95% of the guided light propagates through the resin core 131 . Light from the resin core 131 is then coupled with the optical fiber core 121 .
 以上のように、本実施の形態によれば、光ファイバとシリコンフォトニクスチップとが低損失に光結合することが可能である。なお、前記は可逆的に動作するため、入力・出力のペアを変えても同様に動作する。 As described above, according to the present embodiment, it is possible to optically couple an optical fiber and a silicon photonics chip with low loss. Since the above operation is reversible, it operates in the same way even if the input/output pair is changed.
<効果>
 本実施の形態に係る光結合構造によれば、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、後工程で形成される樹脂コア131との断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to the present embodiment, it is not necessary to remove the clad partially from one of the optical waveguides in the conventional method, or to form a structure having no clad partially. Optical coupling can be achieved by adiabatic coupling with the resin core 131 formed in .
 とくに従来法において光導波路として光ファイバを用いる場合は、部分的にクラッドの一部を除去する工程の負荷が大きいため、光ファイバと光回路デバイス11の断熱結合は困難であった。本実施の形態によれば、光ファイバ端面から樹脂コア131を形成することで樹脂コア131を介した光回路デバイス11の断熱結合を実現できる。 Especially when an optical fiber is used as an optical waveguide in the conventional method, it is difficult to adiabatically couple the optical fiber and the optical circuit device 11 because of the heavy load of the process of partially removing the clad. According to this embodiment, by forming the resin core 131 from the end face of the optical fiber, the adiabatic coupling of the optical circuit device 11 via the resin core 131 can be realized.
 また、断熱結合は、従来の突き合わせ接続に比べて、光導波路コアと光回路コア113の位置決め精度を緩和することができるため、簡易かつ高効率に光結合を実現することが可能になる。 In addition, the adiabatic coupling can relax the positioning accuracy of the optical waveguide core and the optical circuit core 113 compared to the conventional butt connection, so it is possible to achieve optical coupling easily and highly efficiently.
 さらに、本実施の形態に係る光結合構造は、以下の効果を奏する。 Furthermore, the optical coupling structure according to this embodiment has the following effects.
 断熱結合は、光が高屈折率側に遷移するという性質を利用する。そこで、光遷移を効率よく引き起こすためには、光回路基板のアンダークラッドである酸化膜よりも接続対象の光導波路のコアの屈折率を一定以上大きく設定する必要があった。 Adiabatic coupling utilizes the property that light transitions to the high refractive index side. Therefore, in order to efficiently cause optical transition, it was necessary to set the refractive index of the core of the optical waveguide to be connected to be larger than that of the oxide film, which is the undercladding of the optical circuit board, by a certain amount or more.
 これは、接続対象である光導波路材料を制限する要因であった。例えば、ポリマー導波路のようにコア材料やクラッド材料を比較的自由に選択できる導波路材料を用いる場合は、光導波路のコアの屈折率を比較的自由に選択できる。 This was a factor limiting the optical waveguide materials to be connected. For example, when using a waveguide material, such as a polymer waveguide, in which the core material and the clad material can be relatively freely selected, the refractive index of the core of the optical waveguide can be relatively freely selected.
 しかしながら、公知のガラス製光ファイバにおけるクラッドは石英ガラスからなり、コアは石英ガラスよりも屈折率が若干高い材料(例えば比屈折率差が0.3%~2%)からなる。したがって、コア材料とアンダークラッド(酸化膜)との屈折率は若干の差しかないので、アンダークラッドよりも光導波路(光ファイバ)のコアの屈折率を一定以上大きく設定することは困難であった。 However, in known glass optical fibers, the clad is made of silica glass, and the core is made of a material with a slightly higher refractive index than silica glass (for example, a relative refractive index difference of 0.3% to 2%). Therefore, since there is only a slight difference in refractive index between the core material and the undercladding (oxide film), it has been difficult to set the refractive index of the core of the optical waveguide (optical fiber) higher than that of the undercladding by a certain amount or more.
 光ファイバの屈折率はアンダークラッド(酸化膜)のそれと非常に近いので、光ファイバの屈折率とアンダークラッド(酸化膜)のそれとの差が大きくなるように光ファイバの屈折率を1.5程度にすることは、石英ガラスにドーパントを添加しても困難である。そこで、従来の構造で光ファイバでの断熱結合は実現困難であった。 Since the refractive index of the optical fiber is very close to that of the undercladding (oxide film), the refractive index of the optical fiber is set to about 1.5 so that the difference between the refractive index of the optical fiber and that of the undercladding (oxide film) becomes large. It is difficult to do so even by adding a dopant to quartz glass. Therefore, it has been difficult to realize adiabatic coupling with optical fibers in the conventional structure.
 本実施の形態では、後工程によって光ファイバ端面から適切な屈折率を有する樹脂コアを形成し、クラッド樹脂を充填するだけでよい。したがって、光導波路(光ファイバ)のコア屈折率を調整する必要がなく、光硬化性樹脂のコア屈折率を調整するだけで、樹脂コアを介した断熱結合により、光ファイバと光回路の低損失な光結合を実現できる。 In the present embodiment, it is only necessary to form a resin core having an appropriate refractive index from the end face of the optical fiber in a post-process and fill it with a clad resin. Therefore, there is no need to adjust the core refractive index of the optical waveguide (optical fiber), and only by adjusting the core refractive index of the photocurable resin, adiabatic coupling via the resin core results in low loss between the optical fiber and the optical circuit. optical coupling can be realized.
 また、従来の構造で、光回路デバイスと光導波路のコアとが近接または接する状態で実装する場合は、厚さ方向の位置を非常に高精度に制御する必要があり、実装時の応力を含めて工程を高度に管理する必要があった。 In addition, in the conventional structure, when the optical circuit device and the optical waveguide core are mounted close to or in contact with each other, it is necessary to control the position in the thickness direction with very high precision. It was necessary to control the process at a high level.
 例えば、光導波路コアを光回路デバイスのコアに接するように配置する際に、コア同士を過度に押し付けると一方のコアが破損するおそれがあり、押し付け力を含めて高精度に実装工程を管理する必要があった。 For example, when arranging an optical waveguide core so as to be in contact with a core of an optical circuit device, if the cores are excessively pressed against each other, one of the cores may be damaged. I needed it.
 本実施の形態では、単に光回路デバイスのコアの細線と光導波路(光ファイバ)のコアとを近接させて樹脂コアを形成できるので、光導波路と光回路デバイスのコアまたは光回路デバイスのコア同士の押し付け工程が不要となり、工程管理条件を緩和できる。 In the present embodiment, since the resin core can be formed by simply bringing the thin wire of the optical circuit device core and the core of the optical waveguide (optical fiber) close to each other, the optical waveguide and the core of the optical circuit device or the cores of the optical circuit devices The pressing process becomes unnecessary, and the process control conditions can be relaxed.
<変形例>
 本実施の形態の変形例に係る光結合構造について、図4A~図9Dを参照して説明する。
<Modification>
An optical coupling structure according to a modification of this embodiment will be described with reference to FIGS. 4A to 9D.
 本変形例に係る光結合構造では、図4A~Dに示すように、樹脂コア131は、光回路デバイス11のコア露出部115の一部に形成される。 In the optical coupling structure according to this modification, as shown in FIGS. 4A to 4D, the resin core 131 is formed in part of the core exposed portion 115 of the optical circuit device 11. FIG.
 樹脂コア131は、図4Aおよび図5Aに示すように、コア露出部115の上面に樹脂コア131の下面が接するように形成される。樹脂コア131は、オーバクラッド114の端面と離間して配置されてもよい。 The resin core 131 is formed so that the lower surface of the resin core 131 is in contact with the upper surface of the core exposed portion 115, as shown in FIGS. 4A and 5A. The resin core 131 may be spaced apart from the end surface of the overcladding 114 .
 また、図4Bおよび図5Bに示すように、樹脂コア131に光回路コア113の一部が埋め込まれるように形成されてもよい。 Alternatively, as shown in FIGS. 4B and 5B, the optical circuit core 113 may be partially embedded in the resin core 131 .
 この構成では、樹脂コア131に伝搬するモードの形状がガウシアンビームから変形する一方、図5Bに示すように、樹脂コア131と光回路コア113の接する領域が大きく、導波路幅方向(Y方向)にコアの位置がずれたときに結合効率を損なうことなく高効率に光結合できる。 In this configuration, while the shape of the mode propagating in the resin core 131 is deformed from that of the Gaussian beam, as shown in FIG. Optical coupling can be performed with high efficiency without impairing the coupling efficiency even when the position of the core is displaced.
 また、図4Cおよび図5Cに示すように、樹脂コア131に光回路コア113の全体が埋め込まれるように形成されてもよい。ここで、樹脂コア131の断面の形状は下部が欠けた円形であり、断面面積が円形の場合に比べて減少する。 Alternatively, as shown in FIGS. 4C and 5C, the optical circuit core 113 may be entirely embedded in the resin core 131 . Here, the shape of the cross section of the resin core 131 is circular with the lower part missing, and the cross-sectional area is smaller than in the case of a circular shape.
 この構成において、樹脂コア131の断面面積が半円の面積以上であれば、FDTDで、結合効率を損なうことなく低損失に断熱結合を実現できることが計算される。 In this configuration, it is calculated that if the cross-sectional area of the resin core 131 is equal to or larger than the area of a semicircle, the FDTD can achieve low-loss adiabatic coupling without impairing the coupling efficiency.
 また、図4Dおよび図5Dに示すように、樹脂コア131と光回路コア113と接することなく離間して配置されてもよい。この構成において、断熱結合部13のクラッド132の屈折率が小さいため、同様に光結合を実現できることが、FDTDにより計算される。 Also, as shown in FIGS. 4D and 5D, the resin core 131 and the optical circuit core 113 may be arranged separately without being in contact with each other. It is calculated by FDTD that, in this configuration, the clad 132 of the adiabatic coupling portion 13 has a small refractive index, so that optical coupling can be similarly achieved.
 ここで、樹脂コア131の下面と光回路コア113の上面との距離は、アンダークラッド112の厚さより短いことが必要である。ここで、アンダークラッド112の厚さは、3μm以内が望ましい。 Here, the distance between the bottom surface of the resin core 131 and the top surface of the optical circuit core 113 must be shorter than the thickness of the undercladding 112 . Here, the thickness of the under clad 112 is desirably within 3 μm.
 本実施例に係る光結合構造では、樹脂コア131と光回路コア113とが接して配置される場合だけでなく、樹脂コア131と光回路コア113とが離間して配置される場合でも効果を奏する。樹脂コア131と光回路コア113とが離間する距離は、アンダークラッド112の厚さより短ければよい。換言すれば、樹脂コア131と光回路コア113との間で光結合する範囲で離間して配置されればよい。 In the optical coupling structure according to this embodiment, the effect is obtained not only when the resin core 131 and the optical circuit core 113 are arranged in contact with each other, but also when the resin core 131 and the optical circuit core 113 are arranged apart from each other. Play. The distance between the resin core 131 and the optical circuit core 113 should be shorter than the thickness of the undercladding 112 . In other words, it is sufficient that the resin core 131 and the optical circuit core 113 are spaced apart from each other within the range of optical coupling.
 また、樹脂コア131と光回路コア113が導波路幅方向(Y方向)に若干ずれていても、導波光が十分に結合できる。 Further, even if the resin core 131 and the optical circuit core 113 are slightly misaligned in the waveguide width direction (Y direction), the guided light can be sufficiently coupled.
 例えば、FDTDで、樹脂コア131と光回路コア113が導波路幅方向(Y方向)に2μm程度ずれても、長手方向(X方向)の距離を長ければ、導波光が樹脂コア131と光回路コア113との間で遷移することが計算される。また、図5B、Cに示すように樹脂コア131と光回路コア113の接する面積(領域)が大きいほど、樹脂コア131と光回路コア113のずれに対するトレランスが大きい。 For example, in FDTD, even if the resin core 131 and the optical circuit core 113 are misaligned by about 2 μm in the waveguide width direction (Y direction), if the distance in the longitudinal direction (X direction) is long, the guided light will be different from the resin core 131 and the optical circuit. Transitions to and from core 113 are calculated. Also, as shown in FIGS. 5B and 5C, the greater the contact area (region) between the resin core 131 and the optical circuit core 113, the greater the tolerance to the displacement between the resin core 131 and the optical circuit core 113. FIG.
 そこで、図5A~Dに示す樹脂コア131と光回路コア113との配置は、位置決め精度と長手方向(X方向)のコア長さ、それぞれのコアの屈折率差などを考慮して適宜設計すればよい。 Therefore, the arrangement of the resin core 131 and the optical circuit core 113 shown in FIGS. 5A to 5D should be appropriately designed in consideration of the positioning accuracy, the length of the core in the longitudinal direction (X direction), the difference in refractive index of each core, and the like. Just do it.
 本変形例に係る光結合構造では、樹脂コア131の断面形状は、円形断面に限らず、断熱結合が可能な断面形状であればよい。例えば、図6Aに示すように楕円形でよく、図6Bに示すように長方形に近い形状でよく、図6Cに示すような形状でもよい。これらの形状は、光導波路12からの樹脂硬化光15のモード分布と硬化光の入力パワー、硬化光の波長、樹脂の硬化具合により任意に設計可能である。 In the optical coupling structure according to this modified example, the cross-sectional shape of the resin core 131 is not limited to a circular cross-section, and may be any cross-sectional shape that allows adiabatic coupling. For example, it may be elliptical as shown in FIG. 6A, nearly rectangular as shown in FIG. 6B, or as shown in FIG. 6C. These shapes can be arbitrarily designed according to the mode distribution of the resin curing light 15 from the optical waveguide 12, the input power of the curing light, the wavelength of the curing light, and the degree of curing of the resin.
 また、樹脂コア131のコア径は、光導波路12のコア径と同一とは限らず、図7Aに示すように、光導波路12のコア径よりも大きくてもよく、図7Bに示すように、光導波路12のコア径よりも小さくてもよい。これらの径は、光導波路12からの樹脂硬化光15のモード分布と硬化光の入力パワー、硬化光の波長、樹脂の硬化具合により任意に設計可能である。 Further, the core diameter of the resin core 131 is not necessarily the same as the core diameter of the optical waveguide 12, and may be larger than the core diameter of the optical waveguide 12 as shown in FIG. 7A. It may be smaller than the core diameter of the optical waveguide 12 . These diameters can be arbitrarily designed according to the mode distribution of the resin curing light 15 from the optical waveguide 12, the input power of the curing light, the wavelength of the curing light, and the degree of curing of the resin.
 本変形例に係る光結合構造では、光導波路12の端面と光回路デバイス11の端面とが接触する例を示したが、図8Aに示すように、各々の端面が離間して配置されてもよい。 In the optical coupling structure according to this modified example, an example in which the end face of the optical waveguide 12 and the end face of the optical circuit device 11 are in contact with each other is shown. good.
 この場合、樹脂コア131および樹脂クラッド132が、光回路デバイス11と光導波路12とを連結する。ここで、接着剤などで光回路デバイス11と光導波路12とを固定するよう連結してもよい。 In this case, the resin core 131 and the resin clad 132 connect the optical circuit device 11 and the optical waveguide 12 . Here, the optical circuit device 11 and the optical waveguide 12 may be fixedly connected with an adhesive or the like.
 また、本変形例に係る光結合構造では、光導波路12の端面と光回路デバイス11の端面とは平行に対向するように配置される例を示したが、これに限らない。例えば、図8Bに示すように、光導波路12の端面が、光導波路12の端面に対して傾斜するように配置され、樹脂コア131も進行方向に対して傾斜するように配置されてもよい。断熱結合に必要な光回路デバイス11のコアと辞しコアとの重なり部が確保できればよい。 Also, in the optical coupling structure according to this modified example, an example in which the end face of the optical waveguide 12 and the end face of the optical circuit device 11 are arranged so as to face each other in parallel has been shown, but the present invention is not limited to this. For example, as shown in FIG. 8B, the end face of the optical waveguide 12 may be arranged so as to be inclined with respect to the end face of the optical waveguide 12, and the resin core 131 may also be arranged so as to be inclined with respect to the traveling direction. It suffices if an overlapping portion between the core of the optical circuit device 11 and the core required for adiabatic coupling can be secured.
 本変形例に係る光結合構造では、樹脂コア131の側面断面形状が矩形である例を示したが、これに限らない。図9Aに示すように、樹脂コア131は、オーバクラッド114の端面近傍でオーバクラッド114を覆うように形成されていてもよいし、オーバクラッド114側面と接するように形成されてもよい。 In the optical coupling structure according to this modified example, an example in which the side cross-sectional shape of the resin core 131 is rectangular has been shown, but it is not limited to this. As shown in FIG. 9A, the resin core 131 may be formed to cover the overclad 114 in the vicinity of the end face of the overclad 114 or may be formed to contact the side surface of the overclad 114 .
 また、図9B、Cに示すように、樹脂コア131の側面断面形状は、長手方向(X方向)に沿ってテーパ形状でもよい。 Also, as shown in FIGS. 9B and 9C, the side cross-sectional shape of the resin core 131 may be tapered along the longitudinal direction (X direction).
 また、図9Dに示すように、樹脂コア131は、断熱結合が確保できる範囲においては、長手方向(X方向)においてオーバクラッド114端面と離間して終端してもよく、その樹脂コア131の端面の形状は先とがり形状でもよい。 In addition, as shown in FIG. 9D, the resin core 131 may be terminated apart from the end surface of the overclad 114 in the longitudinal direction (X direction) as long as the heat insulating connection can be secured. may be pointed.
 本実施の形態および変形例では、光回路デバイス11としてシリコンフォトニクス以外、例えばInP集積回路や石英PLC、LN回路などを用いてもよい。 In the present embodiment and modifications, other than silicon photonics, for example, an InP integrated circuit, quartz PLC, LN circuit, etc. may be used as the optical circuit device 11 .
 また、光ファイバとして通信波長用として一般的なSMFを用いた例を示したが、必要に応じて光ファイバ種を変えてもよい。例えば、高NAファイバとして知られる屈折率差が高い光ファイバを用いてもよい。 Also, an example using a general SMF for communication wavelengths as an optical fiber has been shown, but the type of optical fiber may be changed as necessary. For example, an optical fiber with a high refractive index difference, known as high NA fiber, may be used.
 また、本実施の形態では、光導波路として光ファイバとの接続を例に示したが、後述するように、光ファイバに代えて、別の光導波路デバイス、例えばポリマー導波路を用いてもよい。また、光回路デバイス同士の接続においても同様に適用することができる。 Also, in the present embodiment, the optical waveguide is exemplified by connection with an optical fiber, but as will be described later, another optical waveguide device such as a polymer waveguide may be used instead of the optical fiber. Also, the present invention can be similarly applied to the connection between optical circuit devices.
 なお、図示しないが、各部品の一体化には接着剤などの樹脂を適宜追加で用いることができる。例えば、断熱結合用クラッド樹脂のほかに、光導波路デバイスと光回路デバイスの端面間に接着剤を充填させて固定してもよい。 Although not shown, a resin such as an adhesive can be additionally used as appropriate for integration of each part. For example, in addition to the adiabatic coupling clad resin, an adhesive may be filled between the end surfaces of the optical waveguide device and the optical circuit device to fix them.
 また、後述するように、図2Aに示す位置決め構造は、公知のいずれの位置決め構造と組み合わせて用いてもよい。これらについては、後述の実施の形態でも同様である。 Also, as will be described later, the positioning structure shown in FIG. 2A may be used in combination with any known positioning structure. These are the same for the embodiments described later.
 また、光回路や光導波路の端面は必要に応じて研磨処理などがなされている。 In addition, the end face of the optical circuit or optical waveguide is polished as necessary.
<第2の実施の形態>
 本発明の第2の実施の形態に係る光結合構造について、図10A、Bを参照して説明する。
<Second Embodiment>
An optical coupling structure according to a second embodiment of the present invention will be described with reference to FIGS. 10A and 10B.
<光結合構造の構成>
 本実施の形態に係る光結合構造20は、第1の実施の形態と比べて、コア露出部115の構成で異なる。他の構成は、第1の実施の形態と同様であり、光回路デバイスはシリコンフォトニクスチップであり、光導波路はSMFである。
<Configuration of Optical Coupling Structure>
The optical coupling structure 20 according to the present embodiment differs from the first embodiment in the configuration of the exposed core portion 115 . Other configurations are the same as in the first embodiment, the optical circuit device is a silicon photonics chip, and the optical waveguide is SMF.
 光結合構造20では、図10A、Bに示すように、光回路デバイス11のコア露出部115おいて、光回路コアが薄膜の保護クラッド層116に覆われている。 In the optical coupling structure 20, as shown in FIGS. 10A and 10B, the optical circuit core is covered with a thin protective clad layer 116 at the core exposed portion 115 of the optical circuit device 11. FIG.
 保護クラッド層116は、例えばオーバクラッド除去の際に、光回路コア113が完全に露出しないように、部分的にオーバクラッド114の除去量を制御することにより形成できる。 The protective clad layer 116 can be formed, for example, by partially controlling the removal amount of the overcladding 114 so that the optical circuit core 113 is not completely exposed when the overcladding is removed.
 または、オーバクラッド114成膜後にCMP研磨を行い、一部にSiNなどのエッチング保護膜を薄く形成した後に再度オーバクラッドを、保護クラッド層116として製膜し、一部のみをエッチングするなどしても作製でき、上記のような公知のプロセス技術を組み合わせることで同構造を実現することができる。 Alternatively, after forming the overcladding 114, CMP polishing is performed, and after forming a thin etching protection film such as SiN on a part, the overcladding is again formed as a protective cladding layer 116, and only a part is etched. can also be fabricated, and the same structure can be realized by combining known process techniques such as those described above.
 このように、光結合構造20では、光部品12が配置される側のオーバクラッドの一部が薄く(保護クラッド層116)、樹脂コア131が、一部のオーバクラッド(保護クラッド層116)の下の光回路コア113と光結合するように配置される。 Thus, in the optical coupling structure 20, a part of the overcladding on the side where the optical component 12 is arranged is thin (protective clad layer 116), and the resin core 131 is thicker than a part of the overcladding (protective clad layer 116). It is arranged so as to be optically coupled with the optical circuit core 113 below.
 光硬化性樹脂コア131は、光導波路12である光ファイバの樹脂硬化光15により形成され、クラッド保護層上部に樹脂コア131が配置されており、樹脂コア131の周囲には樹脂クラッド132が充填されている。 The photocurable resin core 131 is formed by the resin curing light 15 of the optical fiber, which is the optical waveguide 12. The resin core 131 is arranged above the clad protective layer, and the resin core 131 is filled with the resin clad 132. It is
 このとき、保護クラッド層116の屈折率は、断熱結合を効率よく実現するために、樹脂クラッド132の屈折率またはアンダークラッド112の屈折率と同程度であることが好ましい。 At this time, the refractive index of the protective clad layer 116 is preferably approximately the same as the refractive index of the resin clad 132 or the refractive index of the underclad 112 in order to efficiently achieve adiabatic coupling.
 例えば、樹脂クラッド132の屈折率と保護クラッド層116の屈折率が同じであれば、光学的には図5Dに示すように、樹脂コア131と光回路コア113間に若干距離があるときと等価であるとみなせる。その結果、光回路コア113からの光は、断熱的に樹脂コア131に遷移することが可能であり、高効率に光結合することができる。 For example, if the refractive index of the resin clad 132 and the refractive index of the protective clad layer 116 are the same, it is optically equivalent to when there is a slight distance between the resin core 131 and the optical circuit core 113 as shown in FIG. 5D. can be regarded as As a result, the light from the optical circuit core 113 can adiabatically transit to the resin core 131 and can be optically coupled with high efficiency.
 ここで、高屈折率なSi基板111への光遷移を抑止するために、保護クラッド層116の厚さはアンダークラッド112層の厚さよりも小さいことが必要である。とくに、高い結合効率を確保するためには、保護クラッド層116の厚さは、前記アンダークラッド112層の厚さの半分以下であることが好ましい。 Here, in order to suppress light transition to the Si substrate 111 with a high refractive index, the thickness of the protective clad layer 116 must be smaller than the thickness of the undercladding 112 layer. In particular, in order to ensure high coupling efficiency, the thickness of the protective clad layer 116 is preferably less than half the thickness of the undercladding layer 112 .
 また、前述のように、保護クラッド層116をアンダークラッドであるシリコン酸化膜112と類似の材料で形成し、その上にSiNなどのエッチング保護膜116_2を設けてもよい(図10C)。この場合は、導波光がエッチング保護膜の影響を受けないように、エッチング保護膜の厚さは信号波長以下(例えば、数nm程度)にすることが好ましい。 Also, as described above, the protective clad layer 116 may be formed of a material similar to the silicon oxide film 112, which is the underclad, and an etching protective film 116_2 such as SiN may be provided thereon (FIG. 10C). In this case, it is preferable that the thickness of the etching protection film is less than the signal wavelength (for example, about several nanometers) so that the guided light is not affected by the etching protection film.
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態では、光回路側の実装工程及び保管工程での取り扱いが容易になる。すなわち、第1の実施の形態における光回路コアが露出される構成での製造工程では、光回路コアへのゴミ付着防止やゴミ除去のための洗浄工程などが必要である。また、光回路コアが空気にさらされているため、コア周囲の劣化のケア、例えば湿度管理や保管雰囲気などを厳密に管理する必要がある。 Furthermore, in this embodiment, handling in the mounting process and storage process on the optical circuit side is facilitated. That is, in the manufacturing process of the configuration in which the optical circuit core is exposed in the first embodiment, a cleaning process for preventing dust from adhering to the optical circuit core and removing dust is required. In addition, since the optical circuit core is exposed to the air, it is necessary to strictly control deterioration around the core, for example, humidity control and storage atmosphere.
 本実施の形態に係る光結合構造によれば、光回路コアと樹脂コアが直接的に接していないため、第1の実施の形態に比べて、断熱結合に必要な長手方向(X方向)のコアを長くする必要がある一方、光回路コアの露出に伴う保管や洗浄、実装工程条件を緩和できる。 According to the optical coupling structure according to the present embodiment, the optical circuit core and the resin core are not in direct contact with each other. While the core needs to be lengthened, the storage, cleaning, and mounting process conditions accompanying the exposure of the optical circuit core can be relaxed.
 なお、本実施の形態は、第1の実施の形態における各種変形、構成変更でも同様に適用できる。例えば、光回路デバイスと光導波路以外にも、光回路デバイス同士の光結合においても適用することができる。 It should be noted that the present embodiment can be similarly applied to various modifications and configuration changes in the first embodiment. For example, it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
 また、光導波路として光ファイバ以外に、ポリマー光導波路やガラス光導波路など各種用いることができる。 In addition to optical fibers, various optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
 また、光回路デバイスとしてシリコンフォトニクス以外に、各種光回路デバイスに適用できる。 In addition, as an optical circuit device, it can be applied to various optical circuit devices other than silicon photonics.
 また、上述の各種変形例や類推可能な構造の変形例にも同様に適応できる。 In addition, it can be similarly applied to the various modifications described above and modifications of structures that can be analogized.
<第3の実施の形態>
 本発明の第3の実施の形態に係る光結合構造について、図11A、Bを参照して説明する。
<Third Embodiment>
An optical coupling structure according to a third embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
<光結合構造の構成>
 本実施の形態に係る光結合構造30は、第1の実施の形態と比べて、光導波路の構成で異なる。他の構成は、第1の実施の形態と略同様であり、光導波路デバイスはシリコンフォトニクスチップである。
<Configuration of Optical Coupling Structure>
The optical coupling structure 30 according to this embodiment differs from the first embodiment in the configuration of the optical waveguide. Other configurations are substantially the same as in the first embodiment, and the optical waveguide device is a silicon photonics chip.
 光結合構造30では、図11A、Bに示す光導波路12として、高NAファイバを用いる。高NAファイバは、例えばコア径が3μmとSMFに比べて小さく、Δが2%程度である。 In the optical coupling structure 30, a high NA fiber is used as the optical waveguide 12 shown in FIGS. 11A and 11B. A high NA fiber has, for example, a core diameter of 3 μm, which is smaller than that of an SMF, and a Δ of about 2%.
 樹脂コア131が高NAファイバ12からの樹脂硬化光15により形成され、光回路のコア露出部115の上面に樹脂コア131が配置されており、樹脂コア131の周囲は樹脂クラッド132が充填されている。または、コア露出部115がクラッド保護層を有する場合には、その上面に樹脂コア131が配置される。 The resin core 131 is formed by the resin curing light 15 from the high NA fiber 12, the resin core 131 is arranged on the upper surface of the core exposed portion 115 of the optical circuit, and the resin core 131 is filled with the resin clad 132. there is Alternatively, when the core exposed portion 115 has a clad protective layer, the resin core 131 is arranged on the upper surface thereof.
 高NAファイバ12のコア121の径がSMFに比べて小さいので、その端面から形成される樹脂コア131断面積は、第1および第2の実施の形態に比べて小さい。例えば、高NAファイバ12のコア121と同一径で形成すれば、3μmΦ程度の樹脂コア131となる。 Since the diameter of the core 121 of the high NA fiber 12 is smaller than that of the SMF, the cross-sectional area of the resin core 131 formed from the end faces is smaller than those of the first and second embodiments. For example, if it is formed with the same diameter as the core 121 of the high NA fiber 12, the resin core 131 has a diameter of about 3 μmΦ.
 樹脂コア131と樹脂クラッド132は、樹脂コア131径を考慮して適切に断熱結合が実現できるよう適宜設定できる。 The resin core 131 and the resin clad 132 can be appropriately set in consideration of the diameter of the resin core 131 so as to realize appropriate thermal insulation coupling.
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態では、樹脂コア径が小さいため、樹脂コアを伝搬する光のモード径も小さい。そのため、基板厚さ方向(Z方向)に対して樹脂コアと光回路コアのモード径の中心位置の距離は、SMFを用いた場合に比べて小さくなる。その結果、断熱結合による光遷移がより起こりやすくなるので、断熱結合に要する長手方向(X方向)のコアが短くても十分に高効率に光結合を実現できる。 Furthermore, in the present embodiment, since the resin core diameter is small, the mode diameter of light propagating through the resin core is also small. Therefore, the distance between the center positions of the mode diameters of the resin core and the optical circuit core with respect to the substrate thickness direction (Z direction) is smaller than when the SMF is used. As a result, optical transition due to adiabatic coupling occurs more easily, so even if the core in the longitudinal direction (X direction) required for adiabatic coupling is short, optical coupling can be realized with sufficiently high efficiency.
 例えば、図11Bに示すように、樹脂コア131と光回路コア113が接していない状態であっても、樹脂コア131と光回路コア113のモード径の中心位置の距離は小さいため、それぞれのコア位置の高さ精度が低くても(樹脂コア131と光回路コア113とが離れていても)、良好に光結合できる。 For example, as shown in FIG. 11B, even when the resin core 131 and the optical circuit core 113 are not in contact with each other, the distance between the centers of the mode diameters of the resin core 131 and the optical circuit core 113 is small. Even if the height accuracy of the position is low (even if the resin core 131 and the optical circuit core 113 are separated), good optical coupling can be achieved.
 なお、本実施の形態は、第1、第2の実施の形態における各種変形、構成変更でも同様に適用できる。例えば、光回路デバイスと光導波路以外にも、光回路デバイス同士の光結合においても適用することができる。 It should be noted that this embodiment can be similarly applied to various modifications and configuration changes in the first and second embodiments. For example, it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
 また、光導波路として光ファイバ以外にもポリマー光導波路やガラス光導波路など各種用いることができる。また、光回路デバイスとしてシリコンフォトニクス以外にも各種光回路デバイスに適用できる。 In addition to optical fibers, various types of optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides. Moreover, as an optical circuit device, it can be applied to various optical circuit devices other than silicon photonics.
 また、上述の各種変形例や類推可能な構造の変形例も同様に適応できる。 In addition, the above-mentioned various modifications and modifications of analogous structures can be applied in the same way.
<第4の実施の形態>
 本発明の第4の実施の形態に係る光結合構造について、図12を参照して説明する。
<Fourth Embodiment>
An optical coupling structure according to a fourth embodiment of the invention will be described with reference to FIG.
<光結合構造の構成>
 本実施の形態に係る光結合構造40は、第1~第3の実施の形態と比べて、光回路デバイス同士の接続である点で異なる。他の構成は、第1の実施の形態と略同様である。
<Configuration of Optical Coupling Structure>
The optical coupling structure 40 according to the present embodiment differs from the first to third embodiments in that optical circuit devices are connected to each other. Other configurations are substantially the same as those of the first embodiment.
 光結合構造40において、図12に示すように、一方の光回路デバイス11は、例えばシリコンフォトニクスであり、第1~第3の実施の形態と同様に、コア露出部115を有する。コア露出部115の光回路では、シリコン細線がテーパ形状で形成されている。または、コア露出部115で、光回路コア113上面に薄いクラッド保護層を有してもよい。 In the optical coupling structure 40, as shown in FIG. 12, one optical circuit device 11 is, for example, silicon photonics, and has a core exposed portion 115 as in the first to third embodiments. In the optical circuit of the core exposed portion 115, the thin silicon wire is formed in a tapered shape. Alternatively, the core exposed portion 115 may have a thin clad protective layer on the upper surface of the optical circuit core 113 .
 他方の光回路デバイス(第2の光回路デバイス)21は、コア露出部を有さず、通常の光回路と同様に扱われる。 The other optical circuit device (second optical circuit device) 21 does not have an exposed core portion and is handled in the same way as a normal optical circuit.
 光回路デバイス同士11、12は、あらかじめおおよその位置が位置決めされ、必要に応じて端面間に充填した接着剤(不図示)や保持基板などに搭載されている。本実施の形態では、光回路デバイス同士11、12が接して配置される例を示したが、光回路デバイス同士11、12が離間して配置されてもよい。 The optical circuit devices 11 and 12 are roughly positioned in advance, and are mounted on an adhesive (not shown) filled between the end surfaces or a holding substrate as necessary. Although the optical circuit devices 11 and 12 are arranged in contact with each other in this embodiment, the optical circuit devices 11 and 12 may be arranged apart from each other.
 光硬化性樹脂コア131が、第2の光回路デバイス21からの樹脂硬化光15により形成され、コア露出部115(またはクラッド保護層上部)に樹脂コア131が配置されており、樹脂コア131の周囲には樹脂クラッド132が充填されている。 A photocurable resin core 131 is formed by the resin curing light 15 from the second optical circuit device 21, and the resin core 131 is arranged on the exposed core portion 115 (or above the cladding protective layer). A resin clad 132 is filled around it.
 ここで、第2の光回路デバイス21は、上述の各種光回路を用いることができ、樹脂硬化光15の入力部(図示せず)を備え、樹脂硬化光15を伝搬するコア213を有し、出射端面から樹脂硬化光15を出射する。 Here, the second optical circuit device 21 can use the various optical circuits described above, has an input section (not shown) for the resin curing light 15, and has a core 213 for propagating the resin curing light 15. , the resin curing light 15 is emitted from the emitting end surface.
 樹脂硬化光15として紫外光を用いる場合は、第2の光回路デバイス21のコア213は、紫外光に対して透明なコア材料であることが好ましく、石英PLCやポリマー回路またはシリコンフォトニクスやInP導波路であっても部分的にSiONやSiNなどの樹脂硬化光に対して透明な構造を有する第2コアなどを有することが好ましい。 When ultraviolet light is used as the resin curing light 15, the core 213 of the second optical circuit device 21 is preferably made of a core material transparent to ultraviolet light, such as quartz PLC, polymer circuits, silicon photonics, or InP conductors. Even if it is a wave path, it is preferable to partially have a second core or the like having a structure transparent to resin curing light such as SiON or SiN.
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態に係る光結合構造によれば、光回路デバイス同士の断熱結合を介した光結合を実現できる。 Furthermore, according to the optical coupling structure according to the present embodiment, optical coupling can be achieved through adiabatic coupling between optical circuit devices.
 従来の断熱結合での光回路デバイス同士の接続においては、それぞれのコア同士を近接させる必要があるが、光導波路と光回路の接続と比べて、それぞれの光回路を有する面同士の位置合わせは実装難易度が高く、光回路の反りなどの面内厚さ均一性も考慮する必要があった。 In connecting optical circuit devices by conventional adiabatic coupling, it is necessary to bring the respective cores close to each other. It was difficult to mount, and it was necessary to consider in-plane thickness uniformity such as warping of the optical circuit.
 本実施の形態によれば、樹脂コアは、面内厚さ誤差が所定の誤差範囲以内であれば良好に形成できる、さらに、2つの光回路コアを近接させるように重ねる実装を行うことなく、より簡便に、樹脂コアを介することにより断熱結合での光結合を実現できる。 According to this embodiment, the resin core can be satisfactorily formed if the in-plane thickness error is within a predetermined error range. More simply, optical coupling can be achieved by adiabatic coupling through the resin core.
 なお、本実施の形態は、第1~第3の実施の形態における各種変形、構成変更でも同様に適用できる。また、上述の各種変形例や類推可能な構造の変形例も同様に適応できる。 It should be noted that this embodiment can be similarly applied to various modifications and structural changes in the first to third embodiments. In addition, the various modifications described above and modifications of structures that can be analogized can be applied in the same manner.
<第5の実施の形態>
 本発明の第5の実施の形態に係る光結合構造について、図13を参照して説明する。
<Fifth Embodiment>
An optical coupling structure according to a fifth embodiment of the present invention will be described with reference to FIG.
<光結合構造の構成>
 本実施の形態に係る光結合構造50は、第1~第4の実施の形態と比べて、光回路デバイスと光導波路との位置決め構造を備える点で異なる。他の構成は、第1の実施の形態と同様であり、光回路デバイスやシリコンフォトニクスチップ、光導波路はSMFが用いられている。SMFと接する樹脂コアと光回路が断熱結合することで、SMFとSi細線の高効率な光結合が実現されている。
<Configuration of Optical Coupling Structure>
The optical coupling structure 50 according to this embodiment differs from the first to fourth embodiments in that it includes a positioning structure between the optical circuit device and the optical waveguide. Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide. Adiabatic coupling between the resin core in contact with the SMF and the optical circuit realizes highly efficient optical coupling between the SMF and the Si wire.
 光結合構造50では、図13に示すように、光回路デバイス11であるシリコンフォトニクスチップにおいて、光回路基板111上に光ファイバ12を収容可能な溝117を備える。光ファイバ12が溝117に搭載されることにより、光ファイバコア121と光回路コア113との位置決めがなされている。光ファイバ12は接着剤などであらかじめ溝117に固定されてもよい。 In the optical coupling structure 50, as shown in FIG. 13, the silicon photonics chip, which is the optical circuit device 11, has a groove 117 capable of accommodating the optical fiber 12 on the optical circuit board 111. FIG. By mounting the optical fiber 12 in the groove 117, the optical fiber core 121 and the optical circuit core 113 are positioned. The optical fiber 12 may be pre-fixed in the groove 117 with an adhesive or the like.
 ここで、溝117はU溝またはV溝であり、光回路コアの長手方向(X方向)に長い構成を有し、等方性エッチングあるいは異方性エッチングなどのウェハプロセスで、光回路基板111上に形成されている。これは、シリコンフォトニクスチップのパッシブアライメントで用いられる公知の溝集積技術により実現できる。 Here, the groove 117 is a U-groove or a V-groove, and has a long configuration in the longitudinal direction (X direction) of the optical circuit core. formed on top. This can be achieved by known trench integration techniques used in passive alignment of silicon photonics chips.
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態に係る光結合構造によれば、光回路コアと光導波路コアの位置決めの精度が部材精度のみで決定されるので、より簡易に良好な光結合を実現できる。 Furthermore, according to the optical coupling structure according to the present embodiment, since the positioning accuracy of the optical circuit core and the optical waveguide core is determined only by the member accuracy, it is possible to realize good optical coupling more easily.
 このとき、樹脂コアを介した断熱結合を用いることで、突き当て接続で必要な位置決め精度に比べて数倍以上大きい実装トレランスを有している。 At this time, by using adiabatic bonding via a resin core, it has a mounting tolerance that is several times greater than the positioning accuracy required for butt connection.
 例えば、突き当て接続で90%を超える光結合効率を得るためには、それぞれのコア位置決め精度をサブミクロン精度とする必要があるが、断熱結合では2μm程度ずれても同程度の光結合効率を実現できる。これにより、溝の作製精度を緩和することができる。 For example, in order to obtain an optical coupling efficiency of over 90% with butt splicing, each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 μm. realizable. As a result, it is possible to relax the manufacturing accuracy of the grooves.
 なお、本実施の形態は、第1~第4の実施の形態における各種変形、構成変更でも同様に適用できる。例えば、光回路デバイスと光導波路以外にも、光回路デバイス同士の光結合においても適用することができる。 It should be noted that this embodiment can be similarly applied to various modifications and structural changes in the first to fourth embodiments. For example, it can be applied to optical coupling between optical circuit devices other than optical circuit devices and optical waveguides.
 また、光導波路として光ファイバ以外に、ポリマー光導波路やガラス光導波路など各種用いることができる。 In addition to optical fibers, various optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
 また、光回路デバイスとしてシリコンフォトニクス以外に、各種光回路デバイスに適用できる。 In addition, as an optical circuit device, it can be applied to various optical circuit devices other than silicon photonics.
 また、上述の各種変形例や類推可能な構造の変形例も同様に適応できる。 In addition, the above-mentioned various modifications and modifications of analogous structures can be applied in the same way.
<第6の実施の形態>
 本発明の第6の実施の形態に係る光結合構造について、図14を参照して説明する。
<Sixth Embodiment>
An optical coupling structure according to a sixth embodiment of the present invention will be described with reference to FIG.
<光結合構造の構成>
 本実施の形態に係る光結合構造60は、第1~第5の実施の形態と比べて、光回路デバイスと光導波路との位置決め構造が異なる。他の構成は、第1の実施の形態と同様であり、光回路デバイスやシリコンフォトニクスチップ、光導波路12はSMFが用いられている。SMFと接する樹脂コアと光回路が断熱結合することによって光導波路12と光回路デバイスの高効率な光結合が実現されている。
<Configuration of Optical Coupling Structure>
The optical coupling structure 60 according to this embodiment differs from the first to fifth embodiments in the positioning structure between the optical circuit device and the optical waveguide. Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide 12 . Highly efficient optical coupling between the optical waveguide 12 and the optical circuit device is realized by adiabatic coupling between the resin core in contact with the SMF and the optical circuit.
 光結合構造60では、図14に示すように、光回路デバイス11であるシリコンフォトニクスチップは電気実装基板31上に搭載されている。ここで、光回路のコアおよびオーバクラッド114側の面(光回路基板と反対側の面、以下、「光回路面」という。)が電気実装基板31の上面と対向するように、いわゆるFace downで実装されている。このとき、光回路コア113と電気実装基板31の基板厚さ方向(Z方向)の距離は電気接点(高さ決め構造)32により規定されている。 In the optical coupling structure 60, the silicon photonics chip, which is the optical circuit device 11, is mounted on the electrical mounting substrate 31, as shown in FIG. Here, the surface of the optical circuit on the side of the core and overcladding 114 (the surface opposite to the optical circuit board, hereinafter referred to as "optical circuit surface") faces the upper surface of the electrical mounting board 31, so-called facedown. is implemented in At this time, the distance between the optical circuit core 113 and the electrical mounting board 31 in the board thickness direction (Z direction) is defined by the electrical contact (height determining structure) 32 .
 ここで、電気接点(高さ決め構造)32は、例えば金属やはんだであり、公知のフリップチップ接続における電気接点と同様の構造を用いることができる。なお、電気配線および電気パッドは図示しない。 Here, the electrical contact (height-determining structure) 32 is, for example, metal or solder, and can have the same structure as the electrical contact in the known flip-chip connection. Note that electrical wiring and electrical pads are not shown.
 また、光ファイバ12は、電気実装基板31上の溝(キャビティ)311に搭載されて固定されている。 Also, the optical fiber 12 is mounted and fixed in a groove (cavity) 311 on the electrical mounting board 31 .
 この構成により、あらかじめ機械精度(電気実装基板31上の溝の加工精度等)のみで光回路コア113と光導波路コアの位置決めがなされている。 With this configuration, the optical circuit core 113 and the optical waveguide core are positioned in advance only by mechanical accuracy (such as machining accuracy of grooves on the electrical mounting board 31).
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態に係る光結合構造によれば、光回路コアと光導波路コアの位置決めを部材精度のみできめることができ、より簡易に光結合を実現できる。 Furthermore, according to the optical coupling structure according to the present embodiment, the positioning of the optical circuit core and the optical waveguide core can be determined only by the accuracy of the members, and optical coupling can be realized more easily.
 このとき、樹脂コアを介した断熱結合を用いることで、突き当て接続で必要な位置決め精度に比べて数倍以上大きい実装トレランスを有している。 At this time, by using adiabatic bonding via a resin core, it has a mounting tolerance that is several times greater than the positioning accuracy required for butt connection.
 例えば、突き当て接続で90%を超える光結合効率を得るためには、それぞれのコア位置決め精度をサブミクロン精度とする必要があるが、断熱結合では2μm程度ずれても同程度の光結合効率を実現できる。これにより、前記溝や高さ決め構造、電気接点厚さの作製精度を緩和することができる。 For example, in order to obtain an optical coupling efficiency of over 90% with butt splicing, each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 μm. realizable. This makes it possible to relax the manufacturing accuracy of the groove, the height determination structure, and the thickness of the electrical contact.
 本実施の形態は、図15に示すように、光回路デバイス同士の接続に適用でき、同様の効果を奏する。それぞれの光回路デバイス11は、Face downで電気実装基板31上に搭載されており、それぞれのコア位置があらかじめ電気接点あるいは高さ決め構造により位置決めされている。 This embodiment can be applied to the connection between optical circuit devices as shown in FIG. 15, and has the same effect. Each optical circuit device 11 is mounted face down on the electrical mounting board 31, and each core position is determined in advance by electrical contacts or a height determination structure.
 なお、本実施の形態は、第1~第6の実施の形態における各種変形、構成変更でも同様に適用できる。例えば、光回路デバイスと光導波路以外に、光回路デバイス同士の光結合においても適用することができる。 It should be noted that this embodiment can be similarly applied to various modifications and structural changes in the first to sixth embodiments. For example, in addition to optical circuit devices and optical waveguides, it can also be applied to optical coupling between optical circuit devices.
 また、光導波路として光ファイバ以外に、ポリマー光導波路やガラス光導波路など各種用いることができる。 In addition to optical fibers, various optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
 また、光回路デバイスとしてシリコンフォトニクス以外に、各種光回路デバイスに適用できる。 In addition, as an optical circuit device, it can be applied to various optical circuit devices other than silicon photonics.
 また、上述の各種変形例や類推可能な構造の変形例も同様に適応できる。 In addition, the above-mentioned various modifications and modifications of analogous structures can be applied in the same way.
<第7の実施の形態>
 本発明の第7の実施の形態に係る光結合構造について、図16A、Bを参照して説明する。
<Seventh Embodiment>
An optical coupling structure according to a seventh embodiment of the present invention will be described with reference to FIGS. 16A and 16B.
<光結合構造の構成>
 本実施の形態に係る光結合構造70は、第1~第6の実施の形態と比べて、光回路デバイスと光導波路との位置決め構造が異なる。他の構成は、第1の実施の形態と同様であり、光回路デバイスやシリコンフォトニクスチップ、光導波路はSMFが用いられている。SMFと接する樹脂コアと光回路が断熱結合することによって光導波路と光回路デバイスの高効率な光結合が実現されている。
<Configuration of Optical Coupling Structure>
The optical coupling structure 70 according to this embodiment differs from the first to sixth embodiments in the positioning structure between the optical circuit device and the optical waveguide. Other configurations are the same as those of the first embodiment, and SMF is used for the optical circuit device, the silicon photonics chip, and the optical waveguide. Highly efficient optical coupling between the optical waveguide and the optical circuit device is realized by adiabatic coupling between the resin core in contact with the SMF and the optical circuit.
 光結合構造70では、図16A、Bに示すように、光導波路12である光ファイバは、第1の保持部品41により整列、固定されている。 In the optical coupling structure 70, as shown in FIGS. 16A and 16B, the optical fibers, which are the optical waveguides 12, are aligned and fixed by the first holding member 41. FIG.
 第1の保持部品41は、光ファイバ12を収容する穴または溝を備えており、例えばV溝とリッドを備えるガラスブロックあるいは公知のMTフェルールである。 The first holding part 41 has a hole or groove for accommodating the optical fiber 12, for example a glass block with a V-groove and a lid or a known MT ferrule.
 また、光回路デバイス11は、第2の保持部品42に搭載されて固定されている。第2の保持部品42と光回路デバイス11の実装は、Face up実装でも前述のFace down実装でもいずれでもよい。 Also, the optical circuit device 11 is mounted and fixed on the second holding component 42 . The mounting of the second holding component 42 and the optical circuit device 11 may be either face-up mounting or the aforementioned face-down mounting.
 図16Bに示すように、第1の保持部品41は、光ファイバ12との相対位置が高精度に規定された位置決め構造43を備える。位置決め構造43として、例えば、MTフェルールに2本のガイドピンを備える。 As shown in FIG. 16B, the first holding component 41 has a positioning structure 43 whose relative position with respect to the optical fiber 12 is defined with high accuracy. As the positioning structure 43, for example, the MT ferrule is provided with two guide pins.
 また、第2の保持部品42に位置決めガイド44を備える。ここで、位置決めガイド44は、例えば、ガイドピンが嵌装できる穴または溝構造である。 Also, the second holding part 42 is provided with a positioning guide 44 . Here, the positioning guide 44 is, for example, a hole or groove structure into which a guide pin can be fitted.
 この構成により、位置決め構造43と位置決めガイド44が篏合することで、機械精度のみで光回路コア113と光導波路コア121の位置決めがなされている。 With this configuration, the positioning structure 43 and the positioning guide 44 fit together, so that the optical circuit core 113 and the optical waveguide core 121 are positioned only with mechanical accuracy.
<効果>
 本実施の形態に係る光結合構造によれば、第1の実施の形態と同様の効果を奏する。詳細には、従来法における一方の光導波路の部分的クラッドの除去、または部分的にクラッドを有さない構造の成膜等の工程を必要とせず、高効率に断熱結合を実現することができ、後工程で形成される樹脂コアとの断熱結合によって光結合を実現することができる。
<effect>
According to the optical coupling structure according to this embodiment, the same effects as those of the first embodiment can be obtained. Specifically, it is possible to achieve highly efficient adiabatic coupling without the need for the conventional method of partially removing the clad from one of the optical waveguides or forming a film with a partially clad-free structure. , optical coupling can be realized by adiabatic coupling with a resin core formed in a post-process.
 また、本実施の形態では、光導波路(光ファイバ)のコア屈折率を調整することなく、光硬化性樹脂のコア屈折率を調整するだけで樹脂コアと光回路デバイスの断熱結合を実現でき、公知の光ファイバにおいても適用することができる。 Further, in the present embodiment, the adiabatic coupling between the resin core and the optical circuit device can be realized only by adjusting the core refractive index of the photocurable resin without adjusting the core refractive index of the optical waveguide (optical fiber). It can also be applied to known optical fibers.
 また、本実施の形態では、樹脂コアを介することで、従来の断熱結合で必要であった、前記光導波路と光回路コアまたは光回路コア同士の押し付け工程が不要になり、工程管理条件を緩和できる。 In addition, in the present embodiment, the process of pressing the optical waveguide and the optical circuit core or between the optical circuit cores, which is required in the conventional adiabatic coupling, is not required by using the resin core, thereby easing the process control conditions. can.
 さらに、本実施の形態に係る光結合構造によれば、光回路コアと光導波路コアの位置決めを部材精度のみできめることができ、より簡易に光結合を実現できる。 Furthermore, according to the optical coupling structure according to the present embodiment, the positioning of the optical circuit core and the optical waveguide core can be determined only by the accuracy of the members, and optical coupling can be realized more easily.
 このとき、樹脂コアを介した断熱結合を用いることで、突き当て接続で必要な位置決め精度に比べて数倍以上大きい実装トレランスを有している。 At this time, by using adiabatic bonding via a resin core, it has a mounting tolerance that is several times greater than the positioning accuracy required for butt connection.
 例えば、突き当て接続で90%を超える光結合効率を得るためには、それぞれのコア位置決め精度をサブミクロン精度とする必要があるが、断熱結合では2μm程度ずれても同程度の光結合効率を実現できる。これにより、溝やガイドピンの作製精度を緩和することができる。 For example, in order to obtain an optical coupling efficiency of over 90% with butt splicing, each core positioning accuracy must be sub-micron precision, but with adiabatic coupling, the same degree of optical coupling efficiency can be achieved even if the misalignment is about 2 μm. realizable. This makes it possible to relax the manufacturing accuracy of the grooves and the guide pins.
 本実施の形態は、第1~第6の実施の形態における各種変形、構成変更でも同様に適用できる。例えば、光回路デバイスと光導波路以外に、光回路デバイス同士の光結合においても適用することができる。 This embodiment can be similarly applied to various modifications and configuration changes in the first to sixth embodiments. For example, in addition to optical circuit devices and optical waveguides, it can also be applied to optical coupling between optical circuit devices.
 また、光導波路として光ファイバ以外に、ポリマー光導波路やガラス光導波路など各種用いることができる。 In addition to optical fibers, various optical waveguides such as polymer optical waveguides and glass optical waveguides can be used as optical waveguides.
 また、光回路デバイスとしてシリコンフォトニクス以外に、各種光回路デバイスに適用できる。 In addition, as an optical circuit device, it can be applied to various optical circuit devices other than silicon photonics.
 本発明の実施の形態では、光回路デバイスと接続する光部品として、光ファイバまたは光回路デバイスを用いる例を示したが、ポリマー光導波路やガラス光導波路など他の光部品を用いてもよい。 In the embodiment of the present invention, an example of using an optical fiber or an optical circuit device as an optical component connected to an optical circuit device is shown, but other optical components such as a polymer optical waveguide or a glass optical waveguide may be used.
 本発明の実施の形態では、光部品の導波路コアと樹脂コアが接続する例を示したが、これに限らず、光部品の導波路コアと樹脂コアとが近接してもよく、光部品の導波路コアと樹脂コアとが光結合できる範囲であればよい。 In the embodiments of the present invention, an example in which the waveguide core and the resin core of the optical component are connected has been shown, but the present invention is not limited to this, and the waveguide core and the resin core of the optical component may be adjacent to each other. It is sufficient that the waveguide core and the resin core can be optically coupled.
 本発明の実施の形態では、光結合構造の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光結合構造の機能を発揮し効果を奏するものであればよい。 In the embodiment of the present invention, an example of the structure, dimensions, materials, etc. of each component is shown in the configuration, manufacturing method, etc. of the optical coupling structure, but the present invention is not limited to this. Any material may be used as long as it exhibits the function of the optical coupling structure and produces an effect.
 本発明は、光部品の光結合構造に関するものであり、光通信等の機器・システムに適用することができる。 The present invention relates to an optical coupling structure of optical components, and can be applied to devices and systems such as optical communication.
10 光結合構造
11 光回路デバイス
113 光回路コア
112 オーバクラッド
115 コア露出部
12 光部品(光導波路)
121 導波路コア
131 樹脂コア
14 光硬化性樹脂
10 Optical Coupling Structure 11 Optical Circuit Device 113 Optical Circuit Core 112 Overcladding 115 Core Exposed Portion 12 Optical Component (Optical Waveguide)
121 waveguide core 131 resin core 14 photocurable resin

Claims (10)

  1.  光回路コアとオーバクラッドとを有する光回路デバイスと、
     導波路コアを有する光部品と、
     光硬化性樹脂に光照射されて硬化される樹脂コアと
     を備え、
     前記光回路デバイスは、前記光回路コアが露出されるコア露出部を有し、
     前記樹脂コアが、前記コア露出部と光結合するように配置され、前記導波路コアに接続または近接する
     ことを特徴とする光結合構造。 
    an optical circuit device having an optical circuit core and an overcladding;
    an optical component having a waveguide core;
    a resin core that is cured by irradiating a photocurable resin with light;
    The optical circuit device has a core exposed portion where the optical circuit core is exposed,
    The optical coupling structure, wherein the resin core is arranged so as to be optically coupled with the exposed core portion, and is connected to or close to the waveguide core.
  2.  光回路コアとオーバクラッドとを有する光回路デバイスと、
     導波路コアを有する光部品と、
     光硬化性樹脂に光照射されて硬化される樹脂コアと
     を備え、
     前記光部品が配置される側の前記オーバクラッドの一部が薄く、
     前記樹脂コアが、前記一部のオーバクラッドの下の前記光回路コアと光結合するように配置され、前記導波路コアに接続または近接する
     ことを特徴とする光結合構造。
    an optical circuit device having an optical circuit core and an overcladding;
    an optical component having a waveguide core;
    a resin core that is cured by irradiating a photocurable resin with light;
    A part of the overcladding on the side where the optical component is arranged is thin,
    The optical coupling structure, wherein the resin core is arranged so as to be optically coupled with the optical circuit core under the part of the overcladding, and is connected to or close to the waveguide core.
  3.  前記樹脂コアの周囲に、前記樹脂コアより屈折率が低い樹脂クラッドを備える
     ことを特徴とする請求項1または請求項2に記載の光結合構造。
    3. The optical coupling structure according to claim 1, further comprising a resin clad having a refractive index lower than that of the resin core around the resin core.
  4.  前記光部品は光ファイバであり、
     前記光回路デバイスに、前記光回路コアの長手方向に長い溝を備え、
     前記光ファイバが、前記溝に収容されている
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の光結合構造。
    the optical component is an optical fiber,
    The optical circuit device is provided with a groove elongated in the longitudinal direction of the optical circuit core,
    The optical coupling structure according to any one of claims 1 to 3, wherein the optical fiber is accommodated in the groove.
  5.  前記光部品は光ファイバであり、
     前記光回路デバイスと、
     前記光ファイバとが搭載される電気実装基板を備え、
     前記光回路デバイスの光回路面と前記電気実装基板の上面とが対向して接して固定され、
     前記光ファイバが、前記電気実装基板に硬化される溝に搭載され、前記光ファイバのコアと前記光回路コアとが位置決めされる
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の光結合構造。
    the optical component is an optical fiber,
    the optical circuit device;
    An electrical mounting board on which the optical fiber is mounted,
    the optical circuit surface of the optical circuit device and the upper surface of the electrical mounting board are opposed and fixed in contact with each other;
    4. The optical fiber is mounted in a groove hardened in the electrical mounting board, and the core of the optical fiber and the optical circuit core are positioned. The optical coupling structure according to .
  6.  前記光部品は、他の光回路デバイスであり、
     前記光回路デバイスと、前記他の光回路デバイスとが搭載される電気実装基板を備え、
     前記光回路デバイスと前記他の光回路デバイスとのそれぞれの光回路面と前記電気実装基板の表面とが対向して接して固定され、
     前記光回路コアと前記他の光回路デバイスのコアとが位置決めされる
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の光結合構造。
    The optical component is another optical circuit device,
    an electrical mounting board on which the optical circuit device and the other optical circuit device are mounted;
    the respective optical circuit surfaces of the optical circuit device and the other optical circuit device and the surface of the electrical mounting board face each other and are fixed in contact;
    4. The optical coupling structure according to any one of claims 1 to 3, wherein the optical circuit core and the core of the other optical circuit device are positioned.
  7.  前記光部品が搭載される第1の保持部品と、
     前記光回路デバイスが搭載される第2の保持部品とを備え、
     前記第1の保持部品と前記第2の保持部品とを位置決めして固定する位置決め機構を備える
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の光結合構造。
    a first holding component on which the optical component is mounted;
    a second holding component on which the optical circuit device is mounted;
    The optical coupling structure according to any one of claims 1 to 6, further comprising a positioning mechanism that positions and fixes the first holding part and the second holding part.
  8.  光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、
     前記光回路デバイスにおいて、前記オーバクラッドの一部を除去する、或いは部分的にオーバクラッドを成膜しないことで、前記光回路コアを露出させ、コア露出部を形成する工程と、
     前記光回路デバイスと前記光部品とを配置して位置決めする工程と、
     前記コア露出部に未硬化の光硬化性樹脂を塗布する工程と、
     前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、
     前記樹脂コアの周囲に、樹脂クラッドを形成する工程と
     を備える光結合構造の製造方法。
    A method for manufacturing an optical coupling structure between an optical circuit device having an optical circuit core and an overcladding and an optical component having a waveguide core,
    a step of exposing the optical circuit core and forming a core exposed portion in the optical circuit device by removing part of the overcladding or partially leaving the overcladding unformed;
    arranging and positioning the optical circuit device and the optical component;
    applying an uncured photocurable resin to the core exposed portion;
    a step of inputting resin curing light from the waveguide core and irradiating the photocurable resin to form a resin core;
    and forming a resin clad around the resin core.
  9.  光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、
     前記光回路デバイスにおいて、前記光部品が配置される側の前記オーバクラッドの一部を薄くする工程と、
     前記光回路デバイスと前記光部品とを配置して位置決めする工程と、
     前記オーバクラッドの一部に未硬化の光硬化性樹脂を塗布する工程と、
     前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、
     前記樹脂コアの周囲に、樹脂クラッドを形成する工程と
     を備える光結合構造の製造方法。
    A method for manufacturing an optical coupling structure between an optical circuit device having an optical circuit core and an overcladding and an optical component having a waveguide core,
    thinning a portion of the overcladding on the side where the optical component is arranged in the optical circuit device;
    arranging and positioning the optical circuit device and the optical component;
    applying an uncured photocurable resin to a portion of the overcladding;
    a step of inputting resin curing light from the waveguide core and irradiating the photocurable resin to form a resin core;
    and forming a resin clad around the resin core.
  10.  光回路コアとオーバクラッドとを備える光回路デバイスと、導波路コアを備える光部品との光結合構造の製造方法であって、
     前記光回路デバイスにおいて、前記オーバクラッドの一部を除去する、或いは部分的にオーバクラッドを成膜しないことで、前記光回路コアを露出させ、コア露出部を形成する工程と、
     前記コア露出部の上に薄層のクラッド層を形成する工程と、
     前記光回路デバイスと前記光部品とを配置して位置決めする工程と、
     前記薄層のクラッド層に未硬化の光硬化性樹脂を塗布する工程と、
     前記導波路コアから樹脂硬化光を入力して、前記光硬化性樹脂に照射して、樹脂コアを形成する工程と、
     前記樹脂コアの周囲に、樹脂クラッドを形成する工程と
     を備える光結合構造の製造方法。
    A method for manufacturing an optical coupling structure between an optical circuit device having an optical circuit core and an overcladding and an optical component having a waveguide core,
    a step of exposing the optical circuit core and forming a core exposed portion in the optical circuit device by removing part of the overcladding or partially leaving the overcladding unformed;
    forming a thin clad layer on the core exposed portion;
    arranging and positioning the optical circuit device and the optical component;
    applying an uncured photocurable resin to the thin cladding layer;
    a step of inputting resin curing light from the waveguide core and irradiating the photocurable resin to form a resin core;
    and forming a resin clad around the resin core.
PCT/JP2021/022299 2021-06-11 2021-06-11 Optical coupling structure and manufacturing method therefor WO2022259521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023526804A JPWO2022259521A1 (en) 2021-06-11 2021-06-11
PCT/JP2021/022299 WO2022259521A1 (en) 2021-06-11 2021-06-11 Optical coupling structure and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022299 WO2022259521A1 (en) 2021-06-11 2021-06-11 Optical coupling structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2022259521A1 true WO2022259521A1 (en) 2022-12-15

Family

ID=84424501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022299 WO2022259521A1 (en) 2021-06-11 2021-06-11 Optical coupling structure and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2022259521A1 (en)
WO (1) WO2022259521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118131416A (en) * 2024-04-30 2024-06-04 赛丽科技(苏州)有限公司 Optical communication device and optical communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333450A (en) * 1994-06-08 1995-12-22 Hoechst Japan Ltd Forming method for optical coupling waveguide and optical waveguide element having optical coupling waveguide
JP2013142824A (en) * 2012-01-11 2013-07-22 Hitachi Chemical Co Ltd Optical fiber connector and method of manufacturing the same
US9034222B2 (en) * 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
JP2016212415A (en) * 2015-05-05 2016-12-15 華為技術有限公司Huawei Technologies Co.,Ltd. Optical coupling scheme
US20170097470A1 (en) * 2015-10-02 2017-04-06 Jia Jiang Optical Coupling Adaptor for Optical Signal Coupling Between Photonic Integrated Circuit and Optical Fiber
JP2018185491A (en) * 2017-04-27 2018-11-22 株式会社豊田中央研究所 Optical circuit and method for manufacturing the same
JP2019219619A (en) * 2018-06-22 2019-12-26 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333450A (en) * 1994-06-08 1995-12-22 Hoechst Japan Ltd Forming method for optical coupling waveguide and optical waveguide element having optical coupling waveguide
JP2013142824A (en) * 2012-01-11 2013-07-22 Hitachi Chemical Co Ltd Optical fiber connector and method of manufacturing the same
US9034222B2 (en) * 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
JP2016212415A (en) * 2015-05-05 2016-12-15 華為技術有限公司Huawei Technologies Co.,Ltd. Optical coupling scheme
US20170097470A1 (en) * 2015-10-02 2017-04-06 Jia Jiang Optical Coupling Adaptor for Optical Signal Coupling Between Photonic Integrated Circuit and Optical Fiber
JP2018185491A (en) * 2017-04-27 2018-11-22 株式会社豊田中央研究所 Optical circuit and method for manufacturing the same
JP2019219619A (en) * 2018-06-22 2019-12-26 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118131416A (en) * 2024-04-30 2024-06-04 赛丽科技(苏州)有限公司 Optical communication device and optical communication system

Also Published As

Publication number Publication date
JPWO2022259521A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
CN210072134U (en) Semiconductor device and electronic system
JP5323646B2 (en) Hybrid integrated optical module
US11531171B2 (en) Photonic chip with integrated collimation structure
KR100461157B1 (en) Parallel optical interconnect module and method for manufacturing thereof
CA2891684A1 (en) Fiber optic coupler array
WO2020017229A1 (en) Optical fiber guide component, optical connection structure and method for producing same
US9897761B2 (en) Optical fiber mounted photonic integrated circuit device for single mode optical fibers
JP2615400B2 (en) Non-adjustable optical connector
WO2021161371A1 (en) Optical connection element, optical element, and method for manufacturing optical element
WO2022259521A1 (en) Optical coupling structure and manufacturing method therefor
JP2018189875A (en) Optical connection structure and forming method thereof
La Porta et al. Silicon photonics packaging for highly scalable optical interconnects
Lianxi et al. High efficient suspended coupler based on IME's MPW platform with 193nm lithography
Palen Low cost optical interconnects
WO2020080196A1 (en) Optical connection structure
La Porta et al. Scalable optical coupling between silicon photonics waveguides and polymer waveguides
JP7124672B2 (en) Optical connection parts and optical connection structures
WO2022264322A1 (en) Optical circuit device
US20220390670A1 (en) Optical Module
WO2022102053A1 (en) Optical connection structure, optical module, and method for manufacturing optical connection structure
WO2022264321A1 (en) Package structure of optical circuit device and method for manufacturing same
Rahimnouri et al. 3D Laser Structured Mirror-Waveguide Circuits: a New Optical PCB Platform for Silicon Photonics
JP7464053B2 (en) Method for aligning optical waveguide element
WO2023079720A1 (en) Optical element, optical integrated element, and method for manufacturing optical integrated element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526804

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945194

Country of ref document: EP

Kind code of ref document: A1