JP2008107750A - Method of connecting optical component - Google Patents

Method of connecting optical component Download PDF

Info

Publication number
JP2008107750A
JP2008107750A JP2006321381A JP2006321381A JP2008107750A JP 2008107750 A JP2008107750 A JP 2008107750A JP 2006321381 A JP2006321381 A JP 2006321381A JP 2006321381 A JP2006321381 A JP 2006321381A JP 2008107750 A JP2008107750 A JP 2008107750A
Authority
JP
Japan
Prior art keywords
light
optical
optical waveguide
curing
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321381A
Other languages
Japanese (ja)
Other versions
JP4642739B2 (en
Inventor
Masaki Wake
正樹 和氣
Kyozo Tsujikawa
恭三 辻川
Izumi Mikawa
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006321381A priority Critical patent/JP4642739B2/en
Publication of JP2008107750A publication Critical patent/JP2008107750A/en
Application granted granted Critical
Publication of JP4642739B2 publication Critical patent/JP4642739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a self-forming optical waveguide having a diameter that is uniform and linear shape, without requiring fine adjustment of refractive indexes before and after curing of a photocuring resin or complicated control of light for curing, when optical components are to be connected to one another by self-forming optical waveguide technique. <P>SOLUTION: In an optical intensity of light incident from SMF-1-1 on solution 2 containing a first photocuring resin for forming a core part in a first stage, a peak intensity near a fiber core center in terms of optical intensity distribution is set at a value only slightly higher than the curing threshold of the first photocuring resin to form an optical waveguide 6a having a thin diameter. In a second stage, by setting the optical intensity to be higher than that at the first stage to form an optical waveguide 6b, in a region with an optical intensity exceeding the curing threshold, a linear optical waveguide (core part) 6 having less divergence of emission light is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光部品同士を接続する方法、特に自己形成光導波路を用いた接続方法に関するものである。   The present invention relates to a method for connecting optical components, and particularly to a connection method using a self-forming optical waveguide.

近年、盛んに研究・開発が行われ、実用化も進められている光部品として、平面光波回路(PLC)がある。平面光波回路は、平面基板上に多数の機能素子を集積できることを特徴とする光集積回路であり、干渉などの光の波としての性質を利用して多彩な機能が実現可能である。図1は平面光波回路の一例、ここでは光スプリッタを示すもので、光スプリッタの他にも、波長合分波器や光トランシーバなどを基板上に集積し作成することができる。   In recent years, a planar lightwave circuit (PLC) is an optical component that has been actively researched and developed and is being put to practical use. A planar lightwave circuit is an optical integrated circuit characterized in that a large number of functional elements can be integrated on a planar substrate, and various functions can be realized by utilizing the properties of light such as interference. FIG. 1 shows an example of a planar lightwave circuit, here an optical splitter. In addition to the optical splitter, a wavelength multiplexer / demultiplexer, an optical transceiver, and the like can be integrated on a substrate.

そして、光ファイバや平面光波回路等の光部品同士を接続する技術として、自己形成光導波路を用いた接続技術が各所で研究されている。これは、従来の融着やV溝を用いた接続技術とは異なり、接続しようとする各部品の光の出射端同士の間もしくは光の出射端と光の入射端との間(間隙)に光硬化性樹脂を充填し、当該光硬化性樹脂の硬化開始波長に対応する波長の光を少なくとも一方の光部品の光の出射端から該光硬化性樹脂中に入射して前記各部品の光の出射端同士の間もしくは光の出射端と光の入射端との間に自己形成光導波路(コア部)を形成し、必要に応じて硬化後の屈折率がより小さい別の光硬化性樹脂によるクラッド部を形成することによって、低損失な接続を実現する技術である。   As a technique for connecting optical components such as an optical fiber and a planar lightwave circuit, a connection technique using a self-formed optical waveguide has been studied in various places. This is different from the conventional connection technology using fusion or V-groove, between the light emitting ends of each component to be connected or between the light emitting end and the light incident end (gap). A light curable resin is filled, and light having a wavelength corresponding to the curing start wavelength of the light curable resin is incident on the light curable resin from the light exit end of at least one of the optical components. Another photo-curing resin having a self-forming optical waveguide (core part) formed between the light emitting ends or between the light emitting end and the light incident end, and having a smaller refractive index after curing, if necessary This is a technique for realizing a low-loss connection by forming a clad portion.

なお、本明細書でいう「光の出射端」とは、その光部品が光を発生する機能を有する場合において当該発生光を出射する端(部)を含むことは勿論、その光部品自体は光を発生する機能を持たないが、外部から入射され当該光部品を透過した光が出射される端(部)も含むものとする。また、「光の入射端」とは、その光部品が外部からの光を受光する機能を有する場合において当該外部からの光が入射される端(部)を含むことは勿論、その光部品自体は光を受光する機能を持たないが、当該光部品を透過して外部へ出射される光が入射される端(部)も含むものとする。従って、光ファイバや光合分波器等の、それ自体発光機能も受光機能も持たない光部品においては、いずれの端(部)も「光の出射端」及び「光の入射端」になり得ることを明記しておく。   The “light emitting end” in this specification includes an end (portion) that emits the generated light when the optical component has a function of generating light, as well as the optical component itself. It does not have a function of generating light, but also includes an end (portion) from which light incident from the outside and transmitted through the optical component is emitted. In addition, the “light incident end” includes an end (portion) to which light from the outside is incident when the optical component has a function of receiving light from the outside. Does not have a function of receiving light, but also includes an end (portion) on which light transmitted through the optical component and emitted to the outside is incident. Therefore, in an optical component such as an optical fiber or an optical multiplexer / demultiplexer that does not have a light emitting function and a light receiving function, either end (portion) can be a “light emitting end” and a “light incident end”. Please note that.

ここで、従来の自己形成光導波路を用いた接続技術において、コア部の形成に用いる光の光強度については特段規定されていない、あるいは入射開始から形成終了まで一定とするものであった(特許文献1参照)。
特許第3444352号公報
Here, in the connection technology using the conventional self-forming optical waveguide, the light intensity of the light used for forming the core portion is not specifically defined, or is constant from the start of incidence to the end of formation (patent) Reference 1).
Japanese Patent No. 3444352

しかし、1.3μm帯零分散単一モードファイバ(SMF)等の細径なコアを有する光ファイバを自己形成光導波路により接続する場合、使用する光硬化性樹脂の硬化前後の屈折率の差の値によっては、形成される自己形成光導波路の形状が径の均一な直線状にならないことが知られている。   However, when an optical fiber having a small core such as a 1.3 μm band zero-dispersion single mode fiber (SMF) is connected by a self-forming optical waveguide, the difference in refractive index before and after curing of the photo-curing resin to be used It is known that depending on the value, the shape of the self-formed optical waveguide to be formed does not become a straight line having a uniform diameter.

その理由の一つとして、自己形成光導波路接続を行う場合、コア部形成にUV〜530nm帯付近の短波長域の光を用いるが、この波長域はSMFのカットオフ波長以下であるため、光源からの光を光ファイバに入射する際、該光ファイバ中で基本伝搬モード以外の高次伝搬モードの光が発生することが挙げられる。高次モードの光は基本モードの光よりもビーム拡がり角が大きいため、これが光硬化性樹脂中に出射されると、形成される自己形成光導波路がテーパ状になってしまう。径が均一で直線状の自己形成光導波路を形成するには光硬化性樹脂の硬化前後の屈折率の変化量を大きくして、自己形成光導波路の径の拡大を防ぐ必要があるが、光硬化性樹脂の屈折率の微細な調整は困難であるという問題があった。   One reason for this is that when a self-forming optical waveguide is connected, light in the short wavelength region near the UV to 530 nm band is used to form the core, but this wavelength region is less than or equal to the SMF cutoff wavelength. Is incident on the optical fiber, light in a higher-order propagation mode other than the fundamental propagation mode is generated in the optical fiber. Since the higher-order mode light has a larger beam divergence angle than the fundamental mode light, when it is emitted into the photo-curable resin, the self-formed optical waveguide to be formed becomes tapered. In order to form a linear self-forming optical waveguide with a uniform diameter, it is necessary to increase the amount of change in the refractive index before and after curing of the photocurable resin to prevent the diameter of the self-forming optical waveguide from expanding. There is a problem that fine adjustment of the refractive index of the curable resin is difficult.

一方、導波路径の大きな光部品を自己形成光導波路により接続する場合、使用する光硬化性樹脂の硬化収縮率が大きいと、形成される自己形成光導波路の導波路径がその長手方向において変動する可能性があった。一般的に、ラジカル硬化性樹脂はその特性上、硬化収縮性があるため、導波路径が大きいほど、形成される自己形成光導波路の形状が歪み、径が均一な直線状の自己形成光導波路を形成できないという問題があった。   On the other hand, when optical components with a large waveguide diameter are connected by a self-forming optical waveguide, the waveguide diameter of the self-forming optical waveguide to be formed fluctuates in the longitudinal direction when the photocuring resin used has a large cure shrinkage rate. There was a possibility. In general, radically curable resins have curing shrinkage due to their characteristics. Therefore, the larger the waveguide diameter, the more the shape of the formed self-formed optical waveguide is distorted, and the straight self-formed optical waveguide is uniform in diameter. There was a problem that could not be formed.

このように、形成される自己形成光導波路に変形が発生し、径が均一の直線状にならない場合、光部品間の接続損失が大きくなり、良好な接続状態を維持することができなくなる。その他、自己形成光導波路のMFD(Mode Field Diameter:モードフィールド径)と光ファイバのMFDとのミスマッチによる結合損失や自己形成光導波路の変形による軸ずれ等に起因する接続損失がそれぞれ発生することになる。   In this way, when the formed self-formed optical waveguide is deformed and does not become a straight line having a uniform diameter, the connection loss between the optical components increases, and a good connection state cannot be maintained. In addition, coupling loss due to mismatch between the MFD (Mode Field Diameter) of the self-forming optical waveguide and the MFD of the optical fiber, and connection loss due to axial misalignment due to deformation of the self-forming optical waveguide, respectively, occur. Become.

前述のように、従来はこれらを低減させるため、光硬化性樹脂の硬化前後における屈折率を調整する等の、自己形成光導波路がテーパ状にならないようにするための樹脂配合を行い、硬化収縮による導波路径の変動やテーパ化が発生しないように形成を行ってきた。しかし、これらの方法では樹脂配合に手間と費用が余分に掛かり、硬化用の光の制御も複雑となり、形成に関しても時間を要していた。   As described above, conventionally, in order to reduce these, resin blending is performed to prevent the self-forming optical waveguide from becoming tapered, such as adjusting the refractive index before and after curing of the photocurable resin, and curing shrinkage It has been formed so that the waveguide diameter does not fluctuate or taper. However, these methods require extra labor and cost for resin blending, complicate control of light for curing, and require time for formation.

本発明の目的は、光部品同士を自己形成光導波路技術により接続しようとする場合において、光硬化性樹脂の硬化前後の屈折率の微細な調整や硬化用の光の複雑な制御を必要とすることなく、径が均一で直線状の自己形成光導波路を形成できる接続方法を提供することにある。   It is an object of the present invention to require fine adjustment of refractive index before and after curing of a photocurable resin and complicated control of light for curing when optical components are to be connected by self-forming optical waveguide technology. It is another object of the present invention to provide a connection method that can form a self-forming optical waveguide having a uniform diameter and a straight line.

本発明では前述した課題を解決するために、光部品同士を自己形成光導波路技術により接続する際、光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させるようにしたことを特徴とする。より詳細には、第1段階の光強度より第2段階以降の光強度を高くしたことを特徴とする。さらに具体的には、第1段階の光強度は高次モードの光の光強度が光硬化性樹脂の硬化しきい値を超えない値としたことを特徴とする。   In the present invention, in order to solve the above-described problems, when the optical components are connected to each other by the self-forming optical waveguide technology, the light intensity of the light incident on the photocurable resin is changed in at least two stages. Features. More specifically, the light intensity in the second stage and after is made higher than the light intensity in the first stage. More specifically, the light intensity in the first stage is set such that the light intensity of the higher-order mode light does not exceed the curing threshold value of the photocurable resin.

即ち、光硬化性樹脂中に入射する第1段階の光の光強度を、図2(a)に示すように基本モードの光の光強度のみが光硬化性樹脂の硬化しきい値を超える値とすることで、高次モードの光は光硬化性樹脂の硬化に影響せず、基本モードの光のみで直径2dの自己形成光導波路(コア部)が形成される。また、形成されるコア部の径は図2(b)に示すように、最初から一定の高い光強度の光を入射して形成した場合のMFDよりも細くなるため、硬化収縮性のある光硬化性樹脂では歪による径の変形が低減できる。   That is, the light intensity of the first stage incident on the photocurable resin is a value in which only the light intensity of the fundamental mode light exceeds the curing threshold of the photocurable resin as shown in FIG. Thus, the higher-order mode light does not affect the curing of the photocurable resin, and a self-forming optical waveguide (core portion) having a diameter of 2d is formed only by the fundamental mode light. Further, as shown in FIG. 2 (b), the diameter of the core portion to be formed is thinner than the MFD formed when light having a constant high light intensity is incident from the beginning, so that the light having curing shrinkage can be obtained. With a curable resin, deformation of the diameter due to strain can be reduced.

コア部が確実に形成されたのを確認した後、第2段階の光として、図3(a)に示すように光硬化性樹脂の硬化しきい値を大きく超える光強度の光を光硬化性樹脂中に入射する。すると、図3(b)に示すように、先に形成された細い径のコア部の外周に直径2d’(2d’>2d)の自己形成光導波路(コア部)が形成される。   After confirming that the core has been reliably formed, light having a light intensity that greatly exceeds the curing threshold of the photocurable resin as shown in FIG. Incident in the resin. Then, as shown in FIG. 3B, a self-forming optical waveguide (core part) having a diameter of 2d ′ (2d ′> 2d) is formed on the outer periphery of the previously formed thin core part.

これにより、自己形成光導波路接続を行う場合、事前に光硬化性樹脂の硬化前後の屈折率を精密に調節する必要がなくなり、コア部のテーパ化が防げる。また前述した通り、細い径から段階的に径を太くしてコア部を形成することで、硬化収縮の影響を低減させる効果がある。これらの効果は光部品同士の接続全般、例えば光ファイバ同士の接続、光ファイバと平面光波回路との接続、平面光波回路同士の接続等において有効である。   Thereby, when performing self-forming optical waveguide connection, it is not necessary to precisely adjust the refractive index before and after the curing of the photocurable resin in advance, and the taper of the core portion can be prevented. Further, as described above, the core portion is formed by gradually increasing the diameter from a small diameter, thereby reducing the influence of curing shrinkage. These effects are effective in general connection between optical components, for example, connection between optical fibers, connection between an optical fiber and a planar lightwave circuit, connection between planar lightwave circuits, and the like.

本発明によれば、光硬化性樹脂中に入射する光の光強度を複数段階に分けて入射する接続方法を用いることで、光硬化性樹脂の硬化前後の屈折率の微細な調整や硬化用の光の複雑な制御を必要とすることなく、径が均一で直線状の自己形成光導波路を形成でき、従来よりも容易に低損失な接続を行うことが可能となる。   According to the present invention, by using a connection method in which the light intensity of light entering the photocurable resin is incident in multiple stages, the refractive index before and after curing of the photocurable resin can be finely adjusted and cured. Therefore, it is possible to form a self-forming optical waveguide having a uniform diameter and a straight line without requiring complicated control of the light, and it is possible to perform connection with lower loss more easily than in the past.

<実施の形態1>
図4は本発明の光部品の接続方法の実施の形態1、ここでは光ファイバ同士をコア部形成用の光硬化性樹脂及びクラッド部形成用の光硬化性樹脂を別々に用いて接続する場合の例を示すもので、図中、1−1,1−2はシングルモードファイバ(SMF)、2,3は光硬化性樹脂の溶液、4はコア部形成用の光源、5はクラッド部形成用の光源である。
<Embodiment 1>
FIG. 4 shows a first embodiment of a method for connecting optical components according to the present invention, where optical fibers are connected by separately using a photocurable resin for forming a core and a photocurable resin for forming a cladding. In the figure, 1-1 and 1-2 are single mode fibers (SMF), 2 and 3 are photocurable resin solutions, 4 is a light source for forming a core part, and 5 is a cladding part formation. Light source.

光硬化性樹脂の溶液2は、硬化後の屈折率を調整したコア部形成用の第1の光硬化性樹脂を含む溶液であり、また、光硬化性樹脂の溶液3は、硬化後の屈折率を調整したクラッド部形成用の第2の光硬化性樹脂を含む溶液であり、それぞれ予め用意しておくものとする。   The photo-curable resin solution 2 is a solution containing a first photo-curable resin for core formation with adjusted refractive index after curing, and the photo-curable resin solution 3 is a refractive index after curing. It is a solution containing the second photo-curing resin for forming the clad part with the adjusted rate, and is prepared in advance.

ここで、硬化後の屈折率の調整とは、硬化前の屈折率は任意の値で良いが、第1の光硬化性樹脂の硬化後の屈折率n1及び第2の光硬化性樹脂の硬化後の屈折率n2が、
n1>n2
の条件を満たすように調整することを指す。
Here, the adjustment of the refractive index after curing may be any value before the curing, but the refractive index n1 after curing of the first photocurable resin and the curing of the second photocurable resin. The subsequent refractive index n2 is
n1> n2
It means to adjust to meet the condition of.

コア部形成用の光源4は、光硬化性樹脂の溶液2中の第1の光硬化性樹脂が硬化反応を開始する波長の光を発生するもので、SMF1−1,1−2の少なくとも一方、ここではSMF1−1の他端に接続される。   The light source 4 for forming the core part generates light having a wavelength at which the first photocurable resin in the solution 2 of the photocurable resin starts a curing reaction, and at least one of the SMF 1-1 and 1-2. Here, it is connected to the other end of the SMF 1-1.

クラッド部形成用の光源5は、光硬化性樹脂の溶液3中の第2の光硬化性樹脂が硬化反応を開始する波長の光を発生するもので、後述する各ファイバ(ここではSMF1−1及び1−2)の一端同士の間を照射する如く配置される。   The light source 5 for forming the clad portion generates light having a wavelength at which the second photocurable resin in the solution 3 of the photocurable resin starts a curing reaction, and each of the fibers to be described later (here, SMF1-1). And 1-2) is arranged so as to irradiate between one end.

なお、実際には、溶液2,3が同時に各ファイバの一端同士の間に充填されることはないが、図4では便宜上、両方の溶液を示した。また、溶液2,3が同時に各ファイバの一端同士の間に充填されることがないため、第1及び第2の光硬化性樹脂の硬化反応を開始する波長は同一であっても良い。   In practice, the solutions 2 and 3 are not simultaneously filled between the ends of each fiber, but both solutions are shown in FIG. 4 for convenience. In addition, since the solutions 2 and 3 are not filled between the ends of each fiber at the same time, the wavelengths for starting the curing reaction of the first and second photocurable resins may be the same.

図5は本実施の形態における接続工程を示すもので、以下、図4及び図5を用いて本発明の光部品の接続方法について説明する。   FIG. 5 shows a connection process in the present embodiment. Hereinafter, the method for connecting optical components of the present invention will be described with reference to FIGS.

まず、図4に示すように、SMF1−1及び1−2を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、SMF1−1及び1−2の一端同士の端面間に光硬化性樹脂の溶液2を充填する。   First, as shown in FIG. 4, the SMFs 1-1 and 1-2 are arranged so that one ends to be connected are substantially opposed to each other with a predetermined gap therebetween, and one ends of the SMFs 1-1 and 1-2 are arranged between each other. A solution 2 of a photocurable resin is filled between the end faces.

なお、SMF1−1及び1−2は図示しない保持手段、例えばV溝を有する支持台とこの台にファイバを固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した各ファイバ間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、各ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   The SMF 1-1 and 1-2 are held by a holding means (not shown), for example, a holding base including a support base having a V-groove and a pressing plate for fixing the fiber to the base. Shall be maintained. In addition, the relationship between the central axes of the fibers described above is only required to be maintained in the vicinity of one end to be connected, and it is needless to say that it is not necessary to have such a relationship in the entire length of each fiber. (This point is common to all the embodiments of the present invention).

また、SMF1−1及び1−2の端面間に溶液2を充填する(介在させる)具体的な方法としては、例えば、前述した保持手段を構成する支持台のSMF1−1及び1−2の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に溶液2を滴下すれば良い。   Further, as a specific method for filling (interposing) the solution 2 between the end faces of the SMF 1-1 and 1-2, for example, one end of the SMF 1-1 and 1-2 of the support base constituting the holding means described above is used. It is only necessary to provide a depression for storing the liquid at a position where they face each other and drop the solution 2 into the depression.

次に、図5(a)に示すように、SMF1−1の他端に接続したコア部形成用の光源4を動作させると、該光源4で発生し、SMF1−1を伝搬した光がSMF1−1の一端から溶液2中に入射され、これによって溶液2中の第1の光硬化性樹脂が反応して硬化し、SMF1−1及び1−2の端面間に光導波路(コア部)が形成される。   Next, as shown in FIG. 5A, when the core portion forming light source 4 connected to the other end of the SMF 1-1 is operated, the light generated by the light source 4 and propagated through the SMF 1-1 is transmitted to the SMF 1. -1 is incident on the solution 2 from one end thereof, whereby the first photocurable resin in the solution 2 reacts and cures, and an optical waveguide (core portion) is formed between the end surfaces of the SMF 1-1 and 1-2. It is formed.

ここで、光源4の波長域がSMFのカットオフ波長以下である場合、光源4からの光をSMF1−1に対して入射すると、基本モード以外の高次モードが発生する。高次モードの光は基本モードの光よりもビーム拡がり角が大きいため、形成される光導波路の径が拡大してしまう。さらに、形成される光導波路の径は光強度依存性があり、一般的に入射光の光強度が高い程、大きくなる傾向がある。しかも、コア部形成用の第1の光硬化性樹脂としてラジカル硬化性樹脂を用いた場合に大きな光強度の光を入射すると、硬化収縮が発生するため、形成された光導波路に変形が生じ、余剰な接続損失が発生してしまう。   Here, when the wavelength range of the light source 4 is equal to or less than the cutoff wavelength of the SMF, when light from the light source 4 is incident on the SMF 1-1, a higher-order mode other than the fundamental mode is generated. Since the higher-order mode light has a larger beam divergence angle than the fundamental mode light, the diameter of the formed optical waveguide is increased. Furthermore, the diameter of the optical waveguide to be formed is dependent on light intensity, and generally tends to increase as the light intensity of incident light increases. In addition, when a light having a high light intensity is incident when a radical curable resin is used as the first photocurable resin for forming the core portion, curing shrinkage occurs, and thus the formed optical waveguide is deformed. Excessive connection loss will occur.

そこで、本発明では光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させる。   Therefore, in the present invention, the light intensity of light incident on the photocurable resin is changed in at least two stages.

第1段階では、図2(a)に示したように光強度分布でファイバコア中央付近のピーク強度がコア部形成用の第1の光硬化性樹脂の硬化しきい値よりわずかに高い(基本モードの光の光強度のみが第1の光硬化性樹脂の硬化しきい値を超え、高次モードの光の光強度は第1の光硬化性樹脂の硬化しきい値を超えない)条件で入射する。すると、図5(a)に示すように細い径の光導波路6aが形成され、対向するファイバと接続される。一般的に、短波長におけるSMFのモードパワー分布は、基本モードに最も大きくパワーが分配される。光ファイバのコアが真円であれば、基本モードの形状はコア形状と同様に円であり、ファイバからの出射光の拡がり角度は小さくなり、図5(a)に示すように、コア中心の延長線上に細い径の光導波路6aが形成される。   In the first stage, as shown in FIG. 2A, the peak intensity in the vicinity of the center of the fiber core in the light intensity distribution is slightly higher than the curing threshold value of the first photocurable resin for forming the core part (basic Only the light intensity of the mode light exceeds the curing threshold value of the first photocurable resin, and the light intensity of the higher order mode light does not exceed the curing threshold value of the first photocurable resin) Incident. Then, as shown in FIG. 5A, an optical waveguide 6a having a small diameter is formed and connected to the opposing fiber. In general, the SMF mode power distribution at a short wavelength has the largest power distribution to the fundamental mode. If the core of the optical fiber is a perfect circle, the shape of the fundamental mode is a circle as in the core shape, and the spread angle of the light emitted from the fiber is small. As shown in FIG. An optical waveguide 6a having a small diameter is formed on the extension line.

第2段階以降は、光導波路6aが形成されたことを確認した後、第1段階よりも入射光強度を上げると、先の細い径の光導波路による光導波効果により、当該光導波路を中心に光が分布する。そして、図5(b)に示すようにコア部形成用の第1の光硬化性樹脂の硬化しきい値を超える光強度領域に光導波路6bが形成される。この結果、出射光の拡がりの少ない直線状の光導波路が形成される。最終的な光導波路(コア部)の径及びMFDをさらに拡大したい場合は、第2段階以降の硬化光の入射回数を増やすか、第2段階目で光強度を増すかのいずれかの方法を用いれば良い。   After the second stage, after confirming that the optical waveguide 6a has been formed, when the incident light intensity is increased more than in the first stage, the optical waveguide is centered on the optical waveguide due to the optical waveguide effect of the narrow-diameter optical waveguide. Light is distributed. Then, as shown in FIG. 5B, the optical waveguide 6b is formed in the light intensity region exceeding the curing threshold value of the first photocurable resin for forming the core portion. As a result, a linear optical waveguide with little spread of the emitted light is formed. If you want to further expand the final optical waveguide (core part) diameter and MFD, either increase the number of times the curing light is incident after the second stage or increase the light intensity at the second stage. Use it.

なお、SMF1−1の一端から光硬化性樹脂中に入射する光の光強度の設定については、予め接続前のSMF1−1の一端に周知の光パワーメータ等を接続して、光源4における駆動電流または駆動電力を変更した際の光強度を計測・記録しておき、該記録に従って設定すれば良い。   In addition, about the setting of the light intensity of the light which injects into the photocurable resin from one end of SMF1-1, a well-known optical power meter etc. is connected in advance to one end of SMF1-1 before connection, and driving in the light source 4 is performed. What is necessary is just to measure and record the light intensity at the time of changing an electric current or drive electric power, and to set it according to the record.

次に、SMF1−1及び1−2の端面間に光導波路6a,6bが確実に形成されていることを確認した後、図5(c)に示すように、SMF1−1及び1−2の一端同士の端面間からコア部形成用の光硬化性樹脂の溶液2を除去して、その代わりにクラッド部形成用の光硬化性樹脂の溶液3を充填するとともに、ファイバに接続していない光源5を動作させ、SMF1−1及び1−2の一端同士の間の、既に形成された光導波路6a,6bからなるコア部6付近に光を照射する。すると、図5(c)に示すように、溶液3中の第2の光硬化性樹脂が反応して硬化し、コア部6の周囲にクラッド部7が形成される。   Next, after confirming that the optical waveguides 6a and 6b are securely formed between the end faces of the SMF 1-1 and 1-2, as shown in FIG. The light-curing resin solution 2 for forming the core part is removed from between the end faces of the one ends, and the light-curing resin solution 3 for forming the clad part is filled instead, and the light source is not connected to the fiber. 5 is operated to irradiate light in the vicinity of the core portion 6 composed of the already formed optical waveguides 6a and 6b between the ends of the SMF 1-1 and 1-2. Then, as shown in FIG. 5 (c), the second photocurable resin in the solution 3 reacts and cures, and the cladding portion 7 is formed around the core portion 6.

図6に本発明の方法及び従来の方法によりコア部を形成した場合の接続損失の変化量を示す。なお、図中の縦軸は樹脂充填時を基準値0とした時の変化量である。図6より、従来の方法では接続完了時の接続損失が樹脂を充填した時よりも大きくなるのに対して、本発明の方法では、接続完了時の接続損失が樹脂を充填した時よりも改善しているのが分かる。   FIG. 6 shows the amount of change in connection loss when the core portion is formed by the method of the present invention and the conventional method. In addition, the vertical axis | shaft in a figure is the variation | change_quantity when the time of resin filling is made into the reference value 0. FIG. From FIG. 6, the connection loss at the completion of the connection is larger than that when the resin is filled in the conventional method, whereas the connection loss at the completion of the connection is improved compared to the case when the resin is filled in the method of the present invention. You can see that

このように、コア形成時の光の光強度を2段階に変化させることによって、一様な光強度で形成を行う従来の自己形成光導波路接続よりも、高次モードの光及び硬化収縮による影響を最小限に抑えることができ、光ファイバ同士を低損失で接続することができる。   In this way, by changing the light intensity of the light at the time of core formation in two steps, the effect of higher order mode light and curing shrinkage than the conventional self-formed optical waveguide connection that forms with uniform light intensity. Thus, the optical fibers can be connected with low loss.

<実施の形態2>
図7は本発明の光部品の接続方法の実施の形態2、ここでは光ファイバ同士をコア部形成用の光硬化性樹脂及びクラッド部形成用の光硬化性樹脂を混合して用いて接続する場合の例を示すもので、図中、実施の形態1と同一構成部分は同一符号をもって表す。即ち、1−1,1−2はシングルモードファイバ(SMF)、4はコア部形成用の光源、5はクラッド部形成用の光源、8は光硬化性樹脂の混合溶液である。
<Embodiment 2>
FIG. 7 shows an optical component connecting method according to a second embodiment of the present invention, in which optical fibers are connected by mixing a photocurable resin for forming a core and a photocurable resin for forming a cladding. An example of the case is shown. In the figure, the same components as those of the first embodiment are denoted by the same reference numerals. That is, 1-1 and 1-2 are single mode fibers (SMF), 4 is a light source for forming a core part, 5 is a light source for forming a cladding part, and 8 is a mixed solution of a photocurable resin.

光硬化性樹脂の混合溶液8は、硬化後の屈折率を調整した2種類の光硬化性樹脂、即ちコア部形成用の第1の光硬化性樹脂(例えば、ラジカル硬化性樹脂)と、クラッド部形成用の第2の光硬化性樹脂(例えば、カチオン硬化性樹脂)とを含む混合溶液であり、予め用意しておくものとする。   The photo-curable resin mixed solution 8 includes two types of photo-curable resins whose refractive indexes after curing are adjusted, that is, a first photo-curable resin (for example, radical curable resin) for forming a core part, and a clad. It is a mixed solution containing a second photocurable resin (for example, a cationic curable resin) for forming a part, and is prepared in advance.

ここで、硬化後の屈折率の調整とは、硬化前の屈折率は任意の値で良いが、第1の光硬化性樹脂の硬化後の屈折率n1及び第2の光硬化性樹脂の硬化後の屈折率n2が、
n1>n2
の条件を満たすように調整することを指す。
Here, the adjustment of the refractive index after curing may be any value before the curing, but the refractive index n1 after curing of the first photocurable resin and the curing of the second photocurable resin. The subsequent refractive index n2 is
n1> n2
It means to adjust to meet the condition of.

なお、コア部形成用の光源4の波長は、光硬化性樹脂の混合溶液8中の第1の光硬化性樹脂のみが硬化反応を開始する波長に調節し、また、クラッド部形成用の光源5の波長は、光硬化性樹脂の混合溶液8中の第2の光硬化性樹脂のみが硬化反応を開始する波長に調節しておくものとする。   The wavelength of the light source 4 for forming the core part is adjusted to a wavelength at which only the first photocurable resin in the mixed solution 8 of the photocurable resin starts the curing reaction, and the light source for forming the clad part. The wavelength of 5 is adjusted to a wavelength at which only the second photocurable resin in the photocurable resin mixed solution 8 starts the curing reaction.

図8は本実施の形態における接続工程を示すもので、以下、図7及び図8を用いて本発明の光部品の接続方法について説明する。   FIG. 8 shows a connection process in the present embodiment. Hereinafter, the method for connecting optical components of the present invention will be described with reference to FIGS.

まず、図7に示すように、SMF1−1及び1−2を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、SMF1−1及び1−2の一端同士の端面間に光硬化性樹脂の混合溶液8を充填する。   First, as shown in FIG. 7, the SMFs 1-1 and 1-2 are arranged so that the one ends to be connected are substantially opposed to each other with a predetermined gap therebetween, and the one ends of the SMFs 1-1 and 1-2 are arranged with each other. A mixed solution 8 of a photo-curable resin is filled between the end faces.

次に、図8(a)に示すように、SMF1−1の他端に接続したコア部形成用の光源4を動作させると、該光源4で発生し、SMF1−1を伝搬した光がSMF1−1の一端から混合溶液8中に入射され、これによって混合溶液8中の第1の光硬化性樹脂のみが反応して硬化し、SMF1−1及び1−2の端面間に光導波路(コア部)が形成される。   Next, as shown in FIG. 8A, when the core portion forming light source 4 connected to the other end of the SMF 1-1 is operated, the light generated by the light source 4 and propagated through the SMF 1-1 is transmitted to the SMF 1. -1 is incident on the mixed solution 8 from one end, whereby only the first photocurable resin in the mixed solution 8 reacts and cures, and an optical waveguide (core) is formed between the end surfaces of the SMF 1-1 and 1-2. Part) is formed.

ここで、光源4の波長域がSMFのカットオフ波長以下である場合、光源4からの光をSMF1−1に対して入射すると、基本モード以外の高次モードが発生する。高次モードの光は基本モードの光よりもビーム拡がり角が大きいため、形成される光導波路の径が拡大してしまう。さらに、形成される光導波路の径は光強度依存性があり、一般的に入射光の光強度が高い程、大きくなる傾向がある。しかも、コア部形成用の第1の光硬化性樹脂としてラジカル硬化性樹脂を用いた場合に大きな光強度の光を入射すると、硬化収縮が発生するため、形成された光導波路に変形が生じ、余剰な接続損失が発生してしまう。   Here, when the wavelength range of the light source 4 is equal to or less than the cutoff wavelength of the SMF, when light from the light source 4 is incident on the SMF 1-1, a higher-order mode other than the fundamental mode is generated. Since the higher-order mode light has a larger beam divergence angle than the fundamental mode light, the diameter of the formed optical waveguide is increased. Furthermore, the diameter of the optical waveguide to be formed is dependent on light intensity, and generally tends to increase as the light intensity of incident light increases. In addition, when a light having a high light intensity is incident when a radical curable resin is used as the first photocurable resin for forming the core portion, curing shrinkage occurs, and thus the formed optical waveguide is deformed. Excessive connection loss will occur.

そこで、本発明では光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させる。   Therefore, in the present invention, the light intensity of light incident on the photocurable resin is changed in at least two stages.

第1段階では、図2(a)に示したように光強度分布でファイバコア中央付近のピーク強度がコア部形成用の第1の光硬化性樹脂の硬化しきい値よりわずかに高い(基本モードの光の光強度のみが第1の光硬化性樹脂の硬化しきい値を超え、高次モードの光の光強度は第1の光硬化性樹脂の硬化しきい値を超えない)条件で入射する。すると、図8(a)に示すように細い径の光導波路9aが形成され、対向するファイバと接続される。一般的に、短波長におけるSMFのモードパワー分布は、基本モードに最も大きくパワーが分配される。光ファイバのコアが真円であれば、基本モードの形状はコア形状と同様に円であり、ファイバからの出射光の拡がり角度は小さくなり、図8(a)に示すように、コア中心の延長線上に細い径の光導波路9aが形成される。   In the first stage, as shown in FIG. 2A, the peak intensity in the vicinity of the center of the fiber core in the light intensity distribution is slightly higher than the curing threshold value of the first photocurable resin for forming the core part (basic Only the light intensity of the mode light exceeds the curing threshold value of the first photocurable resin, and the light intensity of the higher order mode light does not exceed the curing threshold value of the first photocurable resin) Incident. Then, as shown in FIG. 8A, an optical waveguide 9a having a small diameter is formed and connected to the opposing fiber. In general, the SMF mode power distribution at a short wavelength has the largest power distribution to the fundamental mode. If the core of the optical fiber is a perfect circle, the shape of the fundamental mode is a circle similar to the core shape, and the spread angle of the light emitted from the fiber is small. As shown in FIG. An optical waveguide 9a having a small diameter is formed on the extension line.

第2段階以降は、光導波路9aが形成されたことを確認した後、第1段階よりも入射光強度を上げると、先の細い径の光導波路による光導波効果により、当該光導波路を中心に光が分布する。そして、図8(b)に示すようにコア部形成用の第1の光硬化性樹脂の硬化しきい値を超える光強度領域に光導波路9bが形成される。この結果、出射光の拡がりの少ない直線状の光導波路が形成される。最終的な光導波路(コア部)の径及びMFDをさらに拡大したい場合は、第2段階以降の硬化光の入射回数を増やすか、第2段階目で光強度を増すかのいずれかの方法を用いれば良い。   After the second stage, after confirming that the optical waveguide 9a has been formed, when the incident light intensity is increased more than in the first stage, the optical waveguide is centered on the optical waveguide due to the optical waveguide effect of the narrow-diameter optical waveguide. Light is distributed. And as shown in FIG.8 (b), the optical waveguide 9b is formed in the light intensity area | region exceeding the hardening threshold value of the 1st photocurable resin for core part formation. As a result, a linear optical waveguide with little spread of the emitted light is formed. If you want to further expand the final optical waveguide (core part) diameter and MFD, either increase the number of times the curing light is incident after the second stage or increase the light intensity at the second stage. Use it.

次に、SMF1−1及び1−2の端面間に光導波路9a,9bが確実に形成されていることを確認した後、図8(c)に示すように、ファイバに接続していない光源5を動作させ、SMF1−1及び1−2の一端同士の間の、既に形成された光導波路9a,9bからなるコア部9付近に光を照射する。すると、図8(c)に示すように、混合溶液8中の第2の光硬化性樹脂のみが反応して硬化し、コア部9の周囲にクラッド部10が形成される。   Next, after confirming that the optical waveguides 9a and 9b are reliably formed between the end faces of the SMF 1-1 and 1-2, as shown in FIG. 8C, the light source 5 not connected to the fiber. Is operated to irradiate light in the vicinity of the core portion 9 including the optical waveguides 9a and 9b already formed between the ends of the SMF 1-1 and 1-2. Then, as shown in FIG. 8C, only the second photocurable resin in the mixed solution 8 reacts and cures, and the clad portion 10 is formed around the core portion 9.

このように、コア形成時の光の光強度を2段階に変化させることによって、コア部形成用の光硬化性樹脂とクラッド部形成用の光硬化性樹脂との混合溶液を用いた場合でも、一様な光強度で形成を行う従来の自己形成光導波路接続よりも、高次モードの光及び硬化収縮による影響を最小限に抑えることができ、光ファイバ同士を低損失で接続することができる。   Thus, even when a mixed solution of the photocurable resin for forming the core part and the photocurable resin for forming the cladding part is used by changing the light intensity of the light at the time of forming the core in two stages, Compared to conventional self-forming optical waveguide connections that form with uniform light intensity, the effects of higher-order mode light and curing shrinkage can be minimized, and optical fibers can be connected with low loss. .

<実施の形態3>
図9は本発明の光部品の接続方法の実施の形態3、ここでは光ファイバと平面光波回路とをコア部形成用の光硬化性樹脂及びクラッド部形成用の光硬化性樹脂を別々に用いて接続する場合の例を示すもので、図中、実施の形態1と同一構成部分は同一符号をもって表す。即ち、1はシングルモードファイバ(SMF)、2,3は光硬化性樹脂の溶液、4はコア部形成用の光源、5はクラッド部形成用の光源、11は平面光波回路(PLC)である。
<Embodiment 3>
FIG. 9 shows a third embodiment of an optical component connecting method according to the present invention, in which an optical fiber and a planar lightwave circuit are separately used for a core-forming photocurable resin and a cladding-forming photocurable resin. In the figure, the same components as those of the first embodiment are denoted by the same reference numerals. That is, 1 is a single mode fiber (SMF), 2 and 3 are photocurable resin solutions, 4 is a light source for forming a core part, 5 is a light source for forming a cladding part, and 11 is a planar lightwave circuit (PLC). .

ここで、コア部形成用の光源4は、SMF1の他端に接続され、クラッド部形成用の光源5は、後述するSMF1及びPLC11の一端同士の間を照射する如く配置される。   Here, the light source 4 for forming the core part is connected to the other end of the SMF 1, and the light source 5 for forming the clad part is disposed so as to irradiate between one end of the SMF 1 and the PLC 11 described later.

なお、実際には、溶液2,3が同時にSMF1及びPLC11の一端同士の間に充填されることはないが、図9では便宜上、両方の溶液を示した。   In practice, the solutions 2 and 3 are not simultaneously filled between the ends of the SMF 1 and the PLC 11, but both solutions are shown in FIG. 9 for convenience.

図10は本実施の形態における接続工程を示すもので、以下、図9及び図10を用いて本発明の光部品の接続方法について説明する。   FIG. 10 shows a connection process in the present embodiment. Hereinafter, a method for connecting optical components of the present invention will be described with reference to FIGS. 9 and 10.

まず、図9に示すように、SMF1及びPLC11を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、SMF1及びPLC11の一端同士の端面間に光硬化性樹脂の溶液2を充填する。なお、PLC11の接続すべき一端とは光の出射部あるいは入射部を備えた端面を指す。   First, as shown in FIG. 9, the SMF 1 and the PLC 11 are arranged so that one ends to be connected are substantially opposed to each other with a predetermined gap therebetween, and a photocurable resin is provided between the end faces of the one ends of the SMF 1 and the PLC 11. Of solution 2. Note that the one end to which the PLC 11 should be connected refers to an end face provided with a light emitting part or an incident part.

なお、SMF1及びPLC11は図示しない保持手段、例えば一方にV溝を有し、他方にPLCをその光の出射部あるいは入射部の中心が前記V溝に一致する如く搭載可能な平面を有する支持台とこの台にファイバ及びPLCを固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述したファイバ及びPLCの光の出射部あるいは入射部間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   Note that the SMF 1 and the PLC 11 have a holding means (not shown), for example, a support base having a V-groove on one side and a plane on which the PLC can be mounted on the other side so that the center of the light emitting or incident part coincides with the V-groove It is held by a holding means comprising a pressing plate for fixing the fiber and the PLC to this stand, and the above-described arrangement relationship is maintained until the end of the connection work. In addition, the relationship of the central axis between the light emitting portion or the incident portion of the fiber and the PLC described above may be maintained in the vicinity of one end to be connected, and is in such a relationship in the entire length of the fiber. Needless to say, this is not necessary (this point is common to all embodiments of the present invention).

また、SMF1及びPLC11の端面間に溶液2を充填する(介在させる)具体的な方法としては、例えば、前述した保持手段を構成する支持台のSMF1及びPLC11の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に溶液2を滴下すれば良い。   In addition, as a specific method for filling (interposing) the solution 2 between the end faces of the SMF 1 and the PLC 11, for example, the liquid reservoir is stored at a position where the ends of the SMF 1 and the PLC 11 of the support base constituting the holding means face each other. For example, a depressed portion may be provided, and the solution 2 may be dropped into the depressed portion.

次に、図10(a)に示すように、SMF1の他端に接続したコア部形成用の光源4を動作させると、該光源4で発生し、SMF1を伝搬した光がSMF1の一端から溶液2中に入射され、これによって溶液2中の第1の光硬化性樹脂が反応して硬化し、SMF1及びPLC11の端面間に光導波路(コア部)が形成される。   Next, as shown in FIG. 10A, when the core portion forming light source 4 connected to the other end of the SMF 1 is operated, the light generated by the light source 4 and propagated through the SMF 1 is supplied from one end of the SMF 1 to the solution. 2, whereby the first photocurable resin in the solution 2 reacts and cures, and an optical waveguide (core portion) is formed between the end faces of the SMF 1 and the PLC 11.

ここで、光源4の波長域がSMFのカットオフ波長以下である場合、光源4からの光をSMF1に対して入射すると、基本モード以外の高次モードが発生する。高次モードの光は基本モードの光よりもビーム拡がり角が大きいため、形成される光導波路の径が拡大してしまう。さらに、形成される光導波路の径は光強度依存性があり、一般的に入射光の光強度が高い程、大きくなる傾向がある。しかも、コア部形成用の第1の光硬化性樹脂としてラジカル硬化性樹脂を用いた場合に大きな光強度の光を入射すると、硬化収縮が発生するため、形成された光導波路に変形が生じ、余剰な接続損失が発生してしまう。   Here, when the wavelength range of the light source 4 is equal to or less than the cutoff wavelength of the SMF, when light from the light source 4 is incident on the SMF 1, higher-order modes other than the fundamental mode are generated. Since the higher-order mode light has a larger beam divergence angle than the fundamental mode light, the diameter of the formed optical waveguide is increased. Furthermore, the diameter of the optical waveguide to be formed is dependent on light intensity, and generally tends to increase as the light intensity of incident light increases. In addition, when a light having a high light intensity is incident when a radical curable resin is used as the first photocurable resin for forming the core portion, curing shrinkage occurs, and thus the formed optical waveguide is deformed. Excessive connection loss will occur.

そこで、本発明では光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させる。   Therefore, in the present invention, the light intensity of light incident on the photocurable resin is changed in at least two stages.

第1段階では、図2(a)に示したように光強度分布でファイバコア中央付近のピーク強度がコア部形成用の第1の光硬化性樹脂の硬化しきい値よりわずかに高い(基本モードの光の光強度のみが第1の光硬化性樹脂の硬化しきい値を超え、高次モードの光の光強度は第1の光硬化性樹脂の硬化しきい値を超えない)条件で入射する。すると、図10(a)に示すように細い径の光導波路12aが形成され、対向するPLCと接続される。一般的に、短波長におけるSMFのモードパワー分布は、基本モードに最も大きくパワーが分配される。光ファイバのコアが真円であれば、基本モードの形状はコア形状と同様に円であり、ファイバからの出射光の拡がり角度は小さくなり、図10(a)に示すように、コア中心の延長線上に細い径の光導波路12aが形成される。   In the first stage, as shown in FIG. 2A, the peak intensity in the vicinity of the center of the fiber core in the light intensity distribution is slightly higher than the curing threshold value of the first photocurable resin for forming the core part (basic Only the light intensity of the mode light exceeds the curing threshold value of the first photocurable resin, and the light intensity of the higher order mode light does not exceed the curing threshold value of the first photocurable resin) Incident. Then, as shown in FIG. 10A, an optical waveguide 12a having a small diameter is formed and connected to the opposing PLC. In general, the SMF mode power distribution at a short wavelength has the largest power distribution to the fundamental mode. If the core of the optical fiber is a perfect circle, the shape of the fundamental mode is a circle similar to the core shape, and the spread angle of the light emitted from the fiber is small. As shown in FIG. An optical waveguide 12a having a small diameter is formed on the extension line.

第2段階以降は、光導波路12aが形成されたことを確認した後、第1段階よりも入射光強度を上げると、先の細い径の光導波路による光導波効果により、当該光導波路を中心に光が分布する。そして、図10(b)に示すようにコア部形成用の第1の光硬化性樹脂の硬化しきい値を超える光強度領域に光導波路12bが形成される。この結果、出射光の拡がりの少ない直線状の光導波路が形成される。最終的な光導波路(コア部)の径及びMFDをさらに拡大したい場合は、第2段階以降の硬化光の入射回数を増やすか、第2段階目で光強度を増すかのいずれかの方法を用いれば良い。   After the second stage, after confirming that the optical waveguide 12a is formed, when the incident light intensity is increased more than in the first stage, the optical waveguide is centered on the optical waveguide due to the optical waveguide effect of the narrow-diameter optical waveguide. Light is distributed. And as shown in FIG.10 (b), the optical waveguide 12b is formed in the light intensity area | region exceeding the hardening threshold value of the 1st photocurable resin for core part formation. As a result, a linear optical waveguide with little spread of the emitted light is formed. If you want to further expand the final optical waveguide (core part) diameter and MFD, either increase the number of times the curing light is incident after the second stage or increase the light intensity at the second stage. Use it.

次に、SMF1及びPLC11の端面間に光導波路12a,12bが確実に形成されていることを確認した後、図10(c)に示すように、SMF1及びPLC11の一端同士の端面間からコア部形成用の光硬化性樹脂の溶液2を除去して、その代わりにクラッド部形成用の光硬化性樹脂の溶液3を充填するとともに、ファイバに接続していない光源5を動作させ、SMF1及びPLC11の一端同士の間の、既に形成された光導波路12a,12bからなるコア部12付近に光を照射する。すると、図10(c)に示すように、溶液3中の第2の光硬化性樹脂が反応して硬化し、コア部12の周囲にクラッド部13が形成される。   Next, after confirming that the optical waveguides 12a and 12b are surely formed between the end faces of the SMF 1 and the PLC 11, as shown in FIG. 10C, the core portion extends from between the end faces of the one ends of the SMF 1 and the PLC 11. The photocurable resin solution 2 for forming is removed, and instead, the photocurable resin solution 3 for forming the clad portion is filled, and the light source 5 not connected to the fiber is operated to operate the SMF 1 and the PLC 11. The light is irradiated to the vicinity of the core portion 12 composed of the already formed optical waveguides 12a and 12b between the ends of the optical waveguides. Then, as shown in FIG. 10C, the second photocurable resin in the solution 3 reacts and cures, and a clad portion 13 is formed around the core portion 12.

このように、コア形成時の光の光強度を2段階に変化させることによって、一様な光強度で形成を行う従来の自己形成光導波路接続よりも、高次モードの光及び硬化収縮による影響を最小限に抑えることができ、光ファイバとPLCとを低損失で接続することができる。   In this way, by changing the light intensity of the light at the time of core formation in two steps, the effect of higher order mode light and curing shrinkage than the conventional self-formed optical waveguide connection that forms with uniform light intensity. The optical fiber and the PLC can be connected with low loss.

<実施の形態4>
図11は本発明の光部品の接続方法の実施の形態4、ここでは光ファイバと平面光波回路とをコア部形成用の光硬化性樹脂及びクラッド部形成用の光硬化性樹脂を混合して用いて接続する場合の例を示すもので、図中、実施の形態2、3と同一構成部分は同一符号をもって表す。即ち、1はシングルモードファイバ(SMF)、4はコア部形成用の光源、5はクラッド部形成用の光源、8は光硬化性樹脂の混合溶液、11は平面光波回路(PLC)である。
<Embodiment 4>
FIG. 11 shows an optical component connecting method according to a fourth embodiment of the present invention, in which an optical fiber and a planar lightwave circuit are mixed with a photocurable resin for forming a core and a photocurable resin for forming a clad. In the figure, the same components as those in Embodiments 2 and 3 are denoted by the same reference numerals. That is, 1 is a single mode fiber (SMF), 4 is a light source for forming a core part, 5 is a light source for forming a cladding part, 8 is a mixed solution of a photocurable resin, and 11 is a planar lightwave circuit (PLC).

図12は本実施の形態における接続工程を示すもので、以下、図11及び図12を用いて本発明の光部品の接続方法について説明する。   FIG. 12 shows the connection process in the present embodiment. Hereinafter, the optical component connecting method of the present invention will be described with reference to FIGS. 11 and 12.

まず、図11に示すように、SMF1及びPLC11を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、SMF1及びPLC11の一端同士の端面間に光硬化性樹脂の混合溶液8を充填する。   First, as shown in FIG. 11, the SMF 1 and the PLC 11 are arranged so that one ends to be connected to each other are substantially opposed to each other with a predetermined gap therebetween, and a photocurable resin is provided between the end faces of the one ends of the SMF 1 and the PLC 11. The mixed solution 8 is filled.

次に、図12(a)に示すように、SMF1の他端に接続したコア部形成用の光源4を動作させると、該光源4で発生し、SMF1を伝搬した光がSMF1の一端から混合溶液8中に入射され、これによって混合溶液8中の第1の光硬化性樹脂のみが反応して硬化し、SMF1及びPLC11の端面間に光導波路(コア部)が形成される。   Next, as shown in FIG. 12A, when the core forming light source 4 connected to the other end of the SMF 1 is operated, the light generated by the light source 4 and propagated through the SMF 1 is mixed from one end of the SMF 1. Incident into the solution 8, whereby only the first photocurable resin in the mixed solution 8 reacts and cures, and an optical waveguide (core portion) is formed between the end faces of the SMF 1 and the PLC 11.

ここで、光源4の波長域がSMFのカットオフ波長以下である場合、光源4からの光をSMF1に対して入射すると、基本モード以外の高次モードが発生する。高次モードの光は基本モードの光よりもビーム拡がり角が大きいため、形成される光導波路の径が拡大してしまう。さらに、形成される光導波路の径は光強度依存性があり、一般的に入射光の光強度が高い程、大きくなる傾向がある。しかも、コア部形成用の第1の光硬化性樹脂としてラジカル硬化性樹脂を用いた場合に大きな光強度の光を入射すると、硬化収縮が発生するため、形成された光導波路に変形が生じ、余剰な接続損失が発生してしまう。   Here, when the wavelength range of the light source 4 is equal to or less than the cutoff wavelength of the SMF, when light from the light source 4 is incident on the SMF 1, higher-order modes other than the fundamental mode are generated. Since the higher-order mode light has a larger beam divergence angle than the fundamental mode light, the diameter of the formed optical waveguide is increased. Furthermore, the diameter of the optical waveguide to be formed is dependent on light intensity, and generally tends to increase as the light intensity of incident light increases. In addition, when a light having a high light intensity is incident when a radical curable resin is used as the first photocurable resin for forming the core portion, curing shrinkage occurs, and thus the formed optical waveguide is deformed. Excessive connection loss will occur.

そこで、本発明では光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させる。   Therefore, in the present invention, the light intensity of light incident on the photocurable resin is changed in at least two stages.

第1段階では、図2(a)に示したように光強度分布でファイバコア中央付近のピーク強度がコア部形成用の第1の光硬化性樹脂の硬化しきい値よりわずかに高い(基本モードの光の光強度のみが第1の光硬化性樹脂の硬化しきい値を超え、高次モードの光の光強度は第1の光硬化性樹脂の硬化しきい値を超えない)条件で入射する。すると、図12(a)に示すように細い径の光導波路14aが形成され、対向するPLCと接続される。一般的に、短波長におけるSMFのモードパワー分布は、基本モードに最も大きくパワーが分配される。光ファイバのコアが真円であれば、基本モードの形状はコア形状と同様に円であり、ファイバからの出射光の拡がり角度は小さくなり、図12(a)に示すように、コア中心の延長線上に細い径の光導波路14aが形成される。   In the first stage, as shown in FIG. 2A, the peak intensity in the vicinity of the center of the fiber core in the light intensity distribution is slightly higher than the curing threshold value of the first photocurable resin for forming the core part (basic Only the light intensity of the mode light exceeds the curing threshold value of the first photocurable resin, and the light intensity of the higher order mode light does not exceed the curing threshold value of the first photocurable resin) Incident. Then, as shown in FIG. 12A, an optical waveguide 14a having a small diameter is formed and connected to the opposing PLC. In general, the SMF mode power distribution at a short wavelength has the largest power distribution to the fundamental mode. If the core of the optical fiber is a perfect circle, the shape of the fundamental mode is a circle similar to the core shape, and the spread angle of the light emitted from the fiber is small. As shown in FIG. An optical waveguide 14a having a small diameter is formed on the extension line.

第2段階以降は、光導波路14aが形成されたことを確認した後、第1段階よりも入射光強度を上げると、先の細い径の光導波路による光導波効果により、当該光導波路を中心に光が分布する。そして、図12(b)に示すようにコア部形成用の第1の光硬化性樹脂の硬化しきい値を超える光強度領域に光導波路14bが形成される。この結果、出射光の拡がりの少ない直線状の光導波路が形成される。最終的な光導波路(コア部)の径及びMFDをさらに拡大したい場合は、第2段階以降の硬化光の入射回数を増やすか、第2段階目で光強度を増すかのいずれかの方法を用いれば良い。   In the second and subsequent stages, after confirming that the optical waveguide 14a has been formed, if the incident light intensity is increased more than in the first stage, the optical waveguide is centered on the optical waveguide due to the optical waveguide effect of the narrow-diameter optical waveguide. Light is distributed. And as shown in FIG.12 (b), the optical waveguide 14b is formed in the light intensity area | region exceeding the hardening threshold value of the 1st photocurable resin for core part formation. As a result, a linear optical waveguide with little spread of the emitted light is formed. If you want to further expand the final optical waveguide (core part) diameter and MFD, either increase the number of times the curing light is incident after the second stage or increase the light intensity at the second stage. Use it.

次に、SMF1及びPLC11の端面間に光導波路14a,14bが確実に形成されていることを確認した後、図12(c)に示すように、ファイバに接続していない光源5を動作させ、SMF1及びPLC11の一端同士の間の、既に形成された光導波路14a,14bからなるコア部14付近に光を照射する。すると、図12(c)に示すように、混合溶液8中の第2の光硬化性樹脂のみが反応して硬化し、コア部14の周囲にクラッド部15が形成される。   Next, after confirming that the optical waveguides 14a and 14b are reliably formed between the end faces of the SMF 1 and the PLC 11, the light source 5 not connected to the fiber is operated as shown in FIG. Light is irradiated to the vicinity of the core portion 14 composed of the already formed optical waveguides 14a and 14b between one ends of the SMF 1 and the PLC 11. Then, as shown in FIG. 12 (c), only the second photocurable resin in the mixed solution 8 reacts and cures, and a clad portion 15 is formed around the core portion 14.

このように、コア形成時の光の光強度を2段階に変化させることによって、コア部形成用の光硬化性樹脂とクラッド部形成用の光硬化性樹脂との混合溶液を用いた場合でも、一様な光強度で形成を行う従来の自己形成光導波路接続よりも、高次モードの光及び硬化収縮による影響を最小限に抑えることができ、光ファイバとPLCとを低損失で接続することができる。   Thus, even when a mixed solution of the photocurable resin for forming the core part and the photocurable resin for forming the cladding part is used by changing the light intensity of the light at the time of forming the core in two stages, Compared to the conventional self-forming optical waveguide connection that forms with uniform light intensity, the effects of higher-order mode light and curing shrinkage can be minimized, and the optical fiber and PLC are connected with low loss. Can do.

<他の実施の形態>
なお、本発明の光部品の接続方法では、平面光波回路同士についても、前記同様に接続することが可能である。但し、その場合、平面光波回路のうち少なくとも一方は、コア部形成用の光硬化性樹脂が硬化反応を開始する波長の光を発生する機能を有し、接続しようとする一端の光の出射部から当該波長の光を出射可能であるか、あるいはコア部形成用の光硬化性樹脂が硬化反応を開始する波長の光を発生する光源からの光を、いずれかの光の入射部より接続しようとする一端の光の出射部まで透過させる機能を有する必要がある。
<Other embodiments>
In the optical component connecting method of the present invention, planar lightwave circuits can be connected in the same manner as described above. However, in that case, at least one of the planar lightwave circuits has a function of generating light having a wavelength at which the photocurable resin for forming the core portion initiates a curing reaction, and the light emitting portion at one end to be connected The light from the light source that can emit the light of the wavelength from the light source or generates the light of the wavelength at which the photocurable resin for forming the core starts the curing reaction is connected from one of the light incident portions. It is necessary to have a function of transmitting to the light emitting part at one end.

平面光波回路の一例を示す斜視図A perspective view showing an example of a planar lightwave circuit 硬化光の光強度と形成光導波路の径との関係を示す説明図Explanatory diagram showing the relationship between the light intensity of the curing light and the diameter of the formed optical waveguide 硬化光の光強度と形成光導波路の径との関係を示す説明図Explanatory diagram showing the relationship between the light intensity of the curing light and the diameter of the formed optical waveguide 本発明の光部品の接続方法の実施の形態1を示す構成図The block diagram which shows Embodiment 1 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態1を示す工程図Process drawing which shows Embodiment 1 of the connection method of the optical component of this invention 本発明及び従来技術による接続損失の変化量を示すグラフGraph showing the amount of change in splice loss according to the present invention and the prior art 本発明の光部品の接続方法の実施の形態2を示す構成図The block diagram which shows Embodiment 2 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態2を示す工程図Process drawing which shows Embodiment 2 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態3を示す構成図The block diagram which shows Embodiment 3 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態3を示す工程図Process drawing which shows Embodiment 3 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態4を示す構成図The block diagram which shows Embodiment 4 of the connection method of the optical component of this invention 本発明の光部品の接続方法の実施の形態4を示す工程図Process drawing which shows Embodiment 4 of the connection method of the optical component of this invention

符号の説明Explanation of symbols

1,1−1,1−2:シングルモードファイバ(SMF)、2,3:光硬化性樹脂の溶液、4,5:光源、6,6a,6b,9,9a,9b,12,12a,12b,14,14a,14b:コア部(光導波路)、7,10,13,15:クラッド部、8:光硬化性樹脂の混合溶液、11:平面光波回路(PLC)。   1, 1-1, 1-2: single mode fiber (SMF), 2, 3: photocurable resin solution, 4, 5: light source, 6, 6a, 6b, 9, 9a, 9b, 12, 12a, 12b, 14, 14a, 14b: Core part (optical waveguide), 7, 10, 13, 15: Clad part, 8: Mixed solution of photocurable resin, 11: Planar light wave circuit (PLC).

Claims (5)

光部品同士を、各部品の光の出射端同士の間もしくは光の出射端と光の入射端との間に光硬化性樹脂を充填し、当該光硬化性樹脂の硬化開始波長に対応する波長の光を少なくとも一方の光部品の光の出射端から該光硬化性樹脂中に入射して前記各部品の光の出射端同士の間もしくは光の出射端と光の入射端との間に自己形成光導波路を形成することにより接続する方法において、
前記光硬化性樹脂中に入射する光の光強度を少なくとも2段階に変化させるようにした
ことを特徴とする光部品の接続方法。
A wavelength corresponding to the curing start wavelength of the photo-curable resin, in which the optical components are filled with light-curing resin between the light emitting ends of each component or between the light emitting end and the light incident end. Light enters the photocurable resin from the light exit end of at least one of the optical components, and self between the light exit ends of each component or between the light exit end and the light entrance end. In a method of connecting by forming a formed optical waveguide,
A method for connecting optical components, wherein the light intensity of light incident on the photocurable resin is changed in at least two stages.
請求項1記載の光部品の接続方法において、
第1段階の光強度より第2段階以降の光強度を高くした
ことを特徴とする光部品の接続方法。
In the connection method of the optical component of Claim 1,
A method for connecting optical components, characterized in that the light intensity in the second stage and thereafter is higher than the light intensity in the first stage.
請求項1記載の光部品の接続方法において、
第1段階の光強度は高次モードの光の光強度が光硬化性樹脂の硬化しきい値を超えない値とした
ことを特徴とする光部品の接続方法。
In the connection method of the optical component of Claim 1,
The optical component connection method according to claim 1, wherein the first-stage light intensity is set such that the light intensity of the higher-order mode light does not exceed a curing threshold value of the photocurable resin.
請求項1乃至3いずれか記載の光部品の接続方法において、
光部品の少なくとも一方が光ファイバである
ことを特徴とする光部品の接続方法。
In the connection method of the optical components in any one of Claims 1 thru | or 3,
An optical component connection method, wherein at least one of the optical components is an optical fiber.
請求項1乃至3いずれか記載の光部品の接続方法において、
光部品の少なくとも一方が平面光波回路である
ことを特徴とする光部品の接続方法。
In the connection method of the optical components in any one of Claims 1 thru | or 3,
An optical component connection method, wherein at least one of the optical components is a planar lightwave circuit.
JP2006321381A 2006-09-27 2006-11-29 Optical component connection method Expired - Fee Related JP4642739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321381A JP4642739B2 (en) 2006-09-27 2006-11-29 Optical component connection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006262362 2006-09-27
JP2006321381A JP4642739B2 (en) 2006-09-27 2006-11-29 Optical component connection method

Publications (2)

Publication Number Publication Date
JP2008107750A true JP2008107750A (en) 2008-05-08
JP4642739B2 JP4642739B2 (en) 2011-03-02

Family

ID=39441118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321381A Expired - Fee Related JP4642739B2 (en) 2006-09-27 2006-11-29 Optical component connection method

Country Status (1)

Country Link
JP (1) JP4642739B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113890A (en) * 2011-11-25 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> Optical fiber coupling device and optical fiber coupling method
CN105264415A (en) * 2013-04-02 2016-01-20 泰科电子瑞侃有限公司 Self-writable waveguide for fiber connectors and related methods
WO2022264329A1 (en) * 2021-06-16 2022-12-22 日本電信電話株式会社 Optical connection structure and method for manufacturing same
WO2023079720A1 (en) * 2021-11-08 2023-05-11 日本電信電話株式会社 Optical element, optical integrated element, and method for manufacturing optical integrated element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258095A (en) * 2001-02-27 2002-09-11 Ibiden Co Ltd Method of forming optical waveguide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258095A (en) * 2001-02-27 2002-09-11 Ibiden Co Ltd Method of forming optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113890A (en) * 2011-11-25 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> Optical fiber coupling device and optical fiber coupling method
CN105264415A (en) * 2013-04-02 2016-01-20 泰科电子瑞侃有限公司 Self-writable waveguide for fiber connectors and related methods
WO2022264329A1 (en) * 2021-06-16 2022-12-22 日本電信電話株式会社 Optical connection structure and method for manufacturing same
WO2023079720A1 (en) * 2021-11-08 2023-05-11 日本電信電話株式会社 Optical element, optical integrated element, and method for manufacturing optical integrated element

Also Published As

Publication number Publication date
JP4642739B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
EP1810070B1 (en) Optical path with a beam shaper
US6823117B2 (en) Mode multiplexing optical coupling device
Vanmol et al. Mode-field matching down-tapers on single-mode optical fibers for edge coupling towards generic photonic integrated circuit platforms
JP4642739B2 (en) Optical component connection method
JP3032130B2 (en) Optical waveguide and method of manufacturing the same
JP2008152229A (en) Optical waveguide component and method for manufacturing optical waveguide component
Terasawa et al. Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling
JP2009003338A (en) Method of splicing optical fibre
US20230098658A1 (en) Multiple fiber connectivity based on 2-photon, 3d printed, tapered fiber tips
WO2018105712A1 (en) Spot size converter and manufacturing method therefor
US20230314700A1 (en) Optical fiber bundle structure, optical fiber connection structure, and optical fiber bundle structure manufacturing method
JP2009031559A (en) Method of splicing optical fibers
JP2007206309A (en) Method for splicing optical fiber
JP2007121503A (en) Method for splicing optical fibers
JP2023054292A (en) optical connection structure
JP2008191580A (en) Method of manufacturing optical coupling device, and method of manufacturing optical amplifier
JP4496319B2 (en) Optical waveguide and method for manufacturing the same
JP2009003337A (en) Method of splicing optical fibre
JP2023010588A (en) optical fiber with tapered core
JP2008046178A (en) Holder for connecting optical fiber and connecting method using the same
JP2007322628A (en) Method for splicing optical fiber
JP5035051B2 (en) Manufacturing method of self-forming optical waveguide
JP2005347441A (en) Optical module and manufacturing method thereof
JP2007206149A (en) Optical fiber connecting method and photocurable resin
JP2001242353A (en) Optical transmission module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees