JP2008191580A - Method of manufacturing optical coupling device, and method of manufacturing optical amplifier - Google Patents

Method of manufacturing optical coupling device, and method of manufacturing optical amplifier Download PDF

Info

Publication number
JP2008191580A
JP2008191580A JP2007028310A JP2007028310A JP2008191580A JP 2008191580 A JP2008191580 A JP 2008191580A JP 2007028310 A JP2007028310 A JP 2007028310A JP 2007028310 A JP2007028310 A JP 2007028310A JP 2008191580 A JP2008191580 A JP 2008191580A
Authority
JP
Japan
Prior art keywords
porous capillary
fiber
optical
coupling device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007028310A
Other languages
Japanese (ja)
Other versions
JP4805181B2 (en
Inventor
Hironori Tanaka
弘範 田中
Shoji Tanigawa
庄二 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007028310A priority Critical patent/JP4805181B2/en
Publication of JP2008191580A publication Critical patent/JP2008191580A/en
Application granted granted Critical
Publication of JP4805181B2 publication Critical patent/JP4805181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical coupling device, having low connection loss through fusion splicing a large diameter bridge fiber with a porous capillary, in which a plurality of optical fibers are inserted and integrated. <P>SOLUTION: A fused-quartz made porous capillary is prepared where a large number of holes for arraying optical fibers are drilled nearly in parallel, with an optical fiber inserted in each hole from one end of the porous capillary; the porous capillary is then heated to make it fuse/integrate with each of optical fibers; thereafter, the other end of the porous capillary is abutted against one end of the large diameter bridge fiber, with the contact part fusion spliced to obtain the optical coupling device. This manufacturing method of the optical coupling device is such that the porous capillary used therein is one with a dopant added for lowering the melting point, and that annealing is performed, when a heat source power is stopped, after the fusion/integration of the porous capillary and the large-diameter bridge fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数本の光ファイバが多孔キャピラリに挿入、一体化し、その先端と太径ブリッジファイバの一端とを融着接続して光結合デバイスを製造する光結合デバイスの製造方法、及び該光結合デバイスを用いた光増幅装置の製造方法に関する。この光結合デバイスを用いた光増幅装置としては、光ファイバアンプ、光ファイバレーザ等が挙げられる。   The present invention relates to a method of manufacturing an optical coupling device in which a plurality of optical fibers are inserted and integrated into a porous capillary, and an optical coupling device is manufactured by fusion splicing the tip and one end of a large-diameter bridge fiber, and the light The present invention relates to a method of manufacturing an optical amplifying apparatus using a coupling device. Examples of the optical amplifying apparatus using the optical coupling device include an optical fiber amplifier and an optical fiber laser.

本発明に係る光結合デバイスの製造方法のように、複数本の光ファイバが多孔キャピラリに挿入、一体化し、その先端と太径ブリッジファイバの一端とを融着接続して光結合デバイスを製造する方法において、融点を低下させるフッ素等をドーピングした石英ガラス製の多孔キャピラリを用いる技術、及びそれに類似した融着接続方法は、これまでに知られていない。ただし、融点の異なる光ファイバ同士を低損失で接続する従来技術として、例えば、特許文献1に開示された技術が提案されている。   As in the method for manufacturing an optical coupling device according to the present invention, a plurality of optical fibers are inserted and integrated into a porous capillary, and the tip and one end of a large-diameter bridge fiber are fusion-bonded to manufacture an optical coupling device. In the method, a technique using a porous capillary made of quartz glass doped with fluorine or the like that lowers the melting point, and a fusion splicing method similar thereto have not been known so far. However, as a conventional technique for connecting optical fibers having different melting points with low loss, for example, a technique disclosed in Patent Document 1 has been proposed.

特許文献1には、溶融温度が異なる異種の光ファイバを、両端面に貫通した挿入孔を有する融着チューブ内にそれぞれ挿入し、これらの挿入した異種の光ファイバの各端部を前記融着チューブ内の突き合わせ部で対向させ、前記融着チューブの外側近傍に設けた電極による主放電によって、前記異種の光ファイバの各端部を前記融着チューブの外側から融着チューブとともに加熱させて融着接続し、前記主放電の後に行う追加放電によって、前記融着接続された光ファイバの接続部を、前記異種の光ファイバのモードフィールド径が一致するように加熱させることを特徴とする光ファイバの接続方法が開示されている。
特開2001−174662号公報
In Patent Document 1, different types of optical fibers having different melting temperatures are respectively inserted into fusion tubes having insertion holes penetrating both end faces, and the ends of these inserted different types of optical fibers are fused. The ends of the different optical fibers are heated from the outside of the fusion tube together with the fusion tube by the main discharge by the electrodes provided at the butting portion in the tube and provided near the outside of the fusion tube. An optical fiber characterized in that the spliced optical fiber connection portion is heated so that the mode field diameters of the different optical fibers coincide with each other by additional discharge performed after the main discharge. A connection method is disclosed.
JP 2001-174661 A

特許文献1に開示された従来技術は、融点の異なるファイバ同士を高効率で接続することを目的として、細径孔にファイバを挿入して接続を行っている。しかしながら、本発明が解決しようとする課題は、複数本の光ファイバが多孔キャピラリに挿入、一体化し、その先端と太径ブリッジファイバとを融着接続して光結合デバイスを製造する方法において、融着接続損失の低減を図ることにあり、従って特許文献1に開示された従来技術の課題は、本発明の課題と全く異なっている。   The prior art disclosed in Patent Document 1 performs connection by inserting a fiber into a small-diameter hole for the purpose of connecting fibers having different melting points with high efficiency. However, the problem to be solved by the present invention is that a plurality of optical fibers are inserted and integrated into a porous capillary, and the tip and a large-diameter bridge fiber are fused and connected to manufacture an optical coupling device. Therefore, the problem of the prior art disclosed in Patent Document 1 is completely different from the problem of the present invention.

本発明は、前記事情に鑑みてなされ、複数本の光ファイバが挿入、一体化された多孔キャピラリと太径ブリッジファイバとを融着接続して、接続損失の低い光結合デバイスを製造する方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and is a method of manufacturing an optical coupling device having a low connection loss by fusion-bonding a porous capillary and a large-diameter bridge fiber into which a plurality of optical fibers are inserted and integrated. For the purpose of provision.

前記目的を達成するため、本発明は、光ファイバ整列用の多数の孔が略平行に穿設された石英ガラス製の多孔キャピラリを用意し、該多孔キャピラリの一端側からそれぞれの孔に光ファイバを挿入し、次いで該多孔キャピラリを加熱して多孔キャピラリと各光ファイバとを融着・一体化し、次いで、該多孔キャピラリの他端と太径ブリッジファイバの一端とを突き合わせ、該接触部分を融着接続して光結合デバイスを得る光結合デバイスの製造方法であって、前記多孔キャピラリとして、融点を降下させるドーパントを添加した多孔キャピラリを用い、且つ多孔キャピラリと太径ブリッジファイバとを融着・一体化した後の熱源パワー停止時に徐冷を行うことを特徴とする光結合デバイスの製造方法を提供する。   In order to achieve the above object, the present invention provides a porous capillary made of quartz glass in which a large number of holes for aligning optical fibers are formed substantially in parallel, and an optical fiber is inserted into each hole from one end side of the porous capillary. Next, the porous capillary and each optical fiber are fused and integrated by heating the porous capillary, and then the other end of the porous capillary and one end of the large-diameter bridge fiber are abutted to melt the contact portion. A method of manufacturing an optical coupling device for obtaining an optical coupling device by arrival and connection, wherein a porous capillary to which a dopant for lowering the melting point is added is used as the porous capillary, and the porous capillary and the large-diameter bridge fiber are fused. Provided is a method for manufacturing an optical coupling device, characterized in that annealing is performed when heat source power is stopped after integration.

本発明の光結合デバイスの製造方法において、前記多孔キャピラリに添加されるドーパントがフッ素であることが好ましい。   In the method for producing an optical coupling device of the present invention, it is preferable that the dopant added to the porous capillary is fluorine.

本発明の光結合デバイスの製造方法において、前記多孔キャピラリに挿入する光ファイバのクラッドが、純粋石英ガラスからなることが好ましい。   In the method for manufacturing an optical coupling device of the present invention, it is preferable that the clad of the optical fiber inserted into the porous capillary is made of pure silica glass.

本発明の光結合デバイスの製造方法において、前記多孔キャピラリと前記太径ブリッジファイバとを融着接続する際に、COレーザを用いて接触部を加熱することが好ましい。 In the method for manufacturing an optical coupling device of the present invention, it is preferable that the contact portion is heated using a CO 2 laser when the porous capillary and the large-diameter bridge fiber are fusion-connected.

本発明の光結合デバイスの製造方法において、前記多孔キャピラリの外径が700μm以上であることが好ましい。   In the manufacturing method of the optical coupling device of the present invention, it is preferable that the outer diameter of the porous capillary is 700 μm or more.

また本発明は、前述した本発明に係る光結合デバイスの製造方法を用い、前記多孔キャピラリに複数の励起光源及び信号光源の出力用光ファイバが接続された光結合デバイスを作製し、該光結合デバイスの太径ブリッジファイバの延伸・細径化された先端を、希土類添加ダブルクラッドファイバの一端に融着接続し、光増幅装置を得ることを特徴とする光増幅装置の製造方法を提供する。   Further, the present invention uses the above-described method for manufacturing an optical coupling device according to the present invention to produce an optical coupling device in which a plurality of excitation light sources and output optical fibers of a signal light source are connected to the porous capillary. Provided is a method for manufacturing an optical amplifying device, characterized in that an optical amplifying device is obtained by fusion-bonding a drawn and thinned tip of a large-diameter bridge fiber of a device to one end of a rare earth-doped double clad fiber.

本発明の製造方法によれば、ファイバ整列用の石英ガラス製多孔キャピラリにフッ素等の融点を降下させる働きのあるドーパントを添加し、且つこの多孔キャピラリと太径ブリッジファイバの接続後の熱源パワー停止時に徐冷を行うことにより、多孔キャピラリ硬化時の収縮によって発生する軸ずれ方向の力によって太径ブリッジファイバがずれることが無く、レーザ停止時の軸ずれが非常に小さく抑えられ、低損失の光結合デバイスを製造することができる。
また、多孔キャピラリが融け易くなり、太径ブリッジファイバとの接続点形状がなだらかな形状を形成し易くなったため、外部からの応力による破断が少なくなり、接続点の強度が増加し、高強度の光結合デバイスを製造することができる。
According to the manufacturing method of the present invention, a dopant having a function of lowering the melting point such as fluorine is added to a quartz glass porous capillary for fiber alignment, and the heat source power is stopped after the connection between the porous capillary and the large-diameter bridge fiber. Sometimes slow cooling prevents the large-diameter bridge fiber from shifting due to the force in the direction of the axis deviation caused by the shrinkage during the hardening of the porous capillary, and the axis deviation when the laser is stopped can be suppressed to a very low level. A coupling device can be manufactured.
In addition, since the porous capillary is easily melted and the shape of the connection point with the large-diameter bridge fiber is easy to form, the breakage due to external stress is reduced, the strength of the connection point is increased, and the high strength An optical coupling device can be manufactured.

以下、図面を参照して本発明の実施形態を説明する。
図1は、クラッドポンピング型の光増幅装置の一例を示す構成図である。この光増幅装置は、多数の励起光源3の出力用の光ファイバ2と信号光伝送用の光ファイバ4とが接続されたポンプコンバイナ1(光結合デバイス)と、該ポンプコンバイナ1の先端側に接続された希土類添加ダブルクラッドファイバ5と、その出力側に取り付けられたアイソレータ6とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram illustrating an example of a clad pumping type optical amplifying apparatus. This optical amplifying device includes a pump combiner 1 (optical coupling device) in which an optical fiber 2 for output of a large number of pumping light sources 3 and an optical fiber 4 for signal light transmission are connected, and a distal end side of the pump combiner 1. It comprises a rare earth-doped double clad fiber 5 and an isolator 6 attached to the output side.

希土類添加ダブルクラッドファイバは、コアに希土類イオンがドーピングされており、コアの周りに第1クラッドが設けられ、該第1クラッドの周りに第2クラッドが設けられ、第1クラッドに導波構造を持たせたことを特徴とするダブルクラッドファイバである。シングルモード伝播する信号光と、複数の励起光源3から出射するマルチモード光とポンプコンバイナ1により一本の希土類添加ダブルクラッドファイバ5へと結合する。信号光は希土類添加ダブルクラッドファイバ5のコアに、励起光は第1クラッドへと結合され、コアを横切る励起光のエネルギーを希土類イオンが吸収し、その誘導放出現象により信号光を増幅する構成となっている。   In the rare earth-doped double clad fiber, a core is doped with rare earth ions, a first clad is provided around the core, a second clad is provided around the first clad, and a waveguide structure is provided in the first clad. It is a double clad fiber characterized by having it. The single-mode signal light, the multi-mode light emitted from the plurality of pumping light sources 3 and the pump combiner 1 are coupled to a single rare earth-doped double clad fiber 5. The signal light is coupled to the core of the rare earth-doped double clad fiber 5, the excitation light is coupled to the first cladding, the rare earth ions absorb the energy of the excitation light crossing the core, and the signal light is amplified by the stimulated emission phenomenon. It has become.

このような光増幅装置では、励起光と信号光の高効率での結合がキーテクノロジーとなっており、その役割を果たすポンプコンバイナがキーデバイスとなっている。   In such an optical amplifying apparatus, the coupling of excitation light and signal light with high efficiency is a key technology, and a pump combiner that plays this role is a key device.

本出願人は、図2に示すような構造を有するポンプコンバイナ1を発明し、既に特許出願している(特願2005−225586)。このポンプコンバイナ1は、多孔キャピラリ7の孔内に光ファイバ2,4を挿入し、多孔キャピラリ7の外部から加熱溶融することで、孔を潰して光ファイバと多孔キャピラリとを一体化した後、その先端をブリッジファイバ8と接続した構成になっている。このポンプコンバイナ1により、複数の光ファイバをブリッジファイバ8へと一括融着接続できるだけでなく、多孔キャピラリ7を利用することで、各ファイバの断面形状の変形を抑え、低損失での結合が可能となる。   The present applicant has invented a pump combiner 1 having a structure as shown in FIG. 2 and has already filed a patent application (Japanese Patent Application No. 2005-225586). This pump combiner 1 inserts the optical fibers 2 and 4 into the holes of the porous capillary 7 and heats and melts them from the outside of the porous capillary 7 to collapse the holes and integrate the optical fiber and the porous capillary. The tip is connected to the bridge fiber 8. With this pump combiner 1, not only a plurality of optical fibers can be fused and connected to the bridge fiber 8 but also the use of the porous capillary 7 can suppress the deformation of the cross-sectional shape of each fiber and can be coupled with low loss. It becomes.

このポンプコンバイナ1の製造方法によれば、特性に優れたポンプコンバイナ1が得られる。しかし、その製造工程において多孔キャピラリ7とブリッジファイバ8との融着接続に高度な技術が要求されるため、その技術的な改良が望まれていた。前記の融着が難しい理由としては、多くの励起光を接続させるためにブリッジファイバ8の第1クラッド径が一般的に大きく、700〜1000μm程度となっていることが挙げられる。一般的な光ファイバの外径は、125μmで規格化されていることから考えても、ブリッジファイバ8の外径は桁違いに太いことがわかる。   According to the manufacturing method of this pump combiner 1, the pump combiner 1 excellent in the characteristic is obtained. However, since a high technology is required for fusion splicing between the porous capillary 7 and the bridge fiber 8 in the manufacturing process, the technical improvement has been desired. The reason why the fusion is difficult is that the first cladding diameter of the bridge fiber 8 is generally large and is about 700 to 1000 μm in order to connect many excitation lights. Considering that the outer diameter of a general optical fiber is standardized at 125 μm, it can be seen that the outer diameter of the bridge fiber 8 is extremely large.

信号光は、シングルモード伝播することから、コア径に制限(コアのモードフィールド径(以下、MFDと記す。)が大きくなると基本モード以外のモードも伝播してしまう)があり、使用する光の波長によって異なるが、通常はコア径6〜20μmの光ファイバが用いられる。そのようなシングルモードファイバとのMFDミスマッチによる接続ロスを低減させ、さらにシングルモード条件とクリアするためにも、ブリッジファイバのコア径も通常のシングルモードファイバと同等のコア径となってしまう。   Since signal light propagates in a single mode, there is a limit on the core diameter (when the mode field diameter of the core (hereinafter referred to as MFD) increases, modes other than the fundamental mode also propagate). Although it depends on the wavelength, an optical fiber having a core diameter of 6 to 20 μm is usually used. In order to reduce the connection loss due to MFD mismatch with such a single mode fiber and to satisfy the single mode condition, the core diameter of the bridge fiber becomes the same as that of a normal single mode fiber.

前記をまとめると、ブリッジファイバはコア径が6〜20μm、第1クラッド径が700〜1000μmと、太径クラッド細径コアを特徴としたファイバであると言える。対する多孔キャピラリ7も中央の孔に信号光伝播用シングルモードファイバを挿入し、周囲の孔に励起光伝播用のマルチモードファイバを挿入し一体化することから、クラッド径700〜1000μm、シングルモードのコア径6〜20μmの光ファイバと見なすことができ、前記多孔キャピラリ7と太径ブリッジファイバ8との融着接続となる。   In summary, the bridge fiber can be said to be a fiber characterized by a thick clad thin core with a core diameter of 6 to 20 μm and a first clad diameter of 700 to 1000 μm. On the other hand, since the single mode fiber for signal light propagation is inserted into the central hole and the multimode fiber for propagation of excitation light is inserted into the peripheral hole and integrated, the porous capillary 7 has a cladding diameter of 700 to 1000 μm and a single mode. It can be regarded as an optical fiber having a core diameter of 6 to 20 μm, and is a fusion spliced connection between the porous capillary 7 and the large diameter bridge fiber 8.

太径ブリッジファイバ8は、融着接続する際に溶融されなければならない量が多くなる。そのため、熱源から熱を与えている状態から熱源を停止した場合に、両ファイバ間の位置がずれやすくなり、ずれ量も大きくなってしまう問題がある。しかも、接続するファイバはコア径が細いため、両ファイバ間の軸ずれ量に対して接続損失の変化量が大きくなってしまう。そのため、太径クラッドの細径コアファイバは、低損失での融着接続が非常に難しいということがわかる。本発明は、この難しい接続を簡単にし、低損失での融着を実現することを目的とする。   The large-diameter bridge fiber 8 requires a large amount to be melted when fusion splicing. Therefore, when the heat source is stopped from the state where heat is applied from the heat source, there is a problem that the position between the two fibers is easily displaced and the amount of displacement is increased. In addition, since the fiber to be connected has a thin core diameter, the amount of change in connection loss becomes large with respect to the amount of axial deviation between the two fibers. Therefore, it can be seen that a thin core fiber with a thick clad is very difficult to fusion splice with low loss. The present invention aims to simplify this difficult connection and realize fusion with low loss.

本発明は、光ファイバ一体化後の多孔キャピラリ7の先端と太径ブリッジファイバ8との低損失接続を実現させるために、ファイバ整列用の多孔キャピラリとして、フッ素等の融点を降下させる働きのあるドーパントを添加した石英ガラスか2らなる多孔キャピラリ7を用いたことを特徴とする。多孔キャピラリ7におけるフッ素ドープ濃度は、0.5質量%以上の範囲が望ましく、1.2質量%以上の範囲が特に好ましい。融点を降下させた石英ガラスからなる多孔キャピラリ7に複数の励起光伝播用マルチモードファイバ、中心孔に信号光伝播用のシングルモードファイバをそれぞれ挿入し、加熱一体化する。挿入する光ファイバ2,4は、クラッドが純粋石英ガラスからなるものを使用することが望ましい。   The present invention serves to lower the melting point of fluorine or the like as a porous capillary for fiber alignment in order to realize a low-loss connection between the tip of the porous capillary 7 after integration of the optical fiber and the large-diameter bridge fiber 8. A porous capillary 7 made of quartz glass to which a dopant is added is used. The fluorine dope concentration in the porous capillary 7 is desirably in the range of 0.5% by mass or more, and particularly preferably in the range of 1.2% by mass or more. A plurality of excitation light propagation multimode fibers are inserted into a porous capillary 7 made of quartz glass having a lowered melting point, and a signal light propagation single mode fiber is inserted into a central hole, respectively, and integrated by heating. It is desirable to use optical fibers 2 and 4 to be inserted whose clad is made of pure quartz glass.

作製した多孔キャピラリ7は、一体化後の端面に占める挿入したファイバ部の面積が40%程度であり、断面積の半分以上が元々の多孔キャピラリ7によって占められている。多孔キャピラリ7と挿入した光ファイバ2,4の間での融点の差を形成することにより、多孔キャピラリ7の方が早く溶解するとともに、熱源停止時に遅く硬化する状態を作ることができる。   In the manufactured porous capillary 7, the area of the inserted fiber portion occupying the end face after integration is about 40%, and more than half of the cross-sectional area is occupied by the original porous capillary 7. By forming a difference in melting point between the porous capillary 7 and the inserted optical fibers 2 and 4, it is possible to make the porous capillary 7 dissolve faster and harden later when the heat source is stopped.

多孔キャピラリ7と太径ブリッジファイバ8とを融着接続する場合には、多孔キャピラリ7の中心に挿入したシングルモードファイバ(光ファイバ4)のコアと太径ブリッジファイバ7のコアとを調心し、両者の端面を近接させて太径ブリッジファイバ7を選択的にCOレーザで加熱する。加熱範囲を精密に位置決めできることと、熱源としてのパワーを得る為に、熱源にはCOレーザを用いることが望ましい。また、ファイバの曲がりを抑えるために、加熱範囲はファイバ長手方向に狭いことが望ましい。 When fusion-connecting the porous capillary 7 and the large-diameter bridge fiber 8, the core of the single-mode fiber (optical fiber 4) inserted into the center of the porous capillary 7 and the core of the large-diameter bridge fiber 7 are aligned. The large-diameter bridge fiber 7 is selectively heated with a CO 2 laser by bringing both end faces close to each other. In order to accurately position the heating range and to obtain power as a heat source, it is desirable to use a CO 2 laser as the heat source. In order to suppress the bending of the fiber, it is desirable that the heating range is narrow in the fiber longitudinal direction.

両者の端面が溶融したところで、端面を押し込み接続する。接続後、COレーザを停止するが、この時COレーザのDuty比を徐々に下げることにより徐冷を行うことを第2の特徴とする。このことにより、多孔キャピラリ7と太径ブリッジファイバ8との融点差を生かし、太径ブリッジファイバ8を硬化させた後に多孔キャピラリ8を硬化させる時間差を作ることができる。したがって、多孔キャピラリ硬化時には太径ブリッジファイバ8が既に硬化した後であり、多孔キャピラリ硬化時の収縮によって発生する軸ずれ方向の力によって太径ブリッジファイバがずれることが無く、レーザ停止時の軸ずれが非常に小さく抑えられる。その結果、低損失の光結合デバイスを製造することができる。 When both end faces are melted, the end faces are pushed in and connected. After the connection, the CO 2 laser is stopped. At this time, the second feature is that the cooling is performed by gradually decreasing the duty ratio of the CO 2 laser. This makes it possible to make a time difference in which the porous capillary 8 is cured after the thick bridge fiber 8 is cured by making use of the melting point difference between the porous capillary 7 and the large diameter bridge fiber 8. Therefore, when the porous capillary is cured, the large-diameter bridge fiber 8 is already cured, and the large-diameter bridge fiber is not displaced by the force in the axial deviation direction caused by the shrinkage at the time of curing the porous capillary. Is very small. As a result, a low-loss optical coupling device can be manufactured.

さらに、太径ブリッジファイバ8と多孔キャピラリ7との接続点において、多孔キャピラリの融点が降下されたことから、多孔キャピラリが融け易くなり、太径ブリッジファイバとの接続点形状がなだらかな形状を形成し易くなった。そのため外部からの応力による破断が少なくなり、接続点の強度が増加し、高強度の光結合デバイスを製造することができる。   Furthermore, since the melting point of the porous capillary is lowered at the connection point between the large-diameter bridge fiber 8 and the porous capillary 7, the porous capillary is easily melted, and the connection point shape with the large-diameter bridge fiber forms a gentle shape. It became easy to do. Therefore, breakage due to external stress is reduced, the strength of the connection point is increased, and a high-strength optical coupling device can be manufactured.

図2に示す光結合デバイスの製造方法において、多孔キャピラリ7にフッ素をドープした石英ガラスを用いたことによる、接続損失低減の効果を調べた。
図3は、クラッド径1mmコア径6μmの太径シングルモードファイバ(太径ブリッジファイバ)と、中心孔にシングルモードファイバを挿入し、周囲の孔にマルチモードファイバを挿入した多孔キャピラリとの接続実験の結果を、多孔キャピラリへのドーパントの有無毎にまとめたものである。フッ素ドープ濃度は1.2質量%とした。
In the manufacturing method of the optical coupling device shown in FIG. 2, the effect of reducing the connection loss due to the use of quartz glass doped with fluorine in the porous capillary 7 was examined.
Fig. 3 shows a connection experiment between a large diameter single mode fiber (thick diameter bridge fiber) with a clad diameter of 1 mm and a core diameter of 6 μm and a porous capillary with a single mode fiber inserted into the center hole and a multimode fiber inserted into the surrounding holes. The results are summarized for each of the presence or absence of a dopant in the porous capillary. The fluorine dope concentration was 1.2% by mass.

図3の結果から、フッ素をドープして融点を下げた石英ガラスからなる多孔キャピラリを用いることにより、得られる光結合デバイスの接続損失が低減されていることがわかる。   From the results of FIG. 3, it can be seen that the connection loss of the obtained optical coupling device is reduced by using a porous capillary made of quartz glass doped with fluorine to lower the melting point.

光増幅装置の構成を例示する構成図である。It is a block diagram which illustrates the structure of an optical amplifier. 本発明に係る光結合デバイスの製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the optical coupling device which concerns on this invention. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

符号の説明Explanation of symbols

1…ポンプコンバイナ(光結合デバイス)、2…光ファイバ、3…励起光源、4…光ファイバ、5…希土類添加ダブルクラッドファイバ、6…アイソレータ、7…多孔キャピラリ、8…太径ブリッジファイバ。   DESCRIPTION OF SYMBOLS 1 ... Pump combiner (optical coupling device), 2 ... Optical fiber, 3 ... Excitation light source, 4 ... Optical fiber, 5 ... Rare earth addition double clad fiber, 6 ... Isolator, 7 ... Porous capillary, 8 ... Thick diameter bridge fiber

Claims (6)

光ファイバ整列用の多数の孔が略平行に穿設された石英ガラス製の多孔キャピラリを用意し、該多孔キャピラリの一端側からそれぞれの孔に光ファイバを挿入し、次いで該多孔キャピラリを加熱して多孔キャピラリと各光ファイバとを融着・一体化し、次いで、該多孔キャピラリの他端と太径ブリッジファイバの一端とを突き合わせ、該接触部分を融着接続して光結合デバイスを得る光結合デバイスの製造方法であって、
前記多孔キャピラリとして、融点を降下させるドーパントを添加した多孔キャピラリを用い、且つ多孔キャピラリと太径ブリッジファイバとを融着・一体化した後の熱源パワー停止時に徐冷を行うことを特徴とする光結合デバイスの製造方法。
Prepare a porous capillary made of quartz glass in which a large number of holes for aligning optical fibers are drilled substantially in parallel, insert an optical fiber into each hole from one end of the porous capillary, and then heat the porous capillary The optical coupling is obtained by fusing and integrating the porous capillary and each optical fiber, then butting the other end of the porous capillary and one end of the large-diameter bridge fiber, and fusion-connecting the contact portions. A device manufacturing method comprising:
A light beam characterized in that a porous capillary to which a dopant that lowers the melting point is added is used as the porous capillary, and cooling is performed when the heat source power is stopped after the porous capillary and the large-diameter bridge fiber are fused and integrated. A method of manufacturing a coupling device.
前記多孔キャピラリに添加されるドーパントがフッ素であることを特徴とする請求項1に記載の光結合デバイスの製造方法。   2. The method of manufacturing an optical coupling device according to claim 1, wherein the dopant added to the porous capillary is fluorine. 前記多孔キャピラリに挿入する光ファイバのクラッドが、純粋石英ガラスからなることを特徴とする請求項2に記載の光結合デバイスの製造方法。   3. The method of manufacturing an optical coupling device according to claim 2, wherein the clad of the optical fiber inserted into the porous capillary is made of pure silica glass. 前記多孔キャピラリと前記太径ブリッジファイバとを融着接続する際に、COレーザを用いて接触部を加熱することを特徴とする請求項1〜3のいずれかに記載の光結合デバイスの製造方法。 When fusion splicing and the large-diameter bridge fiber and the porous capillary, manufacture of the optical coupling device according to any of claims 1 to 3, characterized in that heating the contact portion with the CO 2 laser Method. 前記多孔キャピラリの外径が700μm以上であることを特徴とする請求項1〜4のいずれかに記載の光結合デバイスの製造方法。   The method for manufacturing an optical coupling device according to claim 1, wherein an outer diameter of the porous capillary is 700 μm or more. 請求項1〜5のいずれかに記載の光結合デバイスの製造方法を用い、前記多孔キャピラリに複数の励起光源及び信号光源の出力用光ファイバが接続された光結合デバイスを作製し、該光結合デバイスの太径ブリッジファイバの延伸・細径化された先端を、希土類添加ダブルクラッドファイバの一端に融着接続し、光増幅装置を得ることを特徴とする光増幅装置の製造方法。   An optical coupling device in which a plurality of excitation light sources and output optical fibers of a signal light source are connected to the porous capillary using the method for manufacturing an optical coupling device according to claim 1, and the optical coupling is performed. A method of manufacturing an optical amplifying device, characterized in that an optical amplifying device is obtained by fusion-splicing a drawn and thinned tip of a large-diameter bridge fiber of a device to one end of a rare earth-doped double clad fiber.
JP2007028310A 2007-02-07 2007-02-07 Method for manufacturing optical coupling device and method for manufacturing optical amplification device Expired - Fee Related JP4805181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028310A JP4805181B2 (en) 2007-02-07 2007-02-07 Method for manufacturing optical coupling device and method for manufacturing optical amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028310A JP4805181B2 (en) 2007-02-07 2007-02-07 Method for manufacturing optical coupling device and method for manufacturing optical amplification device

Publications (2)

Publication Number Publication Date
JP2008191580A true JP2008191580A (en) 2008-08-21
JP4805181B2 JP4805181B2 (en) 2011-11-02

Family

ID=39751707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028310A Expired - Fee Related JP4805181B2 (en) 2007-02-07 2007-02-07 Method for manufacturing optical coupling device and method for manufacturing optical amplification device

Country Status (1)

Country Link
JP (1) JP4805181B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115275A1 (en) * 2010-03-19 2011-09-22 株式会社フジクラ Optical fiber amplifier, and fiber laser device using same
CN103383479A (en) * 2012-05-03 2013-11-06 福州高意通讯有限公司 High-power optical fiber head manufacturing method
CN109239847A (en) * 2018-09-29 2019-01-18 武汉锐科光纤激光技术股份有限公司 Optical-fiber bundling device and preparation method thereof
KR101984640B1 (en) * 2018-01-05 2019-05-31 휴센트주식회사 Apparatus of manufacturing optical fiber beam combiner and method of manufacturing the combiner
DE112017004440T5 (en) 2016-09-29 2019-06-27 Furukawa Electric Co., Ltd. Optical connection structure and optical module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738331A (en) * 1980-07-09 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for multicore fiber
JPS61201633A (en) * 1985-03-04 1986-09-06 Sumitomo Electric Ind Ltd Production of multicore optical fiber
JPH06174961A (en) * 1992-12-02 1994-06-24 Sumitomo Electric Ind Ltd Method for connecting optical fiber
JP2002207138A (en) * 2001-01-05 2002-07-26 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber element and optical fiber element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738331A (en) * 1980-07-09 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for multicore fiber
JPS61201633A (en) * 1985-03-04 1986-09-06 Sumitomo Electric Ind Ltd Production of multicore optical fiber
JPH06174961A (en) * 1992-12-02 1994-06-24 Sumitomo Electric Ind Ltd Method for connecting optical fiber
JP2002207138A (en) * 2001-01-05 2002-07-26 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber element and optical fiber element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115275A1 (en) * 2010-03-19 2011-09-22 株式会社フジクラ Optical fiber amplifier, and fiber laser device using same
CN102859814A (en) * 2010-03-19 2013-01-02 株式会社藤仓 Optical Fiber Amplifier, And Fiber Laser Device Using Same
JPWO2011115275A1 (en) * 2010-03-19 2013-07-04 株式会社フジクラ Optical fiber amplifier and fiber laser apparatus using the same
US8542710B2 (en) 2010-03-19 2013-09-24 Fujikura Ltd. Optical fiber amplifier and fiber laser apparatus using the same
CN103383479A (en) * 2012-05-03 2013-11-06 福州高意通讯有限公司 High-power optical fiber head manufacturing method
CN103383479B (en) * 2012-05-03 2015-01-28 福州高意通讯有限公司 High-power optical fiber head manufacturing method
DE112017004440T5 (en) 2016-09-29 2019-06-27 Furukawa Electric Co., Ltd. Optical connection structure and optical module
KR101984640B1 (en) * 2018-01-05 2019-05-31 휴센트주식회사 Apparatus of manufacturing optical fiber beam combiner and method of manufacturing the combiner
CN109239847A (en) * 2018-09-29 2019-01-18 武汉锐科光纤激光技术股份有限公司 Optical-fiber bundling device and preparation method thereof

Also Published As

Publication number Publication date
JP4805181B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5649973B2 (en) Optical coupling means to optical fiber and coupler manufacturing method
JP5421536B2 (en) Optical fiber bundle processing method
JP5421537B2 (en) Optical fiber manufacturing
JP3964454B2 (en) Photonic crystal fiber connection method
JP4866788B2 (en) Manufacturing method of fiber bundle
JP5565088B2 (en) Optical fiber coupler, fiber laser, and manufacturing method of optical fiber coupler
JP2008277582A (en) Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier
US9014522B2 (en) Optical couplers and methods for making same
US20080037939A1 (en) Splicing small core photonic crystal fibers and conventional single mode fiber
EP1980885B1 (en) Method for coupling an air-clad optical fibre to another optical fibre device, and optical pumping system
JP4805181B2 (en) Method for manufacturing optical coupling device and method for manufacturing optical amplification device
JP4571060B2 (en) Method for manufacturing holey fiber connection structure
JP2009271108A (en) Optical combiner, and method for manufacturing the same
CN110501782B (en) Low-loss and high-strength welding method for large-mode-field photonic crystal fiber
JP2008226886A (en) Optical pumping device, optical amplifier, fiber laser and multicore fiber for optical pumping devices, and method for fabricating the same
JP5293252B2 (en) Optical fiber coupler and fiber laser
JP2007165822A (en) Optical pumping device, optical amplifier, fiber laser, and multi-core fiber for optical pumping device
WO2006090002A1 (en) New fiber optic devices
JP2005070607A (en) Method and structure for splicing optical fiber
US11515682B2 (en) Incoherently combining lasers
CN116648646A (en) Optical fiber bundle structure, optical fiber connection structure, and method for manufacturing optical fiber bundle structure
JP5612802B2 (en) Pump combiner and optical amplifier
EP4012852A1 (en) Optical combiner, laser device, and method for manufacturing optical combiner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R151 Written notification of patent or utility model registration

Ref document number: 4805181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees