JP2009003338A - Method of splicing optical fibre - Google Patents

Method of splicing optical fibre Download PDF

Info

Publication number
JP2009003338A
JP2009003338A JP2007166170A JP2007166170A JP2009003338A JP 2009003338 A JP2009003338 A JP 2009003338A JP 2007166170 A JP2007166170 A JP 2007166170A JP 2007166170 A JP2007166170 A JP 2007166170A JP 2009003338 A JP2009003338 A JP 2009003338A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
curing
resin
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166170A
Other languages
Japanese (ja)
Inventor
Masaki Wake
正樹 和氣
Kazuyuki Shiraki
和之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007166170A priority Critical patent/JP2009003338A/en
Publication of JP2009003338A publication Critical patent/JP2009003338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: a usable raw material is restricted due to compatibility with resins in a hybrid resin produced by mixing a photocurable resin for forming a core part with a photocurable resin for forming a clad part, thereby causing cloudiness with passage of time. <P>SOLUTION: A method of splicing optical fibers includes: arranging the optical fibers 1, 2 to be spliced so as to substantially face a gap; filling a part between one-ends of optical fibers 1, 2 with the curable resin 11 blended with a photoinitiator and a heat polymerization initiator; curing the curable resin 11 by making light of curing start wavelength of the curable resin 11 through the optical fiber 2 from a light source 5 for curing the core part on the curable resin 11 to form the core part 13; adding heat required for heat curing on an entire non-curing part of the curing resin 11 by a heat source 12; and curing the non-curing part with reaction of the heat polymerization initiator in the non-cured curable resin 11 with a main material of the resin to form the clad part 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ファイバ通信ネットワークを構築する際に有用な、光ファイバ同士もしくは光ファイバと光部品との接続方法に関するものである。   The present invention relates to a connection method between optical fibers or between optical fibers and optical components, which is useful when constructing an optical fiber communication network.

近年、多数のユーザに繋がるアクセス系通信ネットワークへの光ファイバ網の導入展開(FTTH:Fiber To The Home)とともに、Ethernet(登録商標)に代表される光LAN技術の進展に伴い、ユーザ自身が構築するユーザ系通信ネットワークへの光ファイバ網の導入も大きな広がりを見せている。これらの領域では、1.3ミクロン帯零分散シングルモード光ファイバ(SMF)、マルチモード光ファイバ(MMF)、プラスチック光ファイバ(POF)等の光ファイバが用いられるが、これらの光ファイバの接続工事の需要が急激に増加している。また、安価な光伝送システムを構築するために、光ファイバと光源や光波長フィルタ等の光部品との接続技術の経済化も課題となっている。   In recent years, along with the development of optical LAN technology represented by Ethernet (registered trademark) along with the introduction and deployment of optical fiber networks (FTTH: Fiber To The Home) in access communication networks connected to many users, users themselves have built The introduction of optical fiber networks to user-related communication networks is also expanding greatly. In these areas, 1.3 micron band zero-dispersion single mode optical fiber (SMF), multimode optical fiber (MMF), plastic optical fiber (POF), and other optical fibers are used. The demand for is increasing rapidly. In addition, in order to construct an inexpensive optical transmission system, it is also an issue to economically connect technologies between optical fibers and optical components such as light sources and optical wavelength filters.

従来、光ファイバ同士の接続には、各種の光コネクタやメカニカルスプライス技術が用いられ、また、光ファイバと光部品との接続には、レンズ系による調心を用いた接続技術が用いられてきた。しかし、上記の背景を反映して、より簡易で調心を不要化できる経済的な光接続技術の侯補として、自己形成光導波路技術に注目が集まってきている。   Conventionally, various optical connectors and mechanical splicing techniques have been used to connect optical fibers, and connection techniques using alignment by lens systems have been used to connect optical fibers and optical components. . However, reflecting the above background, self-forming optical waveguide technology has been attracting attention as a supplement to an economical optical connection technology that can be simplified and eliminates the need for alignment.

自己形成光導波路接続とは、接続しようとする光ファイバの一端同士の間、もしくは接続しようとする光ファイバの一端と光部品との間に、硬化後の屈折率が異なるコア部形成用の第1の硬化性樹脂およびクラッド部形成用の第2の硬化性樹脂によるコア部およびクラッド部を形成して簡易な光接続を可能とするものである。   Self-forming optical waveguide connection is a process for forming a core part having a different refractive index after curing between one end of optical fibers to be connected or between one end of an optical fiber to be connected and an optical component. The core portion and the clad portion are formed by the first curable resin and the second curable resin for forming the clad portion, thereby enabling simple optical connection.

図1は自己形成光導波路接続技術を適用して光ファイバ同士を接続する場合の例を示すもので、まず、同図(a)に示すように、所定の間隙を隔てて対向させた光ファイバ1,2の一端同士の間に、コア部形成用の第1の光硬化性樹脂およびクラッド部形成用の第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)3もしくはコア部形成用の第1の光硬化性樹脂(の溶液)4を充填し、少なくとも一方の光ファイバの他端、ここでは光ファイバ2の他端にコア部硬化用光源5からの第1の光硬化性樹脂の硬化開始波長の光を入射する。前記光は光ファイバ2を伝搬し、その一端から前記ハイブリッド樹脂3又は樹脂4中に出射されるが、第1の光硬化性樹脂は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、同図(b)に示すように、光ファイバ1,2のコア同士を接続する導波路(コア部)6となる。次に、コア部6の形成を確認した後、ハイブリッド樹脂3を用いた場合はそのまま、また、樹脂4を用いた場合は光ファイバ1,2の一端同士の間から当該樹脂4を除去するとともにクラッド部形成用の第2の光硬化性樹脂(の溶液)7を充填した後、同図(c)に示すように、前記形成されたコア部6の周囲にクラッド部硬化用光源8からの第2の光硬化性樹脂の硬化開始波長の光を照射することで第2の光硬化性樹脂を硬化させ、クラッド部9を形成する。   FIG. 1 shows an example of connecting optical fibers by applying a self-forming optical waveguide connection technique. First, as shown in FIG. 1 (a), optical fibers opposed to each other with a predetermined gap therebetween. A mixed solution (hybrid resin) 3 of the first photocurable resin for forming the core part and the second photocurable resin for forming the clad part, or the first part for forming the core part 1 photo-curing resin (solution) 4 is filled, and the other end of at least one of the optical fibers, here the other end of the optical fiber 2, is cured of the first photo-curing resin from the core portion curing light source 5. A light having a start wavelength is incident. The light propagates through the optical fiber 2 and is emitted from one end thereof into the hybrid resin 3 or resin 4. The first photo-curing resin cures the portion irradiated with the light and increases its refractive index. Therefore, this hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, a waveguide (core portion) 6 for connecting the cores of the optical fibers 1 and 2 as shown in FIG. It becomes. Next, after confirming the formation of the core portion 6, the hybrid resin 3 is used as it is, and when the resin 4 is used, the resin 4 is removed from between one ends of the optical fibers 1 and 2. After filling the second photo-curing resin (solution) 7 for forming the clad portion, as shown in FIG. 2C, the clad portion curing light source 8 is provided around the formed core portion 6. The clad portion 9 is formed by curing the second photocurable resin by irradiating light having a curing start wavelength of the second photocurable resin.

また、図2は自己形成光導波路接続技術を適用して光ファイバと光部品とを接続する場合の例を示すもので、まず、同図(a)に示すように、所定の間隙を隔てて対向させた光ファイバ2の一端と光部品10との間に、コア部形成用の第1の光硬化性樹脂およびクラッド部形成用の第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)3もしくはコア部形成用の第1の光硬化性樹脂(の溶液)4を充填し、光ファイバ2の他端にコア部硬化用光源5からの第1の光硬化性樹脂の硬化開始波長の光を入射する。前記光は光ファイバ2を伝搬し、その一端から前記ハイブリッド樹脂3又は樹脂4中に出射されるが、第1の光硬化性樹脂は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、同図(b)に示すように、光ファイバ2および光部品10のコア同士を接続する導波路(コア部)6となる。次に、コア部6の形成を確認した後、ハイブリッド樹脂3を用いた場合はそのまま、また、樹脂4を用いた場合は光ファイバ2の一端と光部品10との間から当該樹脂4を除去するとともにクラッド部形成用の第2の光硬化性樹脂(の溶液)7を充填した後、同図(c)に示すように、前記形成されたコア部6の周囲にクラッド部硬化用光源8からの第2の光硬化性樹脂の硬化開始波長の光を照射することで第2の光硬化性樹脂を硬化させ、クラッド部9を形成する。   FIG. 2 shows an example in which an optical fiber and an optical component are connected by applying a self-forming optical waveguide connection technique. First, as shown in FIG. A mixed solution (hybrid resin) 3 of the first photocurable resin for forming the core part and the second photocurable resin for forming the clad part between one end of the optical fiber 2 and the optical component 10 opposed to each other. Or the 1st photocurable resin (solution) 4 for core part formation is filled, and the light of the hardening start wavelength of the 1st photocurable resin from the light source 5 for core part hardening to the other end of the optical fiber 2 Is incident. The light propagates through the optical fiber 2 and is emitted from one end thereof into the hybrid resin 3 or resin 4. The first photo-curing resin cures the portion irradiated with the light and increases its refractive index. Therefore, this hardened portion constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, the waveguide (core portion) that connects the optical fiber 2 and the core of the optical component 10 as shown in FIG. ) 6. Next, after confirming the formation of the core portion 6, the resin 4 is removed as it is when the hybrid resin 3 is used, and when the resin 4 is used, the resin 4 is removed from between one end of the optical fiber 2 and the optical component 10. At the same time, after filling the second photo-curable resin (solution) 7 for forming the clad part, as shown in FIG. The second photo-curing resin is cured by irradiating light having a curing start wavelength of the second photo-curing resin from, thereby forming the clad portion 9.

前述した接続に用いられる光硬化性樹脂は、硬化時に架橋することによって導波路となるオリゴマー等の主材、入射光によって主材が硬化を開始するためのラジカルの発生やイオンを放出する光重合開始剤、粘度調整のためのモノマーやその他の添加剤等から構成されている。特に、ラジカルにより硬化する光硬化性樹脂はラジカル硬化性樹脂、陽イオンにより硬化する樹脂はカチオン硬化性樹脂、陰イオンにより硬化する樹脂はアニオン硬化性樹脂と呼称される。
特許第3444352号公報
The photo-curing resin used for the connection described above is a main material such as an oligomer that becomes a waveguide by cross-linking at the time of curing, photopolymerization that generates radicals and ions to start curing by the incident light. It is comprised from the initiator, the monomer for viscosity adjustment, other additives, etc. In particular, a photocurable resin that is cured by radicals is called a radical curable resin, a resin that is cured by cations is called a cationic curable resin, and a resin that is cured by anions is called an anion curable resin.
Japanese Patent No. 3444352

従来、自己形成光導波路技術において用いる樹脂は、コア部形成用およびクラッド部形成用の光硬化性樹脂を混合させ、一液化(ハイブリッド化)させて用いていた(特許文献1参照)。しかし、一液化するためには樹脂同士の相溶性が良好である必要があり、樹脂原料の選定時点で使用可能な原料が限られるという問題があった。また、相溶性が良好な樹脂同士であっても、一液化の後、経時に伴って白濁化を起こす可能性が非常に高いという問題があった。   Conventionally, a resin used in the self-forming optical waveguide technology has been used by mixing a photocurable resin for forming a core part and a clad part into one liquid (hybridization) (see Patent Document 1). However, in order to make a single solution, it is necessary that the compatibility between the resins is good, and there is a problem that the raw materials that can be used at the time of selection of the resin raw materials are limited. Moreover, even if it was resin with favorable compatibility, there existed a problem that possibility that white turbidity would be caused with the passage of time after one liquid was made.

本発明では、前述した問題を解決するために、光ファイバ同士もしくは光ファイバと光部品との簡易な接続を自己形成光導波路技術によって行う際に、接続を行う間隙に光重合開始剤および熱重合開始剤を配合した硬化性樹脂を充填し、当該樹脂の硬化開始波長の光を入射してコア部を形成した後、未硬化樹脂に熱を加えて硬化させ、クラッド部を形成する。この時、光により硬化した部分は熱により硬化した部分と比べて架橋密度が高いため屈折率がより高くなり、コアの役割を果たすことができる。同様に熱により硬化した部分は低屈折率のクラッドとしての機能を有する。   In the present invention, in order to solve the above-described problems, when a simple connection between optical fibers or between an optical fiber and an optical component is performed by a self-forming optical waveguide technology, a photopolymerization initiator and a thermal polymerization are formed in a gap for connection. A curable resin blended with an initiator is filled, and light having a curing start wavelength of the resin is incident to form a core portion. Then, heat is applied to the uncured resin to cure the clad portion. At this time, the portion cured by light has a higher cross-linking density than the portion cured by heat, and therefore has a higher refractive index and can serve as a core. Similarly, the portion cured by heat has a function as a low refractive index cladding.

光硬化と熱硬化とによって比屈折率差ができる理由としては、光硬化においては光エネルギーが光重合開始剤に有効に働き、ラジカルおよびイオンの発生が効率良く誘起され、樹脂材料同士の重合反応が効率良く起こるため、図3(a)に示すように架橋密度が高まり、硬化時の屈折率が高くなり、一方、熱硬化による重合反応では、光硬化に比べて相対的にラジカルおよびイオンの発生の効率が低くなるため、図3(b)に示すように架橋密度が低くなり、光硬化に比べて屈折率も低くなるからである。   The reason for the difference in relative refractive index between photocuring and thermal curing is that in photocuring, light energy effectively acts on the photopolymerization initiator, and the generation of radicals and ions is induced efficiently, and the polymerization reaction between resin materials. As shown in FIG. 3 (a), the crosslinking density is increased and the refractive index during curing is increased. On the other hand, in the polymerization reaction by thermal curing, radicals and ions are relatively compared with those of photocuring. This is because the generation efficiency is low, and as shown in FIG. 3B, the crosslink density is low, and the refractive index is low as compared with photocuring.

本発明によれば、光ファイバ同士もしくは光ファイバと光部品との自己形成光導波路技術による接続を効率化し、前述した従来の自己形成光導波路技術に用いる樹脂の課題を大幅に緩和することが可能となる。   According to the present invention, it is possible to efficiently connect the optical fibers or between the optical fiber and the optical component by the self-forming optical waveguide technology, and to greatly alleviate the problems of the resin used in the conventional self-forming optical waveguide technology described above. It becomes.

具体的には、ハイブリッド樹脂を用いる場合における樹脂同士の相溶性と一液化後の経時に伴う白濁化の問題について、本発明で用いる樹脂においては、硬化性樹脂の主材と微量成分である重合開始剤との相溶性を良好にすれば良く、ハイブリッド樹脂で問題になる樹脂の主材同士を混合した際に比べて、相溶性の向上および白濁化の緩和ははるかに容易で、樹脂組成の選択肢の幅を広げることが可能になる。   Specifically, regarding the compatibility between resins in the case of using a hybrid resin and the problem of white turbidity with the lapse of time after one solution, in the resin used in the present invention, polymerization is a main component and a trace component of the curable resin. The compatibility with the initiator should be good, and compared with the case where the main components of the resin, which is a problem with the hybrid resin, are mixed together, it is much easier to improve the compatibility and mitigate whitening. It is possible to expand the range of options.

<第1の実施の形態>
図4は本発明の光ファイバの接続方法の第1の実施の形態、ここでは光ファイバ同士を接続する場合の例を示すもので、図中、1,2は光ファイバ、5はコア部硬化用光源、11は光硬化開始剤(光重合開始剤)および熱硬化開始剤(熱重合開始剤)を配合した硬化性樹脂(の溶液)、12は熱源である。
<First Embodiment>
FIG. 4 shows a first embodiment of a method for connecting optical fibers according to the present invention, in this case an example in which optical fibers are connected to each other. A light source for use, 11 is a curable resin (solution) in which a photocuring initiator (photopolymerization initiator) and a thermosetting initiator (thermal polymerization initiator) are blended, and 12 is a heat source.

光ファイバ1,2としては、POF,MMF,SMF等が挙げられるが、これに限定されず、1.55μm帯分散シフトファイバ(DSF)、分散補償光ファイバ(DCF)、フォトニック結晶光ファイバ(PCF)、空孔アシスト型光ファイバ(HAF)等についても適用することができる。   Examples of the optical fibers 1 and 2 include POF, MMF, and SMF. However, the optical fibers 1 and 2 are not limited thereto, and are 1.55 μm band dispersion shifted fiber (DSF), dispersion compensating optical fiber (DCF), and photonic crystal optical fiber ( (PCF), hole-assisted optical fiber (HAF), and the like can also be applied.

最初に、硬化後の比屈折率差および硬化開始波長(反応波長)をそれぞれ調整した、光重合開始剤および熱重合開始剤を配合した硬化性樹脂11を用意する。   First, a curable resin 11 containing a photopolymerization initiator and a thermal polymerization initiator, in which the relative refractive index difference after curing and the curing start wavelength (reaction wavelength) are adjusted, is prepared.

ここで述べる硬化後の比屈折率差の調整とは、光硬化および熱硬化が完了した後のコア部とクラッド部との比屈折率差を調整することを指す。具体的な調整方法としては、例えば、ゲルマニウム等を添加すると樹脂全体の屈折率を上昇させ、フッ素を添加すると樹脂全体の屈折率を低下させることが可能である。さらに、重合開始剤の種類や配合量等に依存して比屈折率差は変化させることが可能である。また、硬化開始波長の調整とは、コア部硬化用光源5からの光によって前記硬化性樹脂11が硬化反応を開始するように、樹脂(の主材)、各重合開始剤および光源の波長を選択することを指す。   The adjustment of the relative refractive index difference after curing described here refers to adjusting the relative refractive index difference between the core portion and the cladding portion after the photocuring and thermal curing are completed. As a specific adjustment method, for example, adding germanium or the like can increase the refractive index of the entire resin, and adding fluorine can decrease the refractive index of the entire resin. Further, the relative refractive index difference can be changed depending on the type and blending amount of the polymerization initiator. The adjustment of the curing start wavelength means that the wavelength of the resin (main material), each polymerization initiator, and the light source is set so that the curable resin 11 starts a curing reaction by light from the light source 5 for curing the core part. Refers to making a choice.

光硬化と熱硬化とによって比屈折率差ができる理由としては、光硬化においては光エネルギーが光重合開始剤に有効に働き、ラジカルおよびイオンの発生が効率良く誘起され、樹脂材料同士の重合反応が効率良く起こるため、図3(a)に示すように架橋密度が高まり、硬化時の屈折率が高くなり、一方、熱硬化による重合反応では、光硬化に比べて相対的にラジカルおよびイオンの発生の効率が低くなるため、図3(b)に示すように架橋密度が低くなり、光硬化に比べて屈折率も低くなるからである。   The reason for the difference in relative refractive index between photocuring and thermal curing is that in photocuring, light energy effectively acts on the photopolymerization initiator, and the generation of radicals and ions is induced efficiently, and the polymerization reaction between resin materials. As shown in FIG. 3 (a), the crosslinking density is increased and the refractive index during curing is increased. On the other hand, in the polymerization reaction by thermal curing, radicals and ions are relatively compared with those of photocuring. This is because the generation efficiency is low, and as shown in FIG. 3B, the crosslink density is low, and the refractive index is low as compared with photocuring.

以下、本実施の形態における光ファイバ同士の接続工程を説明する。   Hereinafter, the connection process between the optical fibers in the present embodiment will be described.

まず、図4(a)に示すように、各光ファイバ1,2を、それぞれの接続すべき一端が所定の間隙を隔てて略対向するように配置するとともに、光ファイバ1,2の少なくとも一方、ここでは光ファイバ2の他端にコア部硬化用光源5を接続する。   First, as shown in FIG. 4A, the optical fibers 1 and 2 are arranged so that one ends to be connected are substantially opposed to each other with a predetermined gap therebetween, and at least one of the optical fibers 1 and 2 is disposed. Here, the core portion curing light source 5 is connected to the other end of the optical fiber 2.

この時の各光ファイバの詳細な配置としては、光源5を光ファイバの一方のみに接続するか、両方に接続するかによって2通りの配置が考えられる。   As the detailed arrangement of each optical fiber at this time, two arrangements can be considered depending on whether the light source 5 is connected to only one of the optical fibers or both.

即ち、光ファイバの一方のみに光源5を接続する場合は、間隙を隔ててそれぞれの中心軸が一致するように配置する必要がある(第1の配置)。また、光ファイバの両方に光源5を接続する場合は、中心軸を必ずしも一致させて配置せず、自己形成導波路技術における「光はんだ効果」によって、ある程度の軸ずれがあった場合においても低損失で接続が可能になるという作用を用いる(第2の配置)。しかし、より低損失で接続するためには、各光ファイバの両方に光源を接続した場合でも中心軸を一致させて接続を行うことが望ましい。   That is, when the light source 5 is connected to only one of the optical fibers, it is necessary to dispose the central axes so as to coincide with each other with a gap (first arrangement). In addition, when the light source 5 is connected to both optical fibers, the central axes are not necessarily aligned, and even when there is a certain degree of axial displacement due to the “photo soldering effect” in the self-forming waveguide technology. The effect of enabling connection with loss is used (second arrangement). However, in order to connect with lower loss, it is desirable to connect with the central axes aligned even when a light source is connected to both optical fibers.

なお、各光ファイバ1,2は図示しない保持手段、例えばV溝を有する支持台とこの台にファイバを固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した各光ファイバ間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、各光ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   Each optical fiber 1 and 2 is held by a holding means (not shown), for example, a holding base comprising a support base having a V-groove and a pressing plate for fixing the fiber to this base, and the above-described arrangement relationship is maintained until the end of the connection work. Shall be maintained. Moreover, the relationship of the central axis between each optical fiber mentioned above should just be maintained in the vicinity of one end which should be connected, and it does not need to be in such a relationship in the whole length of each optical fiber. Needless to say, this point is common to all embodiments of the present invention.

次に、光ファイバ1,2の一端同士の端面間に前記光重合開始剤および熱重合開始剤を配合した硬化性樹脂11を充填し、光ファイバ2の他端に接続した光源5を動作させ、該他端から前記硬化性樹脂11の硬化開始波長に対応する波長の光を入射する。すると、光ファイバ2の一端から前記波長の光が硬化性樹脂11中に出射されるが、硬化性樹脂11は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、図4(b)に示すように、光ファイバ1,2のコア同士を接続する導波路(コア部)13となる。   Next, the curable resin 11 containing the photopolymerization initiator and the thermal polymerization initiator is filled between the end faces of the optical fibers 1 and 2 and the light source 5 connected to the other end of the optical fiber 2 is operated. Then, light having a wavelength corresponding to the curing start wavelength of the curable resin 11 is incident from the other end. Then, the light having the wavelength is emitted from one end of the optical fiber 2 into the curable resin 11, and the curable resin 11 is cured at a portion irradiated with the light and its refractive index is increased. Constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, as shown in FIG. 4B, a waveguide (core portion) 13 that connects the cores of the optical fibers 1 and 2 is connected. It becomes.

なお、各光ファイバ1,2の端面間に硬化性樹脂11を充填する具体的な方法としては、例えば、前述した保持手段を構成する支持台の各光ファイバ1,2の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に硬化性樹脂11を滴下すれば良い。   In addition, as a specific method of filling the curable resin 11 between the end faces of the optical fibers 1 and 2, for example, one ends of the optical fibers 1 and 2 of the support base constituting the holding unit described above face each other. A depression for storing the liquid is provided at the position, and the curable resin 11 may be dropped into the depression.

次に、光ファイバ1,2の端面間にコア部13が確実に形成されていることを確認した後、熱源12により硬化性樹脂11の未硬化部分全体に熱硬化に必要な量の熱を加える。すると、未硬化の硬化性樹脂11中の熱重合開始剤が同樹脂11中の樹脂の主材と反応を起こして硬化し、図4(c)に示すように、クラッド部14を形成する。   Next, after confirming that the core portion 13 is reliably formed between the end faces of the optical fibers 1 and 2, the heat source 12 applies an amount of heat necessary for thermosetting to the entire uncured portion of the curable resin 11. Add. Then, the thermal polymerization initiator in the uncured curable resin 11 reacts with the main material of the resin in the resin 11 and cures to form the clad portion 14 as shown in FIG.

以上より、光硬化した部分がコア部となり、熱硬化した部分がクラッド部となる導波路を形成することができる。   From the above, it is possible to form a waveguide in which the photocured portion becomes the core portion and the thermocured portion becomes the clad portion.

<第2の実施の形態>
図5は本発明の光ファイバの接続方法の第2の実施の形態、ここでは光ファイバと光部品とを接続する場合の例を示すもので、図中、2は光ファイバ、5はコア部硬化用光源、10は光部品、11は光硬化開始剤(光重合開始剤)および熱硬化開始剤(熱重合開始剤)を配合した硬化性樹脂(の溶液)、12は熱源である。
<Second Embodiment>
FIG. 5 shows a second embodiment of an optical fiber connection method according to the present invention, in this case, an example in which an optical fiber and an optical component are connected. In the figure, 2 is an optical fiber, and 5 is a core portion. A light source for curing, 10 is an optical component, 11 is a curable resin (solution) in which a photocuring initiator (photopolymerization initiator) and a thermosetting initiator (thermal polymerization initiator) are blended, and 12 is a heat source.

光部品10としては、半導体レーザ等の発光素子や各種の受光素子が挙げられるが、これに限定されず、石英系プレーナ光波回路(PLC)等の光回路素子についても適用することができる。   Examples of the optical component 10 include a light emitting element such as a semiconductor laser and various light receiving elements. However, the optical component 10 is not limited to this, and can also be applied to an optical circuit element such as a quartz-based planar lightwave circuit (PLC).

最初に、硬化後の比屈折率差および硬化開始波長(反応波長)をそれぞれ調整した、光重合開始剤および熱重合開始剤を配合した硬化性樹脂11を用意する。   First, a curable resin 11 containing a photopolymerization initiator and a thermal polymerization initiator, in which the relative refractive index difference after curing and the curing start wavelength (reaction wavelength) are adjusted, is prepared.

ここで述べる硬化後の比屈折率差の調整とは、光硬化および熱硬化が完了した後のコア部とクラッド部との比屈折率差を調整することを指す。具体的な調整方法としては、例えば、ゲルマニウム等を添加すると樹脂全体の屈折率を上昇させ、フッ素を添加すると樹脂全体の屈折率を低下させることが可能である。さらに、重合開始剤の種類や配合量等に依存して比屈折率差は変化させることが可能である。また、硬化開始波長の調整とは、コア部硬化用光源5からの光によって前記硬化性樹脂11が硬化反床を開始するように、樹脂(の主材)、各重合開始剤および光源の波長を選択することを指す。   The adjustment of the relative refractive index difference after curing described here refers to adjusting the relative refractive index difference between the core portion and the cladding portion after the photocuring and thermal curing are completed. As a specific adjustment method, for example, adding germanium or the like can increase the refractive index of the entire resin, and adding fluorine can decrease the refractive index of the entire resin. Further, the relative refractive index difference can be changed depending on the type and blending amount of the polymerization initiator. The adjustment of the curing start wavelength refers to the wavelength of the resin (the main material), each polymerization initiator, and the light source so that the curable resin 11 starts the curing reaction by the light from the light source 5 for curing the core part. Refers to selecting.

光硬化と熱硬化とによって比屈折率差ができる理由としては、光硬化においては光エネルギーが光重合開始剤に有効に働き、ラジカルおよびイオンの発生が効率良く誘起され、樹脂材料同士の重合反応が効率良く起こるため、図3(a)に示すように架橋密度が高まり、硬化時の屈折率が高くなり、一方、熱硬化による重合反応では、光硬化に比べて相対的にラジカルおよびイオンの発生の効率が低くなるため、図3(b)に示すように架橋密度が低くなり、光硬化に比べて屈折率も低くなるからである。   The reason for the difference in relative refractive index between photocuring and thermal curing is that in photocuring, light energy effectively acts on the photopolymerization initiator, and the generation of radicals and ions is induced efficiently, and the polymerization reaction between resin materials. As shown in FIG. 3 (a), the crosslinking density is increased and the refractive index during curing is increased. On the other hand, in the polymerization reaction by thermal curing, radicals and ions are relatively compared with those of photocuring. This is because the generation efficiency is low, and as shown in FIG. 3B, the crosslink density is low, and the refractive index is low as compared with photocuring.

以下、本実施の形態における光ファイバと光部品との接続工程を説明する。   Hereinafter, a connection process between the optical fiber and the optical component in the present embodiment will be described.

まず、図5(a)に示すように、光ファイバ2および光部品10を、光ファイバ2の一端と光部品10の接続すべき一端とが間隙を隔てて略対向するように配置するとともに、光ファイバ2および光部品10の少なくとも一方、ここでは光ファイバ2の他端に光源5を接続する。なお、光部品10の他端に光源5を接続できるのは、当該光部品10がPLCのような光回路素子であって、光源5からの光が一端と他端との間を透過可能な場合のみに限られる。   First, as shown in FIG. 5A, the optical fiber 2 and the optical component 10 are arranged so that one end of the optical fiber 2 and one end to be connected to the optical component 10 are substantially opposed to each other with a gap therebetween. The light source 5 is connected to at least one of the optical fiber 2 and the optical component 10, here the other end of the optical fiber 2. The light source 5 can be connected to the other end of the optical component 10 because the optical component 10 is an optical circuit element such as a PLC, and light from the light source 5 can be transmitted between one end and the other end. Limited to cases only.

この時の光ファイバおよび光部品の詳細な配置としては、光源5を光ファイバのみに接続するか、光ファイバおよび光部品の両方に接続するかによって2通りの配置が考えられる。   As the detailed arrangement of the optical fiber and the optical component at this time, there are two possible arrangements depending on whether the light source 5 is connected only to the optical fiber or to both the optical fiber and the optical component.

即ち、光ファイバのみに光源5を接続する場合は、間隙を隔ててその中心軸が一致するように配置する必要がある(第1の配置)。また、光ファイバおよび光部品の両方に光源5を接続する場合は、中心軸を必ずしも一致させて配置せず、自己形成導波路技術における「光はんだ効果」によって、ある程度の軸ずれがあった場合においても低損失で接続が可能になるという作用を用いる(第2の配置)。しかし、より低損失で接続するためには、光ファイバおよび光部品の両方に光源を接続した場合でも中心軸を一致させて接続を行うことが望ましい。   That is, when the light source 5 is connected only to the optical fiber, it is necessary to arrange it so that the central axes thereof coincide with each other with a gap (first arrangement). In addition, when the light source 5 is connected to both the optical fiber and the optical component, the center axis is not necessarily aligned, and there is a certain degree of misalignment due to the “photo soldering effect” in the self-forming waveguide technology. In the second embodiment, an effect that connection can be made with low loss is used (second arrangement). However, in order to connect with lower loss, it is desirable to make the connection with the center axis coincident even when the light source is connected to both the optical fiber and the optical component.

なお、光ファイバ2および光部品10は図示しない保持手段、例えばV溝および光部品に適合した溝を有する支持台とこの台にファイバおよび光部品を固定する押さえ板からなる保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した光ファイバおよび光部品間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、光ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   The optical fiber 2 and the optical component 10 are held by a holding means (not shown), for example, a holding base including a support base having a V-groove and a groove suitable for the optical part, and a pressing plate for fixing the fiber and the optical part to the base. It is assumed that the above-described arrangement relationship is maintained until the end of the connection work. In addition, the relationship of the central axis between the optical fiber and the optical component described above only needs to be maintained in the vicinity of one end to be connected, and does not require such a relationship in the entire length of the optical fiber. Needless to say, this point is common to all embodiments of the present invention.

次に、光ファイバ2と光部品10との端面間に前記光重合開始剤および熱重合開始剤を配合した硬化性樹脂11を充填し、光ファイバ2の他端に接続した光源5を動作させ、該他端から前記硬化性樹脂11の硬化開始波長に対応する波長の光を入射する。すると、光ファイバ2の一端から前記波長の光が硬化性樹脂11中に出射されるが、硬化性樹脂11は光に照射された部分が硬化するとともにその屈折率が上昇するため、この硬化部分が光の閉じ込め機能を有する導波路(構造)を構成する。この導波路は光の照射中に連続的に形成され、長手方向に成長するため、図5(b)に示すように、光ファイバ2および光部品10のコア同士を接続する導波路(コア部)13となる。   Next, the curable resin 11 containing the photopolymerization initiator and the thermal polymerization initiator is filled between the end faces of the optical fiber 2 and the optical component 10, and the light source 5 connected to the other end of the optical fiber 2 is operated. Then, light having a wavelength corresponding to the curing start wavelength of the curable resin 11 is incident from the other end. Then, the light having the wavelength is emitted from one end of the optical fiber 2 into the curable resin 11, and the curable resin 11 is cured at a portion irradiated with the light and its refractive index is increased. Constitutes a waveguide (structure) having a light confinement function. Since this waveguide is continuously formed during light irradiation and grows in the longitudinal direction, as shown in FIG. 5B, the waveguide (core portion) connecting the cores of the optical fiber 2 and the optical component 10 to each other. ) 13.

なお、光ファイバ2と光部品10との端面間に硬化性樹脂11を充填する具体的な方法としては、例えば、前述した保持手段を構成する支持台の光ファイバ2および光部品10の一端同士が対向する位置に液溜め用の陥没部を設けておき、該陥没部に硬化性樹脂11を滴下すれば良い。   In addition, as a specific method of filling the curable resin 11 between the end faces of the optical fiber 2 and the optical component 10, for example, the optical fiber 2 of the support base and the one end of the optical component 10 constituting the holding means described above are connected to each other. It is only necessary to provide a depression for storing the liquid at a position opposite to the liquid and drop the curable resin 11 into the depression.

次に、光ファイバ2と光部品10との端面間にコア部13が確実に接続されていることを確認した後、熱源12により硬化性樹脂11の未硬化部分全体に熱硬化に必要な量の熱を加える。すると、未硬化の硬化性樹脂11中の熱重合開始剤が同樹脂11中の樹脂の主材と反応を起こして硬化し、図5(c)に示すように、クラッド部14を形成する。   Next, after confirming that the core portion 13 is securely connected between the end faces of the optical fiber 2 and the optical component 10, an amount necessary for thermosetting the entire uncured portion of the curable resin 11 by the heat source 12. Add heat. Then, the thermal polymerization initiator in the uncured curable resin 11 reacts with the main material of the resin in the resin 11 and cures to form the clad portion 14 as shown in FIG.

以上より、光硬化した部分がコア部となり、熱硬化した部分がクラッド部となる導波路を形成することができる。   From the above, it is possible to form a waveguide in which the photocured portion becomes the core portion and the thermocured portion becomes the clad portion.

自己形成光導波路技術による光ファイバ同士の接続例を示す工程図Process diagram showing an example of connecting optical fibers using self-forming optical waveguide technology 自己形成光導波路技術による光ファイバと光部品との接続例を示す工程図Process diagram showing an example of connection between optical fiber and optical component by self-forming optical waveguide technology 光硬化開始剤により硬化した樹脂と熱硬化開始剤により硬化した樹脂との架橋密度の違いを表す模式図Schematic diagram showing the difference in crosslink density between a resin cured with a photocuring initiator and a resin cured with a thermosetting initiator 本発明の光ファイバの接続方法の第1の実施の形態を示す工程図Process drawing which shows 1st Embodiment of the optical fiber connection method of this invention 本発明の光ファイバの接続方法の第2の実施の形態を示す工程図Process drawing which shows 2nd Embodiment of the connection method of the optical fiber of this invention

符号の説明Explanation of symbols

1,2:光ファイバ、3:第1および第2の光硬化性樹脂の混合溶液(ハイブリッド樹脂)、4:第1の光硬化性樹脂(の溶液)、5:コア部硬化用光源、6,13:導波路(コア部)、7:第2の光硬化性樹脂(の溶液)、8:クラッド部硬化用光源、9,14:クラッド部、10:光部品、11:光硬化開始剤(光重合開始剤)および熱硬化開始剤(熱重合開始剤)を配合した硬化性樹脂(の溶液)、12:熱源。   1, 2: optical fiber, 3: mixed solution of first and second photocurable resins (hybrid resin), 4: first photocurable resin (solution), 5: light source for curing core part, 6 , 13: Waveguide (core part), 7: Second photocurable resin (solution thereof), 8: Light source for curing the clad part, 9, 14: Cladding part, 10: Optical component, 11: Photocuring initiator (Photopolymerization initiator) and thermosetting initiator (thermal polymerization initiator) in a curable resin (solution), 12: heat source.

Claims (4)

光ファイバ同士もしくは光ファイバと光部品とを、各光ファイバの一端同士の間もしくは光ファイバの一端と光部品との間に硬化性樹脂を充填し、当該硬化性樹脂を硬化させて所望の比屈折率差を有するコア部およびクラッド部からなる自己形成光導波路を形成することにより接続する方法において、
2つの異なる架橋密度を実現する材料を配合した硬化性樹脂を用い、当該架橋密度の違いにより前記所望の比屈折率差を達成する
ことを特徴とする光ファイバの接続方法。
Fill the optical fiber or the optical fiber and the optical component between one end of each optical fiber or between one end of the optical fiber and the optical component, and cure the curable resin to a desired ratio. In a method of connecting by forming a self-forming optical waveguide consisting of a core part and a clad part having a refractive index difference,
A method of connecting optical fibers, characterized in that a desired relative refractive index difference is achieved by a difference in the crosslink density using a curable resin containing two different crosslink density materials.
請求項1に記載の光ファイバの接続方法において、
2つの異なる架橋密度を実現する材料とは、2種類の異なる硬化開始剤である
ことを特徴とする光ファイバの接続方法。
The optical fiber connection method according to claim 1,
The material for realizing two different crosslink densities is two different curing initiators. An optical fiber connecting method, wherein:
請求項2に記載の光ファイバの接続方法において、
2種類の異なる硬化開始剤とは、光硬化開始剤および熱硬化開始剤である
ことを特徴とする光ファイバの接続方法。
In the optical fiber connection method according to claim 2,
The two different types of curing initiators are a photocuring initiator and a thermosetting initiator. An optical fiber connection method, wherein:
光ファイバ同士もしくは光ファイバと光部品とを接続する方法であって、
光ファイバ同士のそれぞれの一端もしくは光ファイバの一端と光部品とを間隙を隔てて略対向するように配置し、
前記各光ファイバの一端同士の間もしくは光ファイバの一端と光部品との間に光硬化開始剤および熱硬化開始剤を配合した硬化性樹脂を充填し、
前記硬化性樹脂の硬化開始波長に対応する波長の光を少なくとも一方の光ファイバから前記硬化性樹脂中に入射して硬化性樹脂を硬化させ、前記各光ファイバの一端同士の間もしくは光ファイバの一端と光部品との間にコア部を形成し、
前記硬化性樹脂の未硬化部分に熱を加えて硬化性樹脂を硬化させ、クラッド部を形成する
ことを特徴とする光ファイバの接続方法。
A method of connecting optical fibers or optical fibers and optical components,
Arrange one end of each optical fiber or one end of the optical fiber and the optical component so as to face each other with a gap,
Filled with a curable resin containing a photocuring initiator and a thermosetting initiator between one end of each optical fiber or between one end of the optical fiber and an optical component,
Light of a wavelength corresponding to the curing start wavelength of the curable resin is incident on the curable resin from at least one optical fiber to cure the curable resin, and between one end of each optical fiber or between the optical fibers. A core is formed between one end and the optical component,
A method of connecting optical fibers, wherein a heat is applied to an uncured portion of the curable resin to cure the curable resin to form a clad portion.
JP2007166170A 2007-06-25 2007-06-25 Method of splicing optical fibre Pending JP2009003338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166170A JP2009003338A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166170A JP2009003338A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Publications (1)

Publication Number Publication Date
JP2009003338A true JP2009003338A (en) 2009-01-08

Family

ID=40319751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166170A Pending JP2009003338A (en) 2007-06-25 2007-06-25 Method of splicing optical fibre

Country Status (1)

Country Link
JP (1) JP2009003338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344263A (en) * 2013-06-21 2013-10-09 华中科技大学 Interferometric fiber-optical sensor based on core shift structure and manufacturing method thereof
CN104297208A (en) * 2014-10-21 2015-01-21 天津理工大学 Interferometric optical fiber sensor based on pohotonic crystal optical fiber
CN105264415A (en) * 2013-04-02 2016-01-20 泰科电子瑞侃有限公司 Self-writable waveguide for fiber connectors and related methods
CN105784639A (en) * 2016-03-24 2016-07-20 北京理工大学 High-sensitivity refractive index sensor of photonic crystal fibers and production method
US10551566B2 (en) 2014-02-21 2020-02-04 Dow Silicones Corporation Method of preparing an optical connector and optical devices comprising the optical connector prepared thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071987A (en) * 2000-08-24 2002-03-12 Ntt Advanced Technology Corp Method for manufacturing optical waveguide
JP2003014972A (en) * 2001-06-29 2003-01-15 Ibiden Co Ltd Method for forming optical waveguide
JP2006220883A (en) * 2005-02-10 2006-08-24 Jsr Corp Curable composition, optical waveguide, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071987A (en) * 2000-08-24 2002-03-12 Ntt Advanced Technology Corp Method for manufacturing optical waveguide
JP2003014972A (en) * 2001-06-29 2003-01-15 Ibiden Co Ltd Method for forming optical waveguide
JP2006220883A (en) * 2005-02-10 2006-08-24 Jsr Corp Curable composition, optical waveguide, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264415A (en) * 2013-04-02 2016-01-20 泰科电子瑞侃有限公司 Self-writable waveguide for fiber connectors and related methods
CN103344263A (en) * 2013-06-21 2013-10-09 华中科技大学 Interferometric fiber-optical sensor based on core shift structure and manufacturing method thereof
US10551566B2 (en) 2014-02-21 2020-02-04 Dow Silicones Corporation Method of preparing an optical connector and optical devices comprising the optical connector prepared thereby
CN104297208A (en) * 2014-10-21 2015-01-21 天津理工大学 Interferometric optical fiber sensor based on pohotonic crystal optical fiber
CN105784639A (en) * 2016-03-24 2016-07-20 北京理工大学 High-sensitivity refractive index sensor of photonic crystal fibers and production method

Similar Documents

Publication Publication Date Title
Yamashita et al. Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides
CN110515159B (en) LP based on fiber end face microstructure01-LPmnAll-fiber mode converter and preparation method thereof
JP2009003338A (en) Method of splicing optical fibre
GB2498648A (en) Making an optical waveguide
JP7487810B2 (en) Optical connection structure
JP4642739B2 (en) Optical component connection method
Missinne et al. Curing kinetics of step-index and graded-index single mode polymer self-written waveguides
Cao et al. Efficient mode coupling between a few-mode fiber and multi-mode photonic chip with low crosstalk
JP2009003337A (en) Method of splicing optical fibre
WO2019165205A1 (en) 3d printed fiber optic connector end face and method of manufacture
JP2007121503A (en) Method for splicing optical fibers
JP2007206309A (en) Method for splicing optical fiber
JP2002258095A (en) Method of forming optical waveguide
JP2009031559A (en) Method of splicing optical fibers
JP4496319B2 (en) Optical waveguide and method for manufacturing the same
JP2008046178A (en) Holder for connecting optical fiber and connecting method using the same
Prajzler et al. Large core optical elastomer splitter fabricated by using 3D printing pattern
JP2007322628A (en) Method for splicing optical fiber
JP2005347441A (en) Optical module and manufacturing method thereof
He et al. Quantitative study in coupling loss reduction under a large mode-field mismatch using a self-written waveguide
Kim et al. Fabrication and characteristics of plastic optical fiber directional couplers
JP2018004830A (en) High heat-resistant optical fiber module and manufacture method of the same
Kagami et al. Light-induced self-written optical waveguides
JP2007206149A (en) Optical fiber connecting method and photocurable resin
Deng et al. Efficient mode (de) multiplexer with two cascaded horizontal polymer waveguide directional couplers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

A977 Report on retrieval

Effective date: 20101222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110614

A521 Written amendment

Effective date: 20110615

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110812