WO2018105712A1 - Spot size converter and manufacturing method therefor - Google Patents

Spot size converter and manufacturing method therefor Download PDF

Info

Publication number
WO2018105712A1
WO2018105712A1 PCT/JP2017/044102 JP2017044102W WO2018105712A1 WO 2018105712 A1 WO2018105712 A1 WO 2018105712A1 JP 2017044102 W JP2017044102 W JP 2017044102W WO 2018105712 A1 WO2018105712 A1 WO 2018105712A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssc
diameter
spot size
size converter
mfd
Prior art date
Application number
PCT/JP2017/044102
Other languages
French (fr)
Japanese (ja)
Inventor
石榑 崇明
和貴 安原
帆志彦 戸田
豊 於
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Publication of WO2018105712A1 publication Critical patent/WO2018105712A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to a spot size converter and a manufacturing method thereof, and more particularly to a polymer optical waveguide type spot size converter and a manufacturing method thereof.
  • optical interconnect technology particularly silicon photonics technology to which a CMOS process is applied, is expected to further increase the bandwidth, density, and power consumption of the entire system.
  • a nanoscale optical waveguide can be fabricated by using silicon (Si) with a high refractive index for the core.
  • Si silicon
  • SMF Single Mode Fiber
  • the Si optical waveguide has a core size of 300 to 500 nm
  • the core size of general-purpose SMF is generally 8 to 10 ⁇ m.
  • MFD Mode Field Diameter
  • SSC spot size converter
  • the SSC is suitable for space saving because in-plane connection is possible, and has an advantage of low wavelength dependency.
  • Non-Patent Document 1 A configuration using a polymer waveguide has been proposed as a low-cost interface between an optical fiber and a Si wire waveguide (see Non-Patent Document 1, for example).
  • the polymer waveguide is planar processed into a shape in which the waveguide width gradually decreases from the Si waveguide toward the SMF by photolithography.
  • Photonic wire bonding is manufactured using a laser direct drawing method, and has a tapered structure with a diameter that expands toward the core of the MCF at the tip.
  • the present invention realizes a polymer optical waveguide type SSC having a truncated cone shape or a three-dimensional taper shape in which the radial size changes symmetrically with respect to the optical axis.
  • a spot size converter for converting a beam diameter between optical wires having different core sizes is provided.
  • a first surface optically connected to a first optical wiring of a first size
  • a second surface optically connected to a second optical wiring of a second size larger than the first size
  • a tapered polymer waveguide whose diameter decreases conically from the first surface toward the second surface;
  • a method for manufacturing a spot size converter is provided.
  • This manufacturing method is Forming an uncured cladding layer on the substrate on which the first optical wiring is formed; While injecting an injection needle into the cladding layer and injecting an uncured core material from the injection needle into the cladding layer, the injection needle is changed in at least one of a moving speed and a discharge amount in a predetermined direction.
  • a moving step Curing the core material after extracting the injection needle from the cladding layer at a predetermined position to form a tapered polymer waveguide having one end connected to the first optical wiring; Optically connecting an end of the polymer waveguide opposite to the first optical wiring to a second optical wiring having a larger core size than the first optical wiring; including.
  • the above configuration and method realizes a spot size converter that can couple optical waveguides of different sizes with high efficiency and low loss, and has high tolerance for axis deviation and design freedom.
  • SSC of embodiment It is a diagram showing a core diameter different cladding materials and (SSC diameter) LP 01 mode of the MFD relationship. It is a figure which shows the simulation result of the optical coupling using the polymer optical waveguide type SSC of embodiment. It is a schematic diagram which shows the preparation methods of polymer optical waveguide type SSC of embodiment. It is a figure which shows the relationship between a needle scanning speed and a core diameter. It is a cross-sectional microscope picture of the side (a) and side (b) of the SSC sample of Example 1. It is a figure which shows the intensity
  • FIG. It is a schematic diagram which shows the difference in a structure of solid-state taper-shaped SSC of embodiment, and the planar taper-shaped SSC by the photolithographic method as a comparative example. It is a figure which shows the simulation result of the intensity
  • FIG. 1 is a schematic diagram of a spot size converter (SSC) 10 according to an embodiment.
  • the SSC 10 is a polymer optical waveguide type SSC that optically connects optical waveguides having different sizes.
  • the SSC 10 couples between a silicon (Si) optical waveguide 101 and a general-purpose SMF 102.
  • the SSC 10 has a truncated cone shape or a tapered shape whose diameter decreases from the output end of the Si optical waveguide 101 toward the core of the SMF 102.
  • the core size of the Si optical waveguide 101 is generally 300 to 500 nm, and the core diameter of the general-purpose SMF 102 is 8 to 10 ⁇ m.
  • the diameter D1 of the cross section 11 at the emission position of the Si optical waveguide 101 is larger than the diameter of the cross section 12 on the connection side with the SMF 102.
  • the shape of the SSC 10 may be referred to as “reverse taper” in the sense that the diameter of the SSC 10 increases on the Si optical waveguide 102 side having the smaller diameter.
  • the diameter of the SSC 10 at the output end of the Si optical waveguide 101 is 4 to 5 ⁇ m, and the diameter at the connection surface with the SMF 102 is 1.5 to 2.5 ⁇ m.
  • the length L of the SSC 10 from the cross section 11 to the cross section 12 is 4.0 cm or less, preferably 1.0 to 3.5 cm.
  • the SSC 10 may cover the end of the Si optical waveguide 101, but the MFD conversion function is performed between the cross section 11 and the cross section 12. In FIG. 1, only the lower clad 105 is shown for convenience of illustration, but the entire periphery of the Si optical waveguide 101 and the SSC 10 may be covered with the clad.
  • the mode field diameter (MFD) of the propagation light greatly expands toward the connection surface 12 with the SMF 102.
  • the MFD of the SSC 10 at the exit position of the Si waveguide 101 is 3.8 to 3.9 ⁇ m, whereas the MFD at the connection surface with the SMF 102
  • the MFD extends to 5.6 to 8.0 ⁇ m. As will be described later, this is considered to be due to the effect of leakage of evanescent light. Since the MFD is widened on the connection surface with the SMF 102 by the truncated cone-shaped SSC 10 whose diameter changes symmetrically with respect to the optical axis, it has a high resistance to misalignment.
  • SSC10 has a conical taper shape, and its cross section is substantially circular.
  • the change in diameter in the optical axis direction is symmetric with respect to the optical axis.
  • an organic-inorganic hybrid resin SUNCONNECT (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. is used as a polymer waveguide material constituting the SSC 10.
  • SUNCONNECT registered trademark
  • FIG. 2 shows the relationship between the core diameter and the MFD of the LP 01 waveguide mode at a wavelength of 1550 nm.
  • a material having a refractive index of 1.59 (plotted by a square) and a material having a refractive index of 1.52 (plotted by a circle) are compared.
  • the cladding material with a refractive index of 1.59 is NP-211 manufactured by Nissan Chemical Industries, Ltd.
  • the cladding material with a relative refractive index of 1.52 is ORMOCLAD (registered trademark) manufactured by Micro Resist Technology GmbH.
  • a material having a refractive index of 1.59 has a small difference in refractive index from the core, so that the MFD cannot be reduced to 7 ⁇ m or less regardless of how much the core diameter (SSC diameter) is reduced.
  • a material having a refractive index of 1.52 can secure a difference in refractive index from the core, when the core diameter (SSC diameter) is reduced to 3 ⁇ m, the MFD is reduced to 3.9 ⁇ m.
  • the core diameter (SSC diameter) is further reduced to about 2 ⁇ m, the MFD expands to 7 ⁇ m, which is equivalent to the general-purpose SMF. This is presumably because light is not sufficiently confined in the core (SSC) due to a significant reduction in the core diameter (SSC diameter) and leaks to the cladding as evanescent light.
  • the diameter of the SSC 10 at the output end (side (a)) of the Si optical waveguide 101 is 4 to 5 ⁇ m
  • the diameter of the SSC 10 at the connection end (side (b)) with the SMF 102 is 1.75 ⁇ m.
  • the MFD can be converted from 3.8 ⁇ m to 8 ⁇ m.
  • FIG. 3 shows a result of a propagation simulation assuming that light is actually coupled from the Si optical waveguide 101 to the SSC 10 and further connected to a general-purpose SMF 102.
  • the upper part is a top view
  • the middle part is NFP (Near Field Field Pattern)
  • the lower part is a side view.
  • the tapered shape of the SSC is indicated by a white broken line.
  • the Si optical waveguide (WG) extends in parallel from the positions P1 to P2, and only the light confined in the Si optical waveguide is observed. From the positions P2 to P3, the Si optical waveguide is tapered, and light oozes out.
  • the position P3 is a cross-sectional position of the SSC at the output end of the Si optical waveguide. This position is defined as side (a).
  • the MFD on side (a) is 3.9 ⁇ m.
  • Position 4 is the cross-sectional position of the SSC on the connection surface with the SMF. This position is defined as side (b).
  • the MFD at side (b) is 6.2 ⁇ m. It can be seen that the LP 01 mode MFD changes adiabatically on side (a) and side (b). As will be described later, the MFD can be further expanded by adjusting the manufacturing conditions of the SSC 10.
  • FIG. 4 is a schematic diagram for explaining a production process of a sample for evaluation of a polymer optical waveguide type SSC 10.
  • a support body 41 having a removable frame 43 on a base 42 is prepared, and a clad material 44 is arranged in the frame 43.
  • a clad material 44 a material having a paste-like resin precursor having viscosity as a main component and having a large refractive index difference from the core material can be appropriately selected.
  • ORMOCLAD registered trademark
  • Micro Resist Technology GmbH is applied in the frame 43 using a dispenser or the like.
  • the core material (precursor or monomer before polymerization) is inserted from the tip of the needle 31 while the main body 32 is moved by inserting the needle 31 of the discharge device 30 into the clad material 44.
  • the core layer 45 is formed in the cladding material 44 by implantation.
  • the diameter of the core layer 45 formed by accelerating the moving speed of the main body 32 can be continuously reduced.
  • the degree of change in the diameter of the core layer 45 can be controlled by adjusting the acceleration.
  • the needle 31 is extracted from the cladding material 44.
  • the direction of the needle speed change and the direction of movement are arbitrary, and the taper shape can be produced by accelerating or decelerating the needle movement speed.
  • the scanning direction of the needle is not limited to a plane parallel to the substrate, and scanning may be performed in the vertical direction.
  • the taper shape may be realized by changing the discharge amount (or discharge pressure) of the core while keeping the scanning speed constant, or by combining the change of the moving speed and the discharge amount.
  • the core layer 45 and the clad material 44 are cured.
  • an ultraviolet curable resin is used for the cladding material 44 and the core material and is cured by irradiation with ultraviolet rays, but a thermosetting resin can also be used.
  • the frame 43 is removed, and the cured layer is peeled off from the base 42 to obtain a sample of the truncated cone in the clad 105 or the three-dimensional tapered SSC 10. It is done.
  • the support 41 For example, a slit or a recess is formed in an optical wiring substrate on which an Si optical waveguide is formed, and a clad material is applied in the slit (or recess).
  • the needle is inserted into the clad material before polymerization in the vicinity of the end of the Si optical waveguide, and the needle is moved while being accelerated in a predetermined direction while injecting the core material. Thereafter, the SSC can be formed by removing the needle, curing the core material and the clad material, and polishing the end face.
  • the core material when the core material is injected into the uncured clad material 44, the core material isotropically diffuses into the clad material, and a GI (Graded Index) type refractive index distribution having a Gaussian distribution shape is obtained.
  • the core layer 45 can be formed.
  • a general GI-type refractive index profile is connected to a clad having a low refractive index and a uniform refractive index while the refractive index decreases from the core center and the profile remains convex upward.
  • the refractive index profile of the waveguide according to the mosquito method of the present invention changes from convex upward to convex (having an inflection point), and has a Gaussian distribution connected to the clad by pulling the tail.
  • FIG. 5 is a graph showing the relationship between the scanning speed of the needle 31 and the core diameter.
  • a linear core having a constant diameter was fabricated, and core diameter control was examined.
  • the discharge pressure of the core material was fixed at 50 kPa, and the results of measuring the core diameter while changing the scanning speed of the needle 31 each time were plotted. From FIG. 5, the core diameter tends to be inversely proportional to the 1/2 power of the scanning speed of the needle. It can be confirmed that the core diameter can be reduced to about 2 ⁇ m when the scanning speed of the needle 31 is 100 mm / s.
  • the SSC sample having a truncated cone shape or a three-dimensional taper shape was produced by accelerating the needle scanning speed from 8 mm / s to 40 mm / s within 100 milliseconds (ms).
  • the length of the SSC sample in the optical axis direction is 3.5 cm.
  • the needle inner diameter is 80 ⁇ m, and the discharge pressure of the core material is 50 kPa.
  • FIG. 6 is a cross-sectional micrograph of side (a) and side (b) of the produced SSC sample.
  • the scanning speed of the needle 31 is accelerated from the side (a) to the side (b).
  • the core diameter (SSC diameter) at side (a) is 4.6 ⁇ m, whereas the diameter is reduced to 2.8 ⁇ m at side (b).
  • FIG. 7 shows the intensity profile, NFP, and MFD of the SSC sample of Example 1 at a wavelength of 1550 nm.
  • the solid line in FIG. 7A is an intensity profile at side (a) of the SSC sample, and shows the corresponding NFP and MFD.
  • a broken line in FIG. 7A is an intensity profile of SMF (UHNA) having an ultra-high NA as an alternative to the Si optical waveguide, and shows the corresponding NFP and MFD.
  • the solid line in FIG. 7B is an intensity profile on the side (b) of the SSC sample, and shows the corresponding NFP and MFD.
  • the broken line in FIG. 7B is a general-purpose SMF intensity profile, and shows the corresponding NFP and MFD.
  • FIG. 7 shows that the MFD changes greatly from 3.8 ⁇ m to 5.6 ⁇ m at both ends of the SSC without the occurrence of higher-order modes.
  • the SSC side (a) and the intensity profile of UHNA are very close, and the MFD is also close.
  • the intensity profiles of the SSC side (b) and the general-purpose SMF are very similar, and the MFD is also approaching.
  • FIG. 8 is a diagram schematically showing the evaluation result of FIG. It can be seen that the MFD is well matched on both the large-diameter side and the small-diameter side of the solid tapered SSC sample, and insertion loss (including coupling loss and propagation loss) is reduced.
  • FIG. 9 is a diagram showing the evaluation results of the light propagation characteristics with respect to the optical axis direction of the SSC sample of Example 1.
  • NFP Near Field Field Pattern
  • MFD is calculated.
  • the SSC sample is shortened by 1 cm, and the MFD is calculated in each case where the length of the sample is 3.5 cm, 2.5 cm, 1.5 cm, and 0 cm.
  • the core diameter in the cross section becomes 4.7 ⁇ m. It decreases to 3.9 ⁇ m, 3.2 ⁇ m, and 2.9 ⁇ m. In contrast, NFP at 1550 nm gradually increases. Similarly, MFD increases to 3.7 ⁇ m, 4.5 ⁇ m, 5.3 ⁇ m, and 5.7 ⁇ m.
  • the SSC sample of Example 1 manufactured by the method of FIG. 4 can realize the spot size conversion function as designed.
  • FIG. 10 is a diagram showing an intensity profile at each SSC length. The tendency of the intensity profile is the same for each SSC length, and the MFD at the position where the intensity falls from the peak to e ⁇ 2 increases as the SSC length increases.
  • FIG. 11 shows the evaluation results of the loss / loss characteristics using the SSC sample of Example 1.
  • the insertion loss at a wavelength of 1550 nm is measured using the produced 3.5 cm long SSC sample.
  • Two types of arrangements (configuration 1 and configuration 2) of the excitation probe on the LD side and the light receiving probe on the power meter side are prepared. In both arrangements, a butt connection is made between SMF and SSC, and between SSC and UHNA, and no matching oil is used.
  • the UHNA serving as the excitation probe is connected to the side (a) having a small MFD, and the light from the side (b) having a large MFD is received by the general-purpose SMF.
  • Configuration 1 assumes the propagation of signal light from the Si optical waveguide to the SMF in the arrangement configuration of the present invention.
  • the general SMF is connected to the side (a) having a small MFD
  • the UHNA is connected to the side (b) having a large MFD
  • the connection relationship is reversed from that of the configuration 1. Receive light on the side.
  • the configuration 2 is an arrangement generally employed when optically connecting optical wirings having different diameters.
  • the insertion loss of the SSC in configuration 1 is sufficiently low.
  • the coupling loss between the SM optical waveguide and the SMF is theoretically determined by the overlap integral of both electromagnetic field distributions. As can be seen from the intensity profile in FIG. 7, it is considered that the intensity profiles at both ends of the SSC greatly overlap with the intensity profiles of the excitation probe and the light receiving probe.
  • Propagation loss at a wavelength of 1.55 ⁇ m of the polymer optical waveguide material used in the example (“SUNCONNECT (registered trademark)”) is 0.45 dB / cm, so that the propagation of a 3.5 cm long optical waveguide at 1550 nm is performed. The loss is estimated at 1.58 dB.
  • the coupling loss at both ends of the SSC sample is estimated to be 5.36 dB including Fresnel reflection.
  • FIG. 12 shows the evaluation results of misalignment tolerance using the SSC sample of Example 1.
  • the solid taper-shaped SSC of the embodiment has a high MFD on the connection side with the SMF, and thus is considered to have a high resistance to misalignment when connected to the SMF. Therefore, the produced SSC sample is used to evaluate the resistance to misalignment with SMF.
  • FIG. 12 (A) and 12 (B) show the configuration of the measurement system, and FIG. 12 (C) shows the misalignment measurement result.
  • a laser diode (LD) having a wavelength of 1550 nm is used as the light source, and a general-purpose SMF is used for each of the excitation probe and the light receiving probe.
  • the side (a) having a small MFD is connected to the SMF of the light receiving probe, and the loss change amount when the position of the light receiving side SMF is changed in the radial direction of the SSC is measured as a misalignment tolerance. .
  • the side with the large MFD (b) is connected to the SMF of the light receiving probe, and the amount of loss change when the position of the light receiving side SMF is changed in the radial direction of the SSC is measured as misalignment tolerance. .
  • the -0.5 dB misalignment tolerance on the side (a) was ⁇ 1.3 ⁇ m, whereas the side (b) has a wide tolerance width of ⁇ 2.1 ⁇ m. It is done. This is a value equivalent to the misalignment tolerance between the general-purpose SMF and the SM optical waveguide. The reason why such a wide tolerance width is obtained is considered that the MFD on the side (b) of the three-dimensionally tapered SSC sample can be brought close to the MFD of the SMF. As described above, the solid tapered SSC sample of Example 1 has a high resistance to misalignment.
  • FIG. 13 shows a schematic configuration and a cross-sectional micrograph of the SSC sample of Example 2, and NFP and MFD of propagating light.
  • the MFD is optimized by increasing the rate of change in the scanning speed of the needle 31.
  • the inner diameter of the needle is 80 ⁇ m
  • the discharge pressure of the core material is fixed at 50 kPa
  • the needle scanning speed is accelerated from 8 mm / s to 100 mm / s in 100 milliseconds (ms)
  • the length in the optical axis direction is 1.
  • a SSC sample having a frustoconical shape of 5 cm or a solid taper shape was prepared.
  • the core diameter on the side (a) of the SSC sample of Example 2 is 4.64 ⁇ m, and the core diameter on the side (b) is 2.78 ⁇ m.
  • the MFD on the side (a) is enlarged to 3.8 ⁇ m, and the MFD on the side (b) is enlarged to 7.2 ⁇ m. Since the MFD of the general-purpose SMF is 7.4 ⁇ m, it was confirmed that the desired MFD can be achieved by changing the needle scanning speed.
  • FIG. 14 shows the evaluation results of the loss loss characteristics using the SSC sample of Example 2.
  • the insertion loss at a wavelength of 1550 nm is measured using the produced 1.5 cm long SSC sample.
  • Two types of arrangements of an excitation probe on the LD side and a light receiving probe on the power meter side are prepared.
  • the UHNA of the excitation probe is connected to the side (a) having a small MFD, and light from the side (b) having a large MFD is received by the general-purpose SMF.
  • Configuration 1 assumes the propagation of signal light from the Si optical waveguide to the SMF in the arrangement configuration of the embodiment.
  • the general SMF is connected to the side (a)
  • the UHNA is connected to the side (b)
  • the UHNA side receives light by reversing the connection relationship with the configuration 1.
  • the configuration 2 is a configuration generally employed when connecting optical wirings having different diameters with SSC.
  • the insertion loss of the SSC in the configuration 1 is further reduced as compared with the first embodiment.
  • the insertion loss is large.
  • FIG. 15 shows intensity profiles, NFP and MFD on both sides of the SSC sample of Example 2.
  • the solid line in FIG. 15A is the intensity profile at side (a) of the SSC sample, and shows both the corresponding NFP and MFD.
  • the broken line in FIG. 15A is an intensity profile of UHNA as an alternative to the Si optical waveguide, and shows the corresponding NFP and MFD.
  • the solid line in FIG. 15B is the intensity profile on the side (b) of the SSC sample, and shows the corresponding NFP and MFD.
  • the broken line in FIG. 15B is a general-purpose SMF intensity profile, and shows the corresponding NFP and MFD.
  • FIG. 16 is a diagram illustrating the insertion loss reduction effect of the configuration of the second embodiment.
  • the chart on the left side of the figure shows the insertion loss of the 3.5 cm long SSC sample of Example 1, and the chart on the right side shows the insertion loss of the 1.5 cm long SSC sample of Example 2.
  • the insertion loss is represented by the sum of the propagation loss, the Fresnel reflection loss, and the coupling loss, the Fresnel reflection loss is the same in the first and second embodiments.
  • the propagation loss is reduced to about half by shortening the length of the SSC in the optical axis direction.
  • the SSC sample of Example 2 has a high tolerance against misalignment in the same manner as in Example 1 in which the change in diameter in the optical axis direction is symmetric with respect to the optical axis in a plane perpendicular to the optical axis. Further, due to the coincidence between the intensity profile on the side (b) on the SMF side and the MFD, a wider tolerance width than that of the first embodiment can be obtained on the side (b) side.
  • FIG. 17 is a schematic diagram showing a difference in configuration between the solid tapered SSC of the embodiment and a planar tapered SSC by a photolithography method as a comparative example.
  • an SSC having a Gaussian refractive index distribution is realized by the method of FIG. 4 (mosquito method).
  • FIG. 18 is a diagram showing a comparison result between the solid tapered SSC of the embodiment and the planar tapered SSC according to the conventional method.
  • FIG. 18A shows a simulation result of the intensity profile and coupling loss of the SSC produced by the method of the embodiment.
  • FIG. 18B shows a simulation result of an intensity profile and coupling loss of an SSC manufactured by a general photolithography method.
  • FIG. 18 (A) and FIG. 18 (B) focusing on the MFD, the SFD side (b) and the SMF have the same MFD size. Looking only at this result, the effect of aligning the size of the MFD to the SMF on the side (b) side of the SSC appears to be the same.
  • the tendency of the intensity distribution is almost the same between SSC and SMF, whereas in the conventional method, the tendency of the intensity distribution is reversed at the MFD. This difference appears as a difference in the effect of reducing the coupling loss.
  • a GI type SSC in particular, having a Gaussian type refractive index distribution
  • an SI (Step Index) type distribution having a constant refractive index in the radial direction of the SSC is obtained.
  • the SSC intensity distribution and the SMF intensity distribution characteristic are reversed with the MFD as a boundary, and the area where the light intensity distribution overlaps is reduced, resulting in an increase in coupling loss.
  • the superiority of SSC produced by the mosquito method of FIG. 4 was confirmed.
  • the MFD greatly changes in adiabatic manner between both ends.
  • the MFD is changed from 3.9 ⁇ m to 7. Enlarged to 2 ⁇ m.
  • the needle is accelerated from a speed of 8 mm / s or less to 40 to 100 mm / s within a predetermined time, thereby forming a desired three-dimensional taper-shaped polymer waveguide to leak evanescent light. The effect of taking out can be achieved.
  • the misalignment tolerance between the SSC of the embodiment and the general-purpose SMF is ⁇ 2.1 ⁇ m or more, and a value equivalent to the axis deviation characteristic of the SM optical waveguide and the general-purpose SMF can be obtained.
  • the insertion loss of the SSC of the embodiment is sufficiently low, and particularly in Example 2, it can be suppressed to a low value of 2.34 dB at a wavelength of 1550 nm.
  • the SSC of the embodiment and the manufacturing method thereof can couple optical transmission lines of different sizes with high efficiency and low loss, and have high tolerance for misalignment and high design freedom.
  • Such SSC can also be applied to multi-channel optical communication.
  • the SSC formed of the polymer waveguide of the embodiment is arranged corresponding to each channel on the edge of a silicon chip where Si optical waveguides such as 4 channels and 8 channels are formed at the transmission / reception front end of the optical transceiver. It can be connected to SMF which is an external optical wiring.
  • the SSC of the embodiment can realize optical coupling with very high efficiency and low loss, particularly when applied to an optical transmission front end.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention provides a spot size converter that couples optical waveguides of different sizes with high efficiency and low loss, and has high axial misalignment resistance and design flexibility. A spot size converter coverts a beam diameter between optical wires of different core sizes, and comprises: a first surface optically connected to a first optical wire of a first size; a second surface optically connected to a second optical wire of a second size larger than the first size; and a tapered polymer waveguide the diameter of which conically decreases from the first surface toward the second surface.

Description

スポットサイズ変換器、及びその製造方法Spot size converter and manufacturing method thereof
 本発明は、スポットサイズ変換器とその製造方法に関し、特に、ポリマー光導波路型のスポットサイズ変換器と製造方法に関する。 The present invention relates to a spot size converter and a manufacturing method thereof, and more particularly to a polymer optical waveguide type spot size converter and a manufacturing method thereof.
 近年、クラウドコンピューティングサービスの急速な進展に伴い、データセンター内のトラフィック量が上昇し、1レーンあたり40Gbps以上のデータレートが要求されつつある。このような要求に対して、光インターコネクト技術、特にCMOSプロセスを適用したシリコンフォトニクス技術を用いることで、システム全体のさらなる広帯域化、高密度化、低消費電力化が期待されている。 In recent years, with the rapid development of cloud computing services, the amount of traffic in the data center has increased, and a data rate of 40 Gbps or more per lane is being demanded. In response to such demands, the use of optical interconnect technology, particularly silicon photonics technology to which a CMOS process is applied, is expected to further increase the bandwidth, density, and power consumption of the entire system.
 主としてオンチップ領域での使用が想定されるシリコンフォトニクス技術では、高屈折率のシリコン(Si)をコアに用いることで、ナノスケールの光導波路が作製可能である。一方、オフチップ領域では、既存のシングルモード光ファイバ(SMF:Single Mode Fiber)をSiフォトニクスチップと接続することが想定されている。Si光導波路が300~500nmのコアサイズを有するのに対し、汎用SMFのコアサイズは8~10μmが一般的である。両者を直接バット接続すると、モードフィールド径(MFD:Mode Field Diameter)の違いにより結合損失が生じてしまう。その解決策として、スポットサイズ変換器(SSC:Spot Size Converter)が用いられている。SSCは、面内接続が可能であるため省スペース化に適しており、また、波長依存性が低いという利点がある。 In silicon photonics technology, which is expected to be used mainly in the on-chip region, a nanoscale optical waveguide can be fabricated by using silicon (Si) with a high refractive index for the core. On the other hand, in the off-chip region, it is assumed that an existing single mode optical fiber (SMF: Single Mode Fiber) is connected to a Si photonics chip. While the Si optical waveguide has a core size of 300 to 500 nm, the core size of general-purpose SMF is generally 8 to 10 μm. When both are directly butt-connected, coupling loss occurs due to the difference in mode field diameter (MFD: Mode Field Diameter). As a solution, a spot size converter (SSC: SpotSCSizeSConverter) is used. The SSC is suitable for space saving because in-plane connection is possible, and has an advantage of low wavelength dependency.
 光ファイバとSi細線導波路の低コストのインタフェースとして、ポリマー導波路を用いる構成が提案されている(たとえば、非特許文献1参照)。この文献で、ポリマー導波路はフォトリソグラフィ法によりSi導波路からSMFに向かって徐々に導波路幅が狭くなる形状に平面加工されている。 A configuration using a polymer waveguide has been proposed as a low-cost interface between an optical fiber and a Si wire waveguide (see Non-Patent Document 1, for example). In this document, the polymer waveguide is planar processed into a shape in which the waveguide width gradually decreases from the Si waveguide toward the SMF by photolithography.
 また、Si導波路とマルチコアファイバ(MCF)をフォトニックワイヤボンティングで接続する構成が提案されている(たとえば、非特許文献2参照)。フォトニックワイヤボンディングはレーザ直接描画法を用いて作製され、先端部にMCFのコアに向かって径が広がっていくテーパ構造を有する。 In addition, a configuration in which a Si waveguide and a multicore fiber (MCF) are connected by photonic wire bonding has been proposed (for example, see Non-Patent Document 2). Photonic wire bonding is manufactured using a laser direct drawing method, and has a tapered structure with a diameter that expands toward the core of the MCF at the tip.
 他方、未硬化のクラッドに吐出針を刺し入れて、針先端からコア材料を吐出しながらクラッド内を移動させ、コア材料を硬化させてポリマー光導波路を形成する技術が提案されている(たとえば、特許文献1参照)。この方法は、「モスキート法」とも呼ばれている。 On the other hand, a technique has been proposed in which a discharge needle is inserted into an uncured clad, moved inside the clad while discharging the core material from the tip of the needle, and the core material is cured to form a polymer optical waveguide (for example, Patent Document 1). This method is also called “mosquito method”.
国際公開第WO2013/002013号International Publication No. WO2013 / 002013
 フォトリソグラフィ法やフォトニックワイヤボンディングを用いたSSCの作製は多く報告されているが、汎用SMFと高効率、低損失で結合でき、かつ軸ずれ耐性と設計自由度の高いSSCは未だに実現されていない。 Although many SSC fabrications using photolithography and photonic wire bonding have been reported, SSCs that can be combined with general-purpose SMFs with high efficiency and low loss, yet have high tolerance for axial misalignment and high design freedom are still being realized. Absent.
 本発明は、サイズの異なる光伝送路同士を高効率、低損失で結合し、かつ高い軸ずれ耐性と設計自由度を有するスポットサイズ変換器を提供することを課題とする。 It is an object of the present invention to provide a spot size converter that couples optical transmission lines of different sizes with high efficiency and low loss, and has high tolerance for misalignment and design freedom.
 上記課題を解決するために、本発明は、径方向のサイズが光軸に対して対称に変化する円錐台または立体テーパ形状のポリマー光導波路型のSSCを実現する。本発明の第1の側面では、異なるコアサイズの光配線間でビーム径を変換するスポットサイズ変換器は、
 第1のサイズの第1光配線に光学的に接続される第1の面と、
 前記第1のサイズより大きい第2のサイズの第2光配線に光学的に接続される第2の面と、
 前記第1の面から前記第2の面に向かって円錐状に径が小さくなるテーパ型のポリマー導波路と、
を有する。
In order to solve the above-described problems, the present invention realizes a polymer optical waveguide type SSC having a truncated cone shape or a three-dimensional taper shape in which the radial size changes symmetrically with respect to the optical axis. In the first aspect of the present invention, a spot size converter for converting a beam diameter between optical wires having different core sizes is provided.
A first surface optically connected to a first optical wiring of a first size;
A second surface optically connected to a second optical wiring of a second size larger than the first size;
A tapered polymer waveguide whose diameter decreases conically from the first surface toward the second surface;
Have
 本発明の第2の側面では、スポットサイズ変換器の製造方法を提供する。この製造方法は、
 第1光配線が形成された基板の上に未硬化のクラッド層を形成するステップと、
 前記クラッド層に注入針を指し込み、前記注入針から前記クラッド層の中に未硬化のコア材料を注入しながら、前記注入針を所定の方向に移動速度と吐出量の少なくとも一方を変化させて移動するステップと、
 所定の位置で前記クラッド層から前記注入針を抜き取った後に前記コア材料を硬化させて、一方の端部が前記第1光配線と接続されているテーパ型のポリマー導波路を形成するステップと、
 前記ポリマー導波路の前記第1光配線と反対側の端部を、前記第1光配線よりもコアサイズの大きい第2光配線と光学的に接続するステップと、
を含む。
In a second aspect of the present invention, a method for manufacturing a spot size converter is provided. This manufacturing method is
Forming an uncured cladding layer on the substrate on which the first optical wiring is formed;
While injecting an injection needle into the cladding layer and injecting an uncured core material from the injection needle into the cladding layer, the injection needle is changed in at least one of a moving speed and a discharge amount in a predetermined direction. A moving step,
Curing the core material after extracting the injection needle from the cladding layer at a predetermined position to form a tapered polymer waveguide having one end connected to the first optical wiring;
Optically connecting an end of the polymer waveguide opposite to the first optical wiring to a second optical wiring having a larger core size than the first optical wiring;
including.
 上記の構成と手法により、サイズの異なる光導波路間を高効率、低損失で結合でき、かつ高い軸ずれ耐性と設計自由度を有するスポットサイズ変換器が実現される。 The above configuration and method realizes a spot size converter that can couple optical waveguides of different sizes with high efficiency and low loss, and has high tolerance for axis deviation and design freedom.
実施形態のSSCの概略図である。It is the schematic of SSC of embodiment. 異なるクラッド材料のコア径(SSC径)とLP01モードのMFDの関係を示す図である。It is a diagram showing a core diameter different cladding materials and (SSC diameter) LP 01 mode of the MFD relationship. 実施形態のポリマー光導波路型のSSCを用いた光結合のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the optical coupling using the polymer optical waveguide type SSC of embodiment. 実施形態のポリマー光導波路型のSSCの作製方法を示す模式図である。It is a schematic diagram which shows the preparation methods of polymer optical waveguide type SSC of embodiment. ニードル走査速度とコア径の関係を示す図である。It is a figure which shows the relationship between a needle scanning speed and a core diameter. 実施例1のSSCサンプルのサイド(a)とサイド(b)の断面顕微鏡写真である。It is a cross-sectional microscope picture of the side (a) and side (b) of the SSC sample of Example 1. 実施例1のSSCサンプルの両サイドでの強度プロファイルとMFDを示す図である。It is a figure which shows the intensity | strength profile and MFD in the both sides of the SSC sample of Example 1. FIG. 図7の結果を模式的に示す図である。It is a figure which shows the result of FIG. 7 typically. 実施例1のSSCサンプルのコア径と導波路長の関係を示す図である。It is a figure which shows the relationship between the core diameter of SSC sample of Example 1, and waveguide length. 各SSC長における規格化強度分布を示す図である。It is a figure which shows the normalized intensity distribution in each SSC length. 実施例1のSSCサンプルの挿入損失を比較例とともに示す図である。It is a figure which shows the insertion loss of the SSC sample of Example 1 with a comparative example. 実施例1のSSCサンプルの軸ずれ耐性の測定結果を示す図である。It is a figure which shows the measurement result of the axial deviation tolerance of the SSC sample of Example 1. 実施例2のSSCサンプルの両サイドの断面顕微鏡写真と対応するMFDを示す図である。It is a figure which shows MFD corresponding to the cross-sectional microscope picture of the both sides of the SSC sample of Example 2. FIG. 実施例2のSSCサンプルの挿入損失測定結果を示す図である。It is a figure which shows the insertion loss measurement result of the SSC sample of Example 2. 実施例2のSSCサンプルの両サイドでの強度プロファイルとNFP及びMFDを示す図である。It is a figure which shows the intensity | strength profile on both sides of the SSC sample of Example 2, and NFP and MFD. 実施例2の挿入損失低減効果を示す図である。It is a figure which shows the insertion loss reduction effect of Example 2. FIG. 実施形態の立体テーパ形状のSSCと、比較例としてフォトリソグラフィ法による平面テーパ形状のSSCの構成の相違を示す模式図である。It is a schematic diagram which shows the difference in a structure of solid-state taper-shaped SSC of embodiment, and the planar taper-shaped SSC by the photolithographic method as a comparative example. 実施形態の立体テーパ形状のSSCと、比較例の平面テーパ形状のSSCの強度プロファイルと結合損失のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the intensity | strength profile of the solid taper-shaped SSC of embodiment, and the planar taper-shaped SSC of a comparative example, and a coupling loss.
 図1は、実施形態のスポットサイズ変換器(SSC)10の概略図である。SSC10は、サイズの異なる光導波路間を光接続するポリマー光導波路型のSSCである。図1の例では、SSC10はシリコン(Si)光導波路101と汎用のSMF102の間を結合する。本発明の特徴として、SSC10は、Si光導波路101の出力端からSMF102のコアに向かって径が小さくなる円錐台またはテーパ型の形状を有する。Si光導波路101のコアサイズは一般に300~500nmであり、汎用のSMF102のコア径は8~10μmである。SSC10は、Si光導波路101の出射位置での断面11の径D1の方が、SMF102との接続側の断面12の径よりも大きい。径の小さいSi光導波路102側でSSC10の径が大きくなるという意味で、SSC10の形状を「逆テーパ」と呼んでもよい。 FIG. 1 is a schematic diagram of a spot size converter (SSC) 10 according to an embodiment. The SSC 10 is a polymer optical waveguide type SSC that optically connects optical waveguides having different sizes. In the example of FIG. 1, the SSC 10 couples between a silicon (Si) optical waveguide 101 and a general-purpose SMF 102. As a feature of the present invention, the SSC 10 has a truncated cone shape or a tapered shape whose diameter decreases from the output end of the Si optical waveguide 101 toward the core of the SMF 102. The core size of the Si optical waveguide 101 is generally 300 to 500 nm, and the core diameter of the general-purpose SMF 102 is 8 to 10 μm. In the SSC 10, the diameter D1 of the cross section 11 at the emission position of the Si optical waveguide 101 is larger than the diameter of the cross section 12 on the connection side with the SMF 102. The shape of the SSC 10 may be referred to as “reverse taper” in the sense that the diameter of the SSC 10 increases on the Si optical waveguide 102 side having the smaller diameter.
 一例として、Si光導波路101の出力端でのSSC10の径は4~5μm、SMF102との接続面での径は1.5~2.5μmである。断面11から断面12までのSSC10の長さLは4.0cm以下、好ましくは1.0~3.5cmである。SSC10は、Si光導波路101の端部を覆っていてもよいが、MFDの変換機能を果たすのは断面11から断面12までの間である。また、図1では図示の便宜上、下側のクラッド105のみが描かれているが、Si光導波路101とSSC10の周囲全体がクラッドで覆われていてもよい。 As an example, the diameter of the SSC 10 at the output end of the Si optical waveguide 101 is 4 to 5 μm, and the diameter at the connection surface with the SMF 102 is 1.5 to 2.5 μm. The length L of the SSC 10 from the cross section 11 to the cross section 12 is 4.0 cm or less, preferably 1.0 to 3.5 cm. The SSC 10 may cover the end of the Si optical waveguide 101, but the MFD conversion function is performed between the cross section 11 and the cross section 12. In FIG. 1, only the lower clad 105 is shown for convenience of illustration, but the entire periphery of the Si optical waveguide 101 and the SSC 10 may be covered with the clad.
 図1の形状のSSC10で、伝搬光のモードフィールド径(MFD)は、SMF102との接続面12に向かって大きく広がる。たとえば、波長が1.3μm~1.5μmの光に対して、Si導波路101の出射位置でのSSC10のMFDは3.8~3.9μmであるのに対し、SMF102との接続面でのMFDは5.6~8.0μmにまで広がる。これは、後述するように、エバネッセント光の漏れ出しの効果によるものと考えられる。光軸に対して径が対称に変化する円錐台型のSSC10によりSMF102との接続面でMFDを広げているので、高い軸ずれ耐性を有する。 In the SSC 10 having the shape of FIG. 1, the mode field diameter (MFD) of the propagation light greatly expands toward the connection surface 12 with the SMF 102. For example, for light with a wavelength of 1.3 μm to 1.5 μm, the MFD of the SSC 10 at the exit position of the Si waveguide 101 is 3.8 to 3.9 μm, whereas the MFD at the connection surface with the SMF 102 The MFD extends to 5.6 to 8.0 μm. As will be described later, this is considered to be due to the effect of leakage of evanescent light. Since the MFD is widened on the connection surface with the SMF 102 by the truncated cone-shaped SSC 10 whose diameter changes symmetrically with respect to the optical axis, it has a high resistance to misalignment.
 このようなSSC10の特性と効果を詳細に説明する前に、ポリマー光導波路型のSSC10の設計と作製について説明する。
<ポリマー光導波路型SSCの設計と作製>
 両端側でMFDが異なるような逆テーパ状のポリマー光導波路型SSCの作製に向けて、最適な設計を行う。MFDは、波長、コアとクラッドの屈折率差、コア径等に依存する。そこでまず、モードソルバツール(FIMMWAVE, FIMMPROP)を用いて、ポリマー光導波路型SSCの理論的設計を行う。実施に作製したSSCの概念図は、図1に示すとおりである。
Before describing the characteristics and effects of the SSC 10 in detail, the design and fabrication of the polymer optical waveguide type SSC 10 will be described.
<Design and fabrication of polymer optical waveguide type SSC>
Optimal design is performed for the production of a reverse-tapered polymer optical waveguide type SSC having different MFDs at both ends. The MFD depends on the wavelength, the refractive index difference between the core and the clad, the core diameter, and the like. Therefore, first, a theoretical design of a polymer optical waveguide type SSC is performed using a mode solver tool (FIMMWAVE, FIMMPROP). A conceptual diagram of the SSC fabricated in practice is as shown in FIG.
 SSC10は円錐状のテーパ形状を有し、その断面はほぼ円形である。光軸方向の径の変化は、光軸に対して対称である。SMF102側に向かって徐々に径を小さくすることで、高次モードの発生を抑制することができる。 SSC10 has a conical taper shape, and its cross section is substantially circular. The change in diameter in the optical axis direction is symmetric with respect to the optical axis. By gradually reducing the diameter toward the SMF 102 side, it is possible to suppress the generation of higher order modes.
 SSC10を構成するポリマー導波路材料として、日産化学工業株式会社製の有機-無機ハイブリッド樹脂SUNCONNECT(登録商標)シリーズを使用する。この材料は耐熱性が高く、半田リフロープロセスへの適合性が高い。また、Siフォトニクス技術での使用が想定される波長1550nmでの吸収損失が低い。具体的には、コア材料として、SUNCONNECT(登録商標)シリーズのNP-005(比屈折率nd=1.60)を使用する。一方、クラッド材料については、最適なクラッド材料をシミュレーションにより決定する。 As a polymer waveguide material constituting the SSC 10, an organic-inorganic hybrid resin SUNCONNECT (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. is used. This material has high heat resistance and high compatibility with the solder reflow process. Further, the absorption loss at a wavelength of 1550 nm, which is assumed to be used in Si photonics technology, is low. Specifically, SUNCONNECT (registered trademark) series NP-005 (relative refractive index n d = 1.60) is used as the core material. On the other hand, for the cladding material, the optimum cladding material is determined by simulation.
 図2は、コア径と、波長1550nmでのLP01導波モードのMFDの関係を示す。クラッド材料として、屈折率が1.59の材料(四角でプロット)と、屈折率が1.52の材料(丸でプロット)を比較する。屈折率1.59のクラッド材料は、日産化学工業株式会社製のNP-211、比屈折率1.52のクラッド材料は、Micro Resist Technology GmbH製のORMOCLAD(登録商標)である。屈折率1.59の材料は、コアとの屈折率差が小さいため、コア径(SSC径)をいくら縮小してもMFDを7μm以下にすることができない。他方、屈折率1.52の材料は、コアとの屈折率差が確保できるため、コア径(SSC径)を3μmまで低減したときに、MFDが3.9μmまで縮小する。コア径(SSC径)をさらに小さく2μm前後まで縮小すると、MFDは汎用SMFと同等の7μmまで拡大する。これは、コア径(SSC径)の著しい縮小により、光が十分にコア(SSC)内に閉じ込められなくなり、エバネッセント光としてクラッドまで漏れ出ているためと考えられる。 FIG. 2 shows the relationship between the core diameter and the MFD of the LP 01 waveguide mode at a wavelength of 1550 nm. As a clad material, a material having a refractive index of 1.59 (plotted by a square) and a material having a refractive index of 1.52 (plotted by a circle) are compared. The cladding material with a refractive index of 1.59 is NP-211 manufactured by Nissan Chemical Industries, Ltd., and the cladding material with a relative refractive index of 1.52 is ORMOCLAD (registered trademark) manufactured by Micro Resist Technology GmbH. A material having a refractive index of 1.59 has a small difference in refractive index from the core, so that the MFD cannot be reduced to 7 μm or less regardless of how much the core diameter (SSC diameter) is reduced. On the other hand, since a material having a refractive index of 1.52 can secure a difference in refractive index from the core, when the core diameter (SSC diameter) is reduced to 3 μm, the MFD is reduced to 3.9 μm. When the core diameter (SSC diameter) is further reduced to about 2 μm, the MFD expands to 7 μm, which is equivalent to the general-purpose SMF. This is presumably because light is not sufficiently confined in the core (SSC) due to a significant reduction in the core diameter (SSC diameter) and leaks to the cladding as evanescent light.
 このシミュレーション結果から、Si光導波路101の出力端(サイド(a))でのSSC10の径を4~5μm、SMF102との接続端(サイド(b))でのSSC10の径を1.75μmとするテーパ形状とすることで、MFDを3.8μmから8μmに変換することができる。 From this simulation result, the diameter of the SSC 10 at the output end (side (a)) of the Si optical waveguide 101 is 4 to 5 μm, and the diameter of the SSC 10 at the connection end (side (b)) with the SMF 102 is 1.75 μm. By adopting the taper shape, the MFD can be converted from 3.8 μm to 8 μm.
 図3は、実際にSi光導波路101からSSC10に光を結合し、さらに汎用のSMF102へと接続することを想定して、伝搬シミュレーションを行った結果を示す。上段は上面図、中段はNFP(Near Field Pattern:近視野像)、下段は側面図である。SSCのテーパ形状を白の破線で示す。 FIG. 3 shows a result of a propagation simulation assuming that light is actually coupled from the Si optical waveguide 101 to the SSC 10 and further connected to a general-purpose SMF 102. The upper part is a top view, the middle part is NFP (Near Field Field Pattern), and the lower part is a side view. The tapered shape of the SSC is indicated by a white broken line.
 位置P1からP2にかけてSi光導波路(WG)は平行に延びており、Si光導波路に閉じ込められた光だけが観察される。位置P2からP3にかけて、Si光導波路は先細りに加工されており、光のしみ出しが始まる。位置P3はSi光導波路の出力端におけるSSCの断面位置である。この位置をサイド(a)とする。サイド(a)でのMFDは3.9μmである。位置4はSMFとの接続面におけるSSCの断面位置である。この位置をサイド(b)とする。サイド(b)でのMFDは6.2μmである。サイド(a)とサイド(b)において、LP01モードのMFDが断熱的に変化している様子が見て取れる。後述するように、SSC10の作製条件を調整することで、MFDをさらに拡大することが可能である。 The Si optical waveguide (WG) extends in parallel from the positions P1 to P2, and only the light confined in the Si optical waveguide is observed. From the positions P2 to P3, the Si optical waveguide is tapered, and light oozes out. The position P3 is a cross-sectional position of the SSC at the output end of the Si optical waveguide. This position is defined as side (a). The MFD on side (a) is 3.9 μm. Position 4 is the cross-sectional position of the SSC on the connection surface with the SMF. This position is defined as side (b). The MFD at side (b) is 6.2 μm. It can be seen that the LP 01 mode MFD changes adiabatically on side (a) and side (b). As will be described later, the MFD can be further expanded by adjusting the manufacturing conditions of the SSC 10.
 図4は、ポリマー光導波路型のSSC10の評価用のサンプルの作製工程を説明する模式図である。まず、図4(A)に示すように、ベース42上に取り外し可能なフレーム43を有する支持体41を準備し、フレーム43内にクラッド材料44を配置する。クラッド材料44は、粘性を有するペースト状の樹脂前駆体を主成分とし、コア材料との屈折率差の大きい材料を適宜選択することができる。一例として、上述したMicro Resist Technology GmbH製のORMOCLAD(登録商標)を、ディスペンサ等を用いてフレーム43内に塗布する。 FIG. 4 is a schematic diagram for explaining a production process of a sample for evaluation of a polymer optical waveguide type SSC 10. First, as shown in FIG. 4A, a support body 41 having a removable frame 43 on a base 42 is prepared, and a clad material 44 is arranged in the frame 43. As the clad material 44, a material having a paste-like resin precursor having viscosity as a main component and having a large refractive index difference from the core material can be appropriately selected. As an example, the above-described ORMOCLAD (registered trademark) manufactured by Micro Resist Technology GmbH is applied in the frame 43 using a dispenser or the like.
 次に、図4(B)に示すように、吐出装置30のニードル31をクラッド材料44に差し込んで、本体32を移動させながらニードル31の先端からコア材料(重合前の前駆体またはモノマー)を注入して、クラッド材料44の中にコア層45を形成する。本体32の移動速度を加速することで形成されるコア層45の径を連続的に小さくすることができる。加速度を調整することで、コア層45の径の変化の度合いを制御することができる。所望の長さと径変化を有するコア層45が形成されたら、ニードル31をクラッド材料44から抜き取る。なお、ニードルの速度変化の方向と移動方向は任意であり、ニードルの移動速度を加速することによっても、減速することによってもテーパ形状を作製することができる。また、ニードルの走査方向は基板と水平な面内に限定されず、垂直方向に走査してもよい。さらに、走査速度を一定にしてコアの吐出量(または吐出圧力)を変えることによって、あるいは移動速度と吐出量の変化を組み合わせることによってテーパ形状を実現してもよい。 Next, as shown in FIG. 4B, the core material (precursor or monomer before polymerization) is inserted from the tip of the needle 31 while the main body 32 is moved by inserting the needle 31 of the discharge device 30 into the clad material 44. The core layer 45 is formed in the cladding material 44 by implantation. The diameter of the core layer 45 formed by accelerating the moving speed of the main body 32 can be continuously reduced. The degree of change in the diameter of the core layer 45 can be controlled by adjusting the acceleration. When the core layer 45 having the desired length and diameter change is formed, the needle 31 is extracted from the cladding material 44. The direction of the needle speed change and the direction of movement are arbitrary, and the taper shape can be produced by accelerating or decelerating the needle movement speed. Further, the scanning direction of the needle is not limited to a plane parallel to the substrate, and scanning may be performed in the vertical direction. Furthermore, the taper shape may be realized by changing the discharge amount (or discharge pressure) of the core while keeping the scanning speed constant, or by combining the change of the moving speed and the discharge amount.
 次に、図4(C)に示すように、コア層45とクラッド材料44を硬化させる。この例では、クラッド材料44とコア材料に紫外線硬化樹脂を用いており、紫外線の照射により硬化させているが、熱硬化性樹脂を用いることも可能である。 Next, as shown in FIG. 4C, the core layer 45 and the clad material 44 are cured. In this example, an ultraviolet curable resin is used for the cladding material 44 and the core material and is cured by irradiation with ultraviolet rays, but a thermosetting resin can also be used.
 最後に、図4(D)に示すように、フレーム43を取り外し、ベース42から硬化後の層を剥離することで、クラッド105内の円錐台または3次元的なテーパ形状のSSC10のサンプルが得られる。実際のSSC10の作製では支持体41を用いる必要はなく、たとえばSi光導波路が形成された光配線基板にスリットや凹部を形成して、スリット(または凹部)内にクラッド材料を塗布する。Si光導波路の端部の近傍で重合前のクラッド材料にニードルを差し込み、コア材料を注入しながらニードルを所定の方向に加速しながら移動する。その後、ニードルを抜いてコア材料とクラッド材料を硬化させ、端面を研磨することでSSCを形成することができる。 Finally, as shown in FIG. 4D, the frame 43 is removed, and the cured layer is peeled off from the base 42 to obtain a sample of the truncated cone in the clad 105 or the three-dimensional tapered SSC 10. It is done. In actual production of the SSC 10, it is not necessary to use the support 41. For example, a slit or a recess is formed in an optical wiring substrate on which an Si optical waveguide is formed, and a clad material is applied in the slit (or recess). The needle is inserted into the clad material before polymerization in the vicinity of the end of the Si optical waveguide, and the needle is moved while being accelerated in a predetermined direction while injecting the core material. Thereafter, the SSC can be formed by removing the needle, curing the core material and the clad material, and polishing the end face.
 この方法では、未硬化のクラッド材料44にコア材料が注入されると、コア材料がクラッド材料の中に等方的に拡散して、ガウス分布形状のGI(Graded Index)型の屈折率分布を有するコア層45を形成することができる。一般的なGI型の屈折率分布は、屈折率がコア中心から減少してプロファイルが上に凸のままで、低屈折率で均一屈折率であるクラッドとつながる。これに対し、本発明のモスキート法による導波路の屈折率分布プロファイルは、上に凸から下に凸へと変化し(変曲点を有し)、テールを引く形でクラッドとつながるガウス分布状のプロファイルとなる。光の速度は屈折率に反比例するため、硬化したコアの外側を蛇行(屈折)しながら通る光の光路長と、コアの中心部を通る光の光路長が相殺されて入射光はほぼ同時に出射することができる。 In this method, when the core material is injected into the uncured clad material 44, the core material isotropically diffuses into the clad material, and a GI (Graded Index) type refractive index distribution having a Gaussian distribution shape is obtained. The core layer 45 can be formed. A general GI-type refractive index profile is connected to a clad having a low refractive index and a uniform refractive index while the refractive index decreases from the core center and the profile remains convex upward. On the other hand, the refractive index profile of the waveguide according to the mosquito method of the present invention changes from convex upward to convex (having an inflection point), and has a Gaussian distribution connected to the clad by pulling the tail. Profile. Since the speed of light is inversely proportional to the refractive index, the optical path length of the light passing through the outside of the cured core while meandering (refracting) and the optical path length of the light passing through the center of the core cancel each other, and incident light is emitted almost simultaneously. can do.
 図5は、ニードル31の走査速度とコア径の関係を示すグラフである。図4の円錐台またはテーパ形状のSSC10の作製に先立って、径が一定の直線状のコアを作製し、コア径制御を検討した。内径が80μmのニードルを使用し、コア材料の吐出圧力を50kPaに固定し、ニードル31の走査速度を一回ごとに変えてコア径を測定した結果をプロットした。図5から、コア径はニードルの走査速度の1/2乗に反比例する傾向を有する。ニードル31の走査速度を100mm/sとしたときに、コア径を約2μmまで低減できることが確認できる。 FIG. 5 is a graph showing the relationship between the scanning speed of the needle 31 and the core diameter. Prior to fabrication of the truncated cone or tapered SSC 10 of FIG. 4, a linear core having a constant diameter was fabricated, and core diameter control was examined. Using a needle having an inner diameter of 80 μm, the discharge pressure of the core material was fixed at 50 kPa, and the results of measuring the core diameter while changing the scanning speed of the needle 31 each time were plotted. From FIG. 5, the core diameter tends to be inversely proportional to the 1/2 power of the scanning speed of the needle. It can be confirmed that the core diameter can be reduced to about 2 μm when the scanning speed of the needle 31 is 100 mm / s.
 図2と図5の結果に基づき、100ミリ秒(ms)の間にニードル走査速度を8mm/sから40mm/sに加速することで、円錐台または立体テーパ形状のSSCサンプルを作製した。SSCサンプルの光軸方向の長さは3.5cmである。ニードル内径は80μm、コア材料の吐出圧力は50kPaである。 Based on the results of FIGS. 2 and 5, the SSC sample having a truncated cone shape or a three-dimensional taper shape was produced by accelerating the needle scanning speed from 8 mm / s to 40 mm / s within 100 milliseconds (ms). The length of the SSC sample in the optical axis direction is 3.5 cm. The needle inner diameter is 80 μm, and the discharge pressure of the core material is 50 kPa.
 図6は、作製したSSCサンプルのサイド(a)とサイド(b)の断面顕微鏡写真である。サイド(a)からサイド(b)に向かって、ニードル31の走査速度は加速されている。サイド(a)でのコア径(SSC径)が4.6μmであるのに対し、サイド(b)では2.8μmまで径が縮小されている。サイド(a)をSi光導波路側に配置し、サイド(b)をSMF側に配置することで、サイド(b)に向かってMFDを拡大することができる。このSSCサンプルを用いて光学特性を評価する。 FIG. 6 is a cross-sectional micrograph of side (a) and side (b) of the produced SSC sample. The scanning speed of the needle 31 is accelerated from the side (a) to the side (b). The core diameter (SSC diameter) at side (a) is 4.6 μm, whereas the diameter is reduced to 2.8 μm at side (b). By arranging the side (a) on the Si optical waveguide side and the side (b) on the SMF side, the MFD can be enlarged toward the side (b). Optical characteristics are evaluated using this SSC sample.
 図7は、実施例1のSSCサンプルの波長1550nmにおける強度プロファイルとNFP及びMFDを示す。図7(A)の実線は、SSCサンプルのサイド(a)での強度プロファイルであり、対応するNFPとMFDをともに示す。図7(A)の破線は、Si光導波路の代替としての超高NAを有するSMF(UHNA)の強度プロファイルであり、対応するNFPとMFDをともに示す。図7(B)の実線は、SSCサンプルのサイド(b)での強度プロファイルであり、対応するNFPとMFDをともに示す。図7(B)の破線は、汎用SMFの強度プロファイルであり、対応するNFPとMFDをともに示す。 FIG. 7 shows the intensity profile, NFP, and MFD of the SSC sample of Example 1 at a wavelength of 1550 nm. The solid line in FIG. 7A is an intensity profile at side (a) of the SSC sample, and shows the corresponding NFP and MFD. A broken line in FIG. 7A is an intensity profile of SMF (UHNA) having an ultra-high NA as an alternative to the Si optical waveguide, and shows the corresponding NFP and MFD. The solid line in FIG. 7B is an intensity profile on the side (b) of the SSC sample, and shows the corresponding NFP and MFD. The broken line in FIG. 7B is a general-purpose SMF intensity profile, and shows the corresponding NFP and MFD.
 図7から、高次のモードが発生することなく、SSCの両端でMFDが3.8μmから5.6μmまで大きく変化していることがわかる。図7(A)において、SSCのサイド(a)とUHNAの強度プロファイルが非常に近接しており、MFDも近い。同様に、図7(B)において、SSCのサイド(b)と汎用SMFの強度プロファイルが良く似ており、MFDも近づいている。 FIG. 7 shows that the MFD changes greatly from 3.8 μm to 5.6 μm at both ends of the SSC without the occurrence of higher-order modes. In FIG. 7A, the SSC side (a) and the intensity profile of UHNA are very close, and the MFD is also close. Similarly, in FIG. 7B, the intensity profiles of the SSC side (b) and the general-purpose SMF are very similar, and the MFD is also approaching.
 図8は、図7の評価結果を模式的に示す図である。立体テーパ形状のSSCサンプルの大径側と小径側の双方でMFDがよくマッチしており、挿入損失(結合損失と伝搬損失を含む)が低減されていることがわかる。 FIG. 8 is a diagram schematically showing the evaluation result of FIG. It can be seen that the MFD is well matched on both the large-diameter side and the small-diameter side of the solid tapered SSC sample, and insertion loss (including coupling loss and propagation loss) is reduced.
 図9は、実施例1のSSCサンプルの光軸方向に対する光伝搬特性の評価結果を示す図である。まず、3.5cmの長さのSSCサンプルの両端の1550nm波長でのNFP(Near Field Pattern)を測定し、MFDを算出する。その後、SSCサンプルを1cmずつ短くしていき、サンプルの長さが3.5cm、2.5cm、1.5cm、0cmの各場合でのMFDを計算する。 FIG. 9 is a diagram showing the evaluation results of the light propagation characteristics with respect to the optical axis direction of the SSC sample of Example 1. First, NFP (Near Field Field Pattern) at a wavelength of 1550 nm at both ends of an SSC sample having a length of 3.5 cm is measured, and MFD is calculated. Thereafter, the SSC sample is shortened by 1 cm, and the MFD is calculated in each case where the length of the sample is 3.5 cm, 2.5 cm, 1.5 cm, and 0 cm.
 SSCサンプルの大径側のサイド(a)から小径側のサイド(b)に向かって、長さが1.5cm、2.5cm、3.5cmと増えるにつれて、断面でのコア径は4.7μm、3.9μm、3.2μm、2.9μmと減少する。これに対し、1550nmでのNFPは徐々に大きくなる。MFDも同様に3.7μm、4.5μm、5.3μm、5.7μmと増大する。 As the length increases from the large diameter side (a) to the small diameter side (b) of the SSC sample, the core diameter in the cross section becomes 4.7 μm. It decreases to 3.9 μm, 3.2 μm, and 2.9 μm. In contrast, NFP at 1550 nm gradually increases. Similarly, MFD increases to 3.7 μm, 4.5 μm, 5.3 μm, and 5.7 μm.
 これは、前述の通り、SSC径が小さくなるにつれてSSC内に閉じ込められなくなった光がエバネッセント光としてクラッド部に漏れ出ていくためであると考えられる。このように、図4の方法で作製した実施例1のSSCサンプルは、設計どおりスポットサイズ変換機能を実現できていることがわかる。 This is considered to be because, as described above, as the SSC diameter decreases, the light that is no longer confined in the SSC leaks into the cladding as evanescent light. Thus, it can be seen that the SSC sample of Example 1 manufactured by the method of FIG. 4 can realize the spot size conversion function as designed.
 図10は、各SSC長における強度プロファイルを示す図である。各SSC長さで強度プロファイルの傾向は同じであり、強度がピークからe-2に落ちる位置でのMFDは、SSCの長さが増すほど、大きくなっている。 FIG. 10 is a diagram showing an intensity profile at each SSC length. The tendency of the intensity profile is the same for each SSC length, and the MFD at the position where the intensity falls from the peak to e −2 increases as the SSC length increases.
 図11は、実施例1のSSCサンプルを用いた損入損失特性の評価結果を示す。作製した3.5cm長のSSCサンプルを用いて、波長1550nmにおける挿入損失を測定する。LD側の励振プローブと、パワーメータ側の受光プローブの配置を2種類(コンフィギュレーション1とコンフィギュレーション2)準備する。双方の配置構成で、SMFとSSCの間、及びSSCとUHNAの間はバット接続をしており、マッチングオイルを使用していない。 FIG. 11 shows the evaluation results of the loss / loss characteristics using the SSC sample of Example 1. The insertion loss at a wavelength of 1550 nm is measured using the produced 3.5 cm long SSC sample. Two types of arrangements (configuration 1 and configuration 2) of the excitation probe on the LD side and the light receiving probe on the power meter side are prepared. In both arrangements, a butt connection is made between SMF and SSC, and between SSC and UHNA, and no matching oil is used.
 図11(A)のコンフィギュレーション1では、励振プローブとなるUHNAを、MFDの小さいサイド(a)に接続し、MFDの大きいサイド(b)からの光を汎用SMFで受光する。コンフィギュレーション1は、本発明の配置構成でSi光導波路からSMFへの信号光の伝搬を想定している。 In the configuration 1 of FIG. 11A, the UHNA serving as the excitation probe is connected to the side (a) having a small MFD, and the light from the side (b) having a large MFD is received by the general-purpose SMF. Configuration 1 assumes the propagation of signal light from the Si optical waveguide to the SMF in the arrangement configuration of the present invention.
 図11(B)のコンフィギュレーション2では、コンフィギュレーション1と接続関係を逆にして、汎用SMFをMFDの小さいサイド(a)に接続し、UHNAをMFDの大きいサイド(b)に接続してUHNA側で受光する。コンフィギュレーション2は、異なる径の光配線間を光接続する際に一般に採用される配置構成である。 In the configuration 2 in FIG. 11B, the general SMF is connected to the side (a) having a small MFD, the UHNA is connected to the side (b) having a large MFD, and the connection relationship is reversed from that of the configuration 1. Receive light on the side. The configuration 2 is an arrangement generally employed when optically connecting optical wirings having different diameters.
 図11(C)に示すように、コンフィギュレーション1でのSSCの挿入損失は十分に低い。SM光導波路とSMFの結合損失は理論的に両者の電磁界分布の重なり積分によって定まる。図7の強度プロファイルからわかるように、SSCの両端の強度プロファイルが励振プローブと受光プローブの強度プロファイルと大きく重なっているものと考えられる。実施例で用いたポリマー光導波路の材料(「SUNCONNECT(登録商標)」)の波長1.55μmでの伝搬損失が0.45dB/cmであることから、3.5cm長の光導波路の1550nmにおける伝搬損失は1.58dBと見積もられる。SSCサンプルの両端での結合損失は、フレネル反射を含めて5.36dBであると見積もられる。 As shown in FIG. 11C, the insertion loss of the SSC in configuration 1 is sufficiently low. The coupling loss between the SM optical waveguide and the SMF is theoretically determined by the overlap integral of both electromagnetic field distributions. As can be seen from the intensity profile in FIG. 7, it is considered that the intensity profiles at both ends of the SSC greatly overlap with the intensity profiles of the excitation probe and the light receiving probe. Propagation loss at a wavelength of 1.55 μm of the polymer optical waveguide material used in the example (“SUNCONNECT (registered trademark)”) is 0.45 dB / cm, so that the propagation of a 3.5 cm long optical waveguide at 1550 nm is performed. The loss is estimated at 1.58 dB. The coupling loss at both ends of the SSC sample is estimated to be 5.36 dB including Fresnel reflection.
 これに対して、大径のSMFにMFDの小さいサイド(a)を、小径のUHNAにMFDの大きいサイド(b)を接続したコンフィギュレーション2では、挿入損失が大きい。 In contrast, in the configuration 2 in which the side (a) having a small MFD is connected to the large-diameter SMF and the side (b) having a large MFD are connected to the small-diameter UHNA, the insertion loss is large.
 図12は、実施例1のSSCサンプルを用いたミスアライメントトレランスの評価結果を示す。実施形態の立体テーパ形状のSSCは、SMFとの接続側でMFDが大きくなっているのでSMFとの接続時に高い軸ずれ耐性を持つと考えられる。そこで、作製したSSCサンプルを用いてSMFとの軸ずれ耐性を評価する。 FIG. 12 shows the evaluation results of misalignment tolerance using the SSC sample of Example 1. The solid taper-shaped SSC of the embodiment has a high MFD on the connection side with the SMF, and thus is considered to have a high resistance to misalignment when connected to the SMF. Therefore, the produced SSC sample is used to evaluate the resistance to misalignment with SMF.
 図12(A)と図12(B)は、測定系の構成を示し、図12(C)はミスアライメント測定結果を示す。光源に波長1550nmのレーザダイオード(LD)を使用し、励振プローブと受光プローブに、それぞれ汎用SMFを使用する。図12(A)において、MFDの小さいサイド(a)を受光プローブのSMFと接続し、受光側SMFの位置をSSCの径方向に変化させたときの損失変化量を、ミスアライメントトレランスとして測定する。図12(B)において、MFDの大きいサイド(b)を受光プローブのSMFと接続し、受光側SMFの位置をSSCの径方向に変化させたときの損失変化量を、ミスアライメントトレランスとして測定する。 12 (A) and 12 (B) show the configuration of the measurement system, and FIG. 12 (C) shows the misalignment measurement result. A laser diode (LD) having a wavelength of 1550 nm is used as the light source, and a general-purpose SMF is used for each of the excitation probe and the light receiving probe. In FIG. 12 (A), the side (a) having a small MFD is connected to the SMF of the light receiving probe, and the loss change amount when the position of the light receiving side SMF is changed in the radial direction of the SSC is measured as a misalignment tolerance. . In FIG. 12B, the side with the large MFD (b) is connected to the SMF of the light receiving probe, and the amount of loss change when the position of the light receiving side SMF is changed in the radial direction of the SSC is measured as misalignment tolerance. .
 図12(C)に示すように、サイド(a)での-0.5dBミスアライメントトレランスは±1.3μmであったのに対し、サイド(b)では±2.1μmという広いトレランス幅が得られる。これは、汎用SMFとSM光導波路とのミスアライメントトレランスと同等の値である。このような広いトレランス幅が得荒れた要因として、立体テーパ状のSSCサンプルのサイド(b)でのMFDを、SMFのMFDに近づけることができたためと考えられる。このように、実施例1の立体テーパ状のSSCサンプルは、高い軸ずれ耐性を有する。 As shown in FIG. 12C, the -0.5 dB misalignment tolerance on the side (a) was ± 1.3 μm, whereas the side (b) has a wide tolerance width of ± 2.1 μm. It is done. This is a value equivalent to the misalignment tolerance between the general-purpose SMF and the SM optical waveguide. The reason why such a wide tolerance width is obtained is considered that the MFD on the side (b) of the three-dimensionally tapered SSC sample can be brought close to the MFD of the SMF. As described above, the solid tapered SSC sample of Example 1 has a high resistance to misalignment.
 図13は、実施例2のSSCサンプルの概略構成と断面顕微写真、及び伝搬光のNFPとMFDを示す。実施例2では、ニードル31の走査速度の変化の割合を大きくすることで、MFDの最適化を行う。ニードル内径は80μm、コア材料の吐出圧力を50kPaに固定して、100ミリ秒(ms)の間にニードル走査速度を8mm/sから100mm/sに加速して、光軸方向の長さが1.5cmの円錐台または立体テーパ形状のSSCサンプルを作製した。 FIG. 13 shows a schematic configuration and a cross-sectional micrograph of the SSC sample of Example 2, and NFP and MFD of propagating light. In the second embodiment, the MFD is optimized by increasing the rate of change in the scanning speed of the needle 31. The inner diameter of the needle is 80 μm, the discharge pressure of the core material is fixed at 50 kPa, the needle scanning speed is accelerated from 8 mm / s to 100 mm / s in 100 milliseconds (ms), and the length in the optical axis direction is 1. A SSC sample having a frustoconical shape of 5 cm or a solid taper shape was prepared.
 実施例2のSSCサンプルのサイド(a)でのコア径は4.64μm、サイド(b)でのコア径は2.78μmである。サイド(a)でのMFDは3.8μm、サイド(b)でのMFDは7.2μmに拡大されている。汎用SMFのMFDは7.4μmであることから、ニードル走査速度を変化させることで所望のMFDを達成できることが確認された。 The core diameter on the side (a) of the SSC sample of Example 2 is 4.64 μm, and the core diameter on the side (b) is 2.78 μm. The MFD on the side (a) is enlarged to 3.8 μm, and the MFD on the side (b) is enlarged to 7.2 μm. Since the MFD of the general-purpose SMF is 7.4 μm, it was confirmed that the desired MFD can be achieved by changing the needle scanning speed.
 図14は、実施例2のSSCサンプルを用いた損入損失特性の評価結果を示す。作製した1.5cm長のSSCサンプルを用いて、波長1550nmにおける挿入損失を測定する。LD側の励振プローブと、パワーメータ側の受光プローブの配置を2種類準備する。 FIG. 14 shows the evaluation results of the loss loss characteristics using the SSC sample of Example 2. The insertion loss at a wavelength of 1550 nm is measured using the produced 1.5 cm long SSC sample. Two types of arrangements of an excitation probe on the LD side and a light receiving probe on the power meter side are prepared.
 図14(A)のコンフィギュレーション1では、励振プローブのUHNAをMFDの小さいサイド(a)に接続し、MFDの大きいサイド(b)からの光を汎用SMFで受光する。コンフィギュレーション1は、実施形態の配置構成でSi光導波路からSMFへの信号光の伝搬を想定している。 In configuration 1 in FIG. 14A, the UHNA of the excitation probe is connected to the side (a) having a small MFD, and light from the side (b) having a large MFD is received by the general-purpose SMF. Configuration 1 assumes the propagation of signal light from the Si optical waveguide to the SMF in the arrangement configuration of the embodiment.
 図14(B)のコンフィギュレーション2では、コンフィギュレーション1と接続関係を逆にして、汎用SMFをサイド(a)に接続し、UHNAをサイド(b)に接続してUHNA側で受光する。コンフィギュレーション2は、径の異なる光配線間をSSCで接続するときに一般に採用される構成である。 In the configuration 2 in FIG. 14B, the general SMF is connected to the side (a), the UHNA is connected to the side (b), and the UHNA side receives light by reversing the connection relationship with the configuration 1. The configuration 2 is a configuration generally employed when connecting optical wirings having different diameters with SSC.
 図14(C)に示すように、コンフィギュレーション1でのSSCの挿入損失は、実施例1よりもさらに低減されている。これに対し、大径のSMFをMFDの小さいサイド(a)に接続し、小径のUHNAをMFDの大きいサイド(b)に接続したコンフィギュレーション2では、挿入損失が大きい。 As shown in FIG. 14C, the insertion loss of the SSC in the configuration 1 is further reduced as compared with the first embodiment. On the other hand, in the configuration 2 in which the large diameter SMF is connected to the side (a) having a small MFD and the small diameter UHNA is connected to the side (b) having a large MFD, the insertion loss is large.
 図15は、実施例2のSSCサンプルの両サイドでの強度プロファイルとNFP及びMFDを示す。図15(A)の実線は、SSCサンプルのサイド(a)での強度プロファイルであり、対応するNFPとMFDをともに示す。図15(A)の破線は、Si光導波路の代替としてのUHNAの強度プロファイルであり、対応するNFPとMFDをともに示す。図15(B)の実線はSSCサンプルのサイド(b)での強度プロファイルであり、対応するNFPとMFDをともに示す。図15(B)の破線は汎用SMFの強度プロファイルであり、対応するNFPとMFDをともに示す。 FIG. 15 shows intensity profiles, NFP and MFD on both sides of the SSC sample of Example 2. The solid line in FIG. 15A is the intensity profile at side (a) of the SSC sample, and shows both the corresponding NFP and MFD. The broken line in FIG. 15A is an intensity profile of UHNA as an alternative to the Si optical waveguide, and shows the corresponding NFP and MFD. The solid line in FIG. 15B is the intensity profile on the side (b) of the SSC sample, and shows the corresponding NFP and MFD. The broken line in FIG. 15B is a general-purpose SMF intensity profile, and shows the corresponding NFP and MFD.
 図15から、実施例2のSSCでは高次のモードが発生することなく、両端の間でMFDが3.9μmから7.2μmまで大きく変化していることがわかる。図15(A)において、SSCのサイド(a)とUHNAの強度プロファイルが非常に近接しており、MFDも近い。図15(B)において、SSCのサイド(b)と汎用SMFの強度プロファイルはほとんど同じであり、MFDも非常に近似している。 From FIG. 15, it can be seen that in the SSC of Example 2, the MFD greatly changes from 3.9 μm to 7.2 μm between both ends without the occurrence of the higher-order mode. In FIG. 15A, the SSC side (a) and the UHNA intensity profile are very close, and the MFD is also close. In FIG. 15B, the intensity profiles of the SSC side (b) and the general-purpose SMF are almost the same, and the MFD is also very similar.
 図16は、実施例2の構成の挿入損失低減効果を示す図である。図の左側のチャートは実施例1の3.5cm長のSSCサンプルの挿入損失を示し、右側のチャートは実施例2の1.5cm長のSSCサンプルの挿入損失を示す。挿入損失を、伝搬損失とフレネル反射損失と結合損失の和で表すと、フレネル反射損失は実施例1と2で同じである。伝搬損失はSSCの光軸方向の長さを短くしたことにより約半分に低減している。 FIG. 16 is a diagram illustrating the insertion loss reduction effect of the configuration of the second embodiment. The chart on the left side of the figure shows the insertion loss of the 3.5 cm long SSC sample of Example 1, and the chart on the right side shows the insertion loss of the 1.5 cm long SSC sample of Example 2. When the insertion loss is represented by the sum of the propagation loss, the Fresnel reflection loss, and the coupling loss, the Fresnel reflection loss is the same in the first and second embodiments. The propagation loss is reduced to about half by shortening the length of the SSC in the optical axis direction.
 低減効果が最も大きいのが、結合損失である。実施例2では、1dB以下の結合損失を実現している。これは、サイド(a)とサイド(b)の双方で強度プロファイルの重なり合いを最適化したことによると考えられる。 The greatest reduction effect is coupling loss. In the second embodiment, a coupling loss of 1 dB or less is realized. This is considered to be due to optimization of the overlap of intensity profiles on both side (a) and side (b).
 また、実施例2のSSCサンプルは、実施例1と同様に光軸方向の径の変化が光軸と垂直な面内で光軸に対して対称であり、高い軸ずれ耐性を有する。また、SMF側のサイド(b)での強度プロファイルとMFDの一致性により、サイド(b)側で実施例1以上に広いトレランス幅が得られる。 In addition, the SSC sample of Example 2 has a high tolerance against misalignment in the same manner as in Example 1 in which the change in diameter in the optical axis direction is symmetric with respect to the optical axis in a plane perpendicular to the optical axis. Further, due to the coincidence between the intensity profile on the side (b) on the SMF side and the MFD, a wider tolerance width than that of the first embodiment can be obtained on the side (b) side.
 図17は、実施形態の立体テーパ形状のSSCと、比較例としてフォトリソグラフィ法による平面テーパ形状のSSCの構成の相違を示す模式図である。図17(A)に示すように、実施形態では図4の方法(モスキート法)により、ガウス型の屈折率分布を有するSSCを実現している。 FIG. 17 is a schematic diagram showing a difference in configuration between the solid tapered SSC of the embodiment and a planar tapered SSC by a photolithography method as a comparative example. As shown in FIG. 17A, in the embodiment, an SSC having a Gaussian refractive index distribution is realized by the method of FIG. 4 (mosquito method).
 これに対し、図17(B)のように一般的なフォトリソグラフィ法でテーパ形状のポリマー光導波路型のSSCを作製すると、幅方向だけが縮小され、高さは一定の平面テーパ型のSSCとなる。フォトリソグラフィ法では、均一屈折率のコアとなり、ガウス分布状の屈折率分布を得ることは困難である。 On the other hand, when a tapered polymer optical waveguide type SSC is manufactured by a general photolithography method as shown in FIG. 17B, only the width direction is reduced, and a flat taper type SSC having a constant height is obtained. Become. In the photolithography method, a core having a uniform refractive index is obtained, and it is difficult to obtain a Gaussian refractive index distribution.
 図18は、実施形態の立体テーパ形状のSSCと、従来法による平面テーパ形状のSSCの比較結果を示す図である。図18(A)は、実施形態の方法で作製されたSSCの強度プロファイルと結合損失のシミュレーション結果を示す。図18(B)は、一般的なフォトリソグラフィ法で作製されたSSCの強度プロファイルと結合損失のシミュレーション結果を示す。 FIG. 18 is a diagram showing a comparison result between the solid tapered SSC of the embodiment and the planar tapered SSC according to the conventional method. FIG. 18A shows a simulation result of the intensity profile and coupling loss of the SSC produced by the method of the embodiment. FIG. 18B shows a simulation result of an intensity profile and coupling loss of an SSC manufactured by a general photolithography method.
 図18(A)と図18(B)で、MFDに着目すると、SSCのサイド(b)とSMFでMFDのサイズは一致している。この結果だけをみると、SSCのサイド(b)側でMFDの大きをSMFに揃えるという効果は同じようにもみえる。 In FIG. 18 (A) and FIG. 18 (B), focusing on the MFD, the SFD side (b) and the SMF have the same MFD size. Looking only at this result, the effect of aligning the size of the MFD to the SMF on the side (b) side of the SSC appears to be the same.
 しかし、強度プロファイルの全体を比較すると、実施形態では、強度分布の傾向がSSCとSMFでほぼ一致しているのに対し、従来法では、強度分布の傾向がMFDを境に反転している。この違いが、結合損失の低減効果の差になって現れている。実施形態の方法ではGI型の(特にガウス型の屈折率分布を持つ)SSCが得られ、光の強度分布が重なり合う面積が大きくなって結合損失を低減することができる。これに対し、従来のフォトリソグラフィ法によると、SSCの径方向に屈折率が一定なSI(Step Index)型の分布になる。SSCの強度分布とSMFの強度分布特性がMFDを境に反転しており、光の強度分布が重なり合う部分の面積が小さくなり、結合損失が大きくなる。このように、図4のモスキート法により作製したSSCの優位性が確認された。 However, when the entire intensity profiles are compared, in the embodiment, the tendency of the intensity distribution is almost the same between SSC and SMF, whereas in the conventional method, the tendency of the intensity distribution is reversed at the MFD. This difference appears as a difference in the effect of reducing the coupling loss. According to the method of the embodiment, a GI type SSC (in particular, having a Gaussian type refractive index distribution) is obtained, and the area where the light intensity distributions overlap is increased, so that the coupling loss can be reduced. On the other hand, according to the conventional photolithography method, an SI (Step Index) type distribution having a constant refractive index in the radial direction of the SSC is obtained. The SSC intensity distribution and the SMF intensity distribution characteristic are reversed with the MFD as a boundary, and the area where the light intensity distribution overlaps is reduced, resulting in an increase in coupling loss. Thus, the superiority of SSC produced by the mosquito method of FIG. 4 was confirmed.
 以上、まとめると、実施形態の方法により作製した立体テーパ(または円錐台)のSSCでは、両端の間でMFDが断熱的に大きく変化し、特に実施例2では、MFDが3.9μmから7.2μmまで拡大される。未硬化のクラッド内で、所定の時間内にニードルを8mm/s以下の速度から40~100mm/sまで加速することで、所望の立体テーパ形状のポリマー導波路を形成して、エバネッセント光の漏れ出しの効果を達成することができる。 In summary, in the solid taper (or truncated cone) SSC produced by the method of the embodiment, the MFD greatly changes in adiabatic manner between both ends. In particular, in Example 2, the MFD is changed from 3.9 μm to 7. Enlarged to 2 μm. In a non-cured clad, the needle is accelerated from a speed of 8 mm / s or less to 40 to 100 mm / s within a predetermined time, thereby forming a desired three-dimensional taper-shaped polymer waveguide to leak evanescent light. The effect of taking out can be achieved.
 実施形態のSSCと汎用SMFとのミスアライメントトレランスは±2.1μm以上であり、SM光導波路と汎用SMFの軸ずれ特性と同等の値が得られる。 The misalignment tolerance between the SSC of the embodiment and the general-purpose SMF is ± 2.1 μm or more, and a value equivalent to the axis deviation characteristic of the SM optical waveguide and the general-purpose SMF can be obtained.
 実施形態のSSCの挿入損失は十分に低く、特に実施例2では1550nm波長において2.34dBという低い値に抑えることができる。 The insertion loss of the SSC of the embodiment is sufficiently low, and particularly in Example 2, it can be suppressed to a low value of 2.34 dB at a wavelength of 1550 nm.
 実施形態のSSCとその作製方法は、サイズの異なる光伝送路同士を高効率、低損失で結合することができ、かつ高い軸ずれ耐性と設計自由度を有する。このようなSSCは、多チャンネルの光通信にも適用できる。たとえば、光トランシーバの送受信フロントエンドで、4チャンネル、8チャンネル等のSi光導波路が形成されたシリコンチップのエッジに、実施形態のポリマー導波路で形成されたSSCを各チャネルに対応して配置し、外部光配線であるSMFに接続することができる。実施形態のSSCは、特に光送信フロントエンドに適用されたときに非常に高効率かつ低損失の光結合を実現することができる。 The SSC of the embodiment and the manufacturing method thereof can couple optical transmission lines of different sizes with high efficiency and low loss, and have high tolerance for misalignment and high design freedom. Such SSC can also be applied to multi-channel optical communication. For example, the SSC formed of the polymer waveguide of the embodiment is arranged corresponding to each channel on the edge of a silicon chip where Si optical waveguides such as 4 channels and 8 channels are formed at the transmission / reception front end of the optical transceiver. It can be connected to SMF which is an external optical wiring. The SSC of the embodiment can realize optical coupling with very high efficiency and low loss, particularly when applied to an optical transmission front end.
 この出願は、2016年12月7日に日本国特許庁に出願された特許出願第2016-238038号に基づき、その全内容を含むものである。 This application is based on Patent Application No. 2016-238038 filed with the Japan Patent Office on December 7, 2016, and includes the entire contents thereof.
10 SSC(スポットサイズ変換器)
11 断面(第1の面)
12 断面(第2の面)
14 ポリマー導波路
30 吐出装置
31 ニードル
44 未硬化のクラッド材料
45 コア層
10 SSC (spot size converter)
11 Cross section (first surface)
12 Cross section (second surface)
14 Polymer waveguide 30 Discharge device 31 Needle 44 Uncured clad material 45 Core layer

Claims (9)

  1.  異なるコアサイズの光配線間でビーム径を変換するスポットサイズ変換器において、
     第1のサイズの第1光配線に光学的に接続される第1の面と、
     前記第1のサイズより大きい第2のサイズの第2光配線に光学的に接続される第2の面と、
     前記第1の面から前記第2の面に向かって円錐状に径が小さくなるテーパ型のポリマー導波路と、
    を有することを特徴とするスポットサイズ変換器。
    In a spot size converter that converts the beam diameter between optical wires of different core sizes,
    A first surface optically connected to a first optical wiring of a first size;
    A second surface optically connected to a second optical wiring of a second size larger than the first size;
    A tapered polymer waveguide whose diameter decreases conically from the first surface toward the second surface;
    A spot size converter characterized by comprising:
  2.  前記第1の面での前記ポリマー導波路の径は4~5μm、前記第2の面での前記ポリマー導波路の径は1.8~2.8μmであることを特徴とする請求項1に記載のスポットサイズ変換器。 2. The diameter of the polymer waveguide on the first surface is 4 to 5 μm, and the diameter of the polymer waveguide on the second surface is 1.8 to 2.8 μm. The listed spot size converter.
  3.  波長1550nmで前記第1の面でのモードフィールド径は3.8~3.9μm、前記第2の面でのモードフィールド径は、5.6~8.0μmであることを特徴とする請求項1または2に記載のスポットサイズ変換器。 The mode field diameter at the first surface at a wavelength of 1550 nm is 3.8 to 3.9 μm, and the mode field diameter at the second surface is 5.6 to 8.0 μm. The spot size converter according to 1 or 2.
  4.  前記ポリマー導波路の前記第1の面はシリコン細線導波路に接続され、前記第2の面は光ファイバに接続されることを特徴とする請求項1~3のいずれか1項に記載のスポットサイズ変換器。 The spot according to any one of claims 1 to 3, wherein the first surface of the polymer waveguide is connected to a silicon fine wire waveguide, and the second surface is connected to an optical fiber. Size converter.
  5.  前記ポリマー導波路のコア部はガウス分布形状の屈折率分布を有することを特徴とする請求項1~4のいずれか1項に記載のスポットサイズ変換器。 5. The spot size converter according to claim 1, wherein the core portion of the polymer waveguide has a refractive index distribution having a Gaussian distribution shape.
  6.  第1光配線が形成された基板の上に未硬化のクラッド層を形成するステップと、
     前記クラッド層に注入針を指し込み、前記注入針から前記クラッド層の中に未硬化のコア材料を注入しながら、前記注入針を所定の方向に移動速度と吐出量の少なくとも一方を変化させて移動するステップと、
     所定の位置で前記クラッド層から前記注入針を抜き取った後に前記コア材料を硬化させて、一方の端部が前記第1光配線と接続されているテーパ型のポリマー導波路を形成するステップと、
     前記ポリマー導波路の前記第1光配線と反対側の端部を、前記第1光配線よりもコアサイズの大きい第2光配線と光学的に接続するステップと、
    を含むことを特徴とするスポットサイズ変換器の製造方法。
    Forming an uncured cladding layer on the substrate on which the first optical wiring is formed;
    While injecting an injection needle into the cladding layer and injecting an uncured core material from the injection needle into the cladding layer, the injection needle is changed in at least one of a moving speed and a discharge amount in a predetermined direction. A moving step,
    Curing the core material after extracting the injection needle from the cladding layer at a predetermined position to form a tapered polymer waveguide having one end connected to the first optical wiring;
    Optically connecting an end of the polymer waveguide opposite to the first optical wiring to a second optical wiring having a larger core size than the first optical wiring;
    A method for manufacturing a spot size converter.
  7.  前記第2光配線との接続面における前記ポリマー導波路の径が、前記第1光配線の光出射位置での前記ポリマー導波路の径よりも小さくなるように、前記注入針の移動速度及び/または吐出量を変化させることを特徴とする請求項6に記載のスポットサイズ変換器の製造方法。 The moving speed of the injection needle and / or the diameter of the polymer waveguide at the connection surface with the second optical wiring is smaller than the diameter of the polymer waveguide at the light exit position of the first optical wiring. Or the discharge amount is changed, The manufacturing method of the spot size converter of Claim 6 characterized by the above-mentioned.
  8.  前記注入針の移動速度を、所定の時間内に8mm/秒以下の速度から40~100mm/秒の速度に加速することを特徴とする請求項6または7に記載のスポットサイズ変換器の製造方法。 8. The method of manufacturing a spot size converter according to claim 6, wherein the moving speed of the injection needle is accelerated from a speed of 8 mm / second or less to a speed of 40 to 100 mm / second within a predetermined time. .
  9.  前記未硬化のクラッド層は、シリコン細線導波路が形成された基板上に形成され、
     前記ポリマー導波路の前記シリコン細線導波路と反対側の端部は、光ファイバに接続されることを特徴とする請求項6~8のいずれか1項に記載のスポットサイズ変換器の製造方法。
    The uncured cladding layer is formed on a substrate on which a silicon fine wire waveguide is formed,
    The method for manufacturing a spot size converter according to any one of claims 6 to 8, wherein an end of the polymer waveguide opposite to the silicon fine wire waveguide is connected to an optical fiber.
PCT/JP2017/044102 2016-12-07 2017-12-07 Spot size converter and manufacturing method therefor WO2018105712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016238038A JP2018097012A (en) 2016-12-07 2016-12-07 Spot size converter, and method for manufacturing the same
JP2016-238038 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105712A1 true WO2018105712A1 (en) 2018-06-14

Family

ID=62490985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044102 WO2018105712A1 (en) 2016-12-07 2017-12-07 Spot size converter and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2018097012A (en)
WO (1) WO2018105712A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105565A (en) * 2017-01-27 2019-09-17 각고호우징 게이오기주크 Manufacturing method of GI optical waveguide
JP7309142B2 (en) * 2019-02-13 2023-07-18 慶應義塾 Optical waveguide device, optical module, laser device, and method for manufacturing optical waveguide device
JP7371556B2 (en) * 2020-03-31 2023-10-31 住友大阪セメント株式会社 Optical waveguide device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473721A (en) * 1994-04-13 1995-12-05 Photonic Integration Research, Inc. Multi-mode optical circuit to couple light between various optical elements and method of fabricating same
JP2002228863A (en) * 2001-02-06 2002-08-14 Kddi Submarine Cable Systems Inc Optical coupling structure
WO2013002013A1 (en) * 2011-06-27 2013-01-03 学校法人 慶應義塾 Optical waveguide and method for manufacturing same
JP2015135409A (en) * 2014-01-17 2015-07-27 富士通株式会社 Polarization separation element
JP2015206969A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 Spot size conversion element and semiconductor device
US20160299294A1 (en) * 2013-12-20 2016-10-13 Huawei Technologies Co., Ltd. Method and Apparatus for Coupling Optical Waveguide to Single-Mode Fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473721A (en) * 1994-04-13 1995-12-05 Photonic Integration Research, Inc. Multi-mode optical circuit to couple light between various optical elements and method of fabricating same
JP2002228863A (en) * 2001-02-06 2002-08-14 Kddi Submarine Cable Systems Inc Optical coupling structure
WO2013002013A1 (en) * 2011-06-27 2013-01-03 学校法人 慶應義塾 Optical waveguide and method for manufacturing same
US20160299294A1 (en) * 2013-12-20 2016-10-13 Huawei Technologies Co., Ltd. Method and Apparatus for Coupling Optical Waveguide to Single-Mode Fiber
JP2015135409A (en) * 2014-01-17 2015-07-27 富士通株式会社 Polarization separation element
JP2015206969A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 Spot size conversion element and semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARWICZ ET AL.: "Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances", IEEE PHOTONICS JOURNAL, vol. 6, no. 4, 18 June 2014 (2014-06-18), pages 1 - 18, XP011552582 *
ISHIGURE, TAKAAKI: "Challenges for Innovative Optical Wiring Realized with the Mosquito Method", PROCEEDINGS OF THE 2016 IEICE GENERAL CONFERENCE ELECTRONICS 2, 1 March 2016 (2016-03-01), pages SS-35 - SS-36 *
ISHIGURE, TAKAAKI: "Fabrication of polymer optical waveguide using the Mosquito method and its application to high-bandwidth-density on-board optical interconnects", PROCEEDINGS OF THE 2014 IEICE GENERAL CONFERENCE ELECTRONICS 1, 4 March 2014 (2014-03-04), pages SS-18 - SS-19 *

Also Published As

Publication number Publication date
JP2018097012A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US10345524B2 (en) Optical edge coupler with controllable mode field for photonic chip
CN105209947B (en) The coupling process and coupling device of optical waveguide and single mode optical fiber
CN108020889B (en) Coupler and optical module
US7088890B2 (en) Dual “cheese wedge” silicon taper waveguide
CN102844695B (en) Multimode optical coupler interfaces
CN107003488B (en) Optical receptacle and optical transceiver
JP6360911B2 (en) Suspended ridge oxide waveguide
CN106461864A (en) Grating-coupler assembly with small mode-field diameter for photonic-integrated-circuit systems
JPWO2011036818A1 (en) Optical coupling device and optical multiplexing / demultiplexing device
CN110646881B (en) Three-dimensional optical waveguide transition access device and preparation method thereof
WO2018105712A1 (en) Spot size converter and manufacturing method therefor
CN210666088U (en) Silicon optical mode spot mode converter
US20160306117A1 (en) Tapered polymer waveguide
JP2020501198A (en) Multi-channel optical coupler array
CN105339825A (en) Optical receptacle
US20190204503A1 (en) Resin optical waveguide and composite optical waveguide
CN110716262A (en) Silicon optical mode spot mode converter and manufacturing method thereof
US7120335B2 (en) Vertically and laterally confined 3D optical coupler
Yakabe et al. Multi-channel single-mode polymer waveguide fabricated using the Mosquito method
TW201710723A (en) Resin optical waveguide
Yasuhara et al. Polymer waveguide based spot-size converter for low-loss coupling between Si photonics chips and single-mode fibers
CN108089263A (en) A kind of multi-mode-single mode hybrid optical splitter and preparation method thereof
US11886006B2 (en) Polymer optical waveguide and composite optical waveguide
JP2016151651A (en) Optical fiber and optical transmission system
US20220043221A1 (en) Multichannel optical coupler array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878233

Country of ref document: EP

Kind code of ref document: A1