WO2022264208A1 - 光伝送装置、光伝送方法及び記録媒体 - Google Patents

光伝送装置、光伝送方法及び記録媒体 Download PDF

Info

Publication number
WO2022264208A1
WO2022264208A1 PCT/JP2021/022518 JP2021022518W WO2022264208A1 WO 2022264208 A1 WO2022264208 A1 WO 2022264208A1 JP 2021022518 W JP2021022518 W JP 2021022518W WO 2022264208 A1 WO2022264208 A1 WO 2022264208A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical transmission
optical
monitor
transmission device
Prior art date
Application number
PCT/JP2021/022518
Other languages
English (en)
French (fr)
Inventor
吉朗 佐藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023529167A priority Critical patent/JPWO2022264208A5/ja
Priority to PCT/JP2021/022518 priority patent/WO2022264208A1/ja
Publication of WO2022264208A1 publication Critical patent/WO2022264208A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal

Definitions

  • the present invention relates to an optical transmission device, an optical transmission method, and a recording medium. More particularly, the present invention relates to APR (Automatic Power Reduction) control for automatically reducing the output of an optical amplifier provided in an optical transmission device when an optical transmission line connected to the optical transmission device fails.
  • APR Automatic Power Reduction
  • the optical transmission device When the optical fiber of the optical transmission line that connects two optical transmission devices performing two-way communication is broken, the optical transmission device activates the APR control function to ensure the safety of maintenance workers at the broken point. You may be prepared. APR control automatically lowers the output power of the signal light sent to the disconnected optical fiber, or stops the output of the signal light.
  • frames of supervisory signals such as 1.544 Mb/s (megabits per second) are encoded to transmit information for APR control between optical transmission devices.
  • Supervisory signals are also called OSC (Optical Supervisory Channel) signals.
  • supervisory signals contain a lot of information used for purposes other than APR control. For this reason, an optical transmission apparatus that receives a supervisory signal decodes the frame of the supervisory signal, and executes APR control when information necessary for APR control is decoded from the supervisory signal.
  • Patent Literatures 1 and 2 describe general APR control in which, upon detection of main signal interruption or supervisory signal interruption, this is notified to the opposite device and the output of the optical amplifier is reduced.
  • the supervisory control circuit of a general land optical transmission system includes an encoding circuit and a decoding circuit to transmit many kinds of supervisory control signals. Signals for APR control are used together with other supervisory control signals. Therefore, in an optical transmission system in which only signals for APR control are required as supervisory control signals, supervisory control circuits used in general land optical transmission systems are added. When applied, the functions of the monitoring and control circuit become more complicated than necessary, which poses a problem of cost increase.
  • An object of the present invention is to provide a technique for realizing an APR control function of an optical transmission system with a simple configuration.
  • the optical transmission device of the present invention is an optical amplification means for amplifying the first signal light; supervisory light generating means for generating the first supervisory light; an optical multiplexing means for combining the output of the optical amplifying means and the output of the supervisory light generating means and outputting the result to a first optical transmission line; optical demultiplexing means for separating light including a second signal light and a second monitor light and input from a second optical transmission line into the second signal light and the second monitor light; , control means for controlling the optical amplifying means and the monitoring light generating means based on the reception state of the second signal light and the duration of emission and dimming of the second monitoring light; Prepare.
  • the optical transmission method of the present invention is amplifying the first signal light; generating a first monitor light; combining the amplified first signal light and the first monitor light and outputting to a first optical transmission line; separating light including a second signal light and a second monitor light and input from a second optical transmission line into the second signal light and the second monitor light; controlling the amplification of the first signal light and the generation of the first monitor light based on the reception state of the second signal light and the duration of light emission and dimming of the second monitor light; , It is characterized by
  • the recording medium of the present invention is an optical amplification means for amplifying the first signal light; supervisory light generating means for generating the first supervisory light; an optical multiplexing means for combining the output of the optical amplifying means and the output of the supervisory light generating means and outputting the result to a first optical transmission line; optical demultiplexing means for separating light including a second signal light and a second monitor light and input from a second optical transmission line into the second signal light and the second monitor light; , to the computer of the optical transmission device comprising a program for executing a procedure for controlling the optical amplifying means and the monitoring light generating means based on the reception state of the second signal light and the duration of emission and dimming of the second monitoring light; A recording medium on which data is recorded.
  • the present invention can realize the APR control function of an optical transmission system with a simple configuration.
  • FIG. 1 is a block diagram showing a configuration example of an optical transmission system 1;
  • FIG. 2 is a diagram showing an example of a bidirectional failure in the optical transmission system 1;
  • FIG. 2 is a block diagram showing an example of the detailed configuration of the optical transmission devices 100 and 200;
  • FIG. 4 is a timing chart illustrating an example of APR control when a bidirectional failure occurs;
  • FIG. 10 is a timing chart illustrating an example of APR control during recovery from a bidirectional failure;
  • FIG. 3 is a diagram showing an example of a one-way failure in the optical transmission system 1;
  • FIG. 4 is a timing chart illustrating an example of APR control when a one-way failure occurs; 4 is a timing chart illustrating an example of APR control when a one-way failure occurs; 4 is a timing chart illustrating an example of APR control at the time of one-way failure recovery; 4 is a timing chart illustrating an example of APR control at the time of one-way failure recovery; FIG. 4 is a diagram showing an example of operations in APR control and conditions under which the operations are executed; FIG. 4 is a diagram showing an output form of monitor light and an operation example of an optical switch at that time; FIG. 5 is a diagram showing an example of conditions for determining whether received monitor light is continuous light or pulsed light.
  • FIG. 1 is a block diagram showing a configuration example of an optical transmission system 1 according to the first embodiment of the present invention.
  • the optical transmission system 1 includes an optical transmission device 100 and an optical transmission device 200 .
  • the optical transmission device 100 and the optical transmission device 200 are connected by two optical transmission lines 20 and 30 .
  • the optical transmission device 100 includes an optical amplifier 111 , a light source 112 , an optical switch 113 , an optical multiplexer 114 , an optical demultiplexer 122 , a signal light monitor 123 , a supervisory light monitor 125 and a controller 180 .
  • the optical transmission device 200 includes an optical amplifier 211 , a light source 212 , an optical switch 213 , an optical multiplexer 214 , an optical demultiplexer 222 , a signal light monitor 223 , a supervisory light monitor 225 and a controller 280 .
  • the signal light monitor 123 and the supervisory light monitor 125 may be included in the controller 180 .
  • the signal light monitor 223 and the supervisory light monitor 225 may be included in the controller 280 .
  • the optical amplifier 111 amplifies signal light transmitted from the optical transmission device 100 to the optical transmission device 200 (hereinafter referred to as “downlink signal light”).
  • Downlink signal light is an optical signal containing user data.
  • An optical signal in which optical carriers in the 1550 nm band are wavelength-multiplexed may be used as the signal light.
  • the light source 112 is a light source for monitoring light (hereinafter referred to as “downstream monitoring light”) transmitted from the optical transmission device 100 to the optical transmission device 200 .
  • a semiconductor laser with a center wavelength of 1490 nm or 1510 nm may be used as the light source 112 .
  • the wavelength of the light source 112 does not overlap with the wavelength of downstream signal light.
  • the light source 112 may be provided outside the optical transmission device 100 .
  • Optical switch 113 transmits or blocks the light generated by light source 112 .
  • An optical modulator may be used instead of the optical switch 113 .
  • the light transmitted through the optical switch 113 is input to the optical multiplexer 114 as downstream monitor light.
  • the optical switch 113 can output the downward monitoring light as continuous light or output it as pulsed light having a predetermined light emission time and dimming time under the control of the control unit 180 .
  • “dimming” refers to a state in which the power of pulsed light is lower than that of "emission”. That is, “dimming" includes a state in which the pulsed light is extinguished.
  • the downstream monitoring light may be continuous light or pulsed light whose optical output changes with time.
  • the optical multiplexer 114 multiplexes the downstream signal light output from the optical amplifier 111 and the downstream monitoring light output from the optical switch 113 and outputs the combined signal to the optical transmission line 20 . Since the wavelength of the downstream signal light and the wavelength of the downstream monitoring light are different, a WDM (Wavelength Division Multiplexing) filter can be used as the optical multiplexer 114 .
  • WDM Widelength Division Multiplexing
  • the optical demultiplexer 122 wavelength-separates the signal light (hereinafter referred to as "upstream signal light") transmitted by the optical transmission device 200 and the monitor light (hereinafter referred to as “upstream monitor light”). Since the wavelength of the upstream signal light and the wavelength of the upstream monitoring light are different, a WDM filter can be used as the optical demultiplexer 122 .
  • the upstream signal light separated by the optical demultiplexer 122 is input to the signal light monitor 123 , and the separated monitor light is input to the monitor light monitor 125 .
  • the signal light monitor 123 outputs the reception state of the upstream signal light in the optical transmission device 100 to the control unit 180 .
  • the monitor light monitor 125 outputs the reception state of the upstream monitor light in the optical transmission device 100 to the controller 180 .
  • the signal light monitor 123 and the monitoring light monitor 125 each include a PD (Photo Diode).
  • the signal light monitor 123 outputs the upstream signal light received by the optical transmission device 100 as an optical signal, and outputs an electric signal having an amplitude proportional to the intensity of the upstream signal light to the control unit 180 .
  • the optical transmission device 100 may include an optical amplifier 121 that amplifies the upstream signal light output by the signal light monitor 123 .
  • the optical amplifier 121 may amplify the input upstream optical signal and output it to another optical transmission device. However, the optical amplifier 121 is not essential for the optical transmission device 100 . Also, the monitor light monitor 125 outputs to the control unit 180 an electrical signal having an amplitude proportional to the intensity of the upstream monitor light received by the optical transmission device 100 .
  • the control unit 180 judges the reception state of the upstream signal light and the upstream supervisory light based on the amplitude of the electrical signals input from the signal light monitor 123 and the supervisory light monitor 125, and based on these determination results, controls the optical amplifier 111. and controls the optical switch 113 .
  • the optical amplifier 111 serves as optical amplification means for amplifying the first signal light (downlink signal light).
  • the optical switch 113 serves as supervisory light generating means for generating the first supervisory light (downward supervisory light).
  • the optical multiplexer 114 serves as optical multiplexing means for combining the output of the optical amplifier 111 and the output of the optical switch 113 and outputting the result to the first optical transmission line (optical transmission line 20).
  • the optical demultiplexer 122 includes second signal light (upstream signal light) and second supervisory light (upstream supervisory light) input from the second optical transmission line (optical transmission line 30). It serves as optical demultiplexing means for separating light into a second signal light and a second monitor light. Based on the reception state of the second signal light (uplink signal light) and the duration of light emission and dimming of the second monitor light (uplink monitor light), the control unit 180 controls the optical amplifying means (light It serves as control means for controlling the amplifier 111) and the monitoring light generation means (optical switch 113).
  • the optical transmission device 200 has the same configuration as the optical transmission device 100. That is, the optical amplifier 211 amplifies the signal light transmitted from the optical transmission device 200 to the optical transmission device 100 (hereinafter referred to as "upstream signal light”).
  • the upstream signal light is an optical signal containing user data.
  • the light source 212 is a light source of monitor light (hereinafter referred to as “upstream monitor light”) transmitted from the optical transmission device 200 to the optical transmission device 100 .
  • the wavelength of the light source 212 does not overlap with the wavelength of the upstream signal light.
  • the light source 212 may be provided outside the optical transmission device 200 .
  • Optical switch 213 transmits light generated by light source 212 for a predetermined period of time or blocks it for a predetermined period of time.
  • An optical modulator may be used instead of the optical switch 213 .
  • the light transmitted through the optical switch 213 is input to the optical multiplexer 214 as upstream monitor light.
  • the optical switch 213 can generate the upstream monitoring light as continuous light or pulsed light under the control of the controller 280 .
  • the optical multiplexer 214 multiplexes the upstream signal light output from the optical amplifier 211 and the upstream monitoring light output from the optical switch 213 and outputs the combined signal to the optical transmission line 30 .
  • a WDM filter can be used as the optical multiplexer 214 because the wavelength of the upstream signal light and the wavelength of the upstream monitoring light are different.
  • the optical demultiplexer 222 wavelength-demultiplexes the downstream signal light and the downstream monitoring light transmitted by the optical transmission device 100 . Since the wavelength of the downstream signal light and the wavelength of the downstream monitoring light are different, a WDM filter can be used as the optical demultiplexer 222 .
  • the downstream signal light separated by the optical demultiplexer 222 is input to the signal light monitor 223 , and the separated monitor light is input to the monitor light monitor 225 .
  • the signal light monitor 223 outputs the reception state of the downstream signal light in the optical transmission device 200 to the control unit 280 .
  • the monitor light monitor 225 outputs the reception state of the downlink monitor light in the optical transmission device 200 to the controller 280 .
  • the signal light monitor 223 and supervisory light monitor 225 each include a PD.
  • the signal light monitor 223 outputs the downstream signal light received by the optical transmission device 200 and outputs an electric signal having an amplitude proportional to the intensity of the downstream signal light to the control unit 280 .
  • the optical transmission device 200 may include an optical amplifier 221 that amplifies the downstream signal light output by the signal light monitor 223 .
  • the optical amplifier 221 may amplify the input downstream optical signal and output it to another optical transmission device. However, the optical amplifier 221 is not essential for the optical transmission device 200 .
  • the monitor light monitor 225 outputs to the controller 280 an electrical signal having an amplitude proportional to the intensity of the downlink monitor light received by the optical transmission device 200 .
  • the control unit 280 determines the reception state of the downstream signal light and the downstream monitoring light based on the amplitude of the electrical signals input from the signal light monitor 223 and the monitoring light monitor 225, and further controls the optical amplifier 211 based on the determination result. and controls the optical switch 213 .
  • FIG. 2 is a diagram showing an example of a bidirectional failure in the optical transmission system 1.
  • FIG. 2 With reference to FIG. 2, an example of APR control when an optical fiber failure occurs at both the failure point 21 of the optical transmission line 20 and the failure point 31 of the optical transmission line 30 will be described.
  • the control unit 180 of the optical transmission device 100 and the control unit 280 of the optical transmission device 200 are arranged so that both the downlink supervisory light and the uplink supervisory light are continuous light in a normal state before a fault occurs. , control optical switches 113 and 213, respectively.
  • the optical transmission apparatus that receives the monitor light judges that the optical transmission line is normal when the received monitor light is continuous light, and determines that the received monitor light is input interruption or pulsed light. It is determined that there is a fault in the optical transmission line. Since the downstream monitor light does not pass through the optical amplifier 111, it is output to the optical transmission line 20 even if the optical output of the optical amplifier 111 is stopped.
  • the controller 180 stops (shuts down) the optical output of the optical amplifier 111.
  • the downstream monitor light is changed from continuous light to pulsed light. Since the downstream monitor light does not pass through the optical amplifier 111, it is output to the optical transmission line 20 even if the optical amplifier 111 is shut down. However, due to the failure at the failure point 21, neither the downstream signal light nor the downstream monitoring light is received by the optical transmission device 200.
  • APR control is executed by automatically stopping the output of signal light from the optical transmission devices 100 and 200 at both ends. .
  • the signal light monitor 123 of the optical transmission device 100 keeps the upstream signal light off, while the monitor light monitor 125 does not receive the pulse light.
  • Upstream supervisory light is input.
  • the control unit 180 determines the time from OFF to ON (from dimming to light emission) and the time from ON to OFF (from light emission to dimming) of the upstream monitoring light, and confirms reception of the first pulse of the upstream monitoring light.
  • the downstream monitor light is changed from pulsed light to continuous light.
  • the optical transmission device 200 determines that the optical transmission line 30 has become normal, and automatically cancels the shutdown of the optical amplifier 211. do.
  • the power at the time of emission of the upstream monitoring light and the power at the time of dimming in the output of the optical transmission device 200 are distinguished between “light emission” and “dimming” when the upstream monitoring light is received in the optical transmission device 100. It may be defined as possible power. Similarly, the power at the time of emission and the power at the time of dimming of the downstream monitoring light in the output of the optical transmission device 100 are the same when the optical transmission device 200 receives the downstream monitoring light. It may be defined as the distinguishable power.
  • the signal light monitor 223 of the optical transmission device 200 keeps the downstream signal light off, while the monitor light monitor 225 Downlink monitor light of pulsed light is input.
  • the control unit 280 determines the time from off to on of the downlink monitoring light and the time from on to off, and when the reception of the first pulse of the downlink monitoring light is confirmed, changes the uplink monitoring light from pulsed light to continuous light. .
  • the optical transmission device 100 determines that the optical transmission line 20 has become normal, and automatically cancels the shutdown of the optical amplifier 111. do.
  • the optical transmission devices 100 and 200 at both ends can automatically cancel the shutdown of the optical amplifiers 111 and 211.
  • the optical transmission devices 100 and 200 can execute and cancel APR control with a simple configuration without requiring an encoding circuit or a decoding circuit for the monitor control signal.
  • FIG. 3 is a block diagram showing an example of the detailed configuration of the optical transmission devices 100 and 200 explained in FIGS. 1 and 2.
  • the control unit 180 of the optical transmission device 100 described with reference to FIG. A circuit 133 and an optical amplifier control circuit 134 are provided. These circuits included in the control unit 180 may be realized by electric circuits.
  • the signal light detection circuit 124 determines whether signal light is being received from the optical transmission line 30 based on the intensity of the upstream signal light detected by the signal light monitor 123 .
  • the monitor light detection circuit 126 determines whether monitor light is being received from the optical transmission line 30 based on the intensity of the upstream monitor light detected by the monitor light monitor 125 .
  • the determination results of the signal light detection circuit 124 and the monitor light detection circuit 126 are output to both the monitor light output determination circuit 131 and the signal light output determination circuit 132 .
  • the monitoring light detection circuit 126 acquires the emission time and dimming time of the upstream monitoring light based on the temporal change in the intensity of the upstream monitoring light.
  • the acquisition result of the light emission time and dimming time of the upstream monitor light is output to the monitor light determination circuit 127 .
  • the monitor light determination circuit 127 determines whether the upstream monitor light is continuous light or pulse light based on the emission time and dimming time of the upstream monitor light, and outputs the result to the monitor light output determination circuit 131 . do.
  • the monitor light output determination circuit 131 determines the monitor light output from the optical transmission device 100 to the optical transmission line 20 as continuous light. or pulse light.
  • the signal light output determination circuit 132 determines whether to operate the optical amplifier 111 normally or to stop (shut down) based on the inputs from the signal light detection circuit 124 and the monitor light detection circuit 126 .
  • the optical switch control circuit 133 controls the optical switch 113 based on the determination result of the monitor light output determination circuit 131 .
  • the optical amplifier control circuit 134 operates or shuts down the optical amplifier 111 based on the determination result of the signal light output determination circuit 132 .
  • the controller 280 of the optical transmission device 200 includes a signal light detection circuit 224, a supervisory light detection circuit 226, a supervisory light determination circuit 227, a supervisory light output determination circuit 231, a signal light output determination circuit 232, an optical switch control circuit 233, and an optical amplifier.
  • a control circuit 234 is provided.
  • the configuration of the controller 280 is similar to that of the controller 180 .
  • blocks having the same names as those in the optical transmission device 100 have corresponding functions in the optical transmission device 200, so detailed description of the control unit 280 is omitted.
  • the fault location of the optical transmission line 20 is indicated by the fault point 21
  • the fault location of the optical transmission line 30 is indicated by the fault point 31 .
  • Optical signals propagating on optical transmission lines 20 and 30 are cut at fault points 21 and 31, respectively. APR control when a transmission line failure occurs will be described below with reference to a timing chart.
  • FIG. 4 and 5 are timing charts for explaining an example of APR control of each unit in the optical transmission devices 100 and 200 when a bidirectional failure occurs.
  • the horizontal axis represents time
  • the vertical axis represents the state of each part of the optical transmission devices 100 and 200.
  • FIG. A vertical dashed line indicates the time of failure occurrence or recovery.
  • these timing charts show temporal changes in the state of each part in the optical transmission devices 100 and 200 after the occurrence of failure at the failure points 21 and 31 or after restoration.
  • optical input of signal light indicates the power of input light to the signal light monitor 123 in FIG.
  • Signal light input determination indicates the determination result (normal or interrupted) of signal light input in the signal light detection circuit 124 .
  • Optical output of signal light indicates the power of the output light of the optical amplifier 111 .
  • optical output of monitor light indicates the power of the output light of the optical switch 113 .
  • optical input of supervisory light indicates the power of the input light of the supervisory light monitor 125 .
  • Monitor light input determination indicates the determination result (normal or interrupted) of the presence or absence of monitor light input in the monitor light detection circuit 126 .
  • Detection of pulsed light indicates the detection result of pulsed light in the monitor light determination circuit 127 (with or without pulsed light).
  • Monitor light output form indicates the determination result of the monitor light output determination circuit 131 as to whether to output continuous light or a pulse signal.
  • each item indicated by [1] to [8] in FIGS. 7 to 10, which will be described later, also indicates the same content. Also, since the function of each part of the optical transmission device 100 is the same as that of the optical transmission device 200, these timing charts will also be used when explaining the operation of the optical transmission device 200 hereinafter.
  • FIG. 11 shows an example of the operation in APR control and the conditions under which the operation is executed.
  • FIG. 12 shows an output form of monitor light and an operation example of the optical switches 113 and 213 at that time.
  • FIG. 13 shows an example of conditions for determining whether the received monitor light is continuous light or pulsed light in the monitor light determination circuit 127 .
  • the control units 180 and 280 may have a storage unit, and the operations and conditions of FIGS. 11 to 13 may be stored as data in the storage unit.
  • the data in the storage section is referred to by the circuits of each section of the optical transmission devices 100 and 200 .
  • the signal light output determination circuit 132 determines to shut down the optical amplifier 111 according to the condition 501 in FIG. Then, the signal light output determination circuit 132 outputs an instruction to shut down the optical amplifier 111 to the optical amplifier control circuit 134 .
  • the optical amplifier control circuit 134 shuts down the optical amplifier 111 based on this instruction (4-c1).
  • the optical amplifier control circuit 134 may shut down the optical amplifier 111 by stopping the supply of pumping light to the optical amplifier 111 .
  • the monitor light output determination circuit 131 determines that the downstream monitor light should be pulsed light.
  • the monitor light output determination circuit 131 outputs to the optical switch control circuit 133 an instruction to change the downstream monitor light to pulse light (4-c2).
  • the optical switch control circuit 133 controls the optical switch 113 so that the downward monitoring light becomes pulsed light (4-c3).
  • Pulsed light is a light pulse train having a predetermined light emission time and dimming time. In this embodiment, the pulsed light is initially dimmed for 10 seconds, and then repeatedly emitted for 3 seconds and dimmed for 10 seconds (condition 602 in FIG. 12).
  • the pulsed light (downstream monitor light) output from the optical switch 113 is input to the optical multiplexer 114 . Since the downstream monitoring light does not pass through the optical amplifier 111, the downstream monitoring light is transmitted to the optical transmission line 20 via the optical multiplexer 114 even if the optical amplifier 111 is shut down. However, since the optical transmission line 20 has been cut by the failure, the downstream monitoring light does not reach the optical transmission device 200 .
  • the optical transmission device 200 also operates in the same manner as the optical transmission device 100. That is, in the optical transmission apparatus 200, the monitor light output determination circuit 231 and the signal light output determination circuit 232 are notified that the input interruption of the downstream signal light and the input interruption of the downstream monitor light have been detected.
  • the signal light output determination circuit 232 outputs an instruction to shut down the optical amplifier 211 to the optical amplifier control circuit 234 .
  • the optical amplifier control circuit 234 shuts down the optical amplifier 211 according to this instruction.
  • the monitor light output determination circuit 231 outputs to the optical switch control circuit 233 an instruction to set the downstream monitor light to pulse light.
  • the optical switch control circuit 233 controls the optical switch 213 so that the upstream monitor light becomes pulsed light that meets the condition 602 in FIG.
  • the optical transmission devices 100 and 200 shut down the optical amplifiers 111 and 211 when a failure occurs in the optical transmission lines 20 and 30. That is, APR control is executed in the optical transmission system 1 .
  • the restoration (APR restoration) operation of the APR control of the optical transmission device 100 after restoration from the failure of the optical transmission lines 20 and 30 will be described.
  • the optical amplifiers 111 and 211 are shut down immediately after the failure of the optical transmission lines 20 and 30 is recovered. Therefore, the upstream signal light is not detected by the signal light monitor 123 of the optical transmission device 100 .
  • the supervisory light monitor 125 detects the upstream supervisory light as light whose intensity changes in a pulsed manner (5-a1, 5-b1, 5-c1 in FIG. 5).
  • the monitor light determination circuit 127 detects the light emission time and dimming time of the pulsed light received by the monitor light monitor 125 and outputs the detection results to the monitor light output determination circuit 131 .
  • the monitor light output determination circuit 131 controls the optical switch 113 based on the input information and the conditions shown in FIGS. Specifically, the monitoring light determination circuit 127 detects the reception of the first pulse of the pulsed light in the state where the pulsed light has not been received (5-d1). This detection result is notified to the monitor light output determination circuit 131 .
  • the supervisory light output determination circuit 131 When the supervisory light output determination circuit 131 is notified of the reception of the first pulse, it outputs to the optical switch control circuit 133 an instruction to change the downstream supervisory light from pulsed light to continuous light according to condition 504 in FIG. 5-d2). As a result, the downstream monitor light changes from pulsed light to continuous light (5-d3).
  • FIG. 5 is also used for the description of the optical transmission device 200 . Due to the APR restoration operation of the optical transmission device 100 described above, the downstream monitoring light received by the optical transmission device 200 changes from pulsed light to continuous light. Therefore, the monitor light input to the monitor light monitor 225 of the optical transmission device 200 changes from pulsed light to continuous light (5-e1, 5-f1 in FIG. 5). Since the light emission time of the pulsed light is 3 seconds, the monitor light determination circuit 227 detects that the continuous light has continued for 6 seconds or longer. Since the condition 701 in FIG. 13 is thereby satisfied, the monitor light determination circuit 227 notifies the signal light output determination circuit 232 that the monitor light has changed from pulsed light to continuous light (5-g1).
  • the signal light output determination circuit 232 outputs an instruction to the optical amplifier control circuit 234 to release the stoppage of the optical amplifier 211 according to the condition 502 in FIG. As a result, upstream signal light is transmitted from the optical transmission device 200 to the optical transmission device 100 via the optical transmission line 30 .
  • the optical transmission device 200 does not receive the downstream signal light and starts receiving only the downstream monitoring light, which is pulse light. Therefore, like the optical transmission device 100, the optical transmission device 200 changes the upstream monitoring light from pulsed light to continuous light. As a result, the monitor light input to the monitor light monitor 125 of the optical transmission device 100 also changes from pulsed light to continuous light.
  • the stoppage of the optical amplifier 111 is canceled according to the condition 502 in FIG.
  • the shutdown of the optical amplifiers 111 and 211 is automatically released.
  • the APR control of the optical transmission system 1 is restored, and the communication of the optical transmission system 1 is resumed.
  • the optical transmission system 1 of this embodiment can achieve the APR control function of the optical transmission system with a simple configuration when a bidirectional failure occurs.
  • FIG. 6 is a diagram showing an example of a one-way fault in the optical transmission system 1.
  • FIG. FIG. 6 shows that a fault has occurred at the fault point 21 of the optical transmission line 20 and no fault has occurred in the optical transmission line 30 . That is, the downstream monitoring light and downstream signal light propagating through the optical transmission line 20 are blocked at the failure point 21 , but the upstream monitoring light and upstream signal light propagate through the optical transmission line 30 and reach the optical transmission device 100 .
  • APR control in such a one-way failure will be described below.
  • FIG. 7 to 10 are timing charts for explaining an example of APR control of the optical transmission device 100 or 200 when a one-way failure occurs.
  • FIG. 7 is a diagram for explaining APR control in the optical transmission device 200 when a one-way failure occurs at the failure point 21.
  • FIG. 8 is a diagram for explaining APR control in the optical transmission device 100 when a one-way failure occurs at the failure point 21.
  • FIG. 9 is a diagram for explaining APR control in the optical transmission device 200 when recovering from a one-way fault.
  • FIG. 10 is a diagram for explaining APR control in the optical transmission device 100 when recovering from a one-way fault.
  • the contents shown in [1]-[8] in FIGS. 7-10 conform to FIGS. 4-5.
  • the signal light output determination circuit 232 determines to shut down the optical amplifier 211 according to the condition 501 in FIG. Further, the monitor light output determination circuit 231 determines that the upstream monitor light should be pulsed light according to the condition 503 in FIG. Also in this embodiment, the pulsed light is dimmed for 10 seconds at first, and then repeatedly emits light for 3 seconds and dims for 10 seconds.
  • the operations and conditions shown in FIGS. 11 to 13 are set in advance as data in a storage unit provided in the control unit 280. FIG.
  • the signal light output determination circuit 232 outputs an instruction to shut down the optical amplifier 211 to the optical amplifier control circuit 234 .
  • the optical amplifier control circuit 234 shuts down the optical amplifier 211 according to this instruction (7-c1).
  • the monitor light output determination circuit 231 outputs an instruction to the optical switch control circuit 233 to change the downstream monitor light to pulse light (7-c2).
  • the optical switch control circuit 233 controls the optical switch 213 so that the upstream monitor light becomes pulsed light (7-c3).
  • the pulsed light (upstream monitor light) output from the optical switch 213 is input to the optical multiplexer 214 . Since the upstream supervisory light does not pass through the optical amplifier 211, the upstream supervisory light is transmitted to the optical transmission line 30 via the optical multiplexer 214 even if the optical amplifier 211 is stopped. Since no fault has occurred in the optical transmission line 30, the optical transmission apparatus 100 does not receive the upstream signal light, but receives the upstream monitoring light, which is pulse light.
  • the optical transmission device 100 reduces the power of the upstream signal light (8-a1 in FIG. 8) and receives the upstream monitoring light, which is pulse light (8-a2). Therefore, the signal light detection circuit 124 detects input interruption of the upstream monitor light (8-b1). These detection results are notified to the monitor light output determination circuit 231 and the signal light output determination circuit 232 .
  • the signal light output determination circuit 132 and the optical amplifier control circuit 134 shut down the optical amplifier 111 according to the condition 501 in FIG. 11 (8 -c1). Also, the monitor light output determination circuit 131 and the optical switch control circuit 133 make the downstream monitor light pulse light according to the condition 503 in FIG. 11 (8-c2).
  • the first upstream monitor light pulse arrives from the optical transmission device 200 (8-d1).
  • the emission time of the supervisory light is 3 seconds (8-e1 to 8-f1). It is judged to be light (8-g1).
  • the downstream monitoring light transmitted by the optical transmission device 100 is changed from pulsed light to continuous light (8-g2 to 8-g3).
  • the input of the upstream monitoring light is temporarily interrupted due to the dimming of the pulse of the first upstream monitoring light (8-f1).
  • the determination of the pulsed light reception at 8-g1 in FIG. 8 is maintained by the condition 702 in FIG. Therefore, the condition 503 in FIG. 11 is not applied, and the determination that the downstream monitoring light is continuous light is maintained.
  • the second pulse of the pulsed light is received (8-h1)
  • the state in which the monitor light is normal continues again for 3 seconds (8-i1 to 8-j1).
  • this pulse does not meet condition 504 in FIG. 11 because it is the second following pulse.
  • the optical transmission devices 100 and 200 shut down the optical amplifiers 111 and 211 even if only one of the optical transmission lines 20 and 30 fails. That is, APR control is executed in the optical transmission system 1 .
  • a procedure for recovering APR control from a one-way failure (APR recovery procedure) will be described.
  • APR restoration procedure of the optical transmission device 200 will be described.
  • the downstream monitoring light becomes continuous light (8-g3 in FIG. 8). Therefore, when the failure at the failure point 21 is restored, the monitor light monitor 225 of the optical transmission device 200 receives the downstream monitor light, which is continuous light (9-a1 in FIG. 9). Then, the monitor light detection circuit 226 determines that the monitor light is normally received (9-b1). When the continuous light is received for 6 seconds, according to the condition 502 in FIG.
  • the optical amplifier 211 is shut down (8-c1), and the upstream monitoring light is changed from pulsed light to continuous light (9-c2). , 9-c3). As will be described later, this cancels the shutdown of the optical amplifier 111 of the optical transmission device 100, so that the signal light monitor 223 receives the downstream signal light (9-d1) and determines that the downstream signal light has been received normally. (9-e1).
  • the APR restoration operation of the optical transmission device 100 will be described with reference to FIG. Since the optical amplifier 211 of the optical transmission device 200 is shut down immediately after the failure at the failure point 21 is restored, it is determined that the upstream signal light is input interrupted. On the other hand, pulse light is received as upstream monitor light (10-a1 in FIG. 10). Since this state does not satisfy any of the conditions 501 to 504 in FIG. 11, the optical transmission device 100 maintains its current state.
  • the upstream signal light is received from the optical transmission device 200 (10-b1) by the APR recovery operation of the optical transmission device 200 described in FIG. 9, so the upstream signal light is determined to be normal (10-c1). .
  • the upstream monitoring light is changed to continuous light (9-c3 in FIG. 9).
  • the upstream supervisory light received by the optical transmission device 100 changes from pulsed light to continuous light (10-b2 in FIG. 10).
  • it is determined that the upstream monitor light is not pulsed light (10-d2), and shutdown of the optical amplifier 111 is released (10-d1).
  • the shutdown of the optical amplifiers 111 and 211 is automatically released.
  • the APR control of the optical transmission system 1 is restored, and communication between the optical transmission device 100 and the optical transmission device 200 is resumed.
  • the optical transmission system 1 of this embodiment can achieve the APR control function of the optical transmission system with a simple configuration when a one-way failure occurs.
  • control units 180 and 280 may include a central processing unit (CPU).
  • CPU central processing unit
  • a part or all of the functions of the optical transmission devices 100 and 200 may be implemented by the CPUs of the respective devices executing programs.
  • the program may be recorded on a tangible and non-transitory recording medium.
  • a recording medium is, for example, a nonvolatile semiconductor memory, an optical disk, or a magnetic disk.
  • optical transmission system 20 30 optical transmission line 21, 31 failure point 100, 200 optical transmission device 111, 121, 211, 221 optical amplifier 112, 212 light source 113, 213 optical switch 114, 214 optical multiplexer 122, 222 optical splitter Wave generator 123, 223 Signal light monitor 124, 224 Signal light detection circuit 125, 225 Supervisory light monitor 126, 226 Supervisory light detection circuit 127, 227 Supervisory light determination circuit 131, 231 Supervisory light output determination circuit 132, 232 Signal light output determination Circuits 133, 233 Optical switch control circuits 134, 234 Optical amplifier control circuits 180, 280 Control section

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

光伝送システムのAPR制御機能を簡単な構成で実現する技術を提供するために、光伝送装置は、第1の信号光を増幅する光増幅器と、第1の監視光を生成する監視光生成部と、光増幅器の出力と監視光生成部の出力とを結合して第1の光伝送路へ出力する光合波器と、第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、第2の信号光と第2の監視光とに分離する光分波器と、第2の信号光の受信状態、及び、第2の監視光の発光及び減光の継続時間に基づいて、光増幅器及び監視光生成部を制御する制御部と、を備える。

Description

光伝送装置、光伝送方法及び記録媒体
 本発明は、光伝送装置、光伝送方法及び記録媒体に関する。本発明は、特に、光伝送装置に接続された光伝送路の障害時に、光伝送装置が備える光増幅器の出力を自動的に低下させるAPR(Automatic Power Reduction)制御に関する。
 双方向通信を行う2台の光伝送装置の間を接続する光伝送路の光ファイバが断線した場合に、断線箇所の保守作業者の安全を確保するために、光伝送装置がAPR制御機能を備える場合がある。APR制御は、断線した光ファイバへ送出される信号光の出力パワーを自動的に低下させ、あるいは信号光の出力を停止させる。一般的な陸上光伝送システムでは、1.544Mb/s(メガビット毎秒)などの監視信号のフレームをエンコードして、APR制御のための情報を光伝送装置間で伝送している。監視信号は、OSC(Optical Supervisory Channel、光監視チャネル)信号とも呼ばれる。一般的な陸上光伝送システムでは、監視信号にはAPR制御以外で用いられる多くの情報が含まれている。このため、監視信号を受信した光伝送装置は、監視信号のフレームをデコードし、APR制御に必要な情報が監視信号からデコードされた場合にAPR制御を実行していた。
 本発明に関して、特許文献1及び2は、主信号の断あるいは監視信号の断を検出すると対向装置にそれを通知して光増幅器の出力を低下させるという一般的なAPR制御について記載している。
特開2000-332695号公報 特開2002-077056号公報
 一般的な陸上光伝送システムの監視制御回路には、多くの種類の監視制御信号を伝送するために、エンコード回路及びデコード回路が含まれる。そして、APR制御のための信号は他の監視制御信号とともにこのため、監視制御信号としてAPR制御のための信号のみが求められる光伝送システムに一般的な陸上光伝送システムで用いられる監視制御回路を適用すると監視制御回路の機能が必要以上に複雑になり、コスト増の要因となる課題がある。
 (発明の目的)
 本発明は、光伝送システムのAPR制御機能を簡単な構成で実現する技術を提供することを目的とする。
 本発明の光伝送装置は、
 第1の信号光を増幅する光増幅手段と、
 第1の監視光を生成する監視光生成手段と、
 前記光増幅手段の出力と前記監視光生成手段の出力とを結合して第1の光伝送路へ出力する光合波手段と、
 第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離する光分波手段と、
 前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記光増幅手段及び前記監視光生成手段を制御する制御手段と、
を備える。
 本発明の光伝送方法は、
 第1の信号光を増幅し、
 第1の監視光を生成し、
 増幅された前記第1の信号光と、前記第1の監視光とを結合して第1の光伝送路へ出力し、
 第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離し、
 前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記第1の信号光の増幅及び前記第1の監視光の生成を制御する、
ことを特徴とする。
 本発明の記録媒体は、
 第1の信号光を増幅する光増幅手段と、
 第1の監視光を生成する監視光生成手段と、
 前記光増幅手段の出力と前記監視光生成手段の出力とを結合して第1の光伝送路へ出力する光合波手段と、
 第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離する光分波手段と、
を備える光伝送装置のコンピュータに、
 前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記光増幅手段及び前記監視光生成手段を制御する手順を実行させるプログラム、を記録した記録媒体である。
 本発明は、簡単な構成で光伝送システムのAPR制御機能を実現できる。
光伝送システム1の構成例を示すブロック図である。 光伝送システム1における両方向障害の例を示す図である。 光伝送装置100及び200の詳細構成の例を示すブロック図である。 両方向障害発生時のAPR制御の例を説明するタイミングチャートである。 両方向障害復旧時のAPR制御の例を説明するタイミングチャートである。 光伝送システム1の片方向障害の例を示す図である。 片方向障害発生時のAPR制御の例を説明するタイミングチャートである。 片方向障害発生時のAPR制御の例を説明するタイミングチャートである。 片方向障害復旧時のAPR制御の例を説明するタイミングチャートである。 片方向障害復旧時のAPR制御の例を説明するタイミングチャートである。 APR制御における動作及びその動作が実行される条件の例を示す図である。 監視光の出力形態とその際の光スイッチの動作例を示す図である。 受信された監視光が連続光であるかパルス光であるかの判定条件の例を示す図である。
 本発明の実施形態について図面を参照して以下に説明する。図中に示された矢印の方向は例示であり、方向の限定を意図しない。各実施形態及び図面では既出の要素には同一の参照符号を付して、重複する説明は省略する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態における光伝送システム1の構成例を示すブロック図である。光伝送システム1は、光伝送装置100及び光伝送装置200を備える。光伝送装置100と光伝送装置200との間は、2本の光伝送路20及び30で接続されている。
 光伝送装置100は、光信号を光伝送路20へ送信する。光伝送装置200は、光伝送装置100が送信した光信号を光伝送路20から受信する。光伝送装置200は、光信号を光伝送路30へ送信する。光伝送装置100は、光伝送装置200が送信した光信号を光伝送路30から受信する。以下では、光伝送装置100から光伝送装置200の方向を「下り」、光伝送装置200から光伝送装置100の方向を「上り」と記載する場合がある。このように、光伝送装置100と光伝送装置200とは光伝送路20及び30を介して対向して通信する。
 光伝送装置100は、光増幅器111、光源112、光スイッチ113、光合波器114、光分波器122、信号光モニタ123、監視光モニタ125、制御部180を備える。光伝送装置200は、光増幅器211、光源212、光スイッチ213、光合波器214、光分波器222、信号光モニタ223、監視光モニタ225、制御部280を備える。信号光モニタ123及び監視光モニタ125は、制御部180に含まれていてもよい。信号光モニタ223及び監視光モニタ225は、制御部280に含まれていてもよい。
 光伝送装置100の各部の機能について説明する。光増幅器111は、光伝送装置100から光伝送装置200へ送信される信号光(以下、「下り信号光」という。)を増幅する。下り信号光は、ユーザデータを含む光信号である。1550nm帯の光搬送波が波長多重された光信号が信号光として用いられてもよい。光源112は、光伝送装置100から光伝送装置200へ送信される監視光(以下、「下り監視光」という。)の光源である。中心波長が1490nm又は1510nmである半導体レーザが光源112として用いられてもよい。光源112の波長は下り信号光の波長とは重複しない。光源112は、光伝送装置100の外部に備えられていてもよい。光スイッチ113は、光源112で生成された光を透過させ又は阻止する。光スイッチ113に代えて、光変調器が用いられてもよい。光スイッチ113を透過した光は下り監視光として光合波器114に入力される。光スイッチ113は、制御部180の制御に基づいて、下り監視光を連続光として出力し、又は、所定の発光時間及び減光時間を持つパルス光として出力できる。なお、「減光」は、「発光」よりもパルス光のパワーが低い状態をいう。すなわち、「減光」は、パルス光が消光している状態を含む。いいかえれば、下り監視光は、連続光、又は、光出力が時間的に変化するパルス光でもよい。
 光合波器114は、光増幅器111から出力される下り信号光と光スイッチ113から出力される下り監視光とを合波して光伝送路20へ送出する。下り信号光の波長と下り監視光の波長とは異なるため、光合波器114としてWDM(Wavelength Division Multiplexing、波長分割多重)フィルタを用いることができる。
 光分波器122は、光伝送装置200が送信した信号光(以下、「上り信号光」という。)と監視光(以下、「上り監視光」という。)と、を波長分離する。上り信号光の波長と上り監視光の波長とは異なるため、光分波器122としてWDMフィルタを用いることができる。光分波器122で分離された上り信号光は信号光モニタ123へ入力され、分離された監視光は監視光モニタ125へ入力される。
 信号光モニタ123は、光伝送装置100における上り信号光の受信状態を制御部180へ出力する。監視光モニタ125は、光伝送装置100における上り監視光の受信状態を制御部180へ出力する。信号光モニタ123及び監視光モニタ125はそれぞれPD(Photo Diode、フォトダイオード)を含む。信号光モニタ123は光伝送装置100が受信した上り信号光を光信号のまま出力するとともに、上り信号光の強度に比例する振幅の電気信号を制御部180へ出力する。光伝送装置100は、信号光モニタ123が出力した上り信号光を増幅する光増幅器121を備えてもよい。光増幅器121は入力された上り光信号を増幅して他の光伝送装置へ出力してもよい。ただし、光伝送装置100には光増幅器121は必須ではない。また、監視光モニタ125は、光伝送装置100が受信した上り監視光の強度に比例する振幅の電気信号を制御部180へ出力する。
 制御部180は、信号光モニタ123及び監視光モニタ125から入力された電気信号の振幅に基づいて上り信号光及び上り監視光の受信状態を判断し、さらに、これら判断結果に基づいて光増幅器111及び光スイッチ113を制御する。
 光伝送装置100のそれぞれの構成要素は以下のように記載できる。すなわち、光増幅器111は、第1の信号光(下り信号光)を増幅する光増幅手段を担う。光スイッチ113は、第1の監視光(下り監視光)を生成する監視光生成手段を担う。光合波器114は、光増幅器111の出力と光スイッチ113の出力とを結合して第1の光伝送路(光伝送路20)へ出力する光合波手段を担う。
 また、光分波器122は、第2の光伝送路(光伝送路30)から入力された、第2の信号光(上り信号光)と第2の監視光(上り監視光)とを含む光を、第2の信号光と第2の監視光とに分離する光分波手段を担う。そして、制御部180は、第2の信号光(上り信号光)の受信状態、及び、第2の監視光(上り監視光)の発光及び減光の継続時間に基づいて、光増幅手段(光増幅器111)及び監視光生成手段(光スイッチ113)を制御する制御手段を担う。
 光伝送装置200は光伝送装置100と同様の構成を備える。すなわち、光増幅器211は、光伝送装置200から光伝送装置100へ送信される信号光(以下、「上り信号光」という。)を増幅する。上り信号光は、ユーザデータを含む光信号である。光源212は、光伝送装置200から光伝送装置100へ送信される監視光(以下、「上り監視光」という。)の光源である。光源212の波長は上り信号光の波長とは重複しない。光源212は、光伝送装置200の外部に備えられていてもよい。光スイッチ213は、光源212で生成された光を所定の期間透過させあるいは所定の期間阻止する。光スイッチ213に代えて、光変調器が用いられてもよい。光スイッチ213を透過した光は上り監視光として光合波器214に入力される。光スイッチ213は、制御部280の制御に基づいて、上り監視光を連続光又はパルス光として生成できる。
 光合波器214は、光増幅器211から出力される上り信号光と光スイッチ213から出力される上り監視光とを合波して光伝送路30へ送出する。上り信号光の波長と上り監視光の波長とは異なるため、光合波器214としてWDMフィルタを用いることができる。
 光分波器222は、光伝送装置100が送信した下り信号光と下り監視光とを波長分離する。下り信号光の波長と下り監視光の波長とは異なるため、光分波器222としてWDMフィルタを用いることができる。光分波器222で分離された下り信号光は信号光モニタ223へ入力され、分離された監視光は監視光モニタ225へ入力される。
 信号光モニタ223は、光伝送装置200における下り信号光の受信状態を制御部280へ出力する。監視光モニタ225は、光伝送装置200における下り監視光の受信状態を制御部280へ出力する。信号光モニタ223及び監視光モニタ225はそれぞれPDを含む。信号光モニタ223は光伝送装置200が受信した下り信号光を出力するとともに、下り信号光の強度に比例する振幅の電気信号を制御部280へ出力する。光伝送装置200は、信号光モニタ223が出力した下り信号光を増幅する光増幅器221を備えてもよい。光増幅器221は入力された下り光信号を増幅して他の光伝送装置へ出力してもよい。ただし、光伝送装置200には光増幅器221は必須ではない。また、監視光モニタ225は、光伝送装置200が受信した下り監視光の強度に比例する振幅の電気信号を制御部280へ出力する。
 制御部280は、信号光モニタ223及び監視光モニタ225から入力された電気信号の振幅に基づいて下り信号光及び下り監視光の受信状態を判断し、さらに、その判断結果に基づいて光増幅器211及び光スイッチ213を制御する。
 図2は、光伝送システム1における両方向障害の例を示す図である。図2を参照して、光伝送路20の障害点21及び光伝送路30の障害点31の両方で光ファイバに障害が発生した場合のAPR制御の例について説明する。
 (1-1)光伝送装置100の制御部180及び光伝送装置200の制御部280は、障害の発生前の通常状態では、下り監視光及び上り監視光のいずれもが連続光となるように、それぞれ光スイッチ113及び213を制御する。そして、監視光を受信する光伝送装置では、受信された監視光が連続光である場合には光伝送路は正常と判断し、受信された監視光が入力断又はパルス光である場合には光伝送路に障害があると判断する。下り監視光は光増幅器111を介さないため、光増幅器111の光出力を停止しても光伝送路20へ出力される。
 (1-2)光伝送装置100において、障害点31における障害により上り信号光と上り監視光の入力断が検出されると、制御部180は光増幅器111の光出力を停止(シャットダウン)するとともに、下り監視光を連続光からパルス光に変更する。下り監視光は光増幅器111を介さないため光増幅器111をシャットダウンしても光伝送路20へ出力される。しかし、障害点21の障害のため、下り信号光も下り監視光も光伝送装置200において受信されない。
 (1-3)同様に、光伝送装置200において、障害点21における障害により下り信号光と下り監視光の入力断が検出されると、制御部280は光増幅器211をシャットダウンするとともに、上り監視光を連続光からパルス光に変更する。上り監視光は光増幅器211をシャットダウンしても光伝送路30へ出力される。しかし、光伝送路30の障害のため、上り信号光も上り監視光も光伝送装置100において受信されない。
 このように、光伝送路20及び30の両方で障害が発生した場合には、両端の光伝送装置100及び200からの信号光の出力を自動的に停止することにより、APR制御が実行される。
 次に、光伝送路20及び30の障害が復旧した場合について説明する。
 (1-4)光伝送路20及び30の障害が復旧した直後には、光伝送装置100の信号光モニタ123は上り信号光が断のままである一方、監視光モニタ125にはパルス光の上り監視光が入力される。制御部180は、上り監視光のオフからオン(減光から発光)までの時間及びオンからオフ(発光から減光)までの時間を判定し、上り監視光の最初のパルスの受信を確認すると下り監視光をパルス光から連続光に変更する。光伝送装置200は、監視光モニタ225において下り監視光がパルス光から連続光に変わったことを確認すると、光伝送路30が正常になったと判断して光増幅器211のシャットダウンを自動的に解除する。なお、光伝送装置200の出力における上り監視光の発光時のパワー及び減光時のパワーは、光伝送装置100において上り監視光が受信された際に「発光」と「減光」とが弁別可能なパワーとして定められてもよい。同様に、光伝送装置100の出力における下り監視光の発光時のパワー及び減光時のパワーは、光伝送装置200において下り監視光が受信された際に「発光」と「減光」とが弁別可能なパワーとして定められてもよい。
 (1-5)同様に、光伝送路20及び30の障害が復旧した直後には、光伝送装置200の信号光モニタ223は下り信号光が断のままである一方、監視光モニタ225にはパルス光の下り監視光が入力される。制御部280は、下り監視光のオフからオンまでの時間及びオンからオフまでの時間を判定し、下り監視光の最初のパルスの受信を確認すると上り監視光をパルス光から連続光に変更する。光伝送装置100は、監視光モニタ125において上り監視光がパルス光から連続光に変わったことを確認すると、光伝送路20が正常になったと判断して光増幅器111のシャットダウンを自動的に解除する。
 このように、光伝送路20及び30の障害が復旧すると、両端の光伝送装置100及び200は光増幅器111及び211のシャットダウンを自動的に解除できる。
 すなわち、以上の手順によって、光伝送装置100及び200は、監視制御信号のエンコード回路やデコード回路を必要とすることなく、簡単な構成でAPR制御の実行及び解除を行うことができる。
 (第2の実施形態)
 第2の実施形態では、両方向障害が発生した場合のAPR制御及びその復旧の例を詳細に説明する。図3は、図1及び図2で説明した光伝送装置100及び200の詳細構成の例を示すブロック図である。図1で説明した光伝送装置100の制御部180は、信号光検出回路124、監視光検出回路126、監視光判定回路127、監視光出力判定回路131、信号光出力判定回路132、光スイッチ制御回路133、光増幅器制御回路134を備える。制御部180に含まれるこれらの回路は電気回路で実現されてもよい。
 信号光検出回路124は、信号光モニタ123で検出された上り信号光の強度に基づいて、信号光が光伝送路30から受信されているかどうかを判断する。監視光検出回路126は、監視光モニタ125で検出された上り監視光の強度に基づいて監視光が光伝送路30から受信されているかどうかを判断する。信号光検出回路124及び監視光検出回路126における判断結果は、監視光出力判定回路131及び信号光出力判定回路132の両方に出力される。また、監視光検出回路126は、上り監視光の強度の時間的な変化に基づいて、上り監視光の発光時間及び減光時間を取得する。上り監視光の発光時間及び減光時間の取得結果は監視光判定回路127へ出力される。
 監視光判定回路127は、上り監視光の発光時間及び減光時間に基づいて、上り監視光が連続光であるかパルス光であるかを判定し、その結果を監視光出力判定回路131へ出力する。
 監視光出力判定回路131は、信号光検出回路124、監視光検出回路126及び監視光判定回路127からの入力に基づいて、光伝送装置100が光伝送路20へ送出する監視光を、連続光とするかパルス光とするかを判定する。信号光出力判定回路132は、信号光検出回路124及び監視光検出回路126からの入力に基づいて、光増幅器111を通常通り動作させるか、停止させるか(シャットダウンするか)を判定する。
 光スイッチ制御回路133は、監視光出力判定回路131の判定結果に基づいて、光スイッチ113を制御する。光増幅器制御回路134は、信号光出力判定回路132の判定結果に基づいて、光増幅器111を動作させ、又はシャットダウンさせる。
 光伝送装置200の制御部280は、信号光検出回路224、監視光検出回路226、監視光判定回路227、監視光出力判定回路231、信号光出力判定回路232、光スイッチ制御回路233、光増幅器制御回路234を備える。制御部280の構成は制御部180と同様である。光伝送装置200において、光伝送装置100と同一の名称のブロックは、光伝送装置200においても対応する機能を備えるため、制御部280の詳細な説明は省略する。
 図3において、光伝送路20の障害箇所は障害点21で示され、光伝送路30の障害箇所は障害点31で示される。光伝送路20及び30を伝搬する光信号は、それぞれ、障害点21及び31において切断される。以下では、伝送路障害が発生した場合のAPR制御についてタイミングチャートを参照して説明する。
 図4及び図5は、両方向障害の発生時の光伝送装置100及び200における各部のAPR制御の例を説明するタイミングチャートである。これらのタイミングチャートにおいて横軸は時間であり、縦軸は光伝送装置100及び200各部の状態を示す。縦の破線は障害の発生又は復旧の時刻を示す。すなわち、これらのタイミングチャートは、障害点21及び31の障害の発生後又は復旧後の光伝送装置100及び200における各部の状態の時間変化を示す。
 光伝送装置100を例にすると、図4及び図5において、「[1]信号光の光入力」は、図3の信号光モニタ123への入力光のパワーを示す。「[2]信号光の入力判定」は、信号光検出回路124における、信号光の入力の有無の判定結果(正常又は断)を示す。「[3]信号光の光出力」は、光増幅器111の出力光のパワーを示す。「[4]監視光の光出力」は、光スイッチ113の出力光のパワーを示す。「[5]監視光の光入力」は、監視光モニタ125の入力光のパワーを示す。「[6]監視光の入力判定」は、監視光検出回路126における、監視光の入力の有無の判定結果(正常又は断)を示す。「[7]パルス光の検出」は、監視光判定回路127におけるパルス光の検出結果(パルス光あり又はなし)を示す。「[8]監視光の出力形態」は、監視光出力判定回路131において、連続光とパルス信号のどちらを出力するかの判定結果を示す。
 なお、後述する図7-図10の[1]-[8]で示される各項も、同様の内容を示す。また、光伝送装置100の各部の機能は光伝送装置200も同様であるため、以降では光伝送装置200の動作を説明する際にもこれらのタイミングチャートが使用される。
 また、図11はAPR制御における動作及びその動作が実行される条件の例を示す。図12は監視光の出力形態とその際の光スイッチ113及び213の動作例を示す。図13は、監視光判定回路127における、受信された監視光が連続光であるかパルス光であるかの判定条件の例を示す。制御部180及び280は記憶部を備え、図11-図13の動作及び条件はデータとして記憶部に記憶されてもよい。記憶部のデータは、光伝送装置100及び200の各部の回路から参照される。
 (2-1)両方向障害発生時の動作
 光伝送路20及び30に障害がない場合には、光増幅器111及び211は通常通り動作し、下り監視光及び上り監視光のいずれもが連続光である。この状態で障害点31において障害が発生すると、光伝送装置100では、信号光モニタ123に入力される上り信号光の入力パワーが低下する(図4の4-a1)。その結果、信号光検出回路124が上り信号光の入力断を検出する(4-b1)。また、監視光モニタ125に入力される上り監視光の入力パワーも低下するため(4-a2)、監視光検出回路126は上り監視光の入力断を検出する(4-b2)。これらの検出結果は、監視光出力判定回路131及び信号光出力判定回路132へ通知される。
 上り信号光と上り監視光との入力断の検出が通知されると、図11の条件501により、信号光出力判定回路132は光増幅器111をシャットダウンするよう判定する。そして、信号光出力判定回路132は、光増幅器111をシャットダウンする指示を光増幅器制御回路134へ出力する。光増幅器制御回路134は、この指示に基づいて光増幅器111をシャットダウンする(4-c1)。光増幅器制御回路134は、光増幅器111への励起光の供給を停止することで光増幅器111をシャットダウンしてもよい。
 また、図11の条件503により、監視光出力判定回路131は、下り監視光をパルス光とするよう判定する。監視光出力判定回路131は、下り監視光をパルス光とする指示を光スイッチ制御回路133へ出力する(4-c2)。光スイッチ制御回路133は、この指示に応じて、下り監視光がパルス光となるように光スイッチ113を制御する(4-c3)。パルス光は、所定の発光時間と減光時間とを持つ、光パルス列である。本実施形態では、パルス光は当初10秒間減光し、その後3秒間の発光と10秒間の減光とを繰り返す(図12の条件602)。
 光スイッチ113から出力されたパルス光(下り監視光)は光合波器114に入力される。下り監視光は光増幅器111を通過しないため、下り監視光は光増幅器111がシャットダウンしていても光合波器114を介して光伝送路20へ送出される。しかし、光伝送路20は障害によって切断されているため、下り監視光は光伝送装置200へは到達しない。
 一方、障害点21における障害に起因して、光伝送装置200も光伝送装置100と同様に動作する。すなわち、光伝送装置200においては、監視光出力判定回路231及び信号光出力判定回路232には、下り信号光の入力断と下り監視光の入力断とが検出されたことが通知される。信号光出力判定回路232は、光増幅器211をシャットダウンする指示を光増幅器制御回路234へ出力する。光増幅器制御回路234は、この指示に応じて、光増幅器211をシャットダウンする。
 また、監視光出力判定回路231は、下り監視光をパルス光とする指示を光スイッチ制御回路233へ出力する。光スイッチ制御回路233は、この指示に応じて、上り監視光が図12の条件602に適合するパルス光となるように光スイッチ213を制御する。
 以上の動作により、光伝送装置100及び200は、光伝送路20及び30に障害が発生すると、光増幅器111及び211をシャットダウンする。すなわち、光伝送システム1においてAPR制御が実行される。
 (2-2)両方向障害復旧時の動作
 光伝送路20及び30の障害が復旧した後の光伝送装置100のAPR制御の復旧(APR復旧)動作について説明する。光伝送路20及び30の障害が復旧した直後は、光増幅器111及び211はシャットダウンしている。このため、光伝送装置100の信号光モニタ123では上り信号光は検出されない。しかし、監視光モニタ125では、上り監視光は、パルス状に強度が変化する光として検出される(図5の5-a1、5-b1、5-c1)。監視光判定回路127は監視光モニタ125で受信されたパルス光の発光時間及び減光時間を検出し、その検出結果を監視光出力判定回路131に出力する。監視光出力判定回路131は、入力された情報及び図11-図12の条件に基づいて光スイッチ113を制御する。具体的には、監視光判定回路127は、パルス光を受信していなかった状態において、パルス光の最初のパルスの受信を検出する(5-d1)。この検出結果は監視光出力判定回路131へ通知される。監視光出力判定回路131は、当該最初のパルスの受信が通知されると、図11の条件504により、下り監視光をパルス光から連続光に変更する指示を光スイッチ制御回路133へ出力する(5-d2)。その結果、下り監視光はパルス光から連続光に変化する(5-d3)。
 次に、光伝送装置200のAPR復旧動作について説明する。光伝送装置200の説明にも図5が用いられる。上述の光伝送装置100のAPR復旧動作により、光伝送装置200において受信される下り監視光がパルス光から連続光に変化する。このため、光伝送装置200の監視光モニタ225へ入力される監視光がパルス光から連続光に変化する(図5の5-e1、5-f1)。パルス光の発光時間は3秒であるため、監視光判定回路227は、連続光が6秒以上継続したことを検出する。これにより図13の条件701が満たされるため、監視光判定回路227は、監視光がパルス光から連続光に変化したことを信号光出力判定回路232に通知する(5-g1)。信号光出力判定回路232は、図11の条件502により、光増幅器211の停止を解除する指示を光増幅器制御回路234へ出力する。その結果、上り信号光が光伝送路30を介して光伝送装置200から光伝送装置100へ送信される。
 一方、光伝送路20及び30の障害が復旧した直後には、光伝送装置200では下り信号光は受信されずパルス光である下り監視光のみの受信が開始される。このため、光伝送装置100と同様に、光伝送装置200は上り監視光をパルス光から連続光に変更する。その結果、光伝送装置100の監視光モニタ125へ入力される監視光もパルス光から連続光に変化する。そして、光伝送装置100においても、連続光が6秒以上継続したことを検出すると、図11の条件502により、光増幅器111の停止を解除する。
 以上の動作により、光伝送装置100及び200では、光伝送路20及び30の障害が復旧すると、光増幅器111及び211のシャットダウンが自動的に解除される。これによって、光伝送システム1のAPR制御が復旧し、光伝送システム1の通信が再開する。
 以上説明したように、本実施形態の光伝送システム1は、両方向障害が発生した場合に、簡単な構成で光伝送システムのAPR制御機能を実現できる。
 (第3の実施形態)
 第3の実施形態では、片方向障害が発生した場合のAPR制御の例を詳細に説明する。図6は、光伝送システム1の片方向障害の例を示す図である。図6は、光伝送路20の障害点21において障害が発生し、光伝送路30には障害が発生していないことを示す。すなわち、光伝送路20を伝搬する下り監視光及び下り信号光は障害点21において阻止されるが、上り監視光及び上り信号光は光伝送路30を伝搬して光伝送装置100へ到達する。以下では、このような片方向障害におけるAPR制御について説明する。
 図7-図10は、片方向障害の発生時の光伝送装置100又は200のAPR制御の例を説明するためのタイミングチャートである。図7は障害点21における片方向障害の発生時の、光伝送装置200におけるAPR制御を説明する図である。図8は障害点21における片方向障害の発生時の、光伝送装置100におけるAPR制御を説明する図である。図9は片方向障害の復旧時の、光伝送装置200におけるAPR制御を説明する図である。図10は、片方向障害の復旧時の、光伝送装置100におけるAPR制御を説明する図である。図7-図10の[1]-[8]の示す内容は図4-図5に準ずる。
 (3-1)片方向障害発生時の動作
 障害点21において障害が発生すると、光伝送装置200では下り信号光のパワーが低下し(図7の7-a1)、下り監視光のパワーも低下する(7-a2)。従って、監視光検出回路226及び信号光検出回路224はそれぞれ下り信号光の入力断と下り監視光の入力断とを検出する(7-b1、7-b2)。これらの検出結果は、監視光出力判定回路231及び信号光出力判定回路232へ通知される。
 下り信号光と下り監視光との入力断の検出が通知されると、信号光出力判定回路232は、図11の条件501により、光増幅器211をシャットダウンするように判断する。また、監視光出力判定回路231は、図11の条件503により、上り監視光をパルス光とするよう判断する。本実施形態においても、パルス光は当初10秒間減光し、その後3秒間の発光と10秒間の減光とを繰り返す。図11-図13の動作及び条件は、あらかじめ制御部280が備える記憶部にデータとして設定されている。
 信号光出力判定回路232は、光増幅器211をシャットダウンする指示を光増幅器制御回路234へ出力する。光増幅器制御回路234は、この指示に応じて、光増幅器211をシャットダウンするする(7-c1)。
 また、監視光出力判定回路231は、下り監視光をパルス光とする指示を光スイッチ制御回路233へ出力する(7-c2)。光スイッチ制御回路233は、この指示に応じて、上り監視光がパルス光となるように光スイッチ213を制御する(7-c3)。
 光スイッチ213から出力されたパルス光(上り監視光)は光合波器214に入力される。上り監視光は光増幅器211を通過しないため、上り監視光は光増幅器211が停止していても光合波器214を介して光伝送路30へ送出される。光伝送路30では障害が発生していないため、光伝送装置100は上り信号光を受信せず、パルス光である上り監視光を受信する。
 図8を参照すると、光伝送装置100では上り信号光のパワーが低下し(図8の8-a1)、パルス光である上り監視光を受信する(8-a2)。従って、信号光検出回路124は上り監視光の入力断を検出する(8-b1)。これらの検出結果は、監視光出力判定回路231及び信号光出力判定回路232へ通知される。
 パルス光が減光している間は上り監視光のパワーが低下するため、監視光は断であると判断される(8-b2)。このため、信号光出力判定回路132及び光増幅器制御回路134は、上り信号光と上り監視光との入力断の検出が通知されると、図11の条件501により光増幅器111をシャットダウンする(8-c1)。また、監視光出力判定回路131及び光スイッチ制御回路133は、図11の条件503により、下り監視光をパルス光とする(8-c2)。
 一方、光伝送路30は正常であるため、光伝送装置200から最初の上り監視光のパルスが到着する(8-d1)。上り監視光がパルス光である場合、監視光の発光時間は3秒間であるため(8-e1から8-f1)、監視光判定回路127は、図13の条件702により、上り監視光はパルス光であると判断する(8-g1)。そして、図11の条件504により、光伝送装置100が送出する下り監視光がパルス光から連続光に変更される(8-g2から8-g3)。
 なお、最初の上り監視光のパルスの減光により上り監視光は一旦入力断となる(8-f1)。しかし、図13の条件702により図8の8-g1におけるパルス光の受信の判定は維持される。このため、図11の条件503は適用されず、下り監視光を連続光とする判定が維持される。また、パルス光の2回目のパルスが受信されると(8-h1)、監視光が正常である状態が再び3秒間継続する(8-i1から8-j1)。しかし、このパルスは続く2回目であるために図11の条件504には適合しない。
 以上の動作により、光伝送装置100及び200は、光伝送路20及び30の一方にのみに障害が発生した場合でも、光増幅器111及び211をシャットダウンする。すなわち、光伝送システム1においてAPR制御が実行される。
 (3-2)片方向障害復旧時の動作
 片方向障害によるAPR制御の復旧手順(APR復旧手順)について説明する。まず、光伝送装置200のAPR復旧手順を説明する。上述したように、障害点21における障害の発生後、下り監視光は連続光となる(図8の8-g3)。従って、障害点21における障害が復旧すると、光伝送装置200の監視光モニタ225は、連続光である下り監視光を受信する(図9の9-a1)。そして、監視光検出回路226は、監視光は正常に受信されていると判断する(9-b1)。連続光が6秒間受信されると、図11の条件502により、光増幅器211のシャットダウンが解除される(8-c1)とともに、上り監視光がパルス光から連続光に変更される(9-c2、9-c3)。後述するように、これにより光伝送装置100の光増幅器111のシャットダウンが解除されるため、信号光モニタ223において下り信号光が受信され(9-d1)、下り信号光が正常に受信されたと判断される(9-e1)。
 次に、図10を参照して光伝送装置100のAPR復旧動作を説明する。障害点21の障害が復旧した直後には、光伝送装置200の光増幅器211はシャットダウンしているため、上り信号光は入力断と判定される。一方、上り監視光としてパルス光が受信されている(図10の10-a1)。この状態は図11の条件501-504のいずれも満たさないため、光伝送装置100は現状の状態を維持する。
 その後、図9で説明した光伝送装置200のAPR復旧動作により、光伝送装置200から上り信号光が受信され(10-b1)るため、上り信号光が正常と判断される(10-c1)。また、上述のように、光伝送装置200では上り監視光が連続光に変更される(図9の9-c3)。このため、光伝送装置100が受信する上り監視光はパルス光から連続光に変化し(図10の10-b2)、従って、上り監視光の正常受信が6秒以上継続する(10-c2以降)。その結果、図13の条件701及び図11の条件502により、上り監視光がパルス光でないと判定されるとともに(10-d2)、光増幅器111のシャットダウンが解除される(10-d1)。
 以上の動作により、光伝送装置100及び200では、光伝送路20及び30の一方のみに発生した障害が復旧した場合にも、光増幅器111及び211のシャットダウンが自動的に解除される。これによって、光伝送システム1のAPR制御が復旧し、光伝送装置100と光伝送装置200との間の通信が再開される。
 以上説明したように、本実施形態の光伝送システム1は、片方向障害が発生した場合に、簡単な構成で光伝送システムのAPR制御機能を実現できる。
 以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 各実施形態において、制御部180及び280は、中央処理装置(central processing unit、CPU)を備えてもよい。光伝送装置100及び200の機能の一部又は全部は、それぞれが備えるCPUが、プログラムを実行することにより実現されてもよい。プログラムは、一時的でない有形の(tangible and non-transitory)記録媒体に記録されてもよい。記録媒体は、例えば不揮発性半導体メモリ、光ディスク又は磁気ディスクである。
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
 1 光伝送システム
 20、30 光伝送路
 21、31 障害点
 100、200 光伝送装置
 111、121、211、221 光増幅器
 112、212 光源
 113、213 光スイッチ
 114、214 光合波器
 122、222 光分波器
 123、223 信号光モニタ
 124、224 信号光検出回路
 125、225 監視光モニタ
 126、226 監視光検出回路
 127、227 監視光判定回路
 131、231 監視光出力判定回路
 132、232 信号光出力判定回路
 133、233 光スイッチ制御回路
 134、234 光増幅器制御回路
 180、280 制御部

Claims (14)

  1.  第1の信号光を増幅する光増幅手段と、
     第1の監視光を生成する監視光生成手段と、
     前記光増幅手段の出力と前記監視光生成手段の出力とを結合して第1の光伝送路へ出力する光合波手段と、
     第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離する光分波手段と、
     前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記光増幅手段及び前記監視光生成手段を制御する制御手段と、
    を備える光伝送装置。
  2.  前記監視光生成手段は、連続光、又は、光出力が時間的に変化するパルス光を前記第1の監視光として生成する、請求項1に記載された光伝送装置。
  3.  前記監視光生成手段は光変調手段を備え、
     前記制御手段は前記第2の信号光の受信の有無を判定する第1の監視手段と、前記第2の監視光の受信の有無、並びに、前記第2の監視光の発光及び減光の継続時間を取得する第2の監視手段とを備え、
     前記制御手段は、前記第1の監視手段の判定結果及び前記第2の監視手段の取得結果に基づいて、
      前記光増幅手段を動作させ又は停止させ、
      前記光変調手段を制御して前記第1の監視光を前記連続光又は前記パルス光として生成する、
    請求項2に記載された光伝送装置。
  4.  前記制御手段は、
      前記光増幅手段が停止しており、かつ、
      前記第1の監視光が前記パルス光であり、かつ、
      前記第2の監視光が所定の時間を超えて受信された場合に、
    前記光増幅手段を動作させるとともに前記第1の監視光を前記連続光に変更する、
    請求項3に記載された光伝送装置。
  5.  前記制御手段は、
      前記第2の信号光及び前記第2の監視光がいずれも受信されておらず、かつ、
      前記第1の監視光が前記連続光である場合に、
    前記第1の監視光を前記パルス光に変更する、
    請求項3又は4に記載された光伝送装置。
  6.  前記制御手段は、前記第2の監視手段が前記第2の監視光の発光及び減光の継続時間に基づいて前記第2の監視光の最初のパルスを検出した場合に前記第1の監視光を前記連続光とする、請求項3乃至5のいずれか1項に記載された光伝送装置。
  7.  第1の光伝送装置と第2の光伝送装置とが前記第1の光伝送路及び前記第2の光伝送路を介して通信可能に接続された光伝送システムであって、
     前記第1及び第2の光伝送装置は、いずれも、請求項1乃至6のいずれか1項に記載された光伝送装置である、光伝送システム。
  8.  第1の信号光を増幅し、
     第1の監視光を生成し、
     増幅された前記第1の信号光と、前記第1の監視光とを結合して第1の光伝送路へ出力し、
     第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離し、
     前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記第1の信号光の増幅及び前記第1の監視光の生成を制御する、
    光伝送方法。
  9.  前記第1の監視光は、連続光、又は、光出力が時間的に変化するパルス光である、請求項8に記載された光伝送方法。
  10.  前記第2の信号光の受信の有無を第1の監視手段によって判定し、
     前記第2の監視光の受信の有無、前記第2の監視光の発光及び減光の継続時間を第2の監視手段によって取得し、
     前記第1の監視手段の判定結果及び前記第2の監視手段の取得結果に基づいて、
      前記第1の信号光の増幅を実行させ又は停止させ、
      前記第1の監視光を前記連続光又は前記パルス光として生成する、
    請求項9に記載された光伝送方法。
  11.  前記第1の信号光の増幅が停止しており、かつ、
     前記第1の監視光が前記パルス光であり、かつ、
     前記第2の監視光が所定の時間を超えて受信された場合に、
    前記第1の信号光の増幅を実行させるとともに前記第1の監視光を前記連続光に変更する、
    請求項10に記載された光伝送方法。
  12.  前記第2の信号光及び前記第2の監視光がいずれも受信されておらず、かつ、
     前記第1の監視光が前記連続光である場合に、
    前記第1の監視光を前記パルス光に変更する、
    請求項10又は11に記載された光伝送方法。
  13.  前記第2の監視光の最初のパルスが前記第2の監視光の発光及び減光の継続時間に基づいて検出された場合に前記第1の監視光を前記連続光とする、請求項10乃至12のいずれか1項に記載された光伝送方法。
  14.  第1の信号光を増幅する光増幅手段と、
     第1の監視光を生成する監視光生成手段と、
     前記光増幅手段の出力と前記監視光生成手段の出力とを結合して第1の光伝送路へ出力する光合波手段と、
     第2の信号光と第2の監視光とを含み、第2の光伝送路から入力された光を、前記第2の信号光と前記第2の監視光とに分離する光分波手段と、
    を備える光伝送装置のコンピュータに、
     前記第2の信号光の受信状態、及び、前記第2の監視光の発光及び減光の継続時間に基づいて、前記光増幅手段及び前記監視光生成手段を制御する手順を実行させるプログラム、を記録した記録媒体。
PCT/JP2021/022518 2021-06-14 2021-06-14 光伝送装置、光伝送方法及び記録媒体 WO2022264208A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529167A JPWO2022264208A5 (ja) 2021-06-14 光伝送装置、光伝送システム及び光伝送方法
PCT/JP2021/022518 WO2022264208A1 (ja) 2021-06-14 2021-06-14 光伝送装置、光伝送方法及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022518 WO2022264208A1 (ja) 2021-06-14 2021-06-14 光伝送装置、光伝送方法及び記録媒体

Publications (1)

Publication Number Publication Date
WO2022264208A1 true WO2022264208A1 (ja) 2022-12-22

Family

ID=84525760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022518 WO2022264208A1 (ja) 2021-06-14 2021-06-14 光伝送装置、光伝送方法及び記録媒体

Country Status (1)

Country Link
WO (1) WO2022264208A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019140A (ja) * 2009-07-10 2011-01-27 Nec Corp 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体
WO2012111403A1 (ja) * 2011-02-16 2012-08-23 日本電気株式会社 光伝送装置、光伝送システム、光伝送方法およびプログラム
JP2014093746A (ja) * 2012-11-06 2014-05-19 Fujitsu Ltd 伝送装置および伝送システム
JP2020088547A (ja) * 2018-11-22 2020-06-04 富士通株式会社 光伝送システム、光伝送装置、およびネットワーク制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019140A (ja) * 2009-07-10 2011-01-27 Nec Corp 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体
WO2012111403A1 (ja) * 2011-02-16 2012-08-23 日本電気株式会社 光伝送装置、光伝送システム、光伝送方法およびプログラム
JP2014093746A (ja) * 2012-11-06 2014-05-19 Fujitsu Ltd 伝送装置および伝送システム
JP2020088547A (ja) * 2018-11-22 2020-06-04 富士通株式会社 光伝送システム、光伝送装置、およびネットワーク制御装置

Also Published As

Publication number Publication date
JPWO2022264208A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
US6504630B1 (en) Automatic power shut-down arrangement for optical line systems
JP3768110B2 (ja) 光増幅器
US7260324B2 (en) Automatic optical power management in optical communications system
JP4495321B2 (ja) 光レベル制御方法
JPH06204948A (ja) 高出力の光通信システム用フェイルセイフ自動遮断の装置及び方法
US7526199B2 (en) Optical transmission equipment preventing malfunction in recovery from fault
CN110086561B (zh) 用于波分复用(wdm)系统中的光学收发器的自愈的方法
WO2000001081A1 (fr) Systeme de relais d'amplification optique
US7957643B2 (en) Method and apparatus for automatically controlling optical signal power in optical transmission systems
RU2008118233A (ru) Способ устранения неисправности волоконной линии, а также предназначенные для этого устройство и система
JP2011019140A (ja) 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体
JP2005072769A (ja) 光伝送システム
EP1839402B1 (en) Method of controlling optical amplifier located along an optical link
US6654513B1 (en) Path monitoring in optical communication systems
US9264134B2 (en) Automatic laser shutdown and recovery in response to a link break
WO2022264208A1 (ja) 光伝送装置、光伝送方法及び記録媒体
JP2010219878A (ja) Ponシステム及び通信制御方法
JP2004080301A (ja) 分布ラマン光伝送線路の監視方法及びシステム
JP2010004410A (ja) 励起光源装置、光中継装置および光伝送システム
JP5627489B2 (ja) 波長多重伝送装置
JP2010278493A (ja) 光伝送システム
JP2008079163A (ja) 光送信装置および光送信装置の冗長切り替え方法
JP4569761B2 (ja) 光送信器、光伝送システム、および光中継器
JP2916210B2 (ja) 光ファイバ伝送システム
JP3670341B2 (ja) 光送信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18567909

Country of ref document: US

Ref document number: 2023529167

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945888

Country of ref document: EP

Kind code of ref document: A1