WO2022262674A1 - 带全热回收的双冷源空气源热泵机组 - Google Patents

带全热回收的双冷源空气源热泵机组 Download PDF

Info

Publication number
WO2022262674A1
WO2022262674A1 PCT/CN2022/098392 CN2022098392W WO2022262674A1 WO 2022262674 A1 WO2022262674 A1 WO 2022262674A1 CN 2022098392 W CN2022098392 W CN 2022098392W WO 2022262674 A1 WO2022262674 A1 WO 2022262674A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
water
valve
temperature
air
Prior art date
Application number
PCT/CN2022/098392
Other languages
English (en)
French (fr)
Inventor
章立标
唐进军
韩伟达
经武辉
梁书成
顾君丰
张佳丽
Original Assignee
浙江国祥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江国祥股份有限公司 filed Critical 浙江国祥股份有限公司
Publication of WO2022262674A1 publication Critical patent/WO2022262674A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the invention belongs to the technical field of heat pump machinery, in particular to a double cold source air source heat pump unit with full heat recovery.
  • the water-cooled chiller unit When cooling, the water-cooled chiller unit provides 7°C chilled water to the air-conditioning terminal such as the fan coil to cool the air in the room.
  • the water-cooled condenser transfers the condensation heat of the high-temperature and high-pressure refrigerant to the cooling water, and the cooling water is sent to Cooling towers reject heat to the outside atmosphere.
  • the water-cooled chiller is placed indoors, and the cooling tower is placed outdoors. There is a long cooling water circulation pipeline between the two, which requires a high-power and high-lift cooling water pump to drive the cooling water circulation; and the linkage between the main engine, the cooling tower and the cooling water pump is poor, resulting in The entire air conditioning system consumes high power and has low energy efficiency.
  • the air-cooled hot and cold water unit discharges a large amount of heat released by the high-temperature and high-pressure gas compressed by the compressor during the condensation process to the outdoor air through the fin heat exchanger.
  • the specific heat capacity and density of the air are low, and its temperature rise is generally As high as about 10°C, the average temperature of the inlet and outlet air is higher; at the same time, the heat transfer coefficient of the air side is lower, and the required heat transfer temperature difference is larger. Therefore, the condensation temperature of air-cooled hot and cold water units is very high, and the cooling energy efficiency is usually only between 2.6 and 3.0. The energy consumption of the system is too large, which does not meet the national energy conservation and emission reduction policies.
  • the low-pressure refrigerant gas from the water-side heat exchanger of the air conditioner generally needs to pass through the four-way valve and the gas-liquid separator before entering the compressor.
  • the resistance along the way and the local resistance are relatively large, which causes the suction pressure of the compressor and the cooling energy efficiency of the unit to decrease.
  • the source heat pump unit adopts water cooling in summer, and integrates a cooling water system composed of a cooling tower and a cooling water pump to greatly improve cooling capacity and cooling energy efficiency; in winter, an air source heat pump is used to provide air conditioning and heating functions.
  • condensed waste heat can be used to generate free process/sanitary hot water
  • finned heat exchangers can be used to absorb the heat of outdoor air, and then the process/sanitary water can be produced through refrigeration cycles and compressors. Hot water to solve air-conditioning refrigeration, air-conditioning heating and process/sanitary hot water throughout the year.
  • the present invention proposes a dual-cooler air source heat pump unit with full heat recovery, including a compressor 1 connected in the refrigeration cycle, and the high-pressure outlet of the compressor 1 is connected to a four-way switch Direction valve 2 interface d, connected to the composite water-cooled condenser 3 of the four-way reversing valve 2 interface c, connected to the finned heat exchanger 5 of the four-way reversing valve 2 interface e, connected to the four-way
  • the gas-liquid separator 12 of the reversing valve 2 interface s is connected to the first one-way valve 6 at the outlet of the composite water-cooled condenser 3, and the second one-way valve 7 and the second one-way valve at the outlet of the first one-way valve 6 are connected.
  • a solenoid valve 8 and a second solenoid valve 9 are connected to the first throttle valve 10 at the outlet of the first solenoid valve 8, connected to the second throttle valve 11 at the outlet of the second solenoid valve 9, and connected to the second throttle valve at the outlet of the second solenoid valve 9.
  • the outlet of the heat exchanger 12, the outlet of the shell-and-tube heat exchanger 4, and the suction port of the compressor 1 are connected to each other; the unit has the functions of cooling in summer and heating in winter, and also has the function of total heat recovery, which can provide process technology throughout the year.
  • the water-cooled condensation method is used for cooling in summer, and the condensation temperature can be reduced by about 14 °C compared with the air-cooled heat pump, which can significantly improve the cooling capacity and cooling energy efficiency of the unit, and the low-pressure gas coming out of the shell-and-tube heat exchanger 4 is directly Enter the suction port of the compressor to improve the cooling capacity and cooling energy efficiency of the unit.
  • the heat pump unit of the present invention also includes a first three-way valve 16 connected to the cooling water outlet of the composite water-cooled condenser 3, a cooling tower 13 connected to the interface q of the first three-way valve 16, and a cooling tower 13 connected to the
  • the cooling water pump 14 at the water outlet of the cooling tower 13 is connected to the waterway check valve 15 at the outlet of the cooling water pump 14, connected to the hot water pump 20 of the composite water-cooled condenser 3 process/sanitary hot water inlet, and connected to the shell
  • the composite water-cooled condenser 3 is equipped with a total heat recovery heat exchange tube bundle on its upper part, and the process/sanitary hot water inside the heat exchange tube can absorb the high-temperature and high-pressure gas refrigerant on the outside of the heat exchange tube during the condensation process.
  • the lower part is equipped with a cooling water heat exchange tube bundle, and the cooling water inside the heat exchange tube can absorb the high temperature and high pressure gas outside the heat exchange tube to cool
  • the heat discharged by the agent during the condensation process leaves the composite water-cooled condenser 3 after the temperature rises; the process/sanitary hot water loop inside the heat exchange tube bundle of the total heat recovery heat exchange tube and the cooling water heat exchange tube bundle heat exchange tube
  • the inner cooling water loops are independent of each other, and the high-temperature and high-pressure gas refrigerant entering the top of the composite water-cooled condenser 3 first flows through the heat recovery tube bundle, and then flows through the cooling water heat transfer tube bundle to discharge heat to the process/sanitation Hot water or cooling water is then condensed into a high-pressure liquid.
  • the port p of the first three-way valve 16 is connected to the cooling water outlet of the compound water-cooled condenser 3, the port q is connected to the inlet of the cooling tower, the port m is connected to the air-conditioning water outlet of the shell-and-tube heat exchanger 4, and the port of the second three-way valve 17 j is connected to the air-conditioning return water flowing from the end of the air conditioner, the interface h is connected to the air-conditioning water inlet of the shell-and-tube heat exchanger 4, and the interface i is connected to the cooling water inlet of the composite water-cooled condenser 3.
  • the first three-way valve 16 and the second Three-way valve 17 and its cooling water, the pipe section that air-conditioning water is connected form waterway valve group 18 and can be replaced with the mode that several two-way valves and three-way valves are combined; Described three-way valve, two-way valve can adopt electric or Pneumatic or manual valves.
  • the four-way reversing valve 2 and the first solenoid valve 8 are powered off, the second solenoid valve 9 is powered on, the interface p of the first three-way valve 16 is connected to the interface q, and the interface p and the interface Neither q is connected to port m, port h of the second three-way valve 17 is connected to port j, neither port h nor port j is connected to port i, cooling tower 13 and cooling water pump 14 are in operation, shell and tube type
  • the air-conditioning waterway in the heat exchanger 4 is in operation, the fan of the finned heat exchanger 5 stops running, and the process/sanitary hot water waterway inside the heat exchange tube bundle of the upper part of the composite water-cooled condenser 3 is not in operation;
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the composite water-cooled condenser 3 through the interface d and interface c of the four-way re
  • the outside of the heat exchange tube of the heat pipe bundle exchanges heat with the cooling water inside the relatively low temperature heat exchange tube, and the condensation heat is discharged to the cooling water and then condensed into a high-pressure liquid; the high-pressure liquid passes through the first one-way valve 6 and the second After the solenoid valve 9 enters the second throttle valve 11, it is throttled and decompressed into a low-temperature and low-pressure gas-liquid mixed refrigerant, which enters the shell-and-tube heat exchanger 4, absorbs the heat of the air-conditioning chilled water, cools it down, and then evaporates into a low-pressure gas.
  • the four-way reversing valve 2 and the first solenoid valve 8 are powered off, the second solenoid valve 9 is powered on, the first three-way valve 16 interface p is connected to the interface q, and the interface p Neither port nor port q is connected to port m, port h of the second three-way valve 17 is connected to port j, neither port h nor port j is connected to port i, cooling tower 13 and cooling water pump 14 stop running, compound type
  • the process/sanitary hot water waterway inside the heat exchange tube bundle in the upper part of the water-cooled condenser 3 is in operation, the air-conditioning waterway in the shell-and-tube heat exchanger 4 is in operation, and the fan of the fin heat exchanger 5 is stopped;
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the composite water-cooled condenser 3 through the interface d and interface c of the four-way reversing
  • the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the interface p of the first three-way valve 16 is connected to the interface m, and the interfaces p and Port m is not connected to port q, port j of the second three-way valve 17 is connected to port i, port j and port i are not connected to port h, cooling tower 13 and cooling water pump 14 stop running, process/sanitation
  • the refrigerant enters the compound water-cooled condenser 3 through the interface d and interface c of the four-way reversing valve
  • the hot water of the air conditioner inside the lower heat exchange tube performs heat exchange, discharges the condensed heat to the hot water of the air conditioner and is condensed into a high-pressure liquid, and then enters the first throttle valve 10 through the first one-way valve 6 and the first solenoid valve 8 , is throttled and decompressed into a low-temperature and low-pressure gas-liquid mixed refrigerant and enters the fin heat exchanger 5 to exchange heat with relatively high-temperature outdoor air.
  • the first solenoid valve 8 is powered off, the four-way reversing valve 2 and the second solenoid valve 9 are powered on, the port p of the first three-way valve 16 is connected to the port m, and neither the port p nor the port m is connected to the port q conduction, the interface j of the second three-way valve 17 is fully or mostly connected to the interface h, the cooling tower 13 and the cooling water pump 14 stop running, the fan of the finned heat exchanger 5 stops running, and the process/sanitary hot water channel Stop running; the high-temperature and high-pressure gas discharged from the compressor 1 enters the finned heat exchanger 5 through the interface d
  • the high-pressure gas refrigerant is condensed into high-pressure liquid, and then enters the second throttle valve 11 through the second one-way valve 7 and the second solenoid valve 9. After being throttled and decompressed, it becomes a low-temperature and low-pressure gas-liquid mixed refrigerant and then enters the shell-and-tube heat exchanger 4 to exchange heat with the hot air-conditioning hot water at a higher temperature. After absorbing the heat of the air-conditioning hot water, it evaporates into a low-pressure gas, and finally returns to compression The suction port of machine 1 is compressed by compressor 1 into high-temperature and high-pressure gas refrigerant, and the cycle is repeated until the end of defrosting.
  • the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, and the interfaces of the first three-way valve 16 and the second three-way valve 17 are turned on and off.
  • the water-cooled condenser 3 exchanges heat with the relatively low-temperature process/sanitary hot water on the outside of the heat exchange tube bundle of the total heat recovery heat exchange tube, and discharges a large amount of condensation heat to the process/sanitary hot water to heat it up After being condensed into a high-pressure liquid, it flows through the cooling water heat exchange tube bundle at the lower part of the composite water-cooled condenser 3 and leaves the composite water-cooled condenser 3, and then enters the first section through the first one-way valve 6 and the first solenoid valve 8 in sequence.
  • the flow valve 10 is throttled and depressurized to form a low-temperature and low-pressure gas-liquid mixed refrigerant, and then enters the finned heat exchanger 5 to exchange heat with the relatively high-temperature outdoor air, absorb the heat of the outdoor air, evaporate into a low-pressure gas, and then After successively passing through the interface e and interface s of the four-way reversing valve 2, the gas-liquid separator 12 finally returns to the suction port of the compressor 1, and is compressed by the compressor 1 into a high-temperature and high-pressure gas refrigerant, so that the cycle is repeated; the lower temperature
  • the process/sanitary hot water enters the inner side of the heat exchange tube of the total heat return heat exchange tube bundle in the upper part of the composite water-cooled condenser 3, and absorbs the condensation heat discharged by the high-temperature and high-pressure gas refrigerant on the outside of the heat exchange tube, and then leaves the composite water-cooled condenser After that, it is transported to the heat-requiring end of the
  • Port p and port m are not connected to port q, port j of the second three-way valve 17 is completely or partially connected to port h, cooling tower 13 and cooling water pump 14 are stopped, and finned heat exchanger 5 fan Stop the operation, and the air-conditioning water circuit in the shell-and-tube heat exchanger 4 is running; the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the finned heat exchanger 5 sequentially through the interface d and interface e of the four-way reversing valve 2 , a large amount of condensation heat is discharged to the frost or ice on the surface of the fin, which absorbs heat and melts into water and detaches from the surface of the fin to realize the defrosting function.
  • the high-pressure gas is condensed into a high-pressure liquid, and then passes through the second one-way valve 7 .
  • the second solenoid valve 9 enters the second throttle valve 11, is throttled and depressurized into a low-temperature and low-pressure gas-liquid mixed refrigerant, and then enters the shell-and-tube heat exchanger 4.
  • the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the interface p of the first three-way valve 16 is connected to the interface m, and the interface Both p and port m are not connected to port q, port j of the second three-way valve 17 is connected to port i, neither port j nor port i is connected to port h, cooling tower 13 and cooling water pump 14 stop running, fin
  • the fin heat exchanger 5 fan is in running state; the process/sanitary hot water circuit and the air-conditioning hot water circuit can be operated at the same time as required, or only the process/sanitary hot water circuit is in operation, or only the air-conditioning hot water circuit is in operation.
  • the air-conditioning hot water circuit can be stopped first, and when the process/sanitary hot water temperature reaches the set value, the process/sanitary hot water circuit will stop running, and the air-conditioning hot water circuit will be put into operation ;
  • the process/sanitary hot water channel can stop running first, and when the air-conditioning hot water temperature reaches the set value, the air-conditioning hot water channel will stop running, and the process/sanitary hot water channel will be put into operation;
  • the hot water channel is put into operation, the hot water of the air conditioner will enter the inner side of the heat exchange tube of the cooling water heat exchange tube bundle at the lower part of the compound condenser 3; the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the interface d of the four-way reversing valve 2 , interface c enters the composite water-cooled condenser 3, and flows through the outer side of the total heat recovery heat exchange tube bundle and
  • Process/sanitary hot water enters the composite water-cooled condenser 3, absorbs the condensation heat discharged by the high-temperature and high-pressure gas refrigerant outside the heat exchange tube, and leaves the composite water-cooled condenser 3 after the temperature rises, and then is transported to the end of the user's air conditioner or heat-requiring At the end, the heat is discharged to the air-conditioning end or the temperature of the heat-requiring end drops, and then it is transported back to the composite water-cooled condenser 3, and the cycle is repeated.
  • the operation of the process/sanitary hot water circuit in the composite water-cooled condenser 3 can be controlled by the hot water pump for start-stop control, or switch control by electric or pneumatic valves.
  • the electric and pneumatic valves can use two-way valves.
  • a three-way valve can also be used; the waterway one-way valve 15 connected to the outlet of the cooling water pump 14 can be replaced by the first two-way valve 22, and the first two-way valve 22 can be electric or Pneumatic or manual valves.
  • the invention has five functions and operating modes of cooling, heating, cooling plus full heat recovery, hot water, heating and heating water, and achieves the purpose of waste heat recovery, multi-purpose of one machine, environmental protection and energy saving, and undoubtedly effectively improves energy consumption. usage efficiency.
  • Figure 1 is a schematic diagram of an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of another embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the first waterway valve group according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a second waterway valve group according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a third waterway valve group according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a fourth waterway valve group according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a fifth waterway valve group according to an embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, such as two, three, etc., unless otherwise specifically defined.
  • the terms "connected”, “communicated”, etc. should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection, an electrical connection ; It may be directly connected or indirectly connected through an intermediary; it may be the internal communication of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the first feature is "on”, “below” or “above” the second feature, it may be that the first and second features are in direct contact, or the first and second features are in direct contact with each other.
  • the second feature is indirectly contacted through an intermediary.
  • “above”, “over” or “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “beneath” or “beneath” a second feature may be that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediary.
  • “below”, “below” or “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or it just means that the first feature is less horizontally than the second feature.
  • one aspect of the present invention proposes a dual-cooler air-source heat pump unit with full heat recovery, including a compressor 1 connected in the refrigeration cycle, and the high-pressure outlet of the compressor 1 is connected to four Connect to the port d of the reversing valve 2, connect the composite water-cooled condenser 3 of the port c of the four-way reversing valve 2, connect the finned heat exchanger 5 of the port e of the four-way reversing valve 2, and connect the The gas-liquid separator 12 of the port s of the four-way reversing valve 2 is connected to the first one-way valve 6 at the outlet of the composite water-cooled condenser 3 and connected to the second one-way valve 7 at the outlet of the first one-way valve 6 , the first solenoid valve 8, the second solenoid valve 9, the first throttle valve 10 connected to the outlet of the first solenoid valve 8, the second throttle valve 11 connected to the outlet of the second solenoid valve 9, connected to the The shell-and-tube heat exchanger
  • the dual cold source air source heat pump unit with full heat recovery also includes a first three-way valve 16 connected to the cooling water outlet of the composite water-cooled condenser 3, and a first three-way valve 16 connected to the interface q of the first three-way valve 16
  • the cooling tower 13 is connected to the cooling water pump 14 at the water outlet of the cooling tower 13, connected to the waterway check valve 15 at the outlet of the cooling water pump 14, and connected to the heat of the compound water-cooled condenser 3 process/sanitary hot water inlet.
  • the water pump 20 is connected to the second three-way valve 17 of the water inlet of the shell-and-tube heat exchanger 4; the interface m of the first three-way valve 16 is connected to the water outlet of the shell-and-tube heat exchanger 4; The interface i of the three-way valve 17 is connected with the cooling water inlet of the connected compound water-cooled condenser 3 and the water outlet of the waterway one-way valve 15 .
  • the upper part of the composite water-cooled condenser 3 is provided with a total heat recovery heat exchange tube bundle.
  • the process/sanitary hot water inside the heat exchange tube absorbs the energy exchanged
  • the heat released by the high-temperature and high-pressure gas refrigerant on the outside of the heat pipe during the condensation process will leave the composite water-cooled condenser 3 after the temperature rises, and lead to the heat-requiring end of the user;
  • the lower part is provided with a cooling water heat exchange tube bundle, and the heat exchange tube
  • the cooling water on the inner side absorbs the heat released by the high-temperature and high-pressure gas refrigerant on the outside of the heat exchange tube during the condensation process in the cooling mode, or in the hot water heating mode of the air conditioner or in the heating and heating water mode, and leaves the composite water cooling after the temperature rises.
  • the process/sanitary hot water circuit inside the heat exchange tubes of the total heat recovery heat exchange tube bundle is independent from the cooling water circuit inside the heat exchange tube bundle of cooling water heat exchange tubes, while the high-temperature and high-pressure gas refrigerant entering the top of the composite water-cooled condenser 3 is It flows through the total heat recovery heat exchange tube bundle first, then flows through the cooling water heat exchange tube bundle, and discharges the heat to process/sanitary hot water or cooling water, and then is condensed into a high-pressure liquid.
  • the first three-way valve 16 and the second three-way valve 17 can be electric valves or pneumatic valves, manual valves or other types of valves.
  • each component the four-way reversing valve 2
  • the first solenoid valve 8 are powered off
  • the second solenoid valve 9 is powered on
  • the first three-way valve 16 is connected to the interface p and the interface q is not connected to the interface m conducts
  • the second three-way valve 17 interface h conducts with the interface j and does not conduct with the interface i
  • the cooling tower 13 and the cooling water pump 14 are in the running state
  • the air-conditioning water circuit in the shell-and-tube heat exchanger 4 is in the running state.
  • the fan of the fin heat exchanger 5 stops running, the process/sanitary hot water water channel inside the heat exchange tube bundle of the upper part of the composite water-cooled condenser 3 does not operate, and the air-conditioning water channel in the shell-and-tube heat exchanger 4 operates .
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Compound water-cooled condenser 3->First one-way valve 6->Second solenoid Valve 9 -> Second throttle valve 11 -> Shell and tube heat exchanger 4 -> Compressor 1.
  • the opening degree of the second throttle valve 11 is controlled according to the superheat degree of the gas side outlet of the shell-and-tube heat exchanger 4 or the suction superheat degree of the low-pressure inlet of the compressor 1 or the exhaust superheat degree of the high-pressure outlet of the compressor 1 .
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Compound water-cooled condenser 3->First one-way valve 6->Second solenoid Valve 9 -> Second throttle valve 11 -> Shell and tube heat exchanger 4 -> Compressor 1.
  • the opening degree of the second throttle valve 11 is controlled according to the superheat degree of the gas side outlet of the shell-and-tube heat exchanger 4 or the suction superheat degree of the low-pressure inlet of the compressor 1 or the exhaust superheat degree of the high-pressure outlet of the compressor 1 .
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Compound water-cooled condenser 3->First one-way valve 6->First electromagnetic Valve 8->First throttle valve 10->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2->Gas-liquid separator 12-> compressor 1.
  • the opening degree of the first throttle valve 10 is controlled according to the superheat degree at the gas side outlet of the fin heat exchanger 5 or the suction superheat degree at the low pressure inlet of the compressor 1 , or the exhaust superheat degree at the high pressure outlet of the compressor 1 .
  • Hot water mode the working status of each component: the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the first three-way valve 16 and the second three-way valve 17 remain the same as last time
  • the state during cooling or heating operation the cooling tower 13 and the cooling water pump 14 stop running, the air-conditioning water circuit in the shell-and-tube heat exchanger 4 stops running, and the upper part of the composite water-cooled condenser 3 recovers all heat inside the heat-exchanging tube bundle.
  • the process/sanitary hot water circuit is in operation, and the finned heat exchanger 5 fan is in operation.
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Compound water-cooled condenser 3->First one-way valve 6->First electromagnetic Valve 8->First throttle valve 10->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2->Gas-liquid separator 12-> compressor 1.
  • the opening degree of the first throttle valve 10 is controlled according to the superheat degree at the gas side outlet of the fin heat exchanger 5 or the suction superheat degree at the low pressure inlet of the compressor 1 , or the exhaust superheat degree at the high pressure outlet of the compressor 1 .
  • Heating water heating mode the working status of each component: the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the first three-way valve 16 interface p is connected to the interface m, Port p and port m are not connected to port q, port j of the second three-way valve 17 is connected to port i, neither port j nor port i is connected to port h, cooling tower 13 and cooling water pump 14 stop running, The fan of the finned heat exchanger 5 is in running state. Process/sanitary hot water and air-conditioning hot water can be operated at the same time, or only process/sanitary hot water, or only air-conditioning hot water can be operated.
  • the air-conditioning hot water circuit can be stopped first, and the process/sanitary hot water circuit will stop running after the temperature of the process/sanitary hot water reaches the set value, and the air-conditioning hot water circuit will be put into operation Running; when the air-conditioning hot water is selected as the optimized heating object, the process/sanitary hot water can be stopped first, and the air-conditioning hot water will stop running after the temperature of the air-conditioning hot water reaches the set value, and the process/sanitary hot water will be put into operation at the same time When the air-conditioning hot water waterway is put into operation, the air-conditioning hot water will enter the heat exchange tube inner side of the composite condenser 3 lower cooling water heat exchange tube bundles.
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Compound water-cooled condenser 3->First one-way valve 6->First electromagnetic Valve 8->First throttle valve 10->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2->Gas-liquid separator 12-> compressor 1.
  • another dual-cooler air source heat pump unit with full heat recovery proposed by the present invention includes a compressor 1 connected in the refrigeration cycle, and the high-pressure outlet of the compressor 1 is connected to a four-way reversing
  • the valve 2 interface d is connected to the composite water-cooled condenser 3 of the four-way reversing valve 2 interface c, connected to the finned heat exchanger 5 of the four-way reversing valve 2 interface e, and connected to the four-way reversing valve
  • the gas-liquid separator 12 of the interface s of the valve 2 is connected to the first one-way valve 6 at the outlet of the composite water-cooled condenser 3, and the second one-way valve 7 and the third one-way valve at the outlet of the first one-way valve 6 are connected.
  • Throttle valve 19 connected to the first solenoid valve 8 and the second solenoid valve 9 at the outlet of the third throttle valve 19, connected to the third one-way valve 32 at the outlet of the first solenoid valve 8, connected to the second The shell-and-tube heat exchanger 4 at the outlet of the solenoid valve 9; the outlet of the third check valve 32 is connected to the inlet of the second check valve 7 and the liquid side interface of the finned heat exchanger 5; the gas-liquid separator The outlet of 12 is connected with the outlet of shell-and-tube heat exchanger 4 and the suction port of compressor 1.
  • the dual cold source air source heat pump unit with full heat recovery also includes a first three-way valve 16 connected to the cooling water outlet of the composite water-cooled condenser 3, connected to the interface q of the first three-way valve 16
  • the cooling tower 13 is connected to the cooling water pump 14 at the water outlet of the cooling tower 13, connected to the first two-way valve 22 at the outlet of the cooling water pump 14, and connected to the composite water-cooled condenser 3 process/sanitary hot water inlet
  • the hot water three-way valve 21 is connected to the second three-way valve 17 of the water inlet of the shell-and-tube heat exchanger 4; the interface m of the first three-way valve 16 is connected to the water outlet of the shell-and-tube heat exchanger 4
  • the interface i of the second three-way valve 17 is connected to the cooling water inlet of the connected composite water-cooled condenser 3 and the water outlet of the first two-way valve 22, and the interface o of the hot water three-way valve 21 is connected to the composite water-cooled condenser The
  • the above composite water-cooled condenser 3 is equipped with a total heat recovery heat exchange tube bundle on its upper part.
  • the process/sanitary hot water inside the heat exchange tube absorbs The heat released by the high-temperature and high-pressure gas refrigerant on the outside of the heat exchange tube during the condensation process will leave the composite water-cooled condenser 3 after the temperature rises, and lead to the heat-requiring end of the user;
  • the lower part is equipped with a cooling water heat exchange tube bundle, and its heat exchange
  • the cooling water cooling mode or air-conditioning hot water heating mode or heating heating water mode inside the tube absorbs the heat discharged by the high-temperature and high-pressure gas refrigerant outside the heat exchange tube during the condensation process, and leaves the composite water-cooled condenser after the temperature rises 3 lead to cooling tower cooling mode or air conditioner terminal heating mode or heating and heating water mode.
  • the process/sanitary hot water circuit inside the heat exchange tubes of the total heat recovery heat exchange tube bundle is independent from the cooling water circuit inside the heat exchange tube bundle of cooling water heat exchange tubes, while the high-temperature and high-pressure gas refrigerant entering the top of the composite water-cooled condenser 3 is It flows through the total heat recovery heat exchange tube bundle first, then flows through the cooling water heat exchange tube bundle, and discharges the heat to process/sanitary hot water or cooling water, and then is condensed into a high-pressure liquid.
  • the opening degree of the third throttle valve 19 is controlled according to the superheat degree of the gas side outlet of the shell-and-tube heat exchanger 4 or the suction superheat degree of the low-pressure inlet of the compressor 1 or the exhaust superheat degree of the high-pressure outlet of the compressor 1 .
  • the opening degree of the third throttle valve 19 is controlled according to the superheat degree of the gas side outlet of the shell-and-tube heat exchanger 4 or the suction superheat degree of the low-pressure inlet of the compressor 1 or the exhaust superheat degree of the high-pressure outlet of the compressor 1 .
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Shell and tube heat exchanger 4->First one-way valve 6->Third Throttle valve 19->First solenoid valve 8->Third one-way valve 32->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2 -> Gas-liquid separator 12 -> Compressor 1.
  • the opening degree of the third throttle valve 19 is controlled according to the superheat degree at the gas side outlet of the fin heat exchanger 5 or the suction superheat degree at the low pressure inlet of the compressor 1 , or the exhaust superheat degree at the high pressure outlet of the compressor 1 .
  • Hot water mode the working status of each component: the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the first three-way valve 16 and the second three-way valve 17 remain the same as last time
  • the cooling tower 13 and the cooling water pump 14 stop running, the air-conditioning water circuit in the shell-and-tube heat exchanger 4 stops running, and all or most of the hot water three-way valve 21 interface n is connected to the interface r , 5 fans of the finned heat exchanger are in operation.
  • Refrigerant process Compressor 1->Four-way reversing valve 2 interface d->Four-way reversing valve 2 interface c->Shell and tube heat exchanger 4->First one-way valve 6->Third Throttle valve 19->First solenoid valve 8->Third one-way valve 32->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2 -> Gas-liquid separator 12 -> Compressor 1.
  • Heating water heating mode the working status of each component: the four-way reversing valve 2 and the second solenoid valve 9 are powered off, the first solenoid valve 8 is powered on, the first three-way valve 16 interface p is connected to the interface m, Port p and port m are not connected to port q, port j of the second three-way valve 17 is connected to port i, neither port j nor port i is connected to port h, cooling tower 13 and cooling water pump 14 stop running, The fan of the finned heat exchanger 5 is in running state. Process/sanitary hot water and air-conditioning hot water can be operated at the same time, or only process/sanitary hot water, or only air-conditioning hot water can be operated.
  • the air-conditioning hot water circuit can be stopped first, and the process/sanitary hot water circuit will stop running after the temperature of the process/sanitary hot water reaches the set value, and the air-conditioning hot water circuit will be put into operation Running; when the air-conditioning hot water is selected as the optimized heating object, the process/sanitary hot water can be stopped first, and the air-conditioning hot water will stop running after the temperature of the air-conditioning hot water reaches the set value, and the process/sanitary hot water will be put into operation at the same time When the air-conditioning hot water waterway is put into operation, the air-conditioning hot water will enter the heat exchange tube inner side of the composite condenser 3 lower cooling water heat exchange tube bundles.
  • Refrigerant process compressor 1->4-way reversing valve 2 interface d->4-way reversing valve 2 interface c->compound water-cooled condenser 3->first one-way valve 6->third section Flow valve 19->First solenoid valve 8->Third one-way valve 32->Fin heat exchanger 5->Interface e of four-way reversing valve 2->Interface s of four-way reversing valve 2- >Gas-liquid separator 12->Compressor 1.
  • the opening degree of the third throttle valve 19 is controlled according to the superheat degree at the gas side outlet of the fin heat exchanger 5 or the suction superheat degree at the low pressure inlet of the compressor 1 , or the exhaust superheat degree at the high pressure outlet of the compressor 1 .
  • the second two-way valve 23 and the third two-way valve 24 are used in the waterway valve group 18 to replace the first three-way valve 16.
  • the interface j of the second three-way valve 17 is connected to the interface h. If it is not connected to interface i, the second two-way valve 23 is opened, and the third two-way valve 24 is closed; when heating or heating water, the second three-way valve 17 interface j is connected to interface i and not connected to h is turned on, the third two-way valve 24 is opened, and the second two-way valve 23 is closed.
  • the fourth two-way valve 25 and the fifth two-way valve 26 are used in the waterway valve group 18 to replace the second three-way valve 17.
  • the interface p of the first three-way valve 16 is connected to the interface q. If it is not connected to the port m, the fifth two-way valve 26 is opened, and the fourth two-way valve 25 is closed; when heating or heating water, the port p of the first three-way valve 16 is connected to the port m and not connected to the The interface q is turned on, the fourth two-way valve 25 is opened, and the fifth two-way valve 26 is closed.
  • the second two-way valve 23 and the third two-way valve 24 are used to replace the first three-way valve 16 in the waterway valve group 18, and the fourth two-way valve 25 and the fifth two-way valve 26 are used to replace the second three-way valve.
  • Valve 17 when cooling or heating water, the second two-way valve 23 and the fifth two-way valve 26 are opened, the third two-way valve 24 and the fourth two-way valve 25 are closed; when heating or heating water, the second two-way valve The second two-way valve 23 and the fifth two-way valve 26 are closed, and the third two-way valve 24 and the fourth two-way valve 25 are opened.
  • the second two-way valve 23 and the third two-way valve 24 are used instead of the first three-way valve 16 in the waterway valve group 18, and the sixth two-way valve 27, the seventh two-way valve 28, and the eighth two-way valve are used.
  • Valve 29 replaces the second three-way valve 17.
  • the second two-way valve 23 and the seventh two-way valve 28 are opened, and the third two-way valve 24, the sixth two-way valve 27, and the eighth two-way valve Valve 29 is closed; when heating or heating water, the second two-way valve 23 and the seventh two-way valve 28 are closed, the third two-way valve 24 and the sixth two-way valve 27 are opened, and the eighth two-way valve 29 can be Turn on or off as needed.
  • the second two-way valve 23 and the third two-way valve 24 are used to replace the first three-way valve 16 in the waterway valve group 18, and the eighth two-way valve 29 and the third three-way valve 30 are used to replace the second three-way valve Valve 17, when cooling or cooling and heating water, the second two-way valve 23 is opened, the third two-way valve 24 and the eighth two-way valve 29 are closed, and the third three-way valve 30 is connected to the interface x and the interface y but not to the interface z conduction; when heating or heating water, the second two-way valve 23 is closed, the third two-way valve 24 is opened, and the third three-way valve 30 is connected to port x and port z but not to port y.
  • the eighth two-way valve 29 can be opened or closed as required.

Abstract

一种带全热回收的双冷源空气源热泵,属于热泵机械技术领域。该带全热回收的双冷源空气源热泵包括连接在制冷循环中的压缩机(1)、四通换向阀(2)、复合式水冷冷凝器(3)、壳管式换热器(4)、翅片式换热器(5)、第一单向阀(6)、第二单向阀(7)、第一电磁阀(8)、第二电磁阀(9)、第一节流阀(10)、第二节流阀(11)、气液分离器(12)、冷却塔(13)、冷却水泵(14)、水路单向阀(15)、水路阀门组(18)。通过四通换向阀(2)、第一电磁阀(8)、第二电磁阀(9)、水路阀门组(18)状态的控制以及复合式水冷冷凝器(3)、壳管式换热器(4)中水流动状态的控制,可实现制冷、制冷加全热回收、制热、热水、制热加热水五种功能及运行模式之间的切换。通过全热回收解决常规楼宇建筑或工业行业项目全年制冷、采暖、卫生或工艺热水需求。

Description

带全热回收的双冷源空气源热泵机组 技术领域
本发明属于热泵机械技术领域,尤其涉及带全热回收的双冷源空气源热泵机组。
背景技术
常规中央空调主机一般采用以下两种方式:
1水冷冷水机组
制冷时,由水冷冷水机组向风机盘管等空调末端提供7℃冷冻水以对房间空气进行冷却,水冷冷凝器将高温高压制冷剂的冷凝热量传递给冷却水,冷却水再被冷却水泵输送到冷却塔将热量排放给室外大气。通常水冷冷水机组放置在室内,冷却塔放置在室外,二者之间有较长的冷却水循环管道,需要大功率大扬程冷却水泵驱动冷却水循环;且主机与冷却塔、冷却水泵联动性能差,导致整个空调系统功耗较高,能效较低。
冬季及过渡季节采暖时,需另外配置锅炉等采暖设备,能源效率低,环境污染大,且操作维护复杂。
配套的土建及室内空间的占用,致使工程造价较高。
2风冷冷热水机组
夏季制冷时,风冷冷热水机组通过翅片换热器将经压缩机压缩后的高温高压气体在冷凝过程中释放的大量热量排放给室外空气,空气比热容和密度较低,其温升一般高达10℃左右,故进出风平均温度较高;同时,空气侧传热系数较低,所需的换热温差较大。因此,风冷冷热水机组的冷凝温度很高,制冷能效通常仅在2.6~3.0之间,系统能耗过大,不符合国家节能减排政策。
常规风冷冷热水机组夏季制冷运行时,从空调水侧换热器出来的低压制冷剂气体,一般需先后经过四通阀、气液分离器后再进入压缩机,低压吸气管路的沿程阻力和局部阻力较大,引起压缩机吸气压力和机组制冷能效的下降。
无论是水冷冷水机组还是风冷冷热水机组,夏季均需向室外大气环境排放大量冷凝废热,引起室外气温的明显上升,造成城市热岛效应。
发明内容
为了克服水冷冷水机组无法实现冬季制热功能,需配置锅炉以解决冬季供热,而风冷冷热水机组夏季制冷能效太低的缺陷,本发明提供一种带全热回收的双冷源空气源热泵机组,夏天采用水冷,且集成了由冷却塔、冷却水泵组成的冷却水系统,以大幅提高制冷量和 制冷能效;冬季则采用空气源热泵,以提供空调制热功能。同时,夏季制冷时可利用冷凝废热来产生免费的工艺/卫生热水,其余季节则可通过翅片式换热器来吸收室外空气热量,再通过制冷循环和压缩机做功来制取工艺/卫生热水,以解决全年空调制冷、空调制热及工艺/卫生热水。
在本发明的第一方面,本发明提出了一种带全热回收的双冷源空气源热泵机组,包括连接在制冷循环回路中的压缩机1,所述压缩机1高压出口连接四通换向阀2接口d,连接所述四通换向阀2接口c的复合式水冷冷凝器3,连接所述四通换向阀2接口e的翅片式换热器5,连接所述四通换向阀2接口s的气液分离器12,连接所述复合式水冷冷凝器3出口的第一单向阀6,连接所述第一单向阀6出口的第二单向阀7、第一电磁阀8、第二电磁阀9,连接所述第一电磁阀8出口的第一节流阀10,连接所述第二电磁阀9出口的第二节流阀11,连接所述第二节流阀11出口的壳管式换热器4;所述第一节流阀10出口和第二单向阀7进口以及翅片式换热器5液侧接口相互连接;所述气液分离器12的出口和壳管式换热器4的出口以及压缩机1的吸气口相互连接;所述机组具备夏季制冷和冬季制热功能,同时还具有全热回收功能,可全年提供工艺或卫生热水;夏季制冷时采用水冷冷凝方式,冷凝温度较风冷热泵可降低14℃左右,可显著提高机组的制冷量和制冷能效,且从壳管式换热器4出来的低压气体直接进入压缩机吸气口,提高机组制冷量和制冷能效。
另外,根据本发明上述实施例,还可以具有如下附加的技术特征:
具体的,本发明的热泵机组还包括连接所述复合式水冷冷凝器3冷却水出水口的第一三通阀16,连接所述第一三通阀16接口q的冷却塔13,连接所述冷却塔13出水口的冷却水泵14,连接所述冷却水泵14出口的水路单向阀15,连接所述的复合式水冷冷凝器3工艺/卫生热水进水口的热水泵20,连接所述壳管式换热器4进水口的第二三通阀17;所述第一三通阀16接口m与壳管式换热器4的出水口相连;所述第二三通阀17接口i与所述连接复合式水冷冷凝器3冷却水进水口、水路单向阀15出水口相连。
具体的,复合式水冷冷凝器3,其上部设置了全热回收换热管束,所述换热管内侧的工艺/卫生热水可吸收换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器3,通向用户需热末端;下部则设置了冷却水换热管束,其换热管内侧的冷却水可吸收换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器3;所述全热回收换热管束换热管内侧的工艺/卫生热水回路与冷却水换热管束换热管内侧的冷却水回路相互独立,而进入复合式水冷冷凝器3顶部的高温高压气体制冷剂则先流经全热回收换热管束,再流经冷却水换热管束,将热量排放给工艺/卫 生热水或冷却水后被冷凝成高压液体。
具体的,第一三通阀16接口p接复合式水冷冷凝器3冷却水出口,接口q接冷却塔入口,接口m接壳管式换热器4空调水出口,第二三通阀17接口j接流自空调末端的空调回水,接口h接壳管式换热器4空调水入口,接口i接复合式水冷冷凝器3冷却水入口,所述的第一三通阀16和第二三通阀17及其冷却水、空调水连接的管段组成水路阀门组18可以用若干个二通阀和三通阀组合的方式来替代;所述的三通阀、二通阀可以采用电动或气动或手动的阀门。
使用上述热泵机组的制冷模式控制方法,四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通,接口p和接口q均不与接口m导通,第二三通阀17接口h与接口j导通,接口h和接口j均不与接口i导通,冷却塔13和冷却水泵14处于运转状态,壳管式换热器4内的空调水路处于运转状态,翅片式换热器5风机停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生热水水路不运转;所述压缩机1排出的高温高压气体制冷剂经过四通换向阀2的接口d、接口c进入复合式水冷冷凝器3,流经全热回收换热管束换热管外侧,在冷却水换热管束换热管外侧与温度相对较低的换热管内侧的冷却水进行换热,将冷凝热量排放给冷却水后被冷凝为高压液体;高压液体依次经第一单向阀6、第二电磁阀9后进入第二节流阀11,被节流降压为低温低压气液混合制冷剂进入壳管式换热器4,吸收空调冷冻水热量对其进行降温冷却后蒸发为低压气体,最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;吸收高温高压气体制冷剂冷凝热量温度上升后的冷却水,经过第一三通阀16接口p、接口q进入冷却塔13,在冷却塔13内将热量排放给室外空气后温度下降,之后又被冷却水泵14经水路单向阀15输送至复合式水冷冷凝器3下部冷却水换热管束的换热管内侧,吸收换热管外侧的高温高压气体制冷剂所排放的冷凝热量温度上升后离开复合式水冷冷凝器3,如此反复循环;从壳管式换热器4出来的温度较低的空调冷冻水则流向用户空调末端,对流经空调末端的循环空气进行冷却释放出冷量后温度升高,再由空调水泵经三通阀接口j、接口h,输送回到壳管式换热器4,与被节流阀6节流后的低温低压气液混合制冷剂进行换热,被制冷剂冷却温度下降后离开壳管式换热器4,此反复循环。
使用上述热泵机组的制冷加热水模式控制方法,四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通,接口p和接口q均不与接口m导通,第二三通阀17接口h与接口j导通,接口h和接口j均不与接口i导通,冷却塔13和冷却水泵14停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生 热水水路运转,壳管式换热器4内的空调水路处于运转状态,翅片式换热器5风机停止运转;所述压缩机1排出的高温高压气体制冷剂经过四通换向阀2的接口d、接口c进入复合式水冷冷凝器3,在全热回收换热管束换热管外侧与温度相对较低的换热管内侧的工艺/卫生热水进行换热,将冷凝热量排放给工艺/卫生热水后被冷凝为高压液体;高压液体流经冷却水换热管束管外侧后离开复合式水冷冷凝器3,之后依次经第一单向阀6、第二电磁阀9后进入第二节流阀11,被节流降压为低温低压气液混合制冷剂后进入壳管式蒸发器4,吸收空调冷冻水热量对其进行降温冷却后蒸发为低压气体,最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;吸收高温高压气体制冷剂的冷凝热量温度上升后的工艺/卫生热水则被输送至用户需热末端,将热量排放给需热末端后温度下降,之后又被输送至复合式水冷冷凝器3上部全热回收换热管束的换热管内侧,吸收换热管外侧的高温高压气体制冷剂所排放的冷凝热量温度上升后离开复合式水冷冷凝器3,如此反复循环;从壳管式换热器4出来的温度较低的空调冷冻水则流向用户空调末端,对流经空调末端的循环空气进行冷却释放出冷量后温度升高,再由空调水泵经三通阀接口j、接口h,输送回到壳管式换热器4,与被节流阀6节流后的低温低压气液混合制冷剂进行换热,被制冷剂冷却温度下降后离开壳管式换热器4,此反复循环。
使用上述热泵机组的制热模式控制方法,四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口i导通,接口j和接口i均不与接口h导通,冷却塔13和冷却水泵14停止运转,工艺/卫生热水水路停止运转,翅片式换热器5风机处于运转状态,空调热水进入复合式水冷冷凝器3下部冷却水换热管束的换热管内侧;所述压缩机1排出的高温高压气体制冷剂经过四通换向阀2的接口d、接口c进入复合式水冷冷凝器3,流经全热回收换热管束换热管外侧,在冷却水换热管束换热管外侧与温度相对较低的换热管内侧的空调热水进行换热,将冷凝热量排放给空调热水后被冷凝为高压液体,之后经第一单向阀6、第一电磁阀8进入第一节流阀10,被节流降压为低温低压气液混合制冷剂后进入翅片式换热器5,与温度相对较高的室外空气进行换热,吸收室外空气热量后蒸发为低压气体制冷剂,之后依次经过四通换向阀2的接口e及接口s、气液分离器12后最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;温度较低的空调热水进入复合式水冷冷凝器3下部的冷却水换热管束的换热管内侧,吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器3,之后被输送到用户空调末端,将热量排放给流经空调末端的循环空气温度下降后再被空调水泵输送回到冷却水换热管束,如此反复循环; 当翅片式换热器表面结霜或结冰时,第一电磁阀8断电,四通换向阀2、第二电磁阀9通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口h完全导通或大部分导通,冷却塔13和冷却水泵14停止运转,翅片式换热器5风机停止运转,工艺/卫生热水水路停止运转;所述压缩机1排出的高温高压气体经过四通换向阀2的接口d、接口e进入翅片式换热器5,将大量的冷凝热量传递给翅片表面的霜或冰,使其吸热融化成水脱离翅片表面从而实现除霜功能,高压气体制冷剂则被冷凝成高压液体,之后经第二单向阀7、第二电磁阀9进入第二节流阀11,被节流降压为低温低压气液混合制冷剂后进入壳管式换热器4,与温度较高的空调热水进行换热,吸收空调热水热量后蒸发为低压气体,最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环,直到除霜结束。
使用上述热泵机组的热水模式控制方法,四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16、第二三通阀17各接口通断保持上一次制冷或制热运行时的状态,冷却塔13和冷却水泵14停止运转,壳管式换热器4内的空调水路停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生热水水路运转,翅片式换热器5风机处于运转状态;所述压缩机1排出的高温高压气体经过四通换向阀2的接口d、接口c进入复合式水冷冷凝器3,在全热回收换热管束的换热管外侧与温度相对较低的工艺/卫生热水进行换热,将大量的冷凝热量排放给工艺/卫生热水,对其进行加热升温后被冷凝成高压液体,之后流经复合式水冷冷凝器3下部冷却水换热管束后离开复合式水冷冷凝器3,再依次经过第一单向阀6、第一电磁阀8进入第一节流阀10,被节流降压为低温低压气液混合制冷剂后进入翅片式换热器5,与温度相对较高的室外空气进行换热,吸收室外空气热量后蒸发为低压气体,再依次经过四通换向阀2的接口e及接口s、气液分离器12最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;温度较低的工艺/卫生热水进入复合式水冷冷凝器3上部的全热回换热管束的换热管内侧,吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器3,之后被输送至用户需热末端,将热量排放给需热末端温度下降后再被输送至复合式水冷冷凝器3上部全热回收换热管束的换热管内侧,如此反复循环;当翅片式换热器表面结霜或结冰时,第一电磁阀8断电,四通换向阀2、第二电磁阀9通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口h完全导通或部分导通,冷却塔13和冷却水泵14停止运转,翅片式换热器5风机停止运转,壳管式换热器4内的空调水路运转;所述压缩机1排出的高温高压气体制冷剂依次经过四通换向阀2的接口d、接口e进入 翅片式换热器5,将大量的冷凝热量排放给翅片表面的霜或冰,使其吸热融化成水脱离翅片表面从而实现除霜功能,高压气体则被冷凝成高压液体,之后经第二单向阀7、第二电磁阀9进入第二节流阀11,被节流降压为低温低压气液混合制冷剂后进入壳管式换热器4,吸收空调水热量后蒸发为低压气体,最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;进入壳管式换热器4的空调水,向节流后的低温低压气液混合制冷剂释放热量温度下降后离开壳管式换热器4,再由空调水泵驱动经过空调末端和空调水环路后回到壳管式换热器4,此反复循环直到除霜结束。
使用上述热泵机组的制热加热水模式控制方法,四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口i导通,接口j和接口i均不与接口h导通,冷却塔13和冷却水泵14停止运转,翅片式换热器5风机处于运转状态;工艺/卫生热水水路和空调热水水路可根据需要同时运转,或仅工艺/卫生热水水路运转,或仅空调热水水路运转。当选择工艺/卫生热水为优化加热对象时,空调热水水路的可先停止运转,待工艺/卫生热水水温达到设置值后工艺/卫生热水水路停止运转,空调热水水路投入运转状态;当选择空调热水为优化加热对象时,工艺/卫生热水水路可先停止运转,待空调热水水温达到设置值后空调热水水路停止运转,工艺/卫生热水水路投入运转状态;空调热水水路投入运转时空调热水将进入复合式冷凝器3下部冷却水换热管束的换热管内侧;所述压缩机1排出的高温高压气体制冷剂经过四通换向阀2的接口d、接口c进入复合式水冷冷凝器3,先后流经全热回收换热管束换热管外侧和冷却水换热管束换热管外侧,与温度相对较低的工艺/卫生热水或空调热水进行换热,将冷凝热量排放给工艺/卫生热水或空调热水后被冷凝为高压液体,之后经第一单向阀6、第一电磁阀8进入第一节流阀10,被节流降压为低温低压气液混合制冷剂后进入翅片式换热器5,与温度相对较高的室外空气进行换热,吸收室外空气热量后蒸发为低压气体制冷剂,之后依次经过四通换向阀2的接口e及接口s、气液分离器12后最终回到压缩机1吸气口,被压缩机1压缩成高温高压气体制冷剂,如此反复循环;温度较低的空调热水或工艺/卫生热水进入复合式水冷冷凝器3,吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器3,之后被输送到用户空调末端或需热末端,将热量排放给空调末端或需热末端温度下降后再被输送回到复合式水冷冷凝器3,如此反复循环。
具体的,复合式水冷冷凝器3内的工艺/卫生热水水路的运转,可通过热水泵进行启停控制,也可通过电动或气动阀门进行切换控制,电动及气动阀门可采用二通阀,也可采用三通 阀;连接冷却水泵14出口的水路单向阀15可以使用第一二通阀22第一二通阀22替代,第一二通阀22第一二通阀22可以采用电动或气动或手动的阀门。
本发明具备制冷、制热、制冷加全热回收、热水、制热加热水共五种功能及运行模式,达到余热回收、一机多用、环保节能的目的,亳无疑问有效的提高了能源利用效率。
附图说明
图1是本发明一个实施例的示意图。
图2是本发明另一个实施例的示意图。
图3是本发明一个实施例的第一种水路阀门组示意图。
图4是本发明一个实施例的第二种水路阀门组示意图。
图5是本发明一个实施例的第三种水路阀门组示意图。
图6是本发明一个实施例的第四种水路阀门组示意图。
图7是本发明一个实施例的第五种水路阀门组示意图。
其中;1-压缩机;2-四通换向阀;3-复合式水冷冷凝器;4-壳管式换热器;5-翅片式换热器;6-第一单向阀;7-第二单向阀;8-第一电磁阀;9-第二电磁阀;10-第一节流阀;11-第二节流阀;12-气液分离器;13-冷却塔;14-冷却水泵;15-水路单向阀;16-第一三通阀;17-第二三通阀;18-水路阀门组;19-第三节流阀;20-热水泵;21-热水三通阀;22-第一二通阀;23-第二二通阀;24-第三二通阀;25-第四二通阀;26-第五二通阀;27-第六二通阀;28-第七二通阀;29-第八二通阀;30-第三三通阀;32-第三单向阀。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“相连”、“连通”等应做广义理解,例如,可以是固定连接、可拆卸连接,或成一体;可以是机械连接、电连接;可以是直接相连、通过中间媒介间接相连;可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在 本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“之上”、“之下”或“上面”,可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”或“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”或“下面”,可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之下”、“下方”或“下面”可是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,需要理解的是,术语“一个实施例”或“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
如图1所示,在本发明的一个方面提出了一种带全热回收的双冷源空气源热泵机组,包括连接在制冷循环回路中的压缩机1,所述压缩机1高压出口连接四通换向阀2接口d,连接所述四通换向阀2接口c的复合式水冷冷凝器3,连接所述四通换向阀2接口e的翅片式换热器5,连接所述四通换向阀2接口s的气液分离器12,连接所述复合式水冷冷凝器3出口的第一单向阀6,连接所述第一单向阀6出口的第二单向阀7、第一电磁阀8、第二电磁阀9,连接所述第一电磁阀8出口的第一节流阀10,连接所述第二电磁阀9出口的第二节流阀11,连接所述第二节流阀11出口的壳管式换热器4;所述第一节流阀10出口和第二单向阀7进口以及翅片式换热器5液侧接口相互连接;所述气液分离器12的出口和壳管式换热器4的出口以及压缩机1的吸气口相互连接。夏季制冷采用水冷,冷凝温度较风冷热泵可降低14℃左右,可显著提高机组的制冷量和制冷能效,且从壳管式换热器4出来的低压气体直接进入压缩机吸气口,可有效克服常规风冷热泵机组需先后流经四通阀、气液分离器再进入压缩机吸气口,引起低压吸气侧部件和管路压降过大,导致机组制冷量和制冷能效衰减的缺陷。
所述带全热回收的双冷源空气源热泵机组,还包括连接所述复合式水冷冷凝器3冷却水出水口的第一三通阀16,连接所述第一三通阀16接口q的冷却塔13,连接所述冷却塔13出水口的冷却水泵14,连接所述冷却水泵14出口的水路单向阀15,连接所述的复合式 水冷冷凝器3工艺/卫生热水进水口的热水泵20,连接所述壳管式换热器4进水口的第二三通阀17;所述第一三通阀16接口m与壳管式换热器4的出水口相连;所述第二三通阀17接口i与所述连接复合式水冷冷凝器3冷却水进水口以及水路单向阀15出水口相连。
所述的复合式水冷冷凝器3的上部设置了全热回收换热管束,热水模式、制冷加热水模式、制热加热水模式时,其换热管内侧的工艺/卫生热水吸收了换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器3,通向用户需热末端;下部则设置了冷却水换热管束,其换热管内侧的冷却水制冷模式时或空调热水制热模式或制热加热水模式时吸收了换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量后,温度升高后离开复合式水冷冷凝器3通向冷却塔制冷模式时或空调末端制热模式或制热加热水模式时。全热回收换热管束换热管内侧的工艺/卫生热水回路与冷却水换热管束换热管内侧的冷却水回路相互独立,而进入复合式水冷冷凝器3顶部的高温高压气体制冷剂则先流经全热回收换热管束,再流经冷却水换热管束,将热量排放给工艺/卫生热水或冷却水后被冷凝成高压液体。
第一三通阀16、第二三通阀17可以是电动阀门或气动阀门,也可以是手动阀门或其它类型阀门。
本实施例的带全热回收的双冷源空气源热泵机组具体工作过程如下:
(一)制冷模式时,各部件工作状态:四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通不与接口m导通,第二三通阀17接口h与接口j导通不与接口i导通,冷却塔13和冷却水泵14处于运转状态,壳管式换热器4内的空调水路处于运转状态,翅片式换热器5风机停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生热水水路不运转,壳管式换热器4内的空调水路运转。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第二电磁阀9->第二节流阀11->壳管式换热器4->压缩机1。
根据壳管式换热器4气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第二节流阀11开度。
(二)制冷加热水模式,各部件工作状态:四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通不与接口m导通,第二三通阀17接口h与接口j导通不与接口i导通,冷却塔13和冷却水泵14停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生热水水路运转,壳管式换热器4内的空调水路处于运转状态,翅片式换热器5风机停止运转,壳管式换热器4内的空调水路运转;
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第二电磁阀9->第二节流阀11->壳管式换热器4->压缩机1。
根据壳管式换热器4气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第二节流阀11开度。
(三)制热模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通而不与接口q导通,第二三通阀17接口j与接口i导通而不与接口h导通,冷却塔13和冷却水泵14停止运转,工艺/卫生热水水路停止运转,翅片式换热器5风机处于运转状态,热水泵20停止运转,空调热水进入复合式水冷冷凝器3下部中冷却水换热管束的换热管内侧。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第一电磁阀8->第一节流阀10->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
根据翅片式换热器5气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第一节流阀10开度。
(四)热水模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16、第二三通阀17保持上一次制冷或制热运行时的状态,冷却塔13和冷却水泵14停止运转,壳管式换热器4内的空调水路停止运转,复合式水冷冷凝器3上部全热回收换热管束换热管内侧的工艺/卫生热水水路运转,翅片式换热器5风机处于运转状态。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第一电磁阀8->第一节流阀10->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
根据翅片式换热器5气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第一节流阀10开度。
(五)制热加热水模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口i导通,接口j和接口i均不与接口h导通,冷却塔13和冷却水泵14停止运转,翅片式换热器5风机处于运转状态。工艺/卫生热水水路和空调热水水路可根据需要同时运转,或仅工艺/卫生热水水路运转,或仅空调热水水路运转。当选择工艺/卫生热水为优化加热对象时,空调热水水路的可先停止运转,待工艺/卫生热水水温达到设置 值后工艺/卫生热水水路停止运转,同时将空调热水水路投入运转;当选择空调热水为优化加热对象时,工艺/卫生热水水路可先停止运转,待空调热水水温达到设置值后空调热水水路停止运转,同时将工艺/卫生热水水路投入运转;空调热水水路投入运转时空调热水将进入复合式冷凝器3下部冷却水换热管束的换热管内侧。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第一电磁阀8->第一节流阀10->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
如图2所示,本发明提出的另一种带全热回收的双冷源空气源热泵机组,包括连接在制冷循环回路中的压缩机1,所述压缩机1高压出口连接四通换向阀2接口d,连接所述四通换向阀2接口c的复合式水冷冷凝器3,连接所述四通换向阀2接口e的翅片式换热器5,连接所述四通换向阀2接口s的气液分离器12,连接所述复合式水冷冷凝器3出口的第一单向阀6,连接所述第一单向阀6出口的第二单向阀7、第三节流阀19,连接所述第三节流阀19出口的第一电磁阀8、第二电磁阀9,连接所述第一电磁阀8出口的第三单向阀32,连接所述第二电磁阀9出口的壳管式换热器4;所述第三单向阀32出口和第二单向阀7进口以及翅片式换热器5液侧接口相互连接;所述气液分离器12的出口和壳管式换热器4的出口以及压缩机1的吸气口相互连接。夏季制冷采用水冷,冷凝温度较风冷热泵可降低14℃左右,可显著提高机组的制冷量和制冷能效,且从壳管式换热器4出来的低压气体直接进入压缩机吸气口,可有效克服常规风冷热泵机组需先后流经四通阀、气液分离器再进入压缩机吸气口,引起低压吸气侧部件和管路压降过大,导致机组制冷量和制冷能效衰减的缺陷。
所述的带全热回收的双冷源空气源热泵机组,还包括连接所述复合式水冷冷凝器3冷却水出水口的第一三通阀16,连接所述第一三通阀16接口q的冷却塔13,连接所述冷却塔13出水口的冷却水泵14,连接所述冷却水泵14出口的第一二通阀22,连接所述的复合式水冷冷凝器3工艺/卫生热水进水口的热水三通阀21,连接所述壳管式换热器4进水口的第二三通阀17;所述第一三通阀16接口m与壳管式换热器4的出水口相连;所述第二三通阀17接口i与所述连接复合式水冷冷凝器3冷却水进水口和第一二通阀22出水口相连,所述热水三通阀21接口o与复合式水冷冷凝器3工艺/卫生热水的出水口相连。
所述的复合式水冷冷凝器3,其上部设置了全热回收换热管束,热水模式、制冷加热水模式、制热加热水模式时,其换热管内侧的工艺/卫生热水吸收了换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器3,通向用户需热 末端;下部则设置了冷却水换热管束,其换热管内侧的冷却水制冷模式或空调热水制热模式或制热加热水模式吸收了换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器3通向冷却塔制冷模式或空调末端制热模式或制热加热水模式。全热回收换热管束换热管内侧的工艺/卫生热水回路与冷却水换热管束换热管内侧的冷却水回路相互独立,而进入复合式水冷冷凝器3顶部的高温高压气体制冷剂则先流经全热回收换热管束,再流经冷却水换热管束,将热量排放给工艺/卫生热水或冷却水后被冷凝成高压液体。
本实施例的带全热回收的双冷源空气源热泵机组具体工作过程如下:
(一)制冷模式时,各部件工作状态:四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通,接口p和接口q均不与接口m导通,第二三通阀17接口h与接口j导通,接口h和接口j均不与接口i导通,冷却塔13和冷却水泵14处于运转状态,壳管式换热器4内的空调水路运转,翅片式换热器5风机停止运转,热水三通阀21接口n与接口o导通而不与接口r导通。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第三节流阀19->第二电磁阀9->壳管式换热器4->压缩机1。
根据壳管式换热器4气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第三节流阀19开度。
(二)制冷加热水模式,各部件工作状态:四通换向阀2、第一电磁阀8断电,第二电磁阀9通电,第一三通阀16接口p与接口q导通,接口p和接口q均不与接口m导通,第二三通阀17接口h与接口j导通,接口h和接口j均不与接口i导通,冷却塔13和冷却水泵14停止运转,热水三通阀21接口n与接口r全部或部分导通,翅片式换热器5风机停止运转,壳管式换热器4内的空调水路运转。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第三节流阀19->第二电磁阀9->壳管式换热器4->压缩机1。
根据壳管式换热器4气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第三节流阀19开度。
(三)制热模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通不与q导通,第二三通阀17接口j与接口i导通不与h导通,冷却塔13和冷却水泵14停止运转,热水三通阀21接口n与接口o导通而不与接口r导通,翅片式换热器5风机处于运转状态,空调热水进入复合式水冷冷凝器3下 部中冷却水换热管束的换热管内侧。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->壳管式换热器4->第一单向阀6->第三节流阀19->第一电磁阀8->第三单向阀32->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
根据翅片式换热器5气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第三节流阀19开度。
(四)热水模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16、第二三通阀17保持上一次制冷或制热运行时的状态,冷却塔13和冷却水泵14停止运转,壳管式换热器4内的空调水路停止运转,热水三通阀21接口n与接口r全部或大部分导通,翅片式换热器5风机处于运转状态。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->壳管式换热器4->第一单向阀6->第三节流阀19->第一电磁阀8->第三单向阀32->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
(五)制热加热水模式,各部件工作状态:四通换向阀2、第二电磁阀9断电,第一电磁阀8通电,第一三通阀16接口p与接口m导通,接口p和接口m均不与接口q导通,第二三通阀17接口j与接口i导通,接口j和接口i均不与接口h导通,冷却塔13和冷却水泵14停止运转,翅片式换热器5风机处于运转状态。工艺/卫生热水水路和空调热水水路可根据需要同时运转,或仅工艺/卫生热水水路运转,或仅空调热水水路运转。当选择工艺/卫生热水为优化加热对象时,空调热水水路的可先停止运转,待工艺/卫生热水水温达到设置值后工艺/卫生热水水路停止运转,同时将空调热水水路投入运转;当选择空调热水为优化加热对象时,工艺/卫生热水水路可先停止运转,待空调热水水温达到设置值后空调热水水路停止运转,同时将工艺/卫生热水水路投入运转;空调热水水路投入运转时空调热水将进入复合式冷凝器3下部冷却水换热管束的换热管内侧。
制冷剂流程:压缩机1->四通换向阀2的接口d->四通换向阀2的接口c->复合式水冷冷凝器3->第一单向阀6->第三节流阀19->第一电磁阀8->第三单向阀32->翅片式换热器5->四通换向阀2的接口e->四通换向阀2的接口s->气液分离器12->压缩机1。
根据翅片式换热器5气侧出口过热度或压缩机1低压进口的吸气过热度,或压缩机1高压出口的排气过热度来控制第三节流阀19开度。
如图3-7所示,本发明的另一方面,提出了五种水路阀门组的变换方式。
第一种,水路阀门组18中使用第二二通阀23、第三二通阀24代替第一三通阀16, 制冷或制冷加热水时,第二三通阀17接口j与接口h导通而不与接口i导通,第二二通阀23打开,第三二通阀24关闭;制热或制热加热水时,第二三通阀17接口j与接口i导通而不与h导通,第三二通阀24打开,第二二通阀23关闭。
第二种,水路阀门组18中使用第四二通阀25、第五二通阀26代替第二三通阀17,制冷或制冷加热水时,第一三通阀16接口p与接口q导通而不与接口m导通,第五二通阀26打开,第四二通阀25关闭;制热或制热加热水时,第一三通阀16接口p与接口m导通而不与接口q导通,第四二通阀25打开,第五二通阀26关闭。
第三种,水路阀门组18中使用第二二通阀23、第三二通阀24代替第一三通阀16,使用第四二通阀25、第五二通阀26代替第二三通阀17,制冷或制冷加热水时,第二二通阀23、第五二通阀26打开,第三二通阀24、第四二通阀25关闭;制热或制热加热水时,第二二通阀23、第五二通阀26关闭,第三二通阀24、第四二通阀25打开。
第四种,水路阀门组18中使用第二二通阀23、第三二通阀24代替第一三通阀16,使用第六二通阀27、第七二通阀28、第八二通阀29代替第二三通阀17,制冷或制冷加热水时,第二二通阀23、第七二通阀28打开,第三二通阀24、第六二通阀27、第八二通阀29关闭;制热或制热加热水时,第二二通阀23、第七二通阀28关闭,第三二通阀24、第六二通阀27打开,第八二通阀29可根据需要打开或关闭。
第五种,水路阀门组18中使用第二二通阀23、第三二通阀24代替第一三通阀16,使用第八二通阀29、第三三通阀30代替第二三通阀17,制冷或制冷加热水时,第二二通阀23打开,第三二通阀24、第八二通阀29关闭,第三三通阀30接口x与接口y导通而不与接口z导通;制热或制热加热水时,第二二通阀23关闭,第三二通阀24打开,第三三通阀30接口x与接口z导通而不与接口y导通,第八二通阀29可根据需要打开或关闭。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

  1. 带全热回收的双冷源空气源热泵机组,其特征在于:包括连接在制冷循环回路中的压缩机(1),所述压缩机(1)高压出口连接四通换向阀(2)接口d,所述四通换向阀(2)接口c与复合式水冷冷凝器(3)连接,所述四通换向阀(2)接口e与翅片式换热器(5)连接,所述四通换向阀(2)接口s与气液分离器(12)连接;
    所述复合式水冷冷凝器(3)出口与第一单向阀(6)连接,所述第一单向阀(6)出口分别与第二单向阀(7)、第一电磁阀(8)、第二电磁阀(9)连接,所述第一电磁阀(8)出口与第一节流阀(10)连接,所述第二电磁阀(9)出口与第二节流阀(11)连接,所述第二节流阀(11)出口与壳管式换热器(4)连接;所述第一节流阀(10)出口和第二单向阀(7)进口以及翅片式换热器(5)液侧接口相互连接;所述气液分离器(12)的出口和壳管式换热器(4)的出口以及压缩机(1)的吸气口相互连接;
    所述机组具备夏季制冷和冬季制热功能,同时还具有全热回收功能,全年提供工艺或卫生热水;夏季制冷时采用水冷冷凝方式,且从壳管式换热器(4)出来的低压气体直接进入压缩机吸气口;
    所述的复合式水冷冷凝器(3),其上部设置了全热回收换热管束,所述换热管内侧的工艺/卫生热水吸收换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器(3),通向用户需热末端;其下部则设置了冷却水换热管束,所述换热管内侧的冷却水吸收换热管外侧高温高压气体制冷剂在冷凝过程中所排放的热量,温度升高后离开复合式水冷冷凝器(3);所述全热回收换热管束换热管内侧的工艺/卫生热水回路与冷却水换热管束换热管内侧的冷却水回路相互独立,而进入复合式水冷冷凝器(3)顶部的高温高压气体制冷剂则先流经全热回收换热管束,再流经冷却水换热管束,将热量排放给工艺/卫生热水或冷却水后被冷凝成高压液体;
    所述复合式水冷冷凝器(3)的冷却水出水口与第一三通阀(16)的接口p连接,所述第一三通阀(16)的接口q与冷却塔(13)连接,所述冷却塔(13)的出水口与冷却水泵(14)连接,所述冷却水泵(14)的出水口与水路单向阀(15)连接,所述复合式水冷冷凝器(3)的工艺/卫生热水进水口与热水泵(20)连接;
    所述壳管式换热器(4)的空调水进水口与第二三通阀(17)的接口h连接;第二三通阀(17)的接口j连接流自空调末端的空调回水,所述第二三通阀(17)的接口i分别与所述复合式水冷冷凝器(3)的冷却水进水口和水路单向阀(15)的出水口相连,所述第一三通阀(16)的接口m与壳管式换热器(4)的出水口相连;
    所述的第一三通阀(16)和第二三通阀(17)及其冷却水、空调水连接的管段组成水路阀门组 (18),水路阀门组(18)中的阀门用二通阀和/或三通阀组合的方式替代;所述的三通阀、二通阀采用电动、气动或手动的阀门。
  2. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组的制冷模式控制方法,其特征在于:所述压缩机(1)排出的高温高压气体制冷剂经过四通换向阀(2)的接口d、接口c进入复合式水冷冷凝器(3),流经全热回收换热管束换热管外侧,在冷却水换热管束换热管外侧与温度相对较低的换热管内侧的冷却水进行换热,将冷凝热量排放给冷却水后被冷凝为高压液体;高压液体依次经第一单向阀(6)、第二电磁阀(9)后进入第二节流阀(11),被节流降压为低温低压气液混合制冷剂进入壳管式换热器(4),吸收空调冷冻水热量对其进行降温冷却后蒸发为低压气体,最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;吸收高温高压气体制冷剂冷凝热量温度上升后的冷却水,经过第一三通阀(16)接口p、接口q进入冷却塔(13),在冷却塔(13)内将热量排放给室外空气后温度下降,之后又被冷却水泵(14)经水路单向阀(15)输送至复合式水冷冷凝器(3)下部冷却水换热管束的换热管内侧,吸收换热管外侧的高温高压气体制冷剂所排放的冷凝热量温度上升后离开复合式水冷冷凝器(3),如此反复循环;从壳管式换热器(4)出来的温度较低的空调冷冻水则流向用户空调末端,对流经空调末端的循环空气进行冷却释放出冷量后温度升高,再由空调水泵经三通阀接口j、接口h,输送回到壳管式换热器(4),与被第二节流阀(11)节流后的低温低压气液混合制冷剂进行换热,被制冷剂冷却温度下降后离开壳管式换热器(4),此反复循环。
  3. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组的制冷加热水模式控制方法,其特征在于:所述压缩机(1)排出的高温高压气体制冷剂经过四通换向阀(2)的接口d、接口c进入复合式水冷冷凝器(3),在全热回收换热管束换热管外侧与温度相对较低的换热管内侧的工艺/卫生热水进行换热,将冷凝热量排放给工艺/卫生热水后被冷凝为高压液体;高压液体流经冷却水换热管束管外侧后离开复合式水冷冷凝器(3),之后依次经第一单向阀(6)、第二电磁阀(9)后进入第二节流阀(11),被节流降压为低温低压气液混合制冷剂后进入壳管式蒸发器(4),吸收空调冷冻水热量对其进行降温冷却后蒸发为低压气体,最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;吸收高温高压气体制冷剂的冷凝热量温度上升后的工艺/卫生热水则被输送至用户需热末端,将热量排放给需热末端后温度下降,之后又被输送至复合式水冷冷凝器(3)上部全热回收换热管束的换热管内侧,吸收换热管外侧的高温高压气体制冷剂所排放的冷凝热量温度上升后离开复合式水冷冷凝器(3),如此反复循环;从壳管式换热器(4)出来的温度较低的空 调冷冻水则流向用户空调末端,对流经空调末端的循环空气进行冷却释放出冷量后温度升高,再由空调水泵经三通阀接口j、接口h,输送回到壳管式换热器(4),与被第二节流阀(11)节流后的低温低压气液混合制冷剂进行换热,被制冷剂冷却温度下降后离开壳管式换热器(4),此反复循环。
  4. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组的制热模式控制方法,其特征在于:所述压缩机(1)排出的高温高压气体制冷剂经过四通换向阀(2)的接口d、接口c进入复合式水冷冷凝器(3),流经全热回收换热管束换热管外侧,在冷却水换热管束换热管外侧与温度相对较低的换热管内侧的空调热水进行换热,将冷凝热量排放给空调热水后被冷凝为高压液体,之后经第一单向阀(6)、第一电磁阀(8)进入第一节流阀(10),被节流降压为低温低压气液混合制冷剂后进入翅片式换热器(5),与温度相对较高的室外空气进行换热,吸收室外空气热量后蒸发为低压气体制冷剂,之后依次经过四通换向阀(2)的接口e及接口s、气液分离器(12)后最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;温度较低的空调热水进入复合式水冷冷凝器(3)下部的冷却水换热管束的换热管内侧,吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器(3),之后被输送到用户空调末端,将热量排放给流经空调末端的循环空气温度下降后再被空调水泵输送回到冷却水换热管束,如此反复循环;当翅片式换热器表面结霜或结冰时,所述压缩机(1)排出的高温高压气体经过四通换向阀(2)的接口d、接口e进入翅片式换热器(5),将大量的冷凝热量传递给翅片表面的霜或冰,使其吸热融化成水脱离翅片表面从而实现除霜功能,高压气体制冷剂则被冷凝成高压液体,之后经第二单向阀(7)、第二电磁阀(9)进入第二节流阀(11),被节流降压为低温低压气液混合制冷剂后进入壳管式换热器(4),与温度较高的空调热水进行换热,吸收空调热水热量后蒸发为低压气体,最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环,直到除霜结束。
  5. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组的热水模式控制方法,其特征在于:所述压缩机(1)排出的高温高压气体经过四通换向阀(2)的接口d、接口c进入复合式水冷冷凝器(3),在全热回收换热管束的换热管外侧与温度相对较低的工艺/卫生热水进行换热,将大量的冷凝热量排放给工艺/卫生热水,对其进行加热升温后被冷凝成高压液体,之后流经复合式水冷冷凝器(3)下部冷却水换热管束后离开复合式水冷冷凝器(3),再依次经过第一单向阀(6)、第一电磁阀(8)进入第一节流阀(10),被节流降压为低温低压气液混合制冷剂后进入翅片式换热器(5),与温度相对较高的室外空气进行换热, 吸收室外空气热量后蒸发为低压气体,再依次经过四通换向阀(2)的接口e及接口s、气液分离器(12)最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;温度较低的工艺/卫生热水进入复合式水冷冷凝器(3)上部的全热回收换热管束的换热管内侧,吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器(3),之后被输送至用户需热末端,将热量排放给需热末端温度下降后再被输送至复合式水冷冷凝器(3)上部全热回收换热管束的换热管内侧,如此反复循环;当翅片式换热器表面结霜或结冰时,所述压缩机(1)排出的高温高压气体制冷剂依次经过四通换向阀(2)的接口d、接口e进入翅片式换热器(5),将大量的冷凝热量排放给翅片表面的霜或冰,使其吸热融化成水脱离翅片表面从而实现除霜功能,高压气体则被冷凝成高压液体,之后经第二单向阀(7)、第二电磁阀(9)进入第二节流阀(11),被节流降压为低温低压气液混合制冷剂后进入壳管式换热器(4),吸收空调水热量后蒸发为低压气体,最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;进入壳管式换热器(4)的空调水,向节流后的低温低压气液混合制冷剂释放热量温度下降后离开壳管式换热器(4),再由空调水泵驱动经过空调末端和空调水环路后回到壳管式换热器(4),此反复循环直到除霜结束。
  6. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组的制热加热水模式控制方法,其特征在于:工艺/卫生热水水路和空调热水水路同时运转,或仅工艺/卫生热水水路运转,或仅空调热水水路运转;当选择工艺/卫生热水为优化加热对象时,空调热水水路先停止运转,待工艺/卫生热水水温达到设置值后工艺/卫生热水水路停止运转,空调热水水路投入运转状态;当选择空调热水为优化加热对象时,工艺/卫生热水水路先停止运转,待空调热水水温达到设置值后空调热水水路停止运转,工艺/卫生热水水路投入运转状态;空调热水水路投入运转时空调热水将进入复合式冷凝器(3)下部冷却水换热管束的换热管内侧;所述压缩机(1)排出的高温高压气体制冷剂经过四通换向阀(2)的接口d、接口c进入复合式水冷冷凝器(3),先后流经全热回收换热管束换热管外侧和冷却水换热管束换热管外侧,与温度相对较低的工艺/卫生热水或空调热水进行换热,将冷凝热量排放给工艺/卫生热水或空调热水后被冷凝为高压液体,之后经第一单向阀(6)、第一电磁阀(8)进入第一节流阀(10),被节流降压为低温低压气液混合制冷剂后进入翅片式换热器(5),与温度相对较高的室外空气进行换热,吸收室外空气热量后蒸发为低压气体制冷剂,之后依次经过四通换向阀(2)的接口e及接口s、气液分离器(12)后最终回到压缩机(1)吸气口,被压缩机(1)压缩成高温高压气体制冷剂,如此反复循环;温度较低的空调热水或工艺/卫生热水进 入复合式水冷冷凝器(3),吸收换热管外侧高温高压气体制冷剂所排放的冷凝热量温度升高后离开复合式水冷冷凝器(3),之后被输送到用户空调末端或需热末端,将热量排放给空调末端或需热末端温度下降后再被输送回到复合式水冷冷凝器(3),如此反复循环。
  7. 根据权利要求1所述的带全热回收的双冷源空气源热泵机组,其特征在于:复合式水冷冷凝器(3)内的工艺/卫生热水水路的运转通过热水泵进行启停控制或通过电动或气动阀门进行切换控制,电动及气动阀门采用二通阀或三通阀;冷却水泵(14)出口的水路单向阀(15)使用第一二通阀(22)替代,第一二通阀(22)采用电动、气动或手动的阀门。
PCT/CN2022/098392 2021-06-14 2022-06-13 带全热回收的双冷源空气源热泵机组 WO2022262674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110657755.9A CN113446754B (zh) 2021-06-14 2021-06-14 带全热回收的双冷源空气源热泵机组
CN202110657755.9 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022262674A1 true WO2022262674A1 (zh) 2022-12-22

Family

ID=77811457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098392 WO2022262674A1 (zh) 2021-06-14 2022-06-13 带全热回收的双冷源空气源热泵机组

Country Status (2)

Country Link
CN (1) CN113446754B (zh)
WO (1) WO2022262674A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115956693A (zh) * 2023-02-09 2023-04-14 安徽中科自动化股份有限公司 一种用于雪茄烟晾晒房的供热系统及其控制方式
CN116624995A (zh) * 2023-06-09 2023-08-22 中鸿泰(北京)科技工程有限公司 一种可再生能源与建筑一体化综合利用系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446754B (zh) * 2021-06-14 2022-05-20 浙江国祥股份有限公司 带全热回收的双冷源空气源热泵机组
CN114872446B (zh) * 2022-04-12 2023-03-28 东南大学 热敏打印机群的蓄能热回收系统
CN114777238B (zh) * 2022-05-06 2024-03-08 南京天加环境科技有限公司 一种低温燃气热泵冷热水机组
CN117053435B (zh) * 2023-08-11 2024-04-09 浙江国祥股份有限公司 磁浮和螺杆复合式双冷源空气源热泵及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504213A (zh) * 2009-03-17 2009-08-12 贝莱特空调有限公司 一种四合一风冷热泵机组
US20100000709A1 (en) * 2008-07-02 2010-01-07 Tsung-Che Chang Heating and heat recovery unit for an air conditioning system
CN103615836A (zh) * 2013-11-30 2014-03-05 金国达科技(湖南)有限公司 一种螺杆式全热回收风冷热泵空调机组
CN108375235A (zh) * 2018-01-25 2018-08-07 珠海格力电器股份有限公司 空气源热泵系统及控制方法
CN209689228U (zh) * 2019-03-28 2019-11-26 空调国际(上海)有限公司 余热回收式热泵装置
CN110513795A (zh) * 2019-08-06 2019-11-29 广东申菱环境系统股份有限公司 一种制冷供热多功能复合式空调热泵系统及工作方法
CN112146301A (zh) * 2020-09-22 2020-12-29 浙江国祥股份有限公司 一种带全热回收的蒸发冷螺杆冷热水机组
CN113446754A (zh) * 2021-06-14 2021-09-28 浙江国祥股份有限公司 带全热回收的双冷源空气源热泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201259350Y (zh) * 2008-06-24 2009-06-17 唐小卫 冷暖空调与卫生热水一体化的模块式制冷机组
JP2012242020A (ja) * 2011-05-20 2012-12-10 Denso Corp ヒートポンプ装置
CN103791654B (zh) * 2014-03-12 2015-12-02 无锡职业技术学院 一种风冷热泵机组热回收制冷系统及其热回收制冷方法
CN107339821A (zh) * 2017-01-16 2017-11-10 上海悠太节能科技中心(有限合伙) 带热回收装置的空气源热泵系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000709A1 (en) * 2008-07-02 2010-01-07 Tsung-Che Chang Heating and heat recovery unit for an air conditioning system
CN101504213A (zh) * 2009-03-17 2009-08-12 贝莱特空调有限公司 一种四合一风冷热泵机组
CN103615836A (zh) * 2013-11-30 2014-03-05 金国达科技(湖南)有限公司 一种螺杆式全热回收风冷热泵空调机组
CN108375235A (zh) * 2018-01-25 2018-08-07 珠海格力电器股份有限公司 空气源热泵系统及控制方法
CN209689228U (zh) * 2019-03-28 2019-11-26 空调国际(上海)有限公司 余热回收式热泵装置
CN110513795A (zh) * 2019-08-06 2019-11-29 广东申菱环境系统股份有限公司 一种制冷供热多功能复合式空调热泵系统及工作方法
CN112146301A (zh) * 2020-09-22 2020-12-29 浙江国祥股份有限公司 一种带全热回收的蒸发冷螺杆冷热水机组
CN113446754A (zh) * 2021-06-14 2021-09-28 浙江国祥股份有限公司 带全热回收的双冷源空气源热泵

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115956693A (zh) * 2023-02-09 2023-04-14 安徽中科自动化股份有限公司 一种用于雪茄烟晾晒房的供热系统及其控制方式
CN116624995A (zh) * 2023-06-09 2023-08-22 中鸿泰(北京)科技工程有限公司 一种可再生能源与建筑一体化综合利用系统
CN116624995B (zh) * 2023-06-09 2024-01-12 中鸿泰(北京)科技工程有限公司 一种可再生能源与建筑一体化综合利用系统

Also Published As

Publication number Publication date
CN113446754B (zh) 2022-05-20
CN113446754A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022262674A1 (zh) 带全热回收的双冷源空气源热泵机组
CN103062851B (zh) 空调系统及其除湿方法
CN204923448U (zh) 空调热水系统
CN101713599B (zh) 空调热泵装置
CN101398234A (zh) 低温风冷热泵机组
CN108679747A (zh) 一种新风除湿空调系统
CN103615836A (zh) 一种螺杆式全热回收风冷热泵空调机组
CN112460696A (zh) 一种温湿度独立控制空调系统
CN113446756A (zh) 一种带变速压缩机的四管制空气源热泵机组
CN102563947B (zh) 一种热管热泵组合型制冷装置
CN102589183B (zh) 一种热管热泵组合型制冷装置
CN112146301B (zh) 一种带全热回收的蒸发冷螺杆冷热水机组
CN113446755B (zh) 带全热回收的双源一体式空气源热泵机组
CN216048111U (zh) 带全热回收的双源一体式空气源热泵机组
CN107883600A (zh) 一拖二空调系统
CN203595316U (zh) 一种螺杆式全热回收风冷热泵空调机组
CN201322469Y (zh) 三耦合空气源热泵空调
CN213687346U (zh) 一种蒸发冷热泵机组
CN109357427A (zh) 用于机房和热水系统的组合式空调系统及其控制方法
CN101799223B (zh) 全年候空气源热泵三用机组及其运行方法
CN208671233U (zh) 分布式空气源热泵空调机
CN109869942B (zh) 一种扁管套管式热回收型热泵空调系统及其工作方法
CN208983678U (zh) 一种用于电动汽车空调的热气旁通除霜系统
CN213687345U (zh) 带全热回收的蒸发冷螺杆冷热水机组
CN216048112U (zh) 带全热回收的双冷源空气源热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE