WO2022262538A1 - 车辆控制方法、装置、电子设备及存储介质 - Google Patents

车辆控制方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022262538A1
WO2022262538A1 PCT/CN2022/094845 CN2022094845W WO2022262538A1 WO 2022262538 A1 WO2022262538 A1 WO 2022262538A1 CN 2022094845 W CN2022094845 W CN 2022094845W WO 2022262538 A1 WO2022262538 A1 WO 2022262538A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
adjusted
parameter
auxiliary
coefficient
Prior art date
Application number
PCT/CN2022/094845
Other languages
English (en)
French (fr)
Inventor
程健
张天强
刘元治
郭丁伊
郁大嵬
宋浩源
徐家良
庞尔超
张鑫
曲白雪
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022262538A1 publication Critical patent/WO2022262538A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input

Definitions

  • the embodiments of the present application relate to the technical field of automation, for example, to a vehicle control method, device, electronic equipment, and storage medium.
  • driving mode control technologies in the related art are based on several defined fixed driving modes.
  • the driving styles of different modes are obviously different, and the driver can choose different driving styles for driving according to preferences or needs.
  • the driving habits of each driver are different, and it is obviously impossible to satisfy all drivers with several fixed driving modes to satisfy the driving habits of all users.
  • the present application provides a vehicle control method, device, electronic equipment, and storage medium, so as to realize a custom vehicle driving mode, meet the preferences and habits of different drivers, and enhance driving pleasure.
  • an embodiment of the present application provides a vehicle control method, the method comprising:
  • the auxiliary coefficient select a first auxiliary value and a second auxiliary value of the auxiliary coefficient from candidate values of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is the same as the first auxiliary value of the parameter to be adjusted A value to be adjusted is associated, and the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted;
  • the vehicle is controlled by using the expected value of the parameter to be adjusted.
  • the embodiment of the present application also provides a vehicle control device, the device comprising:
  • a parameter determination module configured to determine a parameter to be adjusted, an assist coefficient associated with the parameter to be adjusted, and an expected value of the assist coefficient in response to the driving mode adjustment instruction
  • An auxiliary value determination module configured to select a first auxiliary value and a second auxiliary value of the auxiliary coefficient from candidate values of the auxiliary coefficient according to the expected value of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient and The first value to be adjusted of the parameter to be adjusted is associated, and the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted;
  • An expected value determination module configured to determine the expected value of the parameter to be adjusted according to the expected value of the auxiliary coefficient, the first auxiliary value, the second auxiliary value, the first value to be adjusted, and the second value to be adjusted ;
  • the vehicle control module is configured to use the expected value of the parameter to be adjusted to control the vehicle.
  • the embodiment of the present application further provides an electronic device, the electronic device comprising:
  • processors one or more processors
  • storage means configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the vehicle control method described in any embodiment of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the vehicle control method as described in any embodiment of the present application is implemented.
  • FIG. 1A is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of the corresponding relationship between vehicle driving modes and assistance coefficient candidate values provided by an embodiment of the present application;
  • Fig. 1C is a schematic diagram of determining auxiliary values provided by an embodiment of the present application.
  • FIG. 2A is a flow chart of a vehicle control method provided by another embodiment of the present application.
  • FIG. 2B is a schematic diagram of determining auxiliary values provided by another embodiment of the present application.
  • Fig. 3 is a structural block diagram of a vehicle control device provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 1A is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • This embodiment is aimed at a pure electric vehicle with only a single-stage deceleration device, and is applicable to the situation of adjusting and controlling the driving mode of the vehicle, for example, adjusting the driving torque Make adjustments or make adjustments to coast recovery torque.
  • the method can be executed by the vehicle control device provided in the embodiment of the present application, and the device can be implemented in the form of software and/or hardware, and can be integrated on the electronic device.
  • the vehicle control method provided in the embodiment of the present application may include the following steps:
  • the driving mode adjustment command can be initiated by the driver according to his own needs through the control terminal such as the central control instrument screen, including the parameter to be adjusted, the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient.
  • the parameter to be adjusted may be the driving torque PM, or the coast recovery torque RM.
  • the assist coefficient associated with the parameter to be adjusted may be the driving torque adjustment coefficient fd, or the coast recovery torque adjustment coefficient fr.
  • the parameters to be adjusted can be set by keys or touch, and the expected value of the auxiliary coefficient can be set by dragging the progress bar of the auxiliary coefficient associated with the parameter to be adjusted, and the adjustment range is 0%-300%.
  • the progress bar of the drive torque adjustment coefficient fd associated with the drive torque PM can be directly dragged, and the progress bar of the coast recovery torque adjustment coefficient fr associated with the coast recovery torque RM can also be directly dragged. It should be noted that the method of initiating the driving mode adjustment instruction is not specifically limited in this embodiment.
  • the vehicle controller may respond to the driving mode adjustment instruction and determine the parameter to be adjusted, the assist coefficient associated with the parameter to be adjusted, and the expected value of the assist coefficient. Because there is a relationship between the parameter to be adjusted and the value of the auxiliary coefficient, the parameter to be adjusted can be further adjusted by adjusting the expected value of the auxiliary coefficient.
  • candidate vehicle driving modes may be preset for different parameters to be adjusted.
  • the driver can directly select a candidate vehicle driving mode from preset candidate vehicle driving modes as the target vehicle driving mode.
  • a driving mode adjustment command is generated according to the selected target vehicle driving mode.
  • the vehicle controller responds to the driving mode adjustment instruction, obtains the parameter to be adjusted and the desired target vehicle driving mode from the driving mode adjustment instruction, and obtains the assist coefficient associated with the parameter to be adjusted.
  • the candidate value of the assistance coefficient associated with the target vehicle driving mode is taken as the expected value of the assistance coefficient.
  • the driving modes of multiple driving candidates are fixedly sorted according to the vehicle speed and accelerator power from small to large, including zero power mode (o), economic mode (e), comfort mode (c ) and sport mode(s).
  • zero power mode it means that the driving force of the vehicle speed and the accelerator are respectively zero.
  • the auxiliary factor fd associated with the driving torque is introduced into the vehicle controller, and the driver can directly select a candidate vehicle driving mode as the target vehicle driving mode through the instrument screen. As shown in FIG.
  • this embodiment defines that the candidate value of the assist coefficient fd corresponding to the zero power mode is 0, the candidate value of the assist coefficient fd corresponding to the economy mode is 100%, and the candidate value of the assist coefficient fd corresponding to the comfort mode is 200. %, the candidate value of the auxiliary coefficient fd corresponding to the motion mode is 300%.
  • the driver can click 300% on the progress bar of the driving torque adjustment coefficient fd through the instrument screen, select the sports mode as the target vehicle driving mode, and the vehicle controller responds to the driving mode adjustment command and determines that the parameter to be adjusted is
  • the desired target vehicle driving mode is a sports mode
  • an assist coefficient associated with the to-be-driven torque is acquired.
  • the candidate value (300%) of the assist coefficient associated with the sport mode is used as the expected value of the assist coefficient to quickly enter the sport mode.
  • the driver in order to improve the flexibility of adjustment, can set the expected value of the assist coefficient by dragging the progress bar of the assist coefficient associated with the parameter to be adjusted.
  • the vehicle controller After receiving the driving mode adjustment instruction, the vehicle controller can directly determine the parameter to be adjusted, the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient in response to the driving mode adjustment instruction.
  • the auxiliary coefficient fd associated with the driving torque is introduced into the vehicle controller, and the driver sets the expected value of the auxiliary coefficient fd associated with the driving torque through the progress bar on the instrument screen. Since this embodiment defines that the candidate value of the assist coefficient fd corresponding to the zero power mode is 0, the candidate value of the assist coefficient fd corresponding to the economy mode is 100%, the candidate value of the assist coefficient fd corresponding to the comfort mode is 200%, and the corresponding value of the sport mode corresponds to The candidate value of the auxiliary coefficient fd is 300%.
  • the value range of the corresponding auxiliary coefficient fd is 0-100%; between the economic mode and the comfort mode, the corresponding value range of the auxiliary coefficient fd is 100%-200%; Between the comfort mode and the sport mode, the value range of the corresponding assist coefficient fd is 200%-300%.
  • the vehicle controller can directly determine the parameter to be adjusted, the assist coefficient associated with the parameter to be adjusted, and the expected value of the assist coefficient in response to the driving mode adjustment instruction.
  • the auxiliary coefficient select the first auxiliary value and the second auxiliary value of the auxiliary coefficient from the candidate values of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is associated with the first value to be adjusted of the parameter to be adjusted, The second auxiliary value of the auxiliary coefficient is associated with the second to-be-adjusted value of the parameter to be adjusted.
  • the candidate value of the auxiliary coefficient is associated with the driving mode of the candidate vehicle, and each candidate value of the auxiliary coefficient is associated with a driving mode of the recovery candidate vehicle.
  • this embodiment sets four recovery candidate vehicle driving modes: zero recovery, light recovery, medium recovery and heavy recovery.
  • the auxiliary coefficient fr associated with the coasting recovery torque is introduced into the vehicle controller, and the driver sets the auxiliary coefficient fr associated with the coasting recovery torque through the progress bar of the instrument screen.
  • This embodiment defines that the candidate value of the auxiliary coefficient fr corresponding to the zero recovery mode is 0, the candidate value of the auxiliary coefficient fr corresponding to the light recovery mode is 100%, the candidate value of the auxiliary coefficient fr corresponding to the medium recovery mode is 200%, and the heavy recovery mode The candidate value of the auxiliary coefficient fr corresponding to the mode is 300%. Between the zero recovery mode and the light recovery mode, the value range of the corresponding auxiliary coefficient fr is 0-100%; between the light recovery mode and the medium recovery mode, the value range of the corresponding auxiliary coefficient fr is 100%- 200%; between the medium recovery mode and the heavy recovery mode, the value range of the corresponding auxiliary coefficient fr is 200%-300%.
  • the first auxiliary value of the auxiliary coefficient is the maximum candidate value of the auxiliary coefficient which is smaller than the expected value of the auxiliary coefficient
  • the second auxiliary value of the auxiliary coefficient is the smallest candidate value of the auxiliary coefficient which is larger than the expected value of the auxiliary coefficient.
  • the expected value of the assist coefficient fr associated with the coasting recovery torque is 160%
  • the first assisting value of the assisting coefficient is 100%
  • the second assisting value is 200%
  • the expected value of the torque-related assist coefficient fr is 260%
  • the first assist value of the assist coefficient is 200%
  • the second assist value is 300%.
  • the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient, the first auxiliary value and the second auxiliary value of the auxiliary coefficient can be selected from candidate values of the auxiliary coefficient according to the expected value of the auxiliary coefficient.
  • the first value to be adjusted associated with the first auxiliary value of the auxiliary coefficient and the second value to be adjusted associated with the second auxiliary value of the auxiliary coefficient can be determined.
  • the first value to be adjusted is the value of the parameter to be adjusted associated with the first auxiliary value
  • the second value to be adjusted is the value of the parameter to be adjusted associated with the second auxiliary value.
  • this embodiment defines that the candidate value of the assist coefficient fd corresponding to the zero power mode is 0, the candidate value of the assist coefficient fd corresponding to the economic mode is 100%, and the candidate value of the assist coefficient fd corresponding to the comfort mode is 0%.
  • the candidate value is 200%, and the candidate value of the auxiliary coefficient fd corresponding to the motion mode is 300%.
  • the driver's required driving torque corresponding to each driving candidate vehicle driving mode is determined by the PedalMap lookup table of the vehicle speed_throttle_torque in the corresponding mode in the vehicle controller.
  • this embodiment defines that the candidate value of the parameter to be adjusted corresponding to the zero power mode is PMo, the candidate value of the parameter to be adjusted corresponding to the economic mode is PMe, the candidate value of the parameter to be adjusted corresponding to the comfort mode is PMc, and the candidate value of the parameter to be adjusted corresponding to the sports mode is PMc.
  • the adjustment parameter candidate value is PMs. It can be seen that there is a correlation between the candidate value of the assist coefficient and the candidate value of the parameter to be adjusted.
  • the candidate value of the assist coefficient of the driving torque 0 is associated with the candidate value of the parameter to be adjusted PMo
  • the candidate value of the assist coefficient of the driving torque is 100% is associated with the candidate value of the parameter to be adjusted PMe
  • the 200% candidate value of the assist coefficient of the driving torque is associated with the candidate value of the parameter to be adjusted PMc
  • the candidate value of 300% of the assist coefficient of the driving torque is associated with the candidate value of the parameter to be adjusted PMs.
  • the auxiliary coefficient After selecting the first auxiliary value and the second auxiliary value of the auxiliary coefficient from the candidate values of the auxiliary coefficient, according to the first auxiliary value and the second auxiliary value, respectively select from the candidate values of the parameters to be adjusted The first value to be adjusted and the second value to be adjusted of the parameter to be adjusted.
  • the expected value of the parameter to be adjusted can be determined according to the expected value of the auxiliary coefficient, the first value to be adjusted and the second value to be adjusted.
  • a value between the first value to be adjusted and the second value to be adjusted may be arbitrarily selected as the expected value of the parameter to be adjusted.
  • the first value to be adjusted PMe corresponding to the economic mode and the second value to be adjusted corresponding to the comfort mode can be A value among the values PMc is arbitrarily selected as the expected value of the driving torque of the parameter to be adjusted.
  • an interpolation operation may be performed between the first value to be adjusted and the second value to be adjusted according to the expected value of the auxiliary coefficient to determine the parameter to be adjusted expectations.
  • the parameter to be adjusted as the driving torque as an example, if the expected value of the assist coefficient fd associated with the driving torque is 160%, the required driving torque is the first value to be adjusted PMe corresponding to the economic mode and the second corresponding to the comfort mode.
  • the expected value of the parameter to be adjusted can be used to control the vehicle so that the vehicle outputs according to the expected value of the parameter to be adjusted.
  • the parameter to be adjusted, the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient are determined; according to the expected value of the auxiliary coefficient, the auxiliary coefficient is selected from the candidate values of the auxiliary coefficient The first auxiliary value and the second auxiliary value of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is associated with the first value to be adjusted of the parameter to be adjusted, and the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted ; According to the expected value of the auxiliary coefficient, the first value to be adjusted and the second value to be adjusted, the expected value of the parameter to be adjusted is determined; the expected value of the parameter to be adjusted is used to control the vehicle, avoiding several fixed driving based on definitions in related technologies Mode adjustment
  • the driving mode can not meet the driver's preferences and habits, realize the infinite adjustment of the vehicle driving mode, can customize the vehicle driving mode, meet the preferences and habits of different drivers,
  • the default vehicle driving mode after the vehicle is started can be set as the comfort mode. Once activated, the torque can be adjusted according to the driver's needs.
  • FIG. 2A is a flow chart of a vehicle control method provided by the embodiment of the present application. The method is further refined on the basis of the above embodiments, and a specific introduction of a vehicle control method is given.
  • the method includes:
  • the driving modes of multiple driving candidates are fixedly sorted according to the vehicle speed and accelerator power from small to large, including zero power mode (o), economic mode (e), comfort mode (c ) and sport mode(s).
  • the auxiliary coefficient fd associated with the driving torque is introduced into the vehicle controller, and the driver sets the auxiliary coefficient fd associated with the driving torque through the progress bar on the instrument screen.
  • the driver can steplessly adjust the driving modes of two adjacent driving candidate vehicles from 0% to 100% through the instrument screen, and the resolution interval is 1%.
  • the candidate value of the assist coefficient fd corresponding to the zero power mode is 0, the candidate value of the assist coefficient fd corresponding to the economy mode is 100%, the candidate value of the assist coefficient fd corresponding to the comfort mode is 200%, and the corresponding value of the sport mode corresponds to The candidate value of the auxiliary coefficient fd is 300%.
  • the value range of the corresponding auxiliary coefficient fd is 0-100%; between the economic mode and the comfort mode, the corresponding value range of the auxiliary coefficient fd is 100%-200%; Between the comfort mode and the sport mode, the value range of the corresponding assist coefficient fd is 200%-300%.
  • the vehicle controller After the driver sets the expected value of the assist coefficient fd associated with the driving torque through the instrument screen, the vehicle controller responds to the driving mode adjustment command and can directly determine the parameters to be adjusted as the driving torque and the expected value of the assist coefficient fd associated with the driving torque.
  • this embodiment sets four recovery candidate vehicle driving modes: zero recovery, light recovery, medium recovery and heavy recovery.
  • the auxiliary coefficient fr associated with the coasting recovery torque is introduced into the vehicle controller, and the driver sets the auxiliary coefficient fr associated with the coasting recovery torque through the progress bar of the instrument screen. For example, the driver can steplessly adjust the driving modes of two adjacent recycling candidate vehicles from 0% to 100% through the instrument screen, with a resolution interval of 1%.
  • This embodiment defines that the candidate value of the auxiliary coefficient fr corresponding to the zero recovery mode is 0, the candidate value of the auxiliary coefficient fr corresponding to the light recovery mode is 100%, the candidate value of the auxiliary coefficient fr corresponding to the medium recovery mode is 200%, and the heavy mode The corresponding candidate value of the auxiliary coefficient fr is 300%. Between the zero recovery mode and the light recovery mode, the value range of the corresponding auxiliary coefficient fr is 0-100%; between the light recovery mode and the medium recovery mode, the value range of the corresponding auxiliary coefficient fr is 100%- 200%; between the medium recovery mode and the heavy recovery mode, the value range of the corresponding auxiliary coefficient fr is 200%-300%.
  • the vehicle controller responds to the driving mode adjustment command and can directly determine the parameters to be adjusted as the coasting recovery torque and the assist coefficient fr associated with the coasting recovery torque expectations.
  • the auxiliary coefficient According to the expected value of the auxiliary coefficient, select the first auxiliary value and the second auxiliary value of the auxiliary coefficient from the candidate values of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is associated with the first value to be adjusted of the parameter to be adjusted, The second auxiliary value of the auxiliary coefficient is associated with the second to-be-adjusted value of the parameter to be adjusted.
  • the candidate value of the auxiliary coefficient is associated with the candidate vehicle driving mode, and each candidate value of the auxiliary coefficient is associated with a candidate vehicle driving mode.
  • the first auxiliary value of the auxiliary coefficient is the maximum candidate value of the auxiliary coefficient smaller than the expected value of the auxiliary coefficient, and the second candidate value of the auxiliary coefficient is the smallest candidate value of the auxiliary coefficient greater than the expected value of the auxiliary coefficient.
  • the expected value of the assist coefficient fd associated with the driving torque is 260%
  • the first assist value of the assist coefficient is 200%
  • the second assist value is 300%
  • the expected value of the associated auxiliary coefficient fr is 160%, so the first auxiliary value of the auxiliary coefficient is 100%, and the second auxiliary value is 200%.
  • the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient, the first auxiliary value and the second auxiliary value of the auxiliary coefficient can be selected from candidate values of the auxiliary coefficient according to the expected value of the auxiliary coefficient. According to the association relationship between the auxiliary coefficient and the parameter to be adjusted, the first value to be adjusted associated with the first auxiliary value of the auxiliary coefficient and the second value to be adjusted associated with the second auxiliary value of the auxiliary coefficient can be determined.
  • the driver’s demanded driving torque corresponding to each driving candidate vehicle driving mode is checked by the PedalMap of the vehicle speed_throttle_torque of the corresponding mode in the vehicle controller. determined by the table.
  • this embodiment defines that the candidate value of the parameter to be adjusted corresponding to the zero power mode is PMo, the candidate value of the parameter to be adjusted corresponding to the economic mode is PMe, the candidate value of the parameter to be adjusted corresponding to the comfort mode is PMc, and the candidate value of the parameter to be adjusted corresponding to the sports mode is PMc.
  • the adjustment parameter candidate value is PMs.
  • the candidate value of the assist coefficient of the driving torque 0 is associated with the candidate value of the parameter to be adjusted PMo
  • the candidate value of the assist coefficient of the driving torque is 100% is associated with the candidate value of the parameter to be adjusted PMe
  • the 200% candidate value of the assist coefficient of the driving torque is associated with the candidate value of the parameter to be adjusted PMc
  • the candidate value of 300% of the assist coefficient of the driving torque is associated with the candidate value of the parameter to be adjusted PMs.
  • the driver’s demand coasting recovery torque corresponding to each recovery candidate vehicle driving mode that is, the candidate value of the parameter to be adjusted
  • the vehicle speed_throttle_torque of the corresponding mode in the vehicle controller It is determined by the RegMap lookup table.
  • this embodiment defines that the candidate value of the parameter to be adjusted corresponding to the zero recovery mode is RMo, the candidate value of the parameter to be adjusted corresponding to the light recovery mode is RMi, the candidate value of the parameter to be adjusted corresponding to the medium recovery mode is RMm, and the value of the candidate parameter to be adjusted corresponding to the heavy recovery mode is RMm.
  • the corresponding candidate value of the parameter to be adjusted is RMh. It can be seen that there is a relationship between the candidate assist coefficient and the candidate parameter to be adjusted.
  • the candidate assist coefficient of the coasting recovery torque 0 is associated with the candidate parameter RMo to be adjusted
  • the candidate value of the assist coefficient 100% of the coasting recovery torque is associated with the parameter candidate to be adjusted.
  • value RMi 200% of the candidate assist coefficient of the coasting recovery torque is associated with the candidate parameter RMm to be adjusted
  • 300% of the candidate assist coefficient of the coasting recovery torque is related to the candidate value of the parameter RMh to be adjusted.
  • the auxiliary coefficient After selecting the first auxiliary value and the second auxiliary value of the auxiliary coefficient from the candidate values of the auxiliary coefficient, according to the first auxiliary value and the second auxiliary value, respectively select from the candidate values of the parameters to be adjusted The first value to be adjusted and the second value to be adjusted of the parameter to be adjusted.
  • the driving torque at this time is 60% of the output torque of the economic mode under the same working conditions (vehicle speed, throttle); if The driving mode of the target vehicle is the economical mode, the expected value of the assist coefficient fd associated with the driving torque is 100%, and the value of the parameter to be adjusted is PMe.
  • the driving mode of the target vehicle is recovery mode, the expected value of the assist coefficient fr associated with the coasting recovery torque is 300%, and the value of the parameter to be adjusted is RMh.
  • the comfort mode among the driving candidate vehicle driving modes is used as the default driving vehicle driving mode
  • the intermediate recycling mode among the recycling candidate vehicle driving modes is used as the default recycling vehicle driving mode.
  • the driving torque corresponding to zero throttle can be a negative value, in order to avoid the superposition of negative torque and coasting recovery torque, resulting in an error in the output torque
  • the parameter to be adjusted is the driving torque and the parameter to be adjusted
  • the auxiliary coefficient associated with the parameter to be adjusted by responding to the driving mode adjustment instruction, the parameter to be adjusted, the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient are determined; according to the expected value of the auxiliary coefficient, the auxiliary coefficient is selected from the candidate values of the auxiliary coefficient The first auxiliary value and the second auxiliary value of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is associated with the first value to be adjusted of the parameter to be adjusted, and the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted ; According to the expected value of the auxiliary coefficient, do an interpolation operation between the first value to be adjusted and the second value to be adjusted to determine the expected value of the parameter to be adjusted; use the expected value of the parameter to be adjusted to control the vehicle, avoiding the only Adjusting the driving mode based on several defined fixed driving modes cannot meet the driver's preferences and habits, and realizes the infinite adjustment of the vehicle's driving mode.
  • Fig. 3 is a schematic structural diagram of a vehicle control device provided in an embodiment of the present application.
  • the device is suitable for implementing the vehicle control method provided in the embodiment of the present application, and can customize the driving mode of the vehicle to meet the preferences and habits of different drivers.
  • the device includes a parameter determination module 310 , an auxiliary value determination module 320 , an expected value determination module 330 and a vehicle control module 340 .
  • the parameter determination module 310 is configured to determine the parameter to be adjusted, the assist coefficient associated with the parameter to be adjusted, and the expected value of the assist coefficient in response to the driving mode adjustment instruction;
  • the auxiliary value determination module 320 is configured to select the first auxiliary value and the second auxiliary value of the auxiliary coefficient from the candidate values of the auxiliary coefficient according to the expected value of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient and the second auxiliary value of the parameter to be adjusted A value to be adjusted is associated, the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted;
  • the expected value determination module 330 is configured to determine the expected value of the parameter to be adjusted according to the expected value of the auxiliary coefficient, the first auxiliary value, the second auxiliary value, the first value to be adjusted, and the second value to be adjusted;
  • the vehicle control module 340 is configured to use the expected value of the parameter to be adjusted to control the vehicle.
  • the parameter to be adjusted, the auxiliary coefficient associated with the parameter to be adjusted, and the expected value of the auxiliary coefficient are determined; according to the expected value of the auxiliary coefficient, the auxiliary coefficient is selected from the candidate values of the auxiliary coefficient The first auxiliary value and the second auxiliary value of the auxiliary coefficient; wherein, the first auxiliary value of the auxiliary coefficient is associated with the first value to be adjusted of the parameter to be adjusted, and the second auxiliary value of the auxiliary coefficient is associated with the second value to be adjusted of the parameter to be adjusted ;
  • the expected value of the parameter to be adjusted is used to control the vehicle, avoiding several fixed values that can only be based on definitions in related technologies
  • Driving mode adjustment The driving mode can not meet the driver's preferences and habits, and realizes the infinite adjustment of the vehicle driving mode.
  • the vehicle driving mode can be customized to
  • the parameter to be adjusted is driving torque or coast recovery torque.
  • the device further includes: an expected value adjustment module, configured to set the expected value of the parameter to be adjusted to zero if the parameter to be adjusted is driving torque and the expected value of the parameter to be adjusted is less than zero.
  • an expected value adjustment module configured to set the expected value of the parameter to be adjusted to zero if the parameter to be adjusted is driving torque and the expected value of the parameter to be adjusted is less than zero.
  • the parameter determination module 310 includes: a parameter acquisition unit and a candidate value determination unit.
  • the parameter obtaining unit is configured to obtain the parameter to be adjusted and the desired target vehicle driving mode from the driving mode adjustment instruction, and obtain an auxiliary coefficient associated with the parameter to be adjusted;
  • the candidate value determining unit is configured to use the candidate value of the assist coefficient associated with the target vehicle driving mode as the expected value of the assist coefficient according to the correlation between the candidate vehicle driving mode and the candidate value of the assist coefficient.
  • the above-mentioned expected value determination module 330 is configured to perform an interpolation operation between the first value to be adjusted and the second value to be adjusted according to the expected value of the auxiliary coefficient to determine the expected value of the parameter to be adjusted.
  • the vehicle control device provided in the embodiment of the present application can execute the vehicle control method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 4 shows a block diagram of an exemplary electronic device 12 suitable for implementing embodiments of the present application.
  • the electronic device 12 shown in FIG. 4 is only an example, and should not limit the functions and scope of use of this embodiment of the present application.
  • electronic device 12 takes the form of a general-purpose computing device.
  • Components of electronic device 12 may include, but are not limited to, one or more processors or processing units 16, system memory 28, bus 18 connecting various system components including system memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • bus structures include, by way of example, but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Electronic device 12 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by electronic device 12 and include both volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • the electronic device 12 may further include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • storage system 34 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 4, commonly referred to as a "hard drive”).
  • a disk drive for reading and writing to removable nonvolatile disks e.g., "floppy disks”
  • removable nonvolatile optical disks e.g., CD-ROM, DVD-ROM. or other optical media
  • CD-ROM drive may be connected to bus 18 via one or more data media interfaces.
  • System memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • Program/utility 40 may be stored, for example, in system memory 28 as a set (at least one) of program modules 42 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples may include the implementation of the network environment.
  • the program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the electronic device 12 may also communicate with one or more external devices 14 (e.g., a keyboard, pointing device, display 24, etc.), may also communicate with one or more devices that enable a user to interact with the electronic device 12, and/or communicate with Any device (eg, network card, modem, etc.) that enables the electronic device 12 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 22 .
  • the electronic device 12 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 20 . As shown, network adapter 20 communicates with other modules of electronic device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with electronic device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • the processing unit 16 executes a variety of functional applications and data processing by running the programs stored in the system memory 28 , such as realizing the vehicle control method provided by the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the vehicle control method provided in any embodiment of the present application is implemented.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the computer readable storage medium may be a non-transitory computer
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program codes for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g. via the Internet using an Internet Service Provider). .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider e.g. via the Internet using an Internet Service Provider

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本申请公开了一种车辆控制方法、装置、电子设备及存储介质。该方法包括:响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值;根据所述辅助系数的期望值,从辅助系数的候选值中选择所述辅助系数的第一辅助值和第二辅助值;其中,所述第一辅助值与所述待调节参数的第一待调节值关联,所述第二辅助值与所述待调节参数的第二待调节值关联;根据所述辅助系数的期望值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值;采用所述待调节参数的期望值,进行车辆控制。

Description

车辆控制方法、装置、电子设备及存储介质
本申请要求在2021年6月17日提交中国专利局、申请号为202110671896.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动化技术领域,例如涉及一种车辆控制方法、装置、电子设备及存储介质。
背景技术
随着智能化技术与电子控制技术的发展,人们对车辆驾驶的自适应要求越来越高,具有单一驾驶模式的车辆己经不能够满足人们的需求,因此多驾驶模式切换控制技术被广泛研究。
相关技术中的驾驶模式控制技术大多基于定义的几种固定驾驶模式,不同模式的驾驶风格具有明显的区别,驾驶员可根据喜好或需求选择不同的驾驶风格进行驾驶。但是,每个驾驶员的驾驶习惯均不同,用几种固定的驾驶模式来满足所有用户的驾驶习惯,显然是无法令所有驾驶员满意的。
因此,如何由驾驶员按照自身的喜好或习惯对驾驶模式自由调节,是一个亟待解决的问题。
发明内容
本申请提供一种车辆控制方法、装置、电子设备及存储介质,以实现自定义车辆驾驶模式,满足不同驾驶员的喜好和习惯,提升驾驶乐趣。
第一方面,本申请实施例提供了一种车辆控制方法,所述方法包括:
响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值;
根据所述辅助系数的期望值,从辅助系数的候选值中选择所述辅助系数的第一辅助值和第二辅助值;其中,所述辅助系数的第一辅助值与所述待调节参数的第一待调节值关联,所述辅助系数的第二辅助值与所述待调节参数的第二待调节值关联;
根据所述辅助系数的期望值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值;
采用所述待调节参数的期望值,进行车辆控制。
第二方面,本申请实施例还提供了一种车辆控制装置,所述装置包括:
参数确定模块,设置为响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值;
辅助值确定模块,设置为根据所述辅助系数的期望值,从辅助系数的候选值中选择所述辅助系数的第一辅助值和第二辅助值;其中,所述辅助系数的第一辅助值与所述待调节参数的第一待调节值关联,所述辅助系数的第二辅助值与所述待调节参数的第二待调节值关联;
期望值确定模块,设置为根据所述辅助系数的期望值、所述第一辅助值、所述第二辅助值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值;
车辆控制模块,设置为采用所述待调节参数的期望值,进行车辆控制。
第三方面,本申请实施例还提供了一种电子设备,所述电子设备包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请任意实施例所述的车辆控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任意实施例所述的车辆控制方法。
附图说明
图1A为本申请一实施例提供的一种车辆控制方法的流程图;
图1B为本申请一实施例提供的车辆驾驶模式与辅助系数候选值的对应关系示意图;
图1C为本申请一实施例提供的确定辅助值的示意图;
图2A是本申请另一实施例提供的一种车辆控制方法的流程图;
图2B为本申请另一实施例提供的确定辅助值的示意图;
图3是本申请一实施例提供的一种车辆控制装置结构框图;
图4是本申请一实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1A为本申请一实施例提供的一种车辆控制方法的流程图,本实施例针对只有单级减速装置的纯电动汽车,可适用于对车辆驾驶模式进行调整控制情况,例如,对驱动扭矩进行调整或对滑行回收扭矩进行调整。该方法可以由本申请实施例提供的车辆控制装置来执行,该装置可以采用软件和/或硬件的方式实现,并可集成在电子设备上。
例如,如图1A所示,本申请实施例提供的车辆控制方法,可以包括如下步骤:
S110、响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。
其中,驾驶模式调节指令可以由驾驶员根据自身需求通过中控仪表屏幕等控制端发起, 包括待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。待调节参数可以是驱动扭矩PM,也可以是滑行回收扭矩RM。与待调节参数关联的辅助系数可以是驱动扭矩调节系数fd,也可以是滑行回收扭矩调节系数fr。例如,可以通过按键或触控设置待调节参数,并通过拖动待调节参数关联的辅助系数的进度条设置辅助系数的期望值,调节范围在0%-300%。在另一种示例实施方式中,可以直接拖动与驱动扭矩PM关联的驱动扭矩调节系数fd的进度条,也可以直接拖动与滑行回收扭矩RM关联的滑行回收扭矩调节系数fr的进度条。需要说明的是,驾驶模式调节指令的发起方式本实施例不作具体限制。
整车控制器在接收到驾驶员发起的驾驶模式调节指令后,可以响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。因为待调节参数与辅助系数的取值存在关联关系,所以通过调节辅助系数的期望值可以进一步调节待调节参数。
在本实施例一个示例实施方式中,为了提高调节效率,针对不同的待调节参数,可以预先设置候选车辆驾驶模式。驾驶员可以直接在预设的候选车辆驾驶模式中选择一个候选车辆驾驶模式作为目标车辆驾驶模式。根据选定的目标车辆驾驶模式,生成驾驶模式调节指令。整车控制器接收到驾驶模式调节指令后,响应于驾驶模式调节指令,从驾驶模式调节指令获取待调节参数和期望的目标车辆驾驶模式,且获取与待调节参数关联的辅助系数。根据候选车辆驾驶模式与辅助系数的候选值之间的关联关系,将与目标车辆驾驶模式关联的辅助系数的候选值作为辅助系数的期望值。
以待调节参数为驱动扭矩为例,按车速和油门的动力由小到大对多个驱动候选车辆驾驶模式进行固定排序,为零动力模式(o)、经济模式(e)、舒适模式(c)和运动模式(s)。其中,当调节到零动力模式代表车速和油门的驱动力分别为零。在整车控制器中引入与驱动扭矩关联的辅助系数fd,驾驶员通过仪表屏幕可直接选定一个候选车辆驾驶模式作为目标车辆驾驶模式。如图1B所示,本实施例定义零动力模式对应的辅助系数fd的候选值为0,经济模式对应的辅助系数fd的候选值为100%,舒适模式对应的辅助系数fd的候选值为200%,运动模式对应的辅助系数fd的候选值为300%。
示例性的,驾驶员可以通过仪表屏幕在驱动扭矩调节系数fd的进度条上点击300%,选定运动模式作为目标车辆驾驶模式,整车控制器响应于驾驶模式调节指令,确定待调节参数为驱动扭矩,期望的目标车辆驾驶模式为运动模式,且获取与待驱动扭矩关联的辅助系数。根据候选车辆驾驶模式与辅助系数的候选值之间的关联关系,将与运动模式关联的辅助系数的候选值(300%)作为辅助系数的期望值,快速进入运动模式。
在本实施例另一个示例实施方式中,为了提高调节的灵活性,驾驶员可以通过拖动待调节参数关联的辅助系数的进度条来设置辅助系数的期望值。整车控制器接收到驾驶模式调节指令后,响应于驾驶模式调节指令,可以直接确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。
仍然以待调节参数为驱动扭矩为例,在整车控制器中引入与驱动扭矩关联的辅助系数fd,驾驶员通过仪表屏幕进度条设置驱动扭矩关联的辅助系数fd的期望值。由于本实施例定义零 动力模式对应的辅助系数fd的候选值为0,经济模式对应的辅助系数fd的候选值为100%,舒适模式对应的辅助系数fd的候选值为200%,运动模式对应的辅助系数fd的候选值为300%。在零动力模式与经济模式之间,对应的辅助系数fd的取值范围为0-100%;在经济模式与舒适模式之间,对应的辅助系数fd的取值范围为100%-200%;在舒适模式与运动模式之间,对应的辅助系数fd的取值范围为200%-300%。
示例性的,驾驶员通过仪表屏幕设置辅助系数fd的期望值后,整车控制器响应于驾驶模式调节指令,可以直接确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。
S120、根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联。
其中,辅助系数的候选值与候选车辆驾驶模式之间关联,每一个辅助系数的候选值关联一种回收候选车辆驾驶模式。以待调节参数为滑行回收扭矩为例,本实施例设置零回收、轻回收、中回收和重回收四种回收候选车辆驾驶模式。在整车控制器中引入与滑行回收扭矩关联的辅助系数fr,驾驶员通过仪表屏幕进度条设置滑行回收扭矩关联的辅助系数fr。本实施例定义零回收模式对应的辅助系数fr的候选值为0,轻回收模式对应的辅助系数fr的候选值为100%,中回收模式对应的辅助系数fr的候选值为200%,重回收模式对应的辅助系数fr的候选值为300%。在零回收模式与轻回收模式之间,对应的辅助系数fr的取值范围为0-100%;在轻回收模式与中回收模式之间,对应的辅助系数fr的取值范围为100%-200%;在中回收模式与重回收模式之间,对应的辅助系数fr的取值范围为200%-300%。
辅助系数的第一辅助值为小于辅助系数期望值的辅助系数最大候选值,辅助系数的第二辅助值为大于辅助系数期望值的辅助系数最小候选值。示例性的,如图1C所示,若与滑行回收扭矩关联的辅助系数fr的期望值为160%,则辅助系数的第一辅助值为100%,第二辅助值为200%;若与滑行回收扭矩关联的辅助系数fr的期望值为260%,则辅助系数的第一辅助值为200%,第二辅助值为300%。
确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值之后,可以根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值。根据辅助系数和待调节参数的关联关系,可以确定与辅助系数的第一辅助值关联的第一待调节值、与辅助系数的第二辅助值关联的第二待调节值。其中,第一待调节值为第一辅助值关联的待调节参数的取值,第二待调节值为第二辅助值关联的待调节参数的取值。
以待调节参数为驱动扭矩为例,本实施例定义零动力模式对应的辅助系数fd的候选值为0,经济模式对应的辅助系数fd的候选值为100%,舒适模式对应的辅助系数fd的候选值为200%,运动模式对应的辅助系数fd的候选值为300%。每个驱动候选车辆驾驶模式对应的驾驶员需求驱动扭矩,即待调节参数的候选值,由整车控制器里相应模式的车速_油门_扭矩的PedalMap查表决定。为了表述方便,本实施例定义零动力模式对应的待调节参数候选值为 PMo,经济模式对应的待调节参数候选值为PMe,舒适模式对应的待调节参数候选值为PMc,运动模式对应的待调节参数候选值为PMs。可见,辅助系数候选值与待调节参数候选值存在关联关系,例如,驱动扭矩的辅助系数候选值0关联待调节参数候选值PMo,驱动扭矩的辅助系数候选值100%关联待调节参数候选值PMe,驱动扭矩的辅助系数候选值200%关联待调节参数候选值PMc,驱动扭矩的辅助系数候选值300%关联待调节参数候选值PMs。
根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值后,可以根据第一辅助值和第二辅助值,从待调节参数的候选值中分别选择待调节参数的第一待调节值和第二待调节值。
S130、根据辅助系数的期望值、第一待调节值和第二待调节值,确定待调节参数的期望值。
在确定辅助系数的期望值、第一待调节值和第二待调节值后,可以根据辅助系数的期望值、第一待调节值和第二待调节值,确定待调节参数的期望值。
在本实施例一个示例实施方式中,可以在第一待调节值和第二待调节值之间任意选定一个值作为待调节参数的期望值。示例性的,以待调节参数为驱动扭矩为例,若与驱动扭矩关联的辅助系数fd的期望值为160%,可以在经济模式对应的第一待调节值PMe和舒适模式对应的第二待调节值PMc之间任意选定一个值作为待调节参数驱动扭矩的期望值。在本实施例另一个示例实施方式中,为了更好地关联辅助系数的期望值,可以根据辅助系数的期望值,在第一待调节值和第二待调节值之间做插值运算,确定待调节参数的期望值。示例性的,以待调节参数为驱动扭矩为例,若与驱动扭矩关联的辅助系数fd的期望值为160%,需求驱动扭矩为经济模式对应的第一待调节值PMe与舒适模式对应的第二待调节值PMc之间按fd进行插值计算的结果,驾驶员需求驱动扭矩PM=PMe+(fd-100%)×(PMc-PMe)=PMe+60%×(PMc-PMe)。
S140、采用待调节参数的期望值,进行车辆控制。
确定待调节参数的期望值之后,可以采用待调节参数的期望值,对车辆进行控制,使得车辆按照待调节参数的期望值输出。
本实施例的技术方案,通过响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值;根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联;根据辅助系数的期望值、第一待调节值和第二待调节值,确定待调节参数的期望值;采用待调节参数的期望值进行车辆控制,避免了相关技术中只能基于定义的几种固定驾驶模式调节驾驶模式不能满足驾驶员喜好和习惯的情况,实现了车辆驾驶模式的无极调节,可以自定义车辆驾驶模式,满足不同驾驶员的喜好和习惯,提升驾驶乐趣,为车辆控制提供了一种新思路。
在上述多个实施例的技术方案的基础上,为了保证驾驶安全,可以设置车辆启动后默认的车辆驾驶模式为舒适模式。启动后,则可以根据驾驶员需求调节扭矩。
图2A为本申请实施例提供的一种车辆控制方法的流程图,该方法在上述实施例的基础上进一步的细化,给出了一种车辆控制方法的具体情况介绍。
例如,如图2A所示,该方法包括:
S210、响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值。
以待调节参数为驱动扭矩为例,按车速和油门的动力由小到大对多个驱动候选车辆驾驶模式进行固定排序,为零动力模式(o)、经济模式(e)、舒适模式(c)和运动模式(s)。在整车控制器中引入与驱动扭矩关联的辅助系数fd,驾驶员通过仪表屏幕进度条设置驱动扭矩关联的辅助系数fd。例如,驾驶员可以通过仪表屏幕对相邻的两个驱动候选车辆驾驶模式之间进行0%-100%的无级调节,分辨率间隔为1%。由于本实施例定义零动力模式对应的辅助系数fd的候选值为0,经济模式对应的辅助系数fd的候选值为100%,舒适模式对应的辅助系数fd的候选值为200%,运动模式对应的辅助系数fd的候选值为300%。在零动力模式与经济模式之间,对应的辅助系数fd的取值范围为0-100%;在经济模式与舒适模式之间,对应的辅助系数fd的取值范围为100%-200%;在舒适模式与运动模式之间,对应的辅助系数fd的取值范围为200%-300%。
驾驶员通过仪表屏幕设置与驱动扭矩关联的辅助系数fd的期望值后,整车控制器响应于驾驶模式调节指令,可以直接确定待调节参数为驱动扭矩、与驱动扭矩关联的辅助系数fd的期望值。
以待调节参数为滑行回收扭矩为例,本实施例设置零回收、轻回收、中回收和重回收四种回收候选车辆驾驶模式。在整车控制器中引入与滑行回收扭矩关联的辅助系数fr,驾驶员通过仪表屏幕进度条设置滑行回收扭矩关联的辅助系数fr。例如,驾驶员可以通过仪表屏幕对相邻的两个回收候选车辆驾驶模式之间进行0%-100%的无级调节,分辨率间隔为1%。本实施例定义零回收模式对应的辅助系数fr的候选值为0,轻回收模式对应的辅助系数fr的候选值为100%,中回收模式对应的辅助系数fr的候选值为200%,重模式对应的辅助系数fr的候选值为300%。在零回收模式与轻回收模式之间,对应的辅助系数fr的取值范围为0-100%;在轻回收模式与中回收模式之间,对应的辅助系数fr的取值范围为100%-200%;在中回收模式与重回收模式之间,对应的辅助系数fr的取值范围为200%-300%。
驾驶员通过仪表屏幕设置与滑行回收扭矩关联的辅助系数fr的期望值后,整车控制器响应于驾驶模式调节指令,可以直接确定待调节参数为滑行回收扭矩、与滑行回收扭矩关联的辅助系数fr的期望值。
S220、根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联。
其中,辅助系数的候选值与候选车辆驾驶模式之间关联,每一个辅助系数的候选值关联一种候选车辆驾驶模式。辅助系数的第一辅助值为小于辅助系数期望值的辅助系数最大候选 值,辅助系数的第二候选值为大于辅助系数期望值的辅助系数最小候选值。
示例性的,如图2B所示,若与驱动扭矩关联的辅助系数fd的期望值为260%,则辅助系数的第一辅助值为200%,第二辅助值为300%;若与滑行回收扭矩关联的辅助系数fr的期望值为160%,则辅助系数的第一辅助值为100%,第二辅助值为200%。
确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值之后,可以根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值。根据辅助系数和待调节参数的关联关系,可以确定与辅助系数的第一辅助值关联的第一待调节值、与辅助系数的第二辅助值关联的第二待调节值。
以待调节参数为驱动扭矩为例,每个驱动候选车辆驾驶模式对应的驾驶员需求驱动扭矩,即待调节参数的候选值,由整车控制器里相应模式的车速_油门_扭矩的PedalMap查表决定的。为了表述方便,本实施例定义零动力模式对应的待调节参数候选值为PMo,经济模式对应的待调节参数候选值为PMe,舒适模式对应的待调节参数候选值为PMc,运动模式对应的待调节参数候选值为PMs。可见,辅助系数候选值与待调节参数候选值存在关联关系,例如,驱动扭矩的辅助系数候选值0关联待调节参数候选值PMo,驱动扭矩的辅助系数候选值100%关联待调节参数候选值PMe,驱动扭矩的辅助系数候选值200%关联待调节参数候选值PMc,驱动扭矩的辅助系数候选值300%关联待调节参数候选值PMs。
以待调节参数为滑行回收扭矩为例,每个回收候选车辆驾驶模式对应的驾驶员需求滑行回收扭矩,即待调节参数的候选值,由整车控制器里相应模式的车速_油门_扭矩的RegMap查表决定的。为了表述方便,本实施例定义零回收模式对应的待调节参数候选值为RMo,轻回收模式对应的待调节参数候选值为RMi,中回收模式对应的待调节参数候选值为RMm,重回收模式对应的待调节参数候选值为RMh。可见,辅助系数候选值与待调节参数候选值存在关联关系,例如,滑行回收扭矩的辅助系数候选值0关联待调节参数候选值RMo,滑行回收扭矩的辅助系数候选值100%关联待调节参数候选值RMi,滑行回收扭矩的辅助系数候选值200%关联待调节参数候选值RMm,滑行回收扭矩的辅助系数候选值300%关联待调节参数候选值RMh。
根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值后,可以根据第一辅助值和第二辅助值,从待调节参数的候选值中分别选择待调节参数的第一待调节值和第二待调节值。
S230、根据辅助系数的期望值,在第一待调节值和第二待调节值之间做插值运算,确定待调节参数的期望值。
以待调节参数为驱动扭矩为例,若目标车辆驾驶模式为零动力模式,与驱动扭矩关联的辅助系数fd的期望值为0,待调节参数的取值为PMo,即当调节到零动力模式代表车速、油门的驱动力矩分别为零;若与驱动扭矩关联的辅助系数fd的期望值在0-100%之间,则驾驶员需求驱动扭矩PM为PMo与PMe之间按fd进行插值计算的结果,PM=PMo+fd×(PMe-PMo)=fd×PMe。例如,当驾驶员将fd调到60%位置时, PM=fd×PMe=60%*PMe,即此时的驱动扭矩为相同工况下(车速、油门)经济模式输出扭矩的60%;若目标车辆驾驶模式为经济模式,与驱动扭矩关联的辅助系数fd的期望值为100%,待调节参数的取值为PMe。
若与驱动扭矩关联的辅助系数的期望值在100%-200%之间,则驾驶员需求驱动扭矩PM为PMe与PMc之间按fd进行插值计算的结果,PM=PMe+(fd-100%)×(PMc-PMe)。例如,当驾驶员将fd调到160%位置时,PM=PMe+(160%-100%)×(PMc-PMe)=PMe+60%×(PMc-PMe);若目标车辆驾驶模式为舒适模式,与驱动扭矩关联的辅助系数fd的期望值为200%,待调节参数的取值为PMc。
若与驱动扭矩关联的辅助系数的期望值在200%-300%之间,则驾驶员需求驱动扭矩PM为PMc与PMs之间按fd进行插值计算的结果,PM=PMc+(fd-200%)×(PMs-PMc)。例如,当驾驶员将fd调到160%位置时,PM=PMc+(260%-200%)×(PMs-PMc)=PMc+60%×(PMs-PMc);若目标车辆驾驶模式为运动模式,与驱动扭矩关联的辅助系数fd的期望值为300%,待调节参数的取值为PMs。
以待调节参数为滑行回收扭矩为例,若目标车辆驾驶模式为零回收模式,与滑行回收扭矩关联的辅助系数fr的期望值为0,待调节参数的取值为RMo,即当调节到零回收模式代表车速、油门的回收力矩分别为零;若与滑行回收扭矩关联的辅助系数的期望值在0-100%之间,则驾驶员需求滑行回收扭矩RM为RMo与RMi之间按fr进行插值计算的结果,RM=RMo+fr×(RMi-RMo)=fr×RMi。例如,当驾驶员将fr调到60%位置时,RM=fr×RMi=60%*RMi,即此时的滑行回收扭矩为相同工况下(车速、油门)轻回收模式滑行回收扭矩的60%;若目标车辆驾驶模式为轻回收模式,与滑行回收扭矩关联的辅助系数fr的期望值为100%,待调节参数的取值为RMi。
若与滑行回收扭矩关联的辅助系数fr的期望值在100%-200%之间,则驾驶员需求滑行回收扭矩RM为RMi与RMm之间按fr进行插值计算的结果,RM=RMi+(fr-100%)×(RMm-RMi)。例如,当驾驶员将fr调到160%位置时,RM=RMi+(160%-100%)×(RMm-RMi)=RMi+60%×(RMm-RMi);若目标车辆驾驶模式为中回收模式,与滑行回收扭矩关联的辅助系数fr的期望值为200%,待调节参数的取值为RMm。
若与滑行回收扭矩关联的辅助系数fr的期望值在200%-300%之间,则驾驶员需求滑行回收扭矩RM为RMm与RMh之间按fr进行插值计算的结果,RM=RMm+(fr-200%)×(RMh-RMm)。例如,当驾驶员将fr调到260%位置时, RM=RMm+(260%-200%)×(RMh-RMm)=RMm+60%×(RMh-RMm);若目标车辆驾驶模式为重回收模式,与滑行回收扭矩关联的辅助系数fr的期望值为300%,待调节参数的取值为RMh。
需要说明的是,本实施例中将驱动候选车辆驾驶模式中的舒适模式作为默认驱动车辆驾驶模式,将回收候选车辆驾驶模式中的中回收模式作为默认回收车辆驾驶模式。在进行车辆驾驶模式调整时,可以在当前车辆驾驶模式的基础上只调节驱动扭矩,也可以在当前车辆驾驶模式的基础上只调节滑行回收扭矩,还可以既调节驱动扭矩又调节滑行回收扭矩。当在当前车辆驾驶模式的基础上只调节驱动扭矩时,保持滑行回收扭矩取值不变;当在当前车辆驾驶模式的基础上只调节滑行回收扭矩时,保持驱动扭矩取值不变。
S240、若待调节参数为驱动扭矩且待调节参数的期望值小于零,则将待调节参数的期望值设置为零。
由于零油门对应的驱动扭矩可以是一个负值,为了避免负扭矩和滑行回收扭矩叠加,导致输出扭矩有误,在本实施例一个示例实施方式中,若待调节参数为驱动扭矩且待调节参数的期望值小于零,则将待调节参数的期望值设置为零,公式表现为:PM=Max(PM,0)。
S250、采用待调节参数的期望值,进行车辆控制。
当驾驶员完成驱动扭矩和滑行回收扭矩的自定义调节后,相当于新的驱动扭矩和新的滑行回收扭矩组合成了一个新的自定义输出扭矩Torque,驾驶员可以在该自定义输出扭矩下进行驾驶,公式表现为:Torque=RM+PM。
本实施例的技术方案,通过响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值;根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联;根据辅助系数的期望值,在第一待调节值和第二待调节值之间做插值运算,确定待调节参数的期望值;采用待调节参数的期望值,进行车辆控制,避免了相关技术中只能基于定义的几种固定驾驶模式调节驾驶模式不能满足驾驶员喜好和习惯的情况,实现了车辆驾驶模式的无极调节,可以自定义车辆驾驶模式,满足不同驾驶员的喜好和习惯,提升驾驶乐趣,为车辆控制提供了一种新思路。
图3是本申请实施例所提供的一种车辆控制装置的结构示意图,该装置适用于执行本申请实施例提供的车辆控制方法,可以自定义车辆驾驶模式,满足不同驾驶员的喜好和习惯。如图3所示,该装置包括参数确定模块310、辅助值确定模块320、期望值确定模块330和车辆控制模块340。
其中,参数确定模块310,设置为响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值;
辅助值确定模块320,设置为根据辅助系数的期望值,从辅助系数的候选值中选择辅助 系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联;
期望值确定模块330,设置为根据辅助系数的期望值、第一辅助值、第二辅助值、第一待调节值和第二待调节值,确定待调节参数的期望值;
车辆控制模块340,设置为采用待调节参数的期望值,进行车辆控制。
本实施例的技术方案,通过响应于驾驶模式调节指令,确定待调节参数、与待调节参数关联的辅助系数和辅助系数的期望值;根据辅助系数的期望值,从辅助系数的候选值中选择辅助系数的第一辅助值和第二辅助值;其中,辅助系数的第一辅助值与待调节参数的第一待调节值关联,辅助系数的第二辅助值与待调节参数的第二待调节值关联;根据辅助系数的期望值、第一待调节值和第二待调节值,确定待调节参数的期望值;采用待调节参数的期望值,进行车辆控制,避免了相关技术中只能基于定义的几种固定驾驶模式调节驾驶模式不能满足驾驶员喜好和习惯的情况,实现了车辆驾驶模式的无极调节,可以自定义车辆驾驶模式,满足不同驾驶员的喜好和习惯,提升驾驶乐趣,为车辆控制提供了一种新思路。
例如,待调节参数为驱动扭矩或滑行回收扭矩。
例如,装置还包括:期望值调整模块,设置为若待调节参数为驱动扭矩且待调节参数的期望值小于零,则将待调节参数的期望值设置为零。
例如,上述参数确定模块310包括:参数获取单元和候选值确定单元。其中,参数获取单元,设置为从驾驶模式调节指令获取待调节参数和期望的目标车辆驾驶模式,且获取与待调节参数关联的辅助系数;
候选值确定单元,设置为根据候选车辆驾驶模式与辅助系数的候选值之间的关联关系,将与目标车辆驾驶模式关联的辅助系数的候选值作为辅助系数的期望值。
例如,上述期望值确定模块330,设置为根据辅助系数的期望值,在第一待调节值和第二待调节值之间做插值运算,确定待调节参数的期望值。
本申请实施例所提供的车辆控制装置可执行本申请任意实施例所提供的车辆控制方法,具备执行方法相应的功能模块和有益效果。
图4为本申请实施例提供的一种电子设备的结构示意图。图4示出了适于用来实现本申请实施方式的示例性电子设备12的框图。图4显示的电子设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图4所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总 线。
电子设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。电子设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。系统存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请多个实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如系统存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的车辆控制方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任意申请实施例提供的车辆控制方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、 光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。计算机可读存储介质可以是非暂态计算机可读存储介质。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种车辆控制方法,包括:
    响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值;
    根据所述辅助系数的期望值,从所述辅助系数的候选值中选择所述辅助系数的第一辅助值和第二辅助值;其中,所述第一辅助值与所述待调节参数的第一待调节值关联,所述第二辅助值与所述待调节参数的第二待调节值关联;
    根据所述辅助系数的期望值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值;
    采用所述待调节参数的期望值,进行车辆控制。
  2. 根据权利要求1所述的方法,其中,所述待调节参数为驱动扭矩或滑行回收扭矩;
    所述根据所述辅助系数的期望值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值之后,还包括:
    响应于确定所述待调节参数为驱动扭矩且所述待调节参数的期望值小于零,将所述待调节参数的期望值设置为零。
  3. 根据权利要求1所述的方法,其中,所述响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值,包括:
    从所述驾驶模式调节指令中获取待调节参数和期望的目标车辆驾驶模式,并获取与所述待调节参数关联的辅助系数;
    根据候选车辆驾驶模式与辅助系数的候选值之间的关联关系,将与所述目标车辆驾驶模式关联的辅助系数的候选值作为所述辅助系数的期望值。
  4. 根据权利要求1所述的方法,其中,所述根据所述辅助系数的期望值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值,包括:
    根据所述辅助系数的期望值,在所述第一待调节值和所述第二待调节值之间做插值运算,确定待调节参数的期望值。
  5. 一种车辆控制装置,包括:
    参数确定模块,设置为响应于驾驶模式调节指令,确定待调节参数、与所述待调节参数关联的辅助系数和所述辅助系数的期望值;
    辅助值确定模块,设置为根据所述辅助系数的期望值,从辅助系数的候选值中选择所述辅助系数的第一辅助值和第二辅助值;其中,所述第一辅助值与所述待调节参数的第一待调节值关联,所述第二辅助值与所述待调节参数的第二待调节值关联;
    期望值确定模块,设置为根据所述辅助系数的期望值、所述第一辅助值、所述第二辅助值、所述第一待调节值和所述第二待调节值,确定待调节参数的期望值;
    车辆控制模块,设置为采用所述待调节参数的期望值,进行车辆控制。
  6. 根据权利要求5所述的装置,还包括:
    期望值调整模块,设置为响应于确定所述待调节参数为驱动扭矩且所述待调节参数的期 望值小于零,将所述待调节参数的期望值设置为零。
  7. 根据权利要求5所述的装置,其中,所述参数确定模块,包括:
    参数获取单元,设置为从所述驾驶模式调节指令中获取待调节参数和期望的目标车辆驾驶模式,并获取与所述待调节参数关联的辅助系数;
    候选值确定单元,设置为根据候选车辆驾驶模式与辅助系数的候选值之间的关联关系,将与所述目标车辆驾驶模式关联的辅助系数的候选值作为所述辅助系数的期望值。
  8. 根据权利要求5所述的装置,其中,所述期望值确定模块,还设置为根据所述辅助系数的期望值,在所述第一待调节值和所述第二待调节值之间做插值运算,确定待调节参数的期望值
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-4中任一所述的车辆控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其所述计算机程序被处理器执行时实现如权利要求1-4中任一所述的车辆控制方法。
PCT/CN2022/094845 2021-06-17 2022-05-25 车辆控制方法、装置、电子设备及存储介质 WO2022262538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110671896.6A CN113247011A (zh) 2021-06-17 2021-06-17 一种车辆控制方法、装置、电子设备及存储介质
CN202110671896.6 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022262538A1 true WO2022262538A1 (zh) 2022-12-22

Family

ID=77188410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094845 WO2022262538A1 (zh) 2021-06-17 2022-05-25 车辆控制方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113247011A (zh)
WO (1) WO2022262538A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247011A (zh) * 2021-06-17 2021-08-13 中国第一汽车股份有限公司 一种车辆控制方法、装置、电子设备及存储介质
CN114962046A (zh) * 2021-08-26 2022-08-30 长城汽车股份有限公司 车辆扭矩控制方法、装置、控制器、车辆及存储介质
CN114818143A (zh) * 2022-05-11 2022-07-29 中国第一汽车股份有限公司 一种发动机油门踏板特性的优化方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200339150A1 (en) * 2019-04-26 2020-10-29 Zenuity Ab Driving assistance method and system
CN112145666A (zh) * 2020-09-14 2020-12-29 广州小鹏汽车科技有限公司 车辆动力控制方法、装置、车辆及存储介质
KR102202442B1 (ko) * 2019-11-25 2021-01-13 현대위아 주식회사 4wd 차량의 토크 제어 방법
CN112339576A (zh) * 2020-11-09 2021-02-09 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质
CN112644500A (zh) * 2019-10-09 2021-04-13 广州汽车集团股份有限公司 驾驶模式调整方法、装置、计算机设备及存储介质
CN113247011A (zh) * 2021-06-17 2021-08-13 中国第一汽车股份有限公司 一种车辆控制方法、装置、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255012B2 (ja) * 1996-05-02 2002-02-12 トヨタ自動車株式会社 ハイブリッド車
GB201215968D0 (en) * 2012-09-06 2012-10-24 Jaguar Cars Vehicle control system and method
FR3060482B1 (fr) * 2016-12-16 2019-10-04 Peugeot Citroen Automobiles Sa. Controle de vitesse d'un vehicule
CN109017632A (zh) * 2018-07-10 2018-12-18 吉利汽车研究院(宁波)有限公司 一种车辆驾驶环境的调节方法及系统
CN108909719B (zh) * 2018-07-27 2019-12-17 爱驰汽车有限公司 电动汽车的驾驶习惯识别方法、系统、设备以及存储介质
US10703381B2 (en) * 2018-11-28 2020-07-07 International Business Machines Corporation Intelligent vehicle action decisions
CN110979018A (zh) * 2019-12-27 2020-04-10 宝能(广州)汽车研究院有限公司 车辆及其控制方法和装置、电子设备、存储介质
CN111469679B (zh) * 2020-05-11 2022-02-08 上海元城汽车技术有限公司 车辆的控制方法、装置、整车控制器、车辆和介质
CN112622872B (zh) * 2020-12-28 2022-07-15 潍柴动力股份有限公司 一种能量回收控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200339150A1 (en) * 2019-04-26 2020-10-29 Zenuity Ab Driving assistance method and system
CN112644500A (zh) * 2019-10-09 2021-04-13 广州汽车集团股份有限公司 驾驶模式调整方法、装置、计算机设备及存储介质
KR102202442B1 (ko) * 2019-11-25 2021-01-13 현대위아 주식회사 4wd 차량의 토크 제어 방법
CN112145666A (zh) * 2020-09-14 2020-12-29 广州小鹏汽车科技有限公司 车辆动力控制方法、装置、车辆及存储介质
CN112339576A (zh) * 2020-11-09 2021-02-09 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质
CN113247011A (zh) * 2021-06-17 2021-08-13 中国第一汽车股份有限公司 一种车辆控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113247011A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022262538A1 (zh) 车辆控制方法、装置、电子设备及存储介质
JP7412499B2 (ja) オンデバイス機能性を使うように車両クライアントデバイスに指令すること
EP4105095A1 (en) Control method, apparatus and device, and storage medium
JP2021111359A (ja) 音声ウェイクアップ方法及び装置
CN113168304A (zh) 有条件地将各种自动助理功能分配给与外围助理控制设备的交互
US10320354B1 (en) Controlling a volume level based on a user profile
EP3616080B1 (en) Systems, methods, and apparatuses for providing assistant deep links to effectuate third-party dialog session transfers
US11960837B2 (en) Fulfillment of actionable requests ahead of a user selecting a particular autocomplete suggestion for completing a current user input
US20210245745A1 (en) Cruise control method, electronic device, vehicle and storage medium
JP2021144248A (ja) 音声データ処理方法、装置及びスマート車両
JP7309775B2 (ja) 自動車用シートの調整方法、装置、機器及び記憶媒体
US20210149558A1 (en) Method and apparatus for controlling terminal device, and non-transitory computer-readle storage medium
CN112185369B (zh) 一种基于语音控制的音量调节方法、装置、设备和介质
JP2021105725A (ja) 車載多音域に基づくノイズ低減方法、装置、電子機器及び記憶媒体
CN110932888A (zh) 用于协商对共享音频或视觉资源的控制的系统和方法
JP2022069534A (ja) 投影シーンの表示制御方法、装置、設備、媒体及びプログラム製品
CN115769298A (zh) 缺少自动化助理应用编程接口功能的外部应用的自动化助理控制
CN114613362A (zh) 设备控制方法和装置、电子设备和介质
CN103279189B (zh) 一种便携式电子设备的交互装置及其交互方法
CN111942403B (zh) 一种模式切换方法、装置、设备及存储介质
EP4350484A1 (en) Interface control method, device, and system
CN113068410B (zh) 智能设备的高效和低延迟自动化助理控制
WO2024027211A1 (zh) 触控扫描方法、触摸屏及电子设备
JPH1021048A (ja) 音声出力方法及び音声出力装置
CN118295612A (zh) 一种智能表面的显示方法及智能表面显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824019

Country of ref document: EP

Kind code of ref document: A1