WO2022262324A1 - 发光模组及其制造方法、显示装置 - Google Patents

发光模组及其制造方法、显示装置 Download PDF

Info

Publication number
WO2022262324A1
WO2022262324A1 PCT/CN2022/079279 CN2022079279W WO2022262324A1 WO 2022262324 A1 WO2022262324 A1 WO 2022262324A1 CN 2022079279 W CN2022079279 W CN 2022079279W WO 2022262324 A1 WO2022262324 A1 WO 2022262324A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
layer
emitting module
light emitting
Prior art date
Application number
PCT/CN2022/079279
Other languages
English (en)
French (fr)
Inventor
齐琪
王珂
浩育涛
汪建国
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/041,694 priority Critical patent/US20230369551A1/en
Publication of WO2022262324A1 publication Critical patent/WO2022262324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133317Intermediate frames, e.g. between backlight housing and front frame
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/46Fixing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13021Disposition the bump connector being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly

Definitions

  • the present disclosure relates to the field of display technology, in particular to a light emitting module, a manufacturing method thereof, and a display device.
  • the light emitting diode Light Emitting Diode, English abbreviation is LED
  • the light emitting diode has been developed for nearly 30 years, and its application range is continuously expanding. For example, it can be used in the display field, as a backlight source for a display device or as an LED display.
  • the sub-millimeter light-emitting diode (Mini Light Emitting Diode, English abbreviation for Mini LED) has gradually become a research hotspot in the field of display technology.
  • Mini LED can be used in the light-emitting module in the liquid crystal display device as the light-emitting element of the light-emitting module. In this way, by utilizing the advantages of Mini LEDs, the light-emitting module can realize the advantages of thin thickness, regional dimming, fast response, simple structure and long life.
  • embodiments of the present disclosure provide a light emitting module, a manufacturing method thereof, and a display device.
  • a light-emitting module including: a back frame; a first substrate; an array of electronic components disposed on the first substrate, the array of electronic components includes a plurality of electronic components; The encapsulation layer on the first substrate and covering the array of electronic components; and a bonding part, the bonding part is arranged between the back frame and the first substrate, and the bonding part includes facing the The first surface of the back frame and the second surface facing the first substrate, the first surface and the second surface are oppositely arranged, wherein the material of the first substrate is an organic material; and the The back frame is in direct contact with the first surface of the bonding part, and the first substrate is in direct contact with the second surface of the bonding part.
  • the thickness of the first substrate is between 5-10 microns.
  • the distribution density of the electronic components is greater than or equal to 1 piece/6mm2.
  • the light emitting module further includes a display panel, the display panel is located on the light emitting side of the electronic component, the display panel includes a second substrate, and the thickness of the second substrate is between About 0.15mm.
  • the light emitting module further includes a color conversion layer, and the color conversion layer is located on the light emitting side of the electronic component.
  • the color conversion layer includes KSF phosphor.
  • the light emitting module includes a plurality of film layers located between the first substrate and the array of electronic components; the plurality of film layers include: located on the first substrate The first conductive layer on the first conductive layer; the first flat layer on the side of the first conductive layer away from the first substrate; the second conductive layer on the side of the first flat layer away from the first substrate and a second planar layer located on the side of the second conductive layer away from the first substrate; and the light emitting module further includes a plurality of vent holes, the plurality of vent holes are located in the first planar layer Between the second flat layer, the plurality of vent holes respectively expose a part of the first flat layer.
  • a display device in another aspect, wherein the display device includes the above-mentioned light emitting module.
  • a method for manufacturing a light emitting module includes the following steps:
  • the array of electronic components comprising a plurality of electronic components
  • the bonding part includes a first surface facing the back frame and a second surface facing the first substrate, the first surface and the second surface are oppositely arranged, and the back frame and the The first surface of the bonding part is in direct contact, and the first substrate is in direct contact with the second surface of the bonding part.
  • the thickness of the first substrate is between 5-10 microns.
  • FIG. 1 is a schematic diagram of a partial structure of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a lighting module according to an embodiment of the present disclosure
  • FIG. 3 is a plan view of a light emitting unit according to some exemplary embodiments of the present disclosure.
  • Fig. 4 is a schematic cross-sectional structural view of the light emitting module according to an embodiment of the present disclosure taken along the line AA' in Fig. 3;
  • Fig. 5 is a schematic cross-sectional structure diagram of a light emitting module taken along line AA' in Fig. 3 according to other embodiments of the present disclosure
  • 6A to 6C are schematic structural diagrams of the transparent protection structure of the light emitting module according to some exemplary embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a lighting module according to other exemplary embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a method of manufacturing a light emitting module according to some exemplary embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a display device according to some exemplary embodiments of the present disclosure.
  • connection may refer to a physical connection, an electrical connection, a communicative connection, and/or a fluid connection.
  • the X-axis, Y-axis, and Z-axis are not limited to the three axes of the rectangular coordinate system, and may be interpreted in a wider sense.
  • the X-axis, Y-axis, and Z-axis may be perpendicular to each other, or may represent different directions that are not perpendicular to each other.
  • X, Y, and Z and "at least one selected from the group consisting of X, Y, and Z” may be interpreted as meaning only X, only Y, only Z, or Any combination of two or more of X, Y, and Z such as XYZ, XYY, YZ, and ZZ.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • an inorganic light-emitting diode refers to a light-emitting element made of inorganic materials, wherein an LED means an inorganic light-emitting element different from an OLED.
  • the inorganic light emitting element may include a submillimeter light emitting diode (Mini Light Emitting Diode, English abbreviation is Mini LED) and a micro light emitting diode (Micro Light Emitting Diode, English abbreviation is Micro LED).
  • sub-millimeter light-emitting diodes i.e. Mini LEDs
  • the grain size of Mini LEDs can be between 100 and 300 microns.
  • the electronic components may include light-emitting components, such as submillimeter light-emitting diodes, miniature light-emitting diodes, etc.
  • the electronic components may also include sensor elements or micro-integrated circuit chips.
  • Some exemplary embodiments of the present disclosure provide a light emitting module, a method of manufacturing the same, and a display device including the light emitting module.
  • some embodiments of the present disclosure provide a light emitting module, a manufacturing method thereof, and a display device.
  • the light-emitting module includes: a back frame; a first substrate; an array of sub-millimeter light-emitting diode chips arranged on the first substrate, and the array of sub-millimeter light-emitting diode chips includes a plurality of sub-millimeter light-emitting diode chips; a packaging layer on the first substrate and covering the submillimeter LED chip array; and a bonding part, the bonding part is arranged between the back frame and the first substrate, and the bonding part
  • the portion includes a first surface facing the back frame and a second surface facing the first substrate, the first surface and the second surface are oppositely disposed, wherein the material of the first substrate includes an organic material; and the back frame is in direct contact with the first surface of the bonding portion, and the first substrate is in direct contact with the second surface of the bonding portion.
  • the first substrate is provided as the substrate of the sub-millimeter light-emitting diode chip, and the first substrate is directly attached to the back frame, which is beneficial to simplify the structure of the light-emitting module and realize the realization of the light-emitting module. Thin and light.
  • the component formed by assembling the light-emitting module and the display panel is called a display device, that is, the expression "display device” includes a light-emitting module, a display panel, and a combination of the light-emitting module and the display panel. frame together.
  • FIG. 1 is a schematic diagram of a partial structure of a display device according to an embodiment of the disclosure.
  • the display device shown in FIG. 1 may be a liquid crystal display device.
  • a display device 1 may include a light emitting module 2 , a display panel 4 such as a liquid crystal display panel, a back frame 5 and a plastic frame 6 .
  • the "back frame” has the characteristics of high strength and light weight, and the material includes metal materials such as aluminum alloy, which play the role of increasing the structural strength of the light-emitting module, supporting and protecting the light-emitting module;
  • the "plastic frame” is a frame connected to the back frame and used to support components such as the display panel.
  • the plastic frame is made of a soft and elastic material.
  • the light emitting module 2 may be a direct type light emitting module.
  • FIG. 2 is a schematic plan view of a lighting module according to an embodiment of the disclosure.
  • the light emitting module 2 may include a light emitting substrate, for example, the light emitting substrate may include a first substrate 11, a submillimeter LED chip array 12 disposed on the first substrate 11, and a submillimeter LED chip array 12 covering the submillimeter LED chip.
  • the encapsulation layer 13 of the chip array 12 may include any one of polyimide, PEN resin, or silicone resin.
  • the encapsulation layer 13 includes a layered structure for encapsulating the submillimeter LED chip array 12 on the first substrate 11 .
  • the encapsulation glue is coated on the surface of the submillimeter light-emitting diode chip in the light-emitting substrate, and the encapsulation layer 13 is formed after drying.
  • the material of the encapsulation glue may include transparent light-curing or heat-curing resin, that is, the material of the encapsulation layer 13 may be a transparent protective glue.
  • the encapsulation layer 13 may include a plurality of transparent protective structures 30 . Regarding the transparent protective structure, it will be described in more detail below with reference to the accompanying drawings.
  • sub-millimeter light-emitting diode chip is represented by a rectangular frame in FIG. 1 and FIG. Arbitrary shapes such as circles and polygons.
  • the submillimeter light emitting diode chip array 12 may include a plurality of submillimeter light emitting diode chips 121, and the plurality of submillimeter light emitting diode chips 121 are arranged at intervals along the first direction X and the second direction Y, that is, arranged in an array on the first substrate 11 on. Each submillimeter LED chip 121 is in electrical communication with the first substrate 11 . Pads corresponding to submillimeter LED chips are provided on the first substrate 11 , and the submillimeter LED chips are fixedly connected to corresponding pads, thereby forming a submillimeter LED chip array 12 on the first substrate 11 . It should be understood that the density of the submillimeter LED chip array 12 depends on the luminous efficiency power of the submillimeter LED chips, the power consumption requirements of the light emitting substrate, and the brightness requirements.
  • first direction X and the second direction Y are perpendicular to each other, and the third direction Z is perpendicular to the first direction X and the second direction Y.
  • the application of sub-millimeter light-emitting diode chips in the light-emitting module is conducive to realizing a more refined local dimming design of the light-emitting module, realizing high dynamic contrast, and realizing regional dimming, so that the light-emitting module It has the advantages of better uniformity of light transmission, higher contrast and more details of light and shade.
  • the material of the first substrate 11 may include polyimide (PI), and the thickness of the first substrate is in the range of 5-10 ⁇ m.
  • PI polyimide
  • the first substrate 11 may be directly attached to the inner surface of the back frame 5 .
  • the lighting module 2 may include a bonding part 3 , for example, the bonding part 3 may include double-sided adhesive tape.
  • the first substrate 11 and the back frame 5 are respectively located on two sides of the bonding part 3 and contact the upper surface and the lower surface of the bonding part 3 respectively.
  • the first substrate with a small thickness as the substrate of the light-emitting substrate is beneficial to reduce the overall thickness of the light-emitting module.
  • the first substrate is directly connected to the back frame without any back film in the middle, which is beneficial to further reduce the overall thickness of the light emitting module.
  • “Back film” refers to a high-viscosity film used to strengthen the mechanical strength, flatness and support ability of the substrate material layer provided with submillimeter light-emitting diodes.
  • the "back film” may include PET film or include The multi-layer film structure of PSA film and PET film, the thickness of the back film is about 100 ⁇ m. In the embodiments of the present disclosure, no back film is required, and the first substrate directly contacts the back frame, so that the overall thickness of the light emitting module can be reduced.
  • the thermal conductivity of the polyimide is 0.1 ⁇ 0.35 W/m ⁇ K.
  • the back frame 5 is made of iron material, and its thermal conductivity is about 150W/m ⁇ K. Since the thickness of the first substrate 11 is small, such as about 5-10 ⁇ m, and the first substrate 11 directly contacts the iron back frame 5, the heat transfer efficiency between the first substrate 11 and the back frame 5 can be improved. The substantial increase is beneficial to effectively dissipate the heat generated in the light-emitting module through the back frame 5 .
  • the light emitting module 2 may further include an optical film set.
  • the optical film set may include optical films such as a diffusion plate 23 and a brightness enhancement film 24. It should be understood that the optical film set may also include other types of optical films. The type of the included optical film can be selected according to actual usage requirements.
  • a display panel 4 such as a liquid crystal display panel may include two opposite substrates, for example, the two substrates may be an array substrate 41 and a color filter substrate 42 respectively. It should be understood that the display panel 4 may also include a liquid crystal layer disposed between the array substrate 41 and the color filter substrate 42 .
  • the substrates of the array substrate 41 and the color filter substrate 42 may be glass.
  • the array substrate and the color filter substrate may adopt structures of array substrates and color filter substrates common in the art, which will not be repeated here.
  • the display panel 4 may include, for example, a lower polarizer 43 and an upper polarizer 45. In the embodiment shown in FIG. on the upper surface.
  • the array substrate 41 may include a second substrate 412, and the thickness of the second substrate 412 may be about 0.15 mm.
  • the material of the second substrate 412 is glass, quartz or the like.
  • the back frame 5 has an accommodating space 52 for accommodating the light emitting module 2 .
  • the plastic frame 6 is used to carry the display panel 4 , for example, a buffer element 7 , such as foam, is disposed between the carrying surface of the plastic frame 6 and the lower polarizer 43 of the display panel 4 .
  • a part of the plastic frame 6 can be overlapped with the back frame 5, and the back frame 5 can have side walls, and the side walls of the plastic frame 6 and the side walls of the back frame 5 are combined by, for example, buckle connection, screw connection and the like.
  • the plastic frame 6 includes buckles 61 , and the plastic frame 6 and the back frame 5 can be fixed together through the buckles 61 .
  • the light emitting module may also include a color conversion layer 8 .
  • the aforementioned submillimeter LED chip 121 may be a submillimeter LED chip that emits blue light.
  • the color conversion layer 8 can convert the blue light emitted by the submillimeter light-emitting diode chip 121 into light of different colors such as red, green, and white.
  • the color conversion layer 8 may be located above the diffuser plate 23 .
  • the color conversion layer 8 may be located under the diffuser plate 23 . Embodiments of the present disclosure do not specifically limit this.
  • the color conversion layer 8 may be a quantum dot layer, or a KSF phosphor layer.
  • the color conversion layer 8 is a quantum dot layer, due to the small size of the quantum dots, the light conversion efficiency can only be guaranteed when the film thickness reaches a certain range, for example, 0.1-0.2 mm.
  • the color conversion layer 8 is a phosphor layer, the particle size of the phosphor is relatively large to achieve the same light conversion efficiency, and the thickness of the phosphor layer can be smaller than that of the quantum dot layer, for example, the thickness can be reduced by about 50 ⁇ m. It can be understood that, in order to achieve a smaller thickness of the light-emitting module, the phosphor layer can be selected as the color conversion layer, and if higher color purity is desired, the quantum dot layer can be selected as the color conversion layer.
  • the optical film group is disposed on the light-emitting side of the light-emitting substrate.
  • the light-emitting module also includes a support structure S to ensure the optical distance OD between the light-emitting substrate and the optical film set 2 .
  • the optical distance OD may not be set, that is, the light-emitting substrate and the optical film set 2 are directly contacted, so the support structure S may not be included in the light-emitting module.
  • each of the diffuser plate 23 and the brightness enhancement film 24 may include one layer of film or multiple layers of film.
  • the distribution density of the submillimeter LED chips 12 can be increased to reduce the optical distance OD and the gap GAP, so that the overall thickness of the light emitting module can be further reduced.
  • the distribution density of the submillimeter LED chips 121 may be greater than or equal to 6 pieces/36mm 2 . That is, it is equal to or greater than 1 piece/6mm 2 .
  • the distribution density of sub-millimeter LED chips 121 can be: 6-8 pieces/36mm 2 , by setting the distribution density of sub-millimeter LED chips, the overall thickness of the light emitting module can be reduced by 0.4mm .
  • the optical distance OD may not be set, that is, the light-emitting substrate is directly contacted with the optical film group 2, so the light-emitting mode
  • the support structure S may not be included in the group; in the above case, the overall thickness of the light emitting module can be within 2 mm, so as to realize an ultra-thin light emitting module.
  • the "overall thickness of the light-emitting module" here may be the sum of the overall thickness of the light-emitting substrate and the overall thickness of the optical film set 2 .
  • the distribution density of electronic components mentioned in the embodiments of the present disclosure refers to the same type with the largest number in the light-emitting module.
  • the distribution density of electronic components includes three types of electronic components: sub-millimeter light-emitting diode chips, micro-integrated circuit chips, and temperature-sensitive sensors. Among them, the number of sub-millimeter light-emitting diode chips is the largest.
  • the distribution density of chips 12 on the first substrate may be greater than or equal to 1 chip/6mm 2 .
  • the thickness of the optical film in the optical film group can be reduced, for example, the thickness of the diffusion plate 23, so that the overall light-emitting module can be further reduced.
  • the thickness correspondingly, reduces the overall weight of the lighting module.
  • the light emitting surface of the submillimeter LED chip 121 may have four sides with equal lengths (that is, the light emitting surface of the submillimeter LED chip 121 is square), or the light emitting surface of the submillimeter LED chip 121 may be Have sides of varying lengths (eg, non-square rectangular shape).
  • the light-emitting surface of the submillimeter LED chip 121 is a square as an example for illustration, as shown in FIG. 2 .
  • a light emitting unit includes only one submillimeter LED chip 121; in other embodiments, a light emitting unit may also include multiple submillimeter LED chips 121, for example, two or The above number of submillimeter LED chips 121 is not specifically limited here. In some embodiments, the multiple submillimeter LED chips 121 included in one light emitting unit may be connected in series, in parallel, or in a combination of series and parallel, which is not specifically limited.
  • FIG. 3 is a plan view of a light emitting unit according to some exemplary embodiments of the present disclosure, which schematically shows that one light emitting unit includes four submillimeter light emitting diode chips 121 arranged in series.
  • a micro-integrated circuit ⁇ IC may provide signals to four submillimeter LED chips 121 in one lighting unit.
  • one micro-integrated circuit ⁇ IC can also provide signals to multiple light emitting units.
  • the side of the submillimeter light-emitting diode chip 121 away from the light-emitting substrate is provided with a transparent protective structure 30, and the transparent protective structure 30 can protect the wrapped micro-integrated circuit uIC.
  • the manufacturing requirements of the transparent protective structure 30 above the micro-integrated circuit ulC and the transparent protective structure 30 above the submillimeter light-emitting diode chip 121 are the same, and the two are prepared and formed in the same process flow.
  • the light-emitting substrate of the light-emitting module includes a light-emitting area and a peripheral area.
  • all the sub-millimeter light-emitting diode chips 121 and the micro-integrated circuit ⁇ IC are arranged in the light-emitting area, and the sub-millimeter light-emitting diode chips 121 and the micro-integrated circuit ⁇ IC are connected to the light-emitting substrate through a series of processes such as picking up, transferring, and fixing.
  • Corresponding pads complete the electrical connection.
  • the peripheral area is used to connect with an external drive circuit, such as a flexible circuit board (FPC) or a printed circuit board (PCB).
  • the bonding pad 107 can be provided in the peripheral area to electrically connect with the golden finger structure on the circuit board. .
  • Fig. 4 is a schematic cross-sectional view of the light emitting module according to an embodiment of the present disclosure taken along the line AA' in Fig. 3 . 2 to 4, the submillimeter light-emitting diode chip 121 includes a light emitting part 203 and two pins 201 and 202 (respectively N pad and P pad), which are respectively connected to the pad 101 through solder paste T, each pad 101 is then connected according to the position of the submillimeter LED chip 121 in the electrical circuit. Specifically, in FIG.
  • the P pad of the sub-millimeter light-emitting diode chip 121 in the lower left corner is connected to the driving voltage line VLED, and the N pad of the sub-millimeter light-emitting diode chip 121 in the lower left corner is connected to the P pad of the sub-millimeter light-emitting diode chip 121 in the upper left corner.
  • the N pad of the sub-millimeter light-emitting diode chip 121 in the upper left corner is connected with the P pad of the sub-millimeter light-emitting diode chip 121 in the upper right corner
  • the N pad of the sub-millimeter light-emitting diode chip 121 in the upper right corner is connected with the P pad of the sub-millimeter light-emitting diode chip 121 in the lower right corner
  • the N pad of the sub-millimeter light-emitting diode chip 121 in the lower right corner is connected with the output end of the micro integrated circuit ⁇ IC.
  • the micro-integrated circuit ⁇ IC can have multiple pins, for example, 4 pins, which are respectively connected to the pads on the light-emitting substrate through solder paste, and each pad is connected to the source power line PWR and the common voltage respectively.
  • the line GND, the address line DI, and the submillimeter LED chip 121 in the corresponding light emitting unit are connected.
  • the light-emitting module may further include: a first conductive layer 102, which is generally used to arrange various signal lines, such as the common voltage line GND, drive Voltage line VLED, source power line PWR, address line DI, etc.
  • a first conductive layer 102 is about 1.5 ⁇ m-7 ⁇ m, and its material may include copper.
  • a laminated material such as MoNb/Cu/MoNb can be formed by sputtering, and the laminated layer is close to the substrate
  • the material on one side of 11 is MoNb, and the thickness is about Left and right, mainly used to improve the adhesion between the film layer and the substrate 11, the material of the middle layer of the laminate is Cu, which is the preferred material for the electrical signal transmission channel, and the material on the side away from the first substrate 11 is MoNb, the thickness About Left and right, it can be used to protect the intermediate layer and prevent the surface of the intermediate layer with low resistivity from being exposed to oxidation.
  • the first conductive layer 102 can also be formed by electroplating. Specifically, MoNiTi can be used to form a seed layer to increase the nucleation density of metal grains in the subsequent electroplating process, and then electroplating is used to produce copper with low resistivity. , and then make an anti-oxidation layer, the material can be MoNiTi.
  • the surface of the first conductive layer 102 away from the first substrate 11 may be covered by the first insulating layer 104 to ensure the reliability and stability of the electrical path.
  • the light-emitting module may further include: a second conductive layer 105, which is generally used for setting pads and connecting leads 106.
  • the second conductive layer 105 The film thickness of the second conductive layer 105 is about about.
  • the pads are used to bind various electrical components, for example, may include pads 101 for mounting submillimeter light-emitting diode chips 121 in the light-emitting area, and/or solder pads for mounting functional components such as micro-integrated circuit chips or sensors. pads, and bonding pads 107 located in the peripheral area for connection to the circuit board. The surface of the pad on the side away from the first substrate 11 needs to be partially exposed before it is connected with an electronic component.
  • an anti-oxidation material layer can be provided only on the exposed surface area of the pad, that is, the pad area There will be one more layer of structure on the surface than the area where the connecting lead 106 is; or the second conductive layer 105 is provided as a stacked structure of at least two layers, and the material of the film layer away from the first substrate 11 is an oxidation-resistant metal Or alloy materials, specifically, can be composed of a laminated structure such as MoNb/Cu/CuNi.
  • the bottom material MoNb in the laminate is mainly used to improve the adhesion
  • the middle layer Cu in the laminate is mainly used for transmission due to its low resistivity.
  • the top layer CuNi in the stack can not only prevent the oxidation of the middle layer, but also ensure the firmness of the connection with the electronic components.
  • the connection lead 106 may include a first lead extending along the first direction X and a second lead extending along the second direction Y, and the surface of the first lead and the second lead on the side away from the first substrate 11 will be insulated by the second layer 108 to ensure the reliability and stability of the electrical path.
  • the light-emitting module may further include: a buffer layer 109 located between the first substrate 11 and the first conductive layer 102, and a buffer layer 109 located between the first insulating layer 117 and the second conductive layer.
  • the buffer layer 109 can prevent impurities in the first substrate 11 from affecting the conductivity of the first conductive layer 102
  • the first flat layer 110 can provide a flat surface for the fabrication of the second conductive layer 104
  • the second flat layer 110 can provide a flat surface for the subsequent bonding of sub-millimeter light-emitting diode chips 121
  • the material of reflective layer 112 can be white ink, which is used to improve the reflectivity of light-emitting substrate 01 to reduce light loss
  • the conductive glue 114 is used to realize the electrical connection between the bonding pad 107 in the peripheral area and the flexible circuit board FPC.
  • the light-emitting substrate of the light-emitting module may include: a first substrate 11; a buffer layer 109 located on the first substrate 11; The conductive layer 102; the first insulating layer 117 located on the side of the first conductive layer 102 away from the first substrate 11; the first flat layer 110 located on the side of the first insulating layer 117 away from the first substrate 11; located on the first flat layer
  • the layer 110 is away from the second conductive layer 105 on the side of the first substrate 11; the second insulating layer 116 on the side of the second conductive layer 105 away from the first substrate 11; and the second insulating layer 116 on the side away from the first substrate
  • the second flat layer 111 on one side of 11.
  • the second insulating layer 116 is located between the first planar layer 110 and the second planar layer 111 .
  • the material of the second planar layer 111 is an organic insulating material
  • a plurality of vent holes 1160 may be provided in the second insulating layer 116 .
  • the plurality of vent holes 1160 respectively expose a portion of the underlying first planar layer 110 .
  • the gas accumulated in the first flat layer 110 can be released through the vent hole 1160, so that problems such as warping and peeling of the film layer of the light-emitting substrate can be avoided, thereby improving product quality. Rate.
  • vent holes 1160 are provided, but this is only for illustration, rather than limiting the embodiment of the present disclosure. In other embodiments, more or less vent holes may be provided.
  • the submillimeter LED chip encapsulation layer 13 may have a flat upper surface 31 , and the encapsulation layer may cover all the submillimeter LED chips 121 .
  • the refractive index of the encapsulation layer 13 may be between 1.2 and 1.5, between 1.3 and 1.4, less than 1.4, less than 1.5, greater than 1.1, greater than 1.2, greater than 1.3, about 1.35, etc.
  • Submillimeter LED Chip Submm LED Chip Referring to FIG.
  • the encapsulation layer 13 includes a plurality of transparent protective structures 30 , and each transparent protective structure may have a curved upper surface 32 (eg, a convex upper surface).
  • the transparent protective structure 30 may form a dome shape over the submillimeter LED chip.
  • the transparent protective structure may be referred to as a droplet lens.
  • the refractive index of the transparent protective structure 30 may be between 1.2 and 1.5, between 1.3 and 1.4, less than 1.4, less than 1.5, greater than 1.1, greater than 1.2, greater than 1.3, about 1.35, etc.
  • Each submillimeter LED chip can have a corresponding transparent protective structure part.
  • the refractive index of the transparent protective structure 30 can be between that of the submillimeter LED chip 121 in order to reduce the probability of total reflection of the light emitted by the submillimeter LED chip 121. and the refractive index of air.
  • the transparent protective structure 30 may have a curved upper surface 33 and a groove 34 .
  • the transparent protection structure 30 forms a groove 34 on the submillimeter LED chip.
  • Grooves 34 may have any desired shape (eg, pyramidal shape). Compared with the embodiment in FIG. 6A , the groove 34 can further increase the light uniformity.
  • Fig. 7 is a schematic structural diagram of a lighting module according to some other exemplary embodiments of the present disclosure.
  • the differences in the structure of FIG. 7 relative to that of FIG. 1 will be mainly described.
  • the light emitting module may further include adhesive tapes 80 and 81 for bonding the light emitting module and the display panel together.
  • the adhesive tape 81 is located in the contact area between the plastic frame 6 and the display panel 4.
  • the projection of the adhesive tape 81 on the plane where the display panel 4 is located is also in the shape of a square, that is, it is arranged around the peripheral area of the display panel.
  • the adhesive tape 80 is attached to the edge of the upper surface of the display device, the side surface of the display device, and the edge of the lower surface of the display device.
  • the adhesive tape 80 may include a first part 801, a second part 802 and a third part 803.
  • the first part 801 of the adhesive tape 80 is attached to the edge of the surface of the back frame 5 facing away from the display panel, and the second part of the adhesive tape 80 802 is attached to the side wall of the back frame 5, and the third part 803 of the adhesive tape 80 is attached to the edge of the surface of the back frame 5 facing away from the light-emitting module.
  • the adhesive tape 80 is a continuously extending adhesive tape, that is, the first part 801 , the second part 802 and the third part 803 of the adhesive tape 80 are connected as a whole. Through the above configuration, the adhesive tape 80 can fix the display panel, so as to bond the light emitting module and the display panel together.
  • the adhesive tape 80 may be made of a light-shielding material, for example, the adhesive tape 80 may be a black adhesive tape.
  • Adhesive tape 80 is attached to the edge of the lower surface of the display device, the side wall of the display device and the edge of the upper surface of the display device, which can block the light in the entire non-display area of the display device, thereby reducing or even avoiding the display. The chance that the device will produce light leaks.
  • the adhesive tape 80 can be made of conductive material, so that the adhesive tape 80 can play the role of electrostatic discharge or electrostatic shielding.
  • FIG. 8 is a flowchart of a method of manufacturing a light emitting module according to some exemplary embodiments of the present disclosure. Referring to FIG. 8 , the manufacturing method of the light emitting module may include the following steps.
  • any one of polyimide material, PEN resin material or silicone resin is coated on the rigid carrier to form a first substrate.
  • the material of the rigid carrier can be glass, quartz, or the like.
  • step S302 a submillimeter LED chip array and a packaging layer covering the submillimeter LED chip array are formed on a first substrate, the submillimeter LED chip array including a plurality of submillimeter LED chip arrays.
  • step S303 the first substrate is peeled off from the rigid carrier.
  • step S304 a bonding portion is formed on the back frame.
  • step S305 the peeled first substrate is directly attached to the back frame through an adhesive part, wherein the adhesive part includes a first surface facing the back frame and a first surface facing the first substrate.
  • the manufacturing method of the light emitting module may specifically be performed according to the following steps.
  • step S401 any one of polyimide material, PEN resin material or silicone resin is coated on the rigid carrier and cured to form a first substrate.
  • a buffer layer such as silicon nitride is deposited on the first substrate.
  • the buffer layer can be used as a stress buffer layer to adjust the stress inside the first substrate, which is beneficial to the subsequent formation of the conductive layer pattern;
  • the first substrate is usually formed by a wet process. Bottom, in this wet process, oxygen-containing components will be introduced.
  • the oxygen-containing components can be isolated from the conductive layer pattern, so as to prevent the oxygen-containing components from corroding the subsequent The formed conductive layer pattern thus plays a role in protecting the subsequently formed conductive layer pattern.
  • step S403 a thick copper layer is formed on the buffer layer, and a thick copper pattern is produced through a patterning process.
  • the thickness of the thick copper layer is greater than 2 microns.
  • step S404 an insulating layer such as silicon nitride is deposited on the thick copper layer, and is patterned through a patterning process to form a first via hole exposing at least a part of the thick copper layer.
  • an insulating layer such as silicon nitride is deposited on the thick copper layer, and is patterned through a patterning process to form a first via hole exposing at least a part of the thick copper layer.
  • step S405 a pad layer is deposited on the insulating layer, and the pad layer is electrically connected to the thick copper layer through the via hole.
  • a protection layer is deposited and patterned by a patterning process to form a second via hole, and the second via hole exposes at least a part of the pad layer.
  • the protective layer includes silicon nitride, silicon oxide or any combination thereof.
  • a white oil layer is formed through a printing process to expose the second via hole. It should be noted that white oil has better light reflectivity, which can improve the light output brightness and efficiency of sub-millimeter light-emitting diode chips.
  • step S408 a plurality of submillimeter light emitting diode chips are respectively fixedly connected to corresponding bonding pads.
  • step S409 a transparent silicone material is coated on the plurality of submillimeter LED chips and cured to form an encapsulation layer.
  • step S410 attach a low-viscosity protective film on the silica gel.
  • the low-viscosity protective film can be a TPF film, which protects the light-emitting substrate from collisions and abrasions to ensure that after the attachment is completed, the low-viscosity protective film is connected to the silica gel layer through van der Waals force.
  • step S411 the first substrate is separated from the rigid carrier by, for example, a laser lift-off process.
  • the low-viscosity protective film can prevent the first substrate from bending or curling after being detached from the rigid carrier.
  • step S412 a high-viscosity double-sided adhesive is coated on the back frame, and then the separated first substrate is directly attached to the back frame.
  • step S413 the low-viscosity protective film is peeled off.
  • FIG. 9 is a schematic diagram of a display device according to some exemplary embodiments of the present disclosure.
  • the display device includes the above-mentioned light emitting module.
  • the display device can be any product or component with a display function.
  • the display device may be a smart phone, a cellular phone, a navigation device, a television (TV), a car head unit, a laptop computer, a tablet computer, a portable multimedia player (PMP), a personal digital assistant (PDA), etc. Wait.
  • TV television
  • PMP portable multimedia player
  • PDA personal digital assistant
  • the display device has all the features and advantages of the above-mentioned light-emitting module. For these features and advantages, reference can be made to the description of the light-emitting substrate above, and details will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种发光模组及其制造方法和显示装置。发光模组(2)包括:背框(5);第一衬底(11);设置在第一衬底(11)上的电子元件阵列,电子元件阵列包括多个电子元件;设置在第一衬底(11)上且覆盖电子元件阵列的封装层(13);和粘结部(3),粘结部(3)设置在背框(5)与第一衬底(11)之间,粘结部(3)包括面向背框(5)的第一表面和面向第一衬底(11)的第二表面,第一表面和第二表面相对设置,其中,第一衬底(11)的材料为有机材料;以及背框(5)与粘结部(3)的第一表面直接接触,第一衬底(11)与粘结部(5)的第二表面直接接触。

Description

发光模组及其制造方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种发光模组及其制造方法、显示装置。
背景技术
发光二极管(Light Emitting Diode,英文缩写为LED)技术发展了近三十年,其应用范围不断扩展,例如,其可以应用于显示领域,用作显示装置的背光源或用作LED显示屏。随着技术的发展,次毫米发光二极管(Mini Light Emitting Diode,英文缩写为Mini LED)逐渐成为显示技术领域中的一个研究热点。例如,Mini LED可以用于液晶显示装置中的发光模组中,作为发光模组的发光元件。这样,通过利用Mini LED的优点,所述发光模组可以实现厚度薄、分区调光、快速响应、结构简单和寿命长等优点。
在本部分中公开的以上信息仅用于对本公开的发明构思的背景的理解,因此,以上信息可包含不构成现有技术的信息。
发明内容
为了解决上述问题的至少一个方面,本公开实施例提供一种发光模组及其制造方法和显示装置。
在一个方面,提供一种发光模组,包括:背框;第一衬底;设置在所述第一衬底上的电子元件阵列,所述电子元件阵列包括多个电子元件;设置在所述第一衬底上且覆盖所述电子元件阵列的封装层;和粘结部,所述粘结部设置在所述背框与所述第一衬底之间,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,其中,所述第一衬底的材料为有机材料;以及所述背框与所述粘结部的第一表面直接接触,所述第一衬底与所述粘结部的第二表面直接接触。
根据一些示例性的实施例,所述第一衬底的厚度在5-10微米之间。
根据一些示例性的实施例,所述电子元件的分布密度大于等于1个/6mm2。
根据一些示例性的实施例,所述发光模组还包括显示面板,所述显示面板位于所述电子元件的出光侧,所述显示面板包括第二衬底,所述第二衬底的厚度在0.15毫米左右。
根据一些示例性的实施例,所述发光模组还包括色转换层,所述色转换层位于所述电子元件的出光侧。
根据一些示例性的实施例,所述色转换层包括KSF荧光粉。
根据一些示例性的实施例,所述发光模组包括位于所述第一衬底和所述电子元件阵列之间的多个膜层;所述多个膜层包括:位于所述第一衬底上的第一导电层;位于所述第一导电层远离所述第一衬底一侧的第一平坦层;位于所述第一平坦层远离所述第一衬底一侧的第二导电层;以及位于所述第二导电层远离所述第一衬底一侧的第二平坦层;以及所述发光模组还包括多个放气孔,所述多个放气孔位于所述第一平坦层与所述第二平坦层之间,所述多个放气孔分别暴露所述第一平坦层的一部分。
在另一方面,提供一种显示装置,其中,所述显示装置包括如上所述的发光模组。
在又一方面,提供一种发光模组的制造方法,其中,所述制造方法包括以下步骤:
在刚性载板上涂布一层有机材料,以形成第一衬底;
在第一衬底上形成电子元件阵列和覆盖所述电子元件阵列的封装层,所述电子元件阵列包括多个电子元件;
将所述第一衬底从所述刚性载板上剥离;
在背框上形成粘结部;以及
将剥离的第一衬底通过粘结部直接贴附在背框上,
其中,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,所述背框与所述粘结部的第一表面直接接触,所述第一衬底与所述粘结部的第二表面直接接触。
根据一些示例性的实施例,所述第一衬底的厚度在5-10微米之间。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1是根据本公开实施例的一种显示装置的局部结构示意图;
图2是根据本公开实施例的发光模组的平面示意图;
图3是根据本公开的一些示例性实施例的发光单元的平面图;
图4是根据本公开的实施例的发光模组沿图3中的线AA’截取的剖面结构示意图;
图5是根据本公开的另一些实施例的发光模组沿图3中的线AA’截取的剖面结构示意图;
图6A至图6C分别是根据本公开的一些示例性实施例的发光模组的透明保护结构的结构示意图;
图7是根据本公开的另一些示例性实施例的发光模组的结构示意图;
图8是根据本公开的一些示例性实施例的发光模组的制造方法的流程图;以及
图9是根据本公开的一些示例性实施例的显示装置的示意图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,层、结构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
具体实施方式
在下面的描述中,出于解释的目的,阐述了许多具体细节以提供对各种示例性实施例的全面的理解。然而,明显的是,在不具有这些具体细节或者具有一个或多个等同布置的情况下,可以实施各种示例性实施例。在其它情况下,以框图形式示出了公知的结构和装置,以避免使各种示例性实施例不必要地模糊。此外,各种示例性实施例可以是不同的,但不必是排他的。例如,在不脱离发明构思的情况下,可以在另一示例性实施例中使用或实施示例性实施例的具体形状、配置和特性。
在附图中,为了清楚和/或描述的目的,可以放大元件的尺寸和相对尺寸。如此,各个元件的尺寸和相对尺寸不必限于图中所示的尺寸和相对尺寸。当可以不同地实施示例性实施例时,可以与描述的顺序不同地执行具体的工艺顺序。例如,可以基本上同时执行或者以与描述的顺序相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的元件。
当元件被描述为“在”另一元件“上”、“连接到”另一元件或“结合到”另一元件时,所述元件可以直接在所述另一元件上、直接连接到所述另一元件或直接结合到所述另一元件,或者可以存在中间元件。然而,当元件被描述为“直接在”另一元件“上”、“直接 连接到”另一元件或“直接结合到”另一元件时,不存在中间元件。用于描述元件之间的关系的其他术语和/或表述应当以类似的方式解释,例如,“在......之间”对“直接在......之间”、“相邻”对“直接相邻”或“在......上”对“直接在......上”等。此外,术语“连接”可指的是物理连接、电连接、通信连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴,并且可以以更广泛的含义解释。例如,X轴、Y轴和Z轴可彼此垂直,或者可代表彼此不垂直的不同方向。出于本公开的目的,“X、Y和Z中的至少一个”和“从由X、Y和Z构成的组中选择的至少一个”可以被解释为仅X、仅Y、仅Z、或者诸如XYZ、XYY、YZ和ZZ的X、Y和Z中的两个或更多个的任何组合。如文中所使用的,术语“和/或”包括所列相关项中的一个或多个的任何组合和所有组合。
应该理解的是,尽管在这里可使用术语第一、第二等来描述不同的元件,但是这些元件不应受这些术语的限制。这些术语仅是用来将一个元件与另一个元件区分开来。例如,在不脱离示例实施例的范围的情况下,第一元件可以被命名为第二元件,类似地,第二元件可以被命名为第一元件。
在本文中,无机发光二极管是指利用无机材料制成的发光元件,其中,LED表示有别于OLED的无机发光元件。具体地,无机发光元件可以包括次毫米发光二极管(Mini Light Emitting Diode,英文缩写为Mini LED)和微型发光二极管(Micro Light Emitting Diode,英文缩写为Micro LED)。其中,次毫米发光二极管(即Mini LED)表示晶粒尺寸在Micro LED与传统LED之间的小型发光二极管,通常,Mini LED的晶粒尺寸可以在100~300微米之间。
在本文中,电子元件可以包括发光元件,例如包括次毫米发光二极管、微型发光二极管等,另外,电子元件还可以包括传感器元件或者微型集成电路芯片等。
本公开的一些示例性实施例提供了一种发光模组及其制造方法和包括所述发光模组的显示装置。例如,本公开的一些实施例提供一种发光模组及其制造方法和显示装置。发光模组包括:背框;第一衬底;设置在所述第一衬底上的次毫米发光二极管芯片阵列,所述次毫米发光二极管芯片阵列包括多个次毫米发光二极管芯片;设置在所述第一衬底上且覆盖所述次毫米发光二极管芯片阵列的封装层;和粘结部,所述粘结部设置在所述背框与所述第一衬底之间,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,其中,所述第一衬底的材料包括有机材料;以及所述背框与所述粘结部的第一表面直接接触,所 述第一衬底与所述粘结部的第二表面直接接触。在本公开的实施例中,提供第一衬底作为次毫米发光二极管芯片的基板,并且将第一衬底直接贴附于背框上,有利于简化发光模组的结构和实现发光模组的轻薄化。
在本文中,为了方便描述,将发光模组和显示面板组装形成的部件称为显示装置,即,表述“显示装置”包括发光模组、显示面板以及将所述发光模组和显示面板结合在一起的框架。
图1是根据本公开实施例的一种显示装置的局部结构示意图。例如,图1中示出的显示装置可以是液晶显示装置。参照图1,显示装置1可以包括发光模组2、例如液晶显示面板的显示面板4、背框5和胶框6。
需要说明的是,在本文中,“背框”具有强度高,重量轻的特点,材料包括金属材料例如铝合金,起到增加发光模组结构强度,支撑、保护发光模组的作用;,“胶框”为与背框连接且用于支撑显示面板等部件的框架,胶框由材质较软且有弹性的材料制成。
在本公开的实施例中,所述发光模组2可以为直下式发光模组。图2是根据本公开实施例的发光模组的平面示意图。结合参照图1和图2,发光模组2可以包括发光基板,例如,发光基板可以包括第一衬底11、设置在第一衬底11的次毫米发光二极管芯片阵列12以及覆盖次毫米发光二极管芯片阵列12的封装层13。例如,第一衬底的材料可以包括聚酰亚胺、PEN树脂或硅胶树脂中的任一种。封装层13包括用于将次毫米发光二极管芯片阵列12封装在第一衬底11上的层状结构。在一些示例性实施例中,将封装胶涂覆在发光基板中次毫米发光二极管芯片的表面,干燥后形成所述封装层13。所述封装胶的材料可以包括透明的光固化或热固化树脂,即,所述封装层13的材料可以为透明保护胶。在一些实施例中,封装层13可以包括多个透明保护结构30。关于透明保护结构,将在下文中结合附图做更详细的说明。
需要说明的是,图1和图2中使用矩形框来代表次毫米发光二极管芯片,但可以理解的是,本公开实施例中的次毫米发光二极管芯片的截面形状并不限于为矩形,可以为圆形,多边形等任意形状。
次毫米发光二极管芯片阵列12可以包括多个次毫米发光二极管芯片121,多个次毫米发光二极管芯片121沿第一方向X和第二方向Y间隔排列,即,成阵列地布置在 第一衬底11上。每一个次毫米发光二极管芯片121与所述第一衬底11处于电连通状态。第一衬底11上设置有与次毫米发光二极管芯片相对应的焊盘,次毫米发光二极管芯片与相应的焊盘固定连接,从而在第一衬底11上形成次毫米发光二极管芯片阵列12。应该理解的是,次毫米发光二极管芯片阵列12的密度取决于次毫米发光二极管芯片的发光效率功率、发光基板的功耗要求以及亮度需求。
例如,第一方向X和第二方向Y彼此垂直,第三方向Z垂直于所述第一方向X和第二方向Y。
在本公开的实施例中,在次毫米发光二极管芯片应用于发光模组中,有利于实现发光模组更加精细的局部调光设计,实现高动态对比度,实现区域调光,从而使得发光模组具备更好的透光均匀度以及较高的对比度和更多明暗细节等优点。
在本公开的一些示例性实施例中,第一衬底11的材料可以包括聚酰亚胺(PI),第一衬底的厚度在5-10μm的范围内。
例如,第一衬底11可以直接连接在背框5的内表面上。如图1所示,所述发光模组2可以包括粘结部3,例如,所述粘结部3可以包括双面胶。第一衬底11和背框5分别位于粘结部3的两侧,并且分别接触粘结部3的上表面和下表面。
在本公开的实施例中,采用厚度较小的第一衬底作为发光基板的衬底,有利于减小发光模组的整体厚度。进一步地,第一衬底直接连接在背框上,中间不设置任何背膜,有利于进一步减小发光模组的整体厚度。“背膜”指的是用于加强设置有次毫米发光二极管的的衬底材料层的机械强度、平整度和和支撑能力的高黏性膜,例如,“背膜”可以包括PET膜或包括PSA膜和PET膜的多层膜结构,背膜的厚度大约在100μm左右。在本公开的实施例中,不需要设置背膜,第一衬底直接接触背框,从而可以减小发光模组的整体厚度。
第一衬底11的材料为聚酰亚胺时,聚酰亚胺的导热系数为0.1~0.35W/m·K。背框5包含铁质材料,其导热系数为约150W/m·K。由于第一衬底11的厚度较小,例如为约5-10μm,且第一衬底11直接接触铁质背框5,所以,第一衬底11至背框5之间的传热效率可以大幅提高,有利于发光模组中产生的热量通过背框5有效地散出。继续参照图1,发光模组2还可以包括光学膜片组。例如,所述光学膜片组可以包括扩散板23和增亮膜24等光学膜片,应该理解的是,所述光学膜片组也可以包括其它类型 的光学膜片,所述光学膜片组包括的光学膜片的类型可以根据实际使用需求进行选择。
参照图1,例如液晶显示面板的显示面板4可以包括相对设置的两个基板,例如,两个基板可以分别为阵列基板41和彩膜基板42。应该理解,显示面板4还可以包括设置在阵列基板41和彩膜基板42之间的液晶层。阵列基板41和彩膜基板42的衬底可以是玻璃的。另外,需要说明的是,所述阵列基板和所述彩膜基板可以采用本领域常见的阵列基板和彩膜基板的结构,在此不再赘述。
显示面板4例如可以包括下偏光片43和上偏光片45,在图1示出的实施例中,下偏光片43设置在阵列基板41的下表面上,上偏光片45设置在彩膜基板42的上表面上。
例如,在本公开的实施例中,所述阵列基板41可以包括第二衬底412,所述第二衬底412的厚度可以在0.15毫米左右。第二衬底412的材质为玻璃、石英等。
参照图1,背框5具有一容纳空间52,用于容纳发光模组2。胶框6用于承载显示面板4,例如,在胶框6的承载面与显示面板4的下偏光片43之间设置有缓冲元件7,例如泡棉。胶框6的一部分可以与背框5相搭接,背框5可以具有侧墙,胶框6的侧壁与背框5的侧墙通过例如卡扣连接、螺纹连接等方式结合。例如,在图1所示的实施例中,胶框6包括卡扣61,通过卡扣61,可以将胶框6与背框5固定在一起。
例如,所述发光模组还可以包括色转换层8。例如,上述次毫米发光二极管芯片121可以为发射蓝光的次毫米发光二极管芯片。色转换层8可以将次毫米发光二极管芯片121发射的蓝光转换为红色、绿色、白色等不同颜色的光。例如,色转换层8可以位于扩散板23上方。或者,色转换层8可以位于扩散板23下方。本公开的实施例对此不做特别限制。
在本公开的实施例中,所述色转换层8可以为量子点层,或KSF荧光粉层。当色转换层8为量子点层时,由于量子点的粒径较小,膜厚达到一定的范围,例如0.1~0.2mm时才能保证光转换效率。而当色转换层8为荧光粉层时,荧光粉的粒径相对较大,实现同样的光转换效率,荧光粉层的厚度可以小于量子点层的厚度,例如厚度可以减小约50μm。可以理解的是,为了实现更小的发光模组厚度,可以选择荧光粉层作为色转换层,而如果想要实现更高的色纯度,可以选择量子点层作为色转换层。
继续参照图1和图7,所述光学膜片组设置在发光基板的出光侧。对于25英寸左 右及以上尺寸的显示器,为了使得从次毫米发光二极管芯片阵列12射出的光充分混合,以实现均匀出光,有利于实现显示的均一性,在发光基板与光学膜片组2之间需要设置有光学距离OD,因而在发光模组中还包括支撑结构S,以保证发光基板与光学膜片组2之间的光学距离OD。而对于25英寸及以下尺寸的显示器,可以不设置光学距离OD,即发光基板与光学膜片组2直接接触设置,故发光模组中也可以不包含支撑结构S。
需要说明的是,在图1中,示意性示出了扩散板23和增亮膜24,但是,本公开的实施例中的光学膜片组还可以包括其他类型的光学膜片。另外,扩散板23、增亮膜24中的每一个可以包括一层膜片或多层膜片。
在所述光学膜片组与所述显示面板4之间,具有一定间隔距离GAP,即二者没有直接接触,例如具有空腔结构可以使得从所述光学膜片组出射的光均匀射入显示面板4中,有利于实现显示的均一性。
在本公开的实施例中,可以增加次毫米发光二极管芯片12的分布密度,以减小上述光学距离OD和间隙GAP,从而能够进一步减小发光模组的整体厚度。次毫米发光二极管芯片121的分布密度可以大于等于6个/36mm 2。即,大于等于1个/6mm 2。例如,在一些示例中,次毫米发光二极管芯片121的分布密度可以为:6-8个/36mm 2,通过设置次毫米发光二极管芯片的分布密度,可以使发光模组的整体厚度减小0.4mm。例如,对于25英寸及以下尺寸的显示器,在增加次毫米发光二极管芯片阵列12的分布密度的情况下,可以不设置光学距离OD,即发光基板与光学膜片组2直接接触设置,故发光模组中也可以不包含支撑结构S;在上述情况下,发光模组的整体厚度可以在2mm以内,从而实现超薄的发光模组。需要说明的是,此处的“发光模组的整体厚度”可以为发光基板的整体厚度与光学膜片组2的整体厚度之和。
可以理解的是,由于发光模组的第一衬底上可以包括不同类型的电子元件,本公开实施例中提到的电子元件的分布密度,指的是发光模组中数量最多的同种类型的电子元件的分布密度。例如,发光模组的第一衬底上包括次毫米发光二极管芯片、微型集成电路芯片和温敏传感器三种类型的电子元件,其中,次毫米发光二极管芯片的数量最多,那么,次毫米发光二极管芯片12在第一衬底上的分布密度可以大于等于1个/6mm 2
例如,在次毫米发光二极管芯片121的分布密度增大的情况下,可以减少光学膜片组中的光学膜片的厚度,例如,扩散板23的厚度,从而可以进一步减小发光模组的整体厚度,相应地,减小发光模组的整体重量。
在一些实施例中,次毫米发光二极管芯片121的出光面可具有长度相等的四个侧边(即次毫米发光二极管芯片121的出光面呈正方形),或者次毫米发光二极管芯片121的出光面可具有长度不同的侧边(例如,非正方形矩形形状)。本公开中以次毫米发光二极管芯片121的出光面是正方形为例进行说明,如图2所示。
在一些实施例中,一个发光单元中仅包括一个次毫米发光二极管芯片121;在另一些实施例中,一个发光单元还可以包括多个次毫米发光二极管芯片121,例如可以包括两个或者两个以上数量的次毫米发光二极管芯片121,在此不做具体限定。在一些实施例中,一个发光单元所包含的多个次毫米发光二极管芯片121可以串联连接、并联连接、或者串并联结合的方式连接,具体不做限定。
图3是根据本公开的一些示例性实施例的发光单元的平面图,其示意性示出了一个发光单元包括串联设置的四个次毫米发光二极管芯片121。例如,微型集成电路μIC可以向一个发光单元中的四个次毫米发光二极管芯片121提供信号。在一些实施例中,一个微型集成电路μIC也可以向多个发光单元提供信号。在包括微型集成电路μIC的发光基板上,次毫米发光二极管芯片121远离发光基板的一侧均设置有透明保护结构30,透明保护结构30可以对包裹的微型集成电路ulC起到保护作用,此外,为了便于制作,微型集成电路ulC上方的透明保护结构30与次毫米发光二极管芯片121上方的透明保护结构30的制作要求相同,且二者在同一次工艺流程中制备形成。
可以理解的是,在本公开的实施例中,所述发光模组的发光基板包括发光区和周边区。其中,所有的次毫米发光二极管芯片121和微型集成电路μIC都在设置在发光区中,而且次毫米发光二极管芯片121和微型集成电路μIC是通过拾取、转移、固定等一系列工艺与发光基板上对应的焊盘完成电气连接。周边区用于与外部驱动电路,如柔性电路板(FPC)或者印刷电路板(PCB)连接,例如,可以通过在周边区设置绑定焊盘107,与电路板上的金手指结构进行电连接。
图4是根据本公开的实施例的发光模组沿图3中的线AA’截取的剖面结构示意图。结合参照图2至图4,次毫米发光二极管芯片121包括发光部203和两个引脚201 和202(分别为N pad和P pad),分别通过焊锡膏T与焊盘101连接,各个焊盘101再根据次毫米发光二极管芯片121所在电气回路中的位置进行连接。具体地,在图3中,左下角次毫米发光二极管芯片121的P pad与驱动电压线VLED连接,左下角次毫米发光二极管芯片121的N pad与左上角次毫米发光二极管芯片121的P pad连接,左上角次毫米发光二极管芯片121的N pad与右上角次毫米发光二极管芯片121的P pad连接,右上角次毫米发光二极管芯片121的N pad与右下角次毫米发光二极管芯片121的P pad连接,右下角次毫米发光二极管芯片121的N pad与微型集成电路μIC的输出端连接。在一些实施例中,微型集成电路μIC可以有多个引脚,例如有4个引脚,分别通过焊锡膏与发光基板上的焊盘连接,各个焊盘再分别与源电源线PWR、公共电压线GND、地址线DI、及对应发光单元中的次毫米发光二极管芯片121相连接。
在一些实施例中,参照图2至图4,所述发光模组还可以包括:第一导电层102,该第一导电层102通常用于布置各种信号线,例如公共电压线GND、驱动电压线VLED、源电源线PWR、地址线DI等。可选的,第一导电层102的厚度约为1.5μm-7μm,其材料可以包括铜,例如可以通过溅射的方式形成例如MoNb/Cu/MoNb的叠层材料,叠层中靠近衬底基板11的一侧材料为MoNb,厚度大约在
Figure PCTCN2022079279-appb-000001
左右,主要用于提高膜层与衬底基板11的粘附力,叠层的中间层材料为Cu,为电信号传递通道的优选材料,远离第一衬底11一侧的材料为MoNb,厚度大约在
Figure PCTCN2022079279-appb-000002
左右,可以用于保护中间层,防止电阻率低的中间层表面暴露发生氧化。由于单次溅射的厚度一般不超过1μm,因此在制作超过1μm的第一导电层102时,需要多次溅射来形成。此外,第一导电层102还可以通过电镀的方式形成,具体地,可以先利用MoNiTi形成种子层,以提高后续电镀工艺中金属晶粒的成核密度,之后再通过电镀制作电阻率低的铜,之后再制作防氧化层,材料可以为MoNiTi。可选地,第一导电层102远离第一衬底11一侧的表面可以被第一绝缘层104覆盖,以保证电气通路的可靠性和稳定性。
在一些实施例中,参照图2至图4,所述发光模组还可以包括:第二导电层105,该第二导电层105通常用于设置焊盘以及连接引线106,可选的,第二导电层105的膜层厚度大约在
Figure PCTCN2022079279-appb-000003
左右。焊盘用于绑定各种电气元件,例如可以包括位于发光区中用于安装次毫米发光二极管芯片121的焊盘101,和/或,用于安装功能元件例如微型集成电路芯片或者传感器的焊盘,以及位于周边区中用于与电路板连接的绑定焊盘 107。焊盘远离第一衬底11一侧的表面在未与电子元件连接之前需要部分暴露。为了防止从基板制程到将电子元件设置在基板上的制程过程中,焊盘暴露在空气中可能会产生氧化的问题,可以只在焊盘暴露的表面区域设置防氧化材料层,即焊盘区域的表面会比连接引线106所在区域多出一层结构;或者将第二导电层105整体设置为至少两层结构的叠层结构,其远离第一衬底11的膜层材料为防氧化的金属或者合金材料,具体地可以由例如MoNb/Cu/CuNi的叠层结构构成,叠层中的底层材料MoNb主要用于提高粘附力,叠层中的中间层Cu由于电阻率低主要用于传递电信号,叠层中的顶层CuNi既可以防止中间层氧化,又可以保证与电子元件连接的牢固性。连接引线106可以包括沿第一方向X延伸的第一引线和沿第二方向Y延伸的第二引线,并且第一引线和第二引线远离第一衬底11一侧的表面会被第二绝缘层108覆盖,以保证电气通路的可靠性和稳定性。
在一些实施例中,如图4所示,所述发光模组还可以包括:位于第一衬底11与第一导电层102之间的缓冲层109,位于第一绝缘层117与第二导电层105之间的第一平坦层110,依次位于第二绝缘层背离第二导电层105一侧的第二平坦层111和反射层112,位于周边区的绑定焊盘107上的透明电极113,以及位于透明电极113与柔性电路板FPC之间的异方性导电胶114。其中,缓冲层109可以避免第一衬底11中的杂质对第一导电层102导电性能的影响,第一平坦层110可以为第二导电层104的制作提供一个平坦的表面,第二平坦层110可以为后续绑定次毫米发光二极管芯片121提供一个平坦的表面,反射层112的材料可以为白色油墨,用于提高发光基板01的反射率以减小光损耗,透明电极113和异方性导电胶114用于实现周边区的绑定焊盘107与柔性电路板FPC的电连接。
图5是根据本公开的另一些实施例的发光模组沿图3中的线AA’截取的剖面结构示意图,为了清楚地示出发光基板上的膜层结构,次毫米发光二极管芯片在图5中未被示出。如图5所示,所述发光模组的发光基板可以包括:第一衬底11;位于第一衬底11上的缓冲层109;位于缓冲层109远离第一衬底11一侧的第一导电层102;位于第一导电层102远离第一衬底11一侧的第一绝缘层117;位于第一绝缘层117远离第一衬底11一侧的第一平坦层110;位于第一平坦层110远离第一衬底11一侧的第二导电层105;位于第二导电层105远离第一衬底11一侧的第二绝缘层116;和位于第 二绝缘层116远离第一衬底11一侧的第二平坦层111。
如图5所示,第二绝缘层116位于第一平坦层110与第二平坦层111之间。在第二平坦层111的材质为有机绝缘材料的情况下,可以在第二绝缘层116中设置有多个放气孔1160。该多个放气孔1160分别暴露位于下方的第一平坦层110的一部分。在制造所述发光基板的过程中,通过放气孔1160,聚集于第一平坦层110中的气体可以得到释放,从而可以避免发光基板的膜层出现翘曲、剥离等问题,从而能够提高产品良率。
例如,在图5所示的实施例中,设置有多个放气孔1160,但是,这仅是示意性的,而不是对本公开实施例的限制。在其他实施例中,可以设置更多数量或更少数量的放气孔。
图6A至图6C分别是根据本公开的一些示例性实施例的发光模组的封装层13的结构示意图。参照图6A,次毫米发光二极管芯片封装层13可以具有平坦的上表面31,且封装层可以覆盖所有的次毫米发光二极管芯片121。例如,封装层13的折射率可以在1.2和1.5之间,1.3和1.4之间,小于1.4,小于1.5,大于1.1,大于1.2,大于1.3,大约1.35等。次毫米发光二极管芯片次毫米发光二极管芯片参照图6B,封装层13包括多个透明保护结构30,每个透明保护结构可以具有弯曲的上表面32(例如凸出的上表面)。透明保护结构30可以在次毫米发光二极管芯片上方形成圆顶形状。在该实施例中,透明保护结构可以被称为液滴透镜。例如,透明保护结构30的折射率可以在1.2和1.5之间,1.3和1.4之间,小于1.4,小于1.5,大于1.1,大于1.2,大于1.3,大约1.35等。每个次毫米发光二极管芯片可以具有一个相应的透明保护结构部分。例如,为减小次毫米发光二极管芯片121的出射光线在透明保护结构30和空气之间界面上发生全反射的概率,透明保护结构30的折射率可介于次毫米发光二极管芯片121的折射率和空气的折射率之间。
参照图6C,透明保护结构30可以具有弯曲的上表面33和凹槽34。透明保护结构30在次毫米发光二极管芯片上形成凹槽34。凹槽34可以具有任何期望的形状(例如,金字塔形状)。凹槽34与图6A的实施例相比,可以进一步增加出光均匀性。
图7是根据本公开的另一些示例性实施例的发光模组的结构示意图。下面,将主要描述图7相对于图1的结构上的不同之处,图7中未在下面描述的部分,可以参照 针对图1的结构的描述,在此不再赘述。参照图7,所述发光模组还可以包括胶带80和81用于将发光模组和显示面板两者贴合在一起。胶带81位于胶框6和显示面板4接触的区域,由于胶框为框形结构,因此胶带81在显示面板4所在平面上投影也呈口字型,即环绕显示面板的周边区域设置。而胶带80贴附于显示装置的上表面的边缘、显示装置的侧表面以及显示装置的下表面的边缘。具体地,胶带80可以包括第一部分801、第二部分802和第三部分803,胶带80的第一部分801贴附于背框5背离显示面板一侧的表面的边缘处,胶带80的第二部分802贴附于背框5的侧壁上,胶带80的第三部分803贴附于背框5背离发光模组一侧的表面的边缘处。胶带80为连续延伸的胶带,即,胶带80的第一部分801、第二部分802和第三部分803连接为一体。通过上述设置,胶带80可以固定显示面板,从而将发光模组和显示面板两者贴合在一起。
可选地,胶带80可以由遮光材料构成,例如,胶带80可以为黑色胶带。胶带80贴附于显示装置的下表面的边缘、显示装置的侧壁以及显示装置的上表面的边缘,可以对显示装置的整个非显示区域的光线进行遮挡,从而可以降低、甚至避免所述显示装置产生漏光的几率。可选地,胶带80可以由导电材料构成,这样,胶带80可以起到静电释放或静电屏蔽的作用。
图8是根据本公开的一些示例性实施例的发光模组的制造方法的流程图。参照图8,所述发光模组的制造方法可以包括以下步骤。
在步骤S301中,在刚性载板上涂布聚酰亚胺材料、PEN树脂材料或硅胶树脂中的任一种,以形成第一衬底。其中,刚性载板的材料可以为玻璃、石英等。
在步骤S302中,在第一衬底上形成次毫米发光二极管芯片阵列和覆盖所述次毫米发光二极管芯片阵列的封装层,所述次毫米发光二极管芯片阵列包括多个次毫米发光二极管芯片。
在步骤S303中,将所述第一衬底从所述刚性载板上剥离。
在步骤S304中,在背框上形成粘结部。
在步骤S305中,将剥离的第一衬底通过粘结部直接贴附在背框上,其中,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,所述背框与所述粘结部的第一表面直接接触,所述第一衬底与所述粘结部的第二表面直接接触。
示例性地,根据本公开的一些实施例,所述发光模组的制造方法具体可以按照以下步骤执行。
在步骤S401中,在刚性载板上涂布聚酰亚胺材料、PEN树脂材料或硅胶树脂中的任一种,并固化,以形成第一衬底。
在步骤S402中,在第一衬底上沉积一层例如氮化硅的缓冲层。例如,所述氮化硅的厚度为1000-10000埃。一方面,该缓冲层可以用作应力缓冲层,用于调整第一衬底内部的应力,有利于后续形成导电层图案;另一方面,在步骤S401中,通常通过湿法工艺形成第一衬底,在该湿法工艺中,会引入含氧成分,通过在第一衬底上形成该缓冲层,可以隔离所述含氧成分与所述导电层图案,以避免所述含氧成分腐蚀后续形成的导电层图案,从而起到保护后续形成的导电层图案的作用。
在步骤S403中,在缓冲层上,形成厚铜层,并通过构图工艺,制作出厚铜图形。例如,所述厚铜层的厚度大于2微米。
在步骤S404中,在厚铜层上,沉积例如氮化硅的绝缘层,通过构图工艺将其图案化,制作出暴露所述厚铜层的至少一部分的第一过孔。
在步骤S405中,在绝缘层上,沉积焊盘层,所述焊盘层通过所述过孔与所述厚铜层电连接。
在步骤S406中,沉积保护层,通过构图工艺将其图案化,制作出第二过孔,所述第二过孔暴露所述焊盘层的至少一部分。例如,所述保护层包括氮化硅、氧化硅或其任意组合。
在步骤S407中,通过印刷工艺形成白油层,露出所述第二过孔。需要说明的是,白油有较好的光反射率,可以提高次毫米发光二极管芯片的出光亮度和效率。
在步骤S408中,将多个次毫米发光二极管芯片分别与其对应的焊盘固定连接。
在步骤S409中,在多个次毫米发光二极管芯片上面涂布透明硅胶材料并固化,形成封装层。
在步骤S410中,在硅胶上贴附低粘度保护膜。所述低粘度保护膜可以为TPF膜,保护发光基板以避免碰撞、磨损的情况出现保证其贴附完成后,低粘度保护膜通过范德华力与硅胶层实现连接。
在步骤S411中,通过例如激光剥离工艺将第一衬底从刚性载板上分离,再次过程 中,低粘度保护膜可以避免第一衬底在从刚性载板上玻璃后出现弯曲或者卷曲。
在步骤S412中,在背框上涂上高粘度双面胶,再把分离下来的第一衬底直接贴到背框上。
在步骤S413中,剥离所述低粘度保护膜。
需要说明的是,上述制造方法的一些步骤可以单独执行或组合执行,以及可以并行执行或顺序执行,并不局限于图中所示的具体操作顺序。
本公开的一些示例性实施例还提供一种显示装置。图9是根据本公开的一些示例性实施例的显示装置的示意图。参照图9,所述显示装置包括上述的发光模组。
该显示装置可以为任何具有显示功能的产品或部件。例如,所述显示装置可以是智能电话、便携式电话、导航设备、电视机(TV)、车载音响本体、膝上型电脑、平板电脑、便携式多媒体播放器(PMP)、个人数字助理(PDA)等等。
应该理解,根据本公开的一些示例性实施例的显示装置具有上述发光模组的所有特点和优点,这些特点和优点可以参照上文针对发光基板的描述,在此不再赘述。
如这里所使用的,术语“基本上”、“大约”、“近似”和其它类似的术语用作近似的术语而不是用作程度的术语,并且它们意图解释将由本领域普通技术人员认识到的测量值或计算值的固有偏差。考虑到工艺波动、测量问题和与特定量的测量有关的误差(即,测量系统的局限性)等因素,如这里所使用的“大约”或“近似”包括所陈述的值,并表示对于本领域普通技术人员所确定的特定值在可接受的偏差范围内。例如,“大约”可以表示在一个或更多个标准偏差内,或者在所陈述的值的±10%或±5%内。
虽然根据本公开的总体发明构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不远离本公开的总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (10)

  1. 一种发光模组,包括:
    背框;
    第一衬底;
    设置在所述第一衬底上的电子元件阵列,所述电子元件阵列包括多个电子元件;
    设置在所述第一衬底上且覆盖所述电子元件阵列的封装层;和
    粘结部,所述粘结部设置在所述背框与所述第一衬底之间,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,
    其中,所述第一衬底的材料为有机材料;以及
    所述背框与所述粘结部的第一表面直接接触,所述第一衬底与所述粘结部的第二表面直接接触。
  2. 根据权利要求1所述的发光模组,其中,所述第一衬底的厚度在5-10微米之间。
  3. 根据权利要求1或2所述的发光模组,其中,所述电子元件的分布密度大于等于1个/6mm 2
  4. 根据权利要求1或2所述的发光模组,其中,所述发光模组还包括显示面板,所述显示面板位于所述电子元件的出光侧,所述显示面板包括第二衬底,所述第二衬底的厚度在0.15毫米左右。
  5. 根据权利要求1或2所述的发光模组,其中,所述发光模组还包括色转换层,所述色转换层位于所述电子元件的出光侧。
  6. 根据权利要求1或2所述的发光模组,其中,所述色转换层包括KSF荧光粉。
  7. 根据权利要求1或2所述的发光模组,其中,所述发光模组包括位于所述第一 衬底和所述电子元件阵列之间的多个膜层;
    所述多个膜层包括:位于所述第一衬底上的第一导电层;位于所述第一导电层远离所述第一衬底一侧的第一平坦层;位于所述第一平坦层远离所述第一衬底一侧的第二导电层;以及位于所述第二导电层远离所述第一衬底一侧的第二平坦层;以及
    所述发光模组还包括多个放气孔,所述多个放气孔位于所述第一平坦层与所述第二平坦层之间,所述多个放气孔分别暴露所述第一平坦层的一部分。
  8. 一种显示装置,其中,所述显示装置包括根据权利要求1至7中任一项所述的发光模组。
  9. 一种发光模组的制造方法,其中,所述制造方法包括以下步骤:
    在刚性载板上涂布一层有机材料,以形成第一衬底;
    在第一衬底上形成电子元件阵列和覆盖所述电子元件阵列的封装层,所述电子元件阵列包括多个电子元件;
    将所述第一衬底从所述刚性载板上剥离;
    在背框上形成粘结部;以及
    将剥离的第一衬底通过粘结部直接贴附在背框上,
    其中,所述粘结部包括面向所述背框的第一表面和面向所述第一衬底的第二表面,所述第一表面和所述第二表面相对设置,所述背框与所述粘结部的第一表面直接接触,所述第一衬底与所述粘结部的第二表面直接接触。
  10. 根据权利要求9所述的制造方法,其中,所述第一衬底的厚度在5-10微米之间。
PCT/CN2022/079279 2021-06-15 2022-03-04 发光模组及其制造方法、显示装置 WO2022262324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/041,694 US20230369551A1 (en) 2021-06-15 2022-03-04 Light emitting module, method of manufacturing light emitting module, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110663456.6A CN115483204A (zh) 2021-06-15 2021-06-15 发光模组及其制造方法、显示装置
CN202110663456.6 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022262324A1 true WO2022262324A1 (zh) 2022-12-22

Family

ID=84419428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079279 WO2022262324A1 (zh) 2021-06-15 2022-03-04 发光模组及其制造方法、显示装置

Country Status (4)

Country Link
US (1) US20230369551A1 (zh)
CN (1) CN115483204A (zh)
TW (1) TWI807445B (zh)
WO (1) WO2022262324A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107452852A (zh) * 2016-05-26 2017-12-08 晶元光电股份有限公司 一种发光元件及其发光装置
CN107861291A (zh) * 2017-10-24 2018-03-30 华为技术有限公司 背光模组、显示屏及终端
CN210514875U (zh) * 2019-08-02 2020-05-12 深圳市德仓科技有限公司 一种直下式背光模组、显示屏及电子设备
CN111596477A (zh) * 2020-06-29 2020-08-28 上海天马微电子有限公司 背光模组及其制作方法、显示面板
CN111755586A (zh) * 2020-06-05 2020-10-09 深圳市隆利科技股份有限公司 一种应用于miniLED/microLED的光源模组及其制造方法
CN112241088A (zh) * 2020-10-15 2021-01-19 Tcl华星光电技术有限公司 一种微型发光二极管灯板、背光模组及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594947B (en) * 2001-10-30 2004-06-21 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
CN1278374C (zh) * 2002-01-11 2006-10-04 Nec液晶技术株式会社 荧光灯、荧光灯单元、液晶显示器和发光方法
JP4381439B2 (ja) * 2007-09-18 2009-12-09 株式会社沖データ Ledバックライト装置及び液晶表示装置
US9048404B2 (en) * 2009-07-06 2015-06-02 Zhuo Sun Thin flat solid state light source module
JP2013084949A (ja) * 2011-09-30 2013-05-09 Sumitomo Bakelite Co Ltd 封止半導体およびその製造方法
US9484504B2 (en) * 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
CN104133320A (zh) * 2014-08-20 2014-11-05 深圳市华星光电技术有限公司 彩色液晶显示模组结构及其背光模组
CN108803149B (zh) * 2018-07-20 2021-05-25 京东方科技集团股份有限公司 面光源及其制作方法以及液晶显示装置
CN112133718B (zh) * 2019-06-25 2024-02-20 成都辰显光电有限公司 显示面板、显示装置及显示面板的制备方法
CN111458941A (zh) * 2020-04-27 2020-07-28 上海中航光电子有限公司 显示模组、其制作方法及显示装置
CN212229384U (zh) * 2020-06-10 2020-12-25 中强光电股份有限公司 背光模块及显示装置
CN112014995A (zh) * 2020-09-15 2020-12-01 武汉华星光电技术有限公司 显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107452852A (zh) * 2016-05-26 2017-12-08 晶元光电股份有限公司 一种发光元件及其发光装置
CN107861291A (zh) * 2017-10-24 2018-03-30 华为技术有限公司 背光模组、显示屏及终端
CN210514875U (zh) * 2019-08-02 2020-05-12 深圳市德仓科技有限公司 一种直下式背光模组、显示屏及电子设备
CN111755586A (zh) * 2020-06-05 2020-10-09 深圳市隆利科技股份有限公司 一种应用于miniLED/microLED的光源模组及其制造方法
CN111596477A (zh) * 2020-06-29 2020-08-28 上海天马微电子有限公司 背光模组及其制作方法、显示面板
CN112241088A (zh) * 2020-10-15 2021-01-19 Tcl华星光电技术有限公司 一种微型发光二极管灯板、背光模组及其制备方法

Also Published As

Publication number Publication date
TWI807445B (zh) 2023-07-01
TW202300814A (zh) 2023-01-01
US20230369551A1 (en) 2023-11-16
CN115483204A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN110018593B (zh) 板上芯片封装基板及其制作方法、显示装置、电子设备
WO2020019421A1 (zh) Led背光装置及led显示装置
US11367713B2 (en) Micro light emitting device display apparatus
TWI725691B (zh) 微型發光元件顯示裝置
CN114333597B (zh) 显示模组及显示装置
CN210403768U (zh) 发光二极管封装组件
US20210366881A1 (en) Array substrate, method of manufacturing the same, and display device
CN210403725U (zh) 发光二极管封装组件
WO2021051925A1 (zh) 发光二极管封装组件
WO2022151780A1 (zh) 一种led显示模组及其制作方法
CN214409509U (zh) 一种Mini LED背光结构及背光源显示装置
WO2022262324A1 (zh) 发光模组及其制造方法、显示装置
TWI813764B (zh) 顯示裝置
WO2023185312A1 (zh) 背光模组、显示模组和显示装置
CN110957342B (zh) 微型发光元件显示装置
WO2021027406A1 (zh) 发光封装组件、发光模组以及显示屏
WO2024130716A1 (zh) 发光模组和显示装置
WO2022246745A1 (zh) 背光模组、其制作方法及显示装置
TW202129949A (zh) 顯示基板及其製備方法、顯示裝置
WO2024000706A1 (zh) 发光板、显示装置及发光板的制作方法
WO2024020805A1 (zh) 背光模组及显示装置
TWI796799B (zh) 顯示裝置
TWI771248B (zh) 顯示面板
CN219553629U (zh) 一种微型led显示模组及显示设备
WO2023155199A1 (zh) 线路板及其制备方法和功能背板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22823816

Country of ref document: EP

Kind code of ref document: A1