WO2022246745A1 - 背光模组、其制作方法及显示装置 - Google Patents

背光模组、其制作方法及显示装置 Download PDF

Info

Publication number
WO2022246745A1
WO2022246745A1 PCT/CN2021/096428 CN2021096428W WO2022246745A1 WO 2022246745 A1 WO2022246745 A1 WO 2022246745A1 CN 2021096428 W CN2021096428 W CN 2021096428W WO 2022246745 A1 WO2022246745 A1 WO 2022246745A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
light emitting
backlight module
transparent protective
light
Prior art date
Application number
PCT/CN2021/096428
Other languages
English (en)
French (fr)
Inventor
董恩凯
孙亮
齐嘉城
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001286.3A priority Critical patent/CN115720644A/zh
Priority to PCT/CN2021/096428 priority patent/WO2022246745A1/zh
Publication of WO2022246745A1 publication Critical patent/WO2022246745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00

Definitions

  • the present disclosure relates to the field of display technology, in particular to a backlight module, a manufacturing method thereof, and a display device.
  • Mini LED is used as the panel backlight, it can achieve a more sophisticated dynamic backlight effect. While effectively improving the brightness and contrast of the screen, it can also solve the glare phenomenon caused by traditional dynamic backlight between bright and dark areas of the screen and optimize the visual experience.
  • a backlight module, a manufacturing method thereof, and a display device provided by embodiments of the present disclosure, the specific solutions are as follows:
  • an embodiment of the present disclosure provides a backlight module, including:
  • a plurality of transparent protection structures are located on the side of the plurality of light emitting diodes away from the driving backplane, the transparent protection structures cover the light emitting diodes, and the transparent protection structures are on the positive side of the driving backplane
  • There is a first distance between the projection geometric center and the orthographic projection geometric center of the light emitting diode on the driving backplane the length of the orthographic projection of the light emitting diode on the driving backplane is a second distance
  • the The width of the orthographic projection of the light emitting diode on the driving backplane is a third distance
  • the ratio of the first distance to the second distance is less than or equal to 1:2-1:10
  • the first distance and the second distance The ratio of the third distance is less than or equal to 1:2-1:10.
  • the first distance is less than or equal to 50 ⁇ m
  • the second distance is greater than or equal to 100 ⁇ m and less than or equal to 500 ⁇ m
  • the third distance is equal to the second distance
  • the boundary between the orthographic projection boundary of the transparent protection structure on the driving backplane and the orthographic projection boundary of the light emitting diode on the driving backplane is greater than 50 ⁇ m and less than half of the distance between the geometric centers of two adjacent light emitting diodes.
  • the distance between adjacent transparent protective structures is greater than 40 ⁇ m.
  • the surface of the transparent protective structure includes a curved surface, and the opening of the curved surface faces the light emitting diode.
  • the width of the curved surface in a direction parallel to the driving backplane gradually decreases.
  • the surface of the transparent protective structure further includes: extending from the opening side of the curved surface to the side of the curved surface in a direction perpendicular to the plane where the driving backplane is located.
  • the shape enclosed by the plurality of sides contacted by the driving backplane is substantially the same as the window shape of the steel mesh.
  • the light emitting diodes are Mini light emitting diodes.
  • an embodiment of the present disclosure provides a method for manufacturing a backlight module, including:
  • driving backplane electrically connected to a plurality of light emitting diodes, wherein the light emitting diodes are electrically connected to pads of the driving backplane;
  • a steel mesh is placed on the plurality of light-emitting diodes, the window of the steel mesh completely exposes the light-emitting diodes, and the surface of the steel mesh away from the side of the driving backplane is to the plane where the driving backplane is located The distance is greater than the distance from the surface of the LED on the side away from the driving backplane to the plane where the driving backplane is located;
  • the transparent protection pattern is cured to form a transparent protection structure covering the light emitting diode.
  • a transparent protective pattern is formed in the window of the steel mesh, which specifically includes:
  • curing the transparent protective pattern specifically includes:
  • the transparent protective pattern is finally cured for 30 minutes to 60 minutes.
  • before curing the transparent protection pattern further includes: removing the stencil.
  • curing the transparent protective pattern specifically includes:
  • the transparent protection pattern is cured for 40 minutes to 80 minutes.
  • an embodiment of the present disclosure provides a display device, including the above-mentioned backlight module provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a backlight module provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an enlarged structure of a light emitting unit in FIG. 1;
  • FIG. 3 is another structural schematic diagram of a backlight module provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic cross-sectional structure diagram comprising a backlight module obtained along section line AA' in Fig. 3;
  • FIG. 5 is another schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 6 is another schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a transparent protective structure made of a steel mesh provided by an embodiment of the present disclosure.
  • FIG. 8 is another structural schematic diagram of a transparent protective structure made of a steel mesh provided by an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a manufacturing method of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of the backlight module provided in the embodiment of the present disclosure during the manufacturing process
  • FIG. 11 is another structural schematic diagram of the backlight module provided in the embodiment of the present disclosure during the manufacturing process
  • FIG. 12 is another structural schematic diagram of the backlight module provided by the embodiment of the present disclosure during the manufacturing process
  • FIG. 13 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 15 is another schematic cross-sectional structure diagram of a display device provided by an embodiment of the present disclosure.
  • the backlight module in a passive display device is composed of several MiniLEDs.
  • protective glue is usually placed on the top of the MiniLEDs.
  • the entire surface can be coated with transparent protective glue to package and protect all Mini LEDs.
  • a transparent protective structure is formed above each Mini LED, which can protect and improve light efficiency at the same time; in actual implementation, use a glue dispenser to dispense glue on each Mini LED , and then heat-cured to form a transparent protective structure.
  • the geometric center of the transparent protective glue and the geometric center of the Mini LED should coincide, so that the protective effect of the transparent protective glue and the effect of improving light efficiency are the best, and the optical uniformity of the backlight module is the best.
  • the tolerance distance between the geometric center of the transparent protective glue and the geometric center of the Mini LED can be as high as 100 ⁇ m, while the side length of the light-emitting surface of the Mini LED is usually about 100 ⁇ m -500 ⁇ m, it can be seen that compared with the smaller Mini LED, the production tolerance of the transparent protective glue formed one by one is larger, which weakens the protective effect of the transparent protective glue and the effect of improving light efficiency.
  • an embodiment of the present disclosure provides a backlight module, as shown in FIG. 1 to FIG. 4 , which may include:
  • a plurality of light emitting diodes 02 are electrically connected to the pad 101;
  • a plurality of transparent protection structures 03 are located on the side of the plurality of light emitting diodes 02 facing away from the drive backplane 01, the transparent protection structures 03 cover the light emitting diodes 02, and the geometric center o of the orthographic projection of the transparent protection structures 03 on the drive backplane 01
  • the length of the orthographic projection of the light emitting diode 02 on the driving backplane 01 is the second distance d 2 , emitting light
  • the width of the orthographic projection of the diode 02 on the driving backplane 01 is the third distance d 3
  • the ratio of the first distance d 1 to the second distance d 2 that is, d 1 :d 2
  • the ratio of the first distance d 1 to the third distance d 3 may be less than or equal to 1:2-1 :10
  • the transparent protective structure 03 can be produced by stencil printing, and the size of the transparent protective structure 03 can be adjusted by adjusting the window size of the stencil.
  • the height adjustment of the transparent protective structure 03 in the direction perpendicular to the plane of the steel mesh is realized by the thickness in the direction perpendicular to the plane of the steel mesh, so that the orthographic geometric center o1 of the transparent protective structure 03 on the driving backplane 01 and the light
  • the ratio between the first distance d 1 between the orthographic projection geometric center o 2 of the diode 02 on the driving backplane 01 and the side length dimension of the light emitting diode 02 that is, the second distance d 2 or the third distance d 3
  • the 1:1-1:5 in the related art is reduced to less than or equal to 1:2-1:10, thereby improving the protective effect of the transparent protective structure 03 on the light-emitting diode 02 it wraps and the effect of improving light efficiency.
  • the present disclosure uses stencil printing to precisely adjust the shape, size and height of the final transparent protective structure 03 , so the transparent protective structure 03 of the present disclosure has better uniformity.
  • the transparent protection structure is formed by dispensing, glue needs to be dispensed one by one for the light emitting diodes 02, and the overall efficiency is low; however, the present disclosure uses a steel mesh mold, which is not limited by the number of light emitting diodes 02, and can be used in all positions at one time. Glue is coated on the light-emitting diode 02, which can increase the production efficiency to dozens of pieces per hour.
  • the first distance d 1 can be reduced by at least 50% compared with that in the related art by using stencil printing, for example, from 100 ⁇ m to at least reduced to 50 ⁇ m.
  • the light-emitting surface of the LED 02 may have two sides with equal lengths (that is, the light-emitting surface of the LED 02 is square), or the light-emitting surface of the LED 02 may have sides with different lengths (for example, non-square rectangular shape).
  • the light-emitting surface of the light-emitting diode 02 is a square as an example for illustration, as shown in FIG. 1 , at this time, the above-mentioned third distance d 3 may be equal to the second distance d 2 .
  • the light emitting diode 02 may be a Mini LED, and the second distance d 2 and the third distance d 3 may be greater than or equal to 100 ⁇ m and less than or equal to 500 ⁇ m.
  • one light emitting unit 02' only includes one light emitting diode 02; One or more than two light emitting diodes 02 are not specifically limited here.
  • a plurality of light emitting diodes 02 included in one light emitting unit 02' can be connected in series, in parallel, or in a combination of series and parallel, which is not specifically limited.
  • a light emitting unit 02' includes four light emitting diodes 02 arranged in series, and at the same time, the micro integrated circuit uIC provides signals to the four light emitting diodes 02 in a light emitting unit 02'. In some embodiments, one uIC can also provide signals to multiple light emitting units 02'.
  • the driving backplane including the micro-integrated circuit uIC the side of the light-emitting diode 02 away from the driving backplane is provided with a transparent protective structure 03, and the transparent protective structure 03 can protect the wrapped micro-integrated circuit uIC.
  • the manufacturing requirements of the transparent protective structure 03 above the micro-integrated circuit uIC and the transparent protective structure 03 above the light emitting diode 02 are the same, and both are prepared and formed in the same process flow.
  • the driving backplane 01 includes a light emitting area and a peripheral area. Among them, all the light-emitting diodes 02 and micro-integrated circuits uIC are arranged in the light-emitting area, and the light-emitting diodes 02 and micro-integrated circuits uIC are connected to the corresponding pads on the driving backplane 01 through a series of processes such as picking up, transferring, and fixing. Complete the electrical connections.
  • the peripheral area is used to connect with an external drive circuit, such as a flexible circuit board (FPC) or a printed circuit board (PCB).
  • the bonding pad 107 can be provided in the peripheral area to electrically connect with the golden finger structure on the circuit board. .
  • the light-emitting diode 02 includes a light-emitting part 203 and two pins 201 and 202 (respectively N pad and P pad), which are respectively connected to the pads 101 on the drive backplane 01 through solder paste T, and each pad 101 is connected to the pad 101 according to the light emission.
  • Diode 02 is connected at the position in the electrical circuit. Specifically, in Fig.
  • the P pad of the light emitting diode 02 in the lower left corner is connected to the driving voltage line VLED
  • the N pad of the light emitting diode 02 in the lower left corner is connected to the P pad of the light emitting diode 02 in the upper left corner
  • the N pad of the light emitting diode 02 in the upper left corner Connect with the P pad of the light emitting diode 02 in the upper right corner, connect the N pad of the light emitting diode 02 in the upper right corner with the P pad of the light emitting diode 02 in the lower right corner, and connect the N pad of the light emitting diode 02 in the lower right corner with the output terminal out of the micro integrated circuit uIC.
  • the micro-integrated circuit ⁇ IC can have multiple pins, for example, 4 pins, which are respectively connected to the pads on the drive backplane 01 through solder paste, and each pad is connected to the source power lines PWR, PWR, The common voltage line GND, the address line DI, and the light emitting diode 02 in the corresponding light emitting unit 02' are connected.
  • the distance d 4 between the orthographic projection boundaries n can be greater than 50 ⁇ m and less than half of the distance between the geometric centers of two adjacent light-emitting diodes, so as to achieve effective protection of the light-emitting diode 02 and improve light efficiency.
  • adjacent transparent protective structures 03 may be greater than 40 ⁇ m.
  • the surface of the transparent protective structure 03 may include a curved surface 301, and the opening of the curved surface 301 faces the light emitting diode 02,
  • the transparent protective structure 03 can form a dome shape on the light emitting diode 02 , and the transparent protective structure 03 in this shape can be called a droplet lens (Lens).
  • the refractive index of the transparent protective structure 03 can be between the refractive index of the light emitting diode 02 and the refractive index of air between.
  • the stencil In the process of making the transparent protective structure 03 by stencil printing, the stencil can be removed first, and then heated and cured in the same way as dispensing. At this time, because there is no stencil blocking, the cured formed
  • the shape of the transparent protective structure 03 is determined by the thixotropy and anti-collapse parameters of the glue itself, so the shape of the transparent protective structure 03 will be similar to that of the transparent protective glue made by dispensing. Based on this, in the above-mentioned backlight module provided by the embodiment of the present disclosure, as shown in FIG. 4 to FIG. ) gradually decreases in width W, so that the transparent protection structure 03 has a hemispherical shape that protrudes toward the direction away from the driving backplane.
  • the transparent protective structure 03 by stencil printing, it is also possible to pre-cure the glue by heating the glue for 10-20 minutes without demolding the stencil, and then remove the mold and put the backlight module on the whole. Final curing, so that the collapse and deformation of the transparent protective structure 03 can be largely avoided before curing.
  • the transparent protective structure 03 formed in this way is different from the natural forming method in the dispensing process after the shape is formed due to the blocking of the steel mesh.
  • the surface of the transparent protective structure 03 can also include : In the direction perpendicular to the plane where the driving backplane 01 is located (ie the Z direction), extending from the opening side of the curved surface 301 to the multiple sides 302 in contact with the driving backplane 01, and the shape surrounded by the multiple sides 302 is consistent with the steel mesh
  • the window openings have the same shape.
  • the surface of the glue should be the same as the steel mesh
  • the surface away from the driving backplane 01 is basically flat, but after curing, the glue in the window opening area will change from a solid-liquid mixed state to a solid state, and the volume will shrink, thereby reducing the height. Therefore, the method of printing is used in this disclosure
  • the surface of the manufactured transparent protective structure 03 away from the driving backplane 01 will be lower than the surface of the stencil away from the driving backplane 01 , and will not be flush with the surface of the steel mesh away from the driving backplane 01 .
  • the side wall of the window opening of the stencil 04 and the surface of the stencil 04 away from the driving backplane are treated with a hydrophobic coating, so that the contact angle ⁇ between the glue 05 and the side wall of the stencil 04 forms an obtuse angle, Therefore, the final shape and size of the glue 05 can be adjusted by adjusting the size of the window, as shown in Figure 7 and Figure 8 .
  • the driving backplane 01 may further include: a first conductive layer 102, which is generally used to arrange various signal lines, such as a common voltage Line GND, driving voltage line VLED, source power line PWR, address line DI, etc.
  • a first conductive layer 102 is about 1.5 ⁇ m-7 ⁇ m, and its material may include copper.
  • a laminated material such as MoNb/Cu/MoNb can be formed by sputtering, and the laminated layer is close to the substrate
  • the material on one side of 103 is MoNb, and the thickness is about Left and right, mainly used to improve the adhesion between the film layer and the base substrate 103
  • the material of the middle layer of the laminate is Cu, which is the preferred material for the electrical signal transmission channel
  • the material on the side away from the base substrate 103 is MoNb, with a thickness of about exist Left and right, it can be used to protect the intermediate layer and prevent the surface of the intermediate layer with low resistivity from being exposed to oxidation.
  • the first conductive layer 102 can also be formed by electroplating. Specifically, MoNiTi can be used to form a seed layer to increase the nucleation density of metal grains in the subsequent electroplating process, and then electroplating is used to produce copper with low resistivity. , and then make an anti-oxidation layer, the material can be MoNiTi.
  • the surface of the first conductive layer 102 away from the base substrate 103 may be covered by the first insulating layer 104 to ensure the reliability and stability of the electrical path.
  • the driving backplane 01 may further include: a second conductive layer 105, which is generally used for setting pads and connecting leads 106, and may be Optionally, the film thickness of the second conductive layer 105 is about about.
  • the pads are used to bind various electrical components, for example, may include pads 101 located in the light-emitting area for mounting light-emitting diodes 02, and/or pads for mounting functional components such as micro-integrated circuit chips uIC or sensors, And bonding pads 107 located in the peripheral area for connection with the circuit board. The surface of the pad away from the base substrate 103 needs to be partially exposed before it is connected with an electronic component.
  • an anti-oxidation material layer can be provided only on the exposed surface area of the pad, that is, the pad area
  • the surface of the second conductive layer 105 will have one layer more than the area where the connecting lead 106 is located; or the second conductive layer 105 is provided as a laminated structure of at least two layers, and the film layer material far away from the base substrate 103 is an anti-oxidation metal or Alloy materials, specifically, can be composed of a stacked structure such as MoNb/Cu/CuNi.
  • the bottom material MoNb in the stack is mainly used to improve adhesion
  • the middle layer Cu in the stack is mainly used to transfer electricity due to its low resistivity.
  • the top layer of CuNi in the stack can not only prevent the oxidation of the middle layer, but also ensure the firmness of the connection with the electronic components.
  • the connection lead 106 may include a first lead extending along the first direction X and a second lead extending along the second direction Y, and the surface of the first lead and the second lead away from the side of the base substrate 103 will be covered by the second insulating layer 108 coverage to ensure the reliability and stability of the electrical pathway.
  • the driving backplane 01 may further include: a buffer layer 109 located between the base substrate 103 and the first conductive layer 102 , located between the first insulating layer 106 and the second The first flat layer 110 between the conductive layers 105, the second flat layer 111 and the reflective layer 112 located on the side of the second insulating layer away from the second conductive layer 105 in sequence, and the transparent electrode located on the bonding pad 107 in the peripheral area 113, and the anisotropic conductive glue 114 between the transparent electrode 113 and the flexible circuit board FPC.
  • the buffer layer 109 avoids the impact of impurities in the base substrate 103 on the conductivity of the first conductive layer 102
  • the first flat layer 110 can provide a flat surface for the fabrication of the second conductive layer 105
  • the second flat layer 111 A flat surface can be provided for the subsequent binding of the light-emitting diode 02
  • the material of the reflective layer 112 can be white ink, which is used to improve the reflectivity of the driving backplane 01 to reduce light loss
  • the transparent electrode 113 and the anisotropic conductive adhesive 114 It is used to realize the electrical connection between the bonding pad 107 of the peripheral area and the flexible circuit board FPC.
  • an embodiment of the present disclosure provides a method for manufacturing a backlight module. Since the problem-solving principle of the manufacturing method is similar to that of the above-mentioned backlight module, the manufacturing method provided by the embodiment of the present disclosure For implementation, reference may be made to the implementation of the above-mentioned backlight module provided by the embodiments of the present disclosure, and repeated descriptions will not be repeated.
  • a manufacturing method of a backlight module provided by an embodiment of the present disclosure, as shown in FIG. 9 , includes the following steps:
  • S901. Provide a driving backplane electrically connected to a plurality of light emitting diodes, wherein the light emitting diodes are electrically connected to pads of the driving backplane;
  • step S803 forms a transparent protective pattern in the window of the stencil, which can be specifically implemented in the following ways:
  • a transparent protective layer 06 is formed on the entire surface of the steel mesh 04 away from the drive backplane 01;
  • the contact angle of the surface is an obtuse angle without overflowing the area where the driving backplane is located, as shown in Figure 10;
  • step S804 cures the transparent protective pattern, which can be specifically implemented in the following ways:
  • the transparent protective pattern is pre-cured at a temperature of 100°C-150°C for 10min-20min, that is, the transparent protective pattern is pre-cured without removing the stencil.
  • the surface of the transparent protective structure 03 formed after pre-curing includes a curved surface 301 protruding to the side away from the light-emitting diode 02, and extending from the opening side of the curved surface 301 to contact the driving backplane 01 and surround the light emitting diode.
  • the multiple sides 302 of the diode 02, and the shape surrounded by the multiple sides is roughly the same as the window shape of the stencil.
  • the stencil can be removed, and after removing the stencil, the transparent protective pattern is finally cured at a temperature of 100° C. to 150° C. for 30 minutes to 60 minutes to obtain the transparent protective structure 03 .
  • the following step may also be performed: removing the stencil. That is, after the stencil is removed, the transparent protective pattern is cured; specifically, after the stencil can be removed, the transparent protective pattern is cured at a temperature of 100° C. to 150° C. for 40 minutes to 80 minutes.
  • the shape of the cured transparent protective structure 03 is similar to the hemispherical shape of the transparent protective glue produced by the dispensing process in the related art.
  • the heating temperature and heating time can be flexibly selected according to the material properties of the transparent protection pattern.
  • an embodiment of the present disclosure provides a display device, including the above-mentioned backlight module provided by the embodiment of the present disclosure. Since the problem-solving principle of the display device is similar to the problem-solving principle of the above-mentioned backlight module, the implementation of the display device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned backlight module provided by the embodiment of the present disclosure. No longer.
  • the display device may be provided with a display 08 .
  • Display 08 may include an array of liquid crystal pixels or other display structures backlit by light from a direct-lit backlight unit.
  • 13 shows a perspective view of an exemplary electronic device of the type that may be provided with a display having a direct-lit backlight unit.
  • the display device of FIG. 13 shows a perspective view of an exemplary electronic device of the type that may be provided with a display having a direct-lit backlight unit.
  • 13 may be a computing device such as a laptop computer, a computer monitor including an embedded computer, a tablet computer, a cell phone, a media player, or other handheld or portable electronic device, a smaller device such as a wrist watch devices), pendant devices, earphone or earpiece devices, devices embedded in glasses or other devices worn on the user's head, or other wearable or miniature devices, televisions, computer monitors, gaming devices, navigation devices, embedded systems (such as systems in which an electronic device with a display is installed in a kiosk or in an automobile), a device that performs two or more of the functions of these devices, or other electronic equipment.
  • a computing device such as a laptop computer, a computer monitor including an embedded computer, a tablet computer, a cell phone, a media player, or other handheld or portable electronic device, a smaller device such as a wrist watch devices), pendant devices, earphone or earpiece devices, devices embedded in glasses or other devices worn on the user's head, or other wearable or miniature devices, televisions, computer monitors, gaming devices
  • a display 08 may be mounted in a housing 09 .
  • Display 08 may be a touch screen display incorporating conductive capacitive touch sensor electrode layers or other touch sensor components (e.g., resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components, light-based touch sensor components, etc.) Or it could be a non-touch display.
  • Capacitive touch screen electrodes may be formed from an array of indium tin oxide pads or other transparent conductive structures.
  • Display 08 may include an array of pixels P formed from liquid crystal display (LCD) components or may have an array of pixels based on other display technologies. A cross-sectional side view of the display 08 is shown in FIG. 14 . As shown in FIG. 13 , display 08 may include a pixel array 801 of pixels P as shown in FIG. 1 . Pixel array 801 may be formed from a liquid crystal display module (sometimes referred to as a liquid crystal display or liquid crystal layer) or other suitable pixel array structures.
  • LCD liquid crystal display
  • a liquid crystal display used to form the pixel array 801 may include, for example, upper and lower polarizers, a color filter layer and a thin film transistor layer interposed between the upper polarizer and the lower polarizer, and a thin film transistor layer interposed between the color filter layer and the thin film transistor layer. between layers of liquid crystal material.
  • Other types of liquid crystal display structures can be used to form pixel array 801, if desired.
  • the display device may further include a plurality of optical films 10 formed on the backlight module 00, and the optical film 10 may include a first light diffusion layer 1001, a partial reflection layer 1002, and a color conversion layer 1003 (which may include phosphor layer and partially reflective layer), collimating layer 1004, brightness enhancement film 1005, diffuser layer 1006, and/or other optical films.
  • the optical film 10 may include a first light diffusion layer 1001, a partial reflection layer 1002, and a color conversion layer 1003 (which may include phosphor layer and partially reflective layer), collimating layer 1004, brightness enhancement film 1005, diffuser layer 1006, and/or other optical films.
  • the LEDs 02 contained in the backlight module 00 can emit light of any suitable color (eg, blue, red, green, white, etc.).
  • the emitted light of the light emitting diode 02 can be uniformly diffused by the first light diffusion layer 1001 .
  • the partially reflective layer 1002 (sometimes referred to as a dichroic layer or dichroic color filter layer) may be configured to reflect a portion of the light diffused by the first light-diffusing layer 1001 and transmit the rest of the light diffused by the first light-diffusing layer 1001. Part of the light.
  • the partially reflective layer 1002 can include a multibragg reflector and a diffuser layer.
  • the color conversion layer 1003 can convert the emitted light of the light-emitting diode 02 from a first color to other colors.
  • the color conversion layer 1003 may include a phosphor layer (e.g., a white phosphor material or other photoluminescent material layer) that converts the blue light into white light.
  • the color conversion layer 1003 can also include a partially reflective layer.
  • a partially reflective layer sometimes called a dichroic layer or a dichroic color filter layer
  • the collimation layer 1004 can To collimate off-axis light, the brightness enhancing film 1005 can further help collimate the light, and the diffuser layer 1006 can homogenize the light.
  • a second light-diffusing layer 1007 can also be formed on the lower surface of the first light-diffusing layer 1001 , and the second light-diffusing layer 1007 can be coupled to a transparent protective cover covering the LED 02 structure 03 (eg, the second light diffusing layer 1007 may directly contact the transparent protective structure 03).
  • a waveguide layer 1008 (sometimes referred to as a lightguide layer) may be interposed between the first light diffusing layer 1001 and the second light diffusing layer 1007 .
  • the transparent protective structure is produced by stencil printing in the present disclosure.
  • the production efficiency is greatly improved.
  • the forming of the transparent protective structure can be improved by adjusting the window size of the steel mesh and the thickness of the steel mesh. effect and uniformity.

Abstract

提供背光模组、其制作方法及显示装置,背光模组(00)包括:驱动背板(01),包括多个焊盘(101);多个发光二极管(02),与焊盘(101)电连接;多个透明保护结构(03),位于多个发光二极管(02)背离驱动背板(01)的一侧,透明保护结构(03)包覆发光二极管(02),且透明保护结构(03)在驱动背板(01)上的正投影中心与发光二极管(02)在驱动背板(01)上的正投影中心之间具有第一距离,发光二极管(02)在驱动背板(01)上的正投影的长度为第二距离,发光二极管(02)在驱动背板(01)上的正投影的宽度为第三距离,第一距离与第二距离之比小于或等于1:2-1:10,第一距离与第三距离之比小于或等于1:2-1:10。背光模组的制作方法包括:在多个发光二极管(02)上放置钢网(04),钢网(04)的开窗完全暴露出发光二极管(02),且钢网(04)背离驱动背板(01)一侧的表面到驱动背板(01)所在平面的距离大于发光二极管(02)背离驱动背板(01)一侧的表面到驱动背板(01)所在平面的距离;在钢网(04)的开窗内形成透明保护图案(03'),对透明保护图案(03')进行固化,形成包覆发光二极管(02)的透明保护结构(03)。显示装置,包括背光模组(00)。

Description

背光模组、其制作方法及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种背光模组、其制作方法及显示装置。
背景技术
随着有机电致发光(OLED)产业的兴起,模组薄型化和高色域要求对传统液晶显示(LCD)产业造成了巨大的冲击,为了应对OLED的挑战,迷你发光二极管(Mini LED)应运而生。Mini LED做为面板背光源时,能够实现更精密的动态背光效果,在有效提高屏幕亮度和对比度的同时,还能解决传统动态背光在屏幕亮暗区域之间造成的眩光现象,优化视觉体验。
发明内容
本公开实施例提供的一种背光模组、其制作方法及显示装置,具体方案如下:
一方面,本公开实施例提供了一种背光模组,包括:
驱动背板,包括多个焊盘;
多个发光二极管,与所述焊盘电连接;
多个透明保护结构,位于所述多个发光二极管背离所述驱动背板的一侧,所述透明保护结构包覆所述发光二极管,且所述透明保护结构在所述驱动背板上的正投影几何中心与所述发光二极管在所述驱动背板上的正投影几何中心之间具有第一距离,所述发光二极管在所述驱动背板上的正投影的长度为第二距离,所述发光二极管在所述驱动背板上的正投影的宽度为第三距离,所述第一距离与所述第二距离之比小于或等于1:2-1:10,所述第一距离与所述第三距离之比小于或等于1:2-1:10。
可选地,在本公开实施例提供的上述背光模组中,所述第一距离小于或等于50μm,所述第二距离大于或等于100μm且小于或等于500μm,所述第三距离等于所述第二距离。
可选地,在本公开实施例提供的上述背光模组中,所述透明保护结构在所述驱动背板上的正投影边界与所述发光二极管在所述驱动背板上的正投影边界之间的距离大于50μm且小于相邻两个所述发光二极管的几何中心之间距离的二分之一。
可选地,在本公开实施例提供的上述背光模组中,相邻所述透明保护结构之间的距离大于40μm。
可选地,在本公开实施例提供的上述背光模组中,所述透明保护结构的表面包括曲面,所述曲面的开口朝向所述发光二极管。
可选地,在本公开实施例提供的上述背光模组中,在背离所述驱动背板的方向上,所述曲面在平行所述驱动背板的方向上的宽度逐渐减小。
可选地,在本公开实施例提供的上述背光模组中,所述透明保护结构的表面还包括:在垂直所述驱动背板所在平面的方向上,自所述曲面的开口侧延伸至与所述驱动背板接触的多个侧面,所述多个侧面围成的形状与所述钢网的开窗形状大致相同。
可选地,在本公开实施例提供的上述背光模组中,所述发光二极管为Mini发光二极管。
另一方面,本公开实施例提供了一种背光模组的制作方法,包括:
提供一个电连接有多个发光二极管的驱动背板,其中,所述发光二极管与所述驱动背板的焊盘电连接;
在所述多个发光二极管上放置钢网,所述钢网的开窗完全暴露出所述发光二极管,且所述钢网背离所述驱动背板一侧的表面到所述驱动背板所在平面的距离大于所述发光二极管背离所述驱动背板一侧的表面到所述驱动背板所在平面的距离;
在所述钢网的开窗内形成透明保护图案;
对所述透明保护图案进行固化,形成包覆所述发光二极管的透明保护结构。
可选地,在本公开实施例提供的上述制作方法中,在所述钢网的开窗内形成透明保护图案,具体包括:
在所述钢网背离所述驱动背板的一侧整面形成透明保护层;
采用刮刀去除所述钢网表面的所述透明保护层,形成位于所述钢网的开窗内的所述透明保护图案。
可选地,在本公开实施例提供的上述制作方法中,对所述透明保护图案进行固化,具体包括:
在所述钢网的约束下,采用100℃-150℃的温度对所述透明保护图案进行10min-20min的预固化;
移除所述钢网;
在100℃-150℃的温度下,对所述透明保护图案进行30min-60min的终固化。
可选地,在本公开实施例提供的上述制作方法中,在对所述透明保护图案进行固化之前,还包括:移除所述钢网。
可选地,在本公开实施例提供的上述制作方法中,对所述透明保护图案进行固化,具体包括:
在100℃-150℃的温度下,对所述透明保护图案进行40min-80min的固化。
另一方面,本公开实施例提供了一种显示装置,包括本公开实施例提供的上述背光模组。
附图说明
图1为本公开实施例提供的背光模组的一种结构示意图;
图2为图1中一个发光单元的放大结构示意图;
图3为本公开实施例提供的背光模组的又一种结构示意图;
图4为包括图3中沿剖切线AA’得到的背光模组的剖面结构示意图;
图5为本公开实施例提供的背光模组的又一种剖面结构示意图;
图6为本公开实施例提供的背光模组的又一种剖面结构示意图;
图7为本公开实施例提供的采用钢网制作透明保护结构的一种结构示意图;
图8为本公开实施例提供的采用钢网制作透明保护结构的又一种结构示意图;
图9为本公开实施例提供的背光模组的制作方法流程图;
图10为本公开实施例提供的背光模组在制作过程中的一种结构示意图;
图11为本公开实施例提供的背光模组在制作过程中的又一种结构示意图;
图12为本公开实施例提供的背光模组在制作过程中的又一种结构示意图;
图13为本公开实施例提供的显示装置的一种结构示意图;
图14为本公开实施例提供的显示装置的一种剖面结构示意图;
图15为本公开实施例提供的显示装置的又一种剖面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改 变。
被动式显示装置中的背光模组,其光源由数个MiniLED构成,为了防止MiniLED在生产运输过程中受到剐蹭等而影响产品可靠度和良率,通常会在MiniLED上方设置保护胶。例如,可以采用整面涂覆透明保护胶以封装保护所有的MiniLED。或者采用逐一保护的方式,即每个Mini LED上方都成型一个透明保护结构,能够同时起到保护和提升光效的作用;在具体实施时,使用点胶机在每一颗Mini LED上方点胶水,然后通过加热固化成型透明保护结构。理论设计时,透明保护胶的几何中心与Mini LED的几何中心应当重合,从而透明保护胶的保护作用和提升光效的作用最好,背光模组的光学均匀度最佳。但是发明人发现,受限于点胶精度的影响,透明保护胶的几何中心与Mini LED的几何中心之间的公差距离可高达100μm,而通常情况下Mini LED出光面的边长尺寸约为100μm-500μm,可见相较于尺寸较小的Mini LED,单点逐一形成透明保护胶的制作公差较大,由此弱化了透明保护胶的保护作用和提升光效的作用。
为了至少解决相关技术中存在的上述技术问题,本公开实施例提供了一种背光模组,如图1至图4所示,可以包括:
驱动背板01,包括多个焊盘101;
多个发光二极管02,与焊盘101电连接;
多个透明保护结构03,位于多个发光二极管02背离驱动背板01的一侧,透明保护结构03包覆发光二极管02,且透明保护结构03在驱动背板01上的正投影的几何中心o 1与发光二极管02在驱动背板01上的正投影的几何中心o 2之间具有第一距离d 1,发光二极管02在驱动背板01上的正投影的长度为第二距离d 2,发光二极管02在驱动背板01上的正投影的宽度为第三距离d 3,第一距离d 1与第二距离d 2之比(即d 1:d 2)可以小于或等于1:2-1:10,第一距离d 1与第三距离d 3之比(即d 1:d 3)可以小于或等于1:2-1:10。
在本公开实施例提供的上述背光模组中,透明保护结构03可以采用钢网印刷的方式制作,并可以通过调整钢网的开窗大小来实现透明保护结构03尺 寸的调制,通过调制钢网在垂直于钢网所在平面方向上的厚度来实现透明保护结构03在垂直于钢网所在平面方向上的高度调整,使得透明保护结构03在驱动背板01上的正投影几何中心o 1和发光二极管02在驱动背板01上的正投影几何中心o 2之间的第一距离d 1与发光二极管02的边长尺寸(即第二距离d 2或第三距离d 3)之间的比例由相关技术中的1:1-1:5缩小至小于或等于1:2-1:10,从而提高了透明保护结构03对其包裹的发光二极管02的保护作用和提升光效的作用。
另外,相较于点胶方式,本公开采用钢网印刷的方式可以对最终形成的透明保护结构03的形状大小、高度进行精确调整,因此,本公开透明保护结构03的均一性较好。此外,采用点胶方式形成透明保护结构的话,需要针对发光二极管02逐个点胶,整体效率低;而本公开使用钢网模具,不受发光二极管02的数量的限制,可以通过一次性在所有位置的发光二极管02上涂覆胶水,从而可将生产效率提升到几十片/小时。
在一些实施例中,在本公开实施例提供的上述背光模组中,采用钢网印刷的方式可以使得第一距离d 1相较于相关技术中的可以至少减小50%,例如从100μm至少减小至50μm。
在一些实施例中,发光二极管02的出光面可具有长度相等的两个侧边(即发光二极管02的出光面呈正方形),或者发光二极管02的出光面可具有长度不同的侧边(例如,非正方形矩形形状)。本公开中以发光二极管02的出光面是正方形为例进行说明,如图1所示,此时,上述第三距离d 3可以等于第二距离d 2。在一些实施例中,发光二极管02可以为Mini LED,第二距离d 2和第三距离d 3可以大于或等于100μm且小于或等于500μm。
在一些实施例中,如图1所示,一个发光单元02’中仅包括一个发光二极管02;在另一些实施例中,一个发光单元02’还可以包括多个发光二极管02,例如可以包括两个或者两个以上数量的发光二极管02,在此不做具体限定。在一些实施例中,一个发光单元02’所包含的多个发光二极管02可以串联连接、并联连接、或者串并联结合的方式连接,具体不做限定。
图3示出了一个发光单元02’包括串联设置的四个发光二极管02,同时,微型集成电路uIC向一个发光单元02’中的四个发光二极管02提供信号。在一些实施例中,一个微型集成电路uIC也可以向多个发光单元02’提供信号。在包括微型集成电路uIC的驱动背板上,发光二极管02远离驱动背板的一侧均设置有透明保护结构03,透明保护结构03可以对包裹的微型集成电路uIC起到保护作用,此外,为了便于制作,微型集成电路uIC上方的透明保护结构03与发光二极管02上方的透明保护结构03的制作要求相同,且二者在同一次工艺流程中制备形成。
可以理解的是,驱动背板01包括发光区和周边区。其中,所有的发光二极管02和微型集成电路uIC都在设置在发光区中,而且发光二极管02和微型集成电路uIC是通过拾取、转移、固定等一系列工艺与驱动背板01上对应的焊盘完成电气连接。周边区用于与外部驱动电路,如柔性电路板(FPC)或者印刷电路板(PCB)连接,例如,可以通过在周边区设置绑定焊盘107,与电路板上的金手指结构进行电连接。
例如其中发光二极管02包括发光部203和两个引脚201和202(分别为N pad和P pad),分别通过焊锡膏T与驱动背板01上焊盘101连接,各个焊盘101再根据发光二极管02所在电气回路中的位置进行连接。具体地,在图3中,左下角发光二极管02的P pad与驱动电压线VLED连接,左下角发光二极管02的N pad与左上角发光二极管02的P pad连接,左上角发光二极管02的N pad与右上角发光二极管02的P pad连接,右上角发光二极管02的N pad与右下角发光二极管02的P pad连接,右下角发光二极管02的N pad与微型集成电路uIC的输出端out连接。在一些实施例中,微型集成电路μIC可以有多个引脚,例如有4个引脚,分别通过焊锡膏与驱动背板01上的焊盘连接,各个焊盘再分别与源电源线PWR、公共电压线GND、地址线DI、及对应发光单元02’中的发光二极管02相连接。
在一些实施例中,在本公开实施例提供的上述背光模组中,如图2所示,透明保护结构03在驱动背板01上的正投影边界m与发光二极管02在驱动背 板01上的正投影边界n之间的距离d 4可以大于50μm且小于相邻两个发光二极光的几何中心之间距离的二分之一,以实现对发光二极管02的有效保护、并提高光效。
在一些实施例中,在本公开实施例提供的上述背光模组中,受限于钢网的制作工艺精度、以及发光二极管01的排布密度,如图1所示,相邻透明保护结构03之间的距离d可以大于40μm。
在一些实施例中,在本公开实施例提供的上述背光模组中,如图4至图6所示,透明保护结构03的表面可以包括曲面301,且该曲面301的开口朝向发光二极管02,换言之,透明保护结构03可在发光二极管02之上形成穹顶形状,这种形状的透明保护结构03可被称为液滴透镜(Lens)。另外,为减小发光二极管02的出射光线在透明保护结构03和空气之间界面上发生全反射的概率,透明保护结构03的折射率可介于发光二极管02的折射率和空气的折射率之间。
由于采用钢网印刷的方式制作透明保护结构03的过程中,可以先移除钢网,然后采用与点胶相同的方式进行加热固化,此时,因为没有钢网的阻挡,使得固化成型后的透明保护结构03的形状由胶水本身的触变性、抗坍塌参数等决定,因此透明保护结构03会与点胶方式制作的透明保护胶的形状类似。基于此,在本公开实施例提供的上述背光模组中,如图4至图6所示,在背离驱动背板的方向Z上,曲面301在平行驱动背板的方向(即第一方向X)上的宽度W逐渐减小,使得透明保护结构03具有朝向背离驱动背板的方向凸起的半球状。
另外,采用钢网印刷的方式制作透明保护结构03的过程中,还可以在钢网不脱模的情况下,先对胶水加热10min-20min进行预固化,然后脱模后将背光模组整体进行终固化,这样就可以较大程度地避免透明保护结构03在固化前坍塌变形了。采用这种方式成型的透明保护结构03,因为有钢网阻挡的原因,形貌成型后与点胶工艺中自然成型的方式不同,具体如图6所示,透明保护结构03的表面还可以包括:在垂直驱动背板01所在平面的方向(即Z 方向)上,自曲面301的开口侧延伸至与驱动背板01接触的多个侧面302,且多个侧面302围成的形状与钢网的开窗形状相同。
需要说明的是,在透明保护结构03的实际制程中,是先对钢网整面涂胶水,然后再对非开窗区的胶水做刮除处理,如此,理论上胶水的表面应该和钢网远离驱动背板01的表面是基本平齐,但是在固化后,开窗区内的胶水由固液混合态变成固态后,体积会缩小,从而高度降低,因此在本公开中采用印刷的方式制作的透明保护结构03远离驱动背板01的表面会低于钢网远离驱动背板01的表面,而不会与钢网远离驱动背板01的表面平齐。并且,在一些实施例中,钢网04的开窗的侧壁及钢网04远离驱动背板的表面均做疏水涂层处理,使得胶水05跟钢网04侧壁的接触角θ成钝角,从而可通过调整开窗的尺寸实现对胶水05最终形貌及尺寸的调整,如图7和图8所示。
在一些实施例中,如图3、图4和图6所示,驱动背板01还可以包括:第一导电层102,该第一导电层102通常用于布置各种信号线,例如公共电压线GND、驱动电压线VLED、源电源线PWR、地址线DI等。可选的,第一导电层102的厚度约为1.5μm-7μm,其材料可以包括铜,例如可以通过溅射的方式形成例如MoNb/Cu/MoNb的叠层材料,叠层中靠近衬底基板103的一侧材料为MoNb,厚度大约在
Figure PCTCN2021096428-appb-000001
左右,主要用于提高膜层与衬底基板103的粘附力,叠层的中间层材料为Cu,为电信号传递通道的优选材料,远离衬底基板103一侧的材料为MoNb,厚度大约在
Figure PCTCN2021096428-appb-000002
左右,可以用于保护中间层,防止电阻率低的中间层表面暴露发生氧化。由于单次溅射的厚度一般不超过1μm,因此在制作超过1μm的第一导电层102时,需要多次溅射来形成。此外,第一导电层102还可以通过电镀的方式形成,具体地,可以先利用MoNiTi形成种子层,以提高后续电镀工艺中金属晶粒的成核密度,之后再通过电镀制作电阻率低的铜,之后再制作防氧化层,材料可以为MoNiTi。可选地,第一导电层102远离衬底基板103一侧的表面可以被第一绝缘层104覆盖,以保证电气通路的可靠性和稳定性。
在一些实施例中,如图3、图4和图6所示,驱动背板01还可以包括: 第二导电层105,该第二导电层105通常用于设置焊盘以及连接引线106,可选的,第二导电层105的膜层厚度大约在
Figure PCTCN2021096428-appb-000003
左右。焊盘用于绑定各种电气元件,例如可以包括位于发光区中用于安装发光二极管02的焊盘101,和/或,用于安装功能元件例如微型集成电路芯片uIC或者传感器的焊盘,以及位于周边区中用于与电路板连接的绑定焊盘107。焊盘远离衬底基板103一侧的表面在未与电子元件连接之前需要部分暴露。为了防止从基板制程到将电子元件设置在基板上的制程过程中,焊盘暴露在空气中可能会产生氧化的问题,可以只在焊盘暴露的表面区域设置防氧化材料层,即焊盘区域的表面会比连接引线106所在区域多出一层结构;或者将第二导电层105整体设置为至少两层结构的叠层结构,其远离衬底基板103的膜层材料为防氧化的金属或者合金材料,具体地可以由例如MoNb/Cu/CuNi的叠层结构构成,叠层中的底层材料MoNb主要用于提高粘附力,叠层中的中间层Cu由于电阻率低主要用于传递电信号,叠层中的顶层CuNi既可以防止中间层氧化,又可以保证与电子元件连接的牢固性。连接引线106可以包括沿第一方向X延伸的第一引线和沿第二方向Y延伸的第二引线,并且第一引线和第二引线远离衬底基板103一侧的表面会被第二绝缘层108覆盖,以保证电气通路的可靠性和稳定性。
在一些实施例中,如图4和图6所示,驱动背板01还可以包括:位于衬底基板103与第一导电层102之间的缓冲层109,位于第一绝缘层106与第二导电层105之间的第一平坦层110,依次位于第二绝缘层背离第二导电层105一侧的第二平坦层111和反射层112,位于周边区的绑定焊盘107上的透明电极113,以及位于透明电极113与柔性电路板FPC之间的异方性导电胶114。其中,缓冲层109以避免衬底基板103中的杂质对第一导电层102导电性能的影响,第一平坦层110可以为第二导电层105的制作提供一个平坦的表面,第二平坦层111可以为后续绑定发光二极管02提供一个平坦的表面,反射层112的材料可以为白色油墨,用于提高驱动背板01的反射率以减小光损耗,透明电极113和异方性导电胶114用于实现周边区的绑定焊盘107与柔性电 路板FPC的电连接。
基于同一发明构思,本公开实施例提供了一种背光模组的制作方法,由于该制作方法解决问题的原理与上述背光模组解决问题的原理相似,因此,本公开实施例提供的该制作方法的实施可以参见本公开实施例提供的上述背光模组的实施,重复之处不再赘述。
具体的,本公开实施例提供的一种背光模组的制作方法,如图9所示,包括以下步骤:
S901、提供一个电连接有多个发光二极管的驱动背板,其中,发光二极管与驱动背板的焊盘电连接;
S902、在多个发光二极管上放置钢网,钢网的开窗完全暴露出发光二极管,且钢网背离驱动背板一侧的表面到驱动背板所在平面的距离大于发光二极管背离驱动背板一侧的表面到驱动背板所在平面的距离;
S903、在钢网的开窗内形成透明保护图案;
S904、对透明保护图案进行固化,形成包覆发光二极管的透明保护结构。
在一些实施例中,在本公开实施例提供的上述制作方法中,步骤S803在钢网的开窗内形成透明保护图案,具体可以通过以下方式进行实现:
在钢网04背离驱动背板01的一侧整面形成透明保护层06;在一些实施例中,可对钢网04的表面和开窗均做疏水涂层处理,胶水05与钢网04的表面的接触角成钝角而不会溢出驱动背板所在区域,如图10所示;
采用刮刀07去除钢网04表面的透明保护层06,形成位于钢网04的开窗内的透明保护图案03’,如图11和图12所示。由于钢网04的开窗做了疏水涂层处理,因此,胶水05跟钢网04侧壁的接触角θ成钝角。
在一些实施例中,在本公开实施例提供的上述制作方法中,步骤S804对透明保护图案进行固化,具体可以通过以下方式进行实现:
在钢网的约束下,采用100℃-150℃的温度对透明保护图案进行10min-20min的预固化,也就是说,在不移除钢网的情况下,对透明保护图案进行预固化,此时,由于钢网的阻挡,使得预固化后形成的透明保护结构03 的表面包括凸向远离发光二极管02一侧的曲面301、以及自曲面301的开口侧延伸与驱动背板01接触且包围发光二极管02的多个侧面302,且多个侧面围成的形状与钢网的开窗形状大致相同。
随后可移除钢网,并在移除钢网后,在100℃-150℃的温度下,对所述透明保护图案进行30min-60min的终固化,获得透明保护结构03。
在一些实施例中,在本公开实施例提供的上述制作方法中,在执行步骤S903对透明保护图案进行固化之前,还可以执行以下步骤:移除钢网。即在移除钢网后,对透明保护图案进行固化;具体地,可移除钢网后,在100℃-150℃的温度下,对透明保护图案进行40min-80min的固化。这种方式下,固化成型的透明保护结构03的形状与相关技术中点胶工艺制作的透明保护胶相近的半球形。
当然,在具体实施时,可根据透明保护图案的材料特性来灵活选择加热温度与加热时长。
基于同一发明构思,本公开实施例提供了一种显示装置,包括本公开实施例提供的上述背光模组。由于该显示装置解决问题的原理与上述背光模组解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述背光模组的实施,重复之处不再赘述。
具体的,本公开实施例提供的上述显示装置,如图13和图14所示,显示装置可提供有显示器08。显示器08可包括由来自直接照明式背光单元的光背光照明的液晶像素阵列或其他显示器结构。图13示出了可提供有具有直接照明式背光单元的显示器的类型的例示性电子设备的透视图。图13的显示装置可为计算设备诸如膝上型计算机、包含嵌入式计算机的计算机监视器、平板电脑、蜂窝电话、媒体播放器、或其他手持式或便携式电子设备、较小的设备(诸如腕表设备)、挂式设备、耳机或听筒设备、被嵌入在眼镜中的设备或者佩戴在用户的头部上的其他设备,或其他可佩戴式或微型设备、电视机、不包含嵌入式计算机的计算机显示器、游戏设备、导航设备、嵌入式系统(诸如其中具有显示器的电子设备被安装在信息亭或汽车中的系统)、实现这些设 备的功能中的两种或更多种功能的设备、或其他电子设备。
如图13所示,显示器08可安装在外壳09中。显示器08可为并入导电电容性触摸传感器电极层或其他触摸传感器部件(例如,电阻性触摸传感器部件、声学触摸传感器部件、基于力的触摸传感器部件、基于光的触摸传感器部件等)的触摸屏显示器或者可为非触摸的显示器。电容触摸屏电极可由氧化铟锡焊盘或者其他透明导电结构的阵列形成。
显示器08可以包括由液晶显示器(LCD)部件形成的像素P的阵列或者可具有基于其他显示技术的像素阵列。图14中示出了显示器08的横截面侧视图。如图13所示,显示器08可包括如图1所示像素P的像素阵列801。像素阵列801可由液晶显示器模块(有时称为液晶显示器或液晶层)或其他合适的像素阵列结构形成。用于形成像素阵列801的液晶显示器例如可包括上部和下部偏振器,滤色器层和插入在上部偏振器和下部偏振器之间的薄膜晶体管层,以及插入在滤色器层和薄膜晶体管层之间的液晶材料层。如果需要,其他类型的液晶显示器结构可用于形成像素阵列801。
如图13所示,显示装置还可以包括在背光模组00之上形成的多个光学膜10,光学膜10可包括第一光扩散层1001、部分反射层1002、颜色转换层1003(可包括荧光体层和部分反射层)、准直层1004、增亮膜1005、漫射体层1006和/或其他光学膜。
背光模组00所含发光二极管02可发射具有任何合适颜色(例如,蓝色、红色、绿色、白色等)的光。发光二极管02的发射光可被第一光扩散层1001均匀扩散。部分反射层1002(有时称为二向色层或二向色滤色器层可被配置为反射经第一光扩散层1001扩散的一部分光,并且透过经第一光扩散层1001扩散的其余部分光。在一些实施例中,部分反射层1002可包括多布拉格反射器和漫射体层。颜色转换层1003可将来发光二极管02的发射光由第一颜色转换为其他颜色。例如,当发光二极管02发出蓝光时,颜色转换层1003可包括荧光体层(例如,白色荧光体材料或其他光致发光材料层),该荧光体层将蓝光转换为白光。在一些实施例中,颜色转换层1003还可以包括部分反射层。 例如,部分反射层(有时称为二向色层或二向色滤色器层)可反射所有红光和绿光并部分反射蓝光。另外,准直层1004可校准离轴的光,增亮膜1005可以进一步帮助校准光线,漫射体层1006可以匀化光线。
在一些实施例中,如图15所示,还可以在第一光扩散层1001的下表面上形成第二光扩散层1007,且第二光扩散层1007可耦接覆盖发光二极管02的透明保护结构03(例如,第二光扩散层1007可直接接触透明保护结构03)。另外,如图15所示,波导层1008(有时称为光导层)可被插置在第一光扩散层1001和第二光扩散层1007之间。
由以上描述可见,本公开中通过钢网印刷的方式制作透明保护结构,一方面大大提高了生产效率,另一方面通过调整钢网的开窗大小及钢网的厚度可以提高透明保护结构的成型效果及均一性。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (14)

  1. 一种背光模组,其中,包括:
    驱动背板,包括多个焊盘;
    多个发光二极管,与所述焊盘电连接;
    多个透明保护结构,位于所述多个发光二极管背离所述驱动背板的一侧,所述透明保护结构包覆所述发光二极管,且所述透明保护结构在所述驱动背板上的正投影几何中心与所述发光二极管在所述驱动背板上的正投影几何中心之间具有第一距离,所述发光二极管在所述驱动背板上的正投影的长度为第二距离,所述发光二极管在所述驱动背板上的正投影的宽度为第三距离,所述第一距离与所述第二距离之比小于或等于1:2-1:10,所述第一距离与所述第三距离之比小于或等于1:2-1:10。
  2. 如权利要求1所述的背光模组,其中,所述第一距离小于或等于50μm,所述第二距离大于或等于100μm且小于或等于500μm,所述第三距离等于所述第二距离。
  3. 如权利要求1所述的背光模组,其中,所述透明保护结构在所述驱动背板上的正投影边界与所述发光二极管在所述驱动背板上的正投影边界之间的距离大于50μm且小于相邻两个所述发光二极管的几何中心之间距离的二分之一。
  4. 如权利要求1所述的背光模组,其中,相邻所述透明保护结构之间的距离大于40μm。
  5. 如权利要求1-4任一项所述的背光模组,其中,所述透明保护结构的表面包括曲面,所述曲面的开口朝向所述发光二极管。
  6. 如权利要求5所述的背光模组,其中,在背离所述驱动背板的方向上,所述曲面在平行所述驱动背板的方向上的宽度逐渐减小。
  7. 如权利要求5或6所述的背光模组,其中,所述透明保护结构的表面还包括:在垂直所述驱动背板所在平面的方向上,自所述曲面的开口侧延伸 至与所述驱动背板接触的多个侧面,所述多个侧面围成的形状与所述钢网的开窗形状大致相同。
  8. 如权利要求1-7任一项所述的背光模组,其中,所述发光二极管为Mini发光二极管。
  9. 一种背光模组的制作方法,其中,包括:
    提供一个电连接有多个发光二极管的驱动背板,其中,所述发光二极管与所述驱动背板的焊盘电连接;
    在所述多个发光二极管上放置钢网,所述钢网的开窗完全暴露出所述发光二极管,且所述钢网背离所述驱动背板一侧的表面到所述驱动背板所在平面的距离大于所述发光二极管背离所述驱动背板一侧的表面到所述驱动背板所在平面的距离;
    在所述钢网的开窗内形成透明保护图案;
    对所述透明保护图案进行固化,形成包覆所述发光二极管的透明保护结构。
  10. 如权利要求9所述的制作方法,其中,在所述钢网的开窗内形成透明保护图案,具体包括:
    在所述钢网背离所述驱动背板的一侧整面形成透明保护层;
    采用刮刀去除所述钢网表面的所述透明保护层,形成位于所述钢网的开窗内的所述透明保护图案。
  11. 如权利要求10所述的制作方法,其中,对所述透明保护图案进行固化,具体包括:
    在所述钢网的约束下,采用100℃-150℃的温度对所述透明保护图案进行10min-20min的预固化;
    移除所述钢网;
    在100℃-150℃的温度下,对所述透明保护图案进行30min-60min的终固化。
  12. 如权利要求9所述的制作方法,其中,在对所述透明保护图案进行 固化之前,还包括:移除所述钢网。
  13. 如权利要求12所述的制作方法,其中,对所述透明保护图案进行固化,具体包括:
    在100℃-150℃的温度下,对所述透明保护图案进行40min-80min的固化。
  14. 一种显示装置,其中,包括如权利要求1-8任一项所述的背光模组。
PCT/CN2021/096428 2021-05-27 2021-05-27 背光模组、其制作方法及显示装置 WO2022246745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001286.3A CN115720644A (zh) 2021-05-27 2021-05-27 背光模组、其制作方法及显示装置
PCT/CN2021/096428 WO2022246745A1 (zh) 2021-05-27 2021-05-27 背光模组、其制作方法及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096428 WO2022246745A1 (zh) 2021-05-27 2021-05-27 背光模组、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2022246745A1 true WO2022246745A1 (zh) 2022-12-01

Family

ID=84229406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096428 WO2022246745A1 (zh) 2021-05-27 2021-05-27 背光模组、其制作方法及显示装置

Country Status (2)

Country Link
CN (1) CN115720644A (zh)
WO (1) WO2022246745A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005520A (zh) * 2010-10-29 2011-04-06 北京大学 一种led封装方法
CN105990492A (zh) * 2015-02-12 2016-10-05 展晶科技(深圳)有限公司 发光二极管封装体及其制造方法
US20170069612A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Projection display system
CN107170771A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管阵列基板的封装结构及其封装方法
CN108493313A (zh) * 2011-03-23 2018-09-04 土星许可有限责任公司 光源电路单元、照明器件和显示器件
CN108732818A (zh) * 2018-05-29 2018-11-02 武汉华星光电技术有限公司 背光模组、显示装置及背光模组的制作方法
CN109411458A (zh) * 2018-11-14 2019-03-01 易美芯光(北京)科技有限公司 一种micro led显示器件及其制作方法
CN110875345A (zh) * 2018-08-31 2020-03-10 昆山工研院新型平板显示技术中心有限公司 Led显示器件及其制造方法、led显示面板
CN210982988U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN111653689A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 透镜阵列的制备方法、显示装置及其制备方法
WO2020263181A1 (en) * 2019-06-28 2020-12-30 Massachusetts Institute Of Technology Method of fabricating an integrated structure for an optoelectronic device and integrated structure for an optoelectronic device
US20210005583A1 (en) * 2019-07-04 2021-01-07 Sharp Fukuyama Semiconductor Co., Ltd. Image display device
CN112216684A (zh) * 2019-07-10 2021-01-12 北京易美新创科技有限公司 迷你led封装器件及其制造方法
US20210035959A1 (en) * 2019-07-29 2021-02-04 Wuhan China Star Optoelectronics Technology Co., Ltd Display panel and display device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005520A (zh) * 2010-10-29 2011-04-06 北京大学 一种led封装方法
CN108493313A (zh) * 2011-03-23 2018-09-04 土星许可有限责任公司 光源电路单元、照明器件和显示器件
CN105990492A (zh) * 2015-02-12 2016-10-05 展晶科技(深圳)有限公司 发光二极管封装体及其制造方法
US20170069612A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Projection display system
CN107170771A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管阵列基板的封装结构及其封装方法
CN108732818A (zh) * 2018-05-29 2018-11-02 武汉华星光电技术有限公司 背光模组、显示装置及背光模组的制作方法
CN110875345A (zh) * 2018-08-31 2020-03-10 昆山工研院新型平板显示技术中心有限公司 Led显示器件及其制造方法、led显示面板
CN109411458A (zh) * 2018-11-14 2019-03-01 易美芯光(北京)科技有限公司 一种micro led显示器件及其制作方法
WO2020263181A1 (en) * 2019-06-28 2020-12-30 Massachusetts Institute Of Technology Method of fabricating an integrated structure for an optoelectronic device and integrated structure for an optoelectronic device
US20210005583A1 (en) * 2019-07-04 2021-01-07 Sharp Fukuyama Semiconductor Co., Ltd. Image display device
CN112216684A (zh) * 2019-07-10 2021-01-12 北京易美新创科技有限公司 迷你led封装器件及其制造方法
US20210035959A1 (en) * 2019-07-29 2021-02-04 Wuhan China Star Optoelectronics Technology Co., Ltd Display panel and display device
CN210982988U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN111653689A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 透镜阵列的制备方法、显示装置及其制备方法

Also Published As

Publication number Publication date
CN115720644A (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN112786577B (zh) 显示装置及其制造方法
WO2019200825A1 (zh) 直下式背光模组及其制作方法
US20210223630A1 (en) Led backlight device and display device
US20150060905A1 (en) Light source module and manufacturing method thereof, and backlight unit
CN108732816B (zh) 面光源背光模组及液晶显示面板
KR102067420B1 (ko) 발광다이오드어셈블리 및 그를 포함한 액정표시장치
TWI765491B (zh) 顯示基板及其製備方法、顯示裝置
WO2019205438A1 (zh) 驱动基板、制备方法及微型led阵列发光背光模组
US11562991B2 (en) Backplane and manufacturing method thereof, backlight module, and display panel using micro light-emitting diodes
EP4207280A1 (en) Light emitting substrate and preparation method therefor, and display device
CN110908180A (zh) 照明装置、显示装置及照明装置的制造方法
WO2021087726A1 (zh) 一种阵列基板及其制作方法、显示装置
WO2014048029A1 (zh) 液晶显示装置
US11906844B2 (en) Light emitting device, backlight, and display panel with reflective layer
CN110908178A (zh) 照明装置以及显示装置
US20240063360A1 (en) Drive circuit substrate, led display panel and method of forming the same, and display device
CN1819171A (zh) 信号传输薄膜、显示装置及其制造方法
CN210403725U (zh) 发光二极管封装组件
US20220059607A1 (en) Display apparatus and method of fabricating the same
CN111508935A (zh) 拼接显示装置
WO2022246745A1 (zh) 背光模组、其制作方法及显示装置
WO2023005610A1 (zh) 驱动基板及其制备方法、发光装置
WO2022262324A1 (zh) 发光模组及其制造方法、显示装置
WO2024036636A1 (zh) 基板和电子装置
WO2023159523A1 (zh) 驱动背板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE