WO2022262108A1 - 一种基于路径计算的搬运机器人及搬运方法 - Google Patents

一种基于路径计算的搬运机器人及搬运方法 Download PDF

Info

Publication number
WO2022262108A1
WO2022262108A1 PCT/CN2021/113195 CN2021113195W WO2022262108A1 WO 2022262108 A1 WO2022262108 A1 WO 2022262108A1 CN 2021113195 W CN2021113195 W CN 2021113195W WO 2022262108 A1 WO2022262108 A1 WO 2022262108A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
traveling device
base
carrying device
deflection
Prior art date
Application number
PCT/CN2021/113195
Other languages
English (en)
French (fr)
Inventor
吴红玉
邵氏彭
茅李洋
Original Assignee
南京轩世琪源软件科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京轩世琪源软件科技有限公司 filed Critical 南京轩世琪源软件科技有限公司
Publication of WO2022262108A1 publication Critical patent/WO2022262108A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas

Definitions

  • the invention relates to a transport robot and a transport method based on path calculation, which belong to the technical field of automation.
  • Handling robots have been used more and more in industrial production. At present, many industrial robots are set on fixed rail lines, which can only carry in a certain direction, and the objects and types of handling are partially limited. For this reason, a flexible handling robot is needed. , in addition to routine avoiding obstacles and flexibly arriving at a predetermined location, it can achieve a greater handling effect. Combining the inherent route of the handling robot with modern computing software, and referring to the mode of daily trucks pulling goods, the conventional The power system of the handling robot is separated from the device for pulling and loading objects, which avoids the loading of goods while the handling robot is moving, further improves the flexibility of the handling robot, and can realize the transportation of more objects with less kinetic energy. The load-carrying object is changed to the ground-carrying object. Aiming at the inertia generated when the object moves, the deceleration mechanism is used to brake, so that a handling robot can flexibly carry the object with low energy consumption.
  • the present invention provides a transport robot and a transport method based on path calculation.
  • the present invention adopts the following technical schemes to realize: a handling robot based on path calculation, comprising:
  • the traveling device travels to a predetermined location.
  • the traveling device is provided with a deflection mechanism for deflecting the direction of travel.
  • the traveling device is also provided with a power mechanism for providing power for the traveling device.
  • the traveling device is also provided with a path calculation mechanism for controlling the deflection of the deflection mechanism;
  • the carrying device is elastically connected to the traveling device, and the carrying device is used for loading objects;
  • the connecting mechanism is used to connect the traveling device and the carrying device, the traveling device drags the carrying device to travel through the connecting mechanism, and the traveling device detects obstacles, calculates the path and continuously deflects to avoid obstacles so that the The carrier carries the object to the predetermined location.
  • the traveling device can detect obstacles, calculate the path, and continuously deflect to avoid obstacles to reach the predetermined location, wherein the deflection mechanism controls the deflection direction of travel, and the path calculation mechanism calculates and analyzes based on the received information data and feeds back to the deflection mechanism
  • the power mechanism the connecting mechanism is used for elastically connecting the traveling device and the carrying device, and the carrying device is used for loading objects. This design can realize the handling robot to carry objects.
  • the traveling device further includes:
  • the traveling base is the supporting base of the traveling device, the same side end of the traveling base is provided with symmetrical arc grooves and the arc grooves are provided with a central axis;
  • Two mounting plates are installed and connected to the traveling base through the central shaft, and the mounting plates are rotated at a predetermined angle relative to the traveling base;
  • Two first front wheels are respectively mounted on the outer sides of the two mounting plates;
  • Two first rear wheels, parallel to the center line of the first front wheel, are installed on the traveling base;
  • the power mechanism is arranged on the traveling base and is transmitted to the first rear wheel through gears.
  • the traveling device is designed for the main traction power function of the entire handling robot, including the power mechanism, power wheel and steering wheel.
  • the first rear wheel rotates to drive the traveling device, and the first front wheel is used for steering.
  • the deflection mechanism includes:
  • the baffle is arranged on the mounting plate and the baffle is respectively provided with sliding grooves and positioning grooves;
  • the horizontal axis is arranged on the traveling base corresponding to the baffle plate, and the two ends of the horizontal axis are respectively provided with first pulleys, and the first pulleys slide in the sliding groove of the baffle plate;
  • the positioning shaft is arranged at the extension of the rotation central axis of the first pulley, and the other end of the positioning shaft is fixed to slide in the positioning groove;
  • a positioning mechanism controlling the sliding path of the horizontal shaft on the traveling base
  • the first tooth track is arranged on the horizontal shaft, and the first tooth track meshes with the first gear
  • the first motor is arranged on the traveling base and rotates the first gear through gear transmission;
  • the return mechanism is arranged on the installation plate and elastically connected to the side of the traveling base.
  • the deflection mechanism can realize the deflection of the first front wheel, the first motor rotates the first gear through the gear transmission, the first tooth track meshes with the first gear, thereby driving the horizontal axis to slide in one direction, and the first pulley Push the positioning plate to deflect, the mounting plate rotates around the central axis, and finally the first front wheel deflects by a predetermined angle, and the straightening mechanism is used to assist the two first pulleys to the initial linear direction.
  • it also includes an auxiliary piece, one end of which is fixedly installed on the traveling base and the auxiliary piece partially covers the part of the arc-shaped groove, wherein the auxiliary piece and the arc-shaped A plurality of universal wheels are installed on the overlapping parts of the grooves, and the universal wheels are arranged on the mounting plate.
  • the space position of the installation plate is positioned by the universal wheel of the auxiliary part, so that the installation plate contacts and slides with the universal wheel, and at the same time reduces the friction force of the installation plate relative to the arc groove, and reduces the torque of the central shaft , prevent the central shaft from breaking and prolong the service life of the central shaft.
  • the path calculation mechanism includes;
  • An infrared sensor located at the front end of the traveling base, is used to detect obstacles in front of the traveling device;
  • an angle sensor located on the mounting plate, used to measure the deflection angle of the traveling device when traveling;
  • the calculation center is located on the traveling base, receives the data signals from the infrared sensor and the angle sensor, and calculates the data to obtain a new command to control the deflection mechanism.
  • the calculation center receives the data from the infrared sensor, calculates the received distance data to the obstacle, controls the deflection mechanism to work so that the deflection mechanism finally controls the deflection angle of the front wheel, the angle sensor records the deflection angle, and deflects
  • the angle data is sent to the calculation center, and the calculation center records the deflection angle and deflection time.
  • the calculation center calculates the deflection distance and the distance difference from the predetermined point, and then feeds back the signal to the deflection mechanism to adjust the deflection in the direction of the predetermined point. Finally, the traveling device reaches the predetermined point.
  • connection mechanism includes:
  • the first connecting piece is arranged on the side of the traveling base close to the carrying device;
  • the second connecting piece is arranged on the carrying device and connected to the first connecting piece, the second connecting piece and the first connecting piece are over-win fit and the maximum distance is set to be d1.
  • the elastic connecting piece is used to slow down the deflection of the traveling device, and the carrying device loaded with objects cannot deflect immediately under the action of inertia, and the speed direction of the carrying device forms an angle with the speed direction of the traveling device.
  • the connectors are used for cushioning while maintaining an elastic connection of the travel unit to the carrier unit.
  • the carrying device includes a carriage base, the carriage base is elastically connected to the traveling device through the connecting mechanism, the carriage base is equipped with a plurality of rotating shafts through bearings, and the two ends of the rotating shafts are used for free installation.
  • the carriage base is also provided with a braking mechanism and a sensitive mechanism, and the sensitive mechanism controls the braking mechanism to act on the rotating shaft farthest from the traveling device to slow down the speed of the carrying device.
  • the carrying device is used for loading and transporting objects
  • the carriage base is also equipped with a braking mechanism and a sensitive mechanism, and the sensitive mechanism controls the braking mechanism to act on the rotating shaft farthest from the traveling device, that is, the rotating shaft at the tail of the carrying device , to slow down the speed of the vehicle
  • the braking mechanism includes:
  • a kit sleeved on the carriage base and located on the rotating shaft farthest from the traveling device, the kit is in the shape of a hollow cylinder;
  • the two clamping parts are provided with a curved surface and the curved surface corresponds to the set for clamping the set, and the bottoms of the two clamping parts are provided with elastic expansion parts;
  • the sliding seat is arranged on the carriage base and the sliding seat is provided with a track, and the clamping member slides on the sliding seat;
  • Two second tooth tracks the tooth surfaces are opposite and installed in parallel, respectively connected to two telescopic clamping parts;
  • a support member is provided on the carriage base, and the support member is provided with two parallel tracks for controlling the sliding paths of the two second tooth tracks;
  • the second gear is arranged between the two second tooth tracks and meshes with the two second tooth tracks, and the second gear is connected to the second motor through transmission.
  • the braking mechanism brakes the carrying device, wherein the second gear drives the two second tooth tracks to slide towards each other, and drives the two clamping parts to move relative to each other, thereby clamping the kit and using friction to reach the counter-rotating shaft. slow down.
  • the sensitive mechanism includes a first metal sheet and a second metal sheet, the first metal sheet and the second metal sheet are elastically arranged on the first connecting member and arranged in parallel, the first The metal sheet and the second metal sheet have the same curvature corresponding to the second connecting piece, the maximum distance between the first metal piece, the second metal piece and the second connecting piece is less than d1, and the The first metal sheet and the second metal sheet are connected to the power supply and the second motor to form a disconnected series circuit.
  • the first metal sheet and the second metal sheet are connected to the power supply and the second motor to form a disconnected series circuit, and when the carrying device presses the traveling device, the second connecting part is pressed against the first connecting part At this time, the second connecting piece squeezes the second metal sheet, so that the first metal sheet and the second metal sheet are connected.
  • the circuit is closed, the second motor starts, that is, the braking mechanism starts to brake.
  • the traveling device is pressed, the circuit is disconnected, the second motor stops working, and the brake mechanism stops braking.
  • Step 1 Set the predetermined position to the computing center, start the power mechanism, and the traveling device drives the carrying device loaded with objects to the predetermined point through the connecting mechanism;
  • Step 2 The infrared sensor detects obstacles ahead, and transmits the signal and distance data to the computing center.
  • the computing center analyzes and calculates the corresponding data, and transmits the control signal to the deflection mechanism to control the traveling device to deflect to a predetermined angle.
  • the angle sensor records the deflection angle and duration. And transmit the data to the computing center. After crossing the obstacle, the computing center controls the deflection mechanism to deflect according to the data fed back by the angle sensor, deflects to the predetermined point, and finally makes the traveling device travel to the predetermined point;
  • Step 3 The traveling device starts to decelerate near the predetermined point.
  • the carrying device is loaded with objects, the inertia is large, the speed of the carrying device is greater than the speed of the traveling device, the carrying device squeezes the traveling device, the sensitive mechanism starts to work, and the braking mechanism is controlled by the circuit Brake the carrying device so that the speed of the carrying device corresponds to the speed of the traveling device, and finally stop synchronously.
  • the route design of the handling robot is based on modern computing software to realize automatic avoidance of obstacles; the mode of daily truck pulling and transporting goods separates the power system of the conventional handling robot from the function of pulling and loading objects, and the traditional handling robot
  • the load-carrying objects are changed to ground-carrying objects, and more objects can be transported with less kinetic energy; in view of the inertia caused by the movement of the loaded objects, a sensitive mechanism is used to control the deceleration mechanism to brake in real time, so that the handling robot works stably.
  • Fig. 1 is a schematic diagram of the overall system structure of the present invention.
  • Fig. 2 is a structural schematic diagram of the deflection mechanism of the present invention.
  • Fig. 3 is a schematic structural diagram of the right sectional view of A in Fig. 2 of the present invention.
  • Fig. 4 is a structural schematic diagram of the connection mechanism of the present invention.
  • Fig. 5 is a structural schematic diagram of the braking mechanism of the present invention.
  • Fig. 6 is a schematic diagram of a partial structure of the sensitive mechanism of the present invention.
  • traveling device 1 traveling base 11, arc groove 111, central shaft 112, auxiliary member 113, universal wheel 1131, deflection mechanism 12, mounting plate 121, first front wheel 122, first rear wheel 1221 , baffle plate 123, sliding groove 1231, positioning groove 1232, positioning shaft 1233, return mechanism 124, first pulley 125, transverse shaft 126, positioning mechanism 127, first tooth track 128, first gear 129, first motor 1291 , power mechanism 13, path calculation mechanism 14, angle sensor 141, infrared sensor 142, computing center 143, carrying device 2, compartment base 21, sensitive mechanism 22, first metal sheet 221, second metal sheet 222, braking mechanism 23 , kit 221, clamping member 232, sliding seat 233, second gear track 234, support member 235, second gear 236, elastic telescopic member 237, second motor 238, connecting mechanism 3, elastic connecting member 31, first connecting Part 32, the second connecting part 33.
  • a transport robot based on path calculation includes a traveling device 1, a connecting mechanism 3 and a carrying device 2.
  • the bottom of the traveling device 1 is equipped with a first front wheel 122 and a first rear wheel, and a power mechanism 13 is connected to the first rear wheel 1221 to provide Traveling power
  • the traveling device 1 is equipped with a path calculation mechanism 14 for detecting obstacles, calculating the path and continuously deflecting to avoid obstacles to reach a predetermined location, wherein the deflection mechanism 12 controls the direction of deflection of the first front wheel 122, and the path calculation mechanism 14 Calculate and analyze based on the received information data and feed back to the deflection mechanism 12 and the power mechanism 13.
  • the connecting mechanism 3 is used to elastically connect the traveling device 1 and the carrying device 2.
  • the carrying device 2 is used to load objects. At the same time, there are multiple The driving wheel assists daily travel. In this design, the travel device 1 drives the carrier device 2 to advance through the connection mechanism 3 .
  • the traveling device 1 is the main power design of the entire transporting robot, which identifies and calculates the path and drives the transporting robot forward, wherein the traveling base 11 is the supporting base of the traveling device 1, and there are The arc groove 111, the central shaft 112 is installed on the arc groove 111, the central shaft 112 is installed corresponding to the mounting plate 121 and the arc groove 111, so that the mounting plate 121 can rotate around the central axis 112 on the surface of the arc groove 111 At a predetermined angle, the two first front wheels 122 are installed on the outside of the two mounting plates 121 respectively, and are in a freely rotating state.
  • the two first rear wheels 1221 are installed on the traveling base 11 parallel to the centerline of the first front wheels 122.
  • the traveling The device 1 adopts a conventional four-wheel design.
  • the power mechanism 13 is set on the traveling base 11 and drives the first rear wheel 1221 to rotate through gear transmission to drive the traveling device 1 to travel.
  • the deflection mechanism 12 controls the two first front wheels 122 to deflect and return to the center simultaneously, wherein the baffle plate 123 is installed on the mounting plate 121 and the baffle plate 123 is provided with a sliding groove 1231 and a positioning groove 1232, the sliding groove 1231 corresponds to the design of the first pulley 125.
  • the first pulley 125 slides in the track groove of the baffle plate 123.
  • the two first pulleys 125 are installed at both ends of the horizontal axis 126 and rotate freely.
  • the extension on the central shaft of the first pulley 125 A rotatable positioning shaft 1233 is also installed at the position, and the other end of the positioning shaft 1233 is correspondingly stuck in the positioning slot 1232 to slide.
  • a first tooth track 128 is provided at the middle of the horizontal shaft 126, which is engaged with the first tooth track 128 and installed on the first tooth track 11 of the traveling base 11.
  • a gear 129, the first motor 1291 is installed on the traveling base 11 to rotate the first gear 129 through the reducer and gear transmission, the first tooth track 128 meshes with the first gear 129, thereby driving the horizontal shaft 126 to slide in one direction, the first The pulley 125 slides in the sliding groove 1231 and pushes a positioning plate to deflect at an angle with the central axis 112 as the center of the circle.
  • the mounting plate 121 rotates with the central axis 112 as the center of the circle, and finally drives the first front wheel 122 to deflect.
  • the plate 123 is provided with a sliding groove 1231 and a positioning groove 1232 at the same time.
  • the positioning shaft 1233 assists in controlling the distance of the first pulley 125 relative to the sliding groove 1231, so that the deflection angles of the two first front wheels 122 are the same, and the return mechanism 124 is installed on the mounting plate 121 and is elastically connected to the side of the traveling base 11, and is used to return to the alignment and assist the two first front wheels 122 to the initial straight-line driving direction.
  • an auxiliary piece 113 is provided on the traveling base 11 for assisting the rotation of the mounting plate 121 on the arc-shaped groove 111.
  • One end of the auxiliary piece 113 is fixedly installed on the traveling base 11 and the auxiliary piece 113 is partially covered
  • the part of the arc-shaped groove 111, the overlapping part of the auxiliary part 113 and the arc-shaped groove 111 is equipped with a plurality of universal wheels 1131, and the universal wheels 1131 are set to slide on the mounting plate 121, and the rotation of the mounting plate 121 is carried by a central shaft 112 Work, the requirements for the central shaft 112 are too high, and the torque on the central shaft 112 is too high to easily break.
  • the universal wheel 1131 of the auxiliary part 113 is used to position the space position of the mounting plate 121, so that the mounting plate 121 and the universal wheel 1131 It can slide relatively, and at the same time reduce the friction force of the mounting plate 121 relative to the arc-shaped groove 111 , further reduce the torque of the central shaft 112 , and prolong the service life of the central shaft 112 .
  • the path calculation mechanism 14 includes an infrared sensor 142, an angle sensor 141 and a calculation center 143.
  • the path calculation mechanism 14 is used to detect obstacles, calculate a path and continuously deflect to avoid obstacles to reach a predetermined location.
  • the infrared sensor 142 Set on the front end of the traveling base 11 to detect obstacles in front of the traveling device 1, and send the sensed obstacle signal and distance data to the computing center 143, which is set on the traveling base 11 to receive data from the infrared sensor 142
  • the calculation center 143 calculates the received distance data to the obstacle, controls the deflection mechanism 12 to work, the deflection mechanism 12 finally controls the first front wheel 122 to deflect a predetermined angle
  • the angle sensor 141 is installed on the mounting plate 121 to record the deflection angle , and transmit the deflection angle data to the calculation center 143
  • the calculation center 143 records the deflection angle and deflection time, after the traveling device 1 crosses the obstacle, calculates the deflection distance and the distance from the predetermined point according to the recorded deflection angle and deflection time If there is a difference, the signal is fed back to the deflection mechanism 12 to adjust the deflection to the predetermined point, and finally the traveling device 1 reaches the predetermined point.
  • the deflection path design for avoiding obstacles two calculation paths can be used first.
  • the first one is the deflection design that is not adjusted in time until the predetermined point vertical line of the distance from the starting point to the predetermined point is controlled.
  • the steering mechanism performs the final deflection of °; the second type, every time the obstacle is avoided, the reverse deflection is performed in time, and the continuous adjustment during the journey is that the route is closer to the straight-line distance from the starting point to the predetermined point.
  • the connecting mechanism 3 includes an elastic connecting piece 31, a first connecting piece 32 and a second connecting piece 33, the elastic connecting piece 31 is used to connect the traveling base 11 and the carrying device 2, and the elastic connecting piece 31 is an internal
  • the outer side of the elastic connector 31 wraps the telescopic tube, such as the outer side of the spring wraps the elastic tube.
  • the first connector 32 is installed on the tail of the traveling base 11, that is, near the middle of the side of the carrier 2, and the second connector 33 is installed on the carrier 2.
  • first connecting piece 32, the second connecting piece 33 and the first connecting piece 32 are win-win fit and between the second connecting piece 33 and the first connecting piece 32 is a rotating connection, wherein the elastic connecting piece 31 is used to slow down
  • the traveling device 1 deflects when traveling, and the carrying device 2 loaded with objects cannot deflect immediately under the action of inertia.
  • the speed direction of the carrying device 2 forms an angle with the speed direction of the traveling device 1. For this reason, an elastic connecting piece 31 is provided for buffering, while maintaining Elastic connection of traveling device 1 to carrier device 2 .
  • the carrying device 2 includes a carriage base 21, a free wheel, a braking mechanism 23 and a sensitive mechanism 22, wherein the carriage base 21 is elastically connected to the travel device 1, and the carriage base 21 is installed with a plurality of rotating shafts through bearings and the rotating shafts Free wheels are installed at both ends, and the carriage base 21 is also provided with a braking mechanism 23 and a sensitive mechanism 22.
  • the sensitive mechanism 22 controls the braking mechanism 23 to act on the rotating shaft farthest from the traveling device 1, that is, on the rotating shaft at the tail of the carrying device 2. Slow down the speed of the vehicle 2.
  • the brake mechanism 23 includes a sleeve 221, two clamping parts 232, a sliding seat 233, two second tooth tracks 234, a support 235 and a second gear 236, wherein the sleeve 221 is sleeved on the carriage On the rotating shaft at the tail end of the base 21, the sleeve 221 is a hollow cylinder, which is used to increase the contact area with the two clamping parts 232.
  • the two clamping parts 232 are provided with arc surfaces and the arc corresponds to the circumferential surface of the sleeve 221.
  • two clamping parts 232 are arranged on the sliding seat 233 to slide horizontally, and the bottom of the two clamping parts 232 is provided with an elastic telescopic part 237, and the elastic telescopic shaft can be set by wrapping the spring outside the telescopic shaft , that is, the elastic telescopic shaft can restore the two clamping parts 232 to the initial set position, the tooth surfaces of the two second tooth tracks 234 are opposite and installed in parallel, and are respectively connected to one telescopic clamping part 232 by a fastener, one The second tooth track 234 is connected to the upper end of a fastener, and the other second tooth track 234 is connected to the lower end of another fastener.
  • the other ends of the two second tooth tracks 234 slide on the support member 235, and the support member 235 is set There are two parallel tracks for controlling the sliding paths of the two second tooth tracks 234, the second gear 236 is arranged on the two second tooth tracks 234 and meshed with the two second tooth tracks 234, and the second gear 236 drives the two second tooth tracks 234
  • the second tooth track 234 slides toward each other, driving the two clamping parts 232 to move relative to each other, thereby clamping the sleeve 221 , using friction to reduce the speed of the counter-rotating shaft, and the second gear 236 is rotated by the second motor 238 .
  • the sensitive mechanism 22 is a circuit design
  • the first metal piece 221 and the second metal piece 222 are elastically arranged on the first connecting member 32 and arranged in parallel, and the first metal piece 221 and the second metal piece 222 have an arc
  • the same arc corresponds to the second connecting member 33, or the second connecting member 33 is provided with the same radian on the side close to the metal sheet, the maximum distance between the first metal sheet 221, the second metal sheet 222 and the second connecting member 33 If it is less than d, the first metal sheet 221 and the second metal sheet 222 are connected to the power supply and the second motor 238 to form a disconnected series circuit.
  • the carrying device 2 loads an object, its own gravity is large.
  • the traveling device 1 drives the object to a predetermined point, Do deceleration movement, and the inertia of the carrier device 2 itself is relatively large, it is easy to provide an inertial force for the travel device 1, which affects the calculation center 143 of the travel device 1 itself to receive wrong signals and data.
  • the second connecting member 33 is squeezed relative to the first connecting member 32, and at this time, the second connecting member 33 bumps into the second metal sheet 222, so that the first metal sheet 221 and the second metal sheet 222 are connected, At this time, the circuit is closed, and the second motor 238 starts to work, which drives the second gear 236 to rotate so that the clamping member 232 clamps the sleeve 221 and reduces the speed of the carrier 2.
  • Working principle Set the predetermined position to the computing center 143, the power mechanism 13 is connected to the first rear wheel 1221 to provide driving power, the traveling device 1 drives the carrying device 2 loaded with objects to advance to the predetermined point through the connecting mechanism 3, and the elastic connecting piece 31 connects the traveling base 11 and the carrying device 2, the first connecting part 32 and the second connecting part 33 are respectively arranged on the traveling base 11 and the carrying device 2, the first connecting part 32 and the second connecting part 33 are rotationally connected and have an interference fit, During the traveling process, the infrared sensor 142 detects obstacles ahead, and transmits the signal and distance data to the computing center 143.
  • the computing center 143 analyzes and calculates the corresponding data, and transmits the control signal to the deflection mechanism 12 to control the traveling device 1 to deflect by a predetermined angle.
  • the motor 1291 is started, and the first gear 129 is rotated through the reducer and the gear transmission.
  • the first tooth track 128 meshes with the first gear 129, thereby driving the horizontal shaft 126 to slide in one direction, and the first pulley 125 slides and pushes in the sliding groove 1231
  • a positioning plate deflects at an angle with the central axis 112 as the center of the circle, and the mounting plate 121 rotates with the central axis 112 as the center of the circle.
  • the universal wheel 1131 installed on the auxiliary part 113 assists the sliding of the mounting plate 121, and finally drives the first front wheel 122 to deflect
  • the baffle plate 123 is provided with a sliding groove 1231 and a positioning groove 1232 at the same time, and the positioning shaft 1233 assists in controlling the distance between the first pulley 125 and the sliding groove 1231, so that the deflection angles of the two first front wheels 122 are the same, and the angle sensor 141 records the deflection angles and duration, and transmit the data to the computing center 143.
  • the computing center 143 controls the deflection mechanism 12 to deflect again according to the data fed back by the angle sensor 141, to deflect to a predetermined point, and finally make the traveling device 1 go to the predetermined point. point travel, and the traveling device 1 starts to decelerate near the predetermined point.
  • the carrying device 2 is loaded with objects, and the inertia is relatively large.
  • the speed of the carrying device 2 is greater than the speed of the traveling device 1.

Abstract

一种基于路径计算的搬运机器人及搬运方法,该基于路径计算的搬运机器人包括行进装置(1)、运载装置(2)和连接机构(3),其中行进装置(1)设有偏转机构(12)用于偏转行进方向,行进装置(1)还设有动力机构(13)用于提供行进装置(1)的行进的动力,行进装置(1)还设有路径计算机构(14)用于控制偏转机构(12)的偏转,运载装置(2)弹性连接行进装置(1),运载装置(2)用于装载物件,连接机构(3)用于连接行进装置(1)和运载装置(2)。

Description

一种基于路径计算的搬运机器人及搬运方法 技术领域
本发明涉及一种基于路径计算的搬运机器人及搬运方法,属于自动化技术领域。
背景技术
搬运机器人在工业生产中得到了越来越多的运用,目前很多工业机器人设置在固定轨道线上,只能定向的搬运并且搬运物件和种类都受到部分限制,为此需要一种灵活的搬运机器人,除常规的避开障碍物,灵活到达在预定地点外,更能实现较大的搬运效果,将搬运机器人的固有路线与现代计算软件相结合,同时参照日常货车拉运货物的模式,将常规的搬运机器人的动力系统与拉载物件的装置分开,避免搬运机器人在行进的同时装载货物,进一步提升搬运机器人的灵活性,又能用较小的动能实现较多物件的运输,由传统搬运机器人承载物件变化为地面承载物件,针对其中因物件运动时产生的惯性,利用减速机构制动,实现一种搬运机器人在较低能耗下灵活搬运物件。
技术问题
本发明为解决上述背景技术中存在的技术问题,提供一种基于路径计算的搬运机器人及搬运方法。
技术解决方案
本发明采用以下技术方案来实现:一种基于路径计算的搬运机器人,包括:
行进装置,行进至预定地点,所述行进装置设有偏转机构用于偏转行进方向,所述行进装置还设有动力机构用于提供所述行进装置的行进的动力,所述行进装置还设有路径计算机构用于控制所述偏转机构的偏转;
运载装置,弹性连接于行进装置,所述运载装置用于装载物件;
连接机构,用于连接所述行进装置和所述运载装置,所述行进装置通过连接机构拖动运载装置行进,且所述行进装置探测障碍物、计算路径并不断偏转避开障碍物使所述运载装置运载物件到达预定地点。
通过采用上述技术方案,行进装置能够探测障碍物、计算路径并不断偏转避开障碍物到达预定地点,其中偏转机构控制行进的偏转方向,路径计算机构基于接收的信息数据计算分析并反馈至偏转机构和动力机构,连接机构用于弹性连接行进装置和运载装置,运载装置用于装载物件,该设计能够实现搬运机器人搬运物件。
在进一步的实施例中,所述行进装置还包括:
行进底座,为所述行进装置的支撑底座,所述行进底座同侧端设有相对称的弧形凹槽且所述弧形凹槽设有中心轴;
两个安装板,通过所述中心轴安装并连接于所述行进底座,所述安装板相对所述行进底座旋转预定角度;
两个第一前轮,分别安装于两个所述安装板外侧;
两个第一后轮,平行所述第一前轮中心线安装于所述行进底座;
动力机构,设于所述行进底座且通过齿轮传动于所述第一后轮。
通过采用上述技术方案,行进装置为整个搬运机器人的主要牵引动力功能设计,包括动力机构、动力轮和转向轮等,该行进装置选用常规四轮设计,动力机构设于行进底座且通过齿轮传动带动第一后轮旋转从而驱动行进装置的行进,第一前轮用于转向。
在进一步的实施例中,所述偏转机构包括:
挡板,设于所述安装板上且所述挡板分别设有滑动槽和定位槽;
横轴,对应所述挡板设于所述行进底座,且所述横轴两端分别设有第一滑轮,所述第一滑轮在所述挡板的滑动槽内滑动;
定位轴,设于所述第一滑轮的旋转中心轴的延长处,所述定位轴另一端固定于所述定位槽内滑动;
定位机构,控制所述横轴在所述行进底座的滑动路径;
第一齿道,设于所述横轴上,且所述第一齿道与第一齿轮啮合;
第一电机,设于所述行进底座,通过齿轮传动使所述第一齿轮旋转;
回正机构,设于所述安装板上且弹性连接于所述行进底座的侧面。
通过采用上述技术方案,偏转机构可以实现第一前轮的偏转,第一电机通齿轮传动使第一齿轮旋转,第一齿道与第一齿轮啮合,从而带动横轴单向滑动,第一滑轮推动定位板偏转,安装板以中心轴为圆心发生转动,最终第一前轮偏转预定角度,转正机构用于辅助两个第一滑轮至初始直线方向。
在进一步的实施例中,还包括辅助件,所述辅助件一端固定安装在所述行进底座且所述辅助件局部覆盖所述弧形凹槽的部分,其中所述辅助件与所述弧形凹槽重合部分安装多个万向轮,且所述万向轮设于所述安装板上。
通过采用上述技术方案,通过辅助件的万向轮定位安装板的空间位置,使得安装板与万向轮接触并产生滑动,同时减少安装板相对弧形凹槽的摩擦力,减少中心轴的扭矩,防止中心轴断裂,延长中心轴的使用寿命。
在进一步的实施例中,所述路径计算机构包括;
红外传感器,设于所述行进底座前端用于探测所述行进装置前方的障碍物;
角度传感器,设于所述安装板上,用于测量所述行进装置行进时的偏转角度;
计算中心,设于所述行进底座,接收来自所述红外传感器和所述角度传感器的数据信号并对数据进行计算得出新的指令控制所述偏转机构。
通过采用上述技术方案,计算中心接收来自红外传感器的数据,计算收到的到障碍物的距离数据,控制偏转机构工作使偏转机构最终控制前轮偏转预定角度,角度传感器记录偏转角度,并将偏转角度数据传送至计算中心,计算中心记录偏转角度及偏转时间,越过障碍物后,计算中心计算偏转距离以及偏离预定点的距离差,再次反馈信号至偏转机构,调整对预定点的方向的偏转,最终使行进装置到达预定点。
在进一步的实施例中,所述连接机构包括:
弹性连接件,用于连接所述行进底座和所述运载装置;
第一连接件,设于所述行进底座靠近所述运载装置的一侧;
第二连接件,设于所述运载装置且连接于所述第一连接件,所述第二连接件和所述第一连接件过赢配合且设最大间距值为d1。
通过采用上述技术方案,弹性连接件用于减缓行进装置行进时发生偏转,装载物件的运载装置在惯性的作用下无法立即偏转,运载装置速度方向与行进装置速度方向形成夹角,为此设置弹性连接件用于缓冲,同时保持行进装置与运载装置的弹性连接。
在进一步的实施例中,所述运载装置包括车厢底座,所述车厢底座通过所述连接机构弹性连接于所述行进装置,所述车厢底座通过轴承安装多个转轴且转轴两端用于安装自由轮,所述车厢底座还设有制动机构和灵敏机构,所述灵敏机构控制所述制动机构作用于距离所述行进装置最远的转轴,减缓运载装置的速度。
通过采用上述技术方案,运载装置用于装载和运输物件,车厢底座还设有制动机构和灵敏机构,灵敏机构控制制动机构作用于距离行进装置最远的转轴,即运载装置尾部的转轴上,来减缓运载装置的速度
在进一步的实施例中,所述制动机构包括:
套件,套接在所述车厢底座且位于距离所述行进装置最远的转轴上,所述套件为空心圆柱状;
两个夹紧件,设有弧度面且弧度面对应所述套件设置用于夹紧所述套件,两个所述夹紧件底部设有弹性伸缩件;
滑动座,设于所述车厢底座且所述滑动座设有轨道,所述夹紧件在所述滑动座上滑动;
两条第二齿道,齿面相对且平行安装,分别连接两个伸缩夹紧件;
支撑件,设于所述车厢底座,所述支撑件设有两道平行轨道用于控制两条所述第二齿道的滑动路径;
第二齿轮,设于两条所述第二齿道支间且啮合于两条所述第二齿道,所述第二齿轮传动连接于第二电机。
通过采用上述技术方案,制动机构对运载装置进行制动,其中第二齿轮带动两条第二齿道相向滑行,带动两个夹紧件相对运动,从而夹紧套件,利用摩擦力达到对转轴的降速。
在进一步的实施例中,所述灵敏机构包括第一金属片和第二金属片,所述第一金属片和第二金属片弹性设于所述第一连接件且平行设置,所述第一金属片和所述第二金属片弧度相同对应于第二连接件的弧度,所述第一金属片、所述第二金属片和第二连接件之间的最大的距离值小于d1,所述第一金属片、所述第二金属片连接电源和所述第二电机形成断开的串联电路。
通过采用上述技术方案,第一金属片、第二金属片连接电源和第二电机形成断开的串联电路,当运载装置挤压行进装置时,第二连接件相对于第一连接件发生挤压运动,此时第二连接件挤压第二金属片,使得第一金属片、第二金属片连接,此时电路闭合,第二电机启动,即制动机构开始制动,当运载装置不在挤压行进装置时,电路断开,第二电机停止工作,制动机构停止制动。
在进一步的实施例中,包括以下步骤:
步骤一、设置预定位置至计算中心,动力机构启动,行进装置通过连接机构带动装载物件的运载装置往预定点行进;
步骤二、红外传感器探测前方有障碍物,将信号和距离数据传送至计算中心,计算中心分析计算对应数据,将控制信号传至偏转机构控制行进装置偏转预定角度,角度传感器记录偏转角度和时长,并将数据传送至计算中心,越过障碍物后,计算中心根据角度传感器反馈的数据,控制偏转机构进行偏转,进行针对预定点的偏转,最终使行进装置往预定点行进;
步骤三、行进装置临近预定点开始减速,此时运载装置装载物件,惯性较大,运载装置的速度大于行进装置速度,运载装置对行进装置挤压,灵敏机构开始工作,通过电路控制制动机构对运载装置制动,使运载装置的速度对应行进装置的速度,最终同步停止。
有益效果
将搬运机器人的行进路线设计基于现代计算软件,实现自动化的避开障碍物的行进;日常货车拉运货物的模式,将常规的搬运机器人的动力系统与拉载物件的功能分开,由传统搬运机器人承载物件变化为地面承载物件,用较小的动能实现较多物件的搬运;针对其中因装载物件运动时产生的惯性,利用灵敏机构控制减速机构实时制动,使得搬运机器人稳定工作。
附图说明
图1是本发明的整体系统结构示意图。
图2是本发明的偏转机构结构示意图。
图3是本发明的图2中A的右剖视图结构示意图。
图4是本发明的连接机构结构示意图。
图5是本发明的制动机构结构示意图。
图6是本发明的灵敏机构局部结构示意图。
附图标记:行进装置1、行进底座11、弧形凹槽111、中心轴112、辅助件113、万向轮1131、偏转机构12、安装板121、第一前轮122、第一后轮1221、挡板123、滑动槽1231、定位槽1232、定位轴1233、回正机构124、第一滑轮125、横轴126、定位机构127、第一齿道128、第一齿轮129、第一电机1291、动力机构13、路径计算机构14、角度传感器141、红外传感器142、计算中心143、运载装置2、车厢底座21、灵敏机构22、第一金属片221、第二金属片222、制动机构23、套件221、夹紧件232、滑动座233、第二齿道234、支撑件235、第二齿轮236、弹性伸缩件237、第二电机238、连接机构3、弹性连接件31、第一连接件32、第二连接件33。
本发明的实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施;在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
一种基于路径计算的搬运机器人包括行进装置1、连接机构3和运载装置2,行进装置1底部安装第一前轮122和第一后轮,动力机构13传动连接于第一后轮1221来提供行进动力,行进装置1设有路径计算机构14用于探测障碍物、计算路径并不断偏转避开障碍物到达预定地点,其中偏转机构12控制第一前轮122偏转行进的方向,路径计算机构14基于接收的信息数据计算分析并反馈至偏转机构12和动力机构13,连接机构3用于弹性连接行进装置1和运载装置2,运载装置2用于装载物件,同时运载装置2底部设有多个动轮协助日常的行进,该设计中,行进装置1通过连接机构3带动运载装置2前进。
在进一步的实施例中,行进装置1为整个搬运机器人的主要动力设计,识别并且计算路径并带动搬运机器人前进,其中,行进底座11为行进装置1的支撑底座,在其前进端的两侧设有弧形凹槽111,弧形凹槽111上安装中心轴112,该中心轴112对应安装板121和弧形凹槽111安装,使得安装板121在弧形凹槽111面可以围绕中心轴112旋转预定的角度,两个第一前轮122分别安装在两个安装板121外侧,且为自由旋转状态,两个第一后轮1221平行第一前轮122中心线安装于行进底座11,该行进装置1选用常规四轮设计,动力机构13设于行进底座11且通过齿轮传动带动第一后轮1221旋转从而驱动行进装置1的行进。
在进一步的实施例中,偏转机构12控制两个第一前轮122同时偏转和回正,其中挡板123安装在安装板121上且挡板123设有滑动槽1231和定位槽1232,滑动槽1231对应第一滑轮125设计,第一滑轮125在挡板123的轨道槽中滑动,两个第一滑轮125安装在横轴126两端且自由转动,在第一滑轮125的中心转轴上的延长处还安装有可以旋转的定位轴1233,好定位轴1233的另一端对应卡在定位槽1232内滑动,横轴126设于行进底座11,定位机构127安装在行进底座11上用于控制横轴126在行进底座11的滑动路径,使横轴126进行单向的往复行程运动,在横轴126中部位置设有第一齿道128,与第一齿道128啮合且安装在行进底座11的第一齿轮129,第一电机1291安装在行进底座11上通过减速器和齿轮传动使第一齿轮129旋转,第一齿道128与第一齿轮129啮合,从而带动横轴126单向滑动,第一滑轮125在滑动槽1231内滑动且推动一个定位板以中心轴112为圆心的角度偏转,此时,安装板121以中心轴112为圆心发生转动,最终带动第一前轮122偏转,其中,挡板123同时设有滑动槽1231和定位槽1232,定位轴1233辅助控制第一滑轮125相对滑动槽1231内的距离,使得两个第一前轮122偏转角度相同,回正机构124安装于安装板121上且弹性连接于行进底座11侧面,用于回正辅助两个第一前轮122至初始直线行驶方向。
在进一步的实施例中,行进底座11上还设有辅助件113用于辅助安装板121在弧形凹槽111上的旋转,辅助件113一端固定安装在行进底座11上且辅助件113局部覆盖弧形凹槽111的部分,辅助件113与弧形凹槽111重合部分安装多个万向轮1131,万向轮1131设于安装板121上滑动,通过一个中心轴112承载安装板121的转动工作,对于中心轴112的要求过高,中心轴112上扭矩较大极易断裂,此时通过辅助件113的万向轮1131定位安装板121的空间位置,使得安装板121与万向轮1131可以相对滑动,同时减少安装板121相对弧形凹槽111的摩擦力,进一步减少中心轴112的扭矩,延长中心轴112的使用寿命。
在进一步的实施例中,路径计算机构14包括红外传感器142、角度传感器141和计算中心143,路径计算机构14用于探测障碍物、计算路径并不断偏转避开障碍物到达预定地点,红外传感器142设于行进底座11前端用于探测行进装置1前方的障碍物,将感应到的障碍物信号及距离数据发送至计算中心143,计算中心143设于行进底座11上,接收来自红外传感器142的数据,此时计算中心143计算收到的到障碍物的距离数据,控制偏转机构12工作,偏转机构12最终控制第一前轮122偏转预定角度,角度传感器141安装在安装板121上,记录偏转角度,并将偏转角度数据传送至计算中心143,计算中心143记录偏转角度及偏转时间,在行进装置1越过障碍物后,根据所记录的偏转角度和偏转时间,计算偏转距离以及偏离预定点的距离差,再次反馈信号至偏转机构12,进行调整针对预定点的偏转,最终使行进装置1到达预定点。
进一步的,对于避开障碍物的偏转路径设计,可以先用两种计算路径,第一种,不及时调整的偏转设计,直至起点到预定点的投影线的距离的预定点垂直线上,控制转向机构进行最终°的偏转;第二种,每避开障碍物,就及时反向偏转,不断在行进中调整是路线偏近于相对于起点到预定点的直线距离。
在进一步的实施例中,连接机构3包括弹性连接件31、第一连接件32和第二连接件33,弹性连接件31用于连接行进底座11和运载装置2,该弹性连接件31为内部弹性连接件31外侧包裹伸缩管,如弹簧外侧包裹弹性管,第一连接件32安装在行进底座11靠尾部,即近运载装置2的一侧中部位置,第二连接件33安装在运载装置2且连接第一连接件32,第二连接件33和第一连接件32为过赢配合且第二连接件33和第一连接件32之间为旋转连接,其中,弹性连接件31用于减缓行进装置1行进发生偏转,装载物件的运载装置2在惯性的作用下无法立即偏转,运载装置2速度方向与行进装置1速度方向形成夹角,为此设置弹性连接件31用于缓冲,同时保持行进装置1与运载装置2的弹性连接。
在进一步的实施例中,运载装置2包括车厢底座21、自由轮、制动机构23和灵敏机构22,其中车厢底座21通过弹性连接于行进装置1,车厢底座21通过轴承安装多个转轴且转轴两端安装自由轮,车厢底座21还设有制动机构23和灵敏机构22,灵敏机构22控制制动机构23作用于距离行进装置1最远的转轴,即运载装置2尾部的转轴上,来减缓运载装置2的速度。
在进一步的实施例中,制动机构23包括套件221、两个夹紧件232、滑动座233、两条第二齿道234、支撑件235和第二齿轮236,其中套件221套接在车厢底座21尾端的转轴上,套件221为空心圆柱状,用于增大与两个夹紧件232之间的接触面积,两个夹紧件232设有弧度面且弧度对应套件221的圆周面,用于夹紧套件221,两个夹紧件232设置在滑动座233上水平向滑动,且两个夹紧件232底部设有弹性伸缩件237,该弹性伸缩轴可以由伸缩轴外侧包裹弹簧设置,即弹性伸缩轴可以使两个夹紧件232恢复到初始设定的位置,两条第二齿道234齿面相对且平行安装,分别通过紧固件各自连接一个伸缩夹紧件232,一条第二齿道234连接一个紧固件的上端,另一个第二齿道234连接另一个紧固件的下端,两条第二齿道234的另一端在支撑件235上滑动,支撑件235设有两道平行轨道用于控制两条第二齿道234的滑动路径,第二齿轮236设于两条第二齿道234且啮合于两条第二齿道234,第二齿轮236带动两条第二齿道234相向滑行,带动两个夹紧件232相对运动,从而夹紧套件221,利用摩擦力达到对转轴的降速,第二齿轮236由第二电机238控制旋转。
在进一步的实施例中,灵敏机构22为一个电路设计,第一金属片221和第二金属片222弹性设置在第一连接件32且平行设置,第一金属片221和第二金属片222弧度相同对应于第二连接件33的弧度,或者第二连接件33靠近金属片一侧设有相同弧度的,第一金属片221、第二金属片222和第二连接件33之间的最大距离小于d,第一金属片221、第二金属片222连接电源和第二电机238形成断开的串联电路,运载装置2装载物件时,本身重力大,在行进装置1带动物件至预定点时,做减速运动,而运载装置2本身的惯性较大,容易为行进装置1提供一个惯性力,影响行进装置1本身的计算中心143接收错误的信号及数据,为此,在运载装置2挤压行进装置1时,第二连接件33相对于第一连接件32发生挤压运动,此时第二连接件33撞到第二金属片222,使得第一金属片221、第二金属片222连接,此时电路闭合,第二电机238开始工作,带动第二齿轮236旋转从而使夹紧件232夹紧套件221,降低运载装置2的行进速度,当运载装置2的行进速度小于行进装置1的速度时,第二连接件33和第一连接件32处于拉伸状态,此时第一金属片221、第二金属片222断开,电路断开,第二电机238停止工作,夹紧件232在弹性伸缩件237作用下分开。
工作原理:设置预定位置至计算中心143,动力机构13传动连接于第一后轮1221来提供行进动力,行进装置1通过连接机构3带动装载物件的运载装置2往预定点行进,其中弹性连接件31连接行进底座11和运载装置2,第一连接件32、第二连接件33分别设置在行进底座11、运载装置2,第一连接件32和第二连接件33旋转连接且过盈配合,行进过程中,红外传感器142探测前方有障碍物,将信号和距离数据传送至计算中心143,计算中心143分析计算对应数据,将控制信号传至偏转机构12控制行进装置1偏转预定角度, 第一电机1291启动,通过减速器和齿轮传动使第一齿轮129旋转,第一齿道128与第一齿轮129啮合,从而带动横轴126单向滑动,第一滑轮125在滑动槽1231内滑动且推动一个定位板以中心轴112为圆心的角度偏转,安装板121以中心轴112为圆心发生转动,同时辅助件113上安装的万向轮1131辅助安装板121滑动,最终带动第一前轮122偏转,挡板123同时设有滑动槽1231和定位槽1232,定位轴1233辅助控制第一滑轮125相对滑动槽1231内的距离,使得两个第一前轮122偏转角度相同,角度传感器141记录偏转角度和时长,并将数据传送至计算中心143,越过障碍物后,计算中心143根据角度传感器141反馈的数据,控制偏转机构12再次进行偏转,进行针对预定点的偏转,最终使行进装置1往预定点行进,行进装置1临近预定点开始减速,此时运载装置2装载物件,惯性较大,运载装置2的速度大于行进装置1速度,运载装置2对行进装置1挤压,第二连接件33相对于第一连接件32发生挤压运动,此时第二连接件33撞到第二金属片222,使得第一金属片221、第二金属片222接触,灵敏机构22开始工作,此时电路闭合,第二电机238开始工作,带动第二齿轮236旋转从而使夹紧件232夹紧套件221,降低运载装置2的行进速度,当运载装置2的行进速度小于行进装置1的速度时,第二连接件33和第一连接件32处于拉伸状态,此时第一金属片221、第二金属片222断开,电路断开,第二电机238停止工作,夹紧件232在弹性伸缩件237作用下分开,其中灵敏机构22停止工作通过电路控制制动机构23对运载装置2末端的转轴进行摩擦制动,使运载装置2的速度对应行进装置1的速度,最终同步停止。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (10)

  1. 一种基于路径计算的搬运机器人,其特征在于,包括:
    行进装置,行进至预定地点,所述行进装置设有偏转机构用于偏转行进方向,所述行进装置还设有动力机构用于提供所述行进装置的行进的动力,所述行进装置还设有路径计算机构用于控制所述偏转机构的偏转;
    运载装置,弹性连接于行进装置,所述运载装置用于装载物件;
    连接机构,用于连接所述行进装置和所述运载装置,所述行进装置通过所述连接机构拖动运载装置行进,且所述行进装置探测障碍物、计算路径并不断偏转避开障碍物使所述运载装置运载物件到达预定地点。
  2. 根据权利要求1所述的一种基于路径计算的搬运机器人,其特征在于,所述行进装置还包括:
    行进底座,为所述行进装置的支撑底座,所述行进底座同侧端设有相对称的弧形凹槽且所述弧形凹槽设有中心轴;
    两个安装板,通过所述中心轴安装并连接于所述行进底座,所述安装板相对所述行进底座旋转预定角度;
    两个第一前轮,分别安装于两个所述安装板外侧;
    两个第一后轮,平行所述第一前轮中心线安装于所述行进底座;
    动力机构,设于所述行进底座且通过齿轮传动于所述第一后轮。
  3. 根据权利要求1所述的一种基于路径计算的搬运机器人,其特征在于,所述偏转机构包括:
    挡板,设于所述安装板上且所述挡板分别设有滑动槽和定位槽;
    横轴,对应所述挡板设于所述行进底座,且所述横轴两端分别设有第一滑轮,所述第一滑轮在所述挡板的滑动槽内滑动;
    定位轴,设于所述第一滑轮的旋转中心轴的延长处,所述定位轴另一端固定于所述定位槽内滑动;
    定位机构,控制所述横轴在所述行进底座的滑动路径;
    第一齿道,设于所述横轴上,且所述第一齿道与第一齿轮啮合;
    第一电机,设于所述行进底座,通过齿轮传动使所述第一齿轮旋转;
    回正机构,设于所述安装板上且弹性连接于所述行进底座的侧面。
  4. 根据权利要求3所述的一种基于路径计算的搬运机器人,其特征在于,还包括辅助件,所述辅助件一端固定安装在所述行进底座且所述辅助件局部覆盖所述弧形凹槽的部分,其中所述辅助件与所述弧形凹槽重合部分安装多个万向轮,且所述万向轮设于所述安装板上。
  5. 根据权利要求1所述的一种基于路径计算的搬运机器人,其特征在于,所述路径计算机构包括;
    红外传感器,设于所述行进底座前端用于探测所述行进装置前方的障碍物;
    角度传感器,设于所述安装板上,用于测量所述行进装置行进时的偏转角度;
    计算中心,设于所述行进底座,接收来自所述红外传感器和所述角度传感器的数据信号并对数据进行计算得出新的指令控制所述偏转机构。
  6. 根据权利要求1所述的一种基于路径计算的搬运机器人,其特征在于,所述连接机构包括:
    弹性连接件,用于连接所述行进底座和所述运载装置;
    第一连接件,设于所述行进底座靠近所述运载装置的一侧;
    第二连接件,设于所述运载装置且连接于所述第一连接件,所述第二连接件和所述第一连接件过赢配合且设最大间距值为d1。
  7. 根据权利要求1所述的一种基于路径计算的搬运机器人,其特征在于,所述运载装置包括车厢底座,所述车厢底座通过所述连接机构弹性连接于所述行进装置,所述车厢底座通过轴承安装多个转轴且转轴两端用于安装自由轮,所述车厢底座还设有制动机构和灵敏机构,所述灵敏机构控制所述制动机构作用于距离所述行进装置最远的转轴,减缓运载装置的速度。
  8. 根据权利要求7所述的一种基于路径计算的搬运机器人,其特征在于,所述制动机构包括:
    套件,套接在所述车厢底座且位于距离所述行进装置最远的转轴上,所述套件为空心圆柱状;
    两个夹紧件,设有弧度面且弧度面对应所述套件设置用于夹紧所述套件,两个所述夹紧件底部设有弹性伸缩件;
    滑动座,设于所述车厢底座且所述滑动座设有轨道,所述夹紧件在所述滑动座上滑动;
    两条第二齿道,齿面相对且平行安装,分别连接两个伸缩夹紧件;
    支撑件,设于所述车厢底座,所述支撑件设有两道平行轨道用于控制两条所述第二齿道的滑动路径;
    第二齿轮,设于两条所述第二齿道支间且啮合于两条所述第二齿道,所述第二齿轮传动连接于第二电机。
  9. 根据权利要求7所述的一种基于路径计算的搬运机器人,其特征在于,所述灵敏机构包括第一金属片和第二金属片,所述第一金属片和第二金属片弹性设于所述第一连接件且平行设置,所述第一金属片和所述第二金属片弧度相同对应于第二连接件的弧度,所述第一金属片、所述第二金属片和第二连接件之间的最大的距离值小于d1,所述第一金属片、所述第二金属片连接电源和所述第二电机形成断开的串联电路。
  10. 基于权利要求1至7任一项所述搬运机器人的搬运方法,其特征在于,包括以下步骤:
    步骤一、设置预定位置至计算中心,动力机构启动,行进装置通过连接机构带动装载物件的运载装置往预定点行进;
    步骤二、红外传感器探测前方有障碍物,将信号和距离数据传送至计算中心,计算中心分析计算对应数据,将控制信号传至偏转机构控制行进装置偏转预定角度,角度传感器记录偏转角度和时长,并将数据传送至计算中心,越过障碍物后,计算中心根据角度传感器反馈的数据,控制偏转机构进行偏转,进行针对预定点的偏转,最终使行进装置往预定点行进;
    步骤三、行进装置临近预定点开始减速,此时运载装置装载物件,惯性较大,运载装置的速度大于行进装置速度,运载装置对行进装置挤压,灵敏机构开始工作,通过电路控制制动机构对运载装置制动,使运载装置的速度对应行进装置的速度,最终同步停止。
PCT/CN2021/113195 2021-06-17 2021-08-18 一种基于路径计算的搬运机器人及搬运方法 WO2022262108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110671195.2A CN113371097A (zh) 2021-06-17 2021-06-17 一种基于路径计算的搬运机器人及搬运方法
CN202110671195.2 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022262108A1 true WO2022262108A1 (zh) 2022-12-22

Family

ID=77577502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113195 WO2022262108A1 (zh) 2021-06-17 2021-08-18 一种基于路径计算的搬运机器人及搬运方法

Country Status (2)

Country Link
CN (1) CN113371097A (zh)
WO (1) WO2022262108A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671311A1 (en) * 1994-03-12 1995-09-13 Ror Rockwell Limited Active steering system
CN105358392A (zh) * 2013-06-04 2016-02-24 Cnh工业意大利股份公司 用于制动牵引车-拖车组合的装置和方法
CN108502051A (zh) * 2018-03-23 2018-09-07 湖南奥天来机器人有限公司 智能agv搬运机器人
CN110764517A (zh) * 2019-12-30 2020-02-07 天津联汇智造科技有限公司 一种移动机器人拖挂料车避障的系统和方法
CN111338359A (zh) * 2020-04-30 2020-06-26 武汉科技大学 一种基于距离判断和角度偏转的移动机器人路径规划方法
CN112389536A (zh) * 2020-12-10 2021-02-23 福州盛世凌云环保科技有限公司 一种汽车转向传动机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671311A1 (en) * 1994-03-12 1995-09-13 Ror Rockwell Limited Active steering system
CN105358392A (zh) * 2013-06-04 2016-02-24 Cnh工业意大利股份公司 用于制动牵引车-拖车组合的装置和方法
CN108502051A (zh) * 2018-03-23 2018-09-07 湖南奥天来机器人有限公司 智能agv搬运机器人
CN110764517A (zh) * 2019-12-30 2020-02-07 天津联汇智造科技有限公司 一种移动机器人拖挂料车避障的系统和方法
CN111338359A (zh) * 2020-04-30 2020-06-26 武汉科技大学 一种基于距离判断和角度偏转的移动机器人路径规划方法
CN112389536A (zh) * 2020-12-10 2021-02-23 福州盛世凌云环保科技有限公司 一种汽车转向传动机构

Also Published As

Publication number Publication date
CN113371097A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN101323329B (zh) 吊钩系统
CN103935694A (zh) 一种重型悬挂链输送机及输送系统
JP4310734B2 (ja) 摩擦駆動の台車式搬送装置
CN104986220A (zh) 一种无人搬运车驱动系统
CN212173587U (zh) 一种重载轨道小车
CN110435784B (zh) 一种全地形移动平台及其组成的机器人
CN104120906B (zh) 立体车库智能搬运小车
CN113649699B (zh) 一种行走于u形工件的移动机器人及其应用
JP2000318604A (ja) ハイブリッド搬送台車用ストレージコンベヤ
CN209336564U (zh) 一种自动对接移载agv
WO2022262108A1 (zh) 一种基于路径计算的搬运机器人及搬运方法
CN113353851A (zh) 一种串联油缸断开式叉车转向桥
CN112606897A (zh) 一种全向移动自动引导agv小车
CN211252845U (zh) Agv全向双轮差速模块
JP2696473B2 (ja) ターンテーブルに固定された旋回レールと固定レールとの接合離反装置
JP2013208922A (ja) 牽引台車の連結装置
CN204821698U (zh) 一种无人搬运车驱动系统
CN111546370B (zh) 车钩分解组装机械手
CN109941686B (zh) 一种涂装生产线及平移车
CN209776425U (zh) 一种隧道施工转运平车
CN111591263A (zh) 一种全轮可转向汽车泊车搬运机器人
CN212290014U (zh) 一种agv车驱动机构
CN219057565U (zh) 一种集装箱箱轮转运装置
CN218750722U (zh) 一种agv物流车的自动制动装置
CN220866342U (zh) 一种具有横移功能的双线输送机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE