WO2022260170A1 - 車両用シート - Google Patents

車両用シート Download PDF

Info

Publication number
WO2022260170A1
WO2022260170A1 PCT/JP2022/023494 JP2022023494W WO2022260170A1 WO 2022260170 A1 WO2022260170 A1 WO 2022260170A1 JP 2022023494 W JP2022023494 W JP 2022023494W WO 2022260170 A1 WO2022260170 A1 WO 2022260170A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
control device
vehicle
information
seat
Prior art date
Application number
PCT/JP2022/023494
Other languages
English (en)
French (fr)
Inventor
元 芳田
真也 播田實
健介 溝井
直人 山内
Original Assignee
テイ・エス テック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022059752A external-priority patent/JP2023150577A/ja
Priority claimed from JP2022059753A external-priority patent/JP2023150578A/ja
Application filed by テイ・エス テック株式会社 filed Critical テイ・エス テック株式会社
Publication of WO2022260170A1 publication Critical patent/WO2022260170A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for

Definitions

  • the present invention relates to a vehicle seat, and more particularly to a vehicle seat provided with a vibrating body.
  • an obstacle approaching notification system that notifies the occupant of this.
  • it has been practiced to monitor the presence of an approaching object in the surroundings of the vehicle by external sensors arranged on the front, rear, left, and right of the vehicle, and to output a notification signal consisting of sound or light when an approaching object is detected. rice field.
  • the safety of the seated person has been improved by warning the seated person of the approach of an obstacle or the like and avoiding danger.
  • Patent Document 1 discloses a vehicle seat device that uses a vibrating body built in the vehicle seat as a notification means.
  • a vibrating body as a notification means, a situation in which it is difficult for the driver to visually or aurally recognize, for example, a situation in which it is difficult to direct the line of sight to the notification means. , it is possible to warn the driver of the presence of an approaching object.
  • the vibrating body is required not only to inform the driver of approaching danger, but also to inform the driver of route guidance information to the destination. More specifically, in order to check the route guidance information output by the conventionally popular car navigation system, the driver needs to move his/her line of sight from the front to view the display screen of the car navigation system. there were. In addition, the voice guidance output by the car navigation system may not be recognized due to the output of the audio system in the vehicle. In view of the situation as described above, there has been a demand for a notification means that does not rely on sight or hearing.
  • the present invention has been made in view of the above-mentioned problems, and its object is to notify route guidance information output by a car navigation system by means of a vibrator built in a seat body, thereby visually or aurally guiding the route guidance information.
  • a seat body installed in a vehicle, a plurality of vibrating bodies incorporated in the seat body and spaced apart from each other at least in the left-right direction, and the vibrating body.
  • a control device for controlling a body wherein the control device acquires route guidance information output by a route guidance device mounted on the vehicle, and controls the vehicle to change the direction of travel based on the route guidance information.
  • the problem is solved by controlling the vibrating body arranged on the side of the changed traveling direction to vibrate when approaching the point where the problem occurs.
  • the vibrating body arranged on the side of the changed traveling direction is controlled to vibrate. Therefore, even if the driver cannot visually or audibly recognize the route guidance information output by the route guidance device, the driver can recognize the route guidance information by the vibration of the vibrating body.
  • the control device determines a vibration parameter related to at least one of vibration intensity and vibration interval of the vibrating body based on the current position of the vehicle and the distance to the point where the traveling direction is to be changed, and determines the vibration parameter. It is preferable to control the vibrator so that it vibrates based on the above. According to the above configuration, the vibration parameter is determined based on the current location of the vehicle and the distance to the point where the direction of travel is to be changed. Therefore, even if the driver cannot visually or aurally recognize the route guidance information, the driver can recognize the distance from the current location to the point where the traveling direction is to be changed based on the vibration parameters of the vibrating body. It becomes possible.
  • the route guidance information includes route status information regarding the status of the guidance route
  • the control device determines the vibration parameter based on the route status information.
  • the vibration parameter is determined based on the information regarding the state of the guidance route output by the route guidance device. Therefore, even if the driver cannot visually or audibly recognize the situation of the guidance route, it is possible to recognize the situation of the guidance route based on the vibration parameter of the vibrator.
  • the route condition information includes road surface condition information relating to the condition of the road surface
  • the control device determines the vibration parameter based on the road surface condition information.
  • the vibration parameter is determined based on the information about the road surface condition output by the route guidance device. Therefore, even if the driver cannot visually or aurally recognize the road surface condition of the guidance route, the driver can recognize the road surface condition of the guidance route based on the vibration parameter of the vibrator.
  • the route status information includes congestion information related to congestion status
  • the control device determines the vibration parameter based on the congestion information.
  • the vibration parameter is determined based on the congestion information output by the route guidance device. Therefore, even if the driver cannot visually or aurally recognize the traffic congestion on the guide route, the driver can recognize the traffic congestion based on the vibration parameter of the vibrator.
  • the route status information includes accident information regarding at least one of a traffic accident and a broken-down vehicle
  • the control device determines the vibration parameter based on the accident information.
  • the vibration parameter is determined based on the accident information output by the route guidance device. Therefore, even if the driver cannot visually or audibly recognize the accident information on the guide route, it is possible to recognize the accident information based on the vibration parameters of the vibrator.
  • the route status information includes traffic regulation information regarding traffic regulation
  • the control device determines the vibration parameter based on the traffic regulation information.
  • the vibration parameter is determined based on the traffic control information output by the route guidance device. Therefore, even if the driver cannot visually or audibly recognize the traffic regulation information of the guidance route, it is possible to recognize the traffic regulation information based on the vibration parameter of the vibrator.
  • the control device acquires weather information of an area including the guidance route, and determines the vibration parameter based on the weather information.
  • the vibration parameter is determined based on the weather information output by the route guidance device. Therefore, the driver can recognize the weather information based on the vibration parameters of the vibrating body even if the driver cannot visually or aurally recognize the weather information.
  • control device controls the vibrator to vibrate at a timing different from the timing at which the route guidance device outputs the route guidance information. According to the above configuration, it is possible to notify the driver that the route guidance information will be output soon before the route guidance information is output from the route guidance device. Also, after the route guidance information is output from the route guidance device, the driver can be made to recognize the route guidance information in a confirmatory manner.
  • control device measures a predetermined delay time and controls the vibrator to vibrate after the delay time has passed.
  • the driver can be made to recognize the route guidance information in a confirmatory manner. Together with the recognition by , it is possible to make the route guidance information more reliably recognized.
  • the route guidance information output by the car navigation device is notified by the vibrator built in the seat body, so that even when it is difficult to recognize the route guidance information visually or audibly, , it becomes possible to recognize the route guidance information by vibration. Further, it is possible to recognize the distance from the current position to the point where the traveling direction is to be changed, based on the vibration parameters of the vibrating body. Further, it is possible to recognize the situation of the guide route based on the vibration parameters of the vibrating body. Further, it is possible to recognize the road surface condition of the guidance route based on the vibration parameter of the vibrator. In addition, it is possible to recognize the congestion situation of the guide route based on the vibration parameter of the vibrator.
  • route guidance information can be recognized more reliably.
  • FIG. 1 is an explanatory diagram of the basic configuration of a vehicle seat according to an embodiment of the present invention
  • FIG. It is a figure which shows the functional structure of a vehicle seat. It is a figure which shows an example of the display screen of a route guidance apparatus. It is a figure which shows an example of the display screen of a route guidance apparatus at the time of approaching a right-turn intersection.
  • FIG. 4 is an explanatory diagram of a vibrating body that vibrates when approaching a right-turn intersection; It is a figure which shows an example of the display screen of a route guidance apparatus at the time of approaching a left-turn intersection.
  • FIG. 4 is an explanatory diagram of a vibrating body that vibrates when approaching a left-turn intersection; It is a figure which shows the flow of the vibration control process performed by a control apparatus.
  • FIG. 4 is a diagram showing a vibration parameter table storing vibration parameters;
  • FIG. 10 is a diagram showing a vibration pattern table that is referred to when approaching a right turn point; It is a figure which shows the vibration pattern table referred when approaching a left turn point. It is a figure which shows arrangement
  • FIG. 5 is a diagram showing the flow of vibration control processing that is executed when an approaching object approaches; It is a figure which shows the flow of the vibration control process which concerns on a 1st modification.
  • FIG. 11 is an explanatory diagram of the basic configuration of a vehicle seat according to a third embodiment; It is a figure which shows the functional structure of a vehicle seat.
  • FIG. 10 is a diagram showing the vibrating state of the vibrator when an approaching object approaches from the right side of the vehicle;
  • FIG. 10 is a diagram showing the vibrating state of the vibrator when an approaching object approaches from the left side of the vehicle;
  • FIG. 7 is a diagram showing the flow of vibration parameter selection processing; It is a figure which shows an example of a vibration parameter table.
  • FIG. 4 is a diagram showing an example of a vibration pattern table that is referenced when an approaching object approaches from the right side of the vehicle;
  • FIG. 4 is a diagram showing an example of a vibration pattern table that is referenced when an approaching object approaches from the left side of the vehicle;
  • FIG. 12 is a diagram showing the flow of vibration parameter selection processing according to the fourth embodiment; It is a figure which shows an example of a vibration pattern table.
  • FIG. 11 is an explanatory diagram of the basic configuration of a vehicle seat according to a fifth embodiment; It is a schematic diagram for explaining the internal structure of the vehicle seat. It is a front view of a seat cushion and a seat back. It is a figure which shows the state which the seat cushion side support part of the pelvis support member has raised.
  • FIG. 11 is an explanatory diagram of the basic configuration of a vehicle seat according to a fifth embodiment; It is a schematic diagram for explaining the internal structure of the vehicle seat. It is a front view of a seat cushion and a seat back. It is
  • FIG. 10 is a diagram showing a state in which the seatback side support portion of the pelvis support member is tilted forward; It is a figure which shows the functional structure of a vehicle seat.
  • FIG. 4 is a diagram showing an example of inflation/deflation timing of cushion-side air cells; It is a figure which shows an example of the state which is kneading the knee back side of the biceps femoris. It is a figure which shows an example of the state which is kneading the buttocks side of the biceps femoris.
  • FIG. 4 is a diagram showing an example of inflation/deflation timing of cushion-side air cells; It is a figure which shows an example of the state which is kneading the knee back side of the biceps femoris. It is a figure which shows an example of the state which is kneading the buttocks side of the biceps femoris
  • FIG. 5 is a diagram showing an example of the inflation/deflation timing of the back-side air cell; It is a figure which shows an example of the state which is kneading the upper side of the erector spinae muscle. It is a figure which shows an example of the state which is kneading the lower side of the erector spinae muscle. It is a figure which shows the flow of the posture improvement process performed by a control apparatus. It is a figure which shows the flow of the kneading process performed by a control apparatus. It is a figure which shows the flow of the correction process performed by a control apparatus.
  • FIG. 10 is a diagram showing a contracted state and an expanded state of an air cell according to a first modified example;
  • FIGS. 1 to 7C A vehicle seat according to an embodiment of the present invention (hereinafter referred to as the present embodiment) will be described below with reference to FIGS. 1 to 7C.
  • the embodiments described below are intended to facilitate understanding of the present invention, and are not intended to limit the present invention.
  • the present invention may be modified and improved without departing from its spirit, and the present invention includes equivalents thereof.
  • the "longitudinal direction” refers to the longitudinal direction of the vehicle V, and coincides with the running direction of the vehicle V.
  • the "seat front-rear direction” means the front-rear direction when viewed from a person seated in the vehicle seat.
  • the “left-right direction” is the left-right direction of the vehicle V.
  • the “seat width direction” means the width direction of the vehicle seat, and coincides with the left-right direction when viewed from the person seated in the vehicle seat.
  • “left” refers to the left with respect to the traveling direction of the vehicle V
  • “seat left” refers to the left when viewed from the seated occupant.
  • the vehicle V refers to the traveling direction of the vehicle V
  • seat right refers to the right when viewed from the seated person.
  • the "height direction” means the height direction of the vehicle seat, and coincides with the vertical direction when the vehicle seat is viewed from the front.
  • FIG. 1 is a perspective view showing the basic configuration of a vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • the seat cushion 1, seat back 2, and headrest 3 correspond to a seat body.
  • the seat cushion 1 is a seating portion that supports the seated person from below.
  • the seat cushion 1 is mainly composed of a seat cushion frame (not shown) forming the skeleton of the seat cushion 1, and a cushion material 1a and a skin material 1b covering the seat cushion frame.
  • the cushion material 1a is a pad member made of foamed urethane or the like.
  • the seat cushion 1 incorporates a plurality of vibrating bodies 10.
  • the vibrating bodies 10 are arranged apart from each other in the seat front-rear direction and the seat width direction.
  • the seat cushion 1 includes a right front vibrating body 11RF arranged on the right front side of the seat, a right rear vibrating body 11RR arranged on the right rear side of the seat, and a left front vibrating body 11LF arranged on the left front side of the seat. , and a left rear vibrating body 11LR arranged on the left rear side of the seat.
  • the seat cushion vibrator 11 is accommodated in a recess formed in the cushion material 1a.
  • the seat back 2 is a backrest that supports the back of the seated person from behind.
  • the seatback 2 is mainly composed of a seatback frame (not shown) that forms the skeleton of the seatback 2, and a cushion material 2a and a skin material 2b that cover the seatback frame.
  • the seat back 2 incorporates a plurality of vibrating bodies 10 arranged apart from each other in the vertical direction and the seat width direction. More specifically, the seat back 2 includes a right upper vibrating body 12RU arranged on the upper right side of the seat, a lower right vibrating body 12RD arranged on the lower right side of the seat, and an upper left vibrating body 12LU arranged on the upper left side of the seat. , and a left lower vibrating body 12LD arranged on the lower left side of the seat.
  • the seatback vibrator 12 is accommodated in a recess formed in the cushioning material 2a of the seatback 2. As shown in FIG.
  • the headrest 3 is a head that supports the occupant's head from behind, and is mainly composed of a pillar 3c as a core material, and a cushion material 3a and a skin material 3b that cover the pillar 3c.
  • the vehicle seat S incorporates a control device 20 that controls the vibration of the vibrating body 10 .
  • the control device 20 is connected to the external sensor 30 and the navigation device 40 via communication lines, as shown in FIG.
  • the control device 20 acquires route guidance information from the navigation device 40 and controls the vibrating body 10 to vibrate based on the route guidance information.
  • FIG. 2 shows the functional configuration of the vehicle seat S, the external sensor 30 connected to the control device 20 of the vehicle seat S, and the navigation device 40 .
  • the control device 20 is connected to the external sensor 30, the navigation device 40, the seat cushion vibrating body 11, and the seat back vibrating body 12, and controls the vehicle seat S as a whole.
  • the external sensor 30 is a sensor that detects the situation of the external world, which is the surrounding information of the vehicle V.
  • the external sensor 30 can be configured by a lidar that measures the scattered light with respect to the omnidirectional irradiation light of the vehicle V and measures the distance from the vehicle V to the surrounding obstacles.
  • the external sensor 30 can be configured by a radar that detects other vehicles, obstacles, and the like around the vehicle V by radiating electromagnetic waves and detecting reflected waves.
  • the external sensor 30 can further be configured by an optical sensor that captures an image of the vehicle V's surroundings.
  • the external sensor 30 has a right front sensor 30RF, a right rear sensor 30RR, a left front sensor 30LF, and a left rear sensor 30LR.
  • the right front sensor 30RF is arranged on the right front of the vehicle V to detect the front and right directions of the vehicle V.
  • the right rear sensor 30RR is arranged at the right rear of the vehicle V to detect the rearward and rightward directions of the vehicle V. As shown in FIG.
  • the left front sensor 30LF is arranged on the left front of the vehicle V to detect the conditions of the vehicle V in the front and left directions.
  • the left rear sensor 30LR is arranged at the left rear of the vehicle V and detects the situation of the vehicle V in the rear direction and the left direction.
  • the navigation device 40 is mainly composed of a GPS receiver 41, a route guidance unit 42, a communication unit 43, and a map information storage unit 44, and is used to guide the route connecting the current location of the vehicle V and the destination.
  • the route guidance information includes a guidance route (route from the current location to the destination), guidance information (guidance information such as right and left turns), and route status information (traffic information, etc.) regarding the state of the guidance route.
  • the route guidance information will be described later with reference to FIG.
  • the GPS receiving unit 41 receives transmission radio waves transmitted by a plurality of GPS satellites. Then, the GPS receiver 41 identifies the current location of the vehicle V by calculating the distance from the GPS satellites to the vehicle V based on the received signal.
  • the route guidance unit 42 identifies a route to reach the destination based on the current location and the destination identified by the GPS receiver 41, and outputs route guidance information.
  • a route from the current location to the destination can be obtained using a route search algorithm called the Dijkstra method, but is not limited to this.
  • the user can select a desired route from a plurality of routes. As a result, it is possible to select, as a guide route, a route that meets conditions desired by the user for different travel conditions such as travel time or travel cost.
  • the guidance route from the current location to the destination specified by the route guidance unit 42 is superimposed on the map acquired from the map information storage unit 44 and output to the input/output unit 50, which will be described later.
  • the output screen of the input/output unit 50 will be described later with reference to FIG.
  • the communication unit 43 acquires information regarding the status of the guidance route from the outside via a wireless communication line. More specifically, the communication unit 43 transmits FM multiplex broadcast signals, radio wave beacon signals output by beacon oscillators installed on expressways, and radio wave beacon signals installed on main roads on general roads, through wireless communication lines. An optical beacon signal output by a beacon oscillator is received. The communication unit 43 can acquire road surface condition information about the road surface condition of the guidance route, traffic congestion information about traffic conditions, accident information (traffic matters and broken vehicle information), traffic regulation information, construction information, and weather information. . The information acquired by the communication unit 43 is output to the input/output unit 50 described later together with the guidance route specified by the route guidance unit 42 .
  • the map information storage unit 44 is a non-volatile storage device such as an SSD (Solid State Drive), and stores map information. Also, a program or the like executed by the processor of the navigation device 40 may be stored. The map information storage unit 44 preferably stores the latest version of the map information acquired via the communication unit 43 .
  • FIG. 3 shows a front view of the input/output unit 50 of the navigation device 40.
  • the input/output unit 50 mainly includes a display unit that displays a map information display screen 51, and an operation unit that includes menu operation buttons 54, display position change buttons 55, and the like.
  • a current position display 53 of the vehicle V and a guidance route display 52 indicating the guidance route specified by the route guidance unit 42 are displayed superimposed on the map information.
  • the menu operation button 54 is operated to input the destination and various setting information for the navigation device 40 .
  • the display position change button 55 is operated to slide the center position of the map information upward, downward, rightward, and downward with respect to the map information display screen 51 . It is also possible to accept an operation for positioning the current position of the vehicle V at the center of the map information display screen 51 .
  • the enlargement/reduction button 56 is operated to change the display magnification of the map information.
  • the destination display 57 displays the moving distance from the current location to the destination and the estimated time of arrival at the destination.
  • the navigation device 40 outputs the guidance route from the current location of the vehicle V to the destination.
  • guidance information for changing the direction of travel and information on the status of the guidance route (road surface condition information, traffic congestion information, traffic accident information, broken vehicle information, traffic regulation information, construction information, or weather information) is output.
  • route guidance information a guidance route, guidance information about the guidance route, and information about the status of the guidance route.
  • the vibrating body 10 has a seat cushion vibrating body 11 built into the seat cushion 1 and a seat back vibrating body 12 built into the seat back 2 .
  • the vibrating body 10 is, but not limited to, an eccentric motor composed of a motor and an eccentric weight fixed to the rotating shaft of the motor, or a linear vibrator.
  • the vibrating body 10 should be able to stimulate the seated person by vibration and function as a notification means.
  • the vibrating bodies 10 are composed of four seat cushion vibrating bodies 11 built into the seat cushion 1 and four seat back vibrating bodies 12 built into the seat back vibrating bodies 12. , but not limited to. A greater number of seat cushion vibrators 11 and seat back vibrators 12 may be incorporated.
  • the control device 20 is an ECU (Electronic Control Unit) mounted in the vehicle seat S.
  • the control device 20 includes a processor that executes programs, a nonvolatile storage medium, and a volatile storage medium.
  • the processor functions as an acquisition unit 21, a vibration parameter determination unit 22, and a vibration control unit 23 by executing programs stored in a nonvolatile storage medium.
  • the acquisition unit 21 has a communication interface capable of communication via a communication cable or wireless communication, and acquires the external world signal output by the external sensor 30 and the route guidance information output by the navigation device 40 .
  • the vibration parameter determination unit 22 determines vibration parameters when the vibrating body 10 vibrates.
  • the vibration parameters include at least vibration intensity and vibration interval.
  • the vibration parameters may include vibration frequency.
  • the vibration parameter determining unit 22 determines the vibration parameter based on the current location of the vehicle V and the distance to the point where the vehicle V next changes its traveling direction. For example, the vibration parameter determination unit 22 acquires the route guidance information from the acquisition unit 21, and determines the vibration parameter so that the vibration intensity increases as the distance from the current location to the point where the next direction of travel is to be changed becomes shorter. .
  • the vibration parameter determination unit 22 determines vibration parameters based on road surface condition information, traffic jam information, traffic accident information, broken vehicle information, traffic regulation information, construction information, or weather information. For example, the vibration parameter determining unit 22 determines the vibration parameter so that the vibration frequency increases as the distance between the current location and the point where traffic congestion occurs decreases.
  • FIG. 4A shows the map information display screen 51 of the navigation device 40 when the vehicle V is approaching the right turn point.
  • FIG. 4B shows the driving state of the vibrating body 10 at this time.
  • the map information display screen 51 displays a route change point name display 58 and a route change distance display 59 .
  • a modified course display 60 are superimposed on the map information and displayed.
  • the course change point name display 58 indicates the name of the right turn point.
  • the course change distance display 59 indicates the distance from the current position to the right turn point. Further, the changed course display 60 indicates the traveling direction after the change.
  • the right front vibrating body 11RF, the right rear vibrating body 11RR, the right upper vibrating body 12RU, and the right lower vibrating body 12RD arranged on the right side which is the direction of travel after the change, vibrate.
  • the vehicle seat S notifies the approach of the right turn point by vibrating the vibrator 10 arranged on the right side. This allows the driver to recognize the route guidance information even in a situation where it is difficult to direct the line of sight to the navigation device 40 .
  • FIG. 5A shows the map information display screen 51 of the navigation device 40 when the vehicle V is approaching the point to turn left.
  • FIG. 5B shows the driving state of the vibrating body 10 at this time.
  • the map information display screen 51 displays a route change point name display 58 and a route change distance display 59 .
  • a modified course display 60 are superimposed on the map information and displayed.
  • the left front vibrating body 11LF, the left rear vibrating body 11LR, the left upper vibrating body 12LU, and the left lower vibrating body 12LD arranged on the left side which is the traveling direction after the change, vibrate.
  • the vehicle seat S notifies the approach of the left turn point by vibrating the vibrator 10 arranged on the left side. This allows the driver to recognize the route guidance information even in a situation where it is difficult to direct the line of sight to the navigation device 40 .
  • FIG. 6 shows the flow of vibration control processing.
  • the vibration control process shown in FIG. 6 is executed by the control device 20 at a predetermined time cycle.
  • the control device 20 determines whether route guidance information has been received from the navigation device 40 (step S10). If it is not determined that the route guidance information has been received (step S10: No), the control device 20 waits until the route guidance information is received.
  • the route guidance information includes a guidance route from the current location to the destination, guidance information regarding the direction of travel, and information regarding the status of the guidance route.
  • the information about the state of the guidance route includes road surface condition information, congestion information, traffic accident information, broken vehicle information, construction information, or traffic regulation information.
  • the control device 20 acquires the weather information of the area including the guidance route (step S11).
  • Weather information includes information on heavy rain, heavy snow, strong winds, and the like. Weather information may be acquired together with route guidance information.
  • the control device 20 determines whether or not the current position of the vehicle V has approached the right turn point (step S12). More specifically, it is determined whether or not the distance between the current position of the vehicle V and the right turn point is equal to or less than a preset distance. A plurality of distances are set for the predetermined distance, such as 300 meters, 100 meters, and 30 meters. Alternatively, the control device 20 may make a determination based on whether or not it has received route guidance information from the navigation device 40 that indicates that the vehicle is approaching a right turn point.
  • the control device 20 selects the vibration parameter to determine the vibration parameter (step S13). Specifically, the control device 20 selects vibration parameters by referring to the vibration parameter table 24 .
  • FIG. 7A shows the vibration parameter table 24.
  • the vibration parameter table 24 stores vibration parameters and selectable vibration parameter values. Vibration parameters include vibration intensity, vibration interval, and vibration frequency.
  • the vibration intensity is a parameter that indicates the amplitude of vibration of the vibrating body 10 .
  • the vibration intensity one of preset values of "weak”, “medium”, and “strong” can be set.
  • the vibration interval is a parameter that indicates the length of the vibration cycle when the vibrating body 10 repeatedly vibrates with the vibration period and the stop period as one vibration cycle.
  • As the vibration period one of preset values of "short”, “medium”, and “long” can be selected.
  • the vibration frequency is a parameter indicating the vibration frequency of the vibrating body 10 . As the vibration frequency, it is possible to set one of preset values of "low”, “middle”, and "high”.
  • the vibration parameter determination unit 22 of the control device 20 selects vibration parameters based on the distance from the current location to the point where the course direction is to be changed. Specifically, if the distance from the current location to the right-turn intersection is 100 meters or more and less than 300 meters, the vibration intensity is set to "weak", the vibration interval is set to "long”, and the vibration frequency is set to "low”. decide. When the distance from the current position to the right-turn intersection is 30 meters or more and less than 100 meters, the vibration intensity is determined to be “medium”, the vibration interval is determined to be “medium”, and the vibration frequency is decided to be “medium”. If the distance from the current location to the right-turn intersection is less than 30 meters, the vibration intensity is determined to be “strong”, the vibration interval is determined to be “short”, and the vibration frequency is determined to be “high”.
  • the control device 20 controls the vibrating body 10 to vibrate with the vibration parameters determined in step S13 (step S14).
  • the control device 20 refers to the vibration pattern table 25R to control the vibration body 10 arranged on the right side of the vehicle seat S to vibrate.
  • the vibration pattern table 25R is the vibration pattern table 25 that is referred to when the vehicle approaches the right turn point, and stores the order of vibrating the plurality of vibrating bodies 10 .
  • FIG. 7B shows the vibration pattern table 25R referred to when approaching the right turn point.
  • the vibration pattern table 25R stores three vibration patterns, "Pattern A”, "Pattern B", and "Pattern C”.
  • Pattern A is a vibration pattern in which the upper right vibrating body 12RU, the lower right vibrating body 12RD, the right rear vibrating body 11RR, and the right front vibrating body 11RF built in the seat cushion 1 vibrate in this order. is.
  • Pattern A is a vibration pattern referred to when changing course obliquely forward to the right.
  • Pattern B the vibrating body 10 vibrates in the reverse order of pattern A.
  • Pattern B is a vibration pattern that is referred to when changing course obliquely rearward to the right.
  • Pattern C is a vibration pattern in which the upper right vibrating body 12RU, the lower right vibrating body 12RD, the right rear vibrating body 11RR, and the right front vibrating body 11RF vibrate simultaneously.
  • Pattern C is a vibration pattern referred to when traveling in the right front direction.
  • step S12 determines whether the current location has approached the right turn point (step S12: No). More specifically, it is determined whether the distance between the current position of the vehicle V and the left turn point is, for example, 300 meters, 100 meters, or 30 meters or less.
  • step S15 When it is determined that the current location is close to the left turn point (step S15: Yes), the control device 20 selects the vibration parameter to determine the vibration parameter (step S16). As in step S ⁇ b>13 , the control device 20 determines vibration parameters by referring to the vibration parameter table 24 .
  • the control device 20 controls the vibrating body 10 to vibrate with the determined vibration parameters (step S17).
  • the control device 20 controls the vibration body 10 arranged on the left side of the vehicle seat S to vibrate in a predetermined order.
  • the vibration pattern table 25L is the vibration pattern table 25 referred to when approaching the left turn point.
  • the vibration pattern table 25L is the same as the vibration pattern table 25R that stores the vibration pattern when turning right, as shown in FIG. 7C, so detailed description thereof will be omitted.
  • step S15 determines whether the current position has approached the left turn point (step S15: No).
  • the control device 20 selects vibration parameters based on the situation of the guidance route (step S18). For example, if the road surface condition of the guidance route within 1 kilometer from the current location indicates "rough road”, the vibration intensity is determined to be “strong”, the vibration interval is determined to be “short”, and the vibration frequency is determined to be "high”. to decide.
  • the control device 20 may select the vibration parameter based on traffic information on the guide route. For example, if the traffic information for the guidance route within 1 kilometer from the current location indicates "congested”, the vibration intensity is determined to be “medium”, the vibration interval is determined to be “medium”, and the vibration frequency is “medium”. to decide.
  • the control device 20 may select the vibration parameter based on the accident information of the guidance route. For example, if the accident information for the guidance route within 1 km from the current location indicates "traffic accident”, the vibration intensity is determined to be “weak”, the vibration interval is determined to be “long”, and the vibration frequency is set to “low”. ” is decided. Also, the control device 20 may select the vibration parameter based on the traffic regulation information of the guide route. For example, if the traffic control information for a guidance route within 1 km from the current location indicates "traffic control”, the vibration intensity is determined to be "medium”, the vibration interval is determined to be “medium”, and the vibration frequency is set to " Decide on “Medium”.
  • Controller 20 may select vibration parameters based on local weather information including the guidance route. For example, if the weather information within 10 kilometers from the current location indicates “heavy rain”, “heavy snow”, or “strong wind”, the vibration intensity is determined to be “strong” and the vibration interval is determined to be “short”. , determines the vibration frequency to be “strong”.
  • the relationship between the guidance route conditions and weather information and the vibration parameters described above is merely an example, and an arbitrary vibration parameter can be selected according to the guidance route conditions.
  • control device 20 controls the vibrating body 10 to vibrate with the vibration parameters determined in step S18 (step S19).
  • the control device 20 controls the vibrating body 10 to vibrate based on one of the patterns A, B, and C stored in the vibration pattern table R and the vibration pattern table L, and the vibration control process ends. do.
  • the route guidance information can be detected by vibration. can be recognized.
  • the control device 20 acquires the route guidance information output by the navigation device 40 mounted on the vehicle V and controls the vibration of the vibrating body 10, but the present invention is not limited to this.
  • a portable smart phone may be loaded with a route guidance program by the seated person, and the control device 20 may acquire route guidance information output by the smart phone to control vibration of the vibrating body 10 .
  • the control device 20 controls the vibrating body 10 to vibrate at the timing when the route guidance information is acquired, but the present invention is not limited to this.
  • the control device 20 may control the vibrating body 10 to vibrate at a timing different from the timing at which the navigation device 40 outputs the route guidance information.
  • the control device 20 may measure a predetermined delay time after acquiring the route guidance information, and control the vibration body 10 to vibrate after the delay time has elapsed.
  • the driver who has recognized the route guidance information output from the input/output unit 50 of the navigation device 40 can be notified of the route guidance information in a confirmatory manner after the predetermined delay time has elapsed. Therefore, it is possible to allow the driver to more reliably recognize the route guidance information in addition to visual or auditory recognition.
  • control device 20 may vibrate the vibrating body 10 before the navigation device 40 outputs the route guidance information. More specifically, the control device 20 predicts the timing at which the navigation device 40 outputs the route guidance information based on the route guidance information and the traveling speed of the vehicle V, and before outputting the next route guidance information, The vibrator 10 is controlled to vibrate. Thus, the driver can be notified that the route guidance information will be output soon. Therefore, it is possible to assist the driver in recognizing the route guidance information output from the navigation device 40 .
  • the control device 20 controls the vibrating body 10 based on the route guidance information output by the navigation device 40, thereby effectively using the vibrating body 10 as notification means.
  • the control device 120 monitors the presence of an approaching object in the vicinity of the external environment of the vehicle V based on the output of the external sensor 30, and when the approaching object is detected, the approaching object The vibrating body 10 is vibrated based on the direction, distance, and approach speed.
  • the "approaching object” is an object approaching the vehicle V, in other words, an object whose relative distance to the vehicle V is small.
  • other vehicles traveling around the vehicle V motorcycles, bicycles, pedestrians, installed objects such as walls of buildings and telegraph poles can correspond to approaching objects.
  • FIG. 8 schematically shows the mounting position of the external sensor 30 with respect to the vehicle V in the second embodiment.
  • the external sensor 30 has a total of four sensors attached to the front, rear, left, and right of the vehicle V, one for each. That is, a right front sensor 30RF, a right rear sensor 30RR, a left front sensor 30LF, and a left rear sensor 30LR are attached to the vehicle body of the vehicle V.
  • the number and arrangement of sensors are not limited to the number and arrangement shown in FIG.
  • the positions of the sensors may be changed or added to the locations marked with white circles or the locations marked with crosses.
  • control device 120 When the control device 120 according to the second embodiment acquires the external world signal output by the external world sensor 30, based on the external world signal, the approach direction of the approaching object to the vehicle V, the distance between the vehicle V and the approaching object, and Identify the approach speed of the approaching object. Subsequently, the control device 120 determines the vibration parameters of the vibrating body 10 based on the approaching distance and the approaching speed of the approaching object, and controls the vibrating body 10 arranged in the approaching direction of the approaching object to vibrate.
  • FIG. 9 shows the flow of vibration control processing executed by the control device 120 according to the second embodiment.
  • control device 120 acquires an external world signal output from external sensor 30 (step S110).
  • the control device 120 determines whether or not an approaching object is approaching (step S111). Specifically, the control device 120 identifies an approaching object existing around the vehicle V based on the signal acquired in step S110. In other words, the control device 120 identifies the approaching direction of the approaching object, the distance between the vehicle V and the approaching object, and the approaching speed of the approaching object. Then, the control device 120 determines the presence or absence of an approaching object by comparing the specified distance between the vehicle V and the approaching object and the approaching speed with a predetermined threshold value set in advance.
  • step S111: No If it is not determined that there is an approaching object (step S111: No), it waits until the approaching object approaches. On the other hand, when it is determined that an approaching object exists (step S111: Yes), the control device 120 determines the approaching direction of the approaching object. That is, first, it is determined whether or not an approaching object is approaching from the right side of the vehicle V (step S112).
  • step S113 the control device 120 selects and determines vibration parameters (step S113). Controller 120 selects vibration parameters based on the distance between vehicle V and the approaching object and the approaching speed of the approaching object. Specifically, when the distance between the vehicle V and the approaching object is short and the approaching speed of the approaching object is high, the vibration strength "strong” is selected. On the other hand, when the distance between the vehicle V and the approaching object is long and the approaching speed of the approaching object is low, the vibration strength "weak" is selected.
  • the control device 20 controls the vibration body 10 arranged on the right side of the vehicle seat S to vibrate using the vibration parameters determined in step S113 (step S114). Specifically, when an approaching object approaches from the rear right, the control device 20 controls the upper right vibrating body 12RU, the lower right vibrating body 12RD of the seat back 2, the right rear vibrating body 11RR of the seat cushion 1, and the right front vibrating body. The vibrating bodies 10 are vibrated in the order of the body 11RF, and the vibration control process ends.
  • step S112 determines whether the approaching object is approaching from the right side of the vehicle V. is determined (step S115).
  • step S115 determines whether the approaching object is approaching from the left side of the vehicle V.
  • step S115 determines whether the approaching object is approaching from the left side of the vehicle V.
  • step S116 determines whether the approaching object is approaching from the left side of the vehicle V.
  • the control device 20 controls the vibration body 10 arranged on the left side of the vehicle seat S to vibrate using the vibration parameters determined in step S116 (step S117). Specifically, when an approaching object approaches from the left rear, the control device 20 controls the upper left vibrating body 12LU, the lower left vibrating body 12LD, the left rear vibrating body 11LR, and the left front vibrating body 11LR of the seat back 2. The vibrating bodies 10 are vibrated in the order of the body 11LF, and the vibration control process ends.
  • step S115 determines that the approaching object is approaching from the left side of the vehicle V from behind. do. Subsequently, the control device 20 determines the vibration parameters based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object (step S118). is controlled to vibrate (step S119), and the vibration control process ends.
  • vibration control process described above is repeatedly executed at predetermined time intervals. This allows the control device 20 to update the vibration parameters based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object.
  • the vibration parameter is determined based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object, and the vibrator 10 arranged in the direction in which the approaching object approaches is vibrated.
  • the vibration body 10 is vibrated when an approaching object approaches the running vehicle V based on the output of the external sensor 30, but the present invention is not limited to this.
  • the vibrating body 10 may be vibrated in conjunction therewith. This makes it possible to improve the safety of the occupant as in the second embodiment.
  • the case where the vehicle seat S is oriented in the traveling direction of the vehicle V is described as vibrating the vibrating body 10 arranged in the approaching direction of the approaching object. It is not limited to this.
  • the vehicle seat S is in a direction different from the traveling direction of the vehicle V (for example, when the back is turned to the traveling direction of the vehicle V)
  • the vehicle seat S is arranged on the opposite side in the seat width direction to the approaching direction of the approaching object.
  • the vibrating body 10 may be vibrated.
  • the vibrating body 10 is vibrated when there is an object approaching the running vehicle V from behind, but the present invention is not limited to this.
  • the vibrating body 10 may be vibrated when an approaching object is detected on the side of the changed course.
  • FIG. 10 shows the flow of vibration control processing executed by the control device 120A according to the first modified example.
  • FIG. 10 the case of changing the course to the right will be described, but the same applies to the case of changing the course to the left.
  • control device 120A determines whether or not the right winker lever has been operated (step S110A). When it is determined that the right winker lever has not been operated (step S110A: No), the control device 120A waits until the winker lever is operated.
  • step S110A Yes
  • the control device 120A acquires the external world signal output by the external sensor 30 (step S111A).
  • control device 120A determines whether or not there is an approaching object in the direction in which the turn signal lever is operated, that is, in the changed course, based on the external signal acquired in step S111A (step S112A). More specifically, the control device 120A identifies the approaching direction of the approaching object, the distance between the vehicle V and the approaching object, and the approaching speed of the approaching object, and determines whether or not the approaching object exists on the right side. .
  • step S112A If it is determined that an approaching object exists on the right side (step S112A: Yes), the control device 120A determines vibration parameters (step S113A). As described above, the vibration parameters are determined based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object. Then, the control device 20 vibrates the vibrating body 10 arranged on the right side of the vehicle V using the vibration parameters determined in step S114A (step S114A).
  • step S112A determines whether there is an approaching object on the right side (step S112A: No). If it is not determined in step S112A that there is an approaching object on the right side (step S112A: No), the process ends without vibrating the vibrating body 10 .
  • the vibration parameter is determined based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object. It is determined. Then, the vibrating body 10 arranged on the course change side of the vehicle V vibrates with the determined vibration parameter. As a result, the driver can appropriately recognize the existence of an approaching object in the lane after the course change, and the safety of the seated person can be improved.
  • FIG. 11 shows the flow of vibration control processing executed by the control device 120B according to the second modified example.
  • the control device 120B first determines whether or not a start operation has been performed (step S110B). Specifically, the control device 120B determines whether or not the start operation has been performed based on the presence or absence of the accelerator operation and the position of the shift lever. When it is determined that the start operation has not been performed (step S110B: No), the control device 120B waits until the start operation is performed.
  • step S110B determines whether or not there is an approaching object ahead in the starting direction based on the external signal acquired in step S111B (step 112B). More specifically, the control device 120B identifies the approaching direction of the approaching object, the distance between the vehicle V and the approaching object, and the approaching speed of the approaching object, and determines whether or not there is an approaching object ahead. .
  • step S112B When it is determined that there is an approaching object ahead (step S112B: Yes), the control device 120B determines vibration parameters (step S113B). As described above, the vibration parameters are determined based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object.
  • control device 120B vibrates the vibrating body 10 placed in front using the vibration parameters determined in step S113B (step S114B). Specifically, the control device 120B controls the seat cushion vibrating body 11 to vibrate, returns to step S11B, and vibrates the vibrating body 10 while updating the vibration parameters until the approaching state of the approaching object is resolved. to control.
  • step S115B determines whether or not there is an approaching object behind.
  • the control device 120B determines vibration parameters (step S116B) and vibrates the vibrating body 10 placed behind (step S117B). Specifically, the control device 120B controls the seatback vibrating body 12 to vibrate, returns to step S111B, and vibrates the vibrating body 10 while updating the vibration parameters until the approaching state of the approaching object is resolved. to control.
  • step S115B if it is determined that there is no approaching object behind (step S115B), the control device 120B terminates the process.
  • the vibration parameter is determined based on the distance between the vehicle V and the approaching object and the approaching speed of the approaching object. . Then, the vibrating body 10 arranged in the starting direction of the vehicle V vibrates with the determined vibration parameter. As a result, the driver can appropriately recognize the presence of an approaching object existing in the starting direction, and the safety of the seated occupant can be improved.
  • a vehicle seat S according to the third embodiment will be described below with reference to FIGS. 12 to 18C.
  • the effectiveness of the vibrating body can be recognized as a notification means for notifying approaching danger without depending on the sight or hearing of the seated person.
  • further improvement has been desired as a notification means for the seated person. More specifically, it has been desired to provide more effective notification according to the physique of the seated person or the condition of the road surface during driving. For example, when a notification is given to a seated person having a small build, the vibration of the vibrating body may make the seated person feel uncomfortable.
  • FIG. 12 is a perspective view showing the basic configuration of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • FIG. 12 shows a perspective view showing the basic configuration of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • FIG. 12 is a perspective view showing the basic configuration of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • FIG. 12 is a perspective view showing the basic configuration of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • the vehicle seat S incorporates a control device 220 that controls driving of the vibrating body 10 .
  • the control device 220 is connected to the external sensor 30 and the physique detection sensor 240 via communication lines.
  • Control device 220 determines the existence and approach direction of an approaching object approaching vehicle V based on the output signal of external sensor 30 .
  • the control device 220 also determines the vibration parameters of the vibrating body 10 based on the physique signal output by the physique detection sensor 240, and controls the vibrating body 10 arranged in the approaching direction to vibrate with the determined vibration parameters. . Thereby, the control device 220 notifies the seated person of the approach of the approaching object to call attention to the seated person.
  • FIG. 13 shows the functional configuration of the vehicle seat S, the external sensor 30 connected to the control device 220 of the vehicle seat S, the physique detection sensor 240, the road surface imaging device 245, and the traveling speed sensor 246.
  • the control device 220 is connected to the external sensor 30, the physique detection sensor 240, the road imaging device 245, the running speed sensor 246, the seat cushion vibrating body 11, and the seat back vibrating body 12. and controls the entire vehicle seat S.
  • the physique detection sensor 240 detects the physique of the seated person and outputs a physique signal.
  • Physique detection sensor 240 corresponds to a physique detection device.
  • the physique detection sensor 240 can be configured by a weight sensor incorporated in the seat cushion 1 of the vehicle seat S. As shown in FIG.
  • the control device 220 can acquire the load signal of the seated person on the seat cushion 1 .
  • the weight sensor is preferably arranged near the vibrating body 10 built in the seat cushion 1 . As a result, based on the load signal detected by the weight sensor, the vibration parameter of the vibrating body 10 arranged in the vicinity thereof can be appropriately set, so that the vibrating body 10 can effectively perform notification. becomes.
  • the physique detection sensor 240 may be configured by an image capturing device that captures an image of a person seated on the vehicle seat S.
  • the control device 220 can acquire an image of the seated person.
  • the control device 220 can acquire attribute information such as the sex and age of the seated person in addition to the physique of the seated person.
  • the control device 220 can effectively perform notification by the vibrating body 10 .
  • the physique detection sensor 240 may be configured by a position sensor that detects the position of the vehicle seat S whose position in the vehicle compartment can be changed in the front-rear direction.
  • the position sensor can be attached to, for example, a slide mechanism (not shown) that is installed below the vehicle seat S and supports the vehicle seat S so that it can slide back and forth.
  • the control device 220 can acquire the position information of the vehicle seat S. As shown in FIG.
  • the control device 220 estimates the physique of the seated person based on the positional information of the vehicle seat S. As shown in FIG. Therefore, it is possible to effectively perform notification by the vibrating body 10 while suppressing an increase in cost.
  • the physique detection sensor 240 may be built in the vehicle seat S and configured by a plurality of capacitance sensors arranged at predetermined intervals from each other.
  • the control device 220 can acquire the detection signal of the capacitance sensor.
  • the control device 220 determines the position where the seated person and the vehicle seat S are in contact based on the detection signal of the capacitance sensor, and determines the position where the seated person and the vehicle seat S are in contact. It is possible to effectively perform notification by the vibrating body 10 arranged in the vicinity of .
  • the road surface imaging device 245 is attached to the vehicle body of the vehicle V and outputs an image of the road surface on which the vehicle V travels.
  • the control device 220 determines the road surface condition by performing a predetermined image analysis process on the image of the road surface (corresponding to the road surface signal).
  • the road surface condition includes, for example, the presence or absence of unevenness on the road surface and information on the pavement condition of the road surface.
  • the control device 220 determines the road surface condition, and controls the vibrating body 10 to increase the vibration intensity when the road surface condition is poor. As a result, it is possible for the seated occupant to recognize the notification signal without mistaking it for vibration from the road surface.
  • the road surface imaging device 245 corresponds to a road surface condition detection device.
  • the running speed sensor 246 outputs a running speed signal of the vehicle V.
  • the control device 220 acquires a travel speed signal and increases the vibration intensity of the vibrator 10 when the road surface condition is poor and the travel speed is high. to control. As a result, it is possible for the seated occupant to recognize the notification signal without mistaking it for vibration from the road surface.
  • the seat cushion vibrating body 11 and the seat back vibrating body 12 have the same configuration as in the above-described embodiment, so detailed description thereof will be omitted.
  • the control device 220 is an ECU (Electronic Control Unit) mounted in the vehicle seat S.
  • the control device 220 includes a processor that executes programs, a nonvolatile storage medium, and a volatile storage medium.
  • the processor functions as an acquisition unit 221 , an approaching object determination unit 222 , a seating state determination unit 223 , a vibration parameter determination unit 224 and a vibration control unit 225 by executing programs stored in a nonvolatile storage medium.
  • the acquisition unit 221 has a communication interface capable of communication through a communication cable or wireless communication, and acquires the external world signal output by the external sensor 30 and the build signal output by the build detection sensor 240 .
  • the approaching object determination unit 222 detects objects around the vehicle V based on the external world signal output by the external sensor 30 . Then, the approaching object determination unit 222 determines the type of the detected object (for example, pedestrian or other vehicle) from the characteristics of the detected object. Subsequently, the approaching object determination unit 222 calculates the collision probability between the detected object and the vehicle V.
  • the collision probability is calculated in consideration of the approach speed of the object to the vehicle V.
  • the approaching object determination unit 222 may determine the type of collision between the vehicle V and the object (frontal collision, rearward collision, side collision), and calculate the collision probability for a specific collision (for example, side collision).
  • the approaching object determination unit 222 determines the presence or absence of an approaching object by comparing the calculated collision probability with a predetermined threshold, and outputs the determination result and the approaching direction of the approaching object to the vibration control unit 225. .
  • the seating state determination unit 223 determines the seating state of the seated person based on the physique signal output by the physique detection sensor 240 .
  • the seating state determination unit 223 determines that the seated person is not seated in the vehicle seat S when the physique detection sensor 240 cannot detect the seated person.
  • the vibration parameter determination unit 224 determines vibration parameters used when vibrating the vibrating body 10 .
  • the vibration parameters include at least one of vibration intensity and vibration interval.
  • the vibration parameters may include vibration frequency.
  • the vibration parameter determination unit 224 determines vibration parameters based on the physique of the seated person, the road surface condition, and the traveling speed of the vehicle V. FIG. Specifically, the vibration parameter determining unit 224 determines the vibration parameter so that the vibration intensity increases when the seated person has a large build. On the other hand, the vibration parameter determining unit 224 determines the vibration parameter so that the vibration intensity becomes small when the seated person has a small build. As a result, it is possible to prevent omissions in recognizing the notification signal for a seated occupant with a large physique, and to prevent a occupant with a small physique from feeling uncomfortable due to excessive vibration. Become.
  • the vibration parameter determining unit 224 determines the vibration parameter so that the vibration intensity increases when the vehicle V runs on a rough road surface (a road surface with large unevenness) at high speed.
  • the vibration parameter is determined so that the vibration intensity becomes small.
  • the vibration control unit 225 controls the vibrating body 10 arranged in the approach direction of the approaching object to vibrate based on the determination result of the approaching object determination unit 222 and the vibration parameter determined by the vibration parameter determination unit 224.
  • FIG. 14A shows a front right vibrating body 11RF, a rear right vibrating body 11RR, an upper right vibrating body 12RU, and a lower right vibrating body 12RD arranged on the right side of the vehicle seat S when an approaching object is approaching from the right side. shows a situation in which the vibrates.
  • FIG. 14A by controlling the vibrating body 10 arranged in the approaching direction to vibrate, the presence of the approaching object and the approaching direction can be recognized by the seated person.
  • the right front vibrating body 11RF, the right rear vibrating body 11RR, the upper right vibrating body 12RU, and the lower right vibrating body 12RD are determined according to the physique of the seated person, the road surface condition, and the running speed of the vehicle V. Vibrate with vibration parameters.
  • FIG. 14B shows the left front vibrating body 11LF, the left rear vibrating body 11LR, the left upper vibrating body 12LU, and the left lower vibrating body 12LD arranged on the left side of the vehicle seat S when the approaching object is approaching from the left side. shows the vibrating situation.
  • the left front vibrating body 11LF, the left rear vibrating body 11LR, the upper left vibrating body 12LU, and the lower left vibrating body 12LD are determined according to the physique of the seated person, the road surface condition, and the traveling speed of the vehicle V. Vibrate with vibration parameters.
  • FIG. 15 shows the flow of vibration control processing executed by control device 220 .
  • the control device 220 determines the seating state of the seated person (step S210).
  • the control device 220 waits until the seated person is seated. In other words, the control device 220 does not perform control to vibrate the vibrating body 210 when determining that the seated person is not seated.
  • step S210 when it is determined that the seated person is seated (step S210: Yes), the control device 220 acquires an external world signal output by the external sensor 30 (step S211), and detects the presence of an approaching object around the vehicle V. is determined (step S212). As described above, the control device 220 detects an object around the vehicle V, and determines that an approaching object exists when the probability of collision between the detected object and the vehicle V is greater than a predetermined threshold. If it is not determined that there is an approaching object (step S212: No), the control device 220 returns to step S211 and monitors the output of the external sensor 30.
  • step S212 when it is determined that an approaching object exists (step S212: Yes), the control device 220 executes vibration parameter selection processing (step S213).
  • FIG. 16 shows the flow of vibration parameter selection processing executed by control device 220 . As shown in FIG. 16, first, control device 220 acquires a physique signal output from physique detection sensor 240 (step S220).
  • the control device 220 determines whether or not the physique of the seated person is large (step S221). More specifically, the control device 220 determines whether the physique of the seated person is large by comparing the physique signal with a predetermined threshold. If the physique detection sensor 240 is a seated person imaging device that images a seated person, the control device 220 applies predetermined image processing to the video signal of the seated person to detect whether the seated person has a large physique. Determine whether or not
  • control device 220 determines the vibration parameter of the vibrating body 210 by selecting the vibration parameter (step S222). More specifically, controller 220 selects vibration parameters by referring to vibration parameter table 226 .
  • FIG. 17A shows the vibration parameter table 226.
  • the vibration parameter table 226 stores vibration parameters and selectable vibration parameter values. Vibration parameters include vibration intensity, vibration interval, and vibration frequency.
  • the vibration intensity is a parameter that indicates the amplitude of vibration of the vibrating body 10 .
  • the vibration intensity one of preset values of "weak”, “medium”, and “strong” can be set.
  • the vibration interval is a parameter that indicates the length of the vibration cycle when the vibrating body 10 repeatedly vibrates with the vibration period and the stop period as one vibration cycle.
  • As the vibration period one of preset values of "short”, “medium”, and “long” can be selected.
  • the vibration frequency is a parameter indicating the vibration frequency of the vibrating body 10 . As the vibration frequency, it is possible to set one of preset values of "low”, “middle”, and "high”.
  • the vibration parameter determination unit 224 of the control device 220 selects vibration parameters based on the physique of the seated person. Specifically, when the physique of the seated person is large, the vibration intensity is determined to be “strong”, the vibration interval is determined to be “short”, and the vibration frequency is determined to be “high”. Then, if the physique of the seated person is neither large nor small, but of a standard physique, the vibration intensity is determined to be “medium”, the “vibration interval” is determined to be “medium”, and the vibration frequency is set to "medium”. to decide. If the seated person has a small physique, the vibration intensity is determined to be “weak”, the vibration interval is determined to be “long”, and the vibration frequency is determined to be “low”.
  • step S221 determines whether the physique of the person seated is small (step S223). ). If the physique of the seated person is determined to be small (step S223: Yes), the control device 220 determines the vibration parameter of the vibrating body 10 by selecting the vibration parameter (step S224). As described with reference to FIG. 17A, control device 220 selects a vibration parameter by referring to vibration parameter table 226, and ends the vibration parameter selection process.
  • step S223 determines that the physique of the seated person is standard, and refers to the vibration parameter table 226. to determine the vibration parameters (step S225). Then, control device 220 ends the vibration parameter selection process.
  • the control device 220 acquires the determination result of the approaching object determination unit 222 and determines whether or not the approaching object is approaching from the right side of the vehicle V (step S214). If it is determined that the approaching object is approaching from the right side of the vehicle V (step S214: Yes), the control device 220 refers to the vibration pattern table 227R and selects vibrations arranged in the approaching direction (right side) of the approaching object. The body 10 is controlled to vibrate (step S215).
  • the vibration pattern table 227R is the vibration pattern table 227 that is referred to when it is determined that there is an approaching object on the right side of the vehicle V, and stores the order of vibrating the plurality of vibrating bodies 210 .
  • FIG. 17B shows an example of the vibration pattern table 227R.
  • the vibration pattern table 227R stores three vibration patterns, "Pattern A”, "Pattern B", and "Pattern C”.
  • Pattern A is a vibration pattern in which the upper right vibrating body 12RU, the lower right vibrating body 12RD, the right rear vibrating body 11RR, and the right front vibrating body 11RF built in the seat cushion 1 vibrate in this order. is.
  • Pattern A is a vibration pattern referred to when an approaching object approaches from the right rear.
  • Pattern B the vibrating body 10 vibrates in the reverse order of pattern A.
  • Pattern B is a vibration pattern referred to when an approaching object approaches from the front right.
  • Pattern C is a vibration pattern in which the upper right vibrating body 12RU, the lower right vibrating body 12RD, the right rear vibrating body 11RR, and the right front vibrating body 11RF vibrate simultaneously.
  • Pattern C is a vibration pattern referred to when an approaching object approaches from the right front direction.
  • the control device 220 determines the vibration pattern to be one of "Pattern A”, "Pattern B", and "Pattern C" based on the approaching direction of the approaching object. Specifically, when the approaching direction of the approaching object is the right front, the control device 220 determines pattern B, which is a vibration pattern in which the right front vibrator 11RF vibrates first. On the other hand, when the approaching object approaches in the rear right direction, the control device 220 determines pattern A, which is the vibration pattern in which the upper right vibrator 12RU vibrates first. When the approaching object approaches the right front, the control device 220 causes the right front vibrating body 11RF, the right rear vibrating body 11RR, the right upper vibrating body 12RU, and the right lower vibrating body 12RD to vibrate simultaneously. Pattern C, which is a vibration pattern that
  • control device 220 controls the vibrating body 210 to vibrate with the vibration parameters determined in step S213 (step S215).
  • the control device 220 determines whether the approaching object is approaching from the left side of the vehicle V (step S216). If it is determined that the approaching object is approaching from the left side of the vehicle V (step S216: Yes), the control device 220 refers to the vibration pattern table 227L and selects vibrations arranged in the approaching direction (left side) of the approaching object.
  • the body 10 is controlled to vibrate (step S217).
  • the vibration pattern table 227L is the vibration pattern table 227 that is referred to when it is determined that there is an approaching object on the left side of the vehicle V, and stores the order of vibrating the plurality of vibrating bodies 10 .
  • FIG. 17C shows an example of the vibration pattern table 227L.
  • the vibration pattern table 227L has the same structure as the vibration pattern table 227R described above, so detailed description thereof will be omitted.
  • the control device 220 causes the vibrator 10 arranged on the approaching direction side of the approaching object to vibrate.
  • control step S218, Specifically, when an approaching object is approaching from the front, the control device 220 controls the seat cushion vibrator 11 incorporated in the seat cushion 1 to vibrate. Further, when an approaching object is approaching from behind, the control device 220 controls the seat back vibrator 12 built in the seat back 2 to vibrate.
  • the control device 220 determines the vibration parameters of the vibrating body 10 based on the physique signal output from the physique detection sensor 240, the vibrating body 10 effectively performs notification according to the physique of the seated person. becomes possible.
  • the control device 220 has been described as performing notification by the vibrating body 10 with vibration parameters determined according to the physique of the seated person.
  • the control device 320 according to the fourth embodiment determines the vibration parameter according to the condition of the road surface during running in addition to the physique of the seated person, and uses the determined vibration parameter to determine the vibrator 10. Notify by This makes it possible for the seated occupant to recognize the vibration caused by the vibrating body 10 even in a situation where the vibration is received from the road surface, such as when driving on a road under construction or an unpaved road, and effectively notifies the user. It is possible to do
  • FIG. 18 shows the flow of vibration parameter selection processing in the fourth embodiment.
  • the control device 320 first acquires road surface information (road surface signal) output by the road surface imaging device 245 (step S320).
  • the road surface information is an image of the road surface on which the vehicle V is running.
  • control device 320 determines whether or not the road surface condition is rough (step S321). More specifically, the control device 320 performs predetermined image processing on the video signal of the road surface, which is the road surface information. In the image processing, first, vertical fluctuations existing on the road surface (unevenness due to presence of gravel, etc.) are recognized, and by quantifying them, the amount of vertical fluctuations is calculated. Specifically, control device 320 calculates the standard deviation of the amount of variation in the vertical direction of the road surface.
  • the road surface is in a poor condition (when the amount of variation is large), and when the road surface is in a good condition (when the amount of variation is small), Determine which of the standard conditions the road surface corresponds to.
  • the method for calculating the amount of variation in the vertical direction of the road surface is not limited to the calculation of the standard deviation described above.
  • the vertical variation amount of the road surface may be calculated by performing frequency analysis on the video signal of the road surface and cumulatively adding signal components in a predetermined frequency range.
  • step S321 If the road surface condition is determined to be poor (step S321: Yes), the control device 320 sets the vibration intensity to "strong” (step S322). In addition to determining the vibration intensity, the controller 320 may also determine the vibration interval to be “short” or the vibration frequency to be “high”. Here, controller 320 determines vibration parameters by referring to vibration parameter table 326 .
  • FIG. 19 shows the vibration parameter table 326 in the fourth embodiment.
  • the vibration parameter table 326 stores vibration intensity, vibration interval, and vibration frequency as vibration parameters.
  • the control device 320 selects the vibration parameter based on the condition of the road surface during running. Specifically, when the road surface condition is poor, the vibration intensity is determined to be “strong”, the vibration interval is determined to be “short”, and the vibration frequency is determined to be “high”. Then, if the road surface is neither bad nor good, but normal, the vibration intensity is set to "medium”, the “vibration interval” is set to "medium”, and the vibration frequency is set to "medium”. decide. When the road surface condition is good, the vibration intensity is determined to be “weak”, the vibration interval is determined to be “long”, and the vibration frequency is determined to be “low”.
  • step S321 determines whether the road surface condition is good (step S323). If it is determined that the road surface condition is good (step S323: Yes), the control device 320 sets the vibration intensity to "weak” (step S324). In addition to determining the vibration intensity, the controller 320 may determine the vibration interval to be "long" and the vibration frequency to be "low.”
  • step S323 determines that the road surface is in a standard condition, and sets the vibration intensity to "medium” (step S325).
  • the controller 320 may determine the vibration interval to be “medium” or the vibration frequency to be “medium.”
  • the vibration parameter of the vibrating body 10 is determined based on the physique of the seated person and the condition of the road surface during running.
  • a vibration parameter may be determined based on the situation and the running speed of the vehicle V. FIG.
  • An object of the present invention is to provide a vehicular seat capable of effectively informing by a vibrating body built in a seat body according to the physique of the seated person or the condition of the road surface during driving.
  • the vibrator arranged at the position where the seated person and the seat body are in contact with each other can effectively notify the user.
  • FIG. 1 A vehicle seat according to the fifth embodiment will be described below with reference to FIGS. 20 to 32.
  • FIG. Conventionally a pelvis support member (pelvis support) for supporting the pelvis of a seated person is built in a seat, and a movable member is disposed near the pelvis support member, and the pelvis support member is deformed by the movable member. It was As a result, in addition to reducing the fatigue of the seated person, the distortion of the pelvis is corrected, and the posture of the seated person has been improved.
  • a patent document JP-A-2018-144793 proposes a vehicle seat incorporating an air cell and a pelvis support member.
  • a vehicle seat that can loosen the muscles of the seated person by kneading the waist of the seated person with an air cell and correct the pelvis by deforming the pelvis supporting member. .
  • By kneading the lumbar region prior to correcting the pelvis it is possible to knead stiffened muscles and enhance the effect of posture improvement.
  • FIG. 20 is a perspective view showing the basic configuration of the vehicle seat S.
  • FIG. FIG. 21 is a schematic diagram for explaining the internal structure of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • FIGS. 20 and 21 are schematic diagrams for explaining the internal structure of the vehicle seat S.
  • the vehicle seat S includes a seat cushion 1 that forms a seat body, a seat back 2, and a headrest 3.
  • the vehicle seat S incorporates a pelvis support member 413 , a movable member 418 , a cushion-side air cell 411 , and a back-side air cell 412 .
  • the pelvis support member 413 is arranged across the rear side of the seat cushion 1 and the lower side of the seat back 2, and plays a role of supporting the pelvis of the seated person and assisting the posture improvement of the seated person.
  • the pelvis support member 413 is flexible and deformed by being pressed by movable members 418 (see FIG. 21) arranged below and behind the pelvis support member 413, and is suitable for correcting the pelvis of the seated person. shape.
  • the pelvis support member 413 and the movable member 418 will be described later with reference to FIGS. 22-24.
  • the cushion-side air cell 411 and the back-side air cell 412 are fluid bags that expand when compressed air is injected and contract when the compressed air is discharged.
  • the cushion-side air cells 411 and the back-side air cells 412 knead the biceps femoris muscle and the spinal erector muscle of the seated person prior to correcting the pelvis by the pelvis support member 413, thereby kneading the muscles of the seated person, and the pelvis. It plays a role in improving the effect of posture improvement associated with correction.
  • the cushion-side air cells 411 are arranged apart from each other in the front-rear direction and the seat width direction.
  • the seat cushion 1 has a first cushion-side air cell 4111, a second cushion-side air cell 4112, a third cushion-side air cell 4113, and a fourth cushion-side air cell 4114 arranged from the front side to the rear side. arranged in order.
  • the back-side air cells 412 are arranged apart from each other in the vertical direction and the seat width direction.
  • the seat back 2 includes a first back-side air cell 4121, a second back-side air cell 4122, a third back-side air cell 4123, a fourth back-side air cell 4124, and a fifth back-side air cell 4125. They are arranged in order from top to bottom.
  • the first back-side air cell 4121 to the fifth back-side air cell 4125 on both the left and right sides so as to line up in the vertical direction at substantially the center of the seat back 2 in the seat width direction, the erector spinae muscles of the seated person are strengthened. It can be kneaded over the entire length.
  • the vehicle seat S incorporates a control device 420 that controls the vehicle seat S.
  • the control device 420 can wirelessly communicate with an information communication terminal 440 operated by the seated person.
  • the control device 420 controls the cushion-side air cells 411, the back-side air cells 412, and the movable member 418 based on the setting information input by the user via the information communication terminal 440 to improve the posture of the seated person.
  • the information communication terminal 440 is a tablet terminal installed in the vehicle V.
  • the information communication terminal 440 transmits the setting information input by the seated person to the control device 420 by communicating with the control device 420 .
  • Information communication terminal 440 may be a navigation device attached to vehicle V.
  • FIG. Also, the information communication terminal 440 may be a mobile phone used by the seated person.
  • Pelvic support member 413 will be described in more detail.
  • 22 shows a front view of the vehicle seat S.
  • the pelvis support member 413 is arranged in a recess formed in the cushion material 1 a of the seat cushion 1 and the cushion material 2 a of the seat back 2 .
  • the pelvis support member 413 can be deformed according to the posture of the seated person and support the pelvis in an appropriate shape. This makes it possible to correct the distortion of the pelvis and improve the posture of the seated person.
  • the pelvis support member 413 has a substantially L-shape when viewed from the side, and has a seat cushion side support portion 4131 , a seat back side support portion 4132 and a connecting portion 4133 .
  • the seat cushion side support portion 4131 forms a lower portion of the pelvis support member 413 and is attached to the seat cushion 1 when the pelvis support member 413 is attached to the vehicle seat S. That is, the seat cushion side support portion 4131 is positioned below the buttocks of the seated person during the sitting period.
  • the seat cushion side support portion 4131 has a symmetrical shape with respect to the center of the pelvis support member 413 in the seat width direction.
  • the seat cushion side support portion 4131 is curved in an arc shape so as to be positioned upward toward the end in the seat width direction.
  • the seat back side support portion 4132 forms an upper portion of the pelvis support member 413 and is attached to the seat back 2 when the pelvis support member 413 is attached to the vehicle seat S. In other words, the seat back side support portion 4132 is positioned behind the waist of the seated person during the sitting period.
  • the seat back side support portion 4132 has a wide inverted trapezoidal shape in a front view, and has a symmetrical shape with respect to the center of the pelvis support member 413 in the seat width direction.
  • the seat back side support portion 4132 is curved in an arch shape so as to be located forward toward the end in the seat width direction.
  • the connecting portion 4133 connects the rear end of the seat cushion side support portion 4131 and the lower end of the seat back side support portion 4132 .
  • the connecting portion 4133 is located behind the buttocks of the seated person during the sitting period.
  • the connecting portion 4133 has a symmetrical shape with respect to the center of the pelvis support member 413 in the seat width direction, and is curved in an arc shape so as to be located forward toward the end in the seat width direction.
  • the seat cushion side support portion 4131, the seat back side support portion 4132, and the connecting portion 4133 all have a base portion 4134 made of a plate material.
  • the material of the plate material forming the base portion 4134 has appropriate flexibility. Therefore, when a load is applied to the pelvis support member 413, the pelvis support member 413 elastically deforms such that the portion moves along the load direction.
  • the seat cushion side support portion 4131 when the seat cushion side support portion 4131 is pushed upward, the seat cushion side support portion 4131 rises toward the seat back side support portion 4132 (that is, the front end of the seat cushion side support portion 4131 moves upward, lean back).
  • the inclination angle of the seat cushion side support portion 4131 with respect to the seat back side support portion 4132 increases (in other words, the degree of bending of the pelvis support member 413 increases).
  • the degree of bending increases means that the seat cushion side support portion 4131 approaches the seat back side support portion 4132 and the angle ⁇ shown in FIG. 21 decreases.
  • the seatback side support portion 4132 when the seatback side support portion 4132 is pushed forward, the seatback side support portion 4132 falls (tilts forward) toward the seat cushion side support portion 4131 . As the seatback side support portion 4132 tilts forward, the degree of tilt of the seatback side support portion 4132 with respect to the seat cushion side support portion 4131 increases (in other words, the degree of bending of the pelvis support member 413 increases).
  • each of the seat cushion side support portion 4131 and the seat back side support portion 4132 can rotate around the axis M along the seat width direction with the lower end of the connecting portion 4133 as a base point.
  • a flexible cushion mat 4135 is attached to the surface of the base portion 4134 of each of the seat cushion side support portion 4131, the seat back side support portion 4132, and the connecting portion 4133. It is The cushion mat 4135 is attached to the surface of the base portion 4134 facing the occupant seated on the vehicle seat S, and is shaped to fit the pelvis of the occupant appropriately. . In addition, in this embodiment, a plurality of cushion mats 4135 are provided at positions separated from each other.
  • the movable member 418 is provided to deform the pelvis support member 413 so as to change the degree of bending of the pelvis support member 413 (in other words, the degree of inclination of the seat cushion side support portion 4131 or the seat back side support portion 4132).
  • the movable member 418 according to this embodiment is composed of a fluid bag that expands and contracts by injecting or discharging compressed air. and have
  • the cushion-side movable member 4181 is built into the seat cushion 1 and arranged below the seat-cushion support portion 4131 .
  • the cushion-side movable member 4181 presses the seat cushion-side support portion 4131 from below, thereby rotating the seat cushion-side support portion 4131 around the axis M along the width direction of the seat with the connection portion 4133 as a base point.
  • the cushion side support portion 4131 is driven.
  • the cushion-side movable member 4181 when inflated, expands in a substantially fan shape when viewed from the side, and expands so that the amount of expansion (the amount of expansion) increases toward the front end. Also, the front end portion of the cushion-side movable member 4181 is positioned directly below the front side of the lower surface of the seat cushion-side support portion 4131 . Therefore, when the cushion-side movable member 4181 expands in a fan shape, the front side of the seat cushion-side support portion 4131 is pushed upward by the cushion-side movable member 4181 .
  • the seat cushion side support portion 4131 rotates upward (rearward) about the axis M along the width direction of the seat with the connecting portion 4133 as a base point, as shown in FIG. 23 .
  • the degree of inclination of the seat cushion side support portion 4131 with respect to the seat back side support portion 4132 changes.
  • the back side movable member 4182 is built in the seat back 2 and arranged behind the seat back side support portion 4132 .
  • the back side movable member 4182 presses the seat back side support portion 4132 from behind so that the seat back side support portion 4132 rotates about the axis M along the seat width direction with the connecting portion 4133 as a base point.
  • the seatback side support portion 4132 is driven.
  • the back-side movable member 4182 when inflated, expands in a substantially fan shape when viewed from the side, and expands so that the amount of expansion (the amount of expansion) increases toward the upper end. Also, the upper end portion of the back side movable member 4182 faces the upper side of the rear surface of the seat back side support portion 4132 . Therefore, when the back-side movable member 4182 expands in a substantially fan-like shape, the upper side of the seat back-side support portion 4132 is pushed forward by the back-side movable member 4182 . As a result, as shown in FIG.
  • the seat back support portion 4132 rotates (tilts forward) around the axis M along the width direction of the seat with the connecting portion 4133 as a base point.
  • the degree of inclination of the seatback side support portion 4132 with respect to the seat cushion side support portion 4131 changes.
  • FIG. 25 shows the functional configuration of the vehicle seat S and the information communication terminal 440.
  • the control device 420 is connected to the seating sensor 430, the information communication terminal 440, the cushion-side air cell 411, the back-side air cell 412, and the movable member 418, and controls the entire vehicle seat S. preside over
  • the seat sensor 430 is built into the seat cushion 1 and detects the load applied by the seated person.
  • the seating sensor 430 is a strain detection sensor or a capacitance sensor.
  • Control device 420 can determine the presence or absence of a seated person based on the output signal of seating sensor 430 .
  • the seat cushion 1 may incorporate a plurality of seating sensors 430 at predetermined intervals. In this case, control device 420 can determine whether the seating position is appropriate based on the output of seating sensor 430 .
  • the information communication terminal 440 is an information terminal that can be operated by a user, and has an input reception section 441 and a communication section 442 as main components.
  • the input receiving unit 441 can receive input of setting information regarding posture improvement processing, which will be described later. Specifically, the input receiving unit 441 receives an input indicating whether the posture of the seated person corresponds to "hunchback", "curved back", or "normal". When "hunchback" or "curved waist” is input, the movable member 418 is driven to deform the pelvis support member 413 so as to tilt forward or backward, as will be described later. As a result, the distortion of the pelvis of the seated person is corrected, and the posture of the seated person can be improved. As the setting information, in addition to the posture of the seated person, the processing time of kneading processing or the processing time of correction processing, which will be described later, may be received.
  • the communication unit 442 is a communication circuit having a wireless communication function compatible with Bluetooth (registered trademark).
  • the communication unit 442 transmits the setting information received by the input receiving unit 441 to the control device 420 .
  • the communication unit 442 also receives status information regarding posture improvement processing, which will be described later, from the control device 420 .
  • communication between the communication unit 442 and the control device 420 is not limited to wireless communication.
  • the information communication terminal 440 and the control device 420 may be connected by a USB cable to perform cable communication.
  • the control device 420 is an ECU (Electronic Control Unit) mounted on the vehicle seat S.
  • the control device 20 includes a processor that executes programs, a nonvolatile storage medium, and a volatile storage medium.
  • the processor functions as a sensor signal acquisition unit 421, a setting information acquisition unit 422, an air cell control unit 423, a movable member control unit 424, and an output unit 425 by executing programs stored in the nonvolatile storage medium.
  • the sensor signal acquisition section 421 acquires the output signal of the seating sensor 430 .
  • the sensor signal acquisition unit 421 acquires the load applied to the vehicle seat S by the seated person.
  • the sensor signal acquisition unit 421 has a noise removal filter and can remove noise components included in the output signal of the seating sensor 430 .
  • the setting information acquisition unit 422 acquires setting information input via the input reception unit 441 of the information communication terminal 440 .
  • the setting information acquisition unit 422 may acquire setting information by reading setting information stored in advance in a non-volatile storage medium.
  • the air cell control unit 423 controls the cushion-side air cells 411 and the back-side air cells 412 to expand and contract based on the setting information acquired by the setting information acquisition unit 422 . More specifically, the air cell control unit 423 controls a pump (not shown) that supplies compressed air to the cushion-side air cell 411 and the back-side air cell 412 and an adjustment valve (not shown) to control the cushion-side air cell 411 and the back-side air cell 412 . and the amount of expansion of the back side air cell 412 is adjusted.
  • the air cell control unit 423 can individually and independently control the eight cushion-side air cells 411 and the ten back-side air cells 412 described above. The expansion and contraction of each air cell 410 is controlled.
  • FIG. FIG. 26 shows an example of inflation/deflation timing of the cushion-side air cells 411 .
  • the air cell control section 423 controls the first cushion side air cell 4111 and the third cushion side air cell 4113 to expand and contract at the same timing.
  • the air cell control section 423 controls the second cushion side air cell 4112 and the fourth cushion side air cell 4114 to expand and contract at the same timing.
  • the air cell control section 423 controls the first cushion side air cell 4111 and the third cushion side air cell 4113 to expand at the timing T1 and the timing T5. At this time, the second cushion side air cell 4112 and the fourth cushion side air cell 4114 are contracted.
  • FIG. 27A shows a state in which the first cushion side air cell 4111 and the third cushion side air cell 4113 are inflated, and the second cushion side air cell 4112 and the fourth cushion side air cell 4114 are contracted.
  • the air cell control section 423 controls the first cushion side air cell 4111 and the third cushion side air cell 4113 to contract at timing T2 and timing T6.
  • FIG. 27B shows a state in which the second cushion side air cell 4112 and the fourth cushion side air cell 4114 are inflated, and the first cushion side air cell 4111 and the third cushion side air cell 4113 are contracted.
  • the air cell control section 423 controls the cushion side air cells 411 arranged at positions adjacent to each other so that they do not inflate at the same time.
  • the cushion-side air cells 411 that contract and the cushion-side air cells 411 that inflate in the front and rear thereof can massage the biceps femoris muscle from the front and back.
  • the contracting cushion-side air cells 411 and the expanding cushion-side air cells 411 it is possible to massage the biceps femoris over a wide range. As described above, the blood circulation of the biceps femoris is promoted, and the hardened biceps femoris can be softened.
  • FIG. 28 shows an example of the inflation/deflation timing of the back side air cell 412.
  • the air cell control unit 423 controls the first back side air cell 4121, the second back side air cell 4122, the third back side air cell 4123, the fourth back side air cell 4124, and the fifth back side air cell 4125. Control to expand in order.
  • FIG. 29A shows a state in which the first back side air cell 4121 is initially inflated.
  • the air cell control unit 423 controls so that the second back side air cell 4122 is inflated during the contraction of the first back side air cell 4121 or at the timing T2 before the timing T3 at which the first back side air cell 4121 is completely contracted.
  • the air cell control section 423 controls the third back side air cell 4123 to expand at the timing T4 before the timing T5 when the second back side air cell 4122 is completely contracted or during the contraction.
  • the air cell control unit 423 controls so that the fourth back side air cell 4124 is inflated at the timing T6 before the timing T7 when the third back side air cell 4123 is contracted or when the third back side air cell 4123 is completely contracted.
  • the air cell control unit 423 controls the fifth back side air cell 4125 to expand at timing T8, which is during contraction of the fourth back side air cell 4124 or before timing T9 at which the fourth back side air cell 4124 is completely contracted.
  • FIG. 29B shows a state in which the fifth back-side air cell 4125 is finally inflated.
  • the erector spinae muscles of the seated person can be rubbed and loosened from top to bottom.
  • the back-side air cells 412 can be efficiently kneaded in a short period of time. This promotes blood circulation in the erector spinae muscles, making it possible to soften stiffened erector spinae muscles.
  • the expansion/contraction timings of the cushion-side air cells 411 and the back-side air cells 412 shown in FIGS. 26 and 28 are merely examples, and are not limited to these.
  • the inflation/deflation timing of the cushion-side air cell 411 shown in FIG. 26 may be applied to the back-side air cell 412, or the inflation/deflation timing of the back-side air cell 412 shown in FIG. good too. Further, the inflation/deflation timing of the back side air cells 412 shown in FIG.
  • the side air cells 412 may be inflated and deflated.
  • the movable member control section 424 controls the cushion-side movable member 4181 and the back-side movable member 4182 to expand and contract based on the setting information acquired by the setting information acquisition section 422 . More specifically, the movable member control unit 424 controls the pumps and adjustment valves that supply compressed air to the cushion-side movable member 4181 and the back-side movable member 4182, thereby controlling the cushion-side movable member 4181 and the back-side movable member 4182. The amount of expansion of member 4182 is adjusted.
  • the movable member control unit 424 contracts the cushion-side movable member 4181 and moves the back-side movable member 4181 in order to correct the backward tilted pelvis of the seated person.
  • 4182 is inflated to control the pelvic support member 413 to tilt forward. This makes it possible to correct the tilt of the pelvis of the seated person who is tilted backward.
  • the cushion-side movable member 4181 is inflated and the back-side movable member 4182 is contracted to control the posture so that the pelvis support member 413 is tilted backward. This makes it possible to correct the tilt of the pelvis of the seated person who is tilted forward.
  • the output unit 425 outputs to the information communication terminal 440 status information of posture improvement processing, which will be described later. That is, when the control device 420 is executing the posture improvement process, the fact that the posture improvement process is being executed and the remaining time until the kneading process ends or the remaining time until the correction process ends and other information is output. Therefore, the seated person can recognize the progress of the posture improvement process by checking the display screen of the information communication terminal 440 .
  • FIG. 30 shows the flow of attitude control processing.
  • the control device 420 determines whether or not an occupant is seated on the vehicle seat S (step S410). Specifically, control device 420 determines the presence or absence of a seated person by comparing the output signal of seating sensor 430 with a predetermined threshold value. If it is determined that the occupant is not seated (step S410: No), control device 420 waits until the occupant is seated.
  • control device 420 determines whether setting information has been input (step S411). Specifically, control device 420 determines whether or not input of setting information has been received via input reception unit 441 of information communication terminal 440 . If it is determined that the setting information has not been input (step S411: No), the control device 420 waits until the setting information is input.
  • step S411 determines that the setting information has been input (step S411: Yes)
  • the control device 420 executes kneading processing for kneading the muscles of the seated person (step S412). The kneading process will be described with reference to FIG.
  • FIG. 31 shows the flow of the kneading process executed by the control device 420.
  • the control device 420 first acquires kneading parameters (step S420). Specifically, the control device 420 acquires the kneading time and the expansion/contraction patterns of the cushion-side air cells 411 and the back-side air cells 412 .
  • the kneading time is the time for kneading the biceps femoris muscle and erector spinae muscle of the seated person by inflating and contracting the cushion-side air cell 411 and the back-side air cell 412 .
  • the expansion/contraction pattern is information regarding the expansion/contraction timing of the cushion-side air cells 411 described with reference to FIG. 26 and the expansion/contraction timing of the back-side air cells 412 described with reference to FIG.
  • the control device 420 drives the cushion-side air cells 411 and the back-side air cells 412 based on the acquired kneading parameters (step S421). Specifically, the control device 420 adjusts the expansion amounts of the cushion-side air cells 411 and the back-side air cells 412 by controlling pumps and adjustment valves connected to the cushion-side air cells 411 and the back-side air cells 412 .
  • the control device 420 determines whether or not the condition for ending the kneading process is satisfied (step S422).
  • the termination condition is that the elapsed time after the start of the kneading process exceeds a preset kneading time (for example, 3 minutes).
  • a preset kneading time for example, 3 minutes.
  • control device 420 executes a correction process for correcting the pelvis of the seated person (S413). Correction processing will be described with reference to FIG.
  • FIG. 32 shows the flow of correction processing executed by the control device 420.
  • the controller 420 first acquires correction parameters (step S430). Specifically, the control device 420 acquires the correction time and the posture of the seated person. Correction time is the time for correcting the posture of the seated person by controlling the pelvis support member 413 . Also, the posture of the seated person is one of "hunchback", "curved waist”, and "normal".
  • the control device 420 expands and contracts the movable member 418 based on the acquired correction parameters to deform the pelvis support member 413 (step S431). Specifically, when the posture of the seated person is "humpbacked", the cushion-side movable member 4181 is contracted and the back-side movable member 4182 is inflated, so that the pelvis support member 413 is controlled to tilt forward. On the other hand, when the posture of the seated person is "curved waist”, the cushion-side movable member 4181 is inflated and the back-side movable member 4182 is contracted, so that the pelvis support member 413 is controlled to tilt backward.
  • the control device 420 determines whether or not the condition for ending the correction process is satisfied (step S432).
  • the termination condition is that the elapsed time after the start of correction processing exceeds a preset correction time (for example, 10 minutes).
  • a preset correction time for example, 10 minutes.
  • the pelvis support member 413 by deforming the pelvis support member 413, it is possible to correct the distortion of the pelvis and improve the posture of the seated person. As described above, the kneading process is performed prior to the correction process, and the pelvis is corrected in a state in which the muscles of the seated person are loosened, thereby improving the effect of posture improvement.
  • FIG. 33 shows a cross-sectional view of a back-side air cell 412A built in the seat back 2 and having a laminated structure.
  • the back side air cell 412A has a lower air cell 412A1 and an upper air cell 412A2 laminated on the lower air cell 412A1, and is arranged between the cushion material 2a and the skin material 2b of the seat back 2.
  • the lower air cell 412A1 has a larger capacity than the upper air cell 412A2.
  • the area of contact between the lower air cells 412A1 and the cushion material 2a is larger than the area of contact between the upper air cells 412A2 and the skin material 2b.
  • the lower air cells 412A1 have higher rigidity than the upper air cells 412A2.
  • the lower air cell 412A1 can suppress the displacement of the upper air cell 412A2 toward the cushion material 2a and support the upper air cell 412A2 as a base material. . Therefore, the upper layer air cell 412A2 protrudes toward the upholstery 2b and can effectively stimulate the seated occupant.
  • the fluid injected into the cushion-side air cells 411 and the back-side air cells 412 may be liquid.
  • the cushion-side air cells 411 and the back-side air cells 412 may be a combination of a compressed air bag that is inflated by compressed air and a fluid bag that is inflated by fluid. This makes it possible to appropriately adjust the elasticity or rigidity of the cushion-side air cells 411 and the back-side air cells 412 .
  • the cushion-side air cell 411 and the back-side air cell 412 are used to knead the biceps femoris muscle and the erector spinae muscle, but the present invention is not limited to this.
  • the kneading balls may be used to knead the biceps femoris and erector spinae muscles.
  • the seated person may be kneaded by a combination of the fluid bag and the movable member. More specifically, the air cell 410 and the movable member are arranged to face each other with the cushion material 2a interposed therebetween, and the movable member is controlled to protrude toward the seated person at the same timing as the air cell 410 is inflated. As a result, the air cells 410 are pushed toward the seated person by the movable member and expanded to protrude, thereby effectively stimulating and kneading the muscles of the seated person.
  • the left and right air cells 410 are controlled to simultaneously inflate or deflate, but the present invention is not limited to this.
  • the air cell control unit 423 may control the left and right air cells 410 to expand and contract at different timings. Also, although the kneading time is set to 3 minutes and the correction time is set to 10 minutes, it is needless to say that the present invention is not limited to this.
  • the controller 420 determines whether or not the occupant is seated based on the output signal of the seating sensor 430. It is also possible to prompt to change the position.
  • a plurality of seating sensors 430 are provided on the seat cushion 1, the seating position is determined based on the output of the seating sensors 430, and if the seating position is inappropriate, a warning is output, or an appropriate seating position is determined. It is preferable to encourage the seated person to move. By performing the above-described posture improvement processing while the seated person is seated at an appropriate position, it is possible to improve the effect of posture improvement.
  • the control device 420 can acquire output signals from various sensors provided on the vehicle V. For example, it is preferable that the control device 420 can acquire the output signal of a buckle sensor that detects that the tongue plate of the seat belt is connected to the buckle. At this time, the control device 420 determines whether or not the seated person is wearing the seat belt based on the output of the buckle sensor, and starts posture improvement processing when it is determined that the seated person is wearing the seat belt. do. As a result, it is possible to prevent a situation in which the posture improvement process is started when the seated person is not properly seated.
  • the control device 420 can acquire an output signal of a vehicle speed sensor provided in the vehicle V.
  • FIG. it is possible to perform control so that the attitude improvement process is not started while the vehicle V is running, and to prevent the driver's attention from being distracted due to the attitude improvement process being inadvertently started while the vehicle is running. can be done.
  • the control device 420 may acquire the driving mode of the vehicle V and start the attitude improvement process when the vehicle V is driving in the automatic driving mode. As a result, when the seated person is not driving, the posture improvement process can be started to improve the seated person's posture.
  • control device 420 has been described as performing the correction process after performing the kneading process, but the present invention is not limited to this. In order to improve the posture improvement effect, the kneading process and the correction process may be alternately performed.
  • FIGS. Appendix 1 a seat body installed in a vehicle; a plurality of vibrating bodies built in the seat body and arranged apart from each other at least in the left-right direction; and a control device for controlling the vibrating bodies, said control device obtains an output signal from a detection means provided in the vehicle for detecting peripheral information of the vehicle, identifies an approaching direction of an approaching object to the vehicle based on the output signal, and moves in the identified approaching direction.
  • a vehicle seat characterized by sequentially vibrating the vibrating body according to the following.
  • the control device determines a vibration parameter related to at least one of vibration intensity and vibration interval of the vibrator based on the distance between the vehicle and the approaching object, and vibrates the vibrator based on the vibration parameter.
  • the control device adjusts the vibration parameter so that the vibration intensity is strong or the vibration interval is short when the distance between the vehicle and the approaching object is short or the approaching speed of the approaching object is high.
  • the vehicle seat according to appendix 2 wherein the vehicle seat determines: (Appendix 4)
  • the vehicle seat according to appendix 2 wherein the control device updates the vibration parameter based on a distance between the vehicle and the approaching object or an approaching speed of the approaching object.
  • Appendix 5 The vehicle seat according to appendix 1, wherein the control device controls such that a vibrating body arranged in an approaching direction of the approaching object vibrates.
  • Appendix 6 a seat body installed in a vehicle; vibrating bodies built in the seat body and arranged apart from each other at least in the front-rear direction and the left-right direction; and control means for controlling the vibrating bodies;
  • the device acquires an output signal from a detection means provided in the vehicle for detecting peripheral information of the vehicle when a turn signal lever of the vehicle is operated, and the turn signal lever is operated based on the output signal.
  • (Appendix 8) a seat body installed in a vehicle; a vibrating body built in the seat body and spaced apart at least in the front-rear direction and the left-right direction; and control means for controlling the vibrating body, wherein the control means acquires an output signal from a detection means provided in the vehicle for detecting peripheral information of the vehicle when the vehicle starts forward, and based on the output signal, the presence or absence of an approaching object in front of the vehicle; is determined, and based on the determination result, control is performed so that a vibrating body incorporated in the seat cushion of the seat body vibrates.
  • (Appendix 9) a seat body installed in a vehicle; a vibrating body built in the seat body and spaced apart at least in the front-rear direction and the left-right direction; and control means for controlling the vibrating body, wherein the control means acquires an output signal from a detection means provided in the vehicle for detecting peripheral information of the vehicle when the vehicle starts backward, and based on the output signal, the presence or absence of an approaching object behind the vehicle; is determined, and based on the determination result, control is performed so that a vibrating body incorporated in the seat back of the seat body vibrates.
  • (Appendix 10) a seat body installed in a vehicle; a plurality of vibrating bodies built in the seat body and arranged apart from each other; and a control device for controlling the vibrating bodies, wherein the control device controls the vehicle Acquire the external world signal output by the external world detection device disposed in the seat and the physique signal output by the physique detection device that detects the physique of the seated person, and detect the presence or absence of the approaching object and the approach direction based on the external signal determining, based on the physique signal, a vibration parameter relating to at least one of the vibration intensity and the vibration interval of the vibrating body, determining the presence or absence of the approaching object and the approaching direction, and the determined vibration parameter; , wherein the vibrating body is controlled to vibrate based on: (Appendix 11) 11.
  • the physique detection device is a occupant imaging device that images a occupant seated on the seat body, and the physique signal is an image of the occupant captured. sheet for.
  • the seat body is installed in the vehicle such that its longitudinal position in the vehicle can be changed, and the physique detection device is a position sensor that detects the longitudinal position of the seat body, and the physique signal is: , positional information of the seat body.
  • the physique detection device is a plurality of capacitance sensors built in the seat body and arranged at predetermined intervals, wherein the physique signals are detected by the plurality of capacitance sensors. 11.
  • the control device determines the seating state of the seated person based on the physique signal, and does not perform control to vibrate the vibrating body when it is determined that the seated person is not seated. Vehicle seat as described.
  • the controller acquires a road surface signal output from a road surface condition detection device that detects the condition of the road surface during running, and determines the vibration parameter based on the physique signal and the road surface signal. 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)

Abstract

カーナビゲーション装置が出力する経路案内情報を、シート本体に内蔵された振動体によって報知することにより、視覚又は聴覚によって経路案内情報を認識することができない場合であっても、経路案内情報を振動によって認識することが可能な車両用シートを提供することを目的とする。 車両用シートSは、シート本体に内蔵されて、少なくとも左右方向に互いに離隔して配置された複数の振動体と、前記振動体を制御する制御装置と、を備えている。制御装置は、車両に搭載されたナビゲーション装置が出力する経路案内情報を取得し、経路案内情報に基づいて、車両が進行方向を変更する地点に接近した際に、変更後の進行方向側に配置された振動体が振動するように制御する。

Description

車両用シート
 本発明は、車両用シートに係り、特に、振動体を備えた車両用シートに関する。
 従来から、車両の周辺に障害物又は他の車両が接近した際に、これを着座者に報知する障害物接近報知システムの開発が行われてきた。例えば、車両の前後左右に配設された外界センサによって車両の外界周辺における接近物の存在を監視し、接近物が検出されると、音声又は光からなる報知信号を出力することが行われてきた。このように、障害物等の接近を着座者に報知する形で警告を与え、危険を回避させることによって、着座者の安全性の向上が図られていた。
 また、特許文献1には、車両用シートに内蔵された振動体を報知手段として利用した車両用シート装置が開示されている。特許文献1に記載の技術のように、報知手段として振動体を採用することによって、運転者が視覚的、又は聴覚的に認識が困難な状況、例えば視線を報知手段に向けることが困難な状況においても、運転者に対して接近物の存在を警告することが可能となる。
特開2000-225877号公報
 特許文献1に記載の技術によれば、着座者の視覚、又は聴覚に依存することなく危険の接近を知らせるための報知手段として、振動体の有効性を認めることができる。しかしながら、振動体の更なる有効利用が望まれていた。すなわち、振動体によって危険の接近を報知するだけでなく、運転者に対して目的地までの経路案内情報を報知する役割が求められるようになった。
 より具体的に説明すると、従来から普及しているカーナビゲーション装置が出力する経路案内情報を確認するために、運転者は、前方から視線を移動させてカーナビゲーション装置の表示画面を視認する必要があった。また、車室内の音響装置の出力によって、カーナビゲーション装置が出力する音声案内を認識することができないことがあった。以上のような状況に鑑み、視覚、又は聴覚に依存しない報知手段が求められていた。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、カーナビゲーション装置が出力する経路案内情報を、シート本体に内蔵された振動体によって報知することにより、視覚又は聴覚によって経路案内情報を認識することが困難な場合であっても、振動によって経路案内情報を認識することが可能な車両用シートを提供することにある。
 前記課題は、本発明の車両用シートによれば、車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも左右方向に互いに離隔して配置された複数の振動体と、前記振動体を制御する制御装置と、を備え、前記制御装置は、前記車両に搭載された経路案内装置が出力する経路案内情報を取得し、前記経路案内情報に基づいて、前記車両が進行方向を変更する地点に接近した際に、変更後の進行方向側に配置された前記振動体が振動するように制御することにより解決される。
 上記構成によれば、経路案内情報に基づいて、車両が進行方向を変更する地点に接近した際に、変更後の進行方向側に配置された振動体が振動するように制御される。したがって、運転者は、視覚、又は聴覚によって経路案内装置が出力する経路案内情報を認識することができない場合であっても、振動体の振動によって経路案内情報を認識することが可能になる。
 また、前記制御装置は、前記車両の現在地と、前記進行方向を変更する地点までの距離に基づいて、前記振動体の振動強度及び振動間隔の少なくとも一方に関する振動パラメータを決定し、前記振動パラメータに基づいて前記振動体が振動するように制御すると好適である。
 上記構成によれば、車両の現在地と、進行方向を変更する地点までの距離に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって経路案内情報を認識することができない場合であっても、振動体の振動パラメータに基づいて、現在地から進行方向を変更する地点までの距離を認識することが可能となる。
 また、前記経路案内情報は、案内経路の状況に関する経路状況情報を含み、前記制御装置は、前記経路状況情報に基づいて、前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する案内経路の状況に関する情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって案内経路の状況を認識することができない場合であっても、振動体の振動パラメータに基づいて、案内経路の状況を認識することが可能となる。
 また、前記経路状況情報は、路面の状況に関する路面状況情報を含み、前記制御装置は、前記路面状況情報に基づいて前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する路面状況に関する情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって案内経路の路面状況を認識することができない場合であっても、振動体の振動パラメータに基づいて、案内経路の路面状況を認識することが可能となる。
 また、前記経路状況情報は、渋滞状況に関する渋滞情報を含み、前記制御装置は、前記渋滞情報に基づいて前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する渋滞情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって案内経路の渋滞状況を認識することができない場合であっても、振動体の振動パラメータに基づいて、渋滞状況を認識することが可能となる。
 また、前記経路状況情報は、交通事故及び故障車の少なくとも一方に関する事故情報を含み、前記制御装置は、前記事故情報に基づいて前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する事故情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって案内経路の事故情報を認識することができない場合であっても、振動体の振動パラメータに基づいて、事故情報を認識することが可能となる。
 また、前記経路状況情報は、交通規制に関する交通規制情報を含み、前記制御装置は、前記交通規制情報に基づいて前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する交通規制情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって案内経路の交通規制情報を認識することができない場合であっても、振動体の振動パラメータに基づいて、交通規制情報を認識することが可能となる。
 また、前記制御装置は、前記案内経路が含まれる地域の気象情報を取得し、前記気象情報に基づいて前記振動パラメータを決定すると好適である。
 上記構成によれば、経路案内装置が出力する気象情報に基づいて振動パラメータが決定される。したがって、運転者は、視覚又は聴覚によって気象情報を認識することができない場合であっても、振動体の振動パラメータに基づいて、気象情報を認識することが可能となる。
 また、前記制御装置は、前記経路案内装置が前記経路案内情報を出力するタイミングと異なるタイミングにおいて、前記振動体が振動するように制御すると好適である。
 上記構成によれば、経路案内装置から経路案内情報が出力される前に、運転者に対して、まもなく経路案内情報が出力されることを予告することが可能となる。また、経路案内装置から経路案内情報が出力された後に、運転者に対して、確認的に経路案内情報を認識させることが可能となる。
 また、前記制御装置は、所定の遅延時間を計測し、該遅延時間の経過後に前記振動体が振動するように制御すると好適である。
 上記構成によれば、経路案内装置から経路案内情報が出力されてから所定の遅延時間の経過後に、運転者に対して、確認的に経路案内情報を認識させることができるため、視覚、又は聴覚による認識と併せて、より確実に経路案内情報を認識させることが可能となる。
 本発明によれば、カーナビゲーション装置が出力する経路案内情報を、シート本体に内蔵された振動体によって報知することにより、視覚又は聴覚によって経路案内情報を認識することが困難な場合であっても、振動によって経路案内情報を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、現在地から進行方向を変更する地点までの距離を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、案内経路の状況を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、案内経路の路面状況を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、案内経路の渋滞状況を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、案内経路の事故情報を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、案内経路の交通規制情報を認識することが可能となる。
 また、振動体の振動パラメータに基づいて、気象情報を認識することが可能となる。
 また、経路案内装置から経路案内情報が出力される前に、間もなく経路案内情報が出力されることを予告することが可能となるとともに、経路案内情報が出力された後に、確認的に経路案内情報を認識することが可能となる。
 また、視覚、又は聴覚による認識と併せて、より確実に経路案内情報を認識することが可能となる。
本発明の一実施形態に係る車両用シートの基本構成の説明図である。 車両用シートの機能構成を示す図である。 経路案内装置の表示画面の一例を示す図である。 右折交差点に近接した際の経路案内装置の表示画面の一例を示す図である。 右折交差点に近接した際に振動する振動体の説明図である。 左折交差点に近接した際の経路案内装置の表示画面の一例を示す図である。 左折交差点に近接した際に振動する振動体の説明図である。 制御装置によって実行される振動制御処理の流れを示す図である。 振動パラメータを格納した振動パラメータテーブルを示す図である。 右折地点に接近した際に参照される振動パターンテーブルを示す図である。 左折地点に接近した際に参照される振動パターンテーブルを示す図である。 第2実施形態における外界センサの配置を示す図である。 接近物が接近した際に実行される振動制御処理の流れを示す図である。 第1変形例に係る振動制御処理の流れを示す図である。 第2変形例に係る振動制御処理の流れを示す図である。 第3実施形態に係る車両用シートの基本構成の説明図である。 車両用シートの機能構成を示す図である。 車両の右側から接近物が接近した際の振動体の振動状態を示す図である。 車両の左側から接近物が接近した際の振動体の振動状態を示す図である。 制御装置によって実行される振動制御処理の流れを示す図である。 振動パラメータ選択処理の流れを示す図である。 振動パラメータテーブルの一例を示す図である。 車両の右側から接近物が接近した際に参照される振動パターンテーブルの一例を示す図である。 車両の左側から接近物が接近した際に参照される振動パターンテーブルの一例を示す図である。 第4実施形態に係る振動パラメータ選択処理の流れを示す図である。 振動パターンテーブルの一例を示す図である。 第5実施形態に係る車両用シートの基本構成の説明図である。 車両用シートの内部構造を説明するための模式図である。 シートクッション及びシートバックの正面図である。 骨盤支持部材のシートクッション側支持部が起き上がっている状態を示す図である。 骨盤支持部材のシートバック側支持部が前傾している状態を示す図である。 乗物用シートの機能構成を示す図である。 クッション側エアセルの膨縮タイミングの一例を示す図である。 大腿二頭筋の膝裏側を揉捏している状態の一例を示す図である。 大腿二頭筋の臀部側を揉捏している状態の一例を示す図である。 バック側エアセルの膨縮タイミングの一例を示す図である。 脊柱起立筋の上方側を揉捏している状態の一例を示す図である。 脊柱起立筋の下方側を揉捏している状態の一例を示す図である。 制御装置によって実行される姿勢改善処理の流れを示す図である。 制御装置によって実行される揉捏処理の流れを示す図である。 制御装置によって実行される矯正処理の流れを示す図である。 第1変形例に係るエアセルが収縮した状態と膨張した状態を示す図である。
 以下、図1乃至図7Cを参照しながら、本発明の実施形態(以下、本実施形態)に係る車両用シートについて説明する。なお、以下に説明する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。
 以下の説明中、「前後方向」とは、車両Vの前後方向のことであり、車両Vの走行方向と一致する。「シート前後方向」とは、車両用シートの着座者から見たときの前後方向を意味する。「左右方向」とは、車両Vの左右方向のことである。「シート幅方向」とは、車両用シートの横幅方向を意味し、車両用シートの着座者から見たときの左右方向と一致する。また、以下において「左」とは車両Vの進行方向に対する左を指し、「シート左」とは着座者から見たときの左を指す。同様に「右」とは車両Vの進行方向に対する右を指し、「シート右」とは着座者から見たときの右を指す。また、「高さ方向」とは、車両用シートの高さ方向を意味し、車両用シートを正面から見たときの上下方向と一致する。
<<車両用シートSの主要構成>>
 図1は、車両用シートSの基本構成を示す斜視図である。図1に示すように、車両用シートSは、シート本体を構成するシートクッション1と、シートバック2と、ヘッドレスト3と、を有している。シートクッション1、シートバック2、及びヘッドレスト3は、シート本体に相当する。
 シートクッション1は、着座者を下方から支持する着座部である。シートクッション1は、該シートクッション1の骨格を構成するシートクッションフレーム(不図示)と、該シートクッションフレームを被覆するクッション材1a及び表皮材1bによって主に構成されている。クッション材1aは、発泡ウレタン等からなるパッド部材である。
 シートクッション1は、複数の振動体10を内蔵している。振動体10は、シート前後方向及びシート幅方向に互いに離隔して配置されている。詳細には、シートクッション1は、シート右前方に配置された右前方振動体11RFと、シート右後方に配置された右後方振動体11RRと、シート左前方に配置された左前方振動体11LFと、シート左後方に配置された左後方振動体11LRと、を含むシートクッション振動体11を内蔵している。シートクッション振動体11は、クッション材1aに形成された凹部内に収容されている。
 シートバック2は、着座者の背中を後方から支持する背もたれ部である。シートバック2は、該シートバック2の骨格を構成するシートバックフレーム(不図示)と、該シートバックフレームを被覆するクッション材2a及び表皮材2bによって主に構成されている。
 シートバック2は、上下方向及びシート幅方向に互いに離隔して配置された複数の振動体10を内蔵している。詳細には、シートバック2は、シート右上方に配置された右上方振動体12RUと、シート右下方に配置された右下方振動体12RDと、シート左上方に配置された左上方振動体12LUと、シート左下方に配置された左下方振動体12LDと、を含むシートバック振動体12を内蔵している。シートバック振動体12は、シートバック2のクッション材2aに形成された凹部内に収容されている。
 ヘッドレスト3は、乗員の頭を後方から支持する頭部であって、芯材となるピラー3cと、該ピラー3cを被覆するクッション材3a及び表皮材3bによって主に構成されている。
 車両用シートSには、振動体10の振動を制御する制御装置20が内蔵されている。制御装置20は、図1に示すように、外界センサ30及びナビゲーション装置40と通信回線を介して接続されている。制御装置20は、ナビゲーション装置40から経路案内情報を取得し、経路案内情報に基づいて振動体10が振動するように制御する。
<<車両用シートSの機能構成について>>
 次に、車両用シートSの機能構成について説明する。
 図2は、車両用シートSと、車両用シートSの制御装置20に接続された外界センサ30及びナビゲーション装置40の機能構成を示している。図2に示すように、制御装置20は、外界センサ30、ナビゲーション装置40、シートクッション振動体11、及びシートバック振動体12と接続されて、車両用シートS全体の制御を司る。
 外界センサ30は、車両Vの周辺情報である外界の状況を検出するセンサである。詳細には、外界センサ30は、車両Vの全方位の照射光に対する散乱光を測定して車両Vから周辺の障害物の距離を測定するライダによって構成することができる。また外界センサ30は、電磁波を照射し反射波を検出することで車両Vの周辺の他車両や障害物等を検出するレーダによって構成することができる。外界センサ30はさらに、車両Vの周辺の映像を撮像する光学式センサによって構成することができる。
 外界センサ30は、右前方センサ30RFと、右後方センサ30RRと、左前方センサ30LFと、左後方センサ30LRと、を有している。右前方センサ30RFは、車両Vの右前方に配置されて、車両Vの前方向及び右方向の状況を検出する。
 右後方センサ30RRは、車両Vの右後方に配置されて、車両Vの後ろ方向及び右方向の状況を検出する。
 左前方センサ30LFは、車両Vの左前方に配置されて、車両Vの前方向及び左方向の状況を検出する。
 左後方センサ30LRは、車両Vの左後方に配置されて、車両Vの後ろ方向及び左方向の状況を検出する。
 ナビゲーション装置40は、GPS受信部41と、経路案内部42と、通信部43と、地図情報格納部44と、から主に構成され、車両Vの現在地と目的地を結ぶ経路を案内するための経路案内情報を出力する。経路案内情報には、案内経路(現在地から目的地に至る経路)と、案内情報(右左折等の案内情報)と、案内経路の状況に関する経路状況情報(渋滞情報等)と、が含まれる。経路案内情報については、図3を参照して後述する。
 GPS受信部41は、複数のGPS衛星が送信する送信電波を受信する。そして、GPS受信部41は、受信信号に基づいてGPS衛星から車両Vまでの距離を算出することによって、車両Vの現在地を特定する。
 経路案内部42は、GPS受信部41が特定した現在地と目的地とに基づいて、目的地に到達するための経路を特定し、経路案内情報を出力する。現在地から目的地に到達するまでの経路は、ダイクストラ法と呼ばれる経路探索アルゴリズムを用いて取得することができるが、これに限定されない。また、複数の経路から、ユーザが所望の経路を選択することができると好適である。これにより、移動時間又は移動費用等の異なる移動条件に対して、ユーザが希望する条件に合致する経路を案内経路として選択することが可能となる。
 経路案内部42によって特定された現在地から目的地に至る案内経路は、地図情報格納部44から取得された地図に重畳されて、後述する入出力部50に出力される。入出力部50の出力画面については、図3を参照して後述する。
 通信部43は、無線通信回線を介して外部から案内経路の状況に関する情報を取得する。より具体的に説明すると、通信部43は、無線通信回線を介して、FM多重放送信号、高速道路に設置されたビーコン発振器が出力する電波ビーコン信号、及び一般道の主要幹線道路に設置されたビーコン発振器が出力する光ビーコン信号を受信する。そして通信部43は、案内経路の路面の状況に関する路面状況情報、渋滞状況に関する渋滞情報、事故情報(交通事項及び故障車情報)、交通規制情報、工事情報、及び気象情報を取得することができる。
 通信部43によって取得された情報は、経路案内部42によって特定された案内経路とともに後述する入出力部50に出力される。
 地図情報格納部44は、SSD(Solid State Drive)等からなる不揮発性の記憶装置であって、地図情報を格納している。また、ナビゲーション装置40のプロセッサが実行するプログラム等を格納してもよい。地図情報格納部44には、通信部43を介して取得された最新版の地図情報が格納されていることが好ましい。
 図3は、ナビゲーション装置40の入出力部50の正面図を示している。図3に示すように、入出力部50は、地図情報表示画面51を表示する表示部と、メニュー操作ボタン54及び表示位置変更ボタン55等からなる操作部と、から主に構成されている。
 地図情報表示画面51には、車両Vの現在位置表示53と、経路案内部42によって特定された案内経路を示す案内経路表示52と、が地図情報に重畳して表示されている。
 メニュー操作ボタン54は、目的地、及びナビゲーション装置40に対する各種設定情報を入力するために操作される。表示位置変更ボタン55は、地図情報の中心位置を、地図情報表示画面51に対して上方向、下方向、右方向、下方向にスライドするために操作される。車両Vの現在位置を地図情報表示画面51の中心に位置させるための操作を受け付けることも可能である。
 拡大縮小ボタン56は、地図情報の表示倍率を変更するために操作される。そして目的地表示57には、現在地から目的地までの移動距離と、目的地の到着予想時刻が表示される。
 このように、ナビゲーション装置40は、車両Vの現在地から目的地に至る案内経路が出力される。また、案内経路に加えて、進行方向の変更を案内するための案内情報と、案内経路の状況に関する情報(路面状況情報、渋滞情報、交通事故情報、故障車情報、交通規制情報、工事情報、又は気象情報)が出力される。本実施形態において、案内経路と、該案内経路に関する案内情報と、案内経路の状況に関する情報と、を経路案内情報という。
 図2に戻って、振動体10は、シートクッション1に内蔵されたシートクッション振動体11と、シートバック2に内蔵されたシートバック振動体12と、を有している。振動体10は、モータと、モータの回転軸に固定された偏心錘からなる偏心モータ、又はリニアバイブレータであるが、これに限定されない。振動体10は、振動によって着座者に刺激を与え、報知手段としての機能を果たすことができればよい。
 本実施形態において、振動体10は、シートクッション1に内蔵された4つのシートクッション振動体11と、シートバック振動体12に内蔵された4つのシートバック振動体12と、から構成されているが、これに限定されない。より多数のシートクッション振動体11及びシートバック振動体12が内蔵されていてもよい。
 制御装置20は、車両用シートS内に搭載されたECU(Electronic Control Unit)である。制御装置20は、プログラムを実行するプロセッサと、不揮発性記憶媒体と、揮発性記憶媒体と、から構成されている。そしてプロセッサが、不揮発性記憶媒体に格納されたプログラムを実行することにより、取得部21、振動パラメータ決定部22、及び振動制御部23として機能する。
 取得部21は、通信ケーブル又は無線通信による通信が可能な通信インターフェイスを有し、外界センサ30が出力する外界信号と、ナビゲーション装置40が出力する経路案内情報を取得する。
 振動パラメータ決定部22は、振動体10が振動する際の振動パラメータを決定する。振動パラメータは、少なくとも振動強度、及び振動間隔を含んでいる。振動パラメータは、振動周波数を含んでいてもよい。
 振動パラメータ決定部22は、車両Vの現在地と、車両Vが次に進行方向を変更する地点までの距離に基づいて振動パラメータを決定する。例えば、振動パラメータ決定部22は、取得部21から経路案内情報を取得し、現在地から次の進行方向を変更する地点までの距離が短くなるにつれて、振動強度が大きくなるように振動パラメータを決定する。
 また、振動パラメータ決定部22は、路面状況情報、渋滞情報、交通事故情報、故障車情報、交通規制情報、工事情報、又は気象情報に基づいて振動パラメータを決定する。例えば、振動パラメータ決定部22は、現在地と渋滞が発生している地点との間の距離が短くなるにつれて、振動周波数が高くなるように振動パラメータを決定する。
 振動制御部23は、経路案内情報に基づいて、進行方向を変更する地点に接近した際に、変更後の進行方向側に配置された振動体10が駆動するように制御する。
 図4Aは、車両Vが、右折すべき地点に接近した際のナビゲーション装置40の地図情報表示画面51を示している。そして図4Bは、このときの振動体10の駆動状態を示している。図4Aに示すように、車両Vが右方向に進行方向を変更すべき地点、すなわち右折地点に接近すると、地図情報表示画面51には、進路変更地点名称表示58と、進路変更距離表示59と、変更進路表示60と、が地図情報に重畳されて表示される。進路変更地点名称表示58は、右折地点の名称を示している。そして進路変更距離表示59は、現在地から右折地点までの距離を示している。また、変更進路表示60は、変更後の進行方向を示している。
 このとき、図4Bに示すように、変更後の進行方向である右側に配置された右前方振動体11RF、右後方振動体11RR、右上方振動体12RU、及び右下方振動体12RDが振動するように制御される。このように、車両用シートSは、右側に配置された振動体10を振動させることによって、右折地点の接近を報知する。
 これにより、ナビゲーション装置40に対して視線を向けることが困難な状況であっても、運転者に対して経路案内情報を認識させることが可能となる。
 図5Aは、車両Vが、左折すべき地点に接近した際のナビゲーション装置40の地図情報表示画面51を示している。そして図5Bは、このときの振動体10の駆動状態を示している。図5Aに示すように、車両Vが左方向に進行方向を変更すべき地点、すなわち左折地点に接近すると、地図情報表示画面51には、進路変更地点名称表示58と、進路変更距離表示59と、変更進路表示60と、が地図情報に重畳されて表示される。
 このとき、図5Bに示すように、変更後の進行方向である左側に配置された左前方振動体11LF、左後方振動体11LR、左上方振動体12LU、及び左下方振動体12LDが振動するように制御される。このように、車両用シートSは、左側に配置された振動体10を振動させることによって、左折地点の接近を報知する。
 これにより、ナビゲーション装置40に対して視線を向けることが困難な状況であっても、運転者に対して経路案内情報を認識させることが可能となる。
<<振動制御処理の流れについて>>
 次に、制御装置20によって実行される振動制御処理の流れについて説明する。
 図6は、振動制御処理の流れを示している。図6に示す振動制御処理は、所定の時間周期で制御装置20によって実行される。最初に、制御装置20は、ナビゲーション装置40から経路案内情報を受信したか否かを判断する(ステップS10)。経路案内情報を受信したと判定されなかった場合(ステップS10:No)、制御装置20は、経路案内情報を受信するまで待機する。
 経路案内情報は、現在地から目的にまでの案内経路と、進行方向に関する案内情報と、案内経路の状況に関する情報と、を含んでいる。案内経路の状況に関する情報は、路面状況に関する路面状況情報、渋滞情報、交通事故情報、故障車情報、工事情報、又は交通規制情報を含んでいる。
 制御装置20が経路案内情報を受信したと判定された場合(ステップS10:Yes)、制御装置20は、次に案内経路が含まれる地域の気象情報を取得する(ステップS11)。気象情報は、大雨、大雪、強風等に関する情報を含んでいる。気象情報は、経路案内情報とともに取得してもよい。
 続いて、制御装置20は、車両Vの現在地が、右折地点に接近したか否かを判定する(ステップS12)。より詳細には、車両Vの現在地と右折地点までの距離が、予め設定された所定の距離以下となったか否かを判定する。所定の距離には、例えば300メートル、100メートル、30メートルのように、複数の距離が設定されている。また、制御装置20は、ナビゲーション装置40から右折地点に接近したことを案内する経路案内情報を受信したか否かに基づいて判定してもよい。
 現在地が右折地点に接近したと判定された場合(ステップS12:Yes)、制御装置20は、振動パラメータを選択することによって振動パラメータを決定する(ステップS13)。具体的には、制御装置20は、振動パラメータテーブル24を参照することによって振動パラメータを選択する。
 図7Aは、振動パラメータテーブル24を示している。図7Aに示すように、振動パラメータテーブル24は、振動パラメータと、選択可能な振動パラメータの値が格納されている。振動パラメータには、振動強度と、振動間隔と、振動周波数と、が含まれる。
 振動強度は、振動体10の振動の振幅の大きさを示すパラメータである。振動強度として、予め設定された「弱」、「中」、「強」のいずれかの値を設定することができる。
 振動間隔は、振動体10が、振動期間及び停止期間を1つの振動周期として繰り返し振動する際の振動周期の長さを示すパラメータである。振動周期として、予め設定された「短」、「中」、「長」のいずれかの値を選択することができる。
 振動周波数は、振動体10の振動周波数を示すパラメータである。振動周波数として、予め設定された「低」、「中」、「高」のいずれかの値を設定することができる。
 制御装置20の振動パラメータ決定部22は、現在地から進路方向を変更する地点までの距離に基づいて振動パラメータを選択する。具体的には、現在地から右折交差点までの距離が100メートル以上の300メートル未満の場合、振動強度を「弱」に決定し、振動間隔を「長」に決定し、振動周波数を「低」に決定する。そして、現在地から右折交差点までの距離が30メートル以上で100メートル未満の場合、振動強度を「中」に決定し、振動間隔を「中」に決定し、振動周波数を「中」に決定する。また、現在地から右折交差点までの距離が30メートル未満の場合、振動強度を「強」に決定し、振動間隔を「短」に決定し、振動周波数を「高」に決定する。
 図6に戻って、制御装置20は、ステップS13で決定された振動パラメータで、振動体10が振動するように制御する(ステップS14)。このとき制御装置20は、振動パターンテーブル25Rを参照することによって、車両用シートSの右側に配置された振動体10が振動するように制御する。振動パターンテーブル25Rは、右折地点に接近した際に参照される振動パターンテーブル25であって、複数の振動体10を振動させる順番が格納されている。
 図7Bは、右折地点に接近した際に参照される振動パターンテーブル25Rを示している。図7Bに示すように、振動パターンテーブル25Rには、「パターンA」、「パターンB」、「パターンC」の3つの振動パターンが格納されている。パターンAは、シートバック2に内蔵された右上方振動体12RU、右下方振動体12RD、シートクッション1に内蔵された右後方振動体11RR、右前方振動体11RFが、この順番に振動する振動パターンである。パターンAは、右斜め前方に進路変更する際に参照される振動パターンである。
 パターンBは、パターンAの逆順で振動体10が振動する。詳細には、右前方振動体11RF、右後方振動体11RR、シートバック2に内蔵された右下方振動体12RD、右上方振動体12RUが、この順番に振動する振動パターンである。パターンBは、右斜め後方に進路変更する際に参照される振動パターンである。
 パターンCは、右上方振動体12RU、右下方振動体12RD、右後方振動体11RR、及び右前方振動体11RFが同時に振動する振動パターンである。パターンCは、右正面方向に進路方向する際に参照される振動パターンである。
 一方、ステップS12において、現在地が右折地点に接近したと判定されなかった場合(ステップS12:No)、制御装置20は、現在地が左折地点に接近したか否かを判定する(ステップS15)。より詳細には、車両Vの現在地と左折地点までの距離が、例えば300メートル、100メートル、30メートル以下となったか否かを判定する。
 現在地が左折地点に接近したと判定された場合(ステップS15:Yes)、制御装置20は、振動パラメータを選択することによって振動パラメータを決定する(ステップS16)。ステップS13と同様に、制御装置20は、振動パラメータテーブル24を参照することによって振動パラメータを決定する。
 続いて、制御装置20は、決定された振動パラメータで振動体10が振動するように制御する(ステップS17)。そして制御装置20は、振動パターンテーブル25Lを参照することによって、車両用シートSの左側に配置された振動体10が所定の順番で振動するように制御する。振動パターンテーブル25Lは、左折地点に接近した際に参照される振動パターンテーブル25である。振動パターンテーブル25Lは、図7Cに示すように、右折時の振動パターンを格納する振動パターンテーブル25Rと同様であるため、詳細な説明を省略する。
 一方、ステップS15において、現在地が左折地点に接近したと判定されなかった場合(ステップS15:No)、制御装置20は、案内経路の状況に基づいて振動パラメータを選択する(ステップS18)。例えば、現在地から1キロメートル以内の案内経路の路面状況が「悪路」を示していた場合、振動強度を「強」に決定し、振動間隔を「短」に決定し、振動周波数を「高」に決定する。
 また、制御装置20は、案内経路の渋滞情報に基づいて振動パラメータを選択してもよい。例えば、現在地から1キロメートル以内の案内経路の渋滞情報が「渋滞あり」を示していた場合、振動強度を「中」に決定し、振動間隔を「中」に決定し、振動周波数を「中」に決定する。
 制御装置20は、案内経路の事故情報に基づいて振動パラメータを選択してもよい。例えば、現在地から1キロメートル以内の案内経路の事故情報が「交通事故あり」を示していた場合、振動強度を「弱」に決定し、振動間隔を「長」に決定し、振動周波数を「低」に決定する。
 また、制御装置20は、案内経路の交通規制情報に基づいて振動パラメータを選択してもよい。例えば、現在地から1キロメートル以内の案内経路の交通規制情報が「交通規制あり」を示していた場合、振動強度を「中」に決定し、振動間隔を「中」に決定し、振動周波数を「中」に決定する。
 制御装置20は、案内経路を含む地域の気象情報に基づいて振動パラメータを選択してもよい。例えば、現在地から10キロメートル以内の気象情報が「大雨」、「大雪」、「強風」のいずれかを示していた場合、振動強度を「強」に決定し、振動間隔を「短」に決定し、振動周波数を「強」に決定する。
 上述した案内経路の状況及び気象情報と、振動パラメータと、の関係は一例に過ぎず、案内経路の状況に応じて任意の振動パラメータが選択されうる。
 続いて制御装置20は、ステップS18で決定された振動パラメータで、振動体10が振動するように制御する(ステップS19)。制御装置20は、振動パターンテーブルR及び振動パターンテーブルLに格納されたパターンA、パターンB、及びパターンCのいずれかに基づいて振動体10が振動するように制御して、振動制御処理が終了する。
 以上のように、ナビゲーション装置40が出力する経路案内情報を、振動体10によって報知することにより、視覚又は聴覚によって経路案内情報を認識することが困難な場合であっても、振動によって経路案内情報を認識することが可能となる。
 上述した実施形態では、制御装置20は、車両Vに搭載されたナビゲーション装置40が出力する経路案内情報を取得して振動体10を振動制御することとして説明したが、本発明はこれに限定されない。例えば、着座者によって携帯可能スマートフォンが経路案内プログラムを搭載し、スマートフォンが出力する経路案内情報を制御装置20が取得して振動体10を振動制御してもよい。この場合、スマートフォンの機種や経路案内プログラムの種類に応じて柔軟に振動体10を振動制御し、振動体10を報知手段として機能させることが可能となる。
 また、上述した実施形態では、制御装置20は、経路案内情報を取得したタイミングで振動体10が振動するように制御することとして説明したが、本発明はこれに限定されない。制御装置20は、ナビゲーション装置40が経路案内情報を出力するタイミングと異なるタイミングにおいて、振動体10が振動するように制御してもよい。具体的には、制御装置20が、経路案内情報を取得してから所定の遅延時間を計測し、遅延時間の経過後に振動体10が振動するように制御してもよい。これにより、ナビゲーション装置40の入出力部50から出力される経路案内情報を認識した運転者に対して、所定の遅延時間の経過後に確認的に経路案内情報を報知することができる。そのため、視覚、又は聴覚に認識と併せて、より確実に経路案内情報を運転者に認識させることが可能となる。
 また、制御装置20は、ナビゲーション装置40が経路案内情報を出力する前に振動体10を振動させてもよい。より詳細には、制御装置20は、経路案内情報と車両Vの走行速度に基づいて、ナビゲーション装置40が経路案内情報を出力するタイミングを予測し、次の経路案内情報を出力される前に、振動体10が振動するように制御する。これにより、運転者に対して、まもなく経路案内情報が出力されることを予告することができる。そのため、運転者がナビゲーション装置40から出力される経路案内情報を認識することを支援することが可能となる。
<第2実施形態>
 上述した実施形態において、制御装置20は、ナビゲーション装置40が出力する経路案内情報に基づいて振動体10を制御することによって、振動体10を報知手段として有効に利用することとして説明した。これに対して、第2実施形態に係る制御装置120は、外界センサ30の出力に基づいて車両Vの外界周辺における接近物の存在を監視し、接近物が検出されると、接近物が接近する方向、距離、及び接近速度に基づいて振動体10を振動させる。これにより、単に接近物を報知することによって運転者に警告を与えるだけでなく、接近物が接近する状況を適切に認識させることが可能となり、安全性を向上させることが可能となる。
 ここで「接近物」とは、車両Vに対して接近してくる物体、換言すると、車両Vとの相対距離が小さくなる物体である。具体的には、車両Vの周辺を走行する他の車両、自動二輪車、自転車、歩行者、建物の壁や電信柱等の設置物は、接近物に該当し得る。
 以下の説明では、車両Vが前方に向かって走行中に、後方(右後方及び左後方を含む)からの接近物の存在を、振動体10を振動させることによって運転者に報知する場合について説明する。
 図8は、第2実施形態における外界センサ30の車両Vに対する取付位置を模式的に示している。図8に示すように、外界センサ30は、車両Vの前後左右に1つずつ合計4つのセンサが取り付けられている。つまり、右前方センサ30RF、右後方センサ30RR、左前方センサ30LF、及び左後方センサ30LRが車両Vの車体に取り付けられている。ただし、センサの数及び配置は、図8に示す数及び配置に限定されない。例えば、図8中、白丸印で表記された箇所や、バツ印にて表記された箇所に、センサの位置を変更するか、又は追加して配置してもよい。
 第2実施形態に係る制御装置120は、外界センサ30が出力する外界信号を取得すると、外界信号に基づいて、車両Vに対する接近物の接近方向、車両Vと接近物との間の距離、及び接近物の接近速度を特定する。続いて制御装置120は、接近物の接近距離、及び接近速度に基づいて振動体10の振動パラメータを決定し、接近物の接近方向に配置された振動体10が振動するように制御する。
 図9は、第2実施形態に係る制御装置120によって実行される振動制御処理の流れを示している。図9に示すように、最初に、制御装置120は、外界センサ30が出力する外界信号を取得する(ステップS110)。
 次に、制御装置120は、接近物が接近しているか否かを判定する(ステップS111)。詳細に説明すると、制御装置120は、ステップS110で取得した信号に基づいて、車両Vの周辺に存在する接近物を特定する。換言すると、制御装置120は、接近物の接近方向、車両Vと接近物との間の距離、及び接近物の接近速度を特定する。そして、制御装置120は、特定された車両Vと接近物との間の距離、及び接近速度を、予め設定された所定の閾値と比較することによって接近物の有無を判定する。
 接近物が存在すると判定されなかった場合(ステップS111:No)、接近物が接近するまで待機する。
 一方、接近物が存在すると判定された場合(ステップS111:Yes)、制御装置120は、接近物の接近方向を判定する。すなわち、最初に、接近物が車両Vの右側から接近しているか否かを判定する(ステップS112)。
 接近物が車両Vの右側から接近していると判定された場合(ステップS112:Yes)、制御装置120は、振動パラメータを選択、決定する(ステップS113)。制御装置120は、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータを選択する。具体的には、車両Vと接近物との間の距離が短く、接近物の接近速度が大きい場合には、振動強度「強」を選択する。一方、車両Vと接近物との間の距離が長く、接近物の接近速度が小さい場合には、振動強度「弱」を選択する。
 制御装置20は、ステップS113で決定された振動パラメータで、車両用シートSの右側に配置された振動体10が振動するように制御する(ステップS114)。具体的には、接近物が右後方から接近する場合、制御装置20は、シートバック2の右上方振動体12RU、右下方振動体12RD、シートクッション1の右後方振動体11RR、及び右前方振動体11RFの順に振動体10を振動させ、振動制御処理を終了する。
 一方、ステップS112において、接近物が車両Vの右側から接近していると判定されなかった場合(ステップS112:No)、制御装置20は、接近物が車両Vの左側から接近しているか否かを判定する(ステップS115)。接近物が車両Vの左側から接近していると判定された場合(ステップS115:Yes)、制御装置20は、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータを決定する(ステップS116)。
 続いて制御装置20は、ステップS116で決定された振動パラメータで、車両用シートSの左側に配置された振動体10が振動するように制御する(ステップS117)。具体的には、接近物が左後方から接近する場合、制御装置20は、シートバック2の左上方振動体12LU、左下方振動体12LD、シートクッション1の左後方振動体11LR、及び左前方振動体11LFの順に振動体10を振動させ、振動制御処理を終了する。
 一方、ステップS115において、接近物が車両Vの左側から接近していると判定されなかった場合(ステップS115:No)、制御装置20は、接近物が車両Vの後方から接近していると判定する。続いて制御装置20は、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータを決定し(ステップS118)、車両用シートSの左右に配置された振動体10が振動するように制御し(ステップS119)、振動制御処理を終了する。
 なお、上述した振動制御処理は、所定の時間間隔で繰り返し実行される。これにより、制御装置20は、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータを更新することが可能となる。
 以上のように、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータを決定し、接近物が接近する方向に配置された振動体10を振動させる。これにより、単に接近物を報知することによって警告するだけでなく、運転者に対して接近物が接近する状況を適切に認識させることが可能となり、安全性を向上させることが可能となる。
 上述した第2実施形態では、外界センサ30の出力に基づいて走行中の車両Vに接近物が接近した場合に振動体10を振動させることとして説明したが、本発明はこれに限定されない。例えば、車両Vに設けられた衝突軽減ブレーキが作動するとき振動体10を連動して振動させてもよい。これにより、第2実施形態と同様に、乗員の安全性を向上させることが可能となる。
 上述した第2実施形態において、車両用シートSが、車両Vの進行方向に向いている場合について、接近物の接近方向に配置された振動体10を振動させることとして説明したが、本発明はこれに限定されない。車両用シートSが、車両Vの進行方向と異なる方向(例えば車両Vの進行方向に対して背を向けている場合)には、接近物の接近方向とはシート幅方向において反対側に配置された振動体10を振動させてもよいことは勿論である。
<第1変形例>
 上述した第2実施形態は、走行中の車両Vに対して後方からの接近物が存在する場合に振動体10を振動させることとして説明したが、本発明はこれに限定されない。例えば、運転者がウィンカーレバーを操作して車両Vの進路を変更しようとした際に、変更後の進路側に接近物を検出した場合に振動体10を振動させてもよい。これにより、進路変更後の車線に存在する他の車両の存在を適切に認識することが可能となり、着座者の安全性を向上させることが可能となる。
 図10は、第1変形例に係る制御装置120Aによって実行される振動制御処理の流れを示している。図10では、右側に進路変更する場合について説明するが、左側に進路変更する場合も同様である。
 最初に制御装置120Aは、右ウィンカーレバーが操作されたか否かを判定する(ステップS110A)。右ウィンカーレバーが操作されていないと判定された場合(ステップS110A:No)、制御装置120Aは、ウィンカーレバーが操作されるまで待機する。
 一方、右ウィンカーレバーが操作されたと判定された場合(ステップS110A:Yes)、制御装置120Aは、外界センサ30が出力する外界信号を取得する(ステップS111A)。
 次に、制御装置120Aは、ステップS111Aで取得した外界信号に基づいて、ウィンカーレバーを操作した方向、すなわち変更後の進路側に接近物が存在するか否かを判定する(ステップS112A)。より詳細には、制御装置120Aは、接近物の接近方向、車両Vと接近物との間の距離、及び接近物の接近速度を特定し、右側に接近物が存在するか否かを判定する。
 右側に接近物が存在すると判定した場合(ステップS112A:Yes)、制御装置120Aは、振動パラメータを決定する(ステップS113A)。上述したように、振動パラメータは、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて決定される。
 そして制御装置20は、ステップS114Aで決定された振動パラメータで、車両Vの右側に配置された振動体10を振動させる(ステップS114A)。
 一方、ステップS112Aで右側に接近物が存在すると判定されなかった場合(ステップS112A:No)、振動体10を振動させることなく処理を終了する。
 以上のように、運転者がウィンカーレバーを操作した際に、進路変更側に接近物が存在する場合、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて振動パラメータが決定される。そして、車両Vの進路変更側に配置された振動体10が、決定された振動パラメータで振動する。これにより、運転者は、進路変更後の車線に存在する接近物の存在を適切に認識することが可能となり、着座者の安全性を向上させることが可能となる。
<第2変形例>
 上述した第1変形例では、運転者がウィンカーレバーを操作して車両Vの進路を変更しようとした際に、変更後の進路側に接近物の存在を検出した場合に振動体10を振動させることとして説明した。これに対して、運転者がアクセルペダルを操作して車両Vを前方又は後方に発進しようとした際に、発進方向に接近物を検出した場合に振動体10を振動させてもよい。これにより、発進方向に存在する接近物の存在を適切に認識することが可能となり、着座者の安全性を向上させることが可能となる。
 図11は、第2変形例に係る制御装置120Bによって実行される振動制御処理の流れを示している。図11に示すように、最初に制御装置120Bは、発進操作が行われたか否かを判定する(ステップS110B)。具体的には、制御装置120Bは、アクセル操作の有無、及びシフトレバーの位置に基づいて、発進操作が行われたか否かを判定する。発進操作が行われていないと判定された場合(ステップS110B:No)、制御装置120Bは、発進操作が行われるまで待機する。
 一方、発進操作が行われたと判定された場合(ステップS110B:Yes)、制御装置120Bは、外界センサ30が出力する外界信号を取得する(ステップS111B)。
 次に、制御装置120Bは、ステップS111Bで取得した外界信号に基づいて、発進方向である前方に接近物が存在するか否かを判定する(ステップ112B)。より詳細には、制御装置120Bは、接近物の接近方向、車両Vと接近物との間の距離、及び接近物の接近速度を特定し、前方に接近物が存在するか否かを判定する。
 前方に接近物が存在すると判定された場合(ステップS112B:Yes)、制御装置120Bは、振動パラメータを決定する(ステップS113B)。上述したように、振動パラメータは、車両Vと接近物との間の距離、及び接近物の接近速度に基づいて決定される。
 そして制御装置120Bは、ステップ113Bで決定された振動パラメータで、前方に配置された振動体10を振動させる(ステップS114B)。具体的には、制御装置120Bは、シートクッション振動体11が振動するように制御し、ステップS11Bに戻り、接近物の接近状態が解消されるまで振動パラメータを更新しながら振動体10が振動するように制御する。
 一方、前方に接近物が存在すると判定されなかった場合(ステップS112B:No)であって、車両Vが後方に発進する場合、制御装置120Bは、後方に接近物が存在するか否かを判定する(ステップS115B)。
 後方に接近物が存在すると判定された場合(S115B:Yes)、制御装置120Bは、振動パラメータを決定し(ステップS116B)、後方に配置された振動体10を振動させる(ステップS117B)。具体的には、制御装置120Bは、シートバック振動体12が振動するように制御し、ステップS111Bに戻り、接近物の接近状態が解消されるまで振動パラメータを更新しながら振動体10が振動するように制御する。
 一方、後方に接近物が存在しないと判定された場合(ステップS115B)、制御装置120Bは、処理を終了する。
 以上のように、運転者が発進操作を行った際に、発進方向に接近物が存在する場合、車両Vと接近物との距離、及び接近物の接近速度に基づいて振動パラメータが決定される。そして、車両Vの発進方向に配置された振動体10が、決定された振動パラメータで振動する。これにより、運転者は、発進方向に存在する接近物の存在を適切に認識することが可能となり、着座者の安全性を向上させることが可能となる。
<第3実施形態>
 以下、第3実施形態に係る車両用シートSについて図12乃至図18Cを参照して説明する。
 上述したように、特許文献1に記載の技術によれば、着座者の視覚、又は聴覚に依存することなく危険の接近を知らせるための報知手段として、振動体の有効性を認めることができる。しかしながら、着座者に対する報知手段として、さらなる改善が望まれていた。より具体的には、着座者の体格、又は走行中の路面の状況に応じて、より効果的に報知することが望まれていた。例えば小柄な体格を有する着座者に対して報知を行う場合、振動体の振動が、着座者に対して不快感を覚えさせてしまう虞があった。一方、大きな体格を有する着座者に対して報知を行う場合、振動の強度が不十分であることにより、振動体の振動を十分に着座者に認識させることができない虞があった。また、他の例として、砂利道など、走行中に路面から伝わる振動が大きい状況においては、通常の振動強度による振動では着座者に十分に認識させることができない虞があった。このように、着座者の体格、又は走行中の路面の状況に応じて、効果的に報知を行うことが求められていた。
 そこで、着座者の体格、又は走行中の路面の状況に応じて、シート本体に内蔵された振動体による報知を効果的に行うことができる車両用シートを提供する。
<<車両用シートSの主要構成>>
 図12は、車両用シートSの基本構成を示す斜視図である。図12に示すように、車両用シートSは、シート本体を構成するシートクッション1と、シートバック2と、ヘッドレスト3と、を有している。
 車両用シートSには、振動体10の駆動を制御する制御装置220が内蔵されている。制御装置220は、図12に示すように、外界センサ30及び体格検知センサ240と通信回線を介して接続されている。制御装置220は、外界センサ30の出力信号に基づいて車両Vに接近する接近物の存在及び接近方向を判定する。また制御装置220は、体格検知センサ240が出力する体格信号に基づいて振動体10の振動パラメータを決定し、決定された振動パラメータで接近方向に配置された振動体10が振動するように制御する。これにより、制御装置220は、接近物の接近を着座者に報知して注意喚起を促す。
<<車両用シートSの機能構成について>>
 次に、車両用シートSの機能構成について説明する。
 図13は、車両用シートSと、車両用シートSの制御装置220に接続された外界センサ30と、体格検知センサ240と、路面撮像装置245と、走行速度センサ246の機能構成を示している。図13に示すように、制御装置220は、外界センサ30と、体格検知センサ240と、路面撮像装置245と、走行速度センサ246と、シートクッション振動体11と、シートバック振動体12と接続されて、車両用シートS全体の制御を司る。
 外界センサ30は、上述した実施形態と同様であるため、詳細な説明を省略する。
 体格検知センサ240は、着座者の体格を検知し、体格信号を出力する。体格検知センサ240は、体格検知装置に相当する。詳細には、体格検知センサ240は、車両用シートSのシートクッション1に内蔵された重量センサによって構成することができる。体格検知センサ240として重量センサを採用することにより、制御装置220は、シートクッション1に対する着座者の荷重信号を取得することが可能となる。重量センサは、シートクッション1に内蔵された振動体10の近傍に配設されると好適である。これにより、重量センサが検知した荷重信号に基づいて、その近傍に配設された振動体10の振動パラメータを適切に設定することができるため、振動体10による報知を効果的に行うことが可能となる。
 また、体格検知センサ240は、車両用シートSに着座する着座者を撮像する撮像装置によって構成されてもよい。体格検知センサ240として着座者撮像装置を採用することにより、制御装置220は、着座者の映像を取得することが可能となる。制御装置220は、着座者の映像に対して所定の画像解析処理を施すことにより、着座者の体格に加えて、着座者の性別、年齢等の属性情報を取得することが可能となる。制御装置220は、着座者の体格及び属性に基づいて振動体10の振動パラメータを決定することで、振動体10による報知を効果的に行うことが可能となる。
 また、体格検知センサ240は、車室内における前後方向の位置を変更可能な車両用シートSの位置を検知する位置センサによって構成されてもよい。位置センサは、例えば車両用シートSの下方に設置されて、車両用シートSを前後にスライド可能に支持するスライド機構(不図示)に取り付けることができる。体格検知センサ240として位置センサを採用することにより、制御装置220は、車両用シートSの位置情報を取得することが可能となる。制御装置220は、車両用シートSの位置情報に基づいて着座者の体格を推定する。そのため、コスト増加を抑制しつつ、振動体10による報知を効果的に行うことが可能となる。
 また、体格検知センサ240は、車両用シートSに内蔵されて、互いに所定の間隔を隔てて配置された複数の静電容量センサによって構成されてもよい。体格検知センサ240として静電容量センサを採用することにより、制御装置220は、静電容量センサの検知信号を取得することが可能となる。制御装置220は、静電容量センサの検知信号に基づいて、着座者と車両用シートSが接触している箇所を判定し、着座者と車両用シートSが接触していると判定された位置の近傍に配置された振動体10による報知を効果的に行うことが可能となる。
 路面撮像装置245は、車両Vの車体に取り付けられて、車両Vが走行する路面の映像を出力する。制御装置220は、路面の映像(路面信号に相当する。)に対して所定の画像解析処理を施すことにより、路面状況の判定を行う。路面状況とは、例えば路面に存在する凹凸の有無や、路面の舗装状態に関する情報を含んでいる。後述するように、制御装置220は、路面状況を判定し、路面状況が粗悪な場合には、振動体10の振動強度が大きくなるように制御する。これにより、路面からの振動と誤認されることなく報知信号を着座者に認識させることが可能となる。路面撮像装置245は、路面状況検知装置に相当する。
 走行速度センサ246は、車両Vの走行速度信号を出力する。制御装置220は、後述するように、制御装置220は、走行速度信号を取得し、路面状況が粗悪な場合であって、かつ走行速度が大きい場合に、振動体10の振動強度を大きくするように制御する。これにより、路面からの振動と誤認されることなく報知信号を着座者に認識させることが可能となる。
 シートクッション振動体11、及びシートバック振動体12は、上述した実施形態と同様の構成であるため、詳細な説明を省略する。
 制御装置220は、車両用シートS内に搭載されたECU(Electronic Control Unit)である。制御装置220は、プログラムを実行するプロセッサと、不揮発性記憶媒体と、揮発性記憶媒体と、から構成されている。そしてプロセッサが、不揮発性記憶媒体に格納されたプログラムを実行することにより、取得部221、接近物判定部222、着座状態判定部223、振動パラメータ決定部224、及び振動制御部225として機能する。
 取得部221は、通信ケーブル又は無線通信による通信が可能な通信インターフェイスを有し、外界センサ30が出力する外界信号と、体格検知センサ240が出力する体格信号と、を取得する。
 接近物判定部222は、外界センサ30が出力する外界信号に基づいて車両Vの周囲の物体を検出する。そして接近物判定部222は、検出した物体の特徴からその物体の種類(例えば、歩行者や他車両)を判別する。続いて接近物判定部222は、検出した物体と車両Vとの衝突確率を算出する。衝突確率の算出は、物体の車両Vへの接近速度を考慮して行う。接近物判定部222は、車両Vと物体との衝突形態(前面衝突、後面衝突、側面衝突)を判定して、特定の衝突(例えば側面衝突)の場合の衝突確率を算出してもよい。
 接近物判定部222は、算出された衝突確率を予め定められた所定の閾値と比較することによって接近物の有無を判定し、判定結果及び接近物の接近方向を、振動制御部225に出力する。
 着座状態判定部223は、体格検知センサ240が出力する体格信号に基づいて着座者の着座状態を判定する。着座状態判定部223は、体格検知センサ240によって着座者を検知することができなかった場合に、着座者が車両用シートSに着座していないと判定する。
 振動パラメータ決定部224は、振動体10を振動させる際に用いられる振動パラメータを決定する。振動パラメータは、振動強度、及び振動間隔の少なくとも一方を含んでいる。振動パラメータは、振動周波数を含んでいてもよい。
 振動パラメータ決定部224は、着座者の体格と、路面状況と、車両Vの走行速度と、に基づいて振動パラメータを決定する。具体的には、振動パラメータ決定部224は、着座者が大柄な体格の場合には、振動強度が大きくなるように振動パラメータを決定する。一方、振動パラメータ決定部224は、着座者が小柄な体格の場合には、振動強度が小さくなるように振動パラメータを決定する。これにより、大柄な体格を有する着座者について、報知信号の認識漏れを防止するとともに、小柄な体格を有する着座者について、振動が強すぎることによって不快感を覚えさせることを抑制することが可能となる。
 また、振動パラメータ決定部224は、車両Vが、粗悪な路面(凹凸が大きい路面)を高速で走行する場合には、振動強度が大きくなるように振動パラメータを決定する。一方、良好な路面(舗装済みの路面)を低速で走行する場合には、振動強度が小さくなるように振動パラメータを決定する。これにより、粗悪な路面を高速で走行する際に、路面から伝達される振動と誤認されることなく報知信号を認識させることができるとともに、良好な路面で低速で走行する際に、振動が強すぎることによって着座者に不快感を覚えさせることを抑制することが可能となる。
 振動制御部225は、接近物判定部222の判定結果と、振動パラメータ決定部224によって決定された振動パラメータに基づいて、接近物の接近方向に配置された振動体10が振動するように制御する。
 図14Aは、接近物が右側から接近している場合に、車両用シートSの右側に配置された右前方振動体11RF、右後方振動体11RR、右上方振動体12RU、及び右下方振動体12RDが振動する状況を示している。図14Aに示すように、接近方向に配置された振動体10が振動するように制御することによって、接近物の存在と接近方向を着座者に対して認識させることができる。ここで、右前方振動体11RF、右後方振動体11RR、右上方振動体12RU、及び右下方振動体12RDは、着座者の体格と、路面状況と、車両Vの走行速度に応じて決定された振動パラメータで振動する。
 図14Bは、接近物が左側から接近している場合に、車両用シートSの左側に配置された左前方振動体11LF、左後方振動体11LR、左上方振動体12LU、及び左下方振動体12LDが振動する状況を示している。ここで、左前方振動体11LF、左後方振動体11LR、左上方振動体12LU、及び左下方振動体12LDは、着座者の体格と、路面状況と、車両Vの走行速度に応じて決定された振動パラメータで振動する。
<<振動制御処理の流れについて>>
 次に、制御装置220によって実行される振動制御処理の流れについて説明する。
 図15は、制御装置220によって実行される振動制御処理の流れを示している。図15に示すように、最初に、制御装置220は、着座者の着座状態を判定する(ステップS210)。着座者が着座していないと判定された場合(ステップS210:No)、制御装置220は、着座者が着座するまで待機する。換言すると、制御装置220は、着座者が着座していないと判定した場合には、振動体210を振動させる制御を行わない。
 一方、着座者が着座していると判定した場合(ステップS210:Yes)、制御装置220は、外界センサ30が出力する外界信号を取得し(ステップS211)、車両Vの周辺における接近物の存在を判定する(ステップS212)。上述したように制御装置220は、車両Vの周囲の物体を検出し、検出された物体と車両Vとの衝突確率が所定の閾値より大きい場合に接近物が存在すると判定する。接近物が存在すると判定されなかった場合(ステップS212:No)、制御装置220は、ステップS211に戻り、外界センサ30の出力を監視する。
 一方、接近物が存在すると判定された場合(ステップS212:Yes)、制御装置220は、振動パラメータ選択処理を実行する(ステップS213)。
 図16は、制御装置220によって実行される振動パラメータ選択処理の流れを示している。図16に示すように、最初に、制御装置220は、体格検知センサ240が出力する体格信号を取得する(ステップS220)。
 次に制御装置220は、着座者の体格が大柄か否かを判定する(ステップS221)。より詳細には、制御装置220は、体格信号を予め設定された所定の閾値と比較することにより、着座者の体格が大柄か否かを判定する。なお、制御装置220は、体格検知センサ240が着座者を撮像する着座者撮像装置である場合には、着座者の映像信号に対して所定の画像処理を適用することによって着座者の体格が大柄か否かを判定する。
 着座者の体格が大柄と判定された場合(ステップS221:Yes)、制御装置220は、振動パラメータを選択することによって振動体210の振動パラメータを決定する(ステップS222)。より詳細には、制御装置220は、振動パラメータテーブル226を参照することによって振動パラメータを選択する。
 図17Aは、振動パラメータテーブル226を示している。図17Aに示すように、振動パラメータテーブル226は、振動パラメータと、選択可能な振動パラメータの値が格納されている。振動パラメータには、振動強度と、振動間隔と、振動周波数と、が含まれる。
 振動強度は、振動体10の振動の振幅の大きさを示すパラメータである。振動強度として、予め設定された「弱」、「中」、「強」のいずれかの値を設定することができる。
 振動間隔は、振動体10が、振動期間及び停止期間を1つの振動周期として繰り返し振動する際の振動周期の長さを示すパラメータである。振動周期として、予め設定された「短」、「中」、「長」のいずれかの値を選択することができる。
 振動周波数は、振動体10の振動周波数を示すパラメータである。振動周波数として、予め設定された「低」、「中」、「高」のいずれかの値を設定することができる。
 制御装置220の振動パラメータ決定部224は、着座者の体格に基づいて振動パラメータを選択する。具体的には、着座者の体格が大柄な場合には、振動強度を「強」に決定し、振動間隔を「短」に決定し、振動周波数を「高」に決定する。そして、着座者の体格が大柄でも小柄でもなく、標準的な体格の場合には、振動強度を「中」に決定し、「振動間隔」を「中」に決定し、振動周波数を「中」に決定する。また、着座者の体格が小柄な場合には、振動強度を「弱」に決定し、振動間隔を「長」に決定し、振動周波数を「低」に決定する。
 図16に戻って、制御装置220は、着座者の体格が大柄と判定されなかった場合(ステップS221:No)、制御装置220は、着座者の体格が小柄か否かを判定する(ステップS223)。
 着座者の体格が小柄と判定された場合(ステップS223:Yes)、制御装置220は、振動パラメータを選択することによって振動体10の振動パラメータを決定する(ステップS224)。図17Aを参照して説明したように、制御装置220は、振動パラメータテーブル226を参照することによって振動パラメータを選択して、振動パラメータ選択処理を終了する。
 一方、制御装置220は、着座者の体格が小柄と判定されなかった場合(ステップS223:No)、制御装置220は、着座者は標準的な体格であると判定し、振動パラメータテーブル226を参照して振動パラメータを決定する(ステップS225)。そして制御装置220は、振動パラメータ選択処理を終了する。
 図15に戻って、制御装置220は、接近物判定部222の判定結果を取得し、接近物が車両Vの右側から接近しているか否かを判定する(ステップS214)。接近物が車両Vの右側から接近していると判定された場合(ステップS214:Yes)、制御装置220は、振動パターンテーブル227Rを参照して接近物の接近方向(右側)に配置された振動体10が振動するように制御する(ステップS215)。振動パターンテーブル227Rは、車両Vの右側に接近物が存在すると判定された際に参照される振動パターンテーブル227であって、複数の振動体210を振動させる順番が格納されている。
 図17Bは、振動パターンテーブル227Rの一例を示している。振動パターンテーブル227Rには、「パターンA」、「パターンB」、「パターンC」の3つの振動パターンが格納されている。
 パターンAは、シートバック2に内蔵された右上方振動体12RU、右下方振動体12RD、シートクッション1に内蔵された右後方振動体11RR、右前方振動体11RFが、この順番に振動する振動パターンである。パターンAは、右後方から接近物が接近する際に参照される振動パターンである。
 パターンBは、パターンAの逆順で振動体10が振動する。詳細には、右前方振動体11RF、右後方振動体11RR、シートバック2に内蔵された右下方振動体12RD、右上方振動体12RUが、この順番に振動する振動パターンである。パターンBは、右前方から接近物が接近する際に参照される振動パターンである。
 パターンCは、右上方振動体12RU、右下方振動体12RD、右後方振動体11RR、及び右前方振動体11RFが同時に振動する振動パターンである。パターンCは、右正面方向から接近物が接近する際に参照される振動パターンである。
 制御装置220は、接近物の接近方向に基づいて、振動パターンを「パターンA」、「パターンB」、「パターンC」のいずれかに決定する。具体的には、接近物の接近方向が右側前方である場合、制御装置220は、右前方振動体11RFが最初に振動する振動パターンであるパターンBに決定する。一方、接近物の接近方向が右側後方である場合、制御装置220は、右上方振動体12RUが最初に振動する振動パターンであるパターンAに決定する。そして、接近物の接近方向が右側正面である場合、制御装置220は、右前方振動体11RFと、右後方振動体11RRと、右上方振動体12RUと、右下方振動体12RDと、が同時に振動する振動パターンであるパターンCに決定する。
 図15に戻って、制御装置220は、振動体210を、ステップS213で決定された振動パラメータで振動するように制御する(ステップS215)。
 一方、接近物が車両Vの右側から接近していると判定されなかった場合(ステップS214:No)、制御装置220は、接近物が車両Vの左側から接近しているか否かを判定する(ステップS216)。接近物が車両Vの左側から接近していると判定された場合(ステップS216:Yes)、制御装置220は、振動パターンテーブル227Lを参照して接近物の接近方向(左側)に配置された振動体10が振動するように制御する(ステップS217)。振動パターンテーブル227Lは、車両Vの左側に接近物が存在すると判定された際に参照される振動パターンテーブル227であって、複数の振動体10を振動させる順番が格納されている。
 図17Cは、振動パターンテーブル227Lの一例を示している。図17Cに示すように、振動パターンテーブル227Lは、上述した振動パターンテーブル227Rと同等の構造を有しているため、詳細な説明を省略する。
 一方、接近物が車両Vの左側から接近していると判定されなかった場合(ステップS216:No)、制御装置220は、接近物の接近方向側に配置された振動体10が振動するように制御する(ステップS218)。具体的には、接近物が前方から接近している場合、制御装置220は、シートクッション1に内蔵されたシートクッション振動体11が振動するように制御する。また、接近物が後方から接近している場合、制御装置220は、シートバック2に内蔵されたシートバック振動体12が振動するように制御する。
 以上のように、制御装置220は、体格検知センサ240が出力する体格信号に基づいて振動体10の振動パラメータを決定するため、着座者の体格に応じて振動体10による報知を効果的に行うことが可能となる。
<第4実施形態>
 上述した第3実施形態において、制御装置220は、着座者の体格に応じて決定された振動パラメータで振動体10による報知を行うこととして説明した。これに対して、第4実施形態に係る制御装置320は、着座者の体格に加えて、走行中の路面の状況に応じて振動パラメータを決定し、決定された振動パラメータを用いて振動体10による報知を行う。これにより、例えば工事中の道や舗装されていない道を走行する場合のように、路面から振動を受ける状況においても振動体10による振動を着座者に認識させることが可能となり、効果的に報知を行うことが可能となる。
 図18は、第4実施形態における振動パラメータ選択処理の流れを示している。図18に示すように、最初に制御装置320は、路面撮像装置245が出力する路面情報(路面信号)を取得する(ステップS320)。ここで路面情報とは、車両Vが走行している路面の映像である。
 次に制御装置320は、路面状況が粗悪か否かを判定する(ステップS321)。より詳細に説明すると、制御装置320は、路面情報である路面の映像信号に対して所定の画像処理を施す。画像処理は、まず路面に存在する上下方向の変動(砂利等の存在による凹凸など)を認識し、これを定量化することによって上下方向の変動量を算出する。具体的には、制御装置320は、路面の上下方向における変動量の標準偏差を算出する。そして、得られた標準偏差を、予め設定された所定の閾値と比較することによって、路面が粗悪な状況(変動量が大きい場合)と、路面が良好な状況(変動量が小さい場合)と、路面が標準的な状況のいずれに該当するかを判定する。
 なお、路面の上下方向の変動量の算出方法は、上述した標準偏差の算出に限定されない。例えば、路面の映像信号に対して周波数解析を行い、所定の周波数領域の信号成分を累積加算することによって路面の上下方向の変動量が算出されてもよい。
 路面状況が粗悪と判定された場合(ステップS321:Yes)、制御装置320は、振動強度を「強」に決定する(ステップS322)。制御装置320は、振動強度の決定に加えて、振動間隔を「短」に決定し、又は振動周波数を「高」に決定してもよい。
 ここで制御装置320は、振動パラメータテーブル326を参照することによって振動パラメータを決定する。
 図19は、第4実施形態における振動パラメータテーブル326を示している。図19に示すように、振動パラメータテーブル326は、振動パラメータとして振動強度と、振動間隔と、振動周波数と、が格納されている。そして、制御装置320は、走行中の路面の状況に基づいて振動パラメータを選択する。具体的には、路面の状況が粗悪な場合には、振動強度を「強」に決定し、振動間隔を「短」に決定し、振動周波数を「高」に決定する。そして、路面の状況が粗悪でも良好でもなく、標準的な状況の場合には、振動強度を「中」に決定し、「振動間隔」を「中」に決定し、振動周波数を「中」に決定する。また、路面の状況が良好な場合には、振動強度を「弱」に決定し、振動間隔を「長」に決定し、振動周波数を「低」に決定する。
 図18に戻って、路面状況が粗悪と判定されなかった場合(ステップS321:No)、制御装置320は、路面状況が良好か否かを判定する(ステップS323)。路面状況が良好であると判定された場合(ステップS323:Yes)、制御装置320は、振動強度を「弱」に決定する(ステップS324)。制御装置320は、振動強度の決定に加えて、振動間隔を「長」に決定し、振動周波数を「低」に決定してもよい。
 また、路面状況が良好と判定されなかった場合(ステップS323:No)、制御装置320は、路面が標準的な状況にあると判定し、振動強度を「中」に決定する(ステップS325)。制御装置320は、振動強度の決定に加えて、振動間隔を「中」に決定し、又は振動周波数を「中」に決定してもよい。
 以上のように振動パラメータを決定することによって、路面状況が粗悪な路面を走行中に、路面から受ける振動によって、着座者が、振動体10による報知を認識することができない事態が発生してしまうことを抑制することが可能となる。また、路面状況が良好な路面を走行中に、必要以上に強い報知を行うことによって着座者に不快感を覚えさせる事態が発生することを抑制することが可能となる。
 上述した第4実施形態において、着座者の体格に加えて、走行中の路面の状況に基づいて振動体10の振動パラメータを決定することとして説明したが、着座者の体格、走行中の路面の状況、及び車両Vの走行速度に基づいて振動パラメータが決定されてもよい。これにより、凹凸の大きな路面を高速で走行している場合に、振動体10の振動強度を大きくすることによって、路面からの振動によって誤認されることなく報知信号を着座者に認識させることが可能となる。
 本発明によれば、着座者の体格、又は走行中の路面の状況に応じて、シート本体に内蔵された振動体による報知を効果的に行うことができる車両用シートを提供することにある。
 また、シート本体に対する着座者の荷重のかかり具合に応じて効果的に振動体による報知を行うことが可能となる。
 また、着座者の体格及び属性に応じて効果的に振動体による報知を行うことが可能となる。
 また、コスト増加を抑制しつつ、着座者の体格に応じて効果的に振動体による報知を行うことが可能となる。
 また、着座者とシート本体とが接触している位置に配置された振動体によって効果的に報知を行うことが可能となる。
 また、着座者が着座していないときに、意味なく振動体が振動することを抑制することが可能となる。
 また、路面からの振動によって誤認されることなく報知信号の存在を認識させることが可能となる。
<第5実施形態>
 以下、第5実施形態に係る乗物用シートについて図20乃至図32を参照して説明する。
 従来から、着座者の骨盤を支持する骨盤支持部材(骨盤サポート)をシート内に内蔵するとともに、骨盤支持部材の近傍に可動部材を配設し、可動部材によって骨盤支持部材を変形させることが行われていた。これにより、着座者の疲労軽減に加えて、骨盤の歪みを矯正し、着座者の姿勢の改善が図られてきた。
 特許文献(特開2018-144793号公報)には、エアセル及び骨盤支持部材を内蔵する車両用シートが提案されている。具体的には、エアセルによって着座者の腰部を揉捏することによって、着座者の筋肉をほぐすとともに、骨盤支持部材を変形させて骨盤の矯正を行うことが可能な車両用シートが開示されている。骨盤の矯正に先立って腰部を揉捏することにより、硬直化していた筋肉を揉み解すことができ、姿勢改善の効果を高めることが可能となる。
 しかしながら、姿勢改善効果の更なる向上が求められていた。そこで、着座者の筋肉を適切に揉捏し、硬直化していた筋肉をより柔軟に揉み解した状態で骨盤の矯正を行うことにより、着座者の姿勢改善の効果をさらに向上することが可能な乗物用シートを提供する。
<<車両用シートSの主要構成>>
 図20は、車両用シートSの基本構成を示す斜視図である。図21は、車両用シートSの内部構造を説明するための模式図である。図20及び図21に示すように、車両用シートSは、シート本体を構成するシートクッション1と、シートバック2と、ヘッドレスト3と、を有している。
 車両用シートSは、骨盤支持部材413と、可動部材418と、クッション側エアセル411と、バック側エアセル412と、を内蔵している。
 骨盤支持部材413は、シートクッション1の後方側及びシートバック2の下方側に跨って配設されて、着座者の骨盤を支持するとともに、着座者の姿勢改善を補助する役割を担う。骨盤支持部材413は、可撓性を有し、骨盤支持部材413の下方及び後方に配設された可動部材418(図21参照)によって押圧されて変形し、着座者の骨盤の矯正に適した形状となる。骨盤支持部材413及び可動部材418については、図22乃至図24を参照して後述する。
 クッション側エアセル411及びバック側エアセル412は、圧縮空気を注入することによって膨張するとともに、圧縮空気を排出することによって収縮する流体袋である。クッション側エアセル411及びバック側エアセル412は、骨盤支持部材413による骨盤の矯正に先立って着座者の大腿二頭筋及び脊柱起立筋を揉捏することによって、着座者の筋肉を揉み解し、骨盤矯正に伴う姿勢改善の効果を向上させる役割を担う。
 クッション側エアセル411は、前後方向及びシート幅方向に互いに離隔して配置されている。詳細には、シートクッション1には、第一クッション側エアセル4111と、第二クッション側エアセル4112と、第三クッション側エアセル4113と、第四クッション側エアセル4114が、前方側から後方側に向けて順番に配設されている。
 第一クッション側エアセル4111から第四クッション側エアセル4114を、シートクッション1の前後方向に並ぶように左右両側に配設することによって、着座者の両足の大腿二頭筋を、その全長に亘って揉捏することができる。
 バック側エアセル412は、上下方向及びシート幅方向に互いに離隔して配置されている。詳細には、シートバック2には、第一バック側エアセル4121と、第二バック側エアセル4122と、第三バック側エアセル4123と、第四バック側エアセル4124と、第五バック側エアセル4125が、上方から下方に向けて順番に配設されている。
 第一バック側エアセル4121から第五バック側エアセル4125を、シートバック2のシート幅方向の略中心において上下方向に並ぶように左右両側に配設することによって、着座者の脊柱起立筋を、その全長に亘って揉捏することができる。
 また、図20に示すように、車両用シートSには、車両用シートSの制御を司る制御装置420が内蔵されている。制御装置420は、着座者によって操作される情報通信端末440と無線通信をすることができる。制御装置420は、ユーザが情報通信端末440を介して入力する設定情報に基づいて、クッション側エアセル411、バック側エアセル412、及び可動部材418を制御して着座者の姿勢を改善する。
 情報通信端末440は、車両V内に配設されたタブレット端末である。情報通信端末440は、制御装置420と通信を行うことによって着座者が入力した設定情報を制御装置420に送信する。情報通信端末440は、車両Vに取り付けられたナビゲーション装置であってもよい。また、情報通信端末440は、着座者が利用する携帯電話であってもよい。
<<骨盤支持部材413>>
 骨盤支持部材413について、より詳細に説明する。
 図22は、車両用シートSの正面図を示している。骨盤支持部材413は、シートクッション1のクッション材1a及びシートバック2のクッション材2aに形成された凹部内に配設されている。骨盤支持部材413は、着座者の姿勢に応じて変形し、適切な形状で骨盤を支持することができる。これにより、骨盤の歪みを矯正し、着座者の姿勢を改善することが可能となる。
 骨盤支持部材413は、側面視で略L字形状を有しており、シートクッション側支持部4131と、シートバック側支持部4132と、連結部4133と、を有している。シートクッション側支持部4131は、骨盤支持部材413の下方部分をなし、骨盤支持部材413が車両用シートSに取り付けられた状態ではシートクッション1に取り付けられている。つまり、シートクッション側支持部4131は、着座期間中、着座者の臀部の下方に位置する。シートクッション側支持部4131は、シート幅方向における骨盤支持部材413の中央を境にして左右対称な形状となっている。また、シートクッション側支持部4131は、シート幅方向の端に向かうについて上方に位置するように弓形に湾曲している。
 シートバック側支持部4132は、骨盤支持部材413の上方部分をなし、骨盤支持部材413が車両用シートSに取り付けられた状態ではシートバック2に取り付けられている。つまり、シートバック側支持部4132は、着座期間中、着座者の腰部の後方に位置する。シートバック側支持部4132は、正面視で幅広な逆台形形状をなしており、シート幅方向における骨盤支持部材413の中央を境にして左右対称な形状となっている。また、シートバック側支持部4132は、シート幅方向の端に向かうにつれて前方に位置するように弓形に湾曲している。
 連結部4133は、シートクッション側支持部4131の後端とシートバック側支持部4132の下端とを連結している。つまり、連結部4133は、着座期間中、着座者の臀部の後方に位置する。連結部4133は、シート幅方向における骨盤支持部材413の中央を境にして左右対称な形状となっており、シート幅方向の端に向かうにつれて前方に位置するように弓形に湾曲している。
 シートクッション側支持部4131、シートバック側支持部4132、及び連結部4133は、いずれも、プレート材からなるベース部4134を有する。このベース部4134を構成するプレート材の材質は、適度な可撓性を有している。このため、骨盤支持部材413に荷重が加わると、その箇所が加重方向に沿って移動するように骨盤支持部材413が弾性変形する。
 したがって、シートクッション側支持部4131を上方に向かって押すと、シートクッション側支持部4131がシートバック側支持部4132に向かって起き上がる(つまり、シートクッション側支持部4131の前端が上方に移動し、後傾する)。そして、シートクッション側支持部4131が起き上がるにつれて、シートバック側支持部4132に対するシートクッション側支持部4131の傾き角度が大きくなる(換言すると、骨盤支持部材413の屈曲度合いが大きくなる)。ここで、「屈曲度合いが大きくなる」とは、シートクッション側支持部4131がシートバック側支持部4132により近付き、図21に図示の角度αが小さくなることを意味する。
 同様に、シートバック側支持部4132を前方に向かって押すと、シートバック側支持部4132がシートクッション側支持部4131に向かって倒れる(前傾する)。そして、シートバック側支持部4132が前傾するにつれて、シートクッション側支持部4131に対するシートバック側支持部4132の傾き度合いが大きくなる(換言すると、骨盤支持部材413の屈曲度合いが大きくなる)。
 なお、骨盤支持部材413の屈曲度合いが変化するようにシートクッション側支持部4131及びシートバック側支持部4132のうちの一方が他方に向かって移動するとき、連結部4133の下端が基点となる。すなわち、シートクッション側支持部4131及びシートバック側支持部4132の各々は、連結部4133の下端を基点としてシート幅方向に沿う軸Mを中心に回動することが可能である。
 骨盤支持部材413の構成についてさらに説明すると、シートクッション側支持部4131、シートバック側支持部4132及び連結部4133の各々が有するベース部4134の表面には、柔軟性を有するクッションマット4135が貼り付けられている。クッションマット4135は、ベース部4134の表面のうち、車両用シートSに着座している乗員と対向する面に貼り付けられており、乗員の骨盤部位と適切にフィットするような形状をなしている。なお、本実施形態において、クッションマット4135は、互いに離間した位置に複数設けられている。
<<可動部材418>>
 可動部材418は、骨盤支持部材413の屈曲度合い(換言すると、シートクッション側支持部4131又はシートバック側支持部4132の傾き度合い)が変わるように骨盤支持部材413を変形するために設けられている。図23に示すように、本実施形態に係る可動部材418は、圧縮空気を注入、又は排出することによって膨縮する流体袋によって構成されており、クッション側可動部材4181と、バック側可動部材4182と、を有している。
 クッション側可動部材4181は、シートクッション1に内蔵されて、シートクッション側支持部4131の下方に配設されている。クッション側可動部材4181は、シートクッション側支持部4131を下方から押圧することで、連結部4133を基点としてシートクッション側支持部4131がシート幅方向に沿う軸Mを中心に回動するようにシートクッション側支持部4131を駆動する。
 具体的に説明すると、クッション側可動部材4181は、膨張時には側方視で略扇状に展開し、前端に向かうほど展開量(膨張量)が大きくなるように膨出する。また、クッション側可動部材4181の前端部は、シートクッション側支持部4131の下面の前方側の直下に位置する。このため、クッション側可動部材4181が略扇状に展開するように膨張すると、シートクッション側支持部4131の前方側がクッション側可動部材4181によって上方に押圧されるようになる。これにより、シートクッション側支持部4131は、図23に示すように連結部4133を基点としてシート幅方向に沿う軸Mを中心に上方へ回動する(後傾する)ようになる。この結果、シートバック側支持部4132に対するシートクッション側支持部4131の傾き度合いが変化するようになる。
 図24に示すようにバック側可動部材4182は、シートバック2に内蔵されて、シートバック側支持部4132の後方に配置されている。このバック側可動部材4182は、シートバック側支持部4132を後方から押圧することで、連結部4133を基点としてシートバック側支持部4132がシート幅方向に沿う軸Mを中心に回動するようにシートバック側支持部4132を駆動する。
 具体的に説明すると、バック側可動部材4182は、膨張時には側方視で略扇状に展開し、上端に向かうほど展開量(膨張量)が大きくなるように膨出する。また、バック側可動部材4182の上端部は、シートバック側支持部4132の後面の上方側と対向する。このため、バック側可動部材4182が略扇状に展開するように膨張すると、シートバック側支持部4132の上方側がバック側可動部材4182によって前方に押されるようになる。これにより、シートバック側支持部4132は、図24に示すように連結部4133を基点としてシート幅方向に沿う軸Mを中心に前方へ回動する(前傾する)ようになる。この結果、シートクッション側支持部4131に対するシートバック側支持部4132の傾き度合いが変化するようになる。
<<車両用シートSの機能構成について>>
 次に、車両用シートSの機能構成について説明する。
 図25は、車両用シートSと情報通信端末440の機能構成を示している。図25に示すように、制御装置420は、着座センサ430と、情報通信端末440と、クッション側エアセル411と、バック側エアセル412と、可動部材418と接続されて、車両用シートS全体の制御を司る。
 着座センサ430は、シートクッション1に内蔵されて、着座者による荷重を検出する。着座センサ430は、歪み検知センサ、又は静電容量センサである。制御装置420は、着座センサ430の出力信号に基づいて、着座者の有無を判定することができる。またシートクッション1に、複数の着座センサ430が所定の間隔を隔てて内蔵されていてもよい。この場合、制御装置420は、着座センサ430の出力に基づいて着座位置の適否を判定することができる。
 情報通信端末440は、ユーザによって操作可能な情報端末であって、入力受付部441と、通信部442と、を主な構成として有している。
 入力受付部441は、後述する姿勢改善処理に関する設定情報の入力を受け付けることができる。具体的には、入力受付部441は、着座者の姿勢が「猫背」、「反り腰」、「正常」のいずれに該当するかの入力を受け付ける。「猫背」又は「反り腰」が入力された場合、後述するように、可動部材418を駆動することによって骨盤支持部材413が前傾、又は後傾するように変形させる。これにより、着座者の骨盤の歪みが矯正されて、着座者の姿勢を改善することができる。
 設定情報として、着座者の姿勢に加えて、後述する揉捏処理の処理時間、又は矯正処理の処理時間を受け付けることとしてもよい。
 通信部442は、Bluetooth(登録商標)に対応した無線通信機能を有する通信回路である。通信部442は、入力受付部441が受け付けた設定情報を、制御装置420に送信する。また通信部442は、後述する姿勢改善処理に関するステータス情報を制御装置420から受信する。なお、通信部442と制御装置420の間の通信は、無線通信に限定されない。情報通信端末440と制御装置420は、USBケーブルで接続されて、ケーブル通信を行うこととしてもよい。
 制御装置420は、車両用シートSに搭載されたECU(Electronic Control Unit)である。制御装置20は、プログラムを実行するプロセッサと、不揮発性記憶媒体と、揮発性記憶媒体と、から構成されている。そしてプロセッサが、不揮発性記憶媒体に格納されたプログラムを実行することにより、センサ信号取得部421、設定情報取得部422、エアセル制御部423、可動部材制御部424、及び出力部425として機能する。
 センサ信号取得部421は、着座センサ430の出力信号を取得する。換言すると、センサ信号取得部421は、着座者による車両用シートSに対する荷重を取得する。センサ信号取得部421は、ノイズ除去フィルタを有し、着座センサ430の出力信号に含まれるノイズ成分を除去することができる。
 設定情報取得部422は、情報通信端末440の入力受付部441を介して入力された設定情報を取得する。また、設定情報取得部422は、予め不揮発性記憶媒体に記憶された設定情報を読み込むことによって設定情報を取得することとしてもよい。
 エアセル制御部423は、設定情報取得部422が取得した設定情報に基づいて、クッション側エアセル411及びバック側エアセル412が膨縮するように制御する。より詳細には、エアセル制御部423は、クッション側エアセル411及びバック側エアセル412に対して圧縮空気を供給するポンプ(不図示)及び調整バルブ(不図示)を制御することによって、クッション側エアセル411及びバック側エアセル412の膨張量を調整する。
 エアセル制御部423は、上述した8個のクッション側エアセル411及び10個のバック側エアセル412を個別に独立して制御することができ、予め不揮発性メモリに記憶された膨縮タイミングに基づいて、各々のエアセル410を膨縮制御する。
 ここで、複数のエアセル410の膨縮タイミングについて、図26から図29を参照して説明する。
 図26は、クッション側エアセル411の膨縮タイミングの一例を示している。図26に示すように、エアセル制御部423は、第一クッション側エアセル4111と第三クッション側エアセル4113が、同じタイミングで膨張し、収縮するように制御する。同様に、エアセル制御部423は、第二クッション側エアセル4112と第四クッション側エアセル4114が、同じタイミングで膨張して収縮するように制御する。
 また、エアセル制御部423は、タイミングT1及びタイミングT5において、第一クッション側エアセル4111及び第三クッション側エアセル4113が膨張するように制御する。このとき、第二クッション側エアセル4112及び第四クッション側エアセル4114は収縮している。図27Aは、第一クッション側エアセル4111及び第三クッション側エアセル4113が膨張し、第二クッション側エアセル4112及び第四クッション側エアセル4114が収縮した状態を示している。
 次に、エアセル制御部423は、タイミングT2及びタイミングT6において、第一クッション側エアセル4111及び第三クッション側エアセル4113が収縮するように制御する。
 その後、エアセル制御部423は、タイミングT3及びタイミングT7において、第二クッション側エアセル4112及び第四クッション側エアセル4114が膨張するように制御する。このとき、第一クッション側エアセル4111及び第三クッション側エアセル4113は収縮している。図27Bは、第二クッション側エアセル4112及び第四クッション側エアセル4114が膨張し、第一クッション側エアセル4111及び第三クッション側エアセル4113が収縮した状態を示している。
 このように、エアセル制御部423は、互いに隣合う位置に配設されたクッション側エアセル411が同時に膨張しないように制御する。これにより、着座者の大腿二頭筋がシートクッション1から浮き上がり、揉捏効果が低下することを抑制することができる。また、収縮するクッション側エアセル411と、その前後で膨張するクッション側エアセル411によって、大腿二頭筋を前後から包み込むよう揉み解すことができる。そして、収縮するクッション側エアセル411と、膨張するクッション側エアセル411を交互に切り替えることによって、広い範囲に亘って大腿二頭筋を揉み解すことが可能となる。以上により、大腿二頭筋の血液の循環を促し、硬くなった大腿二頭筋を柔らかくすることが可能となる。
 図28は、バック側エアセル412の膨縮タイミングの一例を示している。図28に示すようにエアセル制御部423は、第一バック側エアセル4121、第二バック側エアセル4122、第三バック側エアセル4123、第四バック側エアセル4124、及び第五バック側エアセル4125が、この順番に膨張するように制御する。図29Aは、最初に第一バック側エアセル4121が膨張した状態を示している。
 また、エアセル制御部423は、第一バック側エアセル4121が収縮する途中、又は完全に収縮するタイミングT3より前のタイミングT2において第二バック側エアセル4122が膨張するように制御する。同様に、エアセル制御部423は、第二バック側エアセル4122が収縮する途中、又は完全に収縮するタイミングT5より前のタイミングT4において第三バック側エアセル4123が膨張するように制御する。続いて、エアセル制御部423、第三バック側エアセル4123が収縮する途中、又は完全に収縮するタイミングT7より前のタイミングT6に第四バック側エアセル4124が膨張するように制御する。最後に、エアセル制御部423は、第四バック側エアセル4124が収縮する途中、又は完全に収縮するタイミングT9より前のタイミングT8に第五バック側エアセル4125が膨張するように制御する。図29Bは、最後に第五バック側エアセル4125が膨張した状態を示している。
 このように、上方から下方に向けてバック側エアセル412を順番に膨縮させることによって、着座者の脊柱起立筋を上方から下方に向けて擦るように揉みほぐすことができる。そして、互いに隣接するバック側エアセル412が膨張するタイミングを部分的に重複させることによって、バック側エアセル412を短時間で効率的に揉み解すことが可能となる。これにより、脊柱起立筋の血液の循環を促し、硬くなった脊柱起立筋を柔らかくすることが可能となる。
 なお、図26及び図28に示したクッション側エアセル411とバック側エアセル412の膨縮タイミングは一例であって、これに限定されない。図26に示したクッション側エアセル411の膨縮タイミングを、バック側エアセル412に適用してもよいし、図28に示したバック側エアセル412の膨縮タイミングを、クッション側エアセル411に適用してもよい。また、図28に示したバック側エアセル412の膨縮タイミングは、シートバック2の上方から下方に向けて順番にバック側エアセル412を膨縮させることとして説明したが、下方から上方に向けてバック側エアセル412を膨縮させてもよい。
 図25に戻って、可動部材制御部424は、設定情報取得部422が取得した設定情報に基づいて、クッション側可動部材4181とバック側可動部材4182が膨縮するように制御する。より詳細には、可動部材制御部424は、クッション側可動部材4181及びバック側可動部材4182に対して圧縮空気を供給するポンプ及び調整バルブを制御することによって、クッション側可動部材4181及びバック側可動部材4182の膨張量を調整する。
 具体的には、可動部材制御部424は、着座者の姿勢が「猫背」である場合、着座者の後傾した骨盤を矯正するために、クッション側可動部材4181を収縮させるとともにバック側可動部材4182を膨張させて、骨盤支持部材413が前傾するように制御する。これにより、後傾した状態にある着座者の骨盤の傾きを矯正することができる。
 一方、着座者の姿勢が「反り腰」である場合、クッション側可動部材4181を膨張させるとともにバック側可動部材4182を収縮させて、骨盤支持部材413が後傾するように姿勢制御する。これにより、前傾した状態にある着座者の骨盤の傾きを矯正することができる。以上により、「猫背」又は「反り腰」姿勢の着座者の姿勢を改善することが可能となる。
 出力部425は、情報通信端末440に対して後述する姿勢改善処理のステータス情報を出力する。すなわち、制御装置420が姿勢改善処理の実行中である場合には、姿勢改善処理を実行中である旨、及び揉捏処理が終了するまでの残り時間、又は矯正処理が終了するまでの残り時間等の情報が出力される。このため、着座者は情報通信端末440の表示画面を確認することにより、姿勢改善処理の進行状況を認識することができる。
<<姿勢改善処理の流れについて>>
 次に、制御装置420によって実行される姿勢改善処理の流れについて説明する。
 図30は、姿勢制御処理の流れを示している。図30に示すように、最初に、制御装置420は、車両用シートSに乗員が着座しているか否かを判定する(ステップS410)。詳細には、制御装置420は、着座センサ430の出力信号を所定の閾値と比較することによって、着座者の有無を判定する。
 乗員が着座していないと判定された場合(ステップS410:No)、制御装置420は、乗員が着座するまで待機する。
 乗員が着座していると判定された場合(ステップS410:Yes)、制御装置420は、設定情報が入力されたか否かを判定する(ステップS411)。詳細には、制御装置420は、情報通信端末440の入力受付部441を介して設定情報の入力が受け付けられたか否かを判定する。
 設定情報が入力されていないと判定された場合(ステップS411:No)、制御装置420は、設定情報が入力されるまで待機する。
 一方、設定情報が入力されたと判定された場合(ステップS411:Yes)、制御装置420は、着座者の筋肉を揉み解す揉捏処理を実行する(ステップS412)。揉捏処理については、図31を参照して説明する。
 図31は、制御装置420によって実行される揉捏処理の流れを示している。図31に示すように、制御装置420は、最初に揉捏パラメータを取得する(ステップS420)。具体的には、制御装置420は、揉捏時間、及びクッション側エアセル411及びバック側エアセル412の膨縮パターンを取得する。揉捏時間とは、クッション側エアセル411及びバック側エアセル412を膨縮させることによって着座者の大腿二頭筋及び脊柱起立筋を揉捏する時間である。また、膨縮パターンは、図26を参照して説明したクッション側エアセル411の膨縮タイミングと、図28を参照して説明したバック側エアセル412の膨縮タイミングに関する情報である。
 次に、制御装置420は、取得された揉捏パラメータに基づいて、クッション側エアセル411及びバック側エアセル412を駆動する(ステップS421)。詳細には、制御装置420は、クッション側エアセル411及びバック側エアセル412に接続されたポンプと調整バルブを制御することによって、クッション側エアセル411及びバック側エアセル412の膨張量を調整する。
 続いて制御装置420は、揉捏処理の終了条件が成立したか否かを判定する(ステップS422)。終了条件は、揉捏処理が開始した後の経過時間が、予め設定された揉捏時間(例えば3分)を超過することである。
 終了条件が成立していないと判定された場合(ステップS422:No)、制御装置420は、クッション側エアセル411及びバック側エアセル412の駆動を継続する。一方、終了条件が成立したと判定された場合(ステップS422:Yes)、クッション側エアセル411及びバック側エアセル412の駆動を終了して揉捏処理を終了する。
 図30に戻って、揉捏処理が終了すると、制御装置420は、着座者の骨盤を矯正する矯正処理を実行する(S413)。矯正処理については、図32を参照して説明する。
 図32は、制御装置420によって実行される矯正処理の流れを示している。図32に示すように、制御装置420は、最初に矯正パラメータを取得する(ステップS430)。具体的には、制御装置420は、矯正時間、及び着座者の姿勢を取得する。矯正時間とは、骨盤支持部材413を制御するすることによって着座者の姿勢を矯正する時間である。また、着座者の姿勢は、「猫背」、「反り腰」、「正常」のいずれかである。
 次に制御装置420は、取得された矯正パラメータに基づいて可動部材418を膨縮させて、骨盤支持部材413を変形させる(ステップS431)。具体的には、着座者の姿勢が「猫背」の場合、クッション側可動部材4181を収縮させるとともにバック側可動部材4182を膨張させて、骨盤支持部材413が前傾するように制御する。一方、着座者の姿勢が「反り腰」の場合、クッション側可動部材4181を膨張させるとともにバック側可動部材4182を収縮させて、骨盤支持部材413が後傾するように制御する。
 続いて制御装置420は、矯正処理の終了条件が成立したか否かを判定する(ステップS432)。終了条件は、矯正処理が開始した後の経過時間が、予め設定された矯正時間(例えば10分)を超過することである。
 終了条件が成立していないと判定された場合(ステップS432:No)、制御装置420は、可動部材418の膨縮制御を継続する。一方、終了条件が成立したと判定された場合(ステップS432:Yes)、可動部材418の膨縮制御を終了して矯正処理を終了する。
 以上のように、骨盤支持部材413を変形することによって骨盤の歪みを矯正し、着座者の姿勢の改善を図ることが可能となる。上述したように、矯正処理に先立って揉捏処理を行い、着座者の筋肉を解きほぐした状態で骨盤の矯正を行うことにより、姿勢改善の効果を向上することが可能となる。
<第1変形例>
 上述した第5実施形態では、圧縮空気を注入可能なクッション側エアセル411及びバック側エアセル412を膨張させることによって着座者の筋肉を揉捏することとして説明した。ここで、クッション側エアセル411又はバック側エアセル412は、複数の流体袋からなる積層構造を採用することができる。
 図33は、シートバック2に内蔵されて、積層構造を有するバック側エアセル412Aの断面図を示している。図33に示すように、バック側エアセル412Aは、下層エアセル412A1と、下層エアセル412A1に積層された上層エアセル412A2と、を有し、シートバック2のクッション材2aと表皮材2bの間に配設されている。下層エアセル412A1は、上層エアセル412A2よりも大きな容量を有している。そして、下層エアセル412A1がクッション材2aと当接する面積は、上層エアセル412A2が表皮材2bと当接する面積よりも広い。また、下層エアセル412A1は、上層エアセル412A2よりも高い剛性を有している。以上により、下層エアセル412A1及び上層エアセル412A2が膨張すると、下層エアセル412A1は、上層エアセル412A2がクッション材2a側に変位することを抑制し、基材として上層エアセル412A2を支持する役割を果たすことができる。したがって、上層エアセル412A2が表皮材2b側に突出し、着座者に対して効果的に刺激を与えることが可能となる。
 なお、クッション側エアセル411及びバック側エアセル412に注入される流体は、液体であってもよい。また、クッション側エアセル411及びバック側エアセル412は、圧縮空気によって膨張する圧縮空気袋と、流体によって膨張する流体袋の組み合わせであってもよい。これにより、クッション側エアセル411及びバック側エアセル412の弾性又は剛性を適切に調整することが可能となる。
 また、上述した第5実施形態において、クッション側エアセル411及びバック側エアセル412によって大腿二頭筋及び脊柱起立筋を揉捏することとして説明したが、これに限定されない。揉み玉によって大腿二頭筋及び脊柱起立筋を揉捏してもよい。
 また、流体袋及び可動部材の組合わせによって着座者を揉捏してもよい。より詳細には、クッション材2aを挟んでエアセル410と可動部材を対向配置し、エアセル410を膨張させるタイミングと同じタイミングで可動部材が着座者側に突出するように制御する。これにより、エアセル410は、可動部材によって着座者側に押圧されるとともに膨張することによって突出し、着座者の筋肉を効果的に刺激して揉み解すことが可能となる。
<第2変形例>
 上述した第5実施形態において、図26及び図28に示す膨縮パターンにおいて、左右のエアセル410が同時に膨張し、又は収縮するように制御することとして説明したが、これに限定されない。エアセル制御部423は、左右のエアセル410を異なるタイミングで膨縮するように制御してもよい。
 また、揉捏時間を3分とし、矯正時間を10分として説明したが、これに限定されないことは、勿論である。
<第3変形例>
 上述した第5実施形態において、制御装置420は、着座センサ430の出力信号に基づいて着座者が着座しているか否かを判定することとして説明したが、着座センサ430の出力信号に基づいて着座位置を変更するように促すこととしてもよい。この場合、シートクッション1に複数の着座センサ430を設け、着座センサ430の出力に基づいて着座位置を判定し、着座位置が不適切な場合には警告を出力するか、又は適切な着座位置に移動するように着座者を促すと好適である。着座者が適切な位置に着座した状態で上述した姿勢改善処理を行うことにより、姿勢改善の効果を向上させることが可能となる。
 また、制御装置420は、車両Vに設けられた各種センサの出力信号を取得することができると好適である。例えば、制御装置420は、シートベルトのタングプレートがバックルに連結されたことを検知するバックルセンサの出力信号を取得することができると好適である。このとき、制御装置420は、バックルセンサの出力に基づいて着座者がシートベルトを着用したか否かを判定し、着座者がシートベルトを着用してると判定された場合に姿勢改善処理を開始する。これにより、着座者が適正に着座していない状態で姿勢改善処理が開始されてしまう事態を抑制することが可能となる。
 また、制御装置420は、車両Vに設けられた車速センサの出力信号を取得することができると好適である。これにより、車両Vの走行中において姿勢改善処理が開始されないように制御することができ、走行中に不用意に姿勢改善処理が開始されて、運転者の注意が散漫となることを抑制することができる。
 また、制御装置420は、車両Vの走行モードを取得し、車両Vが自動運転モードで走行中の場合には姿勢改善処理を開始することとしてもよい。これにより、着座者が運転中ではない場合には、姿勢改善処理を開始して着座者の姿勢を改善することが可能となる。
 また、上述した第5実施形態において、制御装置420は、揉捏処理を行った後に矯正処理を実行することとして説明したが、これに限定されない。姿勢改善の効果を向上させるために、揉捏処理と矯正処理を交互に行ってもよい。
 図8乃至図11を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記1)
 車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも左右方向に互いに離隔して配置された複数の振動体と、前記振動体を制御する制御装置と、を備え、前記制御装置は、前記車両に設けられて前記車両の周辺情報を検知する検知手段の出力信号を取得し、前記出力信号に基づいて前記車両に対する接近物の接近方向を特定し、前記特定された接近方向に基づいて、前記振動体を順次振動させることを特徴とする車両用シート。
(付記2)
 前記制御装置は、前記車両と前記接近物との間の距離基づいて、前記振動体の振動強度及び振動間隔の少なくとも一方に関する振動パラメータを決定し、前記振動パラメータに基づいて前記振動体が振動するように制御する付記1に記載の車両用シート。
(付記3)
 前記制御装置は、前記車両と前記接近物との間の距離が短いか、又は前記接近物の接近速度が大きい場合に、前記振動強度が強く、又は前記振動間隔が短くなるように前記振動パラメータを決定することを特徴とする付記2に記載の車両用シート。
(付記4)
 前記制御装置は、前記車両と前記接近物との間の距離、又は前記接近物の接近速度に基づいて、前記振動パラメータを更新することを特徴とする付記2に記載の車両用シート。
(付記5)
 前記制御装置は、前記接近物の接近方向に配置された振動体が振動するように制御することを特徴とする付記1に記載の車両用シート。
(付記6)
 車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも前後方向及び左右方向に互いに離隔して配置された振動体と、前記振動体を制御する制御手段と、を備え、前記制御装置は、前記車両のウィンカーレバーが操作された際に、前記車両に設けられて前記車両の周辺情報を検知する検知手段の出力信号を取得し、前記出力信号に基づいて前記ウィンカーレバーが操作された側おける前記車両に対する接近物の有無を判定し、前記判定結果に基づいて、前記ウィンカーレバーが操作された側に配置された前記振動体が振動するように制御することを特徴とする車両用シート。
(付記7)
 前記制御装置は、前記ウィンカーレバーが操作されることによって前記車両に設けられたウィンカーが作動している間、前記車両と前記接近物との間の距離及び前記接近物の接近速度に基づいて、前記振動パラメータを更新することを特徴とする付記6に記載の車両用シート。
(付記8)
 車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも前後方向及び左右方向に離隔して配置された振動体と、前記振動体を制御する制御手段と、を備え、前記制御手段は、前記車両が前方に発進する際に、前記車両に設けられて前記車両の周辺情報を検知する検知手段の出力信号を取得し、前記出力信号に基づいて前記車両の前方における接近物の有無を判定し、前記判定結果に基づいて、前記シート本体のシートクッションに内蔵された振動体が振動するように制御することを特徴とする車両用シート。
(付記9)
 車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも前後方向及び左右方向に離隔して配置された振動体と、前記振動体を制御する制御手段と、を備え、前記制御手段は、前記車両が後方に発進する際に、前記車両に設けられて前記車両の周辺情報を検知する検知手段の出力信号を取得し、前記出力信号に基づいて前記車両の後方における接近物の有無を判定し、前記判定結果に基づいて、前記シート本体のシートバックに内蔵された振動体が振動するように制御することを特徴とする車両用シート。
 図12乃至図19を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記10)
 車両に設置されたシート本体と、該シート本体に内蔵されて、互いに離隔して配置された複数の振動体と、前記振動体を制御する制御装置と、を備え、前記制御装置は、前記車両に配設された外界検知装置が出力する外界信号と、着座者の体格を検知する体格検知装置が出力する体格信号と、を取得し、前記外界信号に基づいて接近物の有無及び接近方向を判定し、前記体格信号に基づいて、前記振動体の振動強度及び振動間隔の少なくとも一方に関する振動パラメータを決定し、前記接近物の有無及び前記接近方向の判定結果と、前記決定された振動パラメータと、に基づいて、前記振動体が振動するように制御することを特徴とする車両用シート。
(付記11)
 前記体格検知装置は、前記シート本体のシートクッションに内蔵された重量センサであって、前記体格信号は、着座者による荷重であることを特徴とする付記10に記載の車両用シート。
(付記12)
 前記体格検知装置は、前記シート本体に着座する着座者を撮像する着座者撮像装置であって、前記体格信号は、撮像された着座者の映像であることを特徴とする付記10に記載の車両用シート。
(付記13)
 前記シート本体は、前記車両内における前後方向の位置を変更可能に前記車両に設置され、前記体格検知装置は、前記シート本体の前後方向の位置を検知する位置センサであって、前記体格信号は、前記シート本体の位置情報であることを特徴とする付記10に記載の車両用シート。
(付記14)
 前記体格検知装置は、前記シート本体に内蔵されて、互いに所定の間隔を隔てて配置された複数の静電容量センサであって、前記体格信号は、前記複数の静電容量センサが出力する検知信号であることを特徴とする付記10に記載の車両用シート。
(付記15)
 前記制御装置は、前記体格信号に基づいて着座者の着座状態を判定し、着座者が着座していないと判定した際に前記振動体を振動させる制御を行わないことを特徴とする付記10に記載の車両用シート。
(付記16)
 前記制御装置は、走行中の路面の状況を検知する路面状況検知装置が出力する路面信号を取得し、前記体格信号と、前記路面信号に基づいて前記振動パラメータを決定することを特徴とする付記10に記載の車両用シート。
(付記17)
 前記制御装置は、前記車両の走行速度に関する走行速度信号を取得し、前記体格信号と、前記路面信号と、前記走行速度信号と、に基づいて前記振動パラメータを決定することを特徴とする付記16に記載の車両用シート。
1 シートクッション(シート本体)
1a クッション材
1b 表皮材
2 シートバック(シート本体)
2a クッション材
2b 表皮材
3 ヘッドレスト(シート本体)
3a クッション材
3b 表皮材
3c ピラー
10 振動体
11 シートクッション振動体
11RF 右前方振動体
11RR 右後方振動体
11LF 左前方振動体
11LR 左後方振動体
12 シートバック振動体
12RU 右上方振動体
12RD 右下方振動体
12LU 左上方振動体
12LD 左下方振動体
20、120、120A、120B 制御装置
21 取得部
22 振動パラメータ決定部
23 振動制御部
24 振動パラメータテーブル
25、25R、25L 振動パターンテーブル
30 外界センサ
30RF 右前方センサ
30RR 右後方センサ
30LF 左前方センサ
30LR 左後方センサ
40 ナビゲーション装置
41 GPS受信部
42 経路案内部
43 通信部
44 地図情報格納部
50 入出力部
51 地図情報表示画面
52 案内経路表示
53 現在位置表示
54 メニュー操作ボタン
55 表示位置変更ボタン
56 拡大縮小ボタン
57 目的地表示
58 進路変更地点名称表示
59 進路変更距離表示
60 変更進路表示
120、120A、120B 制御装置
220 制御装置
221 取得部
222 接近物判定部
223 着座状態判定部
224 振動パラメータ決定部
225 振動制御部
226 振動パラメータテーブル
227、227R、227L 振動パターンテーブル
240 体格検知センサ(体格検知装置)
245 路面撮像装置
246 走行速度センサ
320 制御装置
326 振動パラメータテーブル
411 クッション側エアセル
4111 第一クッション側エアセル
4112 第二クッション側エアセル
4113 第三クッション側エアセル
4114 第四クッション側エアセル
412、412A、412B バック側エアセル
4121 第一バック側エアセル
4122 第二バック側エアセル
4123 第三バック側エアセル
4124 第四バック側エアセル
4125 第五バック側エアセル
412A1 下層エアセル
412A2 上層エアセル
413 骨盤支持部材
4131 シートクッション側支持部
4132 シートバック側支持部
4133 連結部
4134 ベース部
4135 クッションマット
418 可動部材
4181 クッション側可動部材
4182 バック側可動部材
420 制御装置
421 センサ信号取得部
422 設定情報取得部
423 エアセル制御部
424 可動部材制御部
425 出力部
430 着座センサ
440 情報通信端末
441 入力受付部
442 通信部
M 軸
S 車両用シート
V 車両

Claims (10)

  1.  車両に設置されたシート本体と、該シート本体に内蔵されて、少なくとも左右方向に互いに離隔して配置された複数の振動体と、前記振動体を制御する制御装置と、を備え、
     前記制御装置は、
     前記車両に搭載された経路案内装置が出力する経路案内情報を取得し、
     前記経路案内情報に基づいて、前記車両が進行方向を変更する地点に接近した際に、変更後の進行方向側に配置された前記振動体が振動するように制御することを特徴とする車両用シート。
  2.  前記制御装置は、前記車両の現在地と、前記進行方向を変更する地点までの距離に基づいて、前記振動体の振動強度及び振動間隔の少なくとも一方に関する振動パラメータを決定し、
     前記振動パラメータに基づいて前記振動体が振動するように制御する請求項1に記載の車両用シート。
  3.  前記経路案内情報は、案内経路の状況に関する経路状況情報を含み、
     前記制御装置は、前記経路状況情報に基づいて、前記振動パラメータを決定することを特徴とする請求項2に記載の車両用シート。
  4.  前記経路状況情報は、路面の状況に関する路面状況情報を含み、
     前記制御装置は、前記路面状況情報に基づいて前記振動パラメータを決定することを特徴とする請求項3に記載の車両用シート。
  5.  前記経路状況情報は、渋滞状況に関する渋滞情報を含み、
     前記制御装置は、前記渋滞情報に基づいて前記振動パラメータを決定することを特徴とする請求項3に記載の車両用シート。
  6.  前記経路状況情報は、交通事故及び故障車の少なくとも一方に関する事故情報を含み、
     前記制御装置は、前記事故情報に基づいて前記振動パラメータを決定することを特徴とする請求項3に記載の車両用シート。
  7.  前記経路状況情報は、交通規制に関する交通規制情報を含み、
     前記制御装置は、前記交通規制情報に基づいて前記振動パラメータを決定することを特徴とする請求項3に記載の車両用シート。
  8.  前記制御装置は、前記案内経路が含まれる地域の気象情報を取得し、
     前記気象情報に基づいて前記振動パラメータを決定することを特徴とする請求項3に記載の車両用シート。
  9.  前記制御装置は、前記経路案内装置が前記経路案内情報を出力するタイミングと異なるタイミングにおいて、前記振動体が振動するように制御することを特徴とする請求項1に記載の車両用シート。
  10.  前記制御装置は、所定の遅延時間を計測し、該遅延時間の経過後に前記振動体が振動するように制御することを特徴とする請求項9に記載の車両用シート。
PCT/JP2022/023494 2021-06-11 2022-06-10 車両用シート WO2022260170A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163209521P 2021-06-11 2021-06-11
US63/209,521 2021-06-11
JP2022-059753 2022-03-31
JP2022059752A JP2023150577A (ja) 2022-03-31 2022-03-31 車両用シート
JP2022059753A JP2023150578A (ja) 2022-03-31 2022-03-31 車両用シート
JP2022-059752 2022-03-31

Publications (1)

Publication Number Publication Date
WO2022260170A1 true WO2022260170A1 (ja) 2022-12-15

Family

ID=84425266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023494 WO2022260170A1 (ja) 2021-06-11 2022-06-10 車両用シート

Country Status (1)

Country Link
WO (1) WO2022260170A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149191A (ja) * 1998-11-06 2000-05-30 Casio Comput Co Ltd 経路誘導装置
JP2000221051A (ja) * 1999-02-03 2000-08-11 Mazda Motor Corp ナビゲーションシステムの報知装置
JP2004170359A (ja) * 2002-11-22 2004-06-17 Denso Corp カーナビゲーション装置
JP2009250692A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp カーナビゲーション装置
US7619505B2 (en) * 2006-10-31 2009-11-17 Hyundai Motor Company Vehicle direction guide vibration system and method
JP2019111909A (ja) * 2017-12-22 2019-07-11 クラリオン株式会社 報知装置、及び報知方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149191A (ja) * 1998-11-06 2000-05-30 Casio Comput Co Ltd 経路誘導装置
JP2000221051A (ja) * 1999-02-03 2000-08-11 Mazda Motor Corp ナビゲーションシステムの報知装置
JP2004170359A (ja) * 2002-11-22 2004-06-17 Denso Corp カーナビゲーション装置
US7619505B2 (en) * 2006-10-31 2009-11-17 Hyundai Motor Company Vehicle direction guide vibration system and method
JP2009250692A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp カーナビゲーション装置
JP2019111909A (ja) * 2017-12-22 2019-07-11 クラリオン株式会社 報知装置、及び報知方法

Similar Documents

Publication Publication Date Title
RU149358U1 (ru) Массажная система для кресла транспортного средства
CN107251126B (zh) 刺激施加装置
US8412390B2 (en) Information presentation device
CN108407675B (zh) 车辆座椅控制系统、车辆座椅的控制方法及存储介质
JP2748623B2 (ja) シート
JP2008132910A (ja) 自動二輪車
JP2000225877A (ja) 車両用シート装置及び車両用シート併用型報知システム
CN108327592B (zh) 车辆控制系统、车辆控制方法及存储介质
JP2007331519A (ja) 車両用シート装置
JP2003070774A (ja) 車両用シートの着座姿勢判別方法、疲労判別方法、およびその姿勢/疲労警告装置
JP7457263B2 (ja) 乗物用シート
CN102050038A (zh) 用于动态调节车辆座椅乘员身体支撑的方法及其装置
JP2009120015A (ja) 車両用シート及び車両用警報装置
JP2005190082A (ja) 居眠り運転警告装置及びカーナビゲーション装置
WO2013180089A1 (ja) シート装置および車載シート装置の制御装置
WO2022260170A1 (ja) 車両用シート
CN207311578U (zh) 方向盘和具有该方向盘的车辆
JP6927442B2 (ja) 乗員姿勢制御方法及び乗員姿勢制御装置
JP2007137387A (ja) 車両用シート
JP2023150577A (ja) 車両用シート
KR102257927B1 (ko) 인체 감응형 시트 조절 시스템
JP3915786B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US20210276541A1 (en) Automated parking device and method
JP2018070075A (ja) 車両用シート
CN115003552A (zh) 移动设备用座椅、座椅控制设备和座椅控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820348

Country of ref document: EP

Kind code of ref document: A1