WO2022260095A1 - 車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置 - Google Patents

車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置 Download PDF

Info

Publication number
WO2022260095A1
WO2022260095A1 PCT/JP2022/023164 JP2022023164W WO2022260095A1 WO 2022260095 A1 WO2022260095 A1 WO 2022260095A1 JP 2022023164 W JP2022023164 W JP 2022023164W WO 2022260095 A1 WO2022260095 A1 WO 2022260095A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
optical axis
line
vehicle
Prior art date
Application number
PCT/JP2022/023164
Other languages
English (en)
French (fr)
Inventor
慶 小野間
Original Assignee
市光工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市光工業株式会社 filed Critical 市光工業株式会社
Priority to EP22820274.3A priority Critical patent/EP4354020A1/en
Priority to CN202280041574.6A priority patent/CN117460913A/zh
Publication of WO2022260095A1 publication Critical patent/WO2022260095A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines

Definitions

  • This invention relates to a lens for vehicle lamps.
  • the present invention also relates to a vehicle lamp unit. Further, the present invention relates to a vehicle lamp device.
  • Patent Documents 1 and 2 As a vehicle lighting lens, a vehicle lighting unit, and a vehicle lighting device for irradiating a light distribution pattern having a cut-off line along the left-right direction of the vehicle, that is, a low-beam light distribution pattern, for example, Patent Documents 1 and 2 are disclosed. There is something shown in Patent document 1 and patent document 2 are described below.
  • a concentrator (hereinafter referred to as "concentrator") used in the low-beam headlight module of Patent Document 1 includes a condensing structure and a cut-off line forming structure.
  • the concentrating structure is provided on the LED light source side, which is the rear end of the concentrator.
  • a cut-off line forming structure is provided at the front end of the collector, ie, the end close to the lens.
  • the contour curve of the end surface of the cut-off line forming structure near the lens side has an arc shape.
  • the collector of Patent Document 1 emits a low-beam light distribution pattern having a cut-off line along the left-right direction of the vehicle.
  • the vehicle light guide and vehicle lamp unit of Patent Document 2 include an incident surface, a first reflecting surface, a second reflecting surface, a light shielding portion, and an exit surface.
  • the second reflecting surface is based on a paraboloid of revolution and has a focal point located near the focal point of the exit surface.
  • the light shielding portion passes through the focal point and extends linearly in the horizontal direction.
  • light from the light source is incident from the incident surface as incident light. Incident light is internally reflected as parallel light at the first reflective surface.
  • the parallel light is reflected to the focal point side as reflected light on the second reflecting surface. A portion of the reflected light is blocked by the light blocking portion, and the rest of the reflected light passes through the light blocking portion.
  • the passing light that has passed through the light shielding portion irradiates a headlight pattern (a low beam light distribution pattern having a cutoff line along the left-right direction of the vehicle) in front of the vehicle from the emission surface.
  • the light shielding portion is formed in a shape linearly extending in the left-right direction, that is, in a simplified shape.
  • the vehicular light guide and the vehicular lamp unit of Patent Document 2 can obtain a smooth flow of the resin in the light shielding portion during resin molding, and the fluidity of the resin is improved.
  • the light shielding portion is formed in a simplified shape linearly extending in the left-right direction, so the low beam light distribution pattern can be easily controlled. Easier to do and improved.
  • the light shielding portion is formed in a shape extending linearly in the left-right direction. As it shifts to the left and right, it may warp upward.
  • FIG. 11B as the shape of the cut-off lines CLD1 and CLU1 of the low-beam light distribution pattern LP1 projected on the screen shifts left and right from the center (vertical line VU-VD of the screen), the horizontal It warps upward with respect to the cutoff lines CLD and CLU (see broken lines in FIG. 11B). If this warping is large, there is a possibility that the regulation will not be satisfied. Therefore, it is necessary to form a cut-off line for a low-beam light distribution pattern that does not warp. It should be noted that this warping increases as it shifts leftward and rightward from the center of the cutoff lines CLD1 and CLU1.
  • the problem to be solved by the present invention is to improve the fluidity of the resin, improve the control of the low beam light distribution pattern, and form a cutoff line without warping.
  • An object of the present invention is to provide a vehicle lighting unit and a vehicle lighting device.
  • the lens of the vehicular lamp according to the present invention has an incident portion for receiving at least part of the light from the light source, a reflective surface having a focal point of the reflecting surface and reflecting the incident light from the incident portion, and a lateral direction of the vehicle.
  • a cut-off line forming part that forms a cut-off line by controlling part of the reflected light from the reflecting surface, and the reflected light that passes through the cut-off line forming part as a light distribution pattern having the cut-off line , an emission surface for emitting light forward of the vehicle, the reflective surface focal point being arranged near the cutoff line forming portion, the reflecting surface including a first region where the reflected light passes through the vicinity of the cutoff line forming portion; and a second region through which light passes through a position away from the cut-off line forming portion toward the reflecting surface.
  • the lens of the vehicular lamp of the present invention has an incident portion optical axis that is inclined with respect to a vertical line, and converts at least part of the light from the light source into parallel light that is parallel or substantially parallel to the incident portion optical axis. and a paraboloid of revolution as a basis, with the rotation axis of the paraboloid of revolution as the optical axis of the reflecting surface, and the focal point of the paraboloid of revolution as the focal point of the reflecting surface, reflecting the incident light from the incident portion.
  • a reflective surface a cut-off line forming section that is provided in the left-right direction of the vehicle and controls part of reflected light from the reflective surface to form a cut-off line along the left-right direction of the vehicle, and a cut-off line forming section.
  • an exit surface that emits the reflected light that has passed through the vehicle ahead of the vehicle as a light distribution pattern having a cutoff line, wherein the exit surface has an exit surface focus in the vicinity of the reflection surface focus, and the reflection surface is It has a central reflective area and an outer reflective area, and the reflective surface optical axis of the central reflective area is inclined to the vertical line side compared to the reflective surface optical axis of the outer reflective area. It is characterized by
  • the incident portion optical axis is inclined with the direction of the incident light directed toward the output surface side with respect to the vertical line, and the left reflection area of the outer reflection area
  • the reflective surface optical axis of the area shifts to the left, it shifts from parallel or nearly parallel to the incident part optical axis to parallel or nearly parallel to the vertical line.
  • the reflective surface optical axis of the reflective area shifts from being parallel or nearly parallel to the optical axis of the entrance section to being parallel or nearly parallel to the vertical line as it shifts to the right.
  • the cut-off line forming part has a lower horizontal cut-off line forming part and an upper horizontal cut-off line forming part
  • one of the left reflection area and the right reflection area has: The other of the left reflective area or the right reflective area controls the reflected light through the lower horizontal cut-off formation, and the left reflective area or the right reflective area controls the reflected light through the upper horizontal cut-off formation. It is preferable that one of the reflecting surface optical axes of the regions is parallel or nearly parallel to the vertical line with respect to the left reflecting region or the other reflecting surface optical axis of the right reflecting region.
  • a vehicle lamp unit of the present invention includes a light source and a lens of the vehicle lamp of the present invention, in which light from the light source is incident and emitted as a light distribution pattern having a cutoff line along the left-right direction of the vehicle. , is provided.
  • the vehicle lamp unit of the present invention it is preferable that the vehicle lamp has a plurality of light sources, and the lens of the vehicle lamp has a plurality of incident portions corresponding to the plurality of light sources.
  • a vehicle lighting device comprises a lamp lens and a lamp housing forming a lamp chamber, and a vehicle lighting unit according to the present invention arranged in the lamp chamber.
  • the vehicle lamp lens, the vehicle lamp unit, and the vehicle lamp device of the present invention have improved fluidity of the resin, improved control of the low-beam light distribution pattern, and a cut-off line that does not warp. can do.
  • FIG. 1 is a plan view of a lens showing an embodiment of a vehicle lamp lens, a vehicle lamp unit, and a vehicle lamp device according to the present invention.
  • FIG. 2 is a side view (view along arrow II in FIG. 1) showing a lens and a light source.
  • FIG. 3 is a longitudinal sectional view (a vertical sectional view, which is a sectional view taken along line III-III in FIG. 1) showing an optical path in the lens.
  • FIG. 4 is a cross-sectional view (horizontal cross-sectional view, which is a cross-sectional view taken along line IV-IV in FIG. 2) showing an optical path in the lens.
  • FIG. 1 is a plan view of a lens showing an embodiment of a vehicle lamp lens, a vehicle lamp unit, and a vehicle lamp device according to the present invention.
  • FIG. 2 is a side view (view along arrow II in FIG. 1) showing a lens and a light source.
  • FIG. 3 is a longitudinal sectional view (a vertical sectional view,
  • FIG. 5 is a vertical cross-sectional view (a vertical cross-sectional view, which is a cross-sectional view taken along line VV in FIG. 2) showing the cut-off line forming portion of the lens.
  • FIG. 6 is an explanatory view (partially enlarged view of FIG. 3) showing the essential parts of the lens (incident part optical axis and reflecting surface optical axis).
  • FIG. 7 is a cross-sectional view (horizontal cross-sectional view corresponding to FIG. 4) showing the lens.
  • FIG. 8 is a partial vertical cross-sectional view (a partial vertical cross-sectional view, which is a cross-sectional view taken along the line VIII-VIII in FIG. 7) showing the optical path in the entrance portion and reflecting surface of the lens.
  • FIG. 8(A) is a partial vertical cross-sectional view showing the optical path in the incident portion and the reflective surface of a lens that does not embody the invention.
  • FIG. 8(B) is a partial vertical cross-sectional view showing the optical path in the incident portion and the reflecting surface of the lens embodying the present invention.
  • FIG. 9 is a partially enlarged cross-sectional view (a partially enlarged horizontal cross-sectional view corresponding to FIG. 4) showing the reflecting surface of the lens.
  • FIG. 10 is an explanatory diagram showing the luminous intensity of points specified by law in the low-beam light distribution pattern.
  • FIG. 11 is an explanatory diagram showing a low beam light distribution pattern.
  • FIG. 11(A) is an explanatory diagram showing a low-beam light distribution pattern by a reflecting surface composed of a basic paraboloid of revolution.
  • FIG. 11B is an explanatory diagram showing a low-beam light distribution pattern by a reflecting surface that does not implement the present invention.
  • FIG. 11(C) is an explanatory diagram showing a low-beam light distribution pattern by a reflecting surface embodying the present invention.
  • FIG. 12 is a partially enlarged longitudinal sectional view (a partially enlarged vertical sectional view corresponding to FIG. 3) showing the optical path of the incident portion of the lens.
  • FIG. 13A is a partially enlarged longitudinal sectional view (partially enlarged vertical sectional view, which is a sectional view taken along line XIII-XIII in FIG.
  • FIG. 13B is a partially enlarged longitudinal sectional view (partially enlarged vertical sectional view, which is a sectional view taken along line XIII-XIII in FIG. 12) showing a modified example of the optical path of the incident portion of the lens.
  • FIG. 14 is an explanatory diagram showing a virtual image plane of the exit surface.
  • front, rear, top, bottom, left, and right refer to the lens of the vehicle lighting device, the vehicle lighting unit, and the vehicle lighting device according to the present invention when the vehicle is equipped with the vehicle lighting device.
  • the symbol “F” is “front”
  • “B” is “rear”
  • "U” is up
  • “D” is “down”
  • "L” is “left”
  • “R” is "right”.
  • Figures 10 and 11 are explanatory diagrams showing the low-beam light distribution pattern illuminated on the screen installed 25m in front of the vehicle.
  • the symbol “VU-VD” indicates vertical lines on the screen.
  • the symbols “HL-HR” indicate the left and right horizontal lines of the screen.
  • FIGS. 3, 6, 8, 9, 12 and 13, hatching is omitted.
  • lens 1 (hereinafter referred to as “lens 1") of the vehicle lamp according to this embodiment
  • vehicle lamp unit 1U vehicle lamp unit 1U
  • vehicle lighting device 100 A configuration of a vehicle lighting device 100 (hereinafter referred to as “vehicle lighting device 100") according to this embodiment will be described.
  • the vehicle lamp devices 100 are installed on the left and right sides of the front part of a vehicle (automobile) (not shown).
  • the vehicle lighting device 100 is a vehicle headlamp (headlamp) that irradiates a low beam light distribution pattern (refer to the low beam light distribution pattern LP for condensing shown in FIG. 11C) in front of the vehicle. ).
  • FIG. 1 is a cross-sectional view (horizontal cross-sectional view) showing the vehicle lighting device 100.
  • the vehicle lighting device 100 includes a lamp housing 101, a lamp lens 102, and a vehicle lighting unit 1U.
  • the lamp housing 101 is made of a light-impermeable resin member.
  • the lamp lens 102 is made of a light-transmissive resin member or glass.
  • the lamp lens 102 is an outer lens or outer cover.
  • the lamp lens 102 is along the design surface of the vehicle.
  • a lamp chamber 103 is formed by the lamp housing 101 and the lamp lens 102 .
  • a vehicle lamp unit 1U one or a plurality of other vehicle lamp units (not shown), an inner panel (not shown), and the like are arranged.
  • the vehicle lighting device 100 can be configured to have a light distribution pattern other than the low beam light distribution pattern, such as a high beam light distribution pattern, a light distribution pattern for daytime running lamps, a front turn signal lamp, and so on. It is possible to irradiate a light distribution pattern for
  • the vehicle lamp unit 1U includes a plurality of light sources 10 (four in this example) and one lens 1. As shown in FIGS. The vehicle lamp unit 1U irradiates a low beam light distribution pattern, which will be described later, forward of the vehicle.
  • the low beam light distribution pattern has a horizontal cutoff line along the left-right direction of the vehicle on the upper side, and the road surface below the cutoff line, that is, the road surface from the front side of the vehicle to the front side of the vehicle, Illuminates a wide range of road surfaces in the left and right direction.
  • the light source 10 is a self-luminous semiconductor light emitting element (semiconductor light emitting element) type light source such as LED, OEL or OLED (organic EL).
  • the light source 10 has a light emitting surface 11, as shown in FIGS.
  • the light-emitting surface 11 is arranged above an incident portion 2 of the lens 1, which will be described later.
  • the light emitting surface 11 is illustrated by a point (center point of the light emitting surface 11) in FIGS.
  • the lens 1 receives the light L0 from the light source 10 and irradiates forward of the vehicle a light distribution pattern having a horizontal cut-off line along the lateral direction of the vehicle.
  • the lens 1 is a light-transmitting member (resin member, etc.), and in this example, is made of a colorless and transparent resin material such as acrylic resin, PC (polycarbonate), PMMA (polymethyl methacrylate, methacrylic resin).
  • the lens 1 includes an incident portion 2, a reflecting surface 3, a cutoff line forming portion 4, an exit surface 5, and a prism portion 12, as shown in FIGS.
  • the entrance section 2 is provided on the upper surface of one end portion (rear end portion) of the lens 1 .
  • Four incident portions 2 are provided corresponding to the four light sources 10 .
  • the four incident portions 2 are aligned in the horizontal direction.
  • the incident part 2 causes at least part of the light L0 from the light source 10 to enter as parallel light.
  • the incident part 2 has a reflecting surface 20, first incident surfaces 21, 210 and a second incident surface 22, as shown in FIGS.
  • the reflecting surface 20 of the entrance section 2 is hereinafter referred to as "first reflecting surface 20" in order to distinguish it from the reflecting surface 3 (reflecting surface described in the claims).
  • the incident part 2 has an incident part optical axis Z2.
  • the incident portion optical axis Z2 passes through the centers of the first reflecting surface 20, the first incident surfaces 21 and 210, and the second incident surface 22 of the incident portion 2.
  • FIG. The first incident surfaces 21 , 210 and the second incident surface 22 are concave with respect to the first reflecting surface 20 .
  • the first incident surface 21 has a solid angle of about 70° with the center of the light emitting surface 11 as the point (corner vertex) of the light L0 from the light emitting surface 11. It is a surface that refracts and enters the light L0 of ⁇ 80° as the first incident light L1. Note that the solid angle is not particularly limited.
  • the first incident light L1 is parallel light that is parallel or substantially parallel to the incident portion optical axis Z2.
  • the first incident surface 21 is provided below the light emitting surface 11 .
  • the first incident surface 21 is a refracting surface of a hyperboloid of revolution formed by rotating a hyperbola whose focal point is at or near the center of the light emitting surface 11 about the principal axis of the hyperbola (incident portion optical axis Z2).
  • the first incident light L1 which is parallel light, is suitable for forming a condensing type light distribution pattern.
  • the first incident surface 210 shown in FIG. 13(B) may be used instead of the first incident surface 21 shown in FIGS. 12 and 13(A).
  • the first incident surface 210 has a solid angle of about 70° to 80° with the center of the light emitting surface 11 as the point (corner vertex) of the light L0 from the light emitting surface 11. ° light L0 is refracted and incident as the first incident light L10. Note that the solid angle is not particularly limited.
  • the first incident light L10 is diffused light that diffuses with respect to the incident portion optical axis Z2.
  • the first incident surface 210 is provided below the light emitting surface 11 .
  • the first incident surface 210 is a refracting surface that is cylindrical or nearly cylindrical.
  • the first incident light L10, which is diffused light is suitable for forming a diffusion type light distribution pattern.
  • an arbitrary first incident surface can be selected from the first incident surfaces 210 shown in FIG.
  • the second incident surface 22 has a solid angle of light L0 from the light emitting surface 11 with the center of the light emitting surface 11 as the point (corner vertex). is a surface for refracting light L0 between about 70° to 80° and about 180° as second incident light L2. Note that the solid angle is not particularly limited.
  • the second incident surface 22 is a side wall surface on the outer periphery of the first incident surfaces 21 and 210 and is provided outside the light emitting surface 11 .
  • the second incident surface 22 is a refracting surface of a rotating surface formed by rotating a straight line or a curved line about the optical axis Z2 of the entrance section.
  • the second incident surface 22 is a refracting surface that is inclined with respect to the direction of the optical axis Z2 of the incident part by at least the draft angle (not shown) of the molding die (not shown) of the lens 1 .
  • the first reflecting surface 20 is a surface that totally reflects the second incident light L2 incident from the second incident surface 22 as reflected light L3 that is parallel or substantially parallel to the incident portion optical axis Z2.
  • the reflected light L3 from the first reflecting surface 20 is hereinafter referred to as "first reflected light L3" in order to distinguish it from the reflected light from the reflecting surface 3 (reflected light described in claims).
  • the first incident surface 210 shown in FIG. 13B when the first incident surface 210 shown in FIG. 13B is selected as the first incident surface, the first incident light L10 from the first incident surface 210 is diffused light, and parallel light is do not have.
  • the second incident light L2 (that is, part of the incident light) from the second incident surface 22 is the first reflected light of parallel light parallel or substantially parallel to the incident part optical axis Z2 on the first reflecting surface 20. Reflected as L3.
  • the incidence section 2 can cause at least part of the light L0 from the light source 10 (ie, the second incident light L2) to enter as parallel light (ie, the first reflected light L3).
  • the incident section 2 converts the light L0 from the light source 10 into the first incident light L1 of parallel light and the second incident light L2 of parallel light. The light is made incident as the first reflected light L3 of the light.
  • the incident section 2 converts the light L0 from the light source 10 into the first incident light L10 of diffused light and the second incident light L2 of parallel light. It is made incident as the first reflected light L3.
  • the reflecting surface 3 is provided on the lower surface of one end portion (rear end portion) of the lens 1 .
  • the incident part 2 and the reflecting surface 3 are arranged one above the other.
  • the reflecting surface 3 is based on a paraboloid of revolution P (see two-dot chain lines in FIGS. 3 and 6).
  • the rotation axis of the surface P be the reflecting surface optical axis Z3.
  • the reflecting surface 3 makes the focal point of the paraboloid of revolution P the reflecting surface focus RF.
  • Reflecting surface 3 receives incident light from incident portion 2 (first incident light L1 and first reflected light L3 of parallel light shown in FIGS. 12 and 13A, or diffuse light shown in FIG. 13B).
  • the first incident light L10 and the parallel first reflected light L3 (hereinafter referred to as "incident light L1, L3 or L10, L3") are used as the reflected light L4, the cut-off line forming part 4 and the exit surface. Reflect to the 5 side.
  • the reflecting surface 3 (reflecting surface described in the claims) is hereinafter referred to as "second reflecting surface 3" in order to distinguish it from the first reflecting surface 20 described above.
  • second reflecting surface 3 In order to distinguish the reflected light L4 (reflected light described in the claims) from the second reflecting surface 3 from the first reflected light L3 from the first reflecting surface 20, hereinafter referred to as “second reflected light L4”.
  • the second reflecting surface 3 has a condensing second reflecting surface 3S in the middle portion in the left-right direction and a diffusion second reflecting surface 3W in both left and right portions.
  • the second condensing reflecting surface 3 ⁇ /b>S corresponds to two of the four light sources 10 and incident portions 2 .
  • the light condensing second reflecting surface 3S reflects the light L0 from the inner two light sources 10 and the incident light from the inner two incident portions 2 as the second reflected light L4,
  • a low-beam light distribution pattern LP (see FIG. 11C) for condensing is formed out of the low-beam light distribution patterns.
  • the second diffusing reflecting surface 3W corresponds to the left and right two light sources 10 and the incident part 2 out of the four light sources 10 and the incident part 2 .
  • the second diffusing reflecting surface 3W reflects and diffuses the light L0 from the two left and right light sources 10 and the incident light from the two left and right incident portions 2 as the second reflected light L4.
  • a low beam light distribution pattern (not shown) is formed.
  • This low-beam light distribution pattern for diffusion is a light distribution pattern that is diffused in the horizontal direction and downward with respect to the low-beam light distribution pattern for condensing LP shown in FIG. 11(C).
  • the low-beam light distribution pattern is formed by superimposing the low-beam light distribution pattern LP for condensing and the low-beam light distribution pattern for diffusion.
  • the low beam light distribution pattern is projected forward of the vehicle.
  • the low-beam light distribution pattern LP for collecting light (hereinafter referred to as "low-beam light distribution pattern LP") has a horizontal cut-off line along the left-right direction of the vehicle on the upper side.
  • the cutoff line consists of a lower horizontal cutoff line CLD on the right, an upper horizontal cutoff line CLU on the left, and a diagonal cutoff line CLS in the middle.
  • the intersection of the lower horizontal cutoff line CLD and the oblique cutoff line CLS is the elbow point, and the area near this elbow point is the high luminous area having the highest luminous intensity.
  • cut-off line forming unit 4 controls part of the second reflected light L4 from the second reflecting surface 3 to form a cut-off line along the left-right direction of the vehicle, that is, the low-beam light distribution pattern shown in FIG. Form the lower horizontal cutoff line CLD, the upper horizontal cutoff line CLU and the diagonal cutoff line CLS of the LP.
  • the cutoff line forming portion 4 is provided between the second reflecting surface 3 and the exit surface 5 .
  • the cut-off line forming portion 4 is provided on the lower surface of the intermediate portion of the lens 1 in the front-rear direction.
  • the cut-off line forming portion 4 has a corner portion 4C formed by a horizontal surface 4H and a vertical surface 4V.
  • the vertical plane 4V is inclined so that the upper side is backward and the lower side is forward.
  • a corner portion 4C of the cut-off line forming portion 4 extends linearly in the left-right direction of the vehicle near the exit surface focal line LFL or the vicinity of the exit surface focal line LFL, which will be described later.
  • the cut-off line forming portion 4 is linear in this example, it may be curved along a virtual image plane VS of the exit surface 5, which will be described later. That is, the cut-off line forming portion 4 may be parallel or substantially parallel to the left-right direction of the vehicle.
  • the cut-off line forming portion 4 has a lower horizontal cut-off line forming portion 4D, an upper horizontal cut-off line forming portion 4U, and an oblique cut-off line forming portion 4S.
  • the lower horizontal cut-off line forming part 4D is provided on the left side of the center in the horizontal direction, and forms the lower horizontal cut-off line CLD.
  • the upper horizontal cut-off line forming part 4U is provided on the right side of the center in the left-right direction and forms the upper horizontal cut-off line CLU.
  • the diagonal cut-off line forming part 4S is provided at the central portion in the left-right direction and forms the diagonal cut-off line CLS.
  • Cut-off line forming portion 4 may block light by, for example, refracting or internally reflecting light reaching cut-off line forming portion 4 in a direction different from the direction of exit surface 5, and includes corner portion 4C.
  • a light absorption layer may be arranged in a portion of the horizontal surface 4H corresponding to the cut-off line forming portion 4, and the light may be absorbed by this light absorption layer.
  • the light internally reflected or refracted by the cut-off line forming portion 4 is emitted to the outside of the lens 1, and is caused by an inner panel (such as an inner housing) arranged outside the lens 1 and inside the lamp chamber 103. It is blocked or absorbed and is not emitted outside the lamp chamber 103 .
  • the exit surface 5 is provided on the front surface of the other end portion (front end portion) of the lens 1 .
  • the output face 5 has an output face focus LF, which will be described later.
  • the exit surface 5 emits the second reflected light L4 that has passed through the cutoff line forming portion 4 as a light distribution pattern having a cutoff line. That is, the emission surface 5 irradiates the front of the vehicle with the second reflected light L4 as the emitted light L5.
  • the emitted light L5 forms a low-beam light distribution pattern LP (a low-beam light distribution pattern LP having a lower horizontal cutoff line CLD, an upper horizontal cutoff line CLU, and an oblique cutoff line CLS) shown in FIG. 11(C).
  • a normal (common) lens has an image plane.
  • This image plane is a surface (curved surface) formed by converging points at which a plurality of parallel rays from the outside of the lens enter the incident surface and exit from the exit surface to converge (converge).
  • this lens 1 only has an exit surface 5 . Therefore, there is no image plane on the output surface 5, and a virtual image plane VS (see FIG. 14) is formed in the vicinity of the image plane.
  • the symbol “5H” is a cross-sectional line of the output surface 5 when the output surface 5 is cut in the lateral direction (horizontal direction).
  • the symbol “5V” is a vertical cross-sectional line of the output surface 5 when the output surface 5 is cut in the longitudinal direction (vertical direction).
  • the cross-sectional line 5H and the vertical cross-sectional line 5V are curved along the curved emission surface 5 .
  • VSH is a cross-sectional line in the virtual image plane VS when the virtual image plane VS is cut in the lateral direction (horizontal direction).
  • VSV is a vertical section line on the virtual image plane VS when the virtual image plane VS is cut in the longitudinal direction (vertical direction).
  • the transverse section line VSH and the longitudinal section line VSV form curves following the curved virtual image plane VS.
  • the second reflecting surface 3 has the focal point of the basic paraboloid of revolution P as the reflecting surface focus RF.
  • the exit surface 5 has a reflection surface focus RF or an exit surface focus LF near the reflection surface focus RF. Reflection surface focus RF and exit surface focus LF coincide in this example, as shown in FIGS. Note that the reflection surface focus RF and the exit surface focus LF do not have to match.
  • the second reflecting surface 3 is a reflecting surface consisting of a basic (pure) paraboloid of revolution P
  • the second reflected light L40 is concentrated (condensed) at one focal point (reflective surface focus RF, exit surface focus LF), so as shown in FIG.
  • a low-beam light distribution pattern LP2 with a narrow (small) left-right diffusion width is formed.
  • the low-beam light distribution pattern LP2 with a narrow (small) lateral diffusion width is not suitable for a light distribution pattern of a vehicle lamp.
  • the low-beam light distribution pattern LP2 with a narrow (small) left-right diffusion width has a lower horizontal cut-off line CLD2, an upper horizontal cut-off line CLU2, and an oblique cut-off line CLU2, similarly to the low-beam light distribution pattern LP shown in FIG. It has offline CLS2.
  • the second reflecting surface 3 is a reflecting surface having a surface shape in which the basic paraboloid of revolution P is continuously extended in the lateral direction of the vehicle.
  • the second reflecting surface 3 does not concentrate (converge) the second reflected light L4 at one point (reflecting surface focus RF, emitting surface focus LF). spread in the direction
  • FIGS. 11B and 11C low-beam light distribution patterns LP and LP1 with wide left and right diffusion widths are formed.
  • the low-beam light distribution patterns LP and LP1 with wide left and right diffusion widths are suitable for light distribution patterns of vehicle lamps.
  • the low-beam light distribution pattern LP1 with a wide left-right diffusion width has a lower horizontal cut-off line CLD1, an upper horizontal cut-off line CLU1, and an oblique cut-off line CLS1, similarly to the low-beam light distribution pattern LP shown in FIG. have.
  • the light-condensing second reflecting surface 3S of the second reflecting surface 3 has a second reflecting area 3C in the middle, a second reflecting area 3L on the left side, and a second reflecting area on the right side. and 3R.
  • the intermediate second reflection area 3C controls the second reflected lights L4 and L4C passing through the reflection surface focus RF and the exit surface focus LF, as shown in FIGS. 4 and 7, the left second reflection area 3L controls the second reflected lights L4 and L4L passing through the left side from the reflection surface focus RF and the emission surface focus LF. 4 and 7, the right second reflection area 3R controls the second reflected lights L4 and L4R passing right from the reflection surface focus RF and the exit surface focus LF.
  • the second reflected light beams L4 and L4L from the left second reflection area 3L pass through an arbitrary point VPL on the cross-sectional line VSH of the virtual image plane VS.
  • the second reflected lights L4 and L4R from the right second reflection region 3R pass through an arbitrary point VPR on the cross-sectional line VSH of the virtual image plane VS.
  • incident part optical axis Z2 and reflecting surface optical axes Z3, ZC, ZL, ZR The incident portion optical axis Z2 and the reflective surface optical axes Z3, ZC, ZL, and ZR will be described with reference to FIG.
  • the intermediate second reflective area 3C has an intermediate reflective surface optical axis ZC.
  • the middle reflective surface optical axis ZC and the incident part optical axis Z2 are parallel or substantially parallel to each other.
  • the intermediate second reflecting area 3C is a parabola of the basic paraboloid of revolution P
  • the intermediate reflecting surface optical axis ZC is the reflecting surface optical axis Z3. Therefore, hereinafter, in FIG. 6, the intermediate reflecting surface optical axis ZC and reflecting surface optical axis Z3 can be regarded as being the same as the incident portion optical axis Z2.
  • Z ⁇ C° be the angle formed by the incident portion optical axis Z2 (the intermediate reflecting surface optical axis ZC and the reflecting surface optical axis Z3) and the vertical line ZV.
  • the left second reflective area 3L has the left reflective surface optical axis ZL.
  • the second reflection area 3L on the left side has a cut-off line forming portion 4 and an emission surface as it shifts to the left from the rotation axis O at the upper end of the second reflection surface 3. It is gradually sloping to the opposite side of 5.
  • the left reflective surface optical axis ZL gradually inclines toward the vertical line ZV with respect to the incident portion optical axis Z2 (the intermediate reflective surface optical axis ZC and the reflective surface optical axis Z3) as it shifts to the left. is doing.
  • the angle formed by the left reflecting surface optical axis ZL and the vertical line ZV is assumed to be Z ⁇ L°.
  • the angle Z ⁇ L° formed between the left reflecting surface optical axis ZL and the vertical line ZV is the angle Z ⁇ C° formed between the incident portion optical axis Z2 (the intermediate reflecting surface optical axis ZC and the reflecting surface optical axis Z3) and the vertical line ZV. less than As a result, the left reflecting surface optical axis ZL is inclined toward the vertical line ZV with respect to the intermediate reflecting surface optical axis ZC.
  • the right second reflective region 3R has a right reflective surface optical axis ZR.
  • the second reflection area 3R on the right side is gradually inclined to the side opposite to the face 5.
  • the right reflective surface optical axis ZR gradually inclines toward the vertical line ZV with respect to the incident portion optical axis Z2 (the intermediate reflective surface optical axis ZC and the reflective surface optical axis Z3) as it shifts to the right. is doing.
  • the angle between the right reflecting surface optical axis ZR and the vertical line ZV is defined as Z ⁇ R°.
  • the angle Z ⁇ R° formed between the right reflecting surface optical axis ZR and the vertical line ZV is the angle Z ⁇ C° formed between the incident portion optical axis Z2 (the intermediate reflecting surface optical axis ZC and the reflecting surface optical axis Z3) and the vertical line ZV. less than As a result, the right reflecting surface optical axis ZR is inclined toward the vertical line ZV with respect to the middle reflecting surface optical axis ZC.
  • the reflecting surface optical axis ZL of the second reflecting region 30L on the left side and the incident portion optical axis Z2 are parallel or substantially parallel to each other, and the reflecting surface optical axis of the second reflecting region 30R on the right side is parallel to each other.
  • ZR and incident part optical axis Z2 are parallel or substantially parallel to each other.
  • Patent Document 2 As shown in FIG. 8(A), the left second reflective area 30L and the right second reflective area 30R are the same as the middle second reflective area 3C.
  • the second reflected light L41 reflected by the left second reflective area 30L and the right second reflective area 30R like the second reflected light L4C reflected by the intermediate second reflective area 3C, is emitted from the exit surface. Focus (converge) on the focal point LF.
  • the cross-sectional line VSH of the virtual image plane VS of the reflecting surface 5 is cut as it shifts to the left and right from the reflecting surface focus RF and the exit surface focus LF, as indicated by curved dashed lines in FIGS. It is formed so as to be separated from the off-line forming portion 4 toward the output surface 5 side. Therefore, a portion L4D of the second reflected light L41 reflected by the left second reflective region 30L and the right second reflective region 30R is reflected in the cross section of the virtual image plane VS as shown in FIG. It passes downward behind the arbitrary points VPR and VPL of the line VSH and in front of the corner 4C of the cutoff line forming portion 4 .
  • the second reflected light L4D (hereinafter referred to as “downward second reflected light L4D”) that has passed between the arbitrary points VPR and VPL and the cut-off line forming portion 4 is emitted upward from the emission surface 5 ( not shown).
  • the second downward reflected light L4D causes cutoff lines CLD1 and CLU1 curved upward with respect to the horizontal cutoff lines CLD and CLU, as shown in FIG. 11(B).
  • the second reflected light L4L reflected by the left second reflection area 3L (hereinafter referred to as “left second reflected light L4L”) and the second reflection reflected by the right second reflection area 3R
  • Light L4R (hereinafter referred to as “right second reflected light L4R”) is second reflected light L4C (hereinafter referred to as “intermediate second reflected light L4C”) reflected by the middle second reflection area 3C.
  • part of the left second reflected light L4L and the right second reflected light L4R directed downward are located behind the corner 4C of the cut-off line forming portion 4. It is reflected as the second upward reflected light L4U on the horizontal plane 4H.
  • the incident part optical axis Z2 (central reflecting surface optical axis ZC) is such that the direction of the incident light (especially the first parallel incident lights L1 and L3) is oriented with respect to the vertical line ZV. It is slanted in a state in which it faces toward the exit surface 5 side. That is, the incident portion optical axis Z2 is inclined backward on the upper side and forward on the lower side.
  • the left reflecting surface optical axis ZL shifts from a state parallel or nearly parallel to the incident portion optical axis Z2 (reflecting surface optical axis ZC) to parallel to the vertical line ZV as it shifts leftward from the reflecting surface focus RF and the exit surface focus LF. Or it is gradually transitioning to a nearly parallel state.
  • the right reflecting surface optical axis ZR shifts to the right from the reflecting surface focus RF and the exit surface focus LF, it changes from a state parallel or nearly parallel to the incident portion optical axis Z2 (reflecting surface optical axis ZC) to a vertical line ZV. It gradually transitions to a state parallel or nearly parallel to .
  • the angle Z ⁇ L° formed between the left reflecting surface optical axis ZL and the vertical line ZV is set larger than the angle Z ⁇ R° formed between the right reflecting surface optical axis ZR and the vertical line ZV.
  • the left reflective surface optical axis ZL is inclined toward the vertical line ZV with respect to the right reflective surface optical axis ZR, and is parallel or almost parallel to the vertical line ZV.
  • the angle LP ⁇ ° at which the left paraboloid of revolution PL is tilted with respect to the middle paraboloid of revolution PC is such that the right paraboloid of revolution PR is inclined to the middle paraboloid of revolution PC. is greater than the angle RP ⁇ ° that is tilted with respect to
  • the paraboloid of revolution PL on the left side forms the second reflection area 3L on the left side.
  • the right paraboloid of revolution PR forms the right second reflective region 3R.
  • the intermediate paraboloid of revolution PC forms the intermediate second reflective area 3C.
  • the intermediate paraboloid of revolution PC is the basic paraboloid of revolution P.
  • the second reflected light L4L from the second reflection region 3L on the left side shown in FIG. the amount of light that is reflected by the horizontal surface 4H behind the corner 4C of the cutoff line forming portion 4 and becomes the upward second reflected light L4U is , of the second reflected light L4R from the second reflection region 3R on the right side, is reflected by the horizontal surface 4H behind the corner 4C of the cut-off line forming portion 4 to become the upward second reflected light L4U. become more.
  • the amount of light in which the second reflected light L4L on the left becomes the second reflected light L4D directed downward can be reduced more than the amount of light in which the second reflected light L4R on the right becomes the second reflected light L4D directed downward. That is, the amount of light that bends upward from the lower horizontal cutoff line CLD formed by the left reflective area 3L is greater than the amount of light that bends upward from the upper horizontal cutoff line CLU formed by the right reflective area 3R. can also be reduced.
  • the low beam light distribution pattern is stipulated by law.
  • R123 R149 Class-C
  • BLL/BRR points above the cutoff lines CLD, CLS, and CLU.
  • the upper luminous intensity limit of the point BRR above the lower horizontal cutoff line CLD is set lower at 625 cd compared to the upper luminous intensity limit (3550 cd) of the point BLL above the upper horizontal cutoff line CLU.
  • the amount of light above the lower horizontal cutoff line CLD formed by the left reflective area 3L is reduced more than the amount of light above the upper horizontal cutoff line CLU formed by the right reflective area 3R. This is very important.
  • the left reflective surface optical axis ZL is inclined toward the vertical line ZV with respect to the right reflective surface optical axis ZR so as to be parallel or almost parallel to the vertical line ZV. set. Then, the amount of light above the lower horizontal cutoff line CLD formed by the left reflecting surface 3L is reduced more than the amount of light above the upper horizontal cutoff line CLU formed by the right reflecting surface 3R. can be done. As a result, the low beam light distribution pattern formed by this lens 1 can satisfy the regulation shown in FIG.
  • the lens 1 according to this embodiment, the vehicle lighting unit 1U according to this embodiment, and the vehicle lighting device 100 according to this embodiment are configured as described above, and their functions will be described below.
  • the four light sources 10 are turned on. Then, the light L0 from the four light sources 10 enters the inside of the lens 1 from the four incident portions 2 of the lens 1, respectively. Incident lights L1 and L3 or L10 and L3 that enter the inside of the lens 1 from the middle two light sources 10 and the middle two incident portions 2 are reflected by the second reflection for condensing at the intermediate portion of the second reflecting surface 3. It is reflected by the surface 3S as the second reflected light L4.
  • a part of the second reflected light L4 is controlled by the cutoff line forming section 4.
  • the second reflected light L4 that has passed through the cut-off line forming portion 4 is emitted forward of the vehicle from the emission surface 5 as emitted light L5.
  • the emitted light L5 forms a condensing low-beam light distribution pattern LP shown in FIG. 11(C).
  • the incident lights L1 and L3 or L10 and L3 that enter the inside of the lens 1 from the two light sources 10 and the middle two incident portions 2 respectively are emitted from the second reflecting surface 3 for diffusion on the left and right sides of the second reflecting surface 3 . It is reflected as reflected light (not shown) by the reflecting surface 3W.
  • a part of the reflected light L4 is controlled by the cutoff line forming section 4.
  • the reflected light that has passed through the cut-off line forming portion 4 is emitted forward of the vehicle from the emission surface 5 as emitted light (not shown).
  • the emitted light forms a diffusion low-beam light distribution pattern (not shown).
  • the low-beam light distribution pattern LP for condensing and the low-beam light distribution pattern for diffusion are superimposed to form a low-beam light distribution pattern (not shown), which is projected forward of the vehicle.
  • the lens 1 according to this embodiment, the vehicle lighting unit 1U according to this embodiment, and the vehicle lighting device 100 according to this embodiment are configured and function as described above, and their effects will be described below.
  • the cutoff line forming portion 4 is provided in the lateral direction of the vehicle, that is, in a simplified shape.
  • smooth flow of the resin is obtained in the cut-off line forming portion 4 during resin molding, and the fluidity of the resin is improved.
  • the cut-off line forming portion 4 is formed in a simplified shape extending in the left-right direction, so that the low-beam light distribution pattern can be easily controlled and improved.
  • the reflecting surface optical axis ZC of the intermediate second reflecting region 3C and the incident portion optical axis Z2 are parallel or substantially parallel to each other, and the reflecting surface light of the second reflecting region 3L on the left side is parallel to each other.
  • the axis ZL and the reflecting surface optical axis ZR of the second reflecting region 3R on the right side are inclined with respect to the incident portion optical axis Z2.
  • the lens 1 has the left second reflected light L4L reflected by the left second reflection area 3L and the right second reflected light reflected by the right second reflection area 3R.
  • L4R is directed downward with respect to the intermediate second reflected light L4C reflected by the intermediate second reflection area 3C.
  • the lens 1 cuts off a part of the downward left second reflected light L4L and a part of the right second reflected light L4R. can be reflected as second upward reflected light L4U on a horizontal plane 4H behind the corner 4C.
  • the lens 1 according to this embodiment reduces the light amount of the second downward reflected light L4D to the amount of light of the second reflected light L4D that is directed downward. ) can be reduced. Therefore, the lens 1 according to this embodiment has horizontal cut-off lines CLD and CLU as shown in FIG. can be formed.
  • the cut-off line forming portion 4 is provided in the left-right direction of the vehicle and is formed in a curved shape (curved) that approximates the virtual image plane of the exit surface, It is possible to form horizontal cut-off lines CLD and CLU without the cut-off lines CLD1 and CLU1 warping upward.
  • the incident part optical axis Z2 (central reflecting surface optical axis ZC) is arranged so that the direction of the incident light (especially the parallel first incident lights L1 and L3) is with respect to the vertical line ZV. It is slanted in a state facing the exit surface 5 side.
  • the lens 1 according to this embodiment can efficiently reflect incident light (particularly parallel first incident lights L1 and L3) on the second reflecting surface 3 toward the exit surface 5 side.
  • the lens 1 according to this embodiment can efficiently use the incident light (in particular, the first parallel incident lights L1 and L3), and the amount of light in the low-beam light distribution pattern LP can be improved accordingly. be able to.
  • the left reflecting surface optical axis ZL shifts to the left, it changes from parallel or nearly parallel to the incident portion optical axis Z2 (reflecting surface optical axis ZC) to parallel or substantially parallel to the vertical line ZV. It is shifted to a nearly parallel state. That is, in the lens 1 according to this embodiment, the left reflective surface optical axis ZL is inclined toward the vertical line ZV with respect to the incident portion optical axis Z2 (central reflective surface optical axis ZC). As a result, in the lens 1 according to this embodiment, as described above, the left reflective surface optical axis ZL is inclined with respect to the incident part optical axis Z2, so the above effect, that is, the fluidity of the resin is improved. In addition, the control of the low beam light distribution pattern is improved, and a cutoff line without warping can be formed.
  • the right reflective surface optical axis ZR shifts to the right, and the incident portion optical axis Z2 (reflecting surface optical axis ZC ) to parallel or substantially parallel to the vertical line ZV. That is, in the lens 1 according to this embodiment, the right reflective surface optical axis ZR is inclined toward the vertical line ZV with respect to the incident portion optical axis Z2 (central reflective surface optical axis ZC). As a result, in the lens 1 according to this embodiment, as described above, the right reflecting surface optical axis ZR is inclined with respect to the incident part optical axis Z2, so that the above effect, that is, the fluidity of the resin is improved. In addition, the control of the low beam light distribution pattern is improved, and a cutoff line without warping can be formed.
  • the left reflective surface optical axis ZL is inclined toward the vertical line ZV with respect to the right reflective surface optical axis ZR, and is parallel or almost parallel to the vertical line ZV. It should be set so that As a result, in the lens 1 according to this embodiment, the left paraboloid of revolution PL is tilted at an angle LP ⁇ ° with respect to the central paraboloid of revolution PC, and the right paraboloid of revolution PR is tilted at an intermediate paraboloid of revolution. It can be made larger than the angle RP ⁇ ° that is inclined with respect to the plane PC.
  • the lens 1 according to this embodiment can direct the second reflected light L4L from the second reflection region 3L on the left side more downward than the second reflected light L4R from the second reflection region 3R on the right side. can. Then, the lens 1 according to this embodiment reflects the second reflected light L4L from the second reflection region 3L on the left side on the horizontal surface 4H behind the corner 4C of the cutoff line forming portion 4, and emits upward light. Of the second reflected light L4R from the second reflection region 3R on the right side, the amount of light that becomes the second reflected light L4U is reflected by the horizontal surface 4H behind the corner 4C of the cut-off line forming portion 4 and directed upward. It is larger than the amount of light that becomes 2 reflected lights L4U.
  • the lens 1 according to this embodiment adjusts the amount of light in which the left second reflected light L4L becomes the second downward reflected light L4D, and the amount of light in which the right second reflected light L4R becomes the second downward reflected light L4D. can be reduced than That is, in the lens 1 according to this embodiment, the amount of light that bends upward from the lower horizontal cutoff line CLD formed by the second reflection region 3L on the left is reduced to the upper horizontal cutoff line formed by the second reflection region 3R on the right. It is possible to reduce the amount of light that warps upward from the cutoff line CLU.
  • the amount of light above the lower horizontal cutoff line CLD formed by the second reflection region 3L on the left side is reduced by the upper horizontal cutoff line formed by the second reflection region 3R on the right side. It is possible to reduce the amount of light above the offline CLU and form a low-beam light distribution pattern that satisfies the regulations shown in FIG.
  • the lens 1 according to this embodiment has four light sources 10 and has four incident portions 2 corresponding to the four light sources 10, the light amount of the low beam light distribution pattern is can be improved.
  • the present invention can also be applied to right-hand traffic in Western countries.
  • the right and left are reversed in the case of left-hand traffic.
  • the low-beam light distribution pattern LP shown in FIGS. 10 and 11 is a left-right reversed low-beam light distribution pattern.
  • the second reflecting surface 3 and the cut-off line forming portion 4 become a left-right reversed second reflecting surface and cut-off line forming portion.
  • the condensing type low-beam light distribution pattern LP is described.
  • the present invention can also be applied to a normal type low beam light distribution pattern and a diffusion type low beam light distribution pattern.
  • four light sources 10 and four incident portions 2 are provided.
  • one to three or more than five light sources 10 and incidence sections 2 may be used.
  • 1 Lens (lens for vehicle lamp) 1U vehicle lamp unit 10 light source 11 light emitting surface 12 prism portion 2 incident portion 20 first reflecting surface (reflecting surface) 21, 210 first incident surface 22 second incident surface 3 second reflecting surface (reflecting surface) 3C middle second reflective area 3L, 30L left second reflective area 3R, 30R right second reflective area 3S condensing second reflective surface (intermediate portion) 3W second reflecting surface for diffusion (left part, right part) 4 cut-off line forming portion 4C corner portion 4D lower cut-off line forming portion 4H horizontal surface 4S oblique cut-off line forming portion 4U upper cut-off line forming portion 4V vertical surface 5 exit surface 5H cross-sectional line of exit surface 5 5V longitudinal section of exit surface 5 Line 100 Vehicle lighting device 101 Lamp housing 102 Lamp lens 103 Lamp chamber B Rear CLD, CLD1, CLD2 Lower horizontal cut-off line CLS, CLS1, CLS2 Diagonal cut-off line CLU CLU1, CLU2 Upper horizontal cut-off line D Lower

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置を提供することにある。 この発明は、入射部(2)と、第2反射面(3)と、カットオフライン形成部(4)と、出射面(5)と、を備える。カットオフライン形成部(4)は、車両の左右方向に設けられている。この結果、この発明は、樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる。

Description

車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置
 この発明は、車両用灯具のレンズに関するものである。また、この発明は、車両用灯具ユニットに関するものである。さらに、この発明は、車両用灯具装置に関するものである。
 車両の左右方向に沿ったカットオフラインを有する配光パターン、すなわち、ロービーム配光パターンを照射する車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置として、たとえば、特許文献1、特許文献2に示すものがある。以下、特許文献1、特許文献2について説明する。
 特許文献1のロービームのヘッドライトモジュールに用いられる集光器(以下、「集光器」と称する)は、集光構造と、カットオフライン形成構造と、を含む。集光構造は、集光器の後端であるLED光源側に設けられている。カットオフライン形成構造は、集光器の前端、すなわち、レンズ側に近い端に設けられている。カットオフライン形成構造のレンズ側に近い端面の輪郭曲線は、円弧状を呈している。特許文献1の集光器は、車両の左右方向に沿ったカットオフラインを有するロービーム配光パターンを照射する。
 特許文献2の車両用導光体及び車両用灯具ユニットは、入射面と、第1反射面と、第2反射面と、遮光部と、出射面と、を備える。第2反射面は、回転放物面を基調とし、出射面の焦点の近傍の位置に配置されている焦点を有する。遮光部は、焦点を通り、左右方向に線状に延びている。特許文献2の車両用導光体及び車両用灯具ユニットは、光源からの光が入射面から入射光として入射する。入射光が、第1反射面で平行光として内部反射する。平行光が、第2反射面で反射光として焦点側に反射する。反射光の一部は、遮光部で遮光され、反射光の残りは、遮光部を通過する。遮光部を通過した通過光は、出射面から車両前方に前照灯パターン(車両の左右方向に沿ったカットオフラインを有するロービーム配光パターン)を照射する。
特許第6637187号公報 特開2020-191204号公報
 しかしながら、特許文献1の集光器は、カットオフライン形成構造のレンズ側に近い端面の輪郭曲線が円弧状を呈している、ものである。この結果、特許文献1の集光器は、樹脂成形時、カットオフライン形成構造のレンズ側に近い端面において、樹脂の円滑な流動が得られず、樹脂の流動性に課題がある。
 一方、特許文献2の車両用導光体及び車両用灯具ユニットは、遮光部を、左右方向に線状に延びた形状、すなわち、簡素化した形状に、形成したものである。この結果、特許文献2の車両用導光体及び車両用灯具ユニットは、樹脂成形時、遮光部において、樹脂の円滑な流動が得られ、樹脂の流動性が向上される。しかも、特許文献2の車両用導光体及び車両用灯具ユニットは、遮光部を、左右方向に線状に延びた簡素化した形状に、形成するものであるから、ロービーム配光パターンの制御が行い易く向上される。
 しかしながら、特許文献2の車両用導光体及び車両用灯具ユニットは、遮光部を左右方向に線状に延びた形状に形成したものであるから、ロービーム配光パターンのカットオフラインの形状が中間から左右に移行するに従って上側に反り上がる場合がある。たとえば、図11(B)に示すように、スクリーンに投影されたロービーム配光パターンLP1のカットオフラインCLD1、CLU1の形状が中心(スクリーンの上下垂直線VU-VD)から左右に移行するに従って、水平なカットオフラインCLD、CLU(図11(B)中の破線を参照)に対して、上側に反り上がる。この反り上がりが大きい場合、法規を満たさない可能性がある。このため、反り上がりが無いロービーム配光パターンのカットオフラインを形成する必要がある。なお、この反り上がりは、カットオフラインCLD1、CLU1の中心から左右に移行するに従って大きく反り上がっている。
 この発明が解決しようとする課題は、樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置を提供することにある。
 この発明の車両用灯具のレンズは、光源からの光のうち少なくとも一部を入射させる入射部と、反射面焦点を有し、入射部からの入射光を反射させる反射面と、車両の左右方向に設けられていて、反射面からの反射光の一部を制御して、カットオフラインを形成するカットオフライン形成部と、カットオフライン形成部を通過する反射光を、カットオフラインを有する配光パターンとして、車両の前方に出射させる出射面と、を備え、反射面焦点が、カットオフライン形成部近傍に配置されていて、反射面が、反射光がカットオフライン形成部近傍を通る第1領域と、反射光がカットオフライン形成部から反射面側に離れた位置を通る第2領域と、を有する、ことを特徴とする。
 この発明の車両用灯具のレンズは、鉛直線に対して傾斜している入射部光軸を有し、光源からの光のうち少なくとも一部を、入射部光軸と平行もしくはほぼ平行な平行光として入射させる入射部と、回転放物面を基本とし、回転放物面の回転軸を反射面光軸とし、回転放物面の焦点を反射面焦点とし、入射部からの入射光を反射させる反射面と、車両の左右方向に設けられていて、反射面からの反射光の一部を制御して、車両の左右方向に沿ったカットオフラインを形成するカットオフライン形成部と、カットオフライン形成部を通過した反射光を、カットオフラインを有する配光パターンとして、車両の前方に出射させる出射面と、を備え、出射面が、反射面焦点の近傍に出射面焦点を有し、反射面が、中央の反射領域と、外側の反射領域と、を有し、中央の反射領域の反射面光軸が、外側の反射領域の反射面光軸と比較して、鉛直線側に傾斜している、ことを特徴とする。
 この発明の車両用灯具のレンズにおいて、入射部光軸は、入射光の方向が鉛直線に対して出射面側に向いた状態で、傾斜していて、外側の反射領域のうちの左側の反射領域の反射面光軸は、左側に移行するに従って、入射部光軸と平行もしくはほぼ平行な状態から鉛直線と平行もしくはほぼ平行な状態に移行していて、外側の反射領域のうちの右側の反射領域の反射面光軸は、右側に移行するに従って、入射部光軸と平行もしくはほぼ平行な状態から鉛直線と平行もしくはほぼ平行な状態に移行している、ことが好ましい。
 この発明の車両用灯具のレンズにおいて、カットオフライン形成部は、下側水平カットオフライン形成部と、上側水平カットオフライン形成部と、を有し、左側の反射領域または右側の反射領域の一方は、下側水平カットオフライン形成部を通る反射光を制御し、左側の反射領域または右側の反射領域の他方は、上側水平カットオフライン形成部を通る反射光を制御し、左側の反射領域または右側の反射領域の一方の反射面光軸は、左側の反射領域または右側の反射領域の他方の反射面光軸に対して、鉛直線と平行もしくはほぼ平行な状態に近い、ことが好ましい。
 この発明の、車両用灯具ユニットは、光源と、光源からの光を、入射させて、車両の左右方向に沿ったカットオフラインを有する配光パターンとして、出射させるこの発明の車両用灯具のレンズと、を備える、ことを特徴とする。
 この発明の車両用灯具ユニットにおいて、光源は、複数個有し、車両用灯具のレンズは、複数個の光源に対応して、複数個の入射部を有する、ことが好ましい。
 この発明の、車両用灯具装置は、灯室を形成するランプレンズおよびランプハウジングと、灯室内に配置されているこの発明の車両用灯具ユニットと、を備える、ことを特徴とする。
 この発明の車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置は、樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる。
図1は、この発明にかかる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置の実施形態を示すレンズの平面図である。 図2は、レンズおよび光源を示す側面図(図1におけるII矢視図)である。 図3は、レンズ中の光路を示す縦断面図(垂直断面図であって、図1におけるIII-III線断面図)である。 図4は、レンズ中の光路を示す横断面図(水平断面図であって、図2におけるIV-IV線断面図)である。 図5は、レンズのカットオフライン形成部を示す縦断面図(垂直断面図であって、図2におけるV-V線断面図)である。 図6は、レンズの要部(入射部光軸および反射面光軸)を示す説明図(図3の一部拡大図)である。 図7は、レンズを示す横断面図(水平断面図であって、図4に対応する横断面図)である。 図8は、レンズの入射部および反射面における光路を示す一部縦断面図(一部垂直断面図であって、図7におけるVIII-VIII線断面図)である。図8(A)は、この発明を実施しなかったレンズの入射部および反射面における光路を示す一部縦断面図である。図8(B)は、この発明を実施したレンズの入射部および反射面における光路を示す一部縦断面図である。 図9は、レンズの反射面を示す一部拡大横断面図(一部拡大水平断面図であって、図4に対応する一部拡大横断面図)である。 図10は、ロービーム配光パターンにおいて、法規で規定されているポイントの光度を示す説明図である。 図11は、ロービーム配光パターンを示す説明図である。図11(A)は、基本の回転放物面からなる反射面によるロービーム配光パターンを示す説明図である。図11(B)は、この発明を実施しなかった反射面によるロービーム配光パターンを示す説明図である。図11(C)は、この発明を実施した反射面によるロービーム配光パターンを示す説明図である。 図12は、レンズの入射部の光路を示す一部拡大縦断面図(一部拡大垂直断面図であって、図3に対応する一部拡大縦断面図)である。 図13(A)は、レンズの入射部の光路を示す一部拡大縦断面図(一部拡大垂直断面図であって、図12におけるXIII-XIII線断面図)である。図13(B)は、レンズの入射部の光路の変形例を示す一部拡大縦断面図(一部拡大垂直断面図であって、図12におけるXIII-XIII線断面図)である。 図14は、出射面の仮想像面を示す説明図である。
 以下、この発明にかかる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置の実施形態(実施例)の1例を図面に基づいて詳細に説明する。この実施形態においては、日本国、英国などの左側通行に適用する。
 この明細書、別紙の請求の範囲において、前、後、上、下、左、右は、この発明にかかる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置を車両に装備した際の前、後、上、下、左、右である。図面において、符号「F」は「前」、「B」は「後」、「U」は上、「D」は「下」、「L」は「左」、「R」は「右」である。
 また、図10および図11は、車両の前方の25mに設置されたスクリーンに照射されたロービーム配光パターンを示す説明図である。図10および図11において、符号「VU-VD」は、スクリーンの上下垂直線を示す。符号「HL-HR」は、スクリーンの左右水平線を示す。
 さらに、図面は、この発明にかかる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置を示す概略図であるから、この発明にかかる車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置の主要部品を図示し、主要部品以外の部品の図示を省略する。さらにまた、図3、図6、図8、図9、図12および図13においては、ハッチングを省略する。
(実施形態の構成の説明)
 以下、この実施形態にかかる車両用灯具のレンズ1(以下、「レンズ1」と称する)、この実施形態にかかる車両用灯具ユニット1U(以下、「車両用灯具ユニット1U」と称する)、および、この実施形態にかかる車両用灯具装置100(以下、「車両用灯具装置100」と称する)の構成について説明する。
(車両用灯具装置100の説明)
 車両用灯具装置100は、図示されていない車両(自動車)の前部の左右にそれぞれ装備されている。車両用灯具装置100は、この例では、ロービーム配光パターン(図11(C)に示す集光用ロービーム配光パターンLPを参照)を、車両の前方に照射する車両用前照灯(ヘッドランプ)である。
 図1は、車両用灯具装置100を示す横断面図(水平断面図)である。車両用灯具装置100は、図1に示すように、ランプハウジング101と、ランプレンズ102と、車両用灯具ユニット1Uと、を備える。
 ランプハウジング101は、光不透過性の樹脂部材から構成されている。ランプレンズ102は、光透過性の樹脂部材あるいはガラスから構成されている。ランプレンズ102は、アウターレンズあるいはアウターカバーである。ランプレンズ102は、車両の意匠面に沿っている。
 ランプハウジング101およびランプレンズ102により、灯室103が形成されている。灯室103内には、車両用灯具ユニット1U、その他の1個もしくは複数個の車両用灯具ユニット(図示せず)やインナーパネル(図示せず)などが、それぞれ、配置されている。
 車両用灯具装置100は、その他の車両用灯具ユニットを配置することにより、ロービーム配光パターン以外の配光パターン、たとえば、ハイビーム配光パターン、デイタイムランニングランプ用の配光パターン、フロントターンシグナルランプ用の配光パターンなどを照射することができる。
(車両用灯具ユニット1Uの説明)
 車両用灯具ユニット1Uは、図1、図2および図3に示すように、複数個、この例では、4個の光源10と、1個のレンズ1と、を備える。車両用灯具ユニット1Uは、後記のロービーム配光パターンを、車両の前方に照射する。
 ロービーム配光パターンは、上側に車両の左右方向に沿った水平なカットオフラインを有し、カットオフラインよりも下側の路面、すなわち、車両の前方側から車両の手前側までの路面であって、左右方向に幅広い範囲の路面を、照明する。
(光源10の説明)
 光源10は、この例では、LED、OELまたはOLED(有機EL)などの自発光半導体型発光素子(半導体発光素子)タイプの光源である。光源10は、図1、図2および図3に示すように、発光面11を有する。発光面11は、レンズ1の後記の入射部2に対して上側に配置されている。発光面11は、図6、図8、図12および図13中において、点(発光面11の中心点)にて図示されている。
(レンズ1の説明)
 レンズ1は、光源10からの光L0を入射させて、車両の左右方向に沿った水平なカットオフラインを有する配光パターンを車両の前方に照射する。
 レンズ1は、光透過性の部材(樹脂部材など)であって、この例では、アクリル樹脂やPC(ポリカーボネート)、PMMA(ポリメタクリル酸メチル、メタクリル樹脂)などの無色透明樹脂材からなる。レンズ1は、図1から図9、図12および図13に示すように、入射部2と、反射面3と、カットオフライン形成部4と、出射面5と、プリズム部12と、を備える。
(入射部2の説明)
 入射部2は、レンズ1の一端部分(後端部分)の上面に設けられている。入射部2は、4個の光源10に対応して、4個有する。4個の入射部2は、左右方向に整列されている。入射部2は、光源10からの光L0のうち少なくとも一部を平行光として入射させる。
 入射部2は、図12および図13(A)、(B)に示すように、反射面20と、第1入射面21、210および第2入射面22と、を有する。なお、入射部2の反射面20は、前記の反射面3(請求の範囲に記載の反射面)と区別するため、以下、「第1反射面20」と称する。
 入射部2は、入射部光軸Z2を有する。入射部光軸Z2は、入射部2の第1反射面20、第1入射面21、210および第2入射面22の中心を通る。第1入射面21、210および第2入射面22は、第1反射面20に対して、凹形状をなしている。
 第1入射面21は、図12および図13(A)に示すように、発光面11からの光L0のうち、発光面11の中心を点(角の頂点)とする立体角が約70°~80°の光L0を、第1入射光L1として屈折入射させる面である。なお、立体角は、特に限定しない。第1入射光L1は、入射部光軸Z2に対して平行もしくはほぼ平行である平行光である。第1入射面21は、発光面11に対して下側に設けられている。第1入射面21は、発光面11の中心もしくはその近傍を焦点とする双曲線を、双曲線の主軸(入射部光軸Z2)を回転軸として回転させてなる回転双曲面の屈折面である。この平行光である第1入射光L1は、集光タイプの配光パターンを形成するのに適している。
 なお、第1入射面としては、図12および図13(A)に示す第1入射面21の代わりとして、図13(B)に示す第1入射面210であっても良い。この第1入射面210は、図13(B)に示すように、発光面11からの光L0のうち、発光面11の中心を点(角の頂点)とする立体角が約70°~80°の光L0を、第1入射光L10として屈折入射させる面である。なお、立体角は、特に限定しない。第1入射光L10は、入射部光軸Z2に対して拡散する拡散光である。第1入射面210は、発光面11に対して下側に設けられている。第1入射面210は、シリンドリカルもしくはシリンドリカルに近い形状の屈折面である。この拡散光である第1入射光L10は、拡散タイプの配光パターンを形成するのに適している。
 このように、第1入射面は、集光タイプの配光パターンまたは拡散タイプの配光パターンに合わせて、図12および図13(A)に示す第1入射面21、または、図13(B)に示す第1入射面210から、任意の第1入射面を選択することができる。
 第2入射面22は、図12および図13(A)、(B)に示すように、発光面11からの光L0のうち、発光面11の中心を点(角の頂点)とする立体角が約70°~80°から約180°までの間の光L0を、第2入射光L2として屈折入射させる面である。なお、立体角は、特に限定しない。第2入射面22は、第1入射面21、210の外周の側壁面であって、発光面11に対して外側に設けられている。第2入射面22は、直線もしくは曲線を、入射部光軸Z2を回転軸として回転させてなる回転面の屈折面である。第2入射面22は、入射部光軸Z2方向に対して、少なくとも、レンズ1の成形金型(図示せず)の抜き勾配(図示せず)分傾斜してなる屈折面である。
 第1反射面20は、第2入射面22から入射した第2入射光L2を入射部光軸Z2と平行もしくはほぼ平行な反射光L3として全反射させる面である。なお、第1反射面20からの反射光L3は、前記の反射面3からの反射光(請求の範囲に記載の反射光)と区別するため、以下、「第1反射光L3」と称する。
 ここで、第1入射面として、図13(B)に示す第1入射面210を選択した場合において、第1入射面210からの第1入射光L10は、拡散光であって、平行光ではない。一方、第2入射面22からの第2入射光L2(すなわち、入射光の一部)は、第1反射面20で、入射部光軸Z2と平行もしくはほぼ平行な平行光の第1反射光L3として反射される。この結果、入射部2は、光源10からの光L0のうち少なくとも一部(すなわち、第2入射光L2)を平行光(すなわち、第1反射光L3)として入射させることができる。
 このように、図12および図13(A)に示すように、入射部2は、光源10からの光L0を、平行光の第1入射光L1、および、第2入射光L2であって平行光の第1反射光L3として、入射させる。または、図12および図13(B)に示すように、入射部2は、光源10からの光L0を、拡散光の第1入射光L10、および、第2入射光L2であって平行光の第1反射光L3として、入射させる。
(反射面3の説明)
 反射面3は、レンズ1の一端部分(後端部分)の下面に設けられている。入射部2と反射面3とは、上下に配置されている。反射面3は、図3、図4、図6から図9に示すように、回転放物面P(図3および図6中の2点鎖線を参照)を基本とし、この基本の回転放物面Pの回転軸を反射面光軸Z3とする。また、反射面3は回転放物面Pの焦点を反射面焦点RFとする。反射面3は、入射部2からの入射光(図12および図13(A)に示す平行光の第1入射光L1および第1反射光L3、または、図13(B)に示す拡散光の第1入射光L10および平行光の第1反射光L3である。以下、「入射光L1、L3、または、L10、L3」と称する)を、反射光L4として、カットオフライン形成部4および出射面5側に反射させる。
 なお、反射面3(請求の範囲に記載の反射面)は、前記の第1反射面20と区別するため、以下、「第2反射面3」と称する。また、第2反射面3からの反射光L4(請求の範囲に記載の反射光)は、前記の第1反射面20からの第1反射光L3と区別するため、以下、「第2反射光L4」と称する。
 第2反射面3は、左右方向の中間部分の集光用第2反射面3Sと、左右両側部分の拡散用第2反射面3Wと、を有する。集光用第2反射面3Sは、4個の光源10および入射部2のうち中の2個の光源10および入射部2に対応する。集光用第2反射面3Sは、中の2個の光源10からの光L0であって、中の2個の入射部2からの入射光を、第2反射光L4として、反射させて、ロービーム配光パターンのうちの集光用ロービーム配光パターンLP(図11(C)を参照)を形成する。
 一方、拡散用第2反射面3Wは、4個の光源10および入射部2のうち左右の2個の光源10および入射部2に対応する。拡散用第2反射面3Wは、左右の2個の光源10からの光L0であって、左右の2個の入射部2からの入射光を、第2反射光L4として、反射させて、拡散用ロービーム配光パターン(図示せず)を形成する。この拡散用ロービーム配光パターンは、図11(C)に示す集光用ロービーム配光パターンLPに対して、左右方向および下側に拡散された配光パターンである。
 前記の集光用ロービーム配光パターンLPと拡散用ロービーム配光パターンとを重畳することにより、前記のロービーム配光パターンが形成される。ロービーム配光パターンは、車両の前方に照射される。
(集光用ロービーム配光パターンLPの説明)
 集光用ロービーム配光パターンLP(以下、「ロービーム配光パターンLP」と称する)は、図11(C)に示すように、上側に車両の左右方向に沿った水平なカットオフラインを有する。カットオフラインは、右側の下側水平カットオフラインCLDと、左側の上側水平カットオフラインCLUと、中間の斜めカットオフラインCLSと、からなる。
 ロービーム配光パターンLPにおいては、下側水平カットオフラインCLDと斜めカットオフラインCLSとの交点がエルボー点であり、このエルボー点の近傍の領域が、最高光度を有する高光度領域である。
(カットオフライン形成部4の説明)
 カットオフライン形成部4は、第2反射面3からの第2反射光L4の一部を制御して、車両の左右方向に沿ったカットオフライン、すなわち、図11(C)に示すロービーム配光パターンLPの下側水平カットオフラインCLD、上側水平カットオフラインCLUおよび斜めカットオフラインCLS、を形成する。
 カットオフライン形成部4は、第2反射面3と出射面5との間に設けられている。カットオフライン形成部4は、レンズ1の前後方向の中間部分の下面に設けられている。カットオフライン形成部4は、水平面4Hと垂直面4Vとで形成されている角部4Cを有する。垂直面4Vは、上側が後に下側が前に傾斜している。
 カットオフライン形成部4の角部4Cは、後記の出射面焦線LFLもしくは出射面焦線LFL近傍に、車両の左右方向に直線状に延びている。なお、カットオフライン形成部4は、この例では、直線状をなしているが、出射面5の後記の仮想像面VSに沿って湾曲していても良い。すなわち、カットオフライン形成部4は、車両の左右方向に平行もしくはほぼ平行形状をなしていれば良い。
 カットオフライン形成部4は、下側水平カットオフライン形成部4Dと、上側水平カットオフライン形成部4Uと、斜めカットオフライン形成部4Sと、を有する。下側水平カットオフライン形成部4Dは、左右方向の中心から左側の部分に設けられていて、下側水平カットオフラインCLDを形成する。上側水平カットオフライン形成部4Uは、左右方向の中心から右側の部分に設けられていて、上側水平カットオフラインCLUを形成する。斜めカットオフライン形成部4Sは、左右方向の中心の部分に設けられていて、斜めカットオフラインCLSを形成する。
 カットオフライン形成部4は、たとえば、カットオフライン形成部4に到達する光を出射面5の方向とは異なる方向に屈折または内部反射させることで光を遮断しても良いし、角部4Cを含む水平面4Hのうちカットオフライン形成部4に対応する部分に光吸収層を配置しておき、この光吸収層により光を吸収しても良い。なお、カットオフライン形成部4によって内部反射または屈折される光は、レンズ1の外部に出射され、レンズ1の外部であって、灯室103内に配置されるインナーパネル(インナーハウジングなど)によって、遮断されまたは吸収されて、灯室103外には出射されない。
(出射面5の説明)
 出射面5は、レンズ1の他端部分(前端部分)の前面に設けられている。出射面5は、後記の出射面焦点LFを有する。出射面5は、カットオフライン形成部4を通過した第2反射光L4を、カットオフラインを有する配光パターンとして、出射させる。すなわち、出射面5は、第2反射光L4を、出射光L5として、車両の前方に照射する。出射光L5は、図11(C)に示すロービーム配光パターンLP(下側水平カットオフラインCLD、上側水平カットオフラインCLUおよび斜めカットオフラインCLSを有するロービーム配光パターンLP)を形成する。
(出射面5の仮想像面VSの説明)
 以下、出射面5の仮想像面VSについて、図14を参照して説明する。通常(一般)のレンズにおいては、像面を有する。この像面は、レンズの外側からの複数の平行光線が入射面に入射して出射面から出射して集光(収束)する点を、集合させることにより形成される面(曲面)である。
 しかしながら、このレンズ1においては、出射面5しか有していない。このため、この出射面5において、像面は、存在せず、像面の近傍に仮想像面VS(図14を参照)が形成されている。
 図14において、符号「5H」は、出射面5を横方向(水平方向)に切断した時の出射面5における横断面線である。符号「5V」は、出射面5を縦方向(鉛直方向)に切断した時の出射面5における縦断面線である。横断面線5Hおよび縦断面線5Vは、曲面の出射面5に倣って曲線をなす。
 また、図14において、符号「VSH」は、仮想像面VSを横方向(水平方向)に切断した時の仮想像面VSにおける横断面線である。符号「VSV」は、仮想像面VSを縦方向(鉛直方向)に切断した時の仮想像面VSにおける縦断面線である。横断面線VSHおよび縦断面線VSVは、曲面の仮想像面VSに倣って曲線をなす。
(反射面焦点RFと出射面焦点LFの説明)
 第2反射面3は、基本の回転放物面Pの焦点を反射面焦点RFとする。また、出射面5は、反射面焦点RFもしくは反射面焦点RF近傍に出射面焦点LFを有する。反射面焦点RFと出射面焦点LFとは、図4および図7に示すように、この例において、一致している。なお、反射面焦点RFと出射面焦点LFとは、一致していなくても良い。
 ここで、第2反射面3が基本の(純粋な)回転放物面Pからなる反射面の場合について説明する。この場合においては、図4に示すように、第2反射光L40が1点の焦点(反射面焦点RF、出射面焦点LF)に集中(集光)するため、図11(A)に示すように、左右の拡散幅が狭い(少ない)ロービーム配光パターンLP2が形成される。この左右の拡散幅が狭い(少ない)ロービーム配光パターンLP2は、車両用灯具の配光パターンに適さない。なお、この左右の拡散幅が狭い(少ない)ロービーム配光パターンLP2は、図11(C)に示すロービーム配光パターンLPと同様に、下側水平カットオフラインCLD2、上側水平カットオフラインCLU2および斜めカットオフラインCLS2を有する。
 そこで、第2反射面3を、基本の回転放物面Pを車両の左右方向に連続して延ばした面形状の反射面とする。これにより、第2反射面3は、図4に示すように、第2反射光L4を、1点の焦点(反射面焦点RF、出射面焦点LF)に集中(集光)させずに、左右方向に拡散させる。この結果、図11(B)および(C)に示すように、左右の拡散幅が広いロービーム配光パターンLP、LP1が形成される。この左右の拡散幅が広いロービーム配光パターンLP、LP1は、車両用灯具の配光パターンに適している。なお、この左右の拡散幅が広いロービーム配光パターンLP1は、図11(C)に示すロービーム配光パターンLPと同様に、下側水平カットオフラインCLD1、上側水平カットオフラインCLU1および斜めカットオフラインCLS1を有する。
(集光用第2反射面3Sの説明)
 第2反射面3の集光用第2反射面3Sは、図4および図7に示すように、中間の第2反射領域3Cと、左側の第2反射領域3Lと、右側の第2反射領域3Rと、を有する。
 中間の第2反射領域3Cは、図4、図7に示すように、反射面焦点RF、出射面焦点LFを通る第2反射光L4、L4Cを制御する。左側の第2反射領域3Lは、同じく図4、図7に示すように、反射面焦点RF、出射面焦点LFから左側を通る第2反射光L4、L4Lを制御する。右側の第2反射領域3Rは、同じく図4、図7に示すように、反射面焦点RF、出射面焦点LFから右側を通る第2反射光L4、L4Rを制御する。
 ここで、図4、図7、図14に示すように、左側の第2反射領域3Lからの第2反射光L4、L4Lは、仮想像面VSの横断面線VSHの任意の点VPLを通る。また、右側の第2反射領域3Rからの第2反射光L4、L4Rは、仮想像面VSの横断面線VSHの任意の点VPRを通る。
(入射部光軸Z2と反射面光軸Z3、ZC、ZL、ZRの説明)
 入射部光軸Z2と反射面光軸Z3、ZC、ZL、ZRについて、図6を参照して、説明する。
 中間の第2反射領域3Cは、中間の反射面光軸ZCを有する。中間の反射面光軸ZCと、入射部光軸Z2とは、相互に平行もしくはほぼ平行である。また、中間の第2反射領域3Cは、基本の回転放物面Pの放物線であるから、中間の反射面光軸ZCは、反射面光軸Z3である。このため、以下、図6中において、中間の反射面光軸ZCおよび反射面光軸Z3を入射部光軸Z2と同一とみなすことができる。ここで、入射部光軸Z2(中間の反射面光軸ZCおよび反射面光軸Z3)と、鉛直線ZVとのなす角度を、ZθC°とする。
 また、左側の第2反射領域3Lは、左側の反射面光軸ZLを有する。左側の第2反射領域3Lは、図6中の実線矢印に示すように、第2反射面3の上端部の回転軸Oを中心として、左に移行するに従って、カットオフライン形成部4および出射面5と反対側に徐々に傾斜している。この結果、左側の反射面光軸ZLは、左に移行するに従って、入射部光軸Z2(中間の反射面光軸ZCおよび反射面光軸Z3)に対して、鉛直線ZV側に徐々に傾斜している。ここで、左側の反射面光軸ZLと、鉛直線ZVとのなす角度を、ZθL°とする。この左側の反射面光軸ZLと鉛直線ZVとのなす角度ZθL°は、入射部光軸Z2(中間の反射面光軸ZCおよび反射面光軸Z3)と鉛直線ZVとのなす角度ZθC°よりも小さい。この結果、左側の反射面光軸ZLは、中間の反射面光軸ZCよりも、鉛直線ZV側に傾斜している。
 さらに、右側の第2反射領域3Rは、右側の反射面光軸ZRを有する。右側の第2反射領域3Rは、同じく図6中の実線矢印に示すように、第2反射面3の上端部の回転軸Oを中心として、右に移行するに従って、カットオフライン形成部4および出射面5と反対側に徐々に傾斜している。この結果、右側の反射面光軸ZRは、右に移行するに従って、入射部光軸Z2(中間の反射面光軸ZCおよび反射面光軸Z3)に対して、鉛直線ZV側に徐々に傾斜している。ここで、右側の反射面光軸ZRと、鉛直線ZVとのなす角度を、ZθR°とする。この右側の反射面光軸ZRと鉛直線ZVとのなす角度ZθR°は、入射部光軸Z2(中間の反射面光軸ZCおよび反射面光軸Z3)と鉛直線ZVとのなす角度ZθC°よりも小さい。この結果、右側の反射面光軸ZRは、中間の反射面光軸ZCよりも、鉛直線ZV側に傾斜している。
(特許文献2の入射部光軸Z2と反射面光軸ZL、ZRの説明)
 以下、特許文献2の入射部光軸Z2と反射面光軸ZL、ZRについて、図8(A)を参照して説明する。なお、実施形態の部品および符号と同一の部品および符号を使用する。
 特許文献2は、左側の第2反射領域30Lの反射面光軸ZLと入射部光軸Z2とが、相互に平行もしくはほぼ平行であり、また、右側の第2反射領域30Rの反射面光軸ZRと入射部光軸Z2とが、相互に平行もしくはほぼ平行である。
 このため、特許文献2は、図8(A)に示すように、左側の第2反射領域30Lおよび右側の第2反射領域30Rが、中間の第2反射領域3Cと同一となる。
 すると、左側の第2反射領域30Lおよび右側の第2反射領域30Rで反射された第2反射光L41は、中間の第2反射領域3Cで反射された第2反射光L4Cと同様に、出射面焦点LFに集中(集光)する。
 ここで、反射面5の仮想像面VSの横断面線VSHは、図4、図7中の湾曲一点鎖線に示すように、反射面焦点RF、出射面焦点LFから左右に移行するに従って、カットオフライン形成部4から出射面5側に離れるように、形成されている。このため、左側の第2反射領域30Lおよび右側の第2反射領域30Rで反射された第2反射光L41の一部L4Dは、図8(A)に示すように、仮想像面VSの横断面線VSHの任意の点VPR、VPLよりも後方でかつカットオフライン形成部4の角部4Cよりも前方を、下向きで通過する。
 任意の点VPR、VPLとカットオフライン形成部4との間を下向きで通過した第2反射光L4D(以下、「下向き第2反射光L4D」と称する)は、出射面5から上向きの出射光(図示せず)として出射される。この結果、下向き第2反射光L4Dは、図11(B)に示すように、水平カットオフラインCLD、CLUに対して、上側に反り上がったカットオフラインCLD1、CLU1を形成する原因となる。
(入射部光軸Z2と反射面光軸Z3、ZC、ZL、ZRの再度の説明)
 そこで、図6に示すように、左側の反射面光軸ZLを、中間の反射面光軸ZCよりも、鉛直線ZV側に傾斜させ、また、右側の反射面光軸ZRを、同じく、中間の反射面光軸ZCよりも、鉛直線ZV側に傾斜させる。すると、左側の第2反射領域3Lで反射された第2反射光L4L(以下、「左側の第2反射光L4L」と称する)、および、右側の第2反射領域3Rで反射された第2反射光L4R(以下、「右側の第2反射光L4R」と称する)は、中間の第2反射領域3Cで反射された第2反射光L4C(以下、「中間の第2反射光L4C」と称する)に対して、下向きとなる。
 この結果、図8(B)に示すように、下向きとなった左側の第2反射光L4Lおよび右側の第2反射光L4Rの一部は、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで、上向きの第2反射光L4Uとして、反射される。
 これにより、下向きの第2反射光L4Dの光量を、特許文献2(反射面光軸ZL、ZRと入射部光軸Z2とが相互に平行もしくはほぼ平行な場合)と比較して、減らすことができる。したがって、図11(B)に示すような、上側に反り上がったカットオフラインCLD1、CLU1が無い、図11(C)に示すような、水平カットオフラインCLD、CLUが形成される。
(左側の反射面光軸ZLと右側の反射面光軸ZRの説明)
 図6および図12に示すように、入射部光軸Z2(中心の反射面光軸ZC)は、入射光(特に、平行光の第1入射光L1、L3)の方向が鉛直線ZVに対して出射面5側に向いた状態で、傾斜している。すなわち、入射部光軸Z2は、上側が後に下側が前に傾斜している。
 左側の反射面光軸ZLは、反射面焦点RF、出射面焦点LFから左側に移行するに従って、入射部光軸Z2(反射面光軸ZC)と平行もしくはほぼ平行な状態から鉛直線ZVと平行もしくはほぼ平行な状態に徐々に移行している。
 また、右側の反射面光軸ZRは、反射面焦点RF、出射面焦点LFから右側に移行するに従って、入射部光軸Z2(反射面光軸ZC)と平行もしくはほぼ平行な状態から鉛直線ZVと平行もしくはほぼ平行な状態に徐々に移行している。
 左側の反射面光軸ZLと鉛直線ZVとのなす角度ZθL°を、右側の反射面光軸ZRと鉛直線ZVとのなす角度ZθR°に対して、大きく設定する。これにより、左側の反射面光軸ZLは、右側の反射面光軸ZRに対して、鉛直線ZV側に傾斜して、鉛直線ZVと平行もしくはほぼ平行な状態に近い。
 この結果、図9に示すように、左側の回転放物面PLを中間の回転放物面PCに対して傾斜させる角度LPθ°は、右側の回転放物面PRを中間の回転放物面PCに対して傾斜させる角度RPθ°よりも、大きくなる。
 図9において、左側の回転放物面PLは、左側の第2反射領域3Lを形成する。右側の回転放物面PRは、右側の第2反射領域3Rを形成する。中間の回転放物面PCは、中間の第2反射領域3Cを形成する。また、中間の回転放物面PCは、基本の回転放物面Pである。
 そして、図8に示す、左側の第2反射領域3Lからの第2反射光L4Lは、右側の第2反射領域3Rからの第2反射光L4Rよりも、大きく下向きとなる。すると、左側の第2反射領域3Lからの第2反射光L4Lのうち、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで反射して、上向きの第2反射光L4Uとなる光量は、右側の第2反射領域3Rからの第2反射光L4Rのうち、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで反射して、上向きの第2反射光L4Uとなる光量よりも多くなる。
 これにより、左側の第2反射光L4Lが下向きの第2反射光L4Dとなる光量は、右側の第2反射光L4Rが下向きの第2反射光L4Dとなる光量よりも、減らすことができる。すなわち、左側の反射領域3Lが形成する下側水平カットオフラインCLDよりも上方に反り上がる光の光量は、右側の反射領域3Rが形成する上側水平カットオフラインCLUよりも上方に反り上がる光の光量よりも、減らすことができる。
 ここで、ロービーム配光パターンは、法規によって定められている。たとえば、図10に示すように、R123(R149Class-C)の法規において、カットオフラインCLD、CLS、CLUの上方のポイントとして、BLL/BRRがある。下側水平カットオフラインCLDの上方のポイントBRRの光度上限は、上側水平カットオフラインCLUの上方のポイントBLLの光度上限(3550cd)と比較して、625cdと低く設定されている。
 この結果、左側の反射領域3Lが形成する下側水平カットオフラインCLDよりも上方の光の光量を、右側の反射領域3Rが形成する上側水平カットオフラインCLUよりも上方の光の光量よりも、減らすことが重要である。
 そこで、前記の通り、左側の反射面光軸ZLを、右側の反射面光軸ZRに対して、鉛直線ZV側に傾斜させて、鉛直線ZVと平行もしくはほぼ平行な状態に近くなるように設定する。すると、左側の反射面3Lが形成する下側水平カットオフラインCLDよりも上方の光の光量を、右側の反射面3Rが形成する上側水平カットオフラインCLUよりも上方の光の光量よりも、減らすことができる。これにより、このレンズ1が形成するロービーム配光パターンは、前記の図10に示す法規を満足することができる。
(実施形態の作用の説明)
 この実施形態にかかるレンズ1、この実施形態にかかる車両用灯具ユニット1U、この実施形態にかかる車両用灯具装置100は、以上のごとき構成からなり、以下、その作用について説明する。
 4個の光源10を点灯させる。すると、4個の光源10からの光L0は、レンズ1の4個の入射部2からそれぞれレンズ1内部に入射する。中2個の光源10から中2個の入射部2からそれぞれレンズ1内部に入射した入射光L1、L3、または、L10、L3は、第2反射面3の中間部分の集光用第2反射面3Sで第2反射光L4として反射される。
 第2反射光L4の一部は、カットオフライン形成部4で制御される。カットオフライン形成部4を通過した第2反射光L4は、出射面5から出射光L5として車両の前方に照射される。出射光L5は、図11(C)に示す集光用ロービーム配光パターンLPを形成する。
 一方、2個の光源10から中2個の入射部2からそれぞれレンズ1内部に入射した入射光L1、L3、または、L10、L3は、第2反射面3の左右両側部分の拡散用第2反射面3Wで反射光(図示せず)として反射される。
 反射光L4の一部は、カットオフライン形成部4で制御される。カットオフライン形成部4を通過した反射光は、出射面5から出射光(図示せず)として車両の前方に照射される。出射光は、図示されていない拡散用ロービーム配光パターンを形成する。
 前記の集光用ロービーム配光パターンLPと拡散用ロービーム配光パターンとが、重畳されてロービーム配光パターン(図示せず)が形成されて、車両の前方に照射される。
(実施形態の効果の説明)
 この実施形態にかかるレンズ1、この実施形態にかかる車両用灯具ユニット1U、この実施形態にかかる車両用灯具装置100は、以上のごとき構成、作用からなり、以下、その効果について説明する。
 この実施形態にかかるレンズ1は、カットオフライン形成部4を、車両の左右方向に、すなわち、簡素化した形状に、設けたものである。この結果、この実施形態にかかるレンズ1は、樹脂成形時、カットオフライン形成部4において、樹脂の円滑な流動が得られ、樹脂の流動性が向上される。しかも、この実施形態にかかるレンズ1は、カットオフライン形成部4を、左右方向に延びた簡素化した形状に、形成するものであるから、ロービーム配光パターンの制御が行い易く向上される。
 この実施形態にかかるレンズ1は、中間の第2反射領域3Cの反射面光軸ZCと入射部光軸Z2とが相互に平行もしくはほぼ平行であり、左側の第2反射領域3Lの反射面光軸ZL、および、右側の第2反射領域3Rの反射面光軸ZRが、入射部光軸Z2に対して、傾斜しているものである。
 この結果、この実施形態にかかるレンズ1は、左側の第2反射領域3Lで反射された左側の第2反射光L4L、および、右側の第2反射領域3Rで反射された右側の第2反射光L4Rが、中間の第2反射領域3Cで反射された中間の第2反射光L4Cに対して、下向きとなる。
 そして、この実施形態にかかるレンズ1は、図8(B)に示すように、下向きとなった左側の第2反射光L4Lおよび右側の第2反射光L4Rの一部を、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで、上向きの第2反射光L4Uとして、反射させることができる。
 これにより、この実施形態にかかるレンズ1は、下向きの第2反射光L4Dの光量を、特許文献2(反射面光軸ZL、ZRと入射部光軸Z2とが相互に平行もしくはほぼ平行な場合)と比較して、減らすことができる。したがって、この実施形態にかかるレンズ1は、図11(B)に示すような、上側に反り上がったカットオフラインCLD1、CLU1が無い、図11(C)に示すような、水平カットオフラインCLD、CLUを形成することができる。
 すなわち、この実施形態にかかるレンズ1は、カットオフライン形成部4を車両の左右方向に設け、また、出射面の仮想像面に近似させた曲線状(湾曲)に形成したものであっても、上側に反り上がったカットオフラインCLD1、CLU1が無い、水平カットオフラインCLD、CLUを形成することができる。
 この実施形態にかかるレンズ1は、入射部光軸Z2(中心の反射面光軸ZC)を、入射光(特に、平行光の第1入射光L1、L3)の方向が鉛直線ZVに対して出射面5側に向いた状態で、傾斜させたものである。この結果、この実施形態にかかるレンズ1は、入射光(特に、平行光の第1入射光L1、L3)を、第2反射面3で、出射面5側に効率良く反射させることができる。これにより、この実施形態にかかるレンズ1は、入射光(特に、平行光の第1入射光L1、L3)を効率良く利用することができ、その分、ロービーム配光パターンLPの光量を向上させることができる。
 この実施形態にかかるレンズ1は、左側の反射面光軸ZLを、左側に移行するに従って、入射部光軸Z2(反射面光軸ZC)と平行もしくはほぼ平行な状態から鉛直線ZVと平行もしくはほぼ平行な状態に移行させている。すなわち、この実施形態にかかるレンズ1は、左側の反射面光軸ZLを、入射部光軸Z2(中心の反射面光軸ZC)に対して、鉛直線ZV側に傾斜させている。この結果、この実施形態にかかるレンズ1は、前記の通り、左側の反射面光軸ZLを入射部光軸Z2に対して傾斜させているので、前記の効果、すなわち、樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる。
 また、この実施形態にかかるレンズ1は、前記の左側の反射面光軸ZLと同様に、右側の反射面光軸ZRを、右側に移行するに従って、入射部光軸Z2(反射面光軸ZC)と平行もしくはほぼ平行な状態から鉛直線ZVと平行もしくはほぼ平行な状態に移行させている。すなわち、この実施形態にかかるレンズ1は、右側の反射面光軸ZRを、入射部光軸Z2(中心の反射面光軸ZC)に対して、鉛直線ZV側に傾斜させている。この結果、この実施形態にかかるレンズ1は、前記の通り、右側の反射面光軸ZRを入射部光軸Z2に対して傾斜させているので、前記の効果、すなわち、樹脂の流動性が向上され、また、ロービーム配光パターンの制御が向上され、さらに、反り上がりが無いカットオフラインを形成することができる。
 この実施形態にかかるレンズ1は、左側の反射面光軸ZLを、右側の反射面光軸ZRに対して、鉛直線ZV側に傾斜させて、鉛直線ZVと平行もしくはほぼ平行な状態に近くなるように、設定するものである。この結果、この実施形態にかかるレンズ1は、左側の回転放物面PLを中心の回転放物面PCに対して傾斜させる角度LPθ°を、右側の回転放物面PRを中間の回転放物面PCに対して傾斜させる角度RPθ°よりも、大きくすることができる。
 そして、この実施形態にかかるレンズ1は、左側の第2反射領域3Lからの第2反射光L4Lを、右側の第2反射領域3Rからの第2反射光L4Rよりも、大きく下向きにすることができる。すると、この実施形態にかかるレンズ1は、左側の第2反射領域3Lからの第2反射光L4Lのうち、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで反射して、上向きの第2反射光L4Uとなる光量が、右側の第2反射領域3Rからの第2反射光L4Rのうち、カットオフライン形成部4の角部4Cよりも後方の水平面4Hで反射して、上向きの第2反射光L4Uとなる光量よりも多くなる。これにより、この実施形態にかかるレンズ1は、左側の第2反射光L4Lが下向きの第2反射光L4Dとなる光量を、右側の第2反射光L4Rが下向きの第2反射光L4Dとなる光量よりも、減らすことができる。すなわち、この実施形態にかかるレンズ1は、左側の第2反射領域3Lが形成する下側水平カットオフラインCLDよりも上方に反り上がる光の光量を、右側の第2反射領域3Rが形成する上側水平カットオフラインCLUよりも上方に反り上がる光の光量よりも、減らすことができる。
 以上から、この実施形態にかかるレンズ1は、左側の第2反射領域3Lが形成する下側水平カットオフラインCLDよりも上方の光の光量を、右側の第2反射領域3Rが形成する上側水平カットオフラインCLUよりも上方の光の光量よりも、減らすことができ、図10に示す法規を満足することができるロービーム配光パターンを形成することができる。
 この実施形態にかかるレンズ1は、4個の光源10を有し、かつ、4個の光源10に対応して、4個の入射部2を有するものであるから、ロービーム配光パターンの光量を向上させることができる。
(実施形態以外の例の説明)
 なお、前記の実施形態においては、日本国、英国などの左側通行に適用した例について説明するものである。しかしながら、この発明においては、欧米諸国などの右側通行にも適用することができる。右側通行の場合は、左側通行の場合における左右が反転されたものとなる。たとえば、図10および図11に示すロービーム配光パターンLPは、左右が反転されたロービーム配光パターンとなる。また、第2反射面3およびカットオフライン形成部4は、左右が反転された第2反射面およびカットオフライン形成部となる。
 また、前記の実施形態においては、ロービーム配光パターンのうち、集光タイプのロービーム配光パターンLPについて説明するものである。しかしながら、この発明においては、通常タイプのロービーム配光パターン、拡散タイプのロービーム配光パターンにも適用することができる。
 さらに、前記の実施形態においては、4個の光源10と4個の入射部2をと有するものである。しかしながら、この発明においては、光源10および入射部2を、1個から3個、または、5個以上使用しても良い。
 なお、この発明は、前記の実施形態により限定されるものではない。
 1 レンズ(車両用灯具のレンズ)
 1U 車両用灯具ユニット
 10 光源
 11 発光面
 12 プリズム部
 2 入射部
 20 第1反射面(反射面)
 21、210 第1入射面
 22 第2入射面
 3 第2反射面(反射面)
 3C 中間の第2反射領域
 3L、30L 左側の第2反射領域
 3R、30R 右側の第2反射領域
 3S 集光用第2反射面(中間部分)
 3W 拡散用第2反射面(左側部分、右側部分)
 4 カットオフライン形成部
 4C 角部
 4D 下側カットオフライン形成部
 4H 水平面
 4S 斜めカットオフライン形成部
 4U 上側カットオフライン形成部
 4V 垂直面
 5 出射面
 5H 出射面5の横断面線
 5V 出射面5の縦断面線
 100 車両用灯具装置
 101 ランプハウジング
 102 ランプレンズ
 103 灯室
 B 後
 CLD、CLD1、CLD2 下側水平カットオフライン
 CLS、CLS1、CLS2 斜めカットオフライン
 CLU CLU1、CLU2 上側水平カットオフライン
 D 下
 F 前
 HL-HR スクリーンの左右水平線
 L 左
 L0 光(光源からの光)
 L1、L10 第1入射光
 L2 第2入射光
 L3 第1反射光(反射光)
 L4、L40、L41 第2反射光(反射光)
 L4C 中間の第2反射光
 L4D 下向きの第2反射光
 L4L 左側の第2反射光
 L4R 右側の第2反射光
 L4U 上向きの第2反射光
 L5 出射光
 LF 出射面焦点
 LP ロービーム配光パターン(集光用ロービーム配光パターン)
 LP1 ロービーム配光パターン(左右の拡散幅が広いロービーム配光パターン)
 LP2 ロービーム配光パターン(左右の拡散幅が狭いロービーム配光パターン)
 LPθ° 角度
 P 回転放物面
 PC 中間の回転放物面
 PL 左側の回転放物面
 PC 右側の回転放物面
 R 右
 RF 反射面焦点
 RPθ° 角度
 U 上
 VPL 仮想像面VSの横断面線VSH上の任意の点
 VPR 仮想像面VSの横断面線VSH上の任意の点
 VS 仮想像面
 VSH 仮想像面VSの横断面線
 VSV 仮想像面VSの縦断面線
 VU-VD スクリーンの上下垂直線
 Z2 入射部光軸
 Z3 反射面光軸
 ZC 中間の反射面光軸
 ZL 左側の反射面光軸
 ZR 右側の反射面光軸
 ZV 鉛直線
 ZθC° 角度
 ZθL° 角度
 ZθR° 角度

Claims (7)

  1.  光源からの光のうち少なくとも一部を入射させる入射部と、
     反射面焦点を有し、前記入射部からの入射光を反射させる反射面と、
     車両の左右方向に設けられていて、前記反射面からの反射光の一部を制御して、カットオフラインを形成するカットオフライン形成部と、
     前記カットオフライン形成部を通過する前記反射光を、前記カットオフラインを有する配光パターンとして、車両の前方に出射させる出射面と、
     を備え、
     前記反射面焦点は、前記カットオフライン形成部近傍に配置されていて、
     前記反射面は、
     前記反射光が前記カットオフライン形成部近傍を通る第1領域と、
     前記反射光が前記カットオフライン形成部から前記反射面側に離れた位置を通る第2領域と、
     を有する、
     ことを特徴とする車両用灯具のレンズ。
  2.  鉛直線に対して傾斜している入射部光軸を有し、光源からの光のうち少なくとも一部を、前記入射部光軸と平行もしくはほぼ平行な平行光として入射させる入射部と、
     回転放物面を基本とし、前記回転放物面の回転軸を反射面光軸とし、前記回転放物面の焦点を反射面焦点とし、前記入射部からの入射光を反射させる反射面と、
     車両の左右方向に設けられていて、前記反射面からの反射光の一部を制御して、車両の左右方向に沿ったカットオフラインを形成するカットオフライン形成部と、
     前記カットオフライン形成部を通過した前記反射光を、前記カットオフラインを有する配光パターンとして、車両の前方に出射させる出射面と、
     を備え、
     前記出射面は、前記反射面焦点の近傍に出射面焦点を有し、
     前記反射面は、中央の反射領域と、外側の反射領域と、を有し、
     前記中央の反射領域の前記反射面光軸は、前記外側の反射領域の前記反射面光軸と比較して、前記鉛直線側に傾斜している、
     ことを特徴とする車両用灯具のレンズ。
  3.  前記入射部光軸は、前記入射光の方向が前記鉛直線に対して前記出射面側に向いた状態で、傾斜していて、
     前記外側の反射領域のうちの左側の反射領域の前記反射面光軸は、左側に移行するに従って、前記入射部光軸と平行もしくはほぼ平行な状態から前記鉛直線と平行もしくはほぼ平行な状態に移行していて、
     前記外側の反射領域のうちの右側の反射領域の前記反射面光軸は、右側に移行するに従って、前記入射部光軸と平行もしくはほぼ平行な状態から前記鉛直線と平行もしくはほぼ平行な状態に移行している、
     ことを特徴とする請求項2に記載の車両用灯具のレンズ。
  4.  前記カットオフライン形成部は、
     下側水平カットオフライン形成部と、
     上側水平カットオフライン形成部と、
     を有し、
     前記左側の反射領域または前記右側の反射領域の一方は、前記下側水平カットオフライン形成部を通る前記反射光を制御し、
     前記左側の反射領域または前記右側の反射領域の他方は、前記上側水平カットオフライン形成部を通る前記反射光を制御し、
     前記左側の反射領域または前記右側の反射領域の一方の前記反射面光軸は、前記左側の反射領域または前記右側の反射領域の他方の前記反射面光軸に対して、前記鉛直線と平行もしくはほぼ平行な状態に近い、
     ことを特徴とする請求項3に記載の車両用灯具のレンズ。
  5.  光源と、
     前記光源からの光を、入射させて、車両の左右方向に沿ったカットオフラインを有する配光パターンとして、出射させる前記の請求項1に記載の車両用灯具のレンズと、
     を備える、
     ことを特徴とする車両用灯具ユニット。
  6.  前記光源は、複数個有し、
     前記車両用灯具のレンズは、複数個の前記光源に対応して、複数個の入射部を有する、
     ことを特徴とする請求項5に記載の車両用灯具ユニット。
  7.  灯室を形成するランプレンズおよびランプハウジングと、
     前記灯室内に配置されている前記の請求項5に記載の車両用灯具ユニットと、
     を備える、
     ことを特徴とする車両用灯具装置。
PCT/JP2022/023164 2021-06-11 2022-06-08 車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置 WO2022260095A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22820274.3A EP4354020A1 (en) 2021-06-11 2022-06-08 Vehicle lighting appliance lens, vehicle lighting appliance unit, and vehicle lighting appliance device
CN202280041574.6A CN117460913A (zh) 2021-06-11 2022-06-08 车辆用灯具的透镜、车辆用灯具单元、车辆用灯具装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098331 2021-06-11
JP2021098331A JP2022189638A (ja) 2021-06-11 2021-06-11 車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置

Publications (1)

Publication Number Publication Date
WO2022260095A1 true WO2022260095A1 (ja) 2022-12-15

Family

ID=84426097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023164 WO2022260095A1 (ja) 2021-06-11 2022-06-08 車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置

Country Status (4)

Country Link
EP (1) EP4354020A1 (ja)
JP (1) JP2022189638A (ja)
CN (1) CN117460913A (ja)
WO (1) WO2022260095A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016784A (ja) * 2015-06-29 2017-01-19 市光工業株式会社 車両用前照灯
JP6637187B2 (ja) 2016-09-30 2020-01-29 武漢通暢汽車電子照明有限公司 ロービームのヘッドライトモジュールに用いられる集光器
JP2020035702A (ja) * 2018-08-31 2020-03-05 市光工業株式会社 車両用灯具
JP2020191204A (ja) 2019-05-21 2020-11-26 市光工業株式会社 車両用導光体及び車両用灯具ユニット
JP2021086724A (ja) * 2019-11-27 2021-06-03 市光工業株式会社 車両用導光体及び車両用灯具ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016784A (ja) * 2015-06-29 2017-01-19 市光工業株式会社 車両用前照灯
JP6637187B2 (ja) 2016-09-30 2020-01-29 武漢通暢汽車電子照明有限公司 ロービームのヘッドライトモジュールに用いられる集光器
JP2020035702A (ja) * 2018-08-31 2020-03-05 市光工業株式会社 車両用灯具
JP2020191204A (ja) 2019-05-21 2020-11-26 市光工業株式会社 車両用導光体及び車両用灯具ユニット
JP2021086724A (ja) * 2019-11-27 2021-06-03 市光工業株式会社 車両用導光体及び車両用灯具ユニット

Also Published As

Publication number Publication date
JP2022189638A (ja) 2022-12-22
EP4354020A1 (en) 2024-04-17
CN117460913A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
JP4002159B2 (ja) 車両用前照灯
JP4024628B2 (ja) 車両用前照灯
JP6709654B2 (ja) 車両用灯具、および当該車両用灯具を備えた車両
JP6709655B2 (ja) 車両用灯具、および当該車両用灯具を備えた車両
JP4970136B2 (ja) 車両用前照灯の灯具ユニット
JP4044024B2 (ja) 車両用前照灯
JP4391870B2 (ja) 車両用照明灯具
JP5281359B2 (ja) 車両用灯具ユニット及び車両用灯具
KR101364659B1 (ko) 로우빔용 등기구 유닛
JP4541290B2 (ja) 車両用コーナリングランプ
JP4264319B2 (ja) 車両用前照灯
JP2004095479A (ja) 車両用前照灯
JP7404532B2 (ja) 車両ランプモジュール及び車両ランプ
JP2005251435A (ja) 車両用前照灯
JP2012089333A (ja) 車両用灯具
JP4339153B2 (ja) 車両用灯具ユニット
JP5097653B2 (ja) 車両用照明灯具
JP4261452B2 (ja) 車両用前照灯
JP2006049190A (ja) 車両用前照灯
JP2019036564A (ja) 車両用灯具
JP2020135924A (ja) 車両用灯具
JP4234074B2 (ja) 車両用照明灯具
JP2022022493A (ja) 車両用灯具
WO2022260095A1 (ja) 車両用灯具のレンズ、車両用灯具ユニット、車両用灯具装置
JP2006156191A (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18568960

Country of ref document: US

Ref document number: 202280041574.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022820274

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820274

Country of ref document: EP

Effective date: 20240111