WO2022257272A1 - 一种太阳能电池组件用导线载体薄膜及其制备方法 - Google Patents

一种太阳能电池组件用导线载体薄膜及其制备方法 Download PDF

Info

Publication number
WO2022257272A1
WO2022257272A1 PCT/CN2021/114007 CN2021114007W WO2022257272A1 WO 2022257272 A1 WO2022257272 A1 WO 2022257272A1 CN 2021114007 W CN2021114007 W CN 2021114007W WO 2022257272 A1 WO2022257272 A1 WO 2022257272A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
ethylene
carrier film
copolymer
parts
Prior art date
Application number
PCT/CN2021/114007
Other languages
English (en)
French (fr)
Inventor
王有富
方艳
张鹏
Original Assignee
苏州明冠新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州明冠新材料科技有限公司 filed Critical 苏州明冠新材料科技有限公司
Publication of WO2022257272A1 publication Critical patent/WO2022257272A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar cells, in particular to a lead carrier film for a solar cell module and a preparation method thereof.
  • a key technology in high-efficiency solar cell technology is the intelligent grid connection technology, which is to attach multiple copper wires coated with low-melting point metals to a layer of polymer film through proper heating, and continuously cover the positive side of adjacent cells.
  • copper wires and screen-printed fine grid lines can be directly bonded together during component lamination, relying on the pressure and temperature of the laminator.
  • the polymer film is the smart grid film, which is used as the carrier of the metal wire and is laminated to directly combine the metal wire and the fine grid wire.
  • the interlayer material between the heterojunction battery and the packaging film needs to have high light transmittance and low melting point. And heat does not shrink, weather resistance and other characteristics.
  • the patent document of Meyer Burger Switzerland AG whose patent number is CN 108419433 A, discloses a kind of wire carrier film with different degrees of polymerization and/or crosslinking, but due to the coating on the surface of the high-efficiency heterojunction battery without busbar Water vapor is extremely sensitive, and the conductor carrier film is required to have excellent high-resistance water vapor performance, which has not been reflected.
  • the object of the present invention is to provide a lead carrier film for solar cell modules, which can be combined with heterojunction cells under normal lamination conditions. It has good bonding performance and high-efficiency water resistance, thereby reducing the failure effect of water vapor on heterojunction cells; among them, through the optimization of the main resin and transparent functional masterbatch of the lead carrier film for solar cell modules, the lead carrier
  • the film not only has good adhesion to heterojunction solar cells and good UV resistance, but also has excellent water vapor transmission resistance, high light transmittance, low melting point and non-shrinkage when heated.
  • the object of the present invention is to provide a method for preparing a wire carrier film for solar cell modules.
  • the preparation method is simple in operation, convenient in control, high in production efficiency, low in production cost, and self-contained and environmentally friendly.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight portion:
  • the lead carrier film for solar cell modules of the present invention not only has good bonding performance with heterojunction cells under general lamination conditions, but also has high water resistance, thereby reducing the failure effect of water vapor on heterojunction cells.
  • the lead carrier film has good adhesion to heterojunction cells, good UV resistance, and excellent Water vapor permeation resistance; and the adhesive resin used has good thermal adhesion, weather resistance and corrosion resistance, and has good compatibility with the first polyolefin resin and water-blocking resin.
  • each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • the optimized transparent functional masterbatch is obtained by using the above-mentioned raw materials and the proportioning ratio, and the obtained transparent functional masterbatch has good weather resistance and water vapor transmission resistance; oxidation resistance, hydrophobicity, weather resistance And certain UV resistance; Among them, the transparent functional masterbatch can have certain UV resistance by adding light stabilizers, and the addition of hydrophobic additives makes it have good hydrophobic properties, and the addition of antioxidants not only increases the transparent function The anti-oxidation performance of the masterbatch also makes it have a certain weather resistance.
  • the transparent functional masterbatch is combined with the first polyolefin resin, adhesive resin and water-blocking resin.
  • the comprehensive performance of the prepared wire carrier film can be further improved.
  • it is necessary to strictly control the quality of the water-blocking resin and hydrophobic additives used. If the mass fraction is too small, the overall polarity of the product will be reduced, affecting the barrier properties of polar water vapor molecules. If the mass fraction is too large, the transparent functional masterbatch or adhesive
  • the proportion of binding resin and water-blocking resin is not conducive to improving the water vapor barrier of the lead carrier film for solar cell modules; and the specific first polyolefin resin and second polyolefin resin used can improve the performance of solar cell modules to a certain extent. Tensile strength of the carrier film with wires.
  • each part of the first polyolefin resin is polyethylene, chlorinated polyethylene, crosslinked polyethylene, ethylene-propylene copolymer, ethylene-butylene copolymer, ethylene-octene copolymer, ethylene-cycloolefin At least one of copolymer and polypropylene; more preferably, each part of the first polyolefin resin is made of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 0.8-1.2 :0.6-1.0:0.4-0.8:0.4-0.8 mixture.
  • each part of the second polyolefin resin is polyethylene, chlorinated polyethylene, crosslinked polyethylene, ethylene-propylene copolymer, ethylene-butylene copolymer, ethylene-octene copolymer, ethylene-cycloolefin At least one of copolymer and polypropylene; more preferably, each part of the second polyolefin resin is made of chlorinated polyethylene, cross-linked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 0.6 A mixture of -1.0:0.8-1.2:0.4-0.8:0.4-0.8.
  • the mass parts of the first polyolefin resin and the second polyolefin resin used it is necessary to strictly control the mass parts of the first polyolefin resin and the second polyolefin resin used, as well as the proportion of specific types. If the mass parts are too small, the overall polarity of the product will be reduced, and the barrier properties to polar water vapor molecules will be affected. , if the mass part is too large, the proportion of other raw materials will be reduced, which is not conducive to improving the water vapor barrier of the lead carrier film for solar cell modules; and the composition of the specific polyolefin resin used in the first polyolefin resin and the second polyolefin resin The mechanical properties such as tensile strength and peel strength of the lead carrier film for solar cell modules can be improved to a certain extent.
  • each part of the adhesive resin is ethylene-unsaturated ester copolymer and/or polyvinyl butyral; wherein the unsaturated ester in the ethylene-unsaturated ester copolymer accounts for ethylene-unsaturated ester copolymerization
  • the molar ratio of the compound is 15-85%.
  • the specific binding resin adopted in the present invention has excellent cohesiveness, weather resistance and corrosion resistance, due to controlling the molar ratio of unsaturated ester in the ethylene-unsaturated ester copolymer to the ethylene-unsaturated ester copolymer It is 15-85%, and it has better characteristic requirements for wire carrier film.
  • each part of the water-blocking resin is at least one of random copolymers of ethylene-vinyl alcohol, polyvinylidene chloride and low-temperature polyamide; more preferably, each part of the water-blocking resin is made of ethylene -A mixture of random copolymers of vinyl alcohol, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 0.6-1.0:0.8-1.2:0.4-0.8.
  • the water-blocking resin used in the present invention has low water vapor permeability, by adopting a random copolymer of ethylene-vinyl alcohol, polyvinylidene chloride and low-temperature polyamide according to the weight ratio of 0.6-1.0:0.8-1.2:
  • the mixed water-blocking resin with a composition of 0.4-0.8 can combine the advantages of each specific water-blocking resin, reduce the water vapor permeability of the lead carrier film for solar cell modules, ensure excellent water vapor permeability resistance, and significantly expand the solar energy Application range of lead carrier film for battery components.
  • each part of the antioxidant is at least one of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and thiodipropionate diester; more preferably, each part of the antioxidant
  • the antioxidant is composed of aromatic amine antioxidant, hindered phenolic antioxidant, triphenyl phosphite and diester of thiodipropionate according to the weight ratio of 0.1-0.5:0.6-1.0:0.8-1.2:0.4 -0.8 composition of the mixture.
  • the antioxidant used in the invention can delay or inhibit the oxidation process of the material, thereby preventing the aging of the wire carrier film and prolonging its service life.
  • each part of the light stabilizer is at least one of 2,4-dihydroxybenzophenone, benzotriazole light stabilizer, octyl triazone, hindered amine light stabilizer;
  • the hydrophobic aid is at least one of polydimethylsiloxane, polymethylphenylsiloxane, and heptadecafluorodecyltrimethoxysilane.
  • the light stabilizer adopted in the present invention can delay or inhibit the material from being broken by ultraviolet light, thereby preventing the yellowing and aging of the wire carrier film and prolonging its service life.
  • the present invention also provides a method for preparing a lead carrier film for a solar cell module, which is obtained through the following steps:
  • step 2) In parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, adhesive resin and water-blocking resin evenly, and pass it through an extrusion flow at a temperature of 100-300°C
  • a film with a thickness of 20-150 um is prepared by a rolling method or a blow molding method; the film is made by a single-layer or multi-layer extrusion casting method or a blow molding method.
  • the lead carrier film for solar cell modules in the present invention is obtained by the above method, the method is simple and efficient, the operation and control are convenient, the product quality is high, and it is beneficial to industrial production. Under lamination conditions, it can have good bonding performance with heterojunction cells, and also has high-efficiency water resistance, thereby reducing the failure effect of water vapor on heterojunction cells; among them, through the main resin of the lead carrier film for solar cell modules As well as the optimization of the transparent functional masterbatch, the wire carrier film has good adhesion to the heterojunction cell, good UV resistance, and excellent water vapor transmission resistance.
  • the beneficial effect of the present invention is that: the lead carrier film for solar cell modules of the present invention not only has good bonding performance with heterojunction cells under general lamination conditions, but also has high water resistance, thereby reducing the impact of water vapor on heterojunction cells.
  • the preparation method of the conducting wire carrier film for solar battery components is simple in operation, convenient in control, high in production efficiency, low in production cost, and self-contained and environment-friendly.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight part:
  • Each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • Each part of the first polyolefin resin is a mixture composed of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 0.8:0.6:0.4:0.4.
  • Each part of the second polyolefin resin is a mixture composed of chlorinated polyethylene, crosslinked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 0.6:0.8:0.4:0.4.
  • Each part of the adhesive resin is an ethylene-unsaturated ester copolymer, and the molar ratio of the unsaturated ester to the ethylene-unsaturated ester copolymer in the ethylene-unsaturated ester copolymer is 15%.
  • Each part of the water-blocking resin is a mixture composed of ethylene-vinyl alcohol random copolymer, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 0.6:0.8:0.4.
  • Each part of the antioxidant is a mixture of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and diester thiodipropionate in a weight ratio of 0.1:0.6:0.8:0.4 .
  • the light stabilizer per part is 2,4-dihydroxybenzophenone.
  • Each part of the hydrophobic additive is polydimethylsiloxane.
  • the preparation method of the conductive wire carrier film for the solar cell module is obtained through the following steps:
  • step 2) According to parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, adhesive resin and water-blocking resin evenly, and pass through the extrusion casting method at a temperature of 100°C Or a film with a thickness of 20um is obtained by blow molding; the film is obtained by a single-layer extrusion casting method.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight part:
  • Each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • Each part of the first polyolefin resin is a mixture composed of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 0.9:0.7:0.5:0.5.
  • Each part of the second polyolefin resin is a mixture composed of chlorinated polyethylene, cross-linked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 0.7:0.9:0.5:0.5.
  • Each part of the adhesive resin is polyvinyl butyral.
  • Each part of the water-blocking resin is a mixture composed of ethylene-vinyl alcohol random copolymer, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 0.7:0.9:0.5.
  • Each part of the antioxidant is a mixture of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and diester thiodipropionate in a weight ratio of 0.2:0.7:0.9:0.5 .
  • Each part of the light stabilizer is octyl triazone.
  • Each part of the hydrophobic additive is polymethylphenylsiloxane.
  • the preparation method of the conductive wire carrier film for the solar cell module is obtained through the following steps:
  • step 2) In parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, the adhesive resin and the water-blocking resin evenly, and pass the extrusion casting method at a temperature of 150°C Or a film with a thickness of 50um can be obtained by blow molding; the film can be obtained by a multi-layer extrusion casting method.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight part:
  • Each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • Each part of the first polyolefin resin is a mixture composed of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 1.0:0.8:0.6:0.6.
  • Each part of the second polyolefin resin is a mixture composed of chlorinated polyethylene, cross-linked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 0.8:1.0:0.6:0.6.
  • Each part of the adhesive resin is an ethylene-unsaturated ester copolymer, and the molar ratio of the unsaturated ester in the ethylene-unsaturated ester copolymer to the ethylene-unsaturated ester copolymer is 50%.
  • Each part of the water-blocking resin is a mixture composed of ethylene-vinyl alcohol random copolymer, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 0.8:1.0:0.6.
  • Each part of the antioxidant is a mixture of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and diester thiodipropionate in a weight ratio of 0.3:0.8:1.0:0.6 .
  • the light stabilizer per part is 2,4-dihydroxybenzophenone.
  • Each part of the hydrophobic aid is heptadecafluorodecyltrimethoxysilane.
  • the preparation method of the conductive wire carrier film for the solar cell module is obtained through the following steps:
  • step 2) According to parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, adhesive resin and water-blocking resin evenly, and pass through the extrusion casting method at a temperature of 200°C or a blow molding method to make a film with a thickness of 95um; the film is made by a multi-layer extrusion blow molding method.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight part:
  • Each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • Each part of the first polyolefin resin is a mixture composed of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 1.1:0.9:0.7:0.7.
  • Each part of the second polyolefin resin is a mixture composed of chlorinated polyethylene, cross-linked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 0.9:1.1:0.7:0.7.
  • Each part of the adhesive resin is an ethylene-unsaturated ester copolymer, and the molar ratio of the unsaturated ester in the ethylene-unsaturated ester copolymer to the ethylene-unsaturated ester copolymer is 65%.
  • Each part of the water-blocking resin is a mixture composed of ethylene-vinyl alcohol random copolymer, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 0.9:1.12:0.7.
  • Each part of the antioxidant is a mixture of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and diester thiodipropionate in a weight ratio of 0.4:0.9:1.1:0.7 .
  • the light stabilizer per part is 2,4-dihydroxybenzophenone.
  • Each part of the hydrophobic additive is polydimethylsiloxane.
  • the preparation method of the conductive wire carrier film for the solar cell module is obtained through the following steps:
  • step 2) According to parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, adhesive resin and water-blocking resin evenly, and pass the extrusion casting method at a temperature of 250°C Or blow molding method to make a film with a thickness of 105um; the film is made by single-layer extrusion blow molding method.
  • a kind of lead carrier film for solar cell module comprises the raw material of following weight part:
  • Each part of the transparent functional masterbatch includes the following raw materials in parts by weight:
  • Each part of the first polyolefin resin is a mixture composed of polyethylene, cross-linked polyethylene, ethylene-cycloolefin copolymer and polypropylene in a weight ratio of 1.2:1.0:0.8:0.8.
  • Each part of the second polyolefin resin is a mixture composed of chlorinated polyethylene, cross-linked polyethylene, ethylene-octene copolymer and polypropylene in a weight ratio of 1.0:1.2:0.8:0.8.
  • Each part of the adhesive resin is ethylene-unsaturated ester copolymer and/or polyvinyl butyral; wherein the unsaturated ester in the ethylene-unsaturated ester copolymer accounts for the mole of ethylene-unsaturated ester copolymer The ratio is 85%.
  • Each part of the water-blocking resin is a mixture composed of ethylene-vinyl alcohol random copolymer, polyvinylidene chloride and low-temperature polyamide in a weight ratio of 1.0:1.2:0.8.
  • Each part of the antioxidant is a mixture of aromatic amine antioxidants, hindered phenolic antioxidants, triphenyl phosphite and diester thiodipropionate in a weight ratio of 0.5:1.0:1.2:0.8 .
  • the light stabilizer per part is 2,4-dihydroxybenzophenone.
  • Each part of the hydrophobic additive is polydimethylsiloxane.
  • the preparation method of the conductive wire carrier film for the solar cell module is obtained through the following steps:
  • step 2) In parts by weight, mix and stir the transparent functional masterbatch prepared in step 1) with the first polyolefin resin, adhesive resin, and water-blocking resin evenly, and pass the extrusion casting method at a temperature of 300°C or a blow molding method to obtain a film with a thickness of 150um; the film is obtained by a multi-layer extrusion casting method.
  • Example 3 The difference between this comparative example and the above-mentioned Example 3 is that no hydrophobic additive is added to the transparent functional masterbatch of the conductive wire carrier film for solar cell modules in this comparative example, and the rest of the raw materials are mixed according to the ratio of Example 3. The remaining content of this comparative example is the same as that of Embodiment 3, and will not be repeated here.
  • Example 5 The difference between this comparative example and the above-mentioned Example 5 lies in that the paraffin wax is used to replace the hydrophobic additive in the transparent functional masterbatch of the wire carrier film for solar cell modules in this comparative example, and the rest of the raw materials are mixed according to the ratio of Example 5.
  • the remaining content of this comparative example is the same as that of Embodiment 5, and will not be repeated here.
  • the water vapor transmission rate is measured by the electrolytic method specified in ISO 15106-3:2003. Experimental environmental conditions (23 ⁇ 2)°C, relative humidity (50 ⁇ 10)%; test conditions (38 ⁇ 0.5)°C, relative humidity (90 ⁇ 2)%, test the sample;
  • Adhesion refers to the standard GB/T 31034 "Insulating Backsheet for Crystalline Silicon Solar Cell Modules"; sample size: 200mm*200mm. Test conditions: +25°C, 50%RH
  • Example 1 99.8 ⁇ b ⁇ 2 2.1
  • Example 3 100 ⁇ b ⁇ 2 1.9
  • Example 5 99.9 ⁇ b ⁇ 2 2.0
  • Comparative example 1 86.9 1 ⁇ b ⁇ 4 1.5
  • Comparative example 2 87.4 ⁇ b ⁇ 2 1.6
  • Comparative example 3 96.5 ⁇ b ⁇ 2 1.8
  • the lead carrier films for solar cell modules prepared in Examples 1, 3 and 5 of the present invention have the characteristics of anti-moisture and heat aging, good adhesion, and low water vapor transmission rate. In addition, they also have a long service life. Advantages of long, low production cost

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及太阳能电池技术领域,具体涉及一种太阳能电池组件用导线载体薄膜及其制备方,包括如下重量份的原料:第一聚烯烃树脂90-110份、透明功能母粒10-20份、粘结性树脂30-50份和阻水树脂30-50份。本发明的太阳能电池组件用导线载体薄膜不仅在一般层压条件下能够与异质结电池片具有良好的粘结性能,还具有高效阻水性,从而降低水汽对于异质结电池的失效作用;其中,通过对太阳能电池组件用导线载体薄膜的主体树脂以及透明功能母粒的优化,使得导线载体薄膜在具有与异质结电池片良好的粘结力、良好的耐UV性能的同时,具备优异的耐水汽透过性能、高透光率、低熔点并受热不收缩性能。

Description

一种太阳能电池组件用导线载体薄膜及其制备方法 技术领域
本发明涉及太阳能电池技术领域,具体涉及一种太阳能电池组件用导线载体薄膜及其制备方法。
背景技术
目前高效太阳能电池技术中一项关键技术即智能网栅连接技术,在于将多根表面镀有低熔点金属的铜线通过适当加热附着于一层聚合物薄膜上,并连续覆盖于相邻电池正反面上,可在组件层压过程中,依靠层压机的压力和温度使得铜线和丝网印刷的细栅线直接结合在一起。其中聚合物薄膜即智能网栅薄膜,其作为金属导线的载体层压后将金属导线与细栅线直接结合、异质结电池与封装胶膜层间材料,需要具备高透光率、低熔点并受热不收缩、耐候等特点。
如梅耶博格瑞士股份公司专利号为CN 108419433 A的专利文件披露了一种具有不同聚合和/或交联程度的导线载体薄膜,但由于无主栅高效异质结电池表面的涂层对于水汽及其敏感,需要导线载体薄膜具有优良的高阻水汽性能未有体现。
发明内容
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种太阳能电池组件用导线载体薄膜,该太阳能电池组件用导线载体薄膜不仅在一般层压条件下能够与异质结电池片具有良好的粘结性能,还具有高效阻水性,从而降低水汽对于异质结电池的失效作用;其中,通过对太阳能电池组件用导线载体薄膜的主体树脂以及透明功能母粒的优化,使得导线载体薄膜在具有与异质结电池片良好的粘结力、良好的耐UV性能的同时,具备优异的耐水汽透过性能、高透光率、低熔点并受热不收缩性能。
本发明的目的在于提供一种太阳能电池组件用导线载体薄膜的制备方法,该制备方法操作简单,控制方便,生产效率高,生产成本低,自备环保。
本发明的目的通过下述技术方案实现:一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000001
本发明的太阳能电池组件用导线载体薄膜不仅在一般层压条件下能够与异质结电池片具有良好的粘结性能,还具有高效阻水性,从而降低水汽对于异质结电池的失效作用。其中,通过对太阳能电池组件用导线载体薄膜的主体树脂以及透明功能母粒的优化,使得导线载体薄膜在具有与异质结电池片良好的粘结力、良好的耐UV性能的同时,具备优异的耐水汽透过性能;而所采用的粘结性树脂具有良好的热粘合性、耐候性和耐腐蚀性,同与第一聚烯烃树脂和阻水树脂有良好的相容性,通过上述原料的复合可显著提升最终制得太阳能电池组件用导线载体薄膜与异质结电池片良好的粘结力,以及优异的耐水汽透过性能。
优选的,每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000002
本发明中通过采用上述原料以及配比,制得优化后的透明功能母粒,而得到的透明功能母粒具有很好的耐候性和耐水汽透过性能;抗氧化性、疏水性、耐候性和一定的抗紫外线性;其中通过添加光稳定剂可使透明功能母粒具有一定的抗紫外线性,而疏水助剂的加入使其具有良好的疏水性能,抗氧剂的加入不仅增加了透明功能母粒的抗氧化性能,而且还使其具有一定的耐候性,通过 将透明功能母粒添加到太阳能电池组件用导线载体薄膜的原料中配合第一聚烯烃树脂、粘结性树脂和阻水树脂可使制得导线载体薄膜的综合性能得到进一步提升。本发明中需要严格控制采用的阻水树脂和疏水助剂质量,若质量份过少将降低制品整体极性,影响对极性水汽分子的阻隔性,若质量份过大将减少透明功能母粒或粘结性树脂和阻水树脂的占比,不利于提高太阳能电池组件用导线载体薄膜的水汽阻隔性;而所采用的具体第一聚烯烃树脂和第二聚烯烃树脂可以在一定程度提高太阳能电池组件用导线载体薄膜的拉伸强度。
优选的,每份所述第一聚烯烃树脂为聚乙烯、氯化聚乙烯、交联聚乙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物、乙烯-辛烯共聚物、乙烯-环烯烃共聚物和聚丙烯中的至少一种;更优选的,每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为0.8-1.2:0.6-1.0:0.4-0.8:0.4-0.8组成的混合物。
优选的,每份所述第二聚烯烃树脂为聚乙烯、氯化聚乙烯、交联聚乙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物、乙烯-辛烯共聚物、乙烯-环烯烃共聚物和聚丙烯中的至少一种;更优选的,每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为0.6-1.0:0.8-1.2:0.4-0.8:0.4-0.8组成的混合物。
本发明中需要严格控制采用的第一聚烯烃树脂和第二聚烯烃树脂的质量份,以及具体种类的配比,若质量份过少将降低制品整体极性,影响对极性水汽分子的阻隔性,若质量份过大将减少其他各原料的占比,不利于提高太阳能电池组件用导线载体薄膜的水汽阻隔性;而第一聚烯烃树脂和第二聚烯烃树脂所采用的具体聚烯烃树脂的组成可以在一定程度提高太阳能电池组件用导线载体薄膜的拉伸强度,剥离强度等力学性能。
优选的,每份所述粘结性树脂为乙烯-不饱和酯共聚物和/或聚乙烯醇缩丁醛;其中所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为15-85%。
本发明中所采用的具体的粘结性树脂具有优异的粘结性、耐候性和耐腐蚀性,由于控制乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为15-85%,其用于导线载体薄膜有着更好的特性要求。
优选的,每份所述阻水树脂为乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺中的至少一种;更优选的,每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.6-1.0:0.8-1.2:0.4-0.8组成的混合物。
本发明中所采用阻水树脂具有低水气透过性,通过采用由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.6-1.0:0.8-1.2:0.4-0.8组成的混合阻水树脂,可综合各具体阻水树脂的优点,降低制得太阳能电池组件用导线载体薄膜的水气透过性,保证优异的耐水汽透过性能,显著拓展了太阳能电池组件用导线载体薄膜的应用范围。
优选的,每份所述抗氧剂为芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯中至少一种;更优选的,每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.1-0.5:0.6-1.0:0.8-1.2:0.4-0.8组成的混合物。
本发明采用的抗氧剂可以延缓或抑制材料氧化过程的进行,从而阻止导线载体薄膜的老化并延长其使用寿命。
优选的,每份所述光稳定剂为2,4-二羟基二苯甲酮、苯并三唑类光稳定剂、辛基三嗪酮、受阻胺类光稳定剂中的至少一种;所述疏水助剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、十七氟癸基三甲氧基硅烷中的至少一种。
本发明采用的光稳定剂可延缓或抑制材被料紫外光破,从而阻止导线载体 薄膜的黄变老化并延长其使用寿命。
本发明还提供了一种太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在100-300℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在100-300℃温度下通过用挤出流延法或吹塑法制得厚度为20-150um的薄膜;所述薄膜采用单层或多层挤出流延法或吹塑法制得。
本发明中的太阳能电池组件用导线载体薄膜通过上述方法制得,该方法简单高效,操作控制方便,生产的产品质量高,利于工业化生产,同时制得的太阳能电池组件用导线载体薄膜不仅在一般层压条件下能够与异质结电池片具有良好的粘结性能,还具有高效阻水性,从而降低水汽对于异质结电池的失效作用;其中,通过对太阳能电池组件用导线载体薄膜的主体树脂以及透明功能母粒的优化,使得导线载体薄膜在具有与异质结电池片良好的粘结力、良好的耐UV性能的同时,具备优异的耐水汽透过性能。
本发明的有益效果在于:本发明的太阳能电池组件用导线载体薄膜不仅在一般层压条件下能够与异质结电池片具有良好的粘结性能,还具有高效阻水性,从而降低水汽对于异质结电池的失效作用;其中,通过对太阳能电池组件用导线载体薄膜的主体树脂以及透明功能母粒的优化,使得导线载体薄膜在具有与异质结电池片良好的粘结力、良好的耐UV性能的同时,具备优异的耐水汽透过性能、高透光率、低熔点并受热不收缩性能。
本发明一种太阳能电池组件用导线载体薄膜的制备方法操作简单,控制方便,生产效率高,生产成本低,自备环保。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
实施例1
一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000003
每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000004
每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为0.8:0.6:0.4:0.4组成的混合物。
每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为0.6:0.8:0.4:0.4组成的混合物。
每份所述粘结性树脂为乙烯-不饱和酯共聚物,所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为15%。
每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.6:0.8:0.4组成的混合物。
每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.1:0.6:0.8:0.4组成的混合物。
每份所述光稳定剂为2,4-二羟基二苯甲酮。每份所述疏水助剂为聚二甲基硅氧烷。
所述太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在100℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在100℃温度下通过用挤出流延法或吹塑法制得厚度为20um的薄膜;所述薄膜采用单层挤出流延法制得。
实施例2
一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000005
每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000006
每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为0.9:0.7:0.5:0.5组成的混合物。
每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为0.7:0.9:0.5:0.5组成的混合物。
每份所述粘结性树脂为聚乙烯醇缩丁醛。
每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.7:0.9:0.5组成的混合物。
每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.2:0.7:0.9:0.5组成的混合物。
每份所述光稳定剂为辛基三嗪酮。每份所述疏水助剂为聚甲基苯基硅氧烷。
所述太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在150℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在150℃温度下通过用挤出流延法或吹塑法制得厚度为50um的薄膜;所述薄膜采用多层挤出流延法制得。
实施例3
一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000007
每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000008
每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为1.0:0.8:0.6:0.6组成的混合物。
每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为0.8:1.0:0.6:0.6组成的混合物。
每份所述粘结性树脂为乙烯-不饱和酯共聚物,所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为50%。
每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.8:1.0:0.6组成的混合物。
每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.3:0.8:1.0:0.6组成的混合物。
每份所述光稳定剂为2,4-二羟基二苯甲酮。每份所述疏水助剂为十七氟癸基三甲氧基硅烷。
所述太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在200℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在200℃温度下通过用挤出流延法或吹塑法制得厚度为95um的薄膜;所述薄膜采用多层挤出吹塑法制得。
实施例4
一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000009
每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000010
每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为1.1:0.9:0.7:0.7组成的混合物。
每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为0.9:1.1:0.7:0.7组成的混合物。
每份所述粘结性树脂为乙烯-不饱和酯共聚物,所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为,65%。
每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为0.9:1.12:0.7组成的混合物。
每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.4:0.9:1.1:0.7组成的混合物。
每份所述光稳定剂为2,4-二羟基二苯甲酮。每份所述疏水助剂为聚二甲基硅氧烷。
所述太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在250℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在250℃温度下通过用挤出流延法或吹塑法制得厚度为105um的薄膜;所述薄膜采用单层挤出吹塑法制得。
实施例5
一种太阳能电池组件用导线载体薄膜,包括如下重量份的原料:
Figure PCTCN2021114007-appb-000011
每份所述透明功能母粒包括如下重量份的原料:
Figure PCTCN2021114007-appb-000012
每份所述第一聚烯烃树脂是由聚乙烯、交联聚乙烯、乙烯-环烯烃共聚物和聚丙烯按照重量比为1.2:1.0:0.8:0.8组成的混合物。
每份所述第二聚烯烃树脂是由氯化聚乙烯、交联聚乙烯、乙烯-辛烯共聚物和聚丙烯按照重量比为1.0:1.2:0.8:0.8组成的混合物。
每份所述粘结性树脂为乙烯-不饱和酯共聚物和/或聚乙烯醇缩丁醛;其中所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为85%。
每份所述阻水树脂是由乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺按照重量比为1.0:1.2:0.8组成的混合物。
每份所述抗氧剂是由芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯按照重量比为0.5:1.0:1.2:0.8组成的混合物。
每份所述光稳定剂为2,4-二羟基二苯甲酮。每份所述疏水助剂为聚二甲基硅氧烷。
所述太阳能电池组件用导线载体薄膜的制备方法,通过如下步骤制得:
1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在300℃温度下挤出,冷却、切粒,制得透明功能母粒;
2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在300℃温度下通过用挤出流延法或吹塑法制得厚度为150um的薄膜;所述薄膜采用多层挤出流延法制得。
对比例1
本对比例与上述实施例1的区别在于:本对比例的太阳能电池组件用导线载体薄膜的原料中没有添加透明功能母粒。本对比例的其余内容与实施例1相同,这里不再赘述。
对比例2
本对比例与上述实施例3的区别在于:本对比例的太阳能电池组件用导线载体薄膜的透明功能母粒中没有添加疏水助剂,其余原料按照实施例3的比例混合物。本对比例的其余内容与实施例3相同,这里不再赘述。
对比例3
本对比例与上述实施例5的区别在于:本对比例的太阳能电池组件用导线载体薄膜的透明功能母粒中用石蜡替换了疏水助剂,其余原料按照实施例5的比例混合物。本对比例的其余内容与实施例5相同,这里不再赘述。
对实施例1、3和5和对比例1-3制得的太阳能电池组件用导线载体薄膜进行性能测试,结果如表1所示:
水汽透过率按ISO 15106-3:2003的规定电解法测量。实验环境条件(23±2)℃,相对湿度(50±10)%;试验条件(38±0.5)℃,相对湿度(90±2)%,对试样进行试验;
湿热老化参照标准GB/T 2423.3-2006进行测试;
附着力参照标准GB/T 31034《晶体硅太阳电池组件用绝缘背板》;试样尺 寸:200mm*200mm。测试条件:+25℃,50%RH
表1
项目 附着力/% 湿热老化2000h 水汽透过率g/(m 2·d)
实施例1 99.8 △b<2 2.1
实施例3 100 △b<2 1.9
实施例5 99.9 △b<2 2.0
对比例1 86.9 1<△b<4 1.5
对比例2 87.4 △b<2 1.6
对比例3 96.5 △b<2 1.8
由表中数据可知,本发明实施例1、3和5中制得的太阳能电池组件用导线载体薄膜,具有抗湿热老化和附着力好特点,以及低水汽透过率,另外,还具有使用寿命长,生产成本低的优点
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本发明构思的前提下任何显而易见的替换均在本发明的保护范围之内。

Claims (10)

  1. 一种太阳能电池组件用导线载体薄膜,其特征在于:包括如下重量份的原料:
    Figure PCTCN2021114007-appb-100001
  2. 根据权利要求1所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述透明功能母粒包括如下重量份的原料:
    Figure PCTCN2021114007-appb-100002
  3. 根据权利要求1所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述第一聚烯烃树脂为聚乙烯、氯化聚乙烯、交联聚乙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物、乙烯-辛烯共聚物、乙烯-环烯烃共聚物和聚丙烯中的至少一种。
  4. 根据权利要求2所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述第二聚烯烃树脂为聚乙烯、氯化聚乙烯、交联聚乙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物、乙烯-辛烯共聚物、乙烯-环烯烃共聚物和聚丙烯中的至少一种。
  5. 根据权利要求1所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述粘结性树脂为乙烯-不饱和酯共聚物和/或聚乙烯醇缩丁醛;其中所述乙烯-不饱和酯共聚物中不饱和酯占乙烯-不饱和酯共聚物的摩尔比为15-85%。
  6. 根据权利要求1所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述阻水树脂为乙烯-乙烯醇的无规共聚物、聚偏二氯乙烯和低温聚酰胺中的至少一种。
  7. 根据权利要求2所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述抗氧剂为芳香胺类抗氧剂、受阻酚类抗氧剂、亚磷酸三苯酯和硫代二丙酸双酯中至少一种。
  8. 根据权利要求2所述一种太阳能电池组件用导线载体薄膜,其特征在于:每份所述光稳定剂为2,4-二羟基二苯甲酮、苯并三唑类光稳定剂、辛基三嗪酮、受阻胺类光稳定剂中的至少一种;每份所述疏水助剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、十七氟癸基三甲氧基硅烷中的至少一种。
  9. 一种根据权利要求2-8任一项所述太阳能电池组件用导线载体薄膜的制备方法,其特征在于:通过如下步骤制得:
    1)按照重量份,将第二聚烯烃树脂、抗氧剂、光稳定剂和疏水助剂混合搅拌均匀,并通过螺杆挤出机在100-300℃温度下挤出,冷却、切粒,制得透明功能母粒;
    2)按照重量份,将步骤1)制得的透明功能母粒与第一聚烯烃树脂、粘结性树脂混合和阻水树脂混合搅拌均匀,并在100-300℃温度下通过用挤出流延法或吹塑法制得厚度为20-150um的薄膜。
  10. 根据权利要求9所述一种太阳能电池组件用导线载体薄膜,其特征在于:所述薄膜采用单层或多层挤出流延法或吹塑法制得。
PCT/CN2021/114007 2021-06-10 2021-08-23 一种太阳能电池组件用导线载体薄膜及其制备方法 WO2022257272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110649353.4 2021-06-10
CN202110649353.4A CN113502010B (zh) 2021-06-10 2021-06-10 一种太阳能电池组件用导线载体薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2022257272A1 true WO2022257272A1 (zh) 2022-12-15

Family

ID=78010301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114007 WO2022257272A1 (zh) 2021-06-10 2021-08-23 一种太阳能电池组件用导线载体薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113502010B (zh)
WO (1) WO2022257272A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752321A (zh) * 2022-05-09 2022-07-15 苏州明冠新材料科技有限公司 一种ibc太阳能电池组件用粘结性薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928425A (zh) * 2010-09-02 2010-12-29 苏州赛伍应用技术有限公司 树脂组合物及含有该树脂组合物的太阳能电池组件
CN104112785A (zh) * 2014-07-31 2014-10-22 明冠新材料股份有限公司 一种增效型太阳能电池背板用薄膜及其制备方法
CN108419433A (zh) * 2015-11-06 2018-08-17 梅耶博格瑞士股份公司 聚合物导体板、太阳能电池及其生产方法
WO2019014720A1 (en) * 2017-07-18 2019-01-24 Newsouth Innovations Pty Limited METHOD FOR MANUFACTURING A PHOTOVOLTAIC MODULE
CN110959198A (zh) * 2017-07-20 2020-04-03 梅耶博格瑞士股份公司 稳定的叠瓦状太阳能电池串及其生产方法
CN111682083A (zh) * 2020-06-01 2020-09-18 苏州明冠新材料科技有限公司 一种高反射率黑色太阳能电池背板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928425A (zh) * 2010-09-02 2010-12-29 苏州赛伍应用技术有限公司 树脂组合物及含有该树脂组合物的太阳能电池组件
CN104112785A (zh) * 2014-07-31 2014-10-22 明冠新材料股份有限公司 一种增效型太阳能电池背板用薄膜及其制备方法
CN108419433A (zh) * 2015-11-06 2018-08-17 梅耶博格瑞士股份公司 聚合物导体板、太阳能电池及其生产方法
WO2019014720A1 (en) * 2017-07-18 2019-01-24 Newsouth Innovations Pty Limited METHOD FOR MANUFACTURING A PHOTOVOLTAIC MODULE
CN110959198A (zh) * 2017-07-20 2020-04-03 梅耶博格瑞士股份公司 稳定的叠瓦状太阳能电池串及其生产方法
CN111682083A (zh) * 2020-06-01 2020-09-18 苏州明冠新材料科技有限公司 一种高反射率黑色太阳能电池背板及其制备方法

Also Published As

Publication number Publication date
CN113502010A (zh) 2021-10-15
CN113502010B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
EP2804223A1 (en) Solar cell module having excellent appearance and method for manufacturing same
US20090120489A1 (en) Encapsulating Material for Solar Cell
EP2600418A1 (en) Solar cell sealing material, and solar cell module prepared by using same
EP2860766B1 (en) Solar battery module and method of manufacture thereof
EP2613362A1 (en) Solar battery cover film for and solar battery module manufactured using same
CN113913117B (zh) 一种光伏电池组件封装胶膜及其制备方法和应用
JP4762377B2 (ja) アモルファスシリコン太陽電池モジュール
WO2011132560A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2021098299A1 (zh) 胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃
JP2015211189A (ja) 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
JP5268227B2 (ja) 太陽電池封止材
CN102762652A (zh) 太阳能电池用密封膜以及使用其的太阳能电池
TW201307403A (zh) 太陽電池用密封膜及使用其之太陽電池
JP6172158B2 (ja) 太陽電池封止材用樹脂組成物
JP6166377B2 (ja) 太陽電池封止用シートセットおよび太陽電池モジュール
WO2022257272A1 (zh) 一种太阳能电池组件用导线载体薄膜及其制备方法
JP2015162498A (ja) 太陽電池封止材用積層体、太陽電池封止材及び太陽電池モジュール
CN103890967A (zh) 太阳能电池用密封膜和使用其的太阳能电池
JP2011187822A (ja) 太陽電池モジュール用充填材組成物、太陽電池モジュール用充填材及び太陽電池モジュール
JP7447007B2 (ja) 電圧誘起出力低下耐性が改善された太陽光発電モジュールおよび封止材組成物
CN110591605A (zh) Mwt太阳能电池用封装胶膜及其制备方法
JP2013161911A (ja) 光散乱部材
JPWO2016052070A1 (ja) 封止シート、太陽電池モジュールおよび封止シートの製造方法
JP2012209335A (ja) 薄膜型太陽電池モジュ−ル用の封止材シート、及び薄膜型太陽電池モジュール
CN113707744A (zh) 一种光伏电池片用连接膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944774

Country of ref document: EP

Kind code of ref document: A1