WO2021098299A1 - 胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃 - Google Patents

胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃 Download PDF

Info

Publication number
WO2021098299A1
WO2021098299A1 PCT/CN2020/109635 CN2020109635W WO2021098299A1 WO 2021098299 A1 WO2021098299 A1 WO 2021098299A1 CN 2020109635 W CN2020109635 W CN 2020109635W WO 2021098299 A1 WO2021098299 A1 WO 2021098299A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
parts
oxide
ethylene
metal
Prior art date
Application number
PCT/CN2020/109635
Other languages
English (en)
French (fr)
Inventor
魏梦娟
周光大
王富成
侯宏兵
桑燕
杜柑宏
刘挺
汪浩楠
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911137294.1A external-priority patent/CN112824466A/zh
Priority claimed from CN202010753127.6A external-priority patent/CN114058270A/zh
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Priority to EP20889959.1A priority Critical patent/EP4019601A4/en
Priority to US17/775,271 priority patent/US20220389282A1/en
Publication of WO2021098299A1 publication Critical patent/WO2021098299A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10724Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/026Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethylene-vinylester copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene

Definitions

  • the invention relates to the field of photoelectric conversion devices, in particular to a glue film, an anti-PID encapsulating glue film, a composition forming the same, a photovoltaic module and laminated glass.
  • Photoelectric conversion refers to the conversion of solar energy into electrical energy through the photovoltaic effect.
  • electronic devices photoelectric conversion devices
  • solar cells such as crystalline silicon batteries, amorphous silicon batteries, cadmium telluride batteries, copper indium gallium tin batteries, perovskite batteries
  • Liquid crystal panels Liquid crystal panels, electroluminescent devices, plasma display devices, sensors, etc.
  • the sealing material is then bonded to the upper and lower substrates to form a complete electronic device module.
  • crystalline silicon solar cell modules are usually laminated according to the front glass substrate, front sealing layer polymer, crystalline silicon cell, rear sealing layer polymer, back glass substrate or polymer substrate, and then heated and heated by a vacuum laminator. After pressing, a complete solar module is formed.
  • PID effect also known as potential induced degradation
  • PID effect is an important aspect of photovoltaic module efficiency degradation, and its generation mechanism is usually intertwined with other factors that affect photovoltaic module power degradation.
  • the leakage current generated due to the difference between the potential of the photovoltaic module frame and the potential of the solar cell provided in the photovoltaic module causes the overall performance of the photovoltaic system to decline, resulting in fill factor (FF), short circuit current (Isc), open circuit voltage (Voc) ) Decrease, and in severe cases, the power of the module will attenuate by more than 50%, resulting in a serious drop in power generation and affecting the revenue of the entire photovoltaic power station.
  • FF fill factor
  • Isc short circuit current
  • Voc open circuit voltage
  • the PID mechanism is mainly as follows: (1) Water vapor enters the module: humid, high temperature environment is prone to produce water vapor, and the water vapor enters the module through the edge-sealing silica gel or back plate; the crystalline silicon photovoltaic module will have condensation on the surface after one night.
  • Occurrence (especially the dew in summer and autumn) will cause the photovoltaic system in the morning after the sun rises for a period of time, when the surface of the photovoltaic system is relatively humid, the Na+ ions in the glass are released from the glass and bear the system Negative bias voltage. 2)
  • Acetic acid reacts with the alkali precipitated on the glass surface to produce freely movable Na+:
  • Freely movable acetic acid (CH 3 COOH) reacts with the alkali precipitated on the glass surface under high temperature and high humidity to produce freely movable Na+, Na+ Under the action of voltage, it moves from the glass to the surface of the cell.
  • the speed of positive ion movement is affected by the film, temperature, humidity and voltage.
  • Sodium ions diffuse into the cell to act as a supply of atoms and are enriched in the anti-reflection layer.
  • the leakage current flows from the cell ⁇ EVA ⁇ the glass surface ⁇ the frame ⁇ the bracket, and finally flows to the ground, the output power is attenuated, and the PID phenomenon is generated, which affects the photovoltaic effect of the battery.
  • the first method is to use borosilicate glass to reduce the free sodium, calcium and other metal ions in the existing glass cover, or to use POE film (ethylene-octene copolymer Substitution of traditional EVA film (ethylene-vinyl acetate copolymer film) to improve the water vapor barrier performance of photovoltaic modules, thereby improving the PID phenomenon;
  • the second method is to install a dielectric film on the inner side of the glass cover to block ions from going to the battery Migration, in order to weaken the potential induced attenuation phenomenon.
  • Patent CN105950039 A provides a kind of anti-PID polyolefin adhesive film for solar modules, using polyolefin POE instead of EVA as the packaging material to increase the volume resistivity of the adhesive film, but the price of polyolefin resin raw materials It is higher, which increases the packaging cost of the component, and the material of the POE has a large cohesive energy and poor adhesion to the glass. Long-term outdoor use is prone to delamination of the adhesive film and the glass.
  • the encapsulating adhesive film includes a polyolefin barrier layer and a first adhesive layer and a second adhesive layer on both sides of the barrier layer ( A composition of a siloxane graft polymer and ethylene- ⁇ olefin or a composition of a siloxane graft polymer and EVA).
  • the encapsulation adhesive film can solve the problem of poor adhesion between the adhesive film and the glass and the cell due to the introduction of the siloxane graft copolymer, but the encapsulation adhesive film can only be used for the anti-PID of the conventional cell assembly.
  • the anti-PID effect of the surface cell module is not ideal.
  • DupontTM of the United States proposed a PID protective film of DuPont ionic polymer.
  • the PID protective film is prepared based on the ionic polymer technology verified by more than 15 years of crystalline silicon module experiments, with a thickness of about 50 ⁇ m. Placing it between the photovoltaic glass and the EVA encapsulating film can effectively prevent sodium ions from migrating to the surface of the cell and completely solve the PID problem.
  • the material is relatively expensive, which limits its promotion and application in the market.
  • CN104576826 B also provides a cell post-processing method, which prepares a non-stick coating on the surface of the aluminum back field to improve the compactness of the silicon nitride film, and follow-up
  • the high-temperature annealing process improves the anti-PID ability of the cell, but this method increases the production cost of the cell, which is not conducive to saving and reducing the cost of the photovoltaic module.
  • the main purpose of the present invention is to provide an adhesive film, an anti-PID encapsulation film, a composition forming the same, a photovoltaic module and a laminated glass, so as to solve the problem that the existing encapsulation film cannot meet the requirements of both low cost and anti-PID performance. problem.
  • an adhesive film forming composition which includes: ethylene copolymer matrix resin, amide organics, metal oxides and/or metal hydrogen Oxide, metal oxide is selected from alumina, calcium oxide, zinc oxide, barium oxide, magnesium oxide, zirconium oxide, titanium oxide, tin oxide, vanadium oxide, antimony oxide, tantalum oxide, niobium oxide, layered transition metal oxide , Or doped ZnO doped Al 2 O 3 , CaO/SiO 2 doped Al 2 O 3 and MgO doped Al 2 O 3 , SiO 2 doped ZrO 2 , TiO 2 doped ZrO 2
  • the metal hydroxide is selected from one or more of calcium hydroxide, magnesium hydroxide, zinc hydroxide, aluminum hydroxide, iron hydroxide, and barium hydroxide; Or in parts by weight, the composition for forming the glue film includes: 100 parts of matrix resin, 0.01-5 parts
  • the aforementioned layered transition metal oxide is A 2 M 12 X 6 or A 3 M 2 X 6 , wherein A is Na or Li; M is a +divalent metal; X is Sb, Bi, Nb or Ru; Preferably, the layered transition metal oxide is Na 3 Ni 2 Sb 6 and/or Li 3 Ni 1.5 Mg 0.5 Sb 6 .
  • R 1 is H, group A, a substituent formed by the substitution of at least one hydrogen atom in group A by a hydroxyl group, amino group or epoxy group, or a substituent formed by substitution of at least one methylene group in group A by a carbonyl group or an ether bond
  • group a is a straight chain alkyl, branched alkyl or cycloalkyl group, and the carbon atoms of group a ⁇ 10; carbon atoms, R 2 is 2 ⁇ 20;
  • R 2 is selected from ethenyl, propenyl , Butenyl, pentenyl, hexenyl, heptenyl, octenyl, decaenyl, undecenyl, dodecenyl, tetradecenyl, hexadecenyl or octadecenyl.
  • the amide organics are selected from acrylamide, methacrylamide, N-methacrylamide, N-ethylacrylamide, N,N'-dimethylacrylamide, N-isopropylacrylamide, N -Tert-butylacrylamide, N-methylolacrylamide, N-hydroxyethylacrylamide, N-(2-hydroxypropyl)acrylamide, N,N'-methylenebisacrylamide, maleyl Imine, oleic acid amide, 9-hexadecenamide, N-(2-hydroxyethyl)-undec-10-enamide, 9-tetradecenamide, 9-dodecenamide, One or more of the group consisting of 9-decenamide, octenamide, heptenamide, hexenamide, pentenamide, and crotonamide.
  • melt index of the ethylene copolymer matrix resin is 0.5 to 45 g/10 min, preferably 3 to 20 g/10 min, more preferably 5 to 10 g/10 min.
  • the ethylene copolymer matrix resin is selected from one or more of the group consisting of ethylene-polar monomer copolymer, ethylene- ⁇ -olefin copolymer and ethylene-cycloolefin copolymer.
  • the ethylene copolymer matrix resin is an ethylene-polar monomer copolymer
  • the polar monomer required to form the ethylene-polar monomer copolymer is selected from unsaturated carboxylic acid, unsaturated anhydride, and unsaturated carboxylic acid Salt, unsaturated carboxylic acid ester, amide of unsaturated carboxylic acid, vinyl ester, carbon monoxide or sulfur dioxide
  • the unsaturated carboxylic acid is selected from acrylic acid, methacrylic acid, fumaric acid or itaconic acid
  • the unsaturated acid anhydride is selected from maleic anhydride or itaconic anhydride
  • the unsaturated carboxylic acid salt is selected from the lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt or zinc salt formed by the following carboxylic acids: acrylic acid, Methacrylic acid, fumaric acid, itaconic acid, maleic anhydride or itaconic anhydride; preferably, the unsaturated carboxylic acid este
  • the ethylene copolymer matrix resin is an ethylene- ⁇ -olefin copolymer
  • the ethylene- ⁇ -olefin copolymer is a copolymer of ethylene and at least one ⁇ -olefin having less than 10 carbon atoms; preferably, the number of carbon atoms
  • the ⁇ -olefin of less than 10 is selected from propylene, 1-butene, 1-hexene, 1-pentene, 1-octene or 4-methyl-1-pentene.
  • the ethylene copolymer matrix resin is an ethylene-cycloolefin copolymer
  • the cyclic olefin forming the ethylene-cycloolefin copolymer is selected from one of cyclopentene, norbornene, vinyl norbornene or ethylidene norbornene. kind or more.
  • the composition for forming the glue film includes 100 parts of ethylene copolymer matrix resin, 0.05 to 1.5 amide organics, 0.01 to 10 parts of metal oxides and/or 0.01 to 10 parts of metal hydroxides, and;
  • the composition for forming the glue film includes 100 parts of ethylene copolymer matrix resin, 0.05 to 1.5 amide organics, 0.01 to 3 parts of metal oxide and/or 0.01 to 3 parts of metal hydroxide .
  • the composition for forming the glue film also includes one or more of the group consisting of organic peroxides, crosslinking aids, light stabilizers, ultraviolet light absorbers, tackifiers, antioxidants and pigments;
  • the composition further includes 0.01 to 3 parts by weight of crosslinking agent, 0.01 to 10 parts by weight of auxiliary crosslinking agent, and 0 to 1.0 parts by weight of light stabilizer. ⁇ 0.4 parts by weight of ultraviolet light absorber, 0-3.0 parts by weight of tackifier, 0-0.5 parts by weight of antioxidant, and 0-40 parts of pigment.
  • the adhesive film forming composition includes: 100 parts of the matrix resin, 0.05 to 1 part of the metal ion trapping agent, and 0.1 to 1 part of the organic co-crosslinking agent.
  • the adhesive film forming composition includes: 100 parts of the matrix resin, 0.05-0.5 parts of the metal ion trapping agent, and 0.1-1 part of the organic co-crosslinking agent.
  • the metal ion trapping agent is selected from the group consisting of aluminosilicates, hydrated oxides, polyvalent metal acid salts, metal phosphates, pentavalent metal oxides, hexavalent metal oxides, 7-valent metal oxides, and xanthic acids One or more of organic matter and dithiocarbamate organic matter; preferably, the metal ion trapping agent is selected from one or more of aluminum phosphate, titanium phosphate, tin phosphate, zirconium phosphate and bismuth phosphatekind.
  • the organic co-crosslinking agent is selected from multifunctional acrylate compounds and/or (meth)acrylamide compounds; preferably, the multifunctional acrylate compound is selected from trimethylolpropane triacrylate and pentaerythritol One or more of triacrylate and ethoxylated trimethylolpropane triacrylate; preferably, the (meth)acrylamide compound is selected from N,N'-methylenebisacrylamide, N, One or more of N'-vinylbisacrylamide and N-propylacrylamide.
  • the matrix resin is selected from ethylene vinyl acetate copolymer, low density polyethylene, polypropylene, polybutene, polyvinyl butyral, metallocene catalyzed polyethylene, ethylene octene copolymer, ethylene pentene copolymer, One or more of ethylene methyl acrylate copolymer and ethylene methyl methacrylate copolymer.
  • the film forming composition further includes 0.5 to 5 parts of auxiliary agents selected from the group consisting of peroxide crosslinking agents, antioxidants, hindered amine light stabilizers, One or more of ultraviolet light absorbers and tackifiers.
  • Another aspect of the present application also provides an adhesive film, which is a single-layer adhesive film or a multi-layer co-extruded adhesive film, and at least one of the above-mentioned single-layer adhesive film or the above-mentioned multi-layer adhesive film is formed as described above
  • the composition of the adhesive film is a raw material prepared by a melt extrusion process.
  • Another aspect of the present application also provides an anti-PID encapsulation adhesive film, which is prepared by using the above-mentioned adhesive film forming composition as a raw material.
  • Another aspect of the present application also provides a photovoltaic module, which includes an encapsulation adhesive film, and the encapsulation adhesive film includes at least one layer of the above-mentioned adhesive film.
  • the above-mentioned photovoltaic module is a double glass module.
  • Another aspect of the present application also provides a laminated glass, at least two glass layers and an organic polymer intermediate film arranged between adjacent glass layers, and the organic polymer intermediate film includes at least one layer of the aforementioned glue film.
  • the ethylene copolymer matrix resin as the matrix resin for forming the adhesive film has good flexibility and light transmittance, so the selection of it as the matrix resin for forming the adhesive film is beneficial to improve the photoelectric conversion efficiency and encapsulation of the adhesive film. performance.
  • metal oxides and/or metal hydroxides can increase the initial electromotive force of the ethylene copolymer matrix resin, bind and fix metal ions in an electric field environment, and form positively charged metal oxides or metal hydrogens.
  • Oxide reduces the movement power of metal ions in photovoltaic modules and reduces metal ions in photovoltaic modules.
  • some metal oxides such as calcium oxide and zinc oxide
  • calcium hydroxide can Physically adsorb water, reduce the water vapor in the module, and inhibit the decomposition of EVA to produce acetic acid.
  • metal oxides and/or metal hydroxides can also react with the acetic acid produced by the decomposition of EVA, reducing the reaction of the system with sodium silicate in the glass. Acid, thereby reducing the generation of sodium ions in the system; therefore, the addition of metal oxides and/or metal hydroxides described in this application can inhibit the PID phenomenon for a long time.
  • Both layered transition metal oxides and doped metal oxides have a certain sodium insertion reaction ability. By substitution or doping, it is easy to inhibit the phase transition caused by the order of Na-vacancy, and construct a suitable sodium ion insertion reaction.
  • the honeycomb ordered oxide stable structure makes X uniformly stabilize the layered framework structure to reduce the free sodium ions in the photovoltaic module, and realize the anti-PID effect.
  • Amide compounds contain positive genes (-CONH-), which can be adsorbed and bridged with suspended particles dispersed in photovoltaic modules, have a strong flocculation effect on positively charged metal oxides or metal hydroxides, and can form electricity
  • the neutral and stable system further reduces the metal ions in the photovoltaic module.
  • amide compounds can increase the cross-linking density of the film. On the one hand, it can increase the ion barrier properties in the film and hinder the migration of sodium ions. On the other hand, it can improve the water vapor barrier properties of the film and reduce the water vapor in the components. Inhibit the hydrolysis of EVA, reduce the acid in the system and the sodium silicate in the glass, and reduce the generation of sodium ions.
  • the anti-PID effect of the adhesive film can be greatly improved.
  • the adhesive film formed by using the above composition has long-term effective anti-PID performance, as well as good photoelectric conversion efficiency and packaging performance.
  • the composition for forming an adhesive film includes: ethylene copolymer matrix resin, amide organics, metal oxides and/ Or metal hydroxide, the metal oxide is selected from aluminum oxide, calcium oxide, zinc oxide, barium oxide, magnesium oxide, zirconium oxide, titanium oxide, tin oxide, vanadium oxide, antimony oxide, tantalum oxide, niobium oxide, and layered transition Metal oxide, or doped ZnO doped Al 2 O 3 , CaO/SiO 2 doped Al 2 O 3 and MgO doped Al 2 O 3 , SiO 2 doped ZrO 2 , TiO 2 doped
  • the metal hydroxide is selected from one or more of the composition of calcium hydroxide, magnesium hydroxide, zinc hydroxide
  • the ethylene copolymer matrix resin has good flexibility and light transmittance as the matrix resin for forming the adhesive film, so choosing it as the matrix resin for forming the adhesive film is beneficial to improve the photoelectric conversion efficiency and encapsulation performance of the adhesive film.
  • the addition of metal oxides and/or metal hydroxides can increase the initial electromotive force of the ethylene copolymer matrix resin, bind and fix metal ions in an electric field environment, form positively charged metal oxides or metal hydroxides, and reduce photovoltaic modules
  • the movement power of the metal ions in the photovoltaic module reduces the metal ions in the photovoltaic module; at the same time, some metal oxides (such as calcium oxide and zinc oxide) can also chemically react with the water in the module.
  • Calcium hydroxide can physically adsorb water and reduce the amount of water in the module.
  • the water vapor can inhibit the decomposition of EVA to produce acetic acid.
  • metal oxides and/or metal hydroxides can also react with the acetic acid produced by the decomposition of EVA, reducing the acid in the system that reacts with the sodium silicate in the glass, thereby reducing the amount of acid in the system.
  • the generation of sodium ions therefore, the addition of the metal oxides and/or metal hydroxides described in this application can inhibit the PID phenomenon for a long time.
  • layered transition metal oxides and doped metal oxides both have a certain sodium insertion reaction ability.
  • the honeycomb ordered oxide stable structure makes X uniformly stabilize the layered framework structure to reduce the free sodium ions in the photovoltaic module, and realize the anti-PID effect.
  • Amide compounds contain positive genes (-CONH-), which can be adsorbed and bridged with suspended particles dispersed in photovoltaic modules, have a strong flocculation effect on positively charged metal oxides or metal hydroxides, and can form electricity The neutral and stable system further reduces the metal ions in the photovoltaic module. At the same time, amide compounds can increase the cross-linking density of the film.
  • the adhesive film formed by using the above composition has long-term effective anti-PID performance, as well as good photoelectric conversion efficiency and packaging performance. At the same time, the preparation process of the adhesive film is simple, which can greatly reduce the process cost.
  • the above-mentioned layered transition metal oxide is A 2 M 12 X 6 or A 3 M 2 X 6 , wherein A is Na or Li; M is a +divalent metal; X is Sb, Bi, Nb or Ru,
  • M is used as the active center to realize the insertion and removal of sodium ions;
  • X is as an inert component, which can stabilize the crystal structure; and the honeycombs of M and X are ordered, which makes X uniformly formed Stable layered framework structure.
  • the layered transition metal oxides with the above composition also have a more uniform and stable layered framework.
  • the selection of it as the metal oxide required by this application is beneficial to further improve its anti-PID resistance. performance. More preferably, the aforementioned layered transition metal oxide is Na 3 Ni 2 Sb 6 and/or Li 3 Ni 1.5 Mg 0.5 Sb 6 .
  • the above-mentioned amide organic compound has a structure represented by formula (I),
  • R 1 is H, group A, a substituent formed by the substitution of at least one hydrogen atom in group A by a hydroxyl group, amino group or epoxy group, or a substituent formed by substitution of at least one methylene group in group A by a carbonyl group or an ether bond ,
  • Group A is a straight chain alkyl group, a branched chain alkyl group or a cycloalkyl group, and the number of carbon atoms of the group A is ⁇ 10;
  • R 2 is a straight chain alkyl group, a branched chain alkyl group, a cycloalkyl group or an alkenyl group, And the number of carbon atoms of R 2 is 2-20; the metal oxide can react with water to form a base.
  • R 2 when R 2 is an alkenyl group, R 2 can react with the matrix resin, which can further increase the crosslinking degree of the adhesive film, which is beneficial to further improve the anti-PID performance of the adhesive film.
  • R 2 includes but is not limited to vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, decaenyl, undecenyl, Dodecenyl, tetradecenyl, hexadecenyl or octadecenyl.
  • the amide organics are selected from acrylamide, methacrylamide, N-methacrylamide, N-ethylacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N-hydroxyl Methacrylamide, N-hydroxyethylacrylamide, N-(2-hydroxypropyl)acrylamide, N,N'-methylenebisacrylamide, maleimide, oleic acid amide, 9-10 Hexadenamide, N-(2-hydroxyethyl)-undec-10-enamide, 9-tetradecenamide, 9-dodecenamide, 9-decenamide, octenamide One or more of the group consisting of, heptenamide, hexenamide, pentenamide, and crotonamide.
  • the melt index of the ethylene copolymer matrix resin is 0.5 to 45 g/10 min, preferably 3 to 20 g/10 min, more preferably 5 to 10 g/10 min.
  • the ethylene copolymer matrix resin can be selected from the types commonly used in the art.
  • the ethylene copolymer matrix resin includes, but is not limited to, one or more of the group consisting of ethylene-polar monomer copolymer, ethylene- ⁇ -olefin copolymer, and ethylene-cycloolefin copolymer. kind.
  • the ethylene copolymer matrix resin is an ethylene-polar monomer copolymer
  • the polar monomers required to form the ethylene-polar monomer copolymer include, but are not limited to, unsaturated carboxylic acid, Unsaturated acid anhydrides, unsaturated carboxylic acid salts, unsaturated carboxylic acid esters, amides formed by unsaturated carboxylic acids, vinyl esters, carbon monoxide or sulfur dioxide.
  • the use of the above-mentioned polar monomers and ethylene to polymerize the ethylene copolymer matrix resin can increase its polarity, which is beneficial to greatly improve the surface properties and adhesion of the formed adhesive film, and improve its processing properties.
  • the unsaturated carboxylic acid is selected from acrylic acid, methacrylic acid, fumaric acid or itaconic acid; preferably, the unsaturated anhydride is selected from maleic anhydride or itaconic anhydride; preferably, the unsaturated carboxylic acid salt is selected from the following Lithium, sodium, potassium, magnesium, calcium or zinc salts of several carboxylic acids: acrylic acid, methacrylic acid, fumaric acid, itaconic acid, maleic anhydride or itaconic anhydride; preferably, no Saturated carboxylic acid ester is selected from methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, ethyl methacrylate, isobutyl methacrylate, maleic acid One or more of the group consisting of dimethyl ester, vinyl acetate, vinyl ester, vinyl propionate
  • the ethylene copolymer matrix resin is an ethylene- ⁇ -olefin copolymer
  • the ethylene- ⁇ -olefin copolymer is a copolymer of ethylene and at least one ⁇ -olefin having less than 10 carbon atoms.
  • Ethylene- ⁇ olefin copolymer has more excellent water vapor barrier performance, higher insulation performance and higher light transmittance. Using it as the base resin of the adhesive film is beneficial to further improve the water vapor barrier performance, insulation and permeability of the adhesive film. Light rate.
  • the ⁇ -olefin having a carbon number of less than 10 is selected from propylene, 1-butene, 1-hexene, 1-pentene, 1-octene or 4-methyl-1-pentene.
  • the ethylene copolymer matrix resin is an ethylene-cycloolefin copolymer
  • the cyclic olefin forming the ethylene-cycloolefin copolymer is selected from cyclopentene, norbornene, vinyl norbornene or ethylidene. One or more of norbornene.
  • the ethylene-cycloolefin copolymer has good ultraviolet light transmittance, good dimensional stability, and easy processing.
  • the ethylene-cycloolefin copolymer itself is a non-polar resin, so it has high barrier properties to polar solvents such as water, which is conducive to further Improve the anti-PID performance of the film formed by the composition.
  • the composition for forming the adhesive film includes 100 parts of ethylene copolymer matrix resin, 0.05 to 1.5 amide organics, 0.01 to 10 parts of metal oxide and/or 0.01 to 10 parts by weight. Parts of metal hydroxide.
  • the amount of each component in the film forming composition includes but is not limited to the above range, and limiting it to the above range can give full play to the synergistic effect between the components, which is beneficial to further improve the anti-PID performance of the film.
  • Comprehensive performance More preferably, based on parts by weight, the adhesive film-forming composition includes 100 parts of ethylene copolymer matrix resin, 0.05 to 1.5 amide organics, 0.01 to 3 parts of metal oxide and/or 0.01 to 3 parts of metal hydroxide.
  • the above-mentioned adhesive film-forming composition further includes an organic peroxide, a crosslinking aid, a light stabilizer, and an ultraviolet light absorber. , One or more of the group consisting of tackifiers, antioxidants and pigments.
  • cross-linking agent and auxiliary cross-linking agent is beneficial to increase the degree of cross-linking of the co-extruded film during the lamination process, so that it has the advantages of stable product performance, not easy to delamination, and good mechanical and barrier properties, which is beneficial to further Improve the power generation efficiency during its application.
  • the addition of light stabilizers, ultraviolet light absorbers and antioxidants is beneficial to improve the anti-aging and anti-oxidation properties of the co-extruded film, thereby helping to increase its service life.
  • the addition of the tackifier is beneficial to improve the adhesive performance of the film, thereby helping to improve its peel strength.
  • the addition of pigments can meet the needs of different uses. More preferably, based on 100 parts by mass of the above-mentioned matrix resin, the above-mentioned adhesive film forming composition further includes 0.01-3 parts by weight of cross-linking agent, 0.01-10 parts by weight of auxiliary cross-linking agent, and 0-1.0 parts by weight of light. Stabilizer, 0-0.4 parts by weight of ultraviolet light absorber, 0-3.0 parts by weight of tackifier, 0-0.5 parts by weight of antioxidant and 0-40 parts of pigment.
  • the cross-linking agent is a molecule with multiple ethylenically unsaturated groups, which can promote the cross-linking of the polymer to achieve a higher degree of cross-linking.
  • the cross-linking agent in the above composition can be selected from the types commonly used in the art.
  • the cross-linking agent includes but not limited to tert-butyl peroxy isopropyl carbonate, 2,5-dimethyl-2,5-(di-tert Butylperoxy)hexane, tert-butylperoxycarbonate-2-ethylhexyl, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1, 1-bis(tert-amylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-amylperoxy)cyclohexane, 1,1-bis(tert-butylperoxy) Oxygen) cyclohexane, 2,2-bis(tert-butylperoxy)butane, tert-amyl peroxide 2-ethylhexyl carbonate, 2,5-dimethyl 2,5-dimethyl 2,5 -Dimethyl 2,5-bis(benzoylperoxy)-he
  • the co-crosslinking agent includes but is not limited to triallyl isocyanurate, triallyl cyanurate, trimethylolpropane triacrylate, trimethylolpropane Trimethacrylate, pentaerythritol triacrylate, tris(2-hydroxyethyl) isocyanurate triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, ethyl Oxidized glycerol triacrylate, propoxylated glycerol triacrylate, pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetraacrylate, trimethylolpropane tetraacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane Tetramethacrylate, propoxylated pentaerythritol tetraacryl
  • Antioxidants are used to improve the stability of the polymer extrusion process, as well as the long-term and use process, and delay the degradation due to the action of hot oxygen.
  • the antioxidant is a hindered phenol compound and/or a phosphite compound. Compared with other antioxidants, the above-mentioned antioxidants have better stability and antioxidant properties.
  • hindered phenol compounds include but are not limited to 2,6-di-tert-butyl-4-ethylphenol, 2,2'-methylene-bis-(4-methyl-6-tert-butyl Phenol), 2,2'-methylene-bis-(4-ethyl-6-tert-butylphenol), 4,4'-butylene-bis-(3-methyl-6-tert-butylphenol) ), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyl Phenyl) propionate), 7-octadecyl-3-(4'-hydroxy-3',5'-di-tert-butylphenyl) propionate, tetra-(methylene-3- (3',5'-di-tert-butyl
  • Ultraviolet absorber refers to a substance that can absorb most of the ultraviolet energy and convert it into heat, thereby protecting certain electronic devices from being damaged by ultraviolet rays.
  • the above-mentioned ultraviolet light absorbers include but are not limited to benzophenones and/or benzotriazoles. More preferably, the ultraviolet light absorbers include but are not limited to 2-hydroxy-4 -N-octyloxybenzophenone, 2,2-tetramethylenebis(3,1-benzoxazin-4-one), 2-(2'-hydroxy-5-methylphenyl)benzene One or more of the group consisting of triazole and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
  • Light stabilizers are used to improve the stability of the packaging film under long-term ultraviolet radiation.
  • the light stabilizer is a hindered amine compound.
  • the light stabilizer includes, but is not limited to, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis(1-octyloxy-2) ,2,6,6-Tetramethyl-4-piperidinyl) sebacate, 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine and ⁇ -ene Graft copolymer obtained by polymerization of similar monomers, 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinol, 3,5-di-tert-butyl-4-hydroxy-benzoic acid hexadecanoic acid Alkyl ester, sebacic acid bis-2,2,6,6-tetramethylpiperidinol and tris(1,2,2,6,6-pentamethyl-4-piperidinyl)
  • the adhesion promoter includes but is not limited to ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(2,3-cyclic (Oxypropyloxy) propyltrimethoxysilane, vinyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethylsilane , One or more of the group consisting of 3-aminopropyltrimethylsilane.
  • the pigment includes, but is not limited to, one or more of the following materials mixed in any ratio: calcium carbonate, barium sulfate, talc, titanium dioxide, zinc oxide, carbon black, graphite Alkene, graphene oxide, copper chrome black, magnesium hydroxide, aluminum hydroxide, aluminum oxide, magnesium oxide, boron nitride, silicon carbide, ammonium phosphate, ammonium polyphosphate, pentaerythritol, dipentaerythritol, polypentaerythritol ester, polyphosphate melamine One or more of the group consisting of borates.
  • the adhesive film of the present application is a single-layer adhesive film or a multi-layer adhesive film, and at least one layer of the above-mentioned single-layer adhesive film or multi-layer adhesive film is formed with the above-mentioned adhesive film.
  • the composition of the film is prepared from raw materials through a melt extrusion process.
  • the ethylene copolymer matrix resin has good flexibility and light transmittance as the matrix resin for forming the adhesive film, so choosing it as the matrix resin for forming the adhesive film is beneficial to improve the photoelectric conversion efficiency and encapsulation performance of the adhesive film.
  • the anti-PID effect of the film can be greatly improved.
  • the adhesive film formed by using the above composition has long-term effective anti-PID performance, as well as good photoelectric conversion efficiency and packaging performance.
  • Another aspect of the present application also provides a laminated glass, including at least two glass layers and an organic polymer intermediate film arranged between adjacent glass layers.
  • the organic polymer intermediate film includes at least one layer of the present application. The above-mentioned film provided.
  • the above-mentioned adhesive film provided in the present application has good encapsulation performance and barrier performance, and using it as an organic polymer intermediate film in laminated glass is beneficial to greatly improve the lamination performance and barrier performance of laminated glass.
  • compositions for forming an anti-PID encapsulation film include: 100 parts of matrix resin and 0.01 to 5 parts of metal ion trapping agent And 0.01-5 parts of organic co-crosslinking agent.
  • the addition of metal ion trapping agent can capture metal cations, thereby reducing the concentration of free metal ions; at the same time, the addition of organic co-crosslinking agent can increase the crosslinking density of the encapsulation film , To increase the barrier performance of the encapsulation film, thereby enhancing the barrier effect of the encapsulation film on metal ions, and reducing the migration speed of metal ions to the surface of the cell.
  • the synergistic effect of the metal ion trapping agent and the organic co-crosslinking agent can effectively reduce the photovoltaic module (especially the double The occurrence of the PID phenomenon in the area battery, on the other hand, can also improve the compatibility of the three components, thereby improving the uniformity and performance stability of the packaging film formed.
  • the preparation process of the adhesive film is simple, which can greatly reduce the process cost.
  • the composition includes : 100 parts of matrix resin, 0.05 to 1 part of metal ion trapping agent and 0.1 to 1 part of organic co-crosslinking agent. More preferably, in parts by weight, the above composition includes: 100 parts of matrix resin, 0.05 to 0.5 parts of metal ion trapping agent, and 0.1 to 1 part of organic co-crosslinking agent.
  • the above-mentioned metal ion trapping agent can be selected from the types commonly used in the art.
  • the metal ion trapping agent includes but not limited to aluminosilicate, hydrated oxide, polyvalent metal acid salt, metal phosphate, pentavalent metal oxide, and hexavalent metal oxide.
  • aluminosilicate hydrated oxide
  • polyvalent metal acid salt metal phosphate
  • pentavalent metal oxide and hexavalent metal oxide.
  • sulfides 7-valent metal oxides
  • xanthate-based organics xanthate-based organics
  • dithiocarbamate-based organics dithiocarbamate-based organics.
  • the metal ion trapping agent includes but not limited to one of aluminum phosphate, titanium phosphate, tin phosphate, zirconium phosphate and bismuth phosphate or Many kinds.
  • the above-mentioned organic co-crosslinking agent can be selected from the types commonly used in the art, such as multifunctional acrylate compounds and/or (meth)acrylamide compounds.
  • the multifunctional acrylate compound includes, but is not limited to, one or more of trimethylolpropane triacrylate, pentaerythritol triacrylate, and ethoxylated trimethylolpropane triacrylate .
  • the (meth)acrylamide compound includes but is not limited to N,N'-methylenebisacrylamide, N,N'-vinylbisacrylamide and N-propylacrylamide. One or more of.
  • the above-mentioned organic cross-linking agents can further increase the cross-linking density of the encapsulation film, increase the barrier performance of the encapsulation film, and further enhance the barrier effect of the encapsulation film on metal ions and reduce The speed at which metal ions migrate to the surface of the cell.
  • the aforementioned matrix resin includes, but is not limited to, ethylene vinyl acetate copolymer, low density polyethylene, polypropylene, polybutene, polyvinyl butyral, metallocene catalyzed polyethylene, and ethylene octene.
  • ethylene vinyl acetate copolymer low density polyethylene
  • polypropylene polypropylene
  • polybutene polyvinyl butyral
  • metallocene catalyzed polyethylene and ethylene octene.
  • the use of the above-mentioned matrix resin is beneficial to further improve the uniformity and performance stability of the encapsulation film formed by it.
  • the composition further includes 0.5 to 5 parts by weight of an auxiliary agent selected from the group consisting of peroxide crosslinking agents and antioxidants.
  • an auxiliary agent selected from the group consisting of peroxide crosslinking agents and antioxidants.
  • light stabilizer hindered amine light stabilizer, ultraviolet light absorber and tackifier.
  • the above-mentioned packaging adhesive film can be prepared by a method commonly used in the art.
  • Another aspect of the present application also provides a preferred method for preparing an encapsulating adhesive film, which includes: taking the above-mentioned anti-PID encapsulating adhesive film forming composition as a raw material, and performing melt extrusion and calendering to obtain the desired encapsulating adhesive membrane.
  • Another aspect of the present application also provides an anti-PID packaging adhesive film, which is prepared by using the above-mentioned composition as a raw material.
  • the addition of metal ion trapping agent can capture metal cations, thereby reducing the concentration of free metal ions; at the same time, the addition of organic co-crosslinking agent can increase the crosslinking density of the encapsulation film , To increase the barrier performance of the encapsulation film, thereby enhancing the barrier effect of the encapsulation film on metal ions, and reducing the migration speed of metal ions to the surface of the cell.
  • the synergistic effect of the metal ion trapping agent and the organic co-crosslinking agent can effectively reduce the photovoltaic module (especially the double The occurrence of the PID phenomenon in the area battery, on the other hand, can also improve the compatibility of the three components, thereby improving the uniformity and performance stability of the packaging film formed.
  • the encapsulation adhesive film prepared from the above composition as a raw material can effectively reduce the probability of PID phenomenon when it is applied to solar modules (especially double-sided solar cells).
  • Another aspect of the present application also provides a photovoltaic module, including an encapsulating adhesive film, and the encapsulating adhesive film includes the adhesive film provided in the present application.
  • the above-mentioned adhesive film provided by the present application has good anti-PID performance, as well as good photoelectric conversion efficiency and packaging performance. Using it as the encapsulation film of photovoltaic modules is beneficial to greatly improve the power generation efficiency of photovoltaic modules.
  • the above-mentioned photovoltaic module is a double glass module.
  • Example 1 The difference from Example 1 is that the metal oxide is calcium oxide.
  • Example 1 The difference from Example 1 is that the metal oxide is zinc oxide.
  • Example 2 The difference from Example 1 is that 0.05 parts of alumina and 0.05 parts of calcium hydroxide are added.
  • Example 1 The difference from Example 1 is that the metal oxide is zirconium oxide.
  • Example 2 The difference from Example 1 is that 0.1 part of magnesium hydroxide is added.
  • Example 1 The difference from Example 1 is that the metal oxide is Al 2 O 3 doped with MgO.
  • Example 1 The difference from Example 1 is that the metal oxide is Al 2 O 3 doped with CaO/SiO 2 .
  • Example 2 The difference from Example 1 is that the metal oxide is Li 3 Ni 1.5 Mg 0.5 Sb 6 .
  • Example 2 The difference from Example 1 is that the amide organic substance is N,N-dimethylformamide.
  • Example 2 The difference from Example 1 is that the organic amide is N-(2-hydroxyethyl)-undec-10-enamide.
  • Example 1 The difference from Example 1 is that the ethylene copolymer is an ethylene-octene copolymer.
  • Example 1 The difference from Example 1 is that the ethylene copolymer is an ethylene-norbornene copolymer.
  • Example 1 The difference from Example 1 is that 0.01 parts of magnesium oxide and 1.5 parts of N,N'-dimethylacrylamide are added.
  • Example 1 The difference from Example 1 is that 3 parts of magnesium oxide and 1.5 parts of N,N'-dimethylacrylamide are added.
  • Example 1 The difference from Example 1 is that 12 parts of magnesium oxide and 0.03 parts of N,N'-dimethylacrylamide are added.
  • Example 2 The difference from Example 1 is that 20 parts of titanium dioxide are added to prepare a white anti-PID packaging material.
  • Example 17 The difference from Example 17 is that 10 parts of magnesium oxide are added to prepare a white anti-PID packaging material.
  • the adhesive film is a two-layer co-extruded adhesive film formed by the first adhesive film layer and the second adhesive film layer; wherein,
  • composition of the first film layer is as follows:
  • composition of the second film layer is as follows:
  • first adhesive film layer and the second adhesive film layer After mixing the above-mentioned first adhesive film layer and the second adhesive film layer with the resin and auxiliary agent composition, they are added to different extruders.
  • the extruded material of the first adhesive film layer and the extruded material of the second adhesive film layer are melted and plasticized respectively, and then injected into the same die, and merged in the T die to form a melt stream.
  • the film forming, cooling, slitting and winding process are used to prepare the double-layer composite photovoltaic encapsulation film EVA-POE.
  • the thickness of the first film layer of the package film is 0.2mm
  • the thickness of the second film layer is calculated by the distributor. 0.3mm.
  • the adhesive film is a three-layer co-extruded adhesive film formed by the first adhesive film layer, the second adhesive film layer and the third adhesive film layer; among them,
  • composition of the first film layer is as follows:
  • composition of the second film layer is as follows:
  • composition of the third film layer is as follows:
  • the extruded material of the first adhesive film layer, the extruded material of the second adhesive film layer, and the extruded material of the third adhesive film layer are melted and plasticized respectively and injected into the same die, and merged in the T die to form one Melt flow, through melt extrusion, casting film forming, cooling, slitting and winding, etc. to prepare double-layer composite photovoltaic encapsulation film EVA-POE-EVA.
  • the first film layer of the encapsulation film is calculated by the distributor.
  • the thickness of the third adhesive film layer is 0.1mm
  • the thickness of the second adhesive film layer is 0.2mm.
  • Example 1 The difference from Example 1 is that it does not contain metal oxides.
  • Example 1 The difference from Example 1 is that it does not contain amide organics.
  • Example 1 take 100 parts of ethylene-vinyl acetate (VA content 26%, DuPont, USA), and add 0.5 parts of crosslinking agent tert-butyl peroxycarbonate based on 100 parts of the above-mentioned base resin by mass Isopropyl ester, 0.5 part of co-crosslinking agent trimethylolpropane trimethacrylate, 1 part of tackifier vinyl triperoxide tert-butyl silane, 0.8 part of light stabilizer sebacic acid bis-2,2, 6,6-Tetramethylpiperidinol.
  • the mixture is uniformly mixed, and the above-mentioned mixture is pre-mixed, melt-extrusion, film-forming, cooling, slitting, and winding, etc., to prepare the packaging material.
  • a dispersion liquid of magnesium oxide was prepared with a concentration of 1.0 wt%.
  • a rotary encoder (rotation number 100 rpm) was used to spray a dispersion of magnesium oxide on the above-mentioned packaging material, and then dried at 120°C to evaporate the methanol solvent to obtain a packaging material with a magnesium oxide coating.
  • Examples 1 to 20 and Comparative Examples 1 to 3 were tested for adhesion and degree of crosslinking, and the lamination characteristics of the components were compared.
  • the glass/adhesive film (two layers)/flexible backplane of 300mm ⁇ 150mm was stacked in sequence and put into a vacuum laminator, and laminated according to a lamination process at 150°C for 18 minutes to produce a laminate.
  • the ratio of the mass that has not been dissolved in xylene to the initial mass is the degree of crosslinking. Take the arithmetic average of three samples, and the unit is %.
  • the module specification is 60 pieces ( 6 ⁇ 10) The format of the cell.
  • 100 modules were made for appearance evaluation. The evaluation criteria are based on the occurrence of bubbles, impurities, and delamination between the film and the cell or glass, as follows:
  • the double-sided battery was selected and tested in accordance with IECTS 2804-1:2015.
  • the test conditions were tightened to 85°C, 85% RH, and a constant negative 1500V DC voltage was applied. After 192h, the power attenuation before and after the PID test of the photovoltaic module was measured.
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.2 parts by mass of metal ion trapping agent phosphoric acid Zirconium (Acros reagent), 1 part of organic co-crosslinking agent ethoxytrimethylolpropane triacrylate (Sartomer Chemical Co., Ltd.), 0.6 part of crosslinking agent 2-ethylhexyl tert-butyl peroxide ( Arkema), 0.5 parts of tackifier ⁇ -methacryloxypropyltrimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2, 2,6,6-Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • the above-mentioned raw materials are pre-mixed, melt-extruded, cast into a film, cooled, slitted and rewinded to prepare a photovoltaic encapsulation film E-1 that is resistant to the module PID phenomenon.
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.2 parts by mass of metal ion trapping agent phosphoric acid Zirconium (Acros reagent), 0.1 part of organic co-crosslinking agent N,N'-methylenebisacrylamide (Bai Lingwei Chemical Co., Ltd.), 0.6 part of crosslinking agent 2-ethylhexyl carbonate tert-butyl peroxide (Arco Company), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2,2, 6,6-Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • a kind of anti-PID photovoltaic packaging material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.05 parts by mass of metal ion trapping agent phosphoric acid Zirconium (Acros reagent), 0.1 part of organic co-crosslinking agent N,N'-methylenebisacrylamide (Bai Lingwei Chemical Co., Ltd.), 0.6 part of crosslinking agent 2-ethylhexyl carbonate tert-butyl peroxide (Arco Company), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2,2, 6,6-Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • the above-mentioned raw materials are pre-mixed, melt-extruded, cast into a film, cooled, slitted and rolled to prepare a photovoltaic encapsulation film E-3 that is resistant to the PID phenomenon of the module.
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 1 part by mass of metal ion trapping agent phosphoric acid Zirconium (Acros reagent), 0.1 part of organic co-crosslinking agent N,N'-methylenebisacrylamide (Bai Lingwei Chemical Co., Ltd.), 0.6 part of crosslinking agent 2-ethylhexyl carbonate tert-butyl peroxide (Arco Company), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2,2, 6,6-Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.), 0.3 parts
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.2 parts by mass of metal ion trapping agent phosphoric acid Aluminum (Acros reagent), 0.1 parts of organic co-crosslinking agent N,N'-methylene bisacrylamide (Bai Lingwei Chemical Co., Ltd.), 0.6 parts of crosslinking agent 2-ethylhexyl tert-butyl peroxide (Arco Company), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2,2, 6,6-Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • the above-mentioned raw materials are pre-mixed, melted and extruded, cast into a film, cooled, slitted and rewinded to prepare a photovoltaic encapsulation film E-5 that is resistant to the PID phenomenon of the module.
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.2 parts by mass of metal ion trapping agent phosphoric acid Titanium (Acros reagent), 0.1 part of organic co-crosslinking agent trimethylolpropane triacrylate (Bai Lingwei Chemical Co., Ltd.), 0.6 part of crosslinking agent 2-ethylhexyl tert-butyl peroxide (Arkema) , 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2, 2, 6, 6 -Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • An anti-PID photovoltaic encapsulation material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.2 parts by mass of metal ion trapping agent phosphoric acid Bismuth (Acros reagent), 0.1 parts of organic co-crosslinking agent trimethylolpropane triacrylate (Bai Lingwei Chemical Co., Ltd.), 0.6 parts of crosslinking agent 2-ethylhexyl tert-butyl peroxide (Arkema) , 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer sebacic acid bis-2, 2, 6, 6 -Tetramethylpiperidinol ester (Tianjin Li'anlong Co., Ltd.).
  • the above-mentioned raw materials are pre-mixed, melt-extruded, cast into a film, cooled, slitted, and wound to prepare a photovoltaic encapsulation film E-8 that is resistant to the module PID phenomenon.
  • a conventional photovoltaic packaging material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC company, VA mass fraction is 28%), 0.6 parts of crosslinking agent peroxide 2- Ethylhexyl tert-butyl carbonate (Arkema), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), 1 part of triallyl iso Cyanurate (Evonik Degussa Co., Ltd.), 0.2 parts of hindered amine light stabilizer bis-2,2,6,6-tetramethylpiperidinol sebacate (Tianjin Li'anlong Co., Ltd.) , Prepare the photovoltaic encapsulation film C-1 by pre-mixing, melt-extrusion, casting into a film, cooling, slitting and winding the above-mentione
  • a kind of anti-PID photovoltaic packaging material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC Company, VA mass fraction is 28%), 0.05 parts of zirconium phosphate (Bai Lingwei Technology Co., Ltd.
  • a kind of anti-PID photovoltaic packaging material in parts by weight, its main raw materials are composed as follows: 100 parts of ethylene-vinyl acetate copolymer (Singapore TPC Company, VA mass fraction is 28%), 1 part of organic co-crosslinking agent three Hydroxymethyl propane triacrylate (Sartomer Chemical Co., Ltd.), 0.2 parts of hindered amine light stabilizer bis-2,2,6,6-tetramethylpiperidinol sebacate (Tianjin Li'anlong Co., Ltd.) Company), 0.6 parts of crosslinking agent 2-ethylhexyl tert-butyl carbonate (Arkema Company), 0.5 parts of tackifier ⁇ -methacryloxypropyl trimethoxysilane (Hubei Jingzhou Jianghan Fine Chemical Co., Ltd.), the above-mentioned raw materials are pre-mixed, melt-extrusion, film-casting, cooling, slitting and winding, etc.,
  • the light transmittance and PID tests were performed on the laminates prepared from the packaging materials of Examples 1 to 8 and Comparative Examples 1 to 3. After lamination, the thickness of the adhesive film of each embodiment and comparative example was 0.45nm, and the light transmittance was measured according to GB/T 2410-2008.
  • the EVA film obtained in the above examples and comparative examples and the P-type double-sided battery of Company A were made into double-sided double-glass modules by the same process.
  • the PID test of the photovoltaic module was tested according to IEC TS 2804-1:2015, and the test conditions were tightened to 85°C, 85% RH, plus a negative 1500V constant DC voltage, after 192h, the double-sided power attenuation of the photovoltaic module before and after the PID test was measured.
  • the test results are shown in Table 2.
  • Examples 1-8 the addition of organic co-crosslinking agent will not affect the light transmittance of the film, and as the amount of metal ion adsorbent increases, the light transmittance tends to decrease; when the metal ion capture agent When the amount is less than 1 part by mass, the light transmittance can be maintained above 90%, and the anti-PID effect is also good.
  • the attenuation power on both sides of the front side is controlled within 5% under the test conditions of -1500V, 196h, which meets actual needs.
  • Comparative Example 1 It can be seen from Comparative Example 1 that the photovoltaic encapsulation film that does not contain the metal ion trapping agent and the organic co-crosslinking agent exhibits a large module power attenuation. While the photovoltaic encapsulation film containing only zirconium phosphate (Comparative Example 2), although the anti-PID performance has been improved, the power attenuation on the back of the module still has 7.56%, and its anti-PID effect is not ideal.
  • the photovoltaic encapsulation film containing only the co-crosslinking agent trimethylolpropane triacrylate (Comparative Example 3), although the anti-PID performance is improved compared to C1 (Comparative Example 1), the power attenuation on the back of the module still exceeds 10 %, its anti-PID effect is not ideal.
  • the adhesive films prepared in each embodiment have good anti-PID performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)

Abstract

一种胶膜、抗PID封装胶膜、形成其的组合物、光伏组件及夹胶玻璃。该组合物包括:乙烯共聚物基体树脂、酰胺类有机物、金属氧化物和/或金属氢氧化物,金属氧化物选自氧化铝、氧化钙、氧化锌、氧化钡、氧化镁、氧化锆、氧化钛、氧化锡、氧化钒、氧化锑、氧化钽、氧化铌、层状过渡金属氧化物、或经过掺杂处理的ZnO掺杂Al 2O 3,CaO/SiO 2掺杂的Al 2O 3,MgO掺杂的Al 2O 3,SiO 2掺杂的ZrO 2,TiO 2掺杂的ZrO 2组成中的一种或多种,金属氢氧化物选自氢氧化钙、氢氧化镁、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化钡组成中的一种或多种。或者,所述组合物包括:基体树脂、金属离子捕获剂以及有机共交联剂。所述胶膜具有较好的抗PID效果、光电转化效率和封装性能。

Description

胶膜、抗PID封装胶膜、形成其的组合物、光伏组件及夹胶玻璃 技术领域
本发明涉及光电转化器件领域,具体而言,涉及一种胶膜、抗PID封装胶膜、形成其的组合物、光伏组件及夹胶玻璃。
背景技术
光电转化是指通过光伏效应将太阳能转化为电能。常用的能够实现上述光电转化过程的电子器件(光电转化器件)包括但不限于太阳能电池(如晶硅电池、非晶硅电池、碲化镉电池、铜铟镓锡电池、钙钛矿电池)、液晶面板、场致发光器件、等离子显示器件、传感器等,通常经过一层或多层聚合物材料的密封,该密封材料再和上下两个基板相粘接从而形成一个完整电子器件模块。例如晶硅太阳能电池组件,通常是按照前层玻璃基板、前密封层聚合物、晶硅电池、后密封层聚合物、后层玻璃基板或聚合物基板层叠好后,通过真空层压机加热加压后形成一个完整的太阳能组件。
PID效应(Potential Induced Degradation)又称电势诱导衰减,作为光伏组件效率衰减的重要方面,其产生机制通常与影响光伏组件功率衰减的其他因素交织在一起。由于光伏模块框架的电势与光伏模块中提供的太阳能电池的电势之间的差异而产生的泄漏电流导致光伏系统的整体性能下降,导致填充因子(FF)、短路电流(Isc)、开路电压(Voc)降低,严重时导致组件功率衰减达50%以上,造成发电量严重下降,影响整个光伏电站的收益。到目前为止,造成PID的真正原因并没有明确的定论,业界现普遍认为极化现象、Na离子迁移及电化学腐蚀这三个方面是造成电池PID的主要原因。PID机制主要如下:(1)水汽进入组件:潮湿、高温的环境容易产生水蒸气,水蒸气通过封边硅胶或背板进入组件内部;晶体硅光伏组件经过一晚,其表面会有凝露现象发生(特别是夏、秋季节的露水),会造成光伏系统在早晨太阳初升后的一段时间内,在其表面较为潮湿的情况下,玻璃当中的Na+离子从玻璃当中游离出来,并承受系统负偏置电压。2)水导致EVA(乙烯-醋酸乙烯共聚物)水解产生醋酸:EVA的酯键在遇到水后发生反应,生成可自由移动的醋酸。3)醋酸与玻璃表面析出的碱反应产生可以自由移动的Na+:可以自由移动的醋酸(CH 3COOH)和高温高湿情况下玻璃表面析出的碱反应后,产生了可以自由移动的Na+,Na+在电压作用下从玻璃向电池片表面移动,正离子移动的速度受胶膜、温度、湿度和电压的影响,钠离子扩散进入电池起到供应原子的作用,并富集到减反层。4)偏压的作用下,漏电流由电池片→EVA→玻璃表面→边框→支架,最终流向大地,输出功率衰减,PID现象产生,从而影响电池的光伏效应。
针对上述问题,业内通常有两种解决办法:第一种办法为采用硼硅玻璃以减少现有玻璃盖板中游离的钠、钙等金属离子,又或是采用POE薄膜(乙烯-辛烯共聚物薄膜)替代传统EVA薄膜(乙烯-醋酸乙烯共聚物薄膜),提高光伏组件的水汽阻隔性能,进而改善PID现象;第二 种方法为通过在玻璃盖板内侧设置介质膜层以阻挡离子朝电池迁移,以此削弱电势诱导衰减现象。
现有文献(专利CN105950039 A)提供了一种用于太阳能组件的抗PID的聚烯烃胶膜,用聚烯烃POE取代EVA作为封装材料,以提高胶膜的体积电阻率,但聚烯烃树脂原料价格较高,提高了组件的封装成本,并且POE的材料内聚能大,与玻璃的粘结力差,长期户外使用容易出现胶膜与玻璃的脱层。
另一篇现有文献(专利CN103421443 B)提供一种太阳能电池组件用封装胶膜,该封装胶膜包括聚烯烃阻隔层和位于阻隔层两侧的第一粘结层和第二粘结层(硅氧烷接枝聚合物与乙烯-α烯烃的组合物或硅氧烷接枝聚合物与EVA的组合物)。该封装胶膜由于硅氧烷接枝共聚物的引入可以解决胶膜与玻璃和电池片的粘结力差的问题,但该封装胶膜只能用于常规电池片组件的抗PID,对双面电池片组件的抗PID效果不理想。
此外,在封装材料生产工艺方面:美国DupontTM提出一种杜邦离子型聚合物的PID保护膜,该PID保护膜基于超过15年晶硅组件实验验证的离子型聚合物技术制备获得,厚度50μm左右。将其置于光伏玻璃与EVA封装胶膜之间能有效阻挡钠离子迁移到电池片的表面,彻底解决PID问题,但该材料价格较为昂贵,限制了其在市场上的推广和应用。
在电池片生产工艺方面,又一篇现有文献(CN104576826 B)还提供了一种电池片后处理方法,在铝背场表面制备不粘涂层,提高氮化硅薄膜的致密性,及后续高温退火工艺,提高电池片抗PID能力,但该方法提高了电池片的制作成本,不利于光伏组件节约降本。
基于上述问题,需要研发一种兼具低成本和抗PID性能的封装胶膜。
发明内容
本发明的主要目的在于提供一种胶膜、抗PID封装胶膜、形成其的组合物、光伏组件及夹胶玻璃,以解决现有的封装胶膜无法满足兼具低成本和抗PID性能的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种形成胶膜的组合物,该形成胶膜的组合物包括:乙烯共聚物基体树脂、酰胺类有机物、金属氧化物和/或金属氢氧化物,金属氧化物选自氧化铝、氧化钙、氧化锌、氧化钡、氧化镁、氧化锆、氧化钛、氧化锡、氧化钒、氧化锑、氧化钽、氧化铌、层状过渡金属氧化物、或经过掺杂处理的ZnO掺杂Al 2O 3,CaO/SiO 2掺杂的Al 2O 3和MgO掺杂的Al 2O 3,SiO 2掺杂的ZrO 2,TiO 2掺杂的ZrO 2组成中的一种或多种,所述金属氢氧化物选自氢氧化钙、氢氧化镁、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化钡组成中的一种或多种;或按重量份计,所述形成胶膜的组合物包括:100份基体树脂、0.01~5份金属离子捕获剂以及0.01~5份有机共交联剂。
进一步地,上述层状过渡金属氧化物为A 2M 12X 6或A 3M 2X 6,其中,A为Na或Li;M为+2价金属;X为Sb、Bi、Nb或Ru;优选地,层状过渡金属氧化物为Na 3Ni 2Sb 6和/或Li 3Ni 1.5Mg 0.5Sb 6
进一步地,酰胺类有机物具有式(Ⅰ)所示的结构,
Figure PCTCN2020109635-appb-000001
R 1为H、基团A、基团A中至少一个氢原子被羟基、氨基或环氧基取代形成的取代基或基团A中至少一个亚甲基被羰基或醚键取代形成的取代基,基团A为直链烷基、支链烷基或环烷基,且基团A的碳原子数≤10;R 2的碳原子数为2~20;R 2选自乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、十烯基、十一烯基、十二烯基、十四烯基、十六烯基或十八烯基。
进一步地,酰胺类有机物选自丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N,N’-二甲基丙烯酰胺、N-异丙基丙烯酰胺、N-叔丁基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、N-(2-羟基丙基)丙烯酰胺、N,N’-亚甲基双丙烯酰胺、马来酰亚胺、油酸酰胺、9-十六碳烯酰胺、N-(2-羟基乙基)-十一碳-10-烯酰胺、9-十四碳烯酰胺、9-十二碳烯酰胺、9-十碳烯酰胺、辛烯酰胺、庚烯酰胺、己烯酰胺、戊烯酰胺、丁烯酰胺组成的组中的一种或多种。
进一步地,乙烯共聚物基体树脂的熔融指数为0.5~45g/10min,优选为3~20g/10min,更优选为5~10g/10min。
进一步地,乙烯共聚物基体树脂选自乙烯-极性单体共聚物、乙烯-α-烯烃共聚物和乙烯-环烯烃共聚物组成的组中的一种或多种。
进一步地,乙烯共聚物基体树脂为乙烯-极性单体共聚物,且形成乙烯-极性单体共聚物所需的极性单体选自不饱和羧酸、不饱和酸酐、不饱和羧酸盐、不饱和羧酸酯、不饱和羧酸形成的酰胺、乙烯基酯、一氧化碳或二氧化硫;优选地,不饱和羧酸选自丙烯酸、甲基丙烯酸、富马酸或衣康酸;优选地,不饱和酸酐选自马来酸酐或衣康酸酐;优选地,不饱和羧酸盐选自以下几种羧酸形成的锂盐、钠盐、钾盐、镁盐、钙盐或锌盐:丙烯酸、甲基丙烯酸、富马酸、衣康酸、马来酸酐或衣康酸酐;优选地,不饱和羧酸酯选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、丙烯酸正丁酯、丙烯酸异辛酯、甲基丙烯酸乙酯,甲基丙烯酸异丁酯、马来酸二甲酯、乙酸乙烯酯、乙烯基酯、丙酸乙烯酯、马来酸单甲酯和马来酸单乙酯组成的组中的一种或多种。
进一步地,乙烯共聚物基体树脂为乙烯-α-烯烃共聚物,且乙烯-α-烯烃共聚物为乙烯与至少一种碳原子数小于10的α-烯烃的共聚物;优选地,碳原子数小于10的α-烯烃选自丙烯、1-丁烯、1-己烯、1-戊烯、1-辛烯或4-甲基-1-戊烯。
进一步地,乙烯共聚物基体树脂为乙烯-环烯烃共聚物,形成乙烯-环烯烃共聚物的环烯烃选自环戊烯、降冰片烯、乙烯基降冰片烯或乙叉降冰片烯中的一种或多种。
进一步地,按重量份计,形成胶膜的组合物包括100份乙烯共聚物基体树脂、0.05~1.5酰胺类有机物、0.01~10份金属氧化物和/或0.01~10份金属氢氧化物和;优选地,按重量份计,所述形成胶膜的组合物包括100份乙烯共聚物基体树脂、0.05~1.5酰胺类有机物、0.01~3份金属氧化物和/或0.01~3份金属氢氧化物。
进一步地,形成胶膜的组合物还包括有机过氧化物、助交联剂、光稳定剂、紫外光吸收剂、增粘剂、抗氧剂和颜料组成的组中的一种或多种;优选地,以100重量份乙烯共聚物基体树脂计,组合物还包括0.01~3重量份的交联剂,0.01~10重量份的助交联剂,0~1.0重量份的光稳定剂,0~0.4重量份的紫外光吸收剂,0~3.0重量份的增粘剂,0~0.5重量份的抗氧剂和0~40份颜料。
进一步地,按重量份计,所述形成胶膜的组合物包括:100份所述基体树脂、0.05~1份所述金属离子捕获剂以及0.1~1份所述有机共交联剂。
进一步地,按重量份计,所述形成胶膜的组合物包括:100份所述基体树脂、0.05~0.5份所述金属离子捕获剂以及0.1~1份所述有机共交联剂。
进一步地,金属离子捕获剂选自硅铝酸盐、水合氧化物、多价金属酸性盐、金属磷酸盐、五价金属氧化物、六价金属氧化物、7价金属氧化物、黄元酸类有机物和二硫代胺基甲酸盐类有机物中的一种或多种;优选地,所述金属离子捕获剂选自磷酸铝、磷酸钛、磷酸锡、磷酸锆和磷酸铋中的一种或多种。
进一步地,有机共交联剂选自多官能团丙烯酸酯类化合物和/或(甲基)丙烯酰胺化合物;优选地,所述多官能团丙烯酸酯类化合物选自三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯和乙氧化三羟甲基丙烷三丙烯酸酯中的一种或多种;优选地,所述(甲基)丙烯酰胺化合物选自N,N’-亚甲基双丙烯酰胺、N,N’-乙烯基双丙烯酰胺和N-丙基丙烯酰胺中的一种或多种。
进一步地,基体树脂选自乙烯醋酸乙烯共聚物、低密度聚乙烯、聚丙烯、聚丁烯、聚乙烯醇缩丁醛、茂金属催化聚乙烯、乙烯辛烯共聚物、乙烯戊烯共聚物、乙烯丙烯酸甲酯共聚物和乙烯甲基丙烯酸甲酯共聚物中的一种或多种。
进一步地,按重量份计,所述形成胶膜的组合物还包括0.5~5份助剂,所述助剂选自过氧化物类交联剂、抗氧剂、受阻胺类光稳定剂、紫外光吸收剂和增粘剂中的一种或多种。
本申请的另一方面还提供了一种胶膜,该胶膜为单层胶膜或多层共挤胶膜,且上述单层胶膜或上述多层胶膜中的至少一层以上述形成胶膜的组合物为原料经熔融挤出工艺制得。
本申请的另一方面还提供了一种抗PID封装胶膜,该抗PID封装胶膜采用上述形成胶膜的组合物为原料制得。
本申请的又一方面还提供了一种光伏组件,包括封装胶膜,该封装胶膜包括至少一层上述胶膜。
进一步地,上述光伏组件为双玻组件。
本申请的再一方面还提供了一种夹胶玻璃,至少两个玻璃层和设置在相邻玻璃层之间的有机聚合物中间膜,有机聚合物中间膜包括至少一层上述胶膜。应用本发明的技术方案,乙烯共聚物基体树脂作为形成胶膜的基体树脂具有良好的柔韧性和光透过率,因而选用其作为形成胶膜的基体树脂有利于提高胶膜的光电转换效率和封装性能。
应用本发明的技术方案,金属氧化物和/或金属氢氧化物的加入可以提高乙烯共聚物基体树脂的初始电动势,在电场环境下束缚固定金属离子,形成带正电荷的金属氧化物或金属氢氧化物,降低了光伏组件中金属离子的运动动力,减少了光伏组件中金属离子;同时部分金属氧化物(如氧化钙、氧化锌)还可以和组件中的水发生化学反应,氢氧化钙可以物理吸附水,减少组件中的水汽,抑制EVA分解产生醋酸,同时此类金属氧化物和/或金属氢氧化物也可以与EVA分解产生的醋酸反应,减少体系中与玻璃中硅酸钠反应的酸,进而减少了体系中钠离子的生成;因而本申请所述的金属氧化物和/或金属氢氧化物的加入可以长期抑制PID现象。
层状过渡金属氧化物和经过掺杂处理的金属氧化物均具有一定的嵌钠反应能力,通过取代或掺杂很容易抑制Na-空位有序性引起的相变,构建适合钠离子嵌入反应的蜂窝有序氧化物稳定结构使得X均匀地稳定层状骨架结构减少光伏组件中游离的钠离子,实现抗PID的效果。
酰胺类化合物含有阳性基因(-CONH-),能与分散于光伏组件中的悬浮粒子吸附和架桥,对带正电荷的金属氧化物或金属氢氧化物有着极强的絮凝作用,能够形成电中性的稳定体系,进一步减少光伏组件中的金属离子。同时酰胺类化合物可以提高胶膜的交联密度,这一方面可以提高胶膜中的离子阻隔性,阻碍钠离子的迁移,另一方面可以提高胶膜的水汽阻隔性,减少组件中的水汽,抑制EVA的水解,减少体系中与玻璃中硅酸钠反映的酸,减少钠离子的生成。
在上述酰胺类有机物和上述金属氧化物和/或金属氢氧化物和的相互协同作用下,可以大大提高胶膜的抗PID效果。综上所述,采用上述组合物形成的胶膜具有长期有效的抗PID性能,同时还具有良好的光电转化效率和封装性能。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有的封装胶膜无法满足兼具低成本和抗PID性能的问题。为了解决上述技术问题,本申请的一种典型的实施方式提供了一种形成胶膜的组合物,该形成胶膜的组合物包括:乙烯共聚物基体树脂、酰胺类有机物、金属氧化物和/或金属氢氧化物,金属氧化物选自氧化铝、氧化钙、氧化锌、氧化钡、氧化镁、氧化锆、氧化钛、氧化锡、氧化钒、氧化锑、氧化钽、氧化铌、层状过渡金属氧化物、或经过掺杂处理的ZnO掺杂Al 2O 3,CaO/SiO 2掺杂的Al 2O 3和MgO掺杂的Al 2O 3,SiO 2掺杂的ZrO 2,TiO 2掺杂的ZrO 2组成中的一种或多种,金属氢氧化物选自氢氧化钙、氢氧化镁、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化钡组成中的一种或多种。
乙烯共聚物基体树脂作为形成胶膜的基体树脂具有良好的柔韧性和光透过率,因而选用其作为形成胶膜的基体树脂有利于提高胶膜的光电转换效率和封装性能。金属氧化物和/或金属氢氧化物的加入可以提高乙烯共聚物基体树脂的初始电动势,在电场环境下束缚固定金属离子,形成带正电荷的金属氧化物或金属氢氧化物,降低了光伏组件中金属离子的运动动力,减少了光伏组件中金属离子;同时部分金属氧化物(如氧化钙、氧化锌)还可以和组件中的水发生化学反应,氢氧化钙可以物理吸附水,减少组件中的水汽,抑制EVA分解产生醋酸,同时此类金属氧化物和/或金属氢氧化物也可以与EVA分解产生的醋酸反应,减少体系中与玻璃中硅酸钠反应的酸,进而减少了体系中钠离子的生成;因而本申请所述的金属氧化物和/或金属氢氧化物的加入可以长期抑制PID现象。此外层状过渡金属氧化物和经过掺杂处理的金属氧化物均具有一定的嵌钠反应能力,通过取代或掺杂很容易抑制Na-空位有序性引起的相变,构建适合钠离子嵌入反应的蜂窝有序氧化物稳定结构使得X均匀地稳定层状骨架结构减少光伏组件中游离的钠离子,实现抗PID的效果。酰胺类化合物含有阳性基因(-CONH-),能与分散于光伏组件中的悬浮粒子吸附和架桥,对带正电荷的金属氧化物或金属氢氧化物有着极强的絮凝作用,能够形成电中性的稳定体系,进一步减少光伏组件中的金属离子。同时酰胺类化合物可以提高胶膜的交联密度,这一方面可以提高胶膜中的离子阻隔性,阻碍钠离子的迁移,另一方面可以提高胶膜的水汽阻隔性,减少组件中的水汽,抑制EVA的水解,减少体系中与玻璃中硅酸钠反映的酸,减少钠离子的生成。在上述酰胺类有机物和上述金属氧化物和/或金属氢氧化物和的相互协同作用下,可以大大提高胶膜的抗PID效果。综上所述,采用上述组合物形成的胶膜具有长期有效的抗PID性能,同时还具有良好的光电转化效率和封装性能。同时胶膜的制备工艺简单,能够大大降低工艺成本。
优选地,上述层状过渡金属氧化物为A 2M 12X 6或A 3M 2X 6,其中,A为Na或Li;M为+2价金属;X为Sb、Bi、Nb或Ru,上述层状过渡金属氧化物的结构中M作为活性中心,实现钠离子的嵌脱;X作为惰性组分,可以稳定晶体结构;且M与X的蜂窝具有有序性,这使得X形成均匀地稳定层状骨架结构。相比于其它层状过渡金属氧化物,上述组成的层状过渡金属氧化物还具有更加均匀和稳定的层状骨架,因而选用其作为本申请所需的金属氧化物有利于进一步提高其抗PID性能。更优选地,上述层状过渡金属氧化物为Na 3Ni 2Sb 6和/或Li 3Ni 1.5Mg 0.5Sb 6
在一种优选的实施例中,上述酰胺类有机物具有式(Ⅰ)所示的结构,
Figure PCTCN2020109635-appb-000002
R 1为H、基团A、基团A中至少一个氢原子被羟基、氨基或环氧基取代形成的取代基或基团A中至少一个亚甲基被羰基或醚键取代形成的取代基,基团A为直链烷基、支链烷基或环烷基,且基团A的碳原子数≤10;R 2为直链烷基、支链烷基、环烷基或烯基,且R 2的碳原子数为2~20;金属氧化物能够与水反应生成碱。
相比于烷基,当R 2为烯基时,R 2能够与基体树脂进行反应,从而能够进一步提高胶膜的交联度,这有利于进一步提高胶膜的抗PID性能。在一种优选的实施例中,R 2包括但不限于乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、十烯基、十一烯基、十二烯基、十四烯基、十六烯基或十八烯基。更优选地,酰胺类有机物选自丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N-异丙基丙烯酰胺、N-叔丁基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、N-(2-羟基丙基)丙烯酰胺、N,N’-亚甲基双丙烯酰胺、马来酰亚胺、油酸酰胺、9-十六碳烯酰胺、N-(2-羟基乙基)-十一碳-10-烯酰胺、9-十四碳烯酰胺、9-十二碳烯酰胺、9-十碳烯酰胺、辛烯酰胺、庚烯酰胺、己烯酰胺、戊烯酰胺、丁烯酰胺组成的组中的一种或多种。
若共聚物的密度过高,则有可能影响胶膜的透光率;若密度过低,则有可能乙烯共聚物基体树脂发粘,影响加工性能。为了兼具胶膜的透光率和加工性能,优选地,乙烯共聚物基体树脂的熔融指数为0.5~45g/10min,优选为3~20g/10min,更优选为5~10g/10min。
上述形成胶膜的组合物中,乙烯共聚物基体树脂可以选用本领域常用的种类。在一种优选的实施例中,乙烯共聚物基体树脂包括但不限于乙烯-极性单体共聚物、乙烯-α-烯烃共聚物和乙烯-环烯烃共聚物组成的组中的一种或多种。
在一种优选的实施例中,乙烯共聚物基体树脂为乙烯-极性单体共聚物,且形成乙烯-极性单体共聚物所需的极性单体包括但不限于不饱和羧酸、不饱和酸酐、不饱和羧酸盐、不饱和羧酸酯、不饱和羧酸形成的酰胺、乙烯基酯、一氧化碳或二氧化硫。采用上述极性单体与乙烯聚合形成乙烯共聚物基体树脂能够提高其极性,这有利于大大提高其形成的胶膜的表面性能、粘附力,并改善其加工性能。
优选地,不饱和羧酸选自丙烯酸、甲基丙烯酸、富马酸或衣康酸;优选地,不饱和酸酐选自马来酸酐或衣康酸酐;优选地,不饱和羧酸盐选自以下几种羧酸形成的锂盐、钠盐、钾盐、镁盐、钙盐或锌盐:丙烯酸、甲基丙烯酸、富马酸、衣康酸、马来酸酐或衣康酸酐;优选地,不饱和羧酸酯选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、丙烯酸正丁酯、丙烯酸异辛酯、甲基丙烯酸乙酯,甲基丙烯酸异丁酯、马来酸二甲酯、乙酸乙烯酯、乙烯基酯、丙酸乙烯酯、马来酸单甲酯和马来酸单乙酯组成的组中的一种或多种。
在一种优选的实施例中,乙烯共聚物基体树脂为乙烯-α-烯烃共聚物,且乙烯-α-烯烃共聚物为乙烯与至少一种碳原子数小于10的α-烯烃的共聚物。乙烯-α烯烃共聚物具有更优异的水汽阻隔性能,较高的绝缘性能和较高的透光性,将其作为胶膜的基体树脂有利于进一步提高胶膜的水汽阻隔性能、绝缘性和透光率。更优选地,碳原子数小于10的α-烯烃选自丙烯、1-丁烯、1-己烯、1-戊烯、1-辛烯或4-甲基-1-戊烯。
在一种优选的实施例中,乙烯共聚物基体树脂为乙烯-环烯烃共聚物,形成乙烯-环烯烃共聚物的环烯烃选自环戊烯、降冰片烯、乙烯基降冰片烯或乙叉降冰片烯中的一种或多种。乙烯-环烯烃共聚物的紫外透光性好、尺寸稳定性好、易加工,乙烯-环烯烃共聚物本身属于非极性树脂,因此对水等极性溶剂具有高阻隔性,这有利于进一步提高上述组合物形成胶膜的抗PID性能。
在形成胶膜的组合物中加入金属氧化物和/或金属氢氧化物和酰胺类有机物有利于大大提高胶膜的抗PID性能。在一种优选的实施例中,按重量份计,上述形成胶膜的组合物包括100份乙烯共聚物基体树脂、0.05~1.5酰胺类有机物、0.01~10份金属氧化物和/或0.01~10份金属氢氧化物。形成胶膜组合物中各组分的用量包括但不限于上述范围,而将其限定在上述范围内能够充分发挥各组分之间的协同作用,从而有利于进一步提高胶膜的抗PID性能等综合性能。更优选地,按重量份计,形成胶膜的组合物包括100份乙烯共聚物基体树脂、0.05~1.5酰胺类有机物、0.01~3份金属氧化物和/或0.01~3份金属氢氧化物。
为了进一步提高上述组合物形成的胶膜的综合性能,在一种优选的实施例中,上述形成胶膜的组合物还包括有机过氧化物、助交联剂、光稳定剂、紫外光吸收剂、增粘剂、抗氧剂和颜料组成的组中的一种或多种。交联剂和助交联剂的加入均有利于提高层压过程中共挤胶膜的交联程度,使其具有产品性能稳定不易分层,且机械性能和阻隔性能好等优点,从而有利于进一步提高其应用过程中的发电效率。光稳定剂和紫外光吸收剂及抗氧剂的加入有利于提高共挤胶膜的抗老化和抗氧化性能,从而有利于提高其使用寿命。增粘剂的加入有利于提高胶膜的粘附性能,从而有利于提高其抗剥离强度。颜料的加入能够满足不同使用用途的需要。更优选地,以100份质量的上述基体树脂为基准,上述形成胶膜的组合物还包括0.01~3重量份交联剂、0.01~10重量份助交联剂、0~1.0重量份的光稳定剂,0~0.4重量份的紫外光吸收剂,0~3.0重量份的增粘剂,0~0.5重量份的抗氧剂和0~40份颜料。
交联剂是具有多个烯属不饱和基团的分子,可以促进聚合物交联,达到更高的交联度。上述组合物中交联剂可以选用本领域常用的种类,优选地,交联剂包括但不限于叔丁基过氧化碳酸异丙酯、2,5-二甲基-2,5-(双叔丁过氧基)己烷、叔丁基过氧化碳酸-2-乙基己酯、1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)-3,3,5-三甲基环己烷、1,1-双(叔戊基过氧)环己烷、1,1-双(叔丁基过氧)环己烷、2,2-双(叔丁基过氧)丁烷、过氧化2-乙基己基碳酸叔戊酯、2,5-二甲基2,5-二甲基2,5-二甲基2,5-双(苯甲酰过氧)-己烷、过氧化碳酸叔戊酯、过氧化3,3,5三甲基己酸叔丁酯组成的组中的一种或多种。
在一种优选的实施例中,助交联剂包括但不限于三烯丙基异氰尿酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、季戊四醇三丙烯酸酯、三(2-羟乙基)异氰脲酸三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、丙氧化三羟甲基丙烷三丙烯酸酯、乙氧化甘油三丙烯酸酯、丙氧化甘油三丙烯酸酯、季戊四醇四丙烯酸酯、乙氧化季戊四醇四丙烯酸酯、三羟甲基丙烷四丙烯酸酯、双三羟甲基丙烷四丙烯酸酯、双三羟甲基丙烷四甲基丙烯酸酯、丙氧化季戊四醇四丙烯酸酯、2,4,6-三(2-丙烯基氧基)-1,3,5-三嗪、三环葵烷二甲醇二丙烯酸酯、丙氧化新戊二醇二丙烯酸酯、乙氧化双酚A二丙烯酸酯、乙氧化双酚A二甲基丙烯酸酯、2-丁基-2-乙基-1,3-丙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯和聚乙二醇二甲基丙烯酸酯组成的组中的一种或多种。
抗氧剂用来提高聚合物挤出加工过程,以及长期、使用过程中的稳定性,延缓因为热氧的作用下而发生降解。在一种优选的实施例中,抗氧剂为受阻酚系化合物和/或亚磷酸酯系化合物。相比于其它抗氧剂,上述抗氧剂具有较好的稳定性和抗氧化性能。更优选地,受阻酚系化合物包括但不限于2,6-二-叔丁基-4-乙基苯酚、2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)、2,2’-亚甲基-双-(4-乙基-6-叔丁基苯酚)、4,4’-亚丁基-双-(3-甲基-6-叔丁基苯酚)、十八烷基-3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯、季戊四醇-四[3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯]、7-十八烷基-3-(4’-羟基-3’,5’-二-叔丁基苯基)丙酸酯、四-[亚甲基-3-(3’,5’-二-叔丁基-4’-羟基苯基)丙酸酯]甲烷组成的组中的一种或多种;亚磷酸酯系化合物包括但不限于三(2,4-二-叔丁基苯基)亚磷酸酯、双[2,4-双(1,1-二甲基乙基)-6-甲基苯基]乙基酯亚磷酸、四(2,4-二-叔丁基苯基)[1,1-连苯基]-4,4’-二基双亚磷酸酯和双(2,4-二-叔丁基苯基)季戊四醇二亚磷酸酯组成的组中的一种或多种。
紫外光吸收剂是指能够在吸收大部分的紫外线能量,转换成热量的物质,从而保护某些电子器件不被紫外线所破坏。在一种优选的实施例中,上述紫外光吸收剂包括但不限于二苯甲酮类和/或苯并三唑类物质,更优选地,紫外光吸收剂包括但不限于2-羟基-4-正辛氧基二苯甲酮、2,2-四亚甲基双(3,1-苯并噁嗪-4-酮)、2-(2’-羟基-5-甲基苯基)苯并三唑、2,2’-二羟基-4,4’-二甲氧基二苯甲酮组成的组中的一种或多种。
光稳定剂是用来提高封装胶膜在长期紫外线辐照下的稳定性。优选地,光稳定剂为受阻胺系化合物。在一种优选的实施例中,光稳定剂包括但不限于双(2,2,6,6-四甲基-4-哌啶基)葵二酸酯、双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)葵二酸酯、4-(甲基)丙烯酰氧基-2,2,6,6-四甲基哌啶与α-烯类单体聚合得到的接枝共聚物、4-羟基-2,2,6,6-四甲基-1-哌啶醇、3,5-二叔丁基-4-羟基-苯甲酸十六烷基酯、葵二酸双-2,2,6,6-四甲基哌啶醇和三(1,2,2,6,6-五甲基-4-哌啶基)亚磷酸酯组成的组中的一种或多种。
增粘剂加入可以提高胶膜的粘剂性能。在一种优选的实施例中,增粘剂包括但不限于γ-氨丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、乙烯基三甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲基硅烷、3-氨丙基三甲基硅烷组成的组中的一种或多种。
颜料的加入可以根据客户需求满足不同的应用场景。在一种优选的实施例中,颜料包括但不限于由以下物质中的一种或多种按照任意配比混合组成:碳酸钙、硫酸钡、滑石粉、钛白粉、氧化锌、炭黑、石墨烯、氧化石墨烯、铜铬黑、氢氧化镁、氢氧化铝、氧化铝、氧化镁、氮化硼、碳化硅、磷酸铵、聚磷酸铵、季戊四醇、双季戊四醇、多季戊四醇酯、聚磷酸三聚氰胺硼酸盐组成的组中的一种或多种。
本申请的另一方面还提供了一种胶膜,本申请的胶膜为单层胶膜或多层胶膜,且上述单层胶膜或多层胶膜中的至少一层以上述形成胶膜的组合物为原料经熔融挤出工艺制得的。
乙烯共聚物基体树脂作为形成胶膜的基体树脂具有良好的柔韧性和光透过率,因而选用其作为形成胶膜的基体树脂有利于提高胶膜的光电转换效率和封装性能。在酰胺类有机物和上述金属氧化物和/或金属氢氧化物和的相互协同作用下,可以大大提高胶膜的抗PID效果。综上所述,采用上述组合物形成的胶膜具有长期有效的抗PID性能,同时还具有良好的光电转化效率和封装性能。
本申请的又一方面还提供了一种夹胶玻璃,包括有至少两个玻璃层和设置在相邻玻璃层之间的有机聚合物中间膜,该有机聚合物中间膜包括至少一层本申请提供的上述胶膜。
本申请提供的上述胶膜具有较好的封装性能和阻隔性能,将其作为夹胶玻璃中的有机聚合物中间膜有利于大大提高夹胶玻璃的层压性能和阻隔性能。
本申请的另一种优选的实施方式中提供了一种用于形成抗PID封装胶膜的组合物,按重量份计,该组合物包括:100份基体树脂、0.01~5份金属离子捕获剂以及0.01~5份有机共交联剂。
上述用于形成抗PID封装胶膜的组合物中,金属离子捕获剂的加入可捕获金属阳离子,从而降低游离金属离子的浓度;同时有机共交联剂的加入可以提高封装胶膜的交联密度,增加封装胶膜的阻隔性能,从而增强封装胶膜对金属离子的阻隔作用,降低了金属离子迁移到电池片表面的速度。在基体树脂中加入上述两种组分,同时将三种组分的用量限定在上述范围内,一方面能够通过金属离子捕获剂和有机共交联剂的协同作用有效降低光伏组件(尤其是双面电池)中PID现象的发生,另一方面还能提高三种组分的相容性,进而提高其形成的封装膜的均匀性和性能稳定性。同时胶膜的制备工艺简单,能够大大降低工艺成本。
为了进一步提高上述组合物形成的封装膜的性能稳定性,并降低光伏组件(尤其是双面电池)中PID现象的发生几率,在一种优选的实施例中,按重量份计,组合物包括:100份基体树脂、0.05~1份金属离子捕获剂以及0.1~1份有机共交联剂。更优选地,按重量份计,上述组合物包括:100份基体树脂、0.05~0.5份金属离子捕获剂以及0.1~1份有机共交联剂。
上述金属离子捕获剂可以选用本领域常用的种类,金属离子捕获剂包括但不限于硅铝酸盐、水合氧化物、多价金属酸性盐、金属磷酸盐、五价金属氧化物、六价金属氧化物、7价金属氧化物、黄元酸类有机物和二硫代胺基甲酸盐类有机物中的一种或多种。为了进一步提高 金属离子捕获剂对金属阳离子的捕获性能,在一种优选的实施例中,金属离子捕获剂包括但不限于磷酸铝、磷酸钛、磷酸锡、磷酸锆和磷酸铋中的一种或多种。
上述有机共交联剂可以选用本领域常用的种类,如多官能团丙烯酸酯类化合物和/或(甲基)丙烯酰胺化合物。在一种优选的实施例中,多官能团丙烯酸酯类化合物包括但不限于三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯和乙氧化三羟甲基丙烷三丙烯酸酯中的一种或多种。在一种优选的实施例中,(甲基)丙烯酰胺化合物包括但不限于N,N’-亚甲基双丙烯酰胺、N,N’-乙烯基双丙烯酰胺和N-丙基丙烯酰胺中的一种或多种。相比于其它有机交联剂,上述几种有机交联剂能够进一步地提高封装胶膜的交联密度,增加封装胶膜的阻隔性能,从而进一步增强封装胶膜对金属离子的阻隔作用,降低了金属离子迁移到电池片表面的速度。
在一种优选的实施例中,上述基体树脂包括但不限于乙烯醋酸乙烯共聚物、低密度聚乙烯、聚丙烯、聚丁烯、聚乙烯醇缩丁醛、茂金属催化聚乙烯、乙烯辛烯共聚物、乙烯戊烯共聚物、乙烯丙烯酸甲酯共聚物和乙烯甲基丙烯酸甲酯共聚物中的一种或多种。相比于其它树脂,采用上述基体树脂有利于进一步提高其形成的封装胶膜的均匀性和性能稳定性。
为了进一步提高上述封装胶的综合性能,在一种优选的实施例中,按重量份计,上述组合物还包括0.5~5份助剂,助剂选自过氧化物类交联剂、抗氧剂、受阻胺类光稳定剂、紫外光吸收剂和增粘剂中的一种或多种。
上述封装胶膜可以采用本领域常用的方法制得。本申请的另一方面还提供了一种优选的封装胶膜的制备方法,其包括:以上述形成抗PID封装胶膜的组合物为原料,经熔融挤出及压延,得到所需的封装胶膜。
本申请的另一方面还提供了一种抗PID封装胶膜,该抗PID封装胶膜采用上述组合物为原料制得。
上述用于形成抗PID封装胶膜的组合物中,金属离子捕获剂的加入可捕获金属阳离子,从而降低游离金属离子的浓度;同时有机共交联剂的加入可以提高封装胶膜的交联密度,增加封装胶膜的阻隔性能,从而增强封装胶膜对金属离子的阻隔作用,降低了金属离子迁移到电池片表面的速度。在基体树脂中加入上述两种组分,同时将三种组分的用量限定在上述范围内,一方面能够通过金属离子捕获剂和有机共交联剂的协同作用有效降低光伏组件(尤其是双面电池)中PID现象的发生,另一方面还能提高三种组分的相容性,进而提高其形成的封装膜的均匀性和性能稳定性。在此基础上,以上述组合物为原料制得的封装胶膜应用于太阳能组件(尤其是双面太阳能电池)时能够有效降低PID现象的发生几率。
本申请的又一方面还提供了一种光伏组件,包括封装胶膜,封装胶膜包括本申请提供的胶膜。
本申请提供的上述胶膜具有较好的抗PID性能,同时还具有良好的光电转化效率和封装性能。将其作为光伏组件的封装胶膜有利于大大提高光伏组件的发电效率。优选地,上述光伏组件为双玻组件。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
关于第一实施方式的的实施例:
实施例1
取100份的乙烯-乙酸乙烯酯(VA含量26%,美国杜邦),以100份重量的上述基体树脂为基准,加入0.1份氧化镁,1份N,N’-二甲基丙烯酰胺,0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。混合均匀,上述混合物经预混合、熔融挤出、流延成膜、冷却、分切和收卷等工序,制得所述抗PID封装材料。
实施例2
与实施例1的区别为:金属氧化物为氧化钙。
实施例3
与实施例1的区别为:金属氧化物为氧化锌。
实施例4
与实施例1的区别为:加入0.05份氧化铝和0.05份氢氧化钙。
实施例5
与实施例1的区别为:金属氧化物为氧化锆。
实施例6
与实施例1的区别为:加入0.1份氢氧化镁。
实施例7
与实施例1的区别为:金属氧化物为MgO掺杂的Al 2O 3
实施例8
与实施例1的区别为:金属氧化物为CaO/SiO 2掺杂的Al 2O 3
实施例9
与实施例1的区别为:金属氧化物为Li 3Ni 1.5Mg 0.5Sb 6
实施例10
与实施例1的区别为:酰胺类有机物为N,N-二甲基甲酰胺。
实施例11
与实施例1的区别为:酰胺类有机物为N-(2羟基乙基)-十一碳-10-烯酰胺。
实施例12
与实施例1的区别为:乙烯共聚物为乙烯-辛烯共聚物。
实施例13
与实施例1的区别为:乙烯共聚物为乙烯-降冰片烯共聚物。
实施例14
与实施例1的区别为:加入0.01份氧化镁,1.5份N,N’-二甲基丙烯酰胺。
实施例15
与实施例1的区别为:加入3份氧化镁,1.5份N,N’-二甲基丙烯酰胺。
实施例16
与实施例1的区别为:加入12份氧化镁,0.03份N,N’-二甲基丙烯酰胺。
实施例17
与实施例1的区别为:加入20份钛白粉,制得白色抗PID封装材料。
实施例18
与实施例17的区别为:加入10份氧化镁,制得白色抗PID封装材料。
实施例19
胶膜为第一胶膜层和第二胶膜层形成的双层共挤胶膜;其中,
第一胶膜层的组成如下:
取100份的乙烯-乙酸乙烯酯(VA含量26%,美国杜邦),以100份重量的上述基体树脂为基准,加入0.1份氧化镁,1份N,N’-二甲基丙烯酰胺,0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇;
第二胶膜层的组成如下:
取100份的乙烯-辛烯共聚物,以100份重量的上述基体树脂为基准,加入0.1份氧化镁,1份N,N’-二甲基丙烯酰胺,0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。
将上述第一胶膜层与第二胶膜层的树脂与助剂的组合物混匀后,加入不同的挤出机。所述第一胶膜层的挤出物料、第二胶膜层的挤出物料分别熔融塑化后注入同一模头中,在T模头内合并形成一个熔体流,经过熔融挤出、流延成膜、冷却、分切和收卷等工序制备双层复合光伏封装胶膜EVA-POE,通过分配器计算所得封装胶膜第一胶膜层厚度为0.2mm,第二胶膜层厚度为0.3mm。
实施例20
胶膜为第一胶膜层、第二胶膜层及第三胶膜层形成的三层共挤胶膜;其中,
第一胶膜层的组成如下:
取100份的乙烯-乙酸乙烯酯(VA含量26%,美国杜邦),以100份重量的上述基体树脂为基准,加入0.1份氧化钙,1份N-(2-羟基乙基)-十一碳-10-烯酰胺,0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。
第二胶膜层的组成如下:
取100份的乙烯-辛烯共聚物,以100份重量的上述基体树脂为基准,加入0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。
第三胶膜层的组成如下:
取100份的乙烯-乙酸乙烯酯(VA含量28%,美国杜邦),以100份重量的上述基体树脂为基准,加入3份氧化镁,1份N-(2-羟基乙基)-十一碳-10-烯酰胺,0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。
将上述第一胶膜层、第二胶膜层的树脂和第三胶膜层的树脂与助剂的组合物混匀后,加入不同的挤出机。所述第一胶膜层的挤出物料、第二胶膜层的挤出物料和第三胶膜层的挤出物料分别熔融塑化后注入同一模头中,在T模头内合并形成一个熔体流,经过熔融挤出、流延成膜、冷却、分切和收卷等工序制备双层复合光伏封装胶膜EVA-POE-EVA,通过分配器计算所得封装胶膜第一胶膜层和第三胶膜层厚度为0.1mm,第二胶膜层厚度0.2mm。
对比例1
与实施例1的区别为:不含有金属氧化物。
对比例2
与实施例1的区别为:不含有酰胺类有机物。
对比例3
与实施例1的区别为:取100份的乙烯-乙酸乙烯酯(VA含量26%,美国杜邦),以100份质量的上述基体树脂为基准,加入0.5份交联剂叔丁基过氧化碳酸异丙酯,0.5份助交联剂三羟甲基丙烷三甲基丙烯酸酯,1份增粘剂乙烯基三过氧化叔丁基硅烷,0.8份光稳定剂葵二酸双-2,2,6,6-四甲基哌啶醇。混合均匀,上述混合物经预混合、熔融挤出、流延成膜、冷却、分切和收卷等工序,制得所述封装材料。使用甲醇作为溶剂,制备氧化镁的分散液,浓度为1.0wt%。接着,使用旋转编码器(旋转数100rpm)在上述封装材料上喷涂氧化镁的分散液,之后在120℃干燥,使甲醇溶剂蒸发,得到具有氧化镁涂层的封装材料。
性能测试:
将实施例1至20和对比例1至3作粘结力和交联度测试以及组件的层压特性对比。
测试项目及测试方法
1、粘结力
按照300mm×150mm的玻璃/胶膜(两层)/柔性背板依次叠好放入真空层压机中,按照150℃,18分钟的层压工艺进行层压,制作层压件。
在宽度方向上每隔5mm将柔性背板/胶膜切割成10mm±0.5mm的试样用于测试胶膜与玻璃之间的粘结力。按照GB/T 2790-1995的试验方法,以100mm/min±10mm/min的拉伸速度在拉力试验机上测试胶膜与玻璃之间的剥离力,取三个试验的算术平均值,精确到0.1N/cm。
2、交联度
采用二甲苯加热萃取的方法测试。未经二甲苯溶解的质量与初始质量的比指即为交联度。取三个样品的算术平均值,单位%。
3、组件层压外观评价
按照玻璃/胶膜/电池片/胶膜/玻璃的层叠顺序层叠好,按照上述粘结力测试的层压工艺进行层压,制作成标准的双玻太阳能电池组件,组件的规格为60片(6×10)电池片的版型。按照不同的胶膜,各制作100块组件进行外观评价。评价的标准以出现气泡、杂质、胶膜与电池片或玻璃之间脱层为判定对象,具体如下:
○:无 △:轻微 ×:严重。
4、组件PID老化测试
选择双面电池,依据IECTS 2804-1:2015进行测试,测试条件加严到85℃,85%RH,外加负1500V恒定直流电压,经192h后,测定光伏组件PID试验前后的功率衰减。
测试结果如表1所示。
表1
Figure PCTCN2020109635-appb-000003
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
比较实施例1至20与对比例1和2可知,采用本申请的提供的组合物制得的胶膜具有更加优异的综合性能。
比较实施例1与对比例3可知,采用本申请的提供制备方法制得的胶膜具有更加优异的综合性能。
比较实施例1至9可知,采用本申请优选的金属氧化物和/或金属氢氧化物有利于提高胶膜的综合性能。
比较实施例1、10至11可知,采用本申请优选的酰胺类有机物有利于提高胶膜的综合性能。
比较实施例1、12至13可知,采用本申请优选的乙烯共聚物有利于提高胶膜的综合性能。
比较实施例1、14至20可知,将形成胶膜的组合物中各组分的用量限定在本申请优选的范围有利于提高胶膜的综合性能。
关于第二实施方式的实施例:
实施例1
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.2质量份的金属离子捕获剂磷酸锆(Acros试剂),1份有机共交联剂乙氧基三羟甲基丙烷三丙烯酸酯(沙多玛化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-1。
实施例2
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.2质量份的金属离子捕获剂磷酸锆(Acros试剂),0.1份有机共交联剂N,N’-亚甲基双丙烯酰胺(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-2。
实施例3
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.05质量份的金属离子捕获剂磷酸锆(Acros试剂),0.1份有机共交联剂N,N’-亚甲基双丙烯酰胺(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。
将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-3。
实施例4
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),1质量份的金属离子捕获剂磷酸锆(Acros试剂),0.1份有机共交联剂N,N’-亚甲基双丙烯酰胺(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司),0.3份紫外吸收剂2-羟基-4-正辛氧基二苯甲酮(德国巴斯夫化学),将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-4。
实施例5
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.2质量份的金属离子捕获剂磷酸铝(Acros试剂),0.1份有机共交联剂N,N’-亚甲基双丙烯酰胺(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-5。
实施例6
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.2质量份的金属离子捕获剂磷酸钛(Acros试剂),0.1份有机共交联剂三羟甲基丙烷三丙烯酸酯(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-6。
实施例7
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.2质量份的金属离子捕获剂磷酸铋(Acros试剂),0.1份有机共交联剂三羟甲基丙烷三丙烯酸酯(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-7。
实施例8
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.5质量份的金属离子捕获剂磷酸锆(Acros试剂),0.5份有机共交联剂三羟甲基丙烷三丙烯酸酯(百灵威化学有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司)。将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜E-8。
比较例1
一种常规的光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司,VA质量分数为28%),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),1份三烯丙基异氰脲酸酯(赢创德固赛有限公司)、0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司),将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备光伏封装胶膜C-1。
比较例2
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司公司,VA质量分数为28%),0.05份磷酸锆(百灵威科技有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),1份三烯丙基异氰脲酸酯(赢创德固赛有限公司)、将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜C-2。
比较例3
一种抗PID光伏封装材料,以重量份计,其主要原料组成如下:100份乙烯-醋酸乙烯酯共聚物(新加坡TPC公司公司,VA质量分数为28%),1份有机共交联剂三羟甲基丙烷三丙烯酸酯(沙多玛化学有限公司),0.2份受阻胺类光稳定剂癸二酸双-2,2,6,6-四甲基哌啶醇酯(天津利安隆股份有限公司),0.6份交联剂过氧化2-乙基己基碳酸叔丁酯(阿科玛公司),0.5份增粘剂γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷(湖北荆州江汉精细化工有限公司),将上述原料经过预混合,熔融挤出,流延成膜,冷却,分切和收卷等工序制备抗组件PID现象的光伏封装胶膜C-3。
性能测试
对实施例1~8和比较例1~3的封装材料制备层压件进行透光率和PID测试。层压后各实施例及比较例胶膜的厚度为0.45nm,其中,透光率依据GB/T 2410-2008进行测定。将上述实施例及对比例所得EVA胶膜与A公司P型双面电池经相同工艺制成双面双玻组件,光伏组 件PID试验依据IEC TS 2804-1:2015进行测试,测试条件加严到85℃,85%RH,外加负1500V恒定直流电压,经192h后,测定光伏组件PID试验前后的双面功率衰减,测试结果见表2。
表2
Figure PCTCN2020109635-appb-000004
由上表2所述实施例和对比例的性能测试数据对比可知:
实施例1~8,有机共交联剂的添加,不会对胶膜的透光率产生影响,且随着金属离子吸附剂的添加量上升,透光率呈下降趋势;当金属离子捕获剂用量小于1质量份时,透光率可以保持在90%以上,且抗PID效果也不错。搭配P型双面电池制成双玻组件,在-1500V,196h的测试条件下正面两面的衰减功率均控制在5%以内,满足实际需求。
从比较例1可以看到,不含有金属离子捕获剂和有机共交联剂的光伏封装胶膜表现出较大的组件功率衰减。而只含有磷酸锆的光伏封装胶膜(比较例2),尽管抗PID性能有所提升,但其组件背面功率衰减仍然有7.56%,其抗PID效果并不理想。只含有共交联剂三羟甲基丙烷三丙烯酸酯的光伏封装胶膜(比较例3),尽管抗PID性能相比C1(比较例1)有所提升,但其组件背面功率衰减仍然超过10%,其抗PID效果并不理想。
综上所述,由上述各实施例可以看出,各实施例制得的胶膜均具有较好的抗PID性能。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种形成胶膜的组合物,其特征在于,所述形成胶膜的组合物包括:乙烯共聚物基体树脂、酰胺类有机物、金属氧化物和/或金属氢氧化物,所述金属氧化物选自氧化铝、氧化钙、氧化锌、氧化钡、氧化镁、氧化锆、氧化钛、氧化锡、氧化钒、氧化锑、氧化钽、氧化铌、层状过渡金属氧化物、或经过掺杂处理的ZnO掺杂Al 2O 3,CaO/SiO 2掺杂的Al 2O 3,MgO掺杂的Al 2O 3,SiO 2掺杂的ZrO 2,TiO 2掺杂的ZrO 2组成中的一种或多种,所述金属氢氧化物选自氢氧化钙、氢氧化镁、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化钡组成中的一种或多种;或
    按重量份计,所述形成胶膜的组合物包括:100份基体树脂、0.01~5份金属离子捕获剂以及0.01~5份有机共交联剂。
  2. 根据权利要求1所述的形成胶膜的组合物,其特征在于,所述层状过渡金属氧化物为A 2M 12X 6或A 3M 2X 6,其中,A为Na或Li;M为+2价金属;X为Sb、Bi、Nb或Ru;
    优选地,所述层状过渡金属氧化物为Na 3Ni 2Sb 6和/或Li 3Ni 1.5Mg 0.5Sb 6
  3. 根据权利要求1或2所述的形成胶膜的组合物,其特征在于,所述酰胺类有机物具有式(Ⅰ)所示的结构,
    Figure PCTCN2020109635-appb-100001
    所述R 1为H、基团A、基团A中至少一个氢原子被羟基、氨基或环氧基取代形成的取代基或基团A中至少一个亚甲基被羰基或醚键取代形成的取代基,所述基团A为直链烷基、支链烷基或环烷基,且所述基团A的碳原子数≤10;所述R 2的碳原子数为2~20;所述R 2选自乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、十烯基、十一烯基、十二烯基、十四烯基、十六烯基或十八烯基。
  4. 根据权利要求3所述的形成胶膜的组合物,其特征在于,所述酰胺类有机物选自丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N-乙基丙烯酰胺、N,N’-二甲基丙烯酰胺、N-异丙基丙烯酰胺、N-叔丁基丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、N-(2-羟基丙基)丙烯酰胺、N,N’-亚甲基双丙烯酰胺、马来酰亚胺、油酸酰胺、9-十六碳烯酰胺、N-(2-羟基乙基)-十一碳-10-烯酰胺、9-十四碳烯酰胺、9-十二碳烯酰胺、9-十碳烯酰胺、辛烯酰胺、庚烯酰胺、己烯酰胺、戊烯酰胺、丁烯酰胺组成的组中的一种或多种。
  5. 根据权利要求1至3中任一项所述的形成胶膜的组合物,其特征在于,所述乙烯共聚物基体树脂的熔融指数为0.5~45g/10min,优选为3~20g/10min,更优选为5~10g/10min。
  6. 根据权利要求4所述的形成胶膜的组合物,其特征在于,所述乙烯共聚物基体树脂选自乙烯-极性单体共聚物、乙烯-α-烯烃共聚物和乙烯-环烯烃共聚物组成中的一种或多种。
  7. 根据权利要求5所述的形成胶膜的组合物,其特征在于,所述乙烯共聚物基体树脂为乙烯-极性单体共聚物,且形成所述乙烯-极性单体共聚物所需的极性单体选自不饱和羧酸、不饱和酸酐、不饱和羧酸盐、不饱和羧酸酯、不饱和羧酸形成的酰胺、乙烯基酯、一氧化碳或二氧化硫;
    优选地,所述不饱和羧酸选自丙烯酸、甲基丙烯酸、富马酸或衣康酸;
    优选地,所述不饱和酸酐选自马来酸酐或衣康酸酐;
    优选地,所述不饱和羧酸盐选自以下几种羧酸形成的锂盐、钠盐、钾盐、镁盐、钙盐或锌盐:丙烯酸、甲基丙烯酸、富马酸、衣康酸、马来酸酐或衣康酸酐;
    优选地,所述不饱和羧酸酯选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、丙烯酸正丁酯、丙烯酸异辛酯、甲基丙烯酸乙酯,甲基丙烯酸异丁酯、马来酸二甲酯、乙酸乙烯酯、乙烯基酯、丙酸乙烯酯、马来酸单甲酯和马来酸单乙酯组成的组中的一种或多种。
  8. 根据权利要求5所述的形成胶膜的组合物,其特征在于,所述乙烯共聚物基体树脂为乙烯-α-烯烃共聚物,且所述乙烯-α-烯烃共聚物为乙烯与至少一种碳原子数小于10的α-烯烃的共聚物;
    优选地,所述碳原子数小于10的α-烯烃选自丙烯、1-丁烯、1-己烯、1-戊烯、1-辛烯或4-甲基-1-戊烯。
  9. 根据权利要求5所述的形成胶膜的组合物,其特征在于,所述乙烯共聚物基体树脂为乙烯-环烯烃共聚物,形成所述乙烯-环烯烃共聚物的环烯烃选自环戊烯、降冰片烯、乙烯基降冰片烯或乙叉降冰片烯中的一种或多种。
  10. 根据权利要求1至8中任一项所述的形成胶膜的组合物,其特征在于,按重量份计,所述形成胶膜的组合物包括100份所述乙烯共聚物基体树脂、0.05~1.5所述酰胺类有机物、0.01~10份所述金属氧化物和/或0.01~10份所述金属氢氧化物;
    优选地,按重量份计,所述形成胶膜的组合物包括100份所述乙烯共聚物基体树脂、0.05~1.5所述酰胺类有机物、0.01~3份所述金属氧化物和/或0.01~3份所述金属氢氧化物。
  11. 根据权利要求9所述的形成胶膜的组合物,其特征在于,所述形成胶膜的组合物还包括有机过氧化物、助交联剂、光稳定剂、紫外光吸收剂、增粘剂、抗氧剂和颜料组成的组中的一种或多种;
    优选地,以100重量份所述乙烯共聚物基体树脂计,所述组合物还包括0.01~3重量份的所述交联剂,0.01~10重量份的所述助交联剂,0~1.0重量份的所述光稳定剂,0~0.4重量份的所述紫外光吸收剂,0~3.0重量份的所述增粘剂,0~0.5重量份的所述抗氧剂和0~40份所述颜料。
  12. 根据权利要求1所述的形成胶膜的组合物,其特征在于,按重量份计,所述形成胶膜的组合物包括:100份所述基体树脂、0.05~1份所述金属离子捕获剂以及0.1~1份所述有机共交联剂。
  13. 根据权利要求12所述的形成胶膜的组合物,其特征在于,按重量份计,所述形成胶膜的组合物包括:100份所述基体树脂、0.05~0.5份所述金属离子捕获剂以及0.1~1份所述有机共交联剂。
  14. 根据权利要求1、12至13中任一项所述的形成胶膜的组合物,其特征在于,所述金属离子捕获剂选自硅铝酸盐、水合氧化物、多价金属酸性盐、金属磷酸盐、五价金属氧化物、六价金属氧化物、7价金属氧化物、黄元酸类有机物和二硫代胺基甲酸盐类有机物中的一种或多种;
    优选地,所述金属离子捕获剂选自磷酸铝、磷酸钛、磷酸锡、磷酸锆和磷酸铋中的一种或多种。
  15. 根据权利要求1、12至13中任一项所述的形成胶膜的组合物,其特征在于,所述有机共交联剂选自多官能团丙烯酸酯类化合物和/或(甲基)丙烯酰胺化合物;
    优选地,所述多官能团丙烯酸酯类化合物选自三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯和乙氧化三羟甲基丙烷三丙烯酸酯中的一种或多种;
    优选地,所述(甲基)丙烯酰胺化合物选自N,N’-亚甲基双丙烯酰胺、N,N’-乙烯基双丙烯酰胺和N-丙基丙烯酰胺中的一种或多种。
  16. 根据权利要求15所述的形成胶膜的组合物,其特征在于,所述基体树脂选自乙烯醋酸乙烯共聚物、低密度聚乙烯、聚丙烯、聚丁烯、聚乙烯醇缩丁醛、茂金属催化聚乙烯、乙烯辛烯共聚物、乙烯戊烯共聚物、乙烯丙烯酸甲酯共聚物和乙烯甲基丙烯酸甲酯共聚物中的一种或多种。
  17. 根据权利要求1、12至16中任一项所述的形成胶膜的组合物,其特征在于,按重量份计,所述形成胶膜的组合物还包括0.5~5份助剂,所述助剂选自过氧化物类交联剂、抗氧剂、受阻胺类光稳定剂、紫外光吸收剂和增粘剂中的一种或多种。
  18. 一种胶膜,其特征在于,所述胶膜为单层胶膜或多层共挤胶膜,且所述单层胶膜或所述多层胶膜中的至少一层以权利要求1至11中任一项所述的形成胶膜的组合物为原料经熔融挤出工艺制得的。
  19. 一种抗PID封装胶膜,其特征在于,所述抗PID封装胶膜采用权利要求1、12至17中任一项所述的形成胶膜的组合物为原料制得。
  20. 一种光伏组件,包括封装胶膜,其特征在于,所述封装胶膜包括至少一层权利要求18所述的胶膜或权利要求19所述的抗PID封装胶膜。
  21. 根据权利要求20所述的光伏组件,其特征在于,所述光伏组件为双玻组件。
  22. 一种夹胶玻璃,所述夹胶玻璃包括至少两个玻璃层和设置在相邻所述玻璃层之间的有机聚合物中间膜,其特征在于,所述有机聚合物中间膜包括至少一层权利要求18所述的胶膜。
PCT/CN2020/109635 2019-11-19 2020-08-17 胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃 WO2021098299A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20889959.1A EP4019601A4 (en) 2019-11-19 2020-08-17 ADHESIVE FILM, ANTI-PID ENCAPSULATION ADHESIVE FILM, ADHESIVE FILM FORMING COMPOSITION, AND PHOTOVOLTAIC MODULE AND LAMINATED GLASS
US17/775,271 US20220389282A1 (en) 2019-11-19 2020-08-17 Adhesive film, anti-PID encapsulation adhesive film, composition forming adhesive film, and photovoltaic module and laminated glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911137294.1 2019-11-19
CN201911137294.1A CN112824466A (zh) 2019-11-19 2019-11-19 用于形成抗pid封装胶膜的组合物、抗pid封装胶膜及太阳能组件
CN202010753127.6 2020-07-30
CN202010753127.6A CN114058270A (zh) 2020-07-30 2020-07-30 胶膜、形成其的组合物、光伏组件及夹胶玻璃

Publications (1)

Publication Number Publication Date
WO2021098299A1 true WO2021098299A1 (zh) 2021-05-27

Family

ID=75980285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109635 WO2021098299A1 (zh) 2019-11-19 2020-08-17 胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃

Country Status (3)

Country Link
US (1) US20220389282A1 (zh)
EP (1) EP4019601A4 (zh)
WO (1) WO2021098299A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930194A (zh) * 2021-10-14 2022-01-14 常州邦瑞新材料科技有限公司 一种车膜用环保胶及其制备方法
CN114958238A (zh) * 2022-06-10 2022-08-30 浙江祥隆科技有限公司 一种bipv领域用高剥离强度封装胶膜的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500204A (zh) * 2020-06-15 2020-08-07 杭州福斯特应用材料股份有限公司 胶膜、形成其的组合物及电子器件
CN116254062A (zh) * 2021-12-09 2023-06-13 阿特斯阳光电力集团股份有限公司 用于异质结电池的封装胶膜及异质结光伏组件
CN114806422B (zh) * 2022-03-31 2023-06-23 江苏中来新材科技有限公司 一种uv截止型epe光伏胶膜及其制备方法和光伏组件
CN115926666B (zh) * 2022-12-30 2023-07-28 安徽省阳明达新材料科技有限公司 一种夹层玻璃导热耐热eva胶片的制备方法
CN117467378B (zh) * 2023-12-28 2024-03-29 浙江祥邦永晟新能源有限公司 一种快速交联poe封装胶膜及其制备方法、光伏组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288347A1 (en) * 2006-11-08 2010-11-18 Bridgestone Corporation Sealing film for solar cell
CN103421443A (zh) 2013-05-14 2013-12-04 乐凯胶片股份有限公司 一种太阳能电池组件用封装胶膜
CN104576826A (zh) 2014-12-17 2015-04-29 山东力诺太阳能电力股份有限公司 一种太阳能电池片的后处理方法
CN105038624A (zh) * 2015-08-05 2015-11-11 乐凯胶片股份有限公司 一种光伏用eva封装胶膜
CN105950039A (zh) 2016-05-26 2016-09-21 苏州度辰新材料有限公司 一种用于太阳能电池组件的抗pid聚烯烃胶膜
EP3358629A1 (en) * 2015-09-29 2018-08-08 Du Pont-Mitsui Polychemicals Co., Ltd. Multilayer sheet for solar cell sealing material, method for manufacturing multilayer sheet for solar cell sealing material, and solar cell module
CN108795124A (zh) * 2018-06-26 2018-11-13 乐凯胶片股份有限公司 一种光伏用聚烯烃封装胶膜
CN109337599A (zh) * 2018-10-18 2019-02-15 杭州福斯特应用材料股份有限公司 一种抗电势诱导衰减的多层复合光伏封装胶膜及制备方法与应用
CN109401682A (zh) * 2018-10-18 2019-03-01 常州斯威克光伏新材料有限公司 一种高水汽阻隔性的eva封装胶膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105419664A (zh) * 2015-12-23 2016-03-23 芜湖馨源海绵有限公司 一种具有高粘结性的热熔胶膜
CN111500204A (zh) * 2020-06-15 2020-08-07 杭州福斯特应用材料股份有限公司 胶膜、形成其的组合物及电子器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288347A1 (en) * 2006-11-08 2010-11-18 Bridgestone Corporation Sealing film for solar cell
CN103421443A (zh) 2013-05-14 2013-12-04 乐凯胶片股份有限公司 一种太阳能电池组件用封装胶膜
CN104576826A (zh) 2014-12-17 2015-04-29 山东力诺太阳能电力股份有限公司 一种太阳能电池片的后处理方法
CN105038624A (zh) * 2015-08-05 2015-11-11 乐凯胶片股份有限公司 一种光伏用eva封装胶膜
EP3358629A1 (en) * 2015-09-29 2018-08-08 Du Pont-Mitsui Polychemicals Co., Ltd. Multilayer sheet for solar cell sealing material, method for manufacturing multilayer sheet for solar cell sealing material, and solar cell module
CN105950039A (zh) 2016-05-26 2016-09-21 苏州度辰新材料有限公司 一种用于太阳能电池组件的抗pid聚烯烃胶膜
CN108795124A (zh) * 2018-06-26 2018-11-13 乐凯胶片股份有限公司 一种光伏用聚烯烃封装胶膜
CN109337599A (zh) * 2018-10-18 2019-02-15 杭州福斯特应用材料股份有限公司 一种抗电势诱导衰减的多层复合光伏封装胶膜及制备方法与应用
CN109401682A (zh) * 2018-10-18 2019-03-01 常州斯威克光伏新材料有限公司 一种高水汽阻隔性的eva封装胶膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4019601A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930194A (zh) * 2021-10-14 2022-01-14 常州邦瑞新材料科技有限公司 一种车膜用环保胶及其制备方法
CN114958238A (zh) * 2022-06-10 2022-08-30 浙江祥隆科技有限公司 一种bipv领域用高剥离强度封装胶膜的制备方法

Also Published As

Publication number Publication date
US20220389282A1 (en) 2022-12-08
EP4019601A4 (en) 2023-12-13
EP4019601A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2021098299A1 (zh) 胶膜、抗pid封装胶膜、形成其的组合物、光伏组件及夹胶玻璃
CN109337599B (zh) 一种抗电势诱导衰减的多层复合光伏封装胶膜及制备方法与应用
JP7375051B2 (ja) 接着フィルム及びこれを備えた電子デバイス
WO2011108600A1 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP6034756B2 (ja) 太陽電池封止用シートセットおよびそれを用いた太陽電池モジュール
JP2015211189A (ja) 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
CN113698877B (zh) 一对封装胶膜、和使用其的光伏组件
WO2021253611A1 (zh) 胶膜、形成其的组合物及电子器件
JP5538092B2 (ja) 太陽電池封止材用組成物及びそれからなる封止材ならびにそれを用いた太陽電池モジュール
WO2022252755A1 (zh) 一种焊带载体膜、其制备方法及其应用
JP2015162498A (ja) 太陽電池封止材用積層体、太陽電池封止材及び太陽電池モジュール
KR20150059957A (ko) 태양전지용 봉지재 시트 및 이를 사용한 태양전지 모듈
JP5209540B2 (ja) 太陽電池封止用シート及び太陽電池モジュール
JP2024063196A (ja) 太陽電池モジュール用の封止材シート及びそれを用いた太陽電池モジュール
JP4890752B2 (ja) 太陽電池モジュール
JP5041888B2 (ja) 太陽電池封止材用シート
JP6371403B2 (ja) 封止シート、太陽電池モジュールおよび封止シートの製造方法
CN115491152A (zh) 一种导热封装胶膜及其制备方法
CN115700266A (zh) 一种封装胶膜
JP5525933B2 (ja) 太陽電池封止材用組成物、それからなる太陽電池封止材およびそれを用いた太陽電池モジュール
WO2019019986A1 (zh) 封装组合物及包含其的封装胶膜和电子器件组件
CN113683984A (zh) 树脂组合物、含其母粒及应用
KR20130039950A (ko) 태양전지용 밀봉재 조성물 및 밀봉시트
JPWO2016043235A1 (ja) 太陽電池用封止材及び太陽電池モジュール
CN114058270A (zh) 胶膜、形成其的组合物、光伏组件及夹胶玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020889959

Country of ref document: EP

Effective date: 20220322

NENP Non-entry into the national phase

Ref country code: DE