WO2022256991A1 - 一种照明模组、前照灯和车辆 - Google Patents

一种照明模组、前照灯和车辆 Download PDF

Info

Publication number
WO2022256991A1
WO2022256991A1 PCT/CN2021/098721 CN2021098721W WO2022256991A1 WO 2022256991 A1 WO2022256991 A1 WO 2022256991A1 CN 2021098721 W CN2021098721 W CN 2021098721W WO 2022256991 A1 WO2022256991 A1 WO 2022256991A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixelated
lens
emitting
lighting
Prior art date
Application number
PCT/CN2021/098721
Other languages
English (en)
French (fr)
Inventor
聂睿
仇智平
张大攀
祝贺
陈佳缘
桑文慧
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to PCT/CN2021/098721 priority Critical patent/WO2022256991A1/zh
Priority to CN202180086679.9A priority patent/CN116670433A/zh
Publication of WO2022256991A1 publication Critical patent/WO2022256991A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a vehicle lamp, in particular to a lighting module.
  • the present invention also relates to a headlamp and a vehicle including the lighting module.
  • the automotive lamp includes a pixelated lighting unit and a non-pixelated lighting unit.
  • the pixelated lighting unit projects to form a pixelated light shape 100
  • the non-pixelated lighting unit projects Form a non-pixelated light shape 200.
  • the lighting shape of different lighting modes realizes the function of adaptive high beam or anti-glare high beam, as well as functions such as low beam cut-off line and projecting pixelated symbols to the road surface.
  • the pixelated light The shape 100 is formed as a main low beam light shape with a low beam cut-off line, superimposed with the non-pixelated light shape 200 for low beam lighting.
  • the angle difference between the upper and lower boundaries of the pixelated light shape 100 is that the upper boundary of the pixelated light shape 100 meets the lighting requirements of adaptive high beam or anti-glare high beam, and the lower boundary meets the requirements of forming a near beam.
  • the upper boundary of the pixelated light shape 100 satisfies the requirement of forming a low beam cut-off line, and the lower boundary meets the requirement of road surface symbol projection.
  • the upper boundary of the light shape is at +2°
  • the lower boundary Located at -6° this technical solution, as shown in Figure 4, although it can form a low beam cut-off line and obtain a good effect of projecting symbols on the road surface, it cannot realize the function of adaptive high beam or anti-glare high beam pixelated lighting , because the position of the pixelated light shape 100 is relatively low, and the illumination on the road surface is relatively close, which cannot meet the requirement of the high beam illumination range.
  • the LED light source will be improved.
  • the cost, difficulty and cost of lens group design are greatly increased, and its space occupation is also relatively large. Therefore, in order to overcome the above problems, the position of the pixelated lighting light shape 100 is usually adjusted up and down according to different lighting modes.
  • the non-pixelated light shape 200 is also lowered together with the pixelated light shape 100, thus forming a dark area as shown in Figure 6 300, which will affect the low beam lighting effect.
  • the problem to be solved in the first aspect of the present invention is to provide a lighting module, which can realize no dark area after switching between high-beam lighting and low-beam lighting, so that the lighting effect of the light shape is good.
  • the problem to be solved by the second aspect of the present invention is to provide a headlight, the light shape formed by the headlight has a good lighting effect.
  • the problem to be solved by the third aspect of the present invention is to provide a vehicle, the headlight of the vehicle has a good light emitting effect.
  • the first aspect of the present invention provides a lighting module, including a pixelated lighting unit and at least one non-pixelated lighting unit, the pixelated lighting unit includes a pixelated light source, an imaging lens group and a pixelated light output lens, the non-pixelated illuminating part sequentially includes a non-pixelated light source, a reflective unit, and a non-pixelated light-emitting lens along the direction of light propagation, and the reflective unit includes a first reflective unit and a second reflective unit arranged along the up-down direction, so
  • the non-pixelated light source includes a first light source and a second light source, the first light source is provided in one-to-one correspondence with the first reflection unit, the second light source and the second reflection unit, and the first reflection unit It is adapted to reflect the light emitted by the first light source and project it through the non-pixelated light-emitting lens to form a non-pixelated light shape for low beam lighting mode, and the second reflection unit is adapted to convert
  • the reflection surface of the reflection unit is formed as a paraboloid, and the lower boundary of the reflection surface of the reflection unit is formed as a cut-off line structure.
  • the non-pixelated light-emitting lens includes a light-incident surface of a non-pixelated light-emitting lens and a light-emitting surface of a non-pixelated light-emitting lens.
  • a convex curve, and the curvature of the transverse section of the light incident surface of the non-pixelated light-emitting lens is greater than the curvature of the longitudinal section.
  • the number of the first reflection unit is two, the two first reflection units are arranged along the left and right directions, the number of the second reflection unit is one, and the first reflection unit and the The second reflecting unit is a reflecting mirror.
  • the light incident surface of the non-pixelated light output lens includes at least one first light incident surface and at least one second light incident surface arranged along the vertical direction.
  • the included angle between the light-emitting surface of the non-pixelated light source and the horizontal plane is 5°-30°.
  • the pixelated light-emitting lens includes a light-incoming surface of a pixelated light-emitting lens and a light-emitting surface of a pixelated light-emitting lens, and the light-emitting surface of a non-pixelated light-emitting lens and the light-emitting surface of a pixelated light-emitting lens are formed with continuous curvature surface.
  • the imaging lens group includes a first imaging lens and a second imaging lens arranged in sequence from back to front, and the first imaging lens is set as a biconvex lens whose light incident surface and light exit surface both have convex curved surfaces,
  • the second imaging lens is configured as a convex-concave lens with a light-incoming surface having a concave curved surface and a light-emitting surface showing an outwardly convex curved surface.
  • the pixelated light source is a plurality of LED light-emitting units that can be turned on and off independently.
  • the second aspect of the present invention also provides a headlamp, including the lighting module according to any one of the technical solutions of the first aspect.
  • the third aspect of the present invention also provides a vehicle, including the headlight described in the technical solution of the second aspect above.
  • the lighting module of the present invention arranges the pixelated lighting part and the non-pixelated lighting part in the same module, which not only facilitates dimming and heat dissipation of the lighting module, but also effectively reduces the lighting module.
  • the volume of the group thereby reducing the space occupied by the headlights and reducing production costs;
  • the non-pixelated lighting part includes a non-pixelated light source, a reflective unit, and a non-pixelated light-emitting lens.
  • Figure 1 is a schematic diagram of the relative positions of pixelated light shapes and non-pixelated light shapes in the prior art when the upper boundary of the pixelated light shape meets the requirements of adaptive high beam or anti-glare high beam, and the lower boundary meets the requirements of the low beam cut-off line;
  • Fig. 2 is a projection effect diagram of the vehicle headlight in Fig. 1;
  • Fig. 3 is a schematic diagram of the relative positions of the pixelated light shape and the non-pixelated light shape in the prior art when the upper boundary of the pixelated light shape satisfies the low beam cut-off line, and the lower boundary meets the road surface symbol projection requirements;
  • Fig. 4 is a schematic diagram of the relative position of the pixelated light shape and the non-pixelated light shape when the lighting module of the present invention assumes that the first light source is turned on and the second light source is turned off in the high beam lighting mode;
  • Fig. 5 is a projection effect diagram of the vehicle headlight in Fig. 3;
  • Fig. 6 is a schematic diagram of the relative positions of the pixelated light shape and the non-pixelated light shape shown in Fig. 1 after they are both lowered in the low beam lighting mode;
  • Fig. 7 is a schematic structural view of a specific embodiment of the lighting module of the present invention.
  • Fig. 8 is a structural schematic diagram of a specific embodiment of the pixelated light-emitting lens and the non-pixelated light-emitting lens of the present invention.
  • Fig. 9 is a side view of Fig. 8.
  • Fig. 10 is the A-A sectional view of Fig. 9;
  • Figure 11 is a top view of Figure 8.
  • Fig. 12 is the B-B sectional view of Fig. 11;
  • Fig. 13 is a schematic structural view of a specific embodiment of the reflection unit and the non-pixelated light-emitting lens of the present invention.
  • Figure 14 is a top view of Figure 13;
  • Fig. 15 is a C-C sectional view of Fig. 14;
  • Fig. 16 is one of the structural schematic diagrams of a specific embodiment of the non-pixelated light-emitting lens of the present invention.
  • Fig. 17 is the second structural schematic diagram of a specific embodiment of the non-pixelated light-emitting lens of the present invention.
  • Figure 18 is a top view of Figure 16;
  • Fig. 19 is a D-D sectional view of Fig. 18;
  • Figure 20 is a side view of Figure 16.
  • Fig. 21 is the E-E sectional view of Fig. 20;
  • Fig. 22 is a schematic diagram of a non-pixelated light shape corresponding to the second reflection unit of the lighting module in the present invention.
  • Fig. 23 is a schematic diagram of a non-pixelated light shape correspondingly formed by the first reflection unit of the lighting module before dimming in the present invention
  • Fig. 24 is a schematic diagram of the lighting area of the lighting module of the present invention in the low beam lighting mode
  • Fig. 25 is one of the structural schematic diagrams of a specific embodiment of the dimming mechanism of the present invention.
  • Fig. 26 is the second structural schematic diagram of a specific embodiment of the dimming mechanism of the present invention.
  • Imaging lens group 12 Imaging lens group 121 First imaging lens
  • Non-pixelated light-emitting lens 221 Non-pixelated light-emitting lens light-incoming surface
  • the first reflection unit 232 The second reflection unit
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or It is an integral connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • the present invention provides a lighting module, including a pixelated lighting unit 1 and at least one non-pixelated lighting unit 2.
  • the pixelated lighting unit 1 includes a pixelated light source 11, an imaging lens group 12 and a pixelated lighting unit.
  • a non-pixelated light-emitting lens 13, the non-pixelated illuminating unit 2 sequentially includes a non-pixelated light source 21, a reflection unit 23, and a non-pixelated light-emitting lens 22 along the light propagation direction, and the reflection unit 23 includes a first reflector arranged along the up-down direction unit 231 and a second reflective unit 232, the non-pixelated light source 21 includes a first light source 211 and a second light source 212, the first light source 211 and the first reflective unit 231, the second light source 212 and the The second reflective units 232 are provided in one-to-one correspondence, and the first reflective unit 231 is adapted to reflect the light emitted by the first light source 211 and project it through the non-pixelated light-emitting lens 22 to form a low-beam lighting mode.
  • the non-pixelated light shape 200, the second reflection unit 232 is adapted to reflect the light emitted by the second light source 212 and project it through the non-pixelated light-emitting lens 22 to form non-pixels for high beam lighting mode
  • the light shape 200, the upper boundary of the non-pixelated light shape 200 used in the low beam lighting mode is located above the upper boundary of the non-pixelated light shape 200 used in the high beam lighting mode; the pixelated light output lens 12 Formed integrally with the non-pixelated light-emitting lens 22 .
  • At least one of the left and right sides of the pixelated lighting unit 1 is provided with a non-pixelated lighting unit 2 , preferably, both left and right sides of the pixelated lighting unit 1 are provided with a non-pixelated lighting unit 2 .
  • all pixelated light sources 11 are turned on to form a pixelated light shape 100 as shown in FIG. 1
  • the second light source 212 is turned on in the high-beam lighting mode.
  • the non-pixelated light shape 200 is projected from the non-pixelated light-emitting lens 22 to form a non-pixelated light shape 200 as shown in FIG.
  • the non-pixelated light shape 200 is used in the high-beam lighting mode, and can form an auxiliary low-beam light shape in the high-beam lighting mode.
  • the upper boundary of the pixelated light shape 100 meets the requirements of adaptive high-beam or anti-glare high-beam lighting. Requirements, the lower boundary satisfies the requirements for forming a cut-off line for low beams.
  • the non-pixelated light output lens 22 is projected to form a non-pixelated light shape 200 as shown in FIG.
  • the relative positional relationship between the pixelated light shape 100 and the non-pixelated light shape 200 is shown in Figure 4. If the non-pixelated light shape 200 is lowered together with the There will be a dark area 300. For example, if the adjustment is lowered by 3° together, the lighting light shape that meets the requirements of the regulations can be obtained as shown in Figure 3.
  • the upper boundary of the pixelated light shape 100 of the lighting light shape meets the requirements for forming a low beam cut-off line.
  • the non-pixelated light shape 200 is used in the low-beam lighting mode, and after being adjusted down together with the pixelated light shape 100 , it can form an auxiliary near-beam lighting mode without the dark area 300 light shape.
  • the light emitted from the first light source 211 is reflected by the first reflection unit 231 and projected from the non-pixelated light-emitting lens 22 to form a non-pixelated light shape 200 as shown in FIG. 24 .
  • the lighting module of the present invention does not appear the dark area 300 shown in FIG. 6 during the switching process between the low beam lighting mode and the high beam lighting mode.
  • the upper and lower positions of the first reflection unit 231 and the second reflection unit 232 are not necessarily limited to the first reflection unit 231 being arranged above the second reflection unit 232, and the first reflection unit 231 can also be arranged on the second reflection unit.
  • the respective functions are realized by adjusting the respective light distribution angles, and the shape is more flexible and changeable.
  • the lighting A dimming mechanism is connected to the module, and the dimming mechanism includes three ball screw assemblies 4.
  • a single ball screw assembly includes a ball screw 41 and a ball nut 42, and one end of one ball screw 41 passes through the ball nut.
  • the nut 42 is connected to the radiator 6, and the other end is connected to the dimming actuator 5 fixed on the lamp body or a support that is fixed relative to the lamp body, and one end of the ball screw 41 of the other two ball screw assemblies 4 passes through the ball head
  • the nut 42 is connected with the radiator 6, and the other end is fixed on the lamp body or a support that is fixed relative to the lamp body.
  • the ball centers of the ball heads of the two ball screw rods 41 form a horizontal dimming axis.
  • the lighting module can rotate around the horizontal dimming axis, and then adjust the lighting module up and down, so that the pixelated light shape 100 and The non-pixelated light shape 200 moves up and down as a whole, and the position of the lighting light shape as shown in FIG. 4 is adjusted to the position of the lighting light shape as shown in FIG. 3 , so as to meet the projection requirements of the low beam cut-off line and the road surface.
  • the pixelated lighting part 1 and the non-pixelated lighting part 2 are arranged in the same module, and a heat dissipation device is provided for the module to achieve the pixelated lighting part 1 and the non-pixelated lighting part 2. Heat dissipation as a whole.
  • the reflection surface of the reflection unit 23 is formed as a paraboloid, and the lower boundary of the reflection surface of the reflection unit 23 is formed as a cut-off line structure, and the light passing through the lower boundary of the reflection surface of the reflection unit 23 Corresponding to form the upper boundary of the auxiliary low beam light shape.
  • the non-pixelated light-emitting lens 22 includes a non-pixelated light-emitting lens light incident surface 221 and a non-pixelated light-emitting lens light-emitting surface 222.
  • the lines are all convex curves backward, and the curvature of the transverse section line of the light incident surface 221 of the non-pixelated light output lens is greater than the curvature of the longitudinal section line.
  • the light-incidence surface 221 of the non-pixelated light-emitting lens is formed as a convex curved surface with the central area protruding from the surrounding edges.
  • the light reflected by the unit 231 and the second reflection unit 232 can be formed into a widened light shape with a left and right angle range greater than an up and down angle range after being emitted by the non-pixelated light output lens 22, meeting the regulatory requirements for low beam lighting.
  • the number of the first reflection unit 231 is two, the two first reflection units 231 are arranged along the left and right directions, the number of the second reflection unit 232 is one, and The first reflection unit 231 and the second reflection unit 232 are mirrors.
  • the first reflective unit 231 located at the top is turned on in the low beam lighting mode, and correspondingly forms the auxiliary low beam light shape in the low beam lighting mode
  • the second reflecting unit 232 is set at the bottom, and is turned on in the high beam lighting mode, corresponding to form
  • the auxiliary low-beam light shape in the high-beam lighting mode it is conceivable that not only the positions of the first reflection unit 231 and the second reflection unit 232 can be exchanged, but also the number of the two can be changed according to the actual light output requirements.
  • the light incident surface 221 of the non-pixelated light exit lens includes at least one first light incident surface 2211 and at least one second light incident surface 2211 arranged along the up-down direction. Glossy 2212.
  • the light incident surface 221 of the non-pixelated light exit lens includes a first light incident surface 2211 and a second light incident surface 2212, and the first light incident surface 2211 and the second light incident surface 2212 correspond to
  • the first reflection unit 231 and the second reflection unit 232, the first light incident surface 2211 and the second light incident surface 2212 are formed as two mutually independent convex curved surfaces, so that the non-pixelated light output lens 22 of the present invention can output light according to the actual If necessary, the shape and curvature of the first light incident surface 2211 and the second light incident surface 2212 can be changed to make the design of the light incident surface 221 of the non-pixelated light output lens more flexible.
  • the included angle between the light-emitting surface of the non-pixelated light source 21 and the horizontal plane is 5°-30°.
  • the angle between the light-emitting surface of the non-pixelated light source 21 and the horizontal plane is 10°-20°, so that the light emitted by the non-pixelated light source 21 can be reflected by the reflection unit 23 as much as possible and enter the non-pixelated light-emitting lens 22.
  • the pixelated light-emitting lens 13 includes a pixelated light-emitting lens light-incident surface 131 and a pixelated light-emitting lens light-emitting surface 132, and the non-pixelated light-emitting lens light-emitting surface 222 and the pixelated light-emitting lens
  • the light-emitting surface 132 of the light-emitting lens is formed as a curved surface with continuous curvature, so that the integrity of the pixelated light-emitting lens 12 and the non-pixelated light-emitting lens 22 is better, and the modeling effect is better. Meanwhile, as shown in FIGS.
  • the light-emitting surface 222 of the non-pixelated light-emitting lens can be formed as a plane or a curved surface, and the curvature of the light-emitting surface 222 of the non-pixelated light-emitting lens formed as a curved surface is relatively small, so that the formed curved surface is relatively flat. , It is beneficial to improve the aesthetic appearance, and the processing is simple and convenient.
  • the imaging lens group 12 includes a first imaging lens 121 and a second imaging lens 122 arranged in sequence from back to front, and the first imaging lens 121 is set so that both the light incident surface and the light exit surface are convex curved surfaces.
  • a biconvex lens, the second imaging lens 122 is set as a convex-concave lens with a light-incident surface showing an inner concave surface and a light-emitting surface showing an outer convex surface.
  • the first imaging lens 121 is set as a biconvex lens with positive refractive power whose light-incident surface and light-exit surface are both convex surfaces, so that the focal length of the first imaging lens 121 can be shortened and the diopter is higher.
  • the second imaging lens 122 is set as a convex-concave lens with a negative refractive power whose light incident surface is an inwardly concave curved surface and whose light output surface is an outwardly convex curved surface , can offset and correct the dispersion phenomenon generated after the light is refracted by the first imaging lens 121, and can also reduce the distance between it and the first imaging lens 121 and the pixelated light-emitting lens 13;
  • the pixelated light-emitting lens 13 is set It is a double-convex lens with positive refractive power whose light-incident surface and light-exit surface are both convex surfaces, which can reduce the distance between it and the second imaging lens 122, thereby effectively reducing the distance between the front and rear of the pixelated illuminating unit 1.
  • the length dimension makes the lighting module small in size and low in manufacturing cost.
  • the refractive power of the above lens represents the ability of the lens to process light. Positive refractive power means that the lens can converge incoming light, while negative refractive power means that the lens can diverge incoming light.
  • the collocation of the first imaging lens 121, the second imaging lens 122 and the pixelated light-emitting lens 13 can effectively offset the dispersion in the light refraction process, so that the dispersion range of the pixel light shape is small, so that the imaging is clearer and the light shape effect is improved. it is good.
  • the pixelated light source 11 is a plurality of LED light-emitting units that can be turned on and off independently.
  • the light shape formed by the pixelated light shape 100 can be used as a partial low-beam light shape by using some LED light-emitting units in one or more pixelated lighting parts 1 to emit light.
  • one or more non-pixelated lighting parts 2 are used to form a non-pixelated light shape 200, and a part of the low-beam light shape in the pixelized light shape 100 is used to form a complete vehicle headlamp low-beam lighting. light shape.
  • the pixelated light source 11 is a plurality of LED light emitting units that can be independently controlled to turn on and off.
  • the pixelated light source 11 of the present invention can be set as a plurality of LED light-emitting units that can be independently controlled to turn on and off, and specifically can be LED particles or Micro LEDs arranged in a matrix, preferably a Micro LED light source, that is, a miniature LED light source.
  • each LED unit in the miniature LED light source is micron level, and the miniature LED light source is further preferably a rectangular array LED light source composed of tens of thousands of micron-level LED units; the selection of miniature LED light source can make the pixels smaller and more Dense, so that the definition of the formed pixel image can be made higher, and then the light shape formed after the pixel image is projected can be adjusted with higher precision, and the boundary of the formed dark part and the change of the dark part position are also more fine and smooth , can better avoid dazzling or blinding pedestrians or drivers, and the miniature LED light source is in a rectangular array, which can obtain a wider light shape to illuminate the areas on both sides of the road, which is conducive to the driver's awareness of both sides of the road. Observation of side pedestrians and road signs.
  • the second aspect of the present invention provides a headlamp, including the lighting module described in any one of the above-mentioned technical solutions. Therefore, at least it has all the beneficial effects brought by the technical solutions of the above lighting module embodiments, the formed light shape has high precision and good stability, and there is no dark area 300 when the high beam lighting mode is switched to the low beam lighting mode, and the lighting light The shape effect is good, and the space occupied by the lamp body is small, and the manufacturing cost is low.
  • the vehicle according to the third aspect of the present invention includes the headlamp described in the second aspect of the present invention, and also has all the beneficial effects brought about by the technical solutions of the above lighting module embodiments.
  • the lighting module of the present invention arranges the pixelated lighting part 1 and the non-pixelated lighting part 2 in the same module, which not only can effectively reduce the volume of the lighting module, but also reduce the size of the headlight. Occupies space, reduces production cost, and can also be used to form the non-pixelated light shape 200 in the low beam lighting mode and the non-pixelated light shape 200 in the high beam lighting mode through the first reflection unit 231 and the second reflection unit 232 arranged in the up and down direction.
  • the pixelated light shape 200 is used to prevent the dark area 300 from appearing when the high-beam lighting mode is switched to the low-beam lighting mode, optimize the light output effect, and make the light shape have a good lighting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种照明模组、前照灯和车辆,照明模组包括像素化照明部(1)和非像素化照明部(2),像素化照明部(1)包括像素化光源(11)、成像透镜组(12)和像素化出光透镜(13),非像素化照明部(2)沿光线传播方向依次包括非像素化光源(21)、反射单元(23)和非像素化出光透镜(22),反射单元(23)包括第一反射单元(231)和第二反射单元(232),非像素化光源(21)包括第一光源(211)和第二光源(212),第一反射单元(231)适于将第一光源(211)发出的光线反射后经非像素化出光透镜(22)投射形成用于近光照明模式下的非像素化光形(200),第二反射单元(232)适于将第二光源(212)发出的光线反射后经非像素化出光透镜(22)投射形成用于远光照明模式下的非像素化光形(200)。照明模组结构简单,出光效果好。

Description

一种照明模组、前照灯和车辆 技术领域
本发明涉及车灯,具体地,涉及一种照明模组。此外,本发明还涉及一种包括所述照明模组的前照灯和车辆。
背景技术
近几年,车灯照明技术领域提出了像素化照明的技术方案,车灯包括像素化照明单元和非像素化照明单元,像素化照明单元投射形成像素化光形100,非像素化照明单元投射形成非像素化光形200,如图1所示,非像素化光形200一般形成为近光展宽光形,即辅助近光光形,像素化光形100可以通过光源的亮灭,形成符合不同照明模式的照明光形,实现自适应远光或防炫目远光功能,以及近光截止线、向路面投射像素化符号等功能,如图23所示,通过灭掉一部分光源,像素化光形100形成为具有近光截止线的主近光光形,与非像素化光形200叠加后用于近光照明。以像素化光形100的上下边界角度差为8°为例,其中一种技术方案是像素化光形100的上边界满足自适应远光或防炫目远光的照明需求,下边界满足形成近光截止线的需求,例如如图1所示,光形上边界位于+5°,下边界位于-3°时,这种技术方案,虽然能够满足远处的自适应远光或防炫目远光的像素化照明以及形成近光截止线的需求,但如图2所示,因为像素化光形100的位置较高,照射在路面上较远,投射到路面的像素化符号显示效果较差,因为距离较远,驾驶员可视度不够好,以及像素化符号在远处大距离产生的畸变也较大,因此形成的路面像素化符号投射效果较差。另外一种技术方案是像素化光形100的上边界满足形成近光截止线的需求,下边界满足路面符号投射的需求,例如如图3所示,光形上边界位于+2°,下边界位于-6°,这种技术方案,如图4所示,虽然能够形成近光截止线以及获得路面的符号投射的良好效果,但实现不了自适应远光或防炫目远光像素化照明 的功能,因为像素化光形100的位置较低,照射在路面上较近,满足不了远光照明范围的要求。而如果通过将像素化光形100的上下边界角度同时做大的措施,既满足自适应远光或防炫目远光功能实现的要求,又满足路面符号投射效果良好的要求,会使得LED光源的成本、透镜组设计难度和成本大大增加,其空间占用也比较大。因此,为了克服上述问题,通常会根据不同的照明模式,上下调整像素化照明光形100的位置,然而,对于像素化照明单元和非像素化照明单元集成为一体的模组,在由如图1所示的远光照明模式切换成近光照明模式而将像素化光形100下调时,非像素光形200也随像素化光形100一同下调,从而会形成如图6所示的暗区300,进而会影响近光照明效果。
发明内容
本发明第一方面所要解决的问题是提供一种照明模组,该照明模组能够实现远光照明和近光照明切换后无暗区,使得光形的照明效果好。
此外,本发明第二方面要解决的问题是提供一种前照灯,该前照灯所形成的光形的照明效果好。
进一步地,本发明第三方面要解决的问题是提供一种车辆,该车辆的前照灯出光效果好。
为了解决上述技术问题,本发明第一方面提供一种照明模组,包括像素化照明部和至少一个非像素化照明部,所述像素化照明部包括像素化光源、成像透镜组和像素化出光透镜,所述非像素化照明部沿光线传播方向依次包括非像素化光源、反射单元和非像素化出光透镜,所述反射单元包括沿上下方向设置的第一反射单元和第二反射单元,所述非像素化光源包括第一光源和第二光源,所述第一光源与所述第一反射单元、所述第二光源和所述第二反射单元一一对应设置,所述第一反射单元适于将所述第一光源发出的光线反射后经所述非像素化出光透镜投射形成用于近光照明模式下的非像素化光形,所述第二反射单元适于将所述第二光源发出的光线 反射后经所述非像素化出光透镜投射形成用于远光照明模式下的非像素化光形,用于近光照明模式下的非像素化光形的上边界位于用于远光照明模式下的非像素化光形的上边界的上方;所述像素化出光透镜与所述非像素化出光透镜一体成型。
作为一个优选实施方式,所述反射单元的反射面形成为抛物面,所述反射单元的反射面的下边界形成为截止线结构。
优选地,所述非像素化出光透镜包括非像素化出光透镜入光面和非像素化出光透镜出光面,所述非像素化出光透镜入光面的横向截线和纵向截线均为向后凸出的曲线,且所述非像素化出光透镜入光面的横向截线的曲率大于纵向截线的曲率。
进一步优选地,所述第一反射单元的数量为两个,两个所述第一反射单元沿左右方向设置,所述第二反射单元的数量为一个,且所述第一反射单元和所述第二反射单元为反射镜。
作为另一个优选实施方式,所述非像素化出光透镜入光面包括沿上下方向设置的至少一个第一入光面和至少一个第二入光面。
更优选地,所述非像素化光源的发光面与水平面间的夹角为5°-30°。
作为一个具体结构形式,所述像素化出光透镜包括像素化出光透镜入光面和像素化出光透镜出光面,所述非像素化出光透镜出光面和所述像素化出光透镜出光面形成为曲率连续的曲面。
更具体地,所述成像透镜组包括由后向前依次排列的第一成像透镜和第二成像透镜,所述第一成像透镜设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜。
作为另一个具体结构形式,所述像素化光源为多个能够独立控制亮灭的LED发光单元。
此外,本发明第二方面还提供一种前照灯,包括根据第一方面技术方案中任意一项所述的照明模组。
进一步地,本发明第三方面还提供一种车辆,包括上述第二方面技术方案所述的前照灯。
通过上述技术方案,本发明的照明模组将像素化照明部与非像素化照明部设置于同一个模组中,不仅能够便于对照明模组进行调光和散热,还能够有效减小照明模组的体积,进而减小前照灯所占用的空间、降低生产成本;同时非像素化照明部包括非像素化光源、反射单元和非像素化出光透镜,通过控制第一反射单元和第二反射单元对应的第一光源和第二光源的亮灭,使得本发明的照明模组在远光照明与近光照明切换过程中不会出现暗区,结构简单,占用空间小,生产成本低,且出光效果好。
有关本发明的其他优点以及优选实施方式的技术效果,将在下文的具体实施方式中进一步说明。
附图说明
图1是现有技术中像素化光形和非像素化光形在像素化光形的上边界满足自适应远光或防炫目远光、下边界满足近光截止线要求时的相对位置示意图;
图2是图1的车辆前照灯投射效果图;
图3是现有技术中像素化光形和非像素化光形在像素化光形的上边界满足近光截止线、下边界满足路面符号投射要求时的相对位置示意图;
图4是本发明照明模组在远光照明模式下假设第一光源开启第二光源关闭时像素化光形和非像素化光形的相对位置示意图;
图5是图3的车辆前照灯投射效果图;
图6是图1所示的像素化光形和非像素化光形在近光照明模式一同下调后的相对位置示意图;
图7是本发明照明模组的一种具体实施方式的结构示意图;
图8是本发明像素化出光透镜和非像素化出光透镜的一种具体实施方式的结构示意图;
图9是图8的侧视图;
图10是图9的A-A剖面图;
图11是图8的俯视图;
图12是图11的B-B剖面图;
图13是本发明反射单元和非像素化出光透镜的一种具体实施方式的结构示意图;
图14是图13的俯视图;
图15是图14的C-C剖面图;
图16是本发明非像素化出光透镜的一种具体实施方式的结构示意图之一;
图17是本发明非像素化出光透镜的一种具体实施方式的结构示意图之二;
图18是图16的俯视图;
图19是图18的D-D剖面图;
图20是图16的侧视图;
图21是图20的E-E剖面图;
图22是本发明中照明模组的第二反射单元对应形成的非像素化光形示意图;
图23是本发明中照明模组的第一反射单元在调光前对应形成的非像素化光形示意图;
图24是本发明照明模组在近光照明模式下的照明区域示意图;
图25是本发明的调光机构的一个具体实施方式的结构示意图之一;
图26是本发明的调光机构的一个具体实施方式的结构示意图之二。
附图标记说明
1像素化照明部               11像素化光源
12成像透镜组                121第一成像透镜
122第二成像透镜             13像素化出光透镜
131像素化出光透镜入光面     132像素化出光透镜出光面
2非像素化照明部             21非像素化光源
211第一光源                 212第二光源
22非像素化出光透镜          221非像素化出光透镜入光面
2211第一入光面              2212第二入光面
222非像素化出光透镜出光面   23反射单元
231第一反射单元             232第二反射单元
4球头螺杆组件               41球头螺杆
42球头螺母                  5调光执行器
6散热器
100像素化光形               200非像素化光形
300暗区                     400辅助近光光形上边界
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,本发明的保护范围并不局限于下述的具体实施方式。
在本发明的描述中,需要解释的是,在下文的描述中为清楚地说明本发明的技术方案而涉及的一些方位词,例如“上”、“下”、“前”、“后”等,以像素化照明部1为例,像素化光源11所在的一端为后,像素化出光透镜13所在的一端为前,而相对于像素化照明部1的前后方向,像素化照明部1的上下两侧所代表的方向即为上下方向。术语为基于附图所示的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是 可拆卸连接,或者是一体连接;可以是直接连接,也可以是通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图7所示,本发明提供一种照明模组,包括像素化照明部1和至少一个非像素化照明部2,所述像素化照明部1包括像素化光源11、成像透镜组12和像素化出光透镜13,所述非像素化照明部2沿光线传播方向依次包括非像素化光源21、反射单元23和非像素化出光透镜22,所述反射单元23包括沿上下方向设置的第一反射单元231和第二反射单元232,所述非像素化光源21包括第一光源211和第二光源212,所述第一光源211与所述第一反射单元231、所述第二光源212和所述第二反射单元232一一对应设置,所述第一反射单元231适于将所述第一光源211发出的光线反射后经所述非像素化出光透镜22投射形成用于近光照明模式下的非像素化光形200,所述第二反射单元232适于将所述第二光源212发出的光线反射后经所述非像素化出光透镜22投射形成用于远光照明模式下的非像素化光形200,用于近光照明模式下的非像素化光形200的上边界位于用于远光照明模式下的非像素化光形200的上边界的上方;所述像素化出光透镜12与所述非像素化出光透镜22一体成型。
本发明中,像素化照明部1的左右两侧中至少有一侧设置有非像素化照明部2,优选地,像素化照明部1的左右两侧均设有非像素化照明部2。在远光照明模式下,如图1所示,像素化光源11全部点亮形成如图1所示的像素化光形100,第二光源212在远光照明模式下被点亮,光线经第二反射单元232反射后从非像素化出光透镜22投射形成如图22所示的非像素化光形200,像素化光形100和非像素化光形200的相对位置关系如图1所示,该非像素化光形200用于远光照明模式,能够形成远光照明模式下的辅助近光光形,此时像素化光形100的上边界满足自适应远光或防炫目远光的照明需求,下边界满足形成近光截止线的需求。
假设在远光照明模式下,像素化光源11全部点亮形成如图1所示的像素化光形100,关闭第二光源212并开启第一光源211,光线经第一反射单元231反射后从非像素化出光透镜22投射形成如图23示的非像素化光形200,此时该像素化光形200的上边界位于如图22所示的用于远光照明模式的非像素化光形200的上边界的上方,此时像素化光形100和非像素化光形200的相对位置关系如图4所示,该非像素化光形200若同像素化光形100一同下调时,不会出现暗区300,比如一同下调3°,即可得到如图3所示的符合法规要求的照明光形,该照明光形的像素化光形100的上边界满足形成近光截止线的需求,下边界满足路面符号投射的需求,因此,该非像素化光形200用于近光照明模式,与像素化光形100一同下调后能够形成近光照明模式下不具有暗区300的辅助近光光形。
需要说明的是,在由远光照明模式切换为近光照明模式时,如图4所示的像素化光形100和非像素化光形200一同下调,在近光照明模式下,像素化光源11只有部分被点亮,经成像透镜组12和像素化出光透镜13投射形成如图24所示的近光照明光形中具有近光截止线的像素化光形100,第一光源211点亮,第一光源211射出的光线经第一反射单元231反射后从非像素化出光透镜22投射形成如图24所示的非像素化光形200。通过控制第一光源211和第二光源212的亮灭,使得本发明的照明模组在近光照明模式和远光照明模式切换过程中不会出现图6中所示的暗区300。进一步地,第一反射单元231和第二反射单元232的上下位置并不一定局限于第一反射单元231设于第二反射单元232的上方,也可以将第一反射单元231设置在第二反射单元232的下方,通过调整各自的配光角度来实现各自的功能,造型更加灵活多变。
在由远光照明模式切换为近光照明模式的过程中,需要设置调光机构对该照明模组进行调光,作为调光机构的一种实施方式,如图25和图26所示,照明模组上连接有调光机构,该调光机构包括三个球头螺杆组件4,单个球头螺杆组包括球头螺杆41和球头螺母42,其中一个球头螺杆41的 一端通过球头螺母42与散热器6连接,另一端连接有固定在灯体或相对灯体固定不动的支撑件上的调光执行器5,另外两个球头螺杆组件4的球头螺杆41一端通过球头螺母42与散热器6连接,另一端固定在灯体或相对灯体固定不动的支撑件上,两个球头螺杆41的球头球心形成水平的调光轴,当设置在上部的调光执行器5驱动与之连接的球头螺杆41前后移动时,照明模组能够围绕水平的调光轴转动,进而对照明模组进行上下调光,使得照明模组的像素化光形100和非像素化光形200整体上下移动,将如图4所示的照明光形位置调整至如图3所示的照明光形位置,以满足近光截止线和路面符合投射的需求。
进一步地,本发明中,将像素化照明部1与非像素化照明部2设置在同一模组内,针对该模组设置散热装置即可实现对像素化照明部1与非像素化照明部2整体进行散热。作为本发明的一个优选实施方式,所述反射单元23的反射面形成为抛物面,所述反射单元23的反射面的下边界形成为截止线结构,经过反射单元23的反射面的下边界的光线对应形成辅助近光光形的上边界。
更优选地,所述非像素化出光透镜22包括非像素化出光透镜入光面221和非像素化出光透镜出光面222,所述非像素化出光透镜入光面221的横向截线和纵向截线均为向后凸出的曲线,且所述非像素化出光透镜入光面221的横向截线的曲率大于纵向截线的曲率。
由于非像素化出光透镜入光面221的横向截线的曲率大于纵向截线的曲率,非像素化出光透镜入光面221形成为中心区域凸出于四周边沿的后凸曲面,经第一反射单元231和第二反射单元232反射的光线经非像素化出光透镜22出射后,能够形成为左右角度范围大于上下角度范围的展宽光形,满足近光照明的法规要求。
作为本发明的另一个优选实施方式,所述第一反射单元231的数量为两个,两个所述第一反射单元231沿左右方向设置,所述第二反射单元232的数量为一个,且所述第一反射单元231和所述第二反射单元232为反射 镜。设于上方的第一反射单元231在近光照明模式下开启,对应形成近光照明模式下的辅助近光光形,第二反射单元232设于下方,在远光照明模式下开启,对应形成远光照明模式下的辅助近光光形,可以想到的是,第一反射单元231和第二反射单元232两者之间不仅可以调换位置,两者的数量也可以根据实际出光需求而改变。
作为本发明的又一个优选实施方式,如图8至图12所示,所述非像素化出光透镜入光面221包括沿上下方向设置的至少一个第一入光面2211和至少一个第二入光面2212。
从图8至图12中可以看出,非像素化出光透镜入光面221包括第一入光面2211和第二入光面2212,第一入光面2211和第二入光面2212对应于第一反射单元231和第二反射单元232,第一入光面2211和第二入光面2212形成为两个相互独立的后凸曲面,使得本发明的非像素化出光透镜22能够根据实际出光需要而改变第一入光面2211和第二入光面2212的形状、曲率等,使得非像素化出光透镜入光面221的设计更加灵活。
作为本发明的一个具体结构形式,如图15所示,所述非像素化光源21的发光面与水平面间的夹角为5°-30°。优选地,非像素化光源21的发光面与水平面间的夹角为10°-20°,以能够使得非像素化光源21射出的光线尽量多地经反射单元23反射后进入非像素化出光透镜22,提高照明模组的光学效率。
作为本发明的另一个具体结构形式,所述像素化出光透镜13包括像素化出光透镜入光面131和像素化出光透镜出光面132,所述非像素化出光透镜出光面222和所述像素化出光透镜出光面132形成为曲率连续的曲面,从而能够使得像素化出光透镜12和非像素化出光透镜22的整体性较好,造型效果较好。同时,如图16至图21所示,非像素化出光透镜出光面222可以形成为平面或曲面,并且形成为曲面的非像素化出光透镜出光面222的曲率较小,使得形成的曲面较为平坦,有利于提高造型美观度,同时加工简单方便。
进一步具体地,所述成像透镜组12包括由后向前依次排列的第一成像透镜121和第二成像透镜122,所述第一成像透镜121设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜122设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜。
本发明中,将第一成像透镜121设置为入光面与出光面均呈外凸曲面的具有正折射光焦度的双凸透镜,能够使得第一成像透镜121的焦距更短、屈光度更高,从而能够减小第一成像透镜121与像素化光源11间的距离;将第二成像透镜122设置为入光面呈内凹曲面、出光面呈外凸曲面的具有负折射光焦度的凸凹透镜,能够对光线经过第一成像透镜121折射后产生的色散现象进行抵消和修正,还能够减小其与第一成像透镜121和像素化出光透镜13之间的距离;将像素化出光透镜13设置为入光面与出光面均呈外凸曲面的具有正折射光焦度的双凸透镜,能够减小其与第二成像透镜122之间的距离,从而能够有效减小像素化照明部1的前后长度尺寸,使得照明模组体积小、制造成本低。上述透镜的折射光焦度代表透镜处理光线的能力,正折射光焦度代表透镜能够使进入的光线汇聚,而负折射光焦度代表透镜能够使进入的光线发散。第一成像透镜121、第二成像透镜122和像素化出光透镜13的搭配方式,能够有效的抵消光线折射过程中的色散,使得像素光形的色散范围小,从而使得成像更加清晰,光形效果好。
作为本发明的有一个具体结构形式,所述像素化光源11为多个能够独立控制亮灭的LED发光单元。
本发明中,像素化光源11设置为多个LED发光单元时,可以利用一个或者多个像素化照明部1中部分LED发光单元发光形成像素化光形100的光形作为部分近光光形,如图24所示,利用一个或者多个非像素化照明部2形成非像素化光形200,配合像素化光形100中的部分近光光形以形成完整的车辆前照灯近光照明用的光形。
另外,所述像素化光源11为多个能够独立控制亮灭的LED发光单元。本发明的像素化光源11可以设置为多个能够独立控制亮灭的LED发光单 元,具体可以为矩阵式排布的LED颗粒或者Micro LED,优选为Micro LED光源,即一种微缩LED光源,该微缩LED光源中的各个LED单元的尺寸为微米级别,且该微缩LED光源进一步优选为由上万颗微米级LED单元所组成的矩形阵列式LED光源;选用微缩LED光源能够使得像素点更小更密集,从而能够使得形成的像素图像的清晰度更高,进而能够实现对像素图像投射出去后所形成的光形进行更高精度的调控,形成的暗部的边界以及暗部位置的变化也更加精细流畅,能够更好地避免对行人或驾驶员造成炫目或致盲,而且该微缩LED光源呈矩形阵列,能够获得更宽的光形,以照亮道路两侧的区域,有利于驾驶员对道路两侧的行人以及路标的观察。
在上述照明模组的基础上,本发明第二方面提供了一种前照灯,包括上述任意一项技术方案所述的照明模组。因此至少具有上述照明模组实施例的技术方案所带来的所有有益效果,所形成光形的精度高、稳定性好、远光照明模式切换为近光照明模式时无暗区300,照明光形效果好,且灯体占用的空间小、制造成本低。
进一步地,本发明第三方面的车辆,包括本发明上述第二方面中所述的前照灯,也具有上述照明模组实施例的技术方案所带来的所有有益效果。
由以上描述可以看出,本发明的照明模组将像素化照明部1与非像素化照明部2设置于同一个模组中,不仅能够有效减小照明模组的体积,减小前照灯占用空间,降低生产成本,还能够通过沿上下方向设置的第一反射单元231和第二反射单元232分别用于形成近光照明模式下的非像素化光形200和远光照明模式下的非像素化光形200,用以实现远光照明模式切换为近光照明模式时不会出现暗区300,优化出光效果,使得光形的照明效果好。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (11)

  1. 一种照明模组,其特征在于,包括像素化照明部(1)和至少一个非像素化照明部(2),所述像素化照明部(1)包括像素化光源(11)、成像透镜组(12)和像素化出光透镜(13),所述非像素化照明部(2)沿光线传播方向依次包括非像素化光源(21)、反射单元(23)和非像素化出光透镜(22),所述反射单元(23)包括沿上下方向设置的第一反射单元(231)和第二反射单元(232),所述非像素化光源(21)包括第一光源(211)和第二光源(212),所述第一光源(211)与所述第一反射单元(231)、所述第二光源(212)和所述第二反射单元(232)一一对应设置,所述第一反射单元(231)适于将所述第一光源(211)发出的光线反射后经所述非像素化出光透镜(22)投射形成用于近光照明模式下的非像素化光形(200),所述第二反射单元(232)适于将所述第二光源(212)发出的光线反射后经所述非像素化出光透镜(22)投射形成用于远光照明模式下的非像素化光形(200),用于近光照明模式下的非像素化光形(200)的上边界位于用于远光照明模式下的非像素化光形(200)的上边界的上方;所述像素化出光透镜(13)与所述非像素化出光透镜(22)一体成型。
  2. 根据权利要求1所述的照明模组,其特征在于,所述反射单元(23)的反射面形成为抛物面,所述反射单元(23)的反射面的下边界形成为截止线结构。
  3. 根据权利要求1所述的照明模组,其特征在于,所述非像素化出光透镜(22)包括非像素化出光透镜入光面(221)和非像素化出光透镜出光面(222),所述非像素化出光透镜入光面(221)的横向截线和纵向截线均为向后凸出的曲线,且所述非像素化出光透镜入光面(221)的横向截线的曲率大于纵向截线的曲率。
  4. 根据权利要求1所述的照明模组,其特征在于,所述第一反射单元(231)的数量为两个,两个所述第一反射单元(231)沿左右方向设置,所述第二反射单元(232)的数量为一个,且所述第一反射单元(231)和所述第二反射单元(232)为 反射镜。
  5. 根据权利要求1所述的照明模组,其特征在于,所述非像素化出光透镜入光面(221)包括沿上下方向设置的至少一个第一入光面(2211)和至少一个第二入光面(2212)。
  6. 根据权利要求1至5中任一项所述的照明模组,其特征在于,所述非像素化光源(21)的发光面与水平面间的夹角为5°-30°。
  7. 根据权利要求1至5中任一项所述的照明模组,其特征在于,所述像素化出光透镜(13)包括像素化出光透镜入光面(131)和像素化出光透镜出光面(132),所述非像素化出光透镜出光面(222)和所述像素化出光透镜出光面(132)形成为曲率连续的曲面。
  8. 根据权利要求1至5中任一项所述的照明模组,其特征在于,所述成像透镜组(12)包括由后向前依次排列的第一成像透镜(121)和第二成像透镜(122),所述第一成像透镜(121)设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜(122)设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜。
  9. 根据权利要求1至5中任一项所述的照明模组,其特征在于,所述像素化光源(11)为多个能够独立控制亮灭的LED发光单元。
  10. 一种前照灯,其特征在于,包括根据权利要求1至9中任意一项所述的照明模组。
  11. 一种车辆,其特征在于,包括根据权利要求10所述的前照灯。
PCT/CN2021/098721 2021-06-07 2021-06-07 一种照明模组、前照灯和车辆 WO2022256991A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/098721 WO2022256991A1 (zh) 2021-06-07 2021-06-07 一种照明模组、前照灯和车辆
CN202180086679.9A CN116670433A (zh) 2021-06-07 2021-06-07 一种照明模组、前照灯和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098721 WO2022256991A1 (zh) 2021-06-07 2021-06-07 一种照明模组、前照灯和车辆

Publications (1)

Publication Number Publication Date
WO2022256991A1 true WO2022256991A1 (zh) 2022-12-15

Family

ID=84424675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098721 WO2022256991A1 (zh) 2021-06-07 2021-06-07 一种照明模组、前照灯和车辆

Country Status (2)

Country Link
CN (1) CN116670433A (zh)
WO (1) WO2022256991A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116677948A (zh) * 2023-08-03 2023-09-01 常州星宇车灯股份有限公司 汽车照明场景的实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858560A (zh) * 2010-04-16 2010-10-13 海洋王照明科技股份有限公司 一种远光灯反射器、远光灯和机动车
US20110170308A1 (en) * 2010-01-14 2011-07-14 Koito Manufacturing Co., Ltd. Vehicle head lamp
CN104728725A (zh) * 2013-12-23 2015-06-24 现代自动车株式会社 用于车辆的前照灯装置
CN104832859A (zh) * 2015-05-29 2015-08-12 奇瑞汽车股份有限公司 一种远近光一体的前照灯
CN105276490A (zh) * 2015-11-30 2016-01-27 力帆实业(集团)股份有限公司 使用后反射式led远近光的组合前灯
CN213089740U (zh) * 2020-08-21 2021-04-30 华域视觉科技(上海)有限公司 像素化远近光一体车灯模组、车灯及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170308A1 (en) * 2010-01-14 2011-07-14 Koito Manufacturing Co., Ltd. Vehicle head lamp
CN101858560A (zh) * 2010-04-16 2010-10-13 海洋王照明科技股份有限公司 一种远光灯反射器、远光灯和机动车
CN104728725A (zh) * 2013-12-23 2015-06-24 现代自动车株式会社 用于车辆的前照灯装置
CN104832859A (zh) * 2015-05-29 2015-08-12 奇瑞汽车股份有限公司 一种远近光一体的前照灯
CN105276490A (zh) * 2015-11-30 2016-01-27 力帆实业(集团)股份有限公司 使用后反射式led远近光的组合前灯
CN213089740U (zh) * 2020-08-21 2021-04-30 华域视觉科技(上海)有限公司 像素化远近光一体车灯模组、车灯及车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116677948A (zh) * 2023-08-03 2023-09-01 常州星宇车灯股份有限公司 汽车照明场景的实现方法
CN116677948B (zh) * 2023-08-03 2024-01-12 常州星宇车灯股份有限公司 汽车照明场景的实现方法

Also Published As

Publication number Publication date
CN116670433A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6516495B2 (ja) 車両用灯具
JP7082682B2 (ja) 車両ランプ用光学素子、車両ランプモジュール、車両ヘッドライト及び車両
WO2015176340A1 (zh) 远近光一体双光源的透镜式汽车前照灯光学模组
WO2022037288A1 (zh) 像素化远近光一体车灯模组、车灯及车辆
WO2020244109A1 (zh) 近光iii区照明模组、车辆前照灯及车辆
WO2021147732A1 (zh) 前照灯光学元件、前照灯模组、车灯及车辆
TW201932331A (zh) 智慧頭燈
WO2022100058A1 (zh) 远近光一体车灯光学元件、车灯模组、车灯及车辆
CN113958921A (zh) 照明模组、照明装置及车辆
CN110736072A (zh) 前照灯照明模组及车辆
WO2022256991A1 (zh) 一种照明模组、前照灯和车辆
WO2021218826A1 (zh) 透镜单元、光学透镜、照明模组、车灯及车辆
WO2020233573A1 (zh) 一种矩阵式车灯光学装置、车灯及车辆
CN210568143U (zh) 前照灯照明模组及车辆
CN113294741A (zh) 车灯光学结构、车灯模组和车辆
CN112610929A (zh) Adb远光模组及车灯
CN218209358U (zh) 反射式光学模组及使用其的照明装置及车辆
CN207945636U (zh) 车前灯和机动车辆
WO2022001239A1 (zh) 一种车灯光学组件、车灯模组、车灯及车辆
CN215372308U (zh) 远光照明模组、车灯及车辆
WO2022134456A1 (zh) Adb车灯模组、车灯及车辆
WO2023019568A1 (zh) 车灯照明模组及车灯
WO2022012634A1 (zh) 车辆远光灯模组、车辆前照灯及车辆
WO2022256983A1 (zh) 一种照明模组的光形调整方法、照明模组、前照灯和车辆
WO2021093234A1 (zh) 光路处理元件、前照灯模组、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086679.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944502

Country of ref document: EP

Kind code of ref document: A1