WO2022256983A1 - 一种照明模组的光形调整方法、照明模组、前照灯和车辆 - Google Patents

一种照明模组的光形调整方法、照明模组、前照灯和车辆 Download PDF

Info

Publication number
WO2022256983A1
WO2022256983A1 PCT/CN2021/098690 CN2021098690W WO2022256983A1 WO 2022256983 A1 WO2022256983 A1 WO 2022256983A1 CN 2021098690 W CN2021098690 W CN 2021098690W WO 2022256983 A1 WO2022256983 A1 WO 2022256983A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixelated
optical element
primary optical
lighting
Prior art date
Application number
PCT/CN2021/098690
Other languages
English (en)
French (fr)
Inventor
仇智平
张大攀
祝贺
桑文慧
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to CN202180086675.0A priority Critical patent/CN116685802A/zh
Priority to PCT/CN2021/098690 priority patent/WO2022256983A1/zh
Publication of WO2022256983A1 publication Critical patent/WO2022256983A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings

Definitions

  • the invention relates to a car lamp, in particular to a method for adjusting a light shape of a lighting module.
  • the invention also relates to a lighting module, a headlight and a vehicle.
  • the automotive lamp includes a pixelated lighting unit and a non-pixelated lighting unit.
  • the pixelated lighting unit projects to form a pixelated light shape 100
  • the non-pixelated lighting unit projects Form a non-pixelated light shape 200.
  • the lighting shape of different lighting modes realizes the function of adaptive high beam or anti-glare high beam, as well as functions such as low beam cut-off line and projecting pixelated symbols to the road surface.
  • the pixelated light The shape 100 is formed as a main low beam light shape with a low beam cut-off line, superimposed with the non-pixelated light shape 200 for low beam lighting.
  • the angle difference between the upper and lower boundaries of the pixelated light shape 100 is that the upper boundary of the pixelated light shape 100 meets the lighting requirements of adaptive high beam or anti-glare high beam, and the lower boundary meets the requirements of forming a near beam.
  • the upper boundary of the pixelated light shape 100 satisfies the requirement of forming a low beam cut-off line, and the lower boundary meets the requirement of road surface symbol projection.
  • the upper boundary of the light shape is at +2°
  • the lower boundary Located at -6° this technical solution, as shown in Figure 4, although it can form a low beam cut-off line and obtain a good effect of projecting symbols on the road surface, it cannot realize the function of adaptive high beam or anti-glare high beam pixelated lighting , because the position of the pixelated light shape 100 is relatively low, and the illumination on the road surface is relatively close, which cannot meet the requirement of the high beam illumination range.
  • the LED light source will be improved.
  • the cost, difficulty and cost of lens group design are greatly increased, and its space occupation is also relatively large.
  • the problem to be solved in the first aspect of the present invention is to provide a light shape adjustment method of the lighting module, which is easy to operate, has good lighting effect, and can reduce the manufacturing cost of the lighting module.
  • the problem to be solved in the second aspect of the present invention is to provide a lighting module, which can realize no dark area after switching between high beam lighting and low beam lighting, so that the lighting effect of the light shape is good, and the manufacturing cost is low.
  • the problem to be solved in the third aspect of the present invention is to provide a headlamp, which can realize no dark area after switching between high-beam lighting and low-beam lighting, so that the lighting effect of the light shape is good, and the manufacturing cost is low. Low.
  • the problem to be solved in the fourth aspect of the present invention is to provide a vehicle whose headlights can realize no dark areas after switching between high-beam lighting and low-beam lighting, so that the lighting effect of the light shape is good, and the manufacturing low cost.
  • the first aspect of the present invention provides a method for adjusting the light shape of the lighting module.
  • the lighting light shape of the lighting module includes a pixelated light shape and a non-pixelated light shape.
  • the pixelated light shape The range of the angle difference between the upper and lower boundaries is 5°-8°.
  • the light shape adjustment method of the lighting module includes adjusting the position of the pixelated light shape so that in the low beam lighting mode, the pixelated light shape
  • the angle range of the lower boundary is greater than or equal to -8° and less than or equal to -4°
  • the angle range of the upper boundary is greater than or equal to 0° and less than or equal to 3°
  • the lower boundary of the pixelated light shape is greater than or equal to -3° and less than or equal to -1°
  • the angle range of the upper boundary is greater than or equal to 4° and less than or equal to 8°.
  • the second aspect of the present invention also provides a lighting module, including at least one pixelated lighting part and at least one non-pixelated lighting part, the pixelated lighting part includes a pixelated light source and a pixelated light output lens, and the non-pixelated lighting part
  • the pixelated lighting part sequentially includes a non-pixelated light source, a non-pixelated primary optical element, and a non-pixelated light-emitting lens along the light-emitting direction.
  • the pixelated light-emitting lens is integrally formed with the non-pixelated light-emitting lens.
  • the first primary optical element and the second primary optical element are integrally formed.
  • the first primary optical element and the second primary optical element respectively include a primary optical element light incident end, a primary optical element light channel, and a primary optical element light exit end integrally formed from back to front, the The molding material of the light input end of the primary optical element is different from the molding material of the light channel of the primary optical element and the light output end of the primary optical element, and the light input end of the primary optical element corresponds to the non-pixelated light source one by one.
  • the light input end of the primary optical element is a silicone molded part
  • the light channel of the primary optical element and the light output end of the primary optical element are PC molded parts.
  • the interface between the light incident end of the primary optical element and the light channel of the primary optical element corresponding to the light incident end of the primary optical element is set as a forward convex curved surface.
  • the light-emitting surface of the pixelated light-emitting lens is set as a convex curved surface, and the light-emitting surface of the pixelated light-emitting lens is connected with the light-emitting surface of the non-pixelated light-emitting lens to form a smooth curved surface with continuous curvature.
  • the pixelated lighting part further includes an imaging lens group
  • the imaging lens group includes a first imaging lens and a second imaging lens arranged in sequence from back to front
  • the first imaging lens is set as The light incident surface and the light exit surface are both biconvex lenses with convex curved surfaces
  • the second imaging lens is set as a convex-concave lens with the light incident surface shown Both the light surface and the light exit surface are biconvex lenses with convex curved surfaces.
  • the pixelated light source is a plurality of LED light-emitting units that can be turned on and off independently.
  • the third aspect of the present invention also provides a headlamp, including the lighting module according to any one of the technical solutions of the second aspect.
  • the fourth aspect of the present invention also provides a vehicle, including the headlight described in the technical solution of the third aspect above.
  • the light shape adjustment method of the lighting module of the present invention controls the irradiation angle of the pixelated light shape of the lighting module, so that the angle difference between the upper and lower boundaries of the pixelated light shape ranges from 5° to 8°, and at the same time
  • the angle range of the lower boundary of the pixelated light shape is greater than or equal to -8°, less than or equal to -4°, and the angle range of the upper boundary is greater than or equal to 0° , less than or equal to 3°
  • the angle range of the lower boundary of the pixelated light shape is greater than or equal to -3°, less than or equal to -1°
  • the angle range of the upper boundary is greater than or equal to 4°, less than or equal to 8 °.
  • the light shape adjustment method of the lighting module of the present invention by controlling the upper and lower boundary angle range difference and the upper and lower boundary angle range of the pixelated light shape area, the high beam ADB, the low beam cut-off line and the road surface symbol projection function are satisfied, and the lighting The manufacturing cost of the module is low, and the projection effect is good.
  • the pixelated lighting part and the non-pixelated lighting part are arranged in the same module, through the first primary optical element and the second primary optical element, or between multiple first primary optical elements
  • the combination makes it possible to form a light shape that complements the dark area during the up-and-down adjustment process of the pixelated light shape, and optimizes the light output effect, so that the lighting effect of the pixelated light shape with a narrow range of angle difference between the upper and lower boundaries is good, and the pixelated light shape is formed
  • the shaped lighting module has simple structure and low production cost.
  • Fig. 1 is a schematic diagram of the lighting area when the upper boundary of the pixelated light shape and the non-pixelated light shape meet the requirements of adaptive high beam or anti-glare high beam and the lower boundary meets the requirements of the low beam cut-off line in the prior art;
  • Fig. 2 is a projection effect diagram of the vehicle headlight in Fig. 1;
  • Fig. 3 is a schematic diagram of the relative positions of the pixelated light shape and the non-pixelated light shape in the prior art when the upper boundary of the pixelated light shape satisfies the low beam cut-off line, and the lower boundary meets the road surface symbol projection requirements;
  • Fig. 4 is a projection effect diagram of the vehicle headlight in Fig. 3;
  • Fig. 5 is a schematic diagram of the relative positions of the pixelated light shape and the non-pixelated light shape shown in Fig. 1 after they are both lowered in the low beam lighting mode;
  • Fig. 6 is a schematic structural view of a specific embodiment of the lighting module of the present invention.
  • Fig. 7 is a top view of the lighting module shown in Fig. 6;
  • Fig. 8 is the A-A sectional view of Fig. 7;
  • Fig. 9 is a schematic structural view of another embodiment of the lighting module of the present invention.
  • Fig. 10 is a top view of the lighting module shown in Fig. 9;
  • Fig. 11 is the C-C sectional view of Fig. 10;
  • Fig. 12 is the B-B sectional view of Fig. 10;
  • Fig. 13 is the specific embodiment shown in Fig. 10, assuming that the light source corresponding to the first primary optical element 231 on the lower boundary of the light-emitting surface is turned on, and the light source corresponding to the first primary optical element 231 on the lower boundary of the light-emitting surface is turned off.
  • Fig. 14 is a schematic structural view of a specific embodiment of the non-pixelated primary optical element of the present invention.
  • Figure 15 is a top view of the non-pixelated primary optical element shown in Figure 14;
  • Fig. 16 is a D-D sectional view of Fig. 15;
  • Figure 17 is a side view of the non-pixelated primary optical element shown in Figure 14;
  • Fig. 18 is the E-E sectional view of Fig. 17;
  • Fig. 19 is a schematic structural view of a specific embodiment of the pixelated light-emitting lens and imaging lens group of the present invention.
  • Fig. 20 is a schematic diagram of the lighting area of the pixelized light shape and the non-pixelated light shape in the low beam lighting mode of the present invention.
  • Fig. 21 is one of the structural schematic diagrams of a specific embodiment of the dimming mechanism of the present invention.
  • Fig. 22 is the second structural schematic diagram of a specific embodiment of the dimming mechanism of the present invention.
  • the first imaging lens 132 The second imaging lens
  • Non-pixelated light-emitting lens 22
  • Non-pixelated primary optical elements 22
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or It is an integral connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • the first aspect of the present invention provides a light shape adjustment method of a lighting module, the light shape of the lighting module includes a pixelated light shape 100 and a non-pixelated light shape 200, and the upper and lower boundary angles of the pixelated light shape 100 The range of the difference is 5°-8°.
  • the light shape adjustment method of the lighting module includes adjusting the position of the pixelated light shape 100 so that in the low beam lighting mode, the lower boundary of the pixelated light shape 100
  • the angle range of the upper boundary is greater than or equal to -8° and less than or equal to -4°, and the angle range of the upper boundary is greater than or equal to 0° and less than or equal to 3°; in the high beam lighting mode, the lower boundary of the pixelated light shape 100
  • the angle range is greater than or equal to -3° and less than or equal to -1°
  • the angle range of the upper boundary is greater than or equal to 4° and less than or equal to 8°.
  • the upper and lower boundary angles of the light shape of the lighting module refer to the corresponding upper and lower boundary angles of the light shape projected on the light distribution screen.
  • the light shape adjustment method of the lighting module of the present invention is a dimming method for a pixelated lighting module with a narrow upper and lower boundary angle difference range. Using the light shape adjustment method of the lighting module of the present invention, both high beam and high beam can be satisfied at the same time.
  • the three functional requirements of ADB, low beam cut-off line and road surface symbol projection can also effectively reduce the production cost of the lighting module adopting the light shape adjustment method of the lighting module of the present invention, and the light shape effect is good.
  • the second aspect of the present invention also provides a lighting module, including at least one pixelated lighting part 1 and at least one non-pixelated lighting part 2, the pixelated lighting part 1 includes pixelated A light source 11 and a pixelated light-emitting lens 12.
  • the non-pixelated lighting unit 2 sequentially includes a non-pixelated light source 21, a non-pixelated primary optical element 23, and a non-pixelated light-emitting lens 22 along the light-emitting direction.
  • the pixelated light-emitting lens 12 Formed integrally with the non-pixelated light-emitting lens 22, the pixelated lighting unit 1 can project to form the pixelated light shape 100, and the non-pixelated lighting unit 2 can project to form the non-pixelated light shape 200,
  • the lighting module can adopt the above-mentioned light shape adjustment method of the lighting module, by adjusting the position of the pixelated light shape 100, so that in the low beam lighting mode, the angle range of the lower boundary of the pixelized light shape 100 is greater than or equal to -8°, less than or equal to -4°, the angle range of the upper boundary is greater than or equal to 0°, less than or equal to 3°; in the high beam lighting mode, the angle range of the lower boundary of the pixelated light shape 100 is greater than or equal to - 3°, less than or equal to -1°, the angle range of the upper boundary is greater than or equal to 4°, less than or equal to 8°.
  • the light-emitting surfaces of the pixelated light-emitting lens 12 and the non-pixelated light-emitting lens 22 are integrated, and are preferably curved surfaces with continuous and smooth curvature, so that the integrity of the pixelated light-emitting lens 12 and the non-pixelated light-emitting lens 22 is better.
  • the styling effect is better.
  • a dimming mechanism is connected to the lighting module, and the dimming mechanism includes three ball screw assemblies 4 , and a single ball screw assembly includes a ball screw 41 and a ball nut 42 , one end of one of the ball screw 41 is connected with the radiator 6 through the ball nut 42, and the other end is connected with the dimming actuator 5 fixed on the lamp body or a support that is fixed relative to the lamp body, and the other two balls
  • One end of the ball screw 41 of the head screw assembly 4 is connected to the radiator 6 through a ball nut 42, and the other end is fixed on the lamp body or a support that is fixed relative to the lamp body.
  • the ball centers of the two ball screws 41 A horizontal dimming axis is formed.
  • the lighting module can rotate around the horizontal dimming axis, thereby dimming the lighting module , so that the pixelated light shape 100 and the non-pixelated light shape 200 of the lighting module move up and down as a whole.
  • the pixelated lighting part 1 and the non-pixelated lighting part 2 are integrated into one lighting module, and the relative positions of the pixelated light shape 100 and the non-pixelated light shape 200 Fixed such that when the pixelated light shape 100 is adjusted downwards on the basis of the lighting area shown in FIG. When moving downward at the same time, a dark area 300 as shown in FIG. 5 will be formed, which seriously affects the low beam lighting effect.
  • the non-pixelated primary optical element 23 includes a first primary optical element 231 and a second primary optical element 232, and the first primary optical element 231 and the second primary optical element
  • the optical elements 232 are arranged along the up-down direction, the first primary optical element 231 is adapted to form a low beam widening light shape, and the second primary optical element 232 is adapted to form a light shape supplementing the dark area 300 .
  • the first primary optical element 231 is arranged on the upper part of the second primary optical element 232 , and the light-emitting surfaces of the first primary optical element 231 and the second primary optical element 232 are integrally formed.
  • a primary optical element 231 is used to form a broadened light shape for low beams
  • a second primary optical element 232 is used to form a light shape that supplements the dark area 300 .
  • the non-pixelated light source 21 corresponding to the upper first primary optical element 231 is turned on in both the low beam lighting mode and the high beam lighting mode, while the non-pixelated light source 21 corresponding to the lower second primary optical element 232 is turned on. 21 is only lit in the low beam lighting mode, and is not lit in the high beam lighting mode, so that the lighting module of the present invention will not appear in the process of switching between the low beam lighting mode and the high beam lighting mode.
  • the non-pixelated primary optical element 23 includes two first primary optical elements 231, and the first primary optical element 231 is arranged on the pixelated illuminating part 1. On both sides, the lower boundary of the light exit surface of the first primary optical element 231 on one side is located below the lower boundary of the light exit surface of the first primary optical element 231 on the other side.
  • the non-pixelated primary optical element 23 includes two first primary optical elements 231, which are respectively arranged on both sides of the pixelated lighting part 1, and the two first primary optical elements 231 are used to form low beam
  • the light shape is broadened, wherein the lower boundary of the light exit surface of the first primary optical element 231 on one side is located below the lower boundary of the light exit surface of the first primary optical element 231 on the other side.
  • the first primary optical element 231 above the lower boundary of the light-emitting surface corresponds to the upper boundary of the low-beam broadening light shape.
  • the light source corresponding to the first primary optical element 231 is turned on in the high beam lighting mode, and turned off in the low beam lighting mode.
  • the relative position of shape 200 is the same as that shown in FIG. 1; as shown in FIG.
  • the upper boundary of the light shape corresponding to the first primary optical element 231 is on the upper side.
  • the light source corresponding to the first primary optical element 231 is turned on in the low beam lighting mode and turned off in the high beam lighting mode.
  • the relative positions of the pixelated light shape 100 and the non-pixelated light shape 200 formed by the group are the same as those shown in FIG. 3 , and the light emitting effect is better.
  • the light source corresponding to the first primary optical element 231 in FIG. 12 when switching from the high beam lighting mode to the low beam lighting mode, the light source corresponding to the first primary optical element 231 in FIG. 12 is turned off, and the light source corresponding to the first primary optical element 231 in FIG. 11 is turned on. There will be no dark area 300 formed.
  • the non-pixelated light source 21 corresponding to the corresponding non-pixelated lighting part is selected to be turned on to meet the lighting requirements, and no dark area 300 will be formed during the switching process.
  • FIG. 3 only shows the positional relationship between the pixelated light shape 100 and the non-pixelated light shape 200 in the low-beam lighting mode. It is necessary to control the on and off of the pixelated light source 11 to form the pixelated light shape as shown in FIG. 20 . Low beam beam shape with low beam cut-off line.
  • the pixelated lighting part 1 and the non-pixelated lighting part 2 in the present invention are different from the pixelated lighting part 1 in the prior art during the conversion process between the high beam lighting mode and the low beam lighting mode.
  • the lighting module of the non-pixelated lighting part 2 there will be no dark area 300, so that the lighting effect is better.
  • the pixelated lighting part 1 and the non-pixelated lighting part 2 are arranged in the same module, and the heat dissipation device provided for the module can realize the whole pixelated lighting part 1 and the non-pixelated lighting part 2 For heat dissipation, the heat dissipation effect is better.
  • the angle difference between the upper and lower boundaries of the pixelated light shape area formed by the pixelated lighting unit 1 of the present invention is in the range of 5°-8°.
  • the area is larger than this range value, and the pixelated light shape area with a larger range value can simultaneously satisfy the two functions of high beam ADB, low beam cut-off line and road surface symbol projection.
  • the angle difference between the upper and lower boundaries of the pixelated light shape area of the present invention ranges from 5° to 8°.
  • the first primary optical element 231 and the second primary optical element 232 are light guide elements.
  • the first primary optical element 231 and the second primary optical element 232 respectively include a primary optical element light incident end 233 integrally formed from back to front, a primary optical element Element light passage 234 and primary optical element light exit end 235, the molding material of the primary optical element light entry end 233 is different from the molding material of the primary optical element light channel 234 and the primary optical element light exit end 235, the primary optical element light exit end 235
  • the light incident end 233 of the optical element is provided in one-to-one correspondence with the non-pixelated light source 21 .
  • the light input end 233 of the primary optical element is a silicone molded part
  • the light channel 234 of the primary optical element and the light output end 235 of the primary optical element are PC molded parts.
  • the primary optical element light entrance 233 , the primary optical element light channel 234 and the primary optical element light exit 235 are made of different materials, the primary optical element light entrance 233 , the primary optical element light channel 234 and the primary optical element light output end 235 are formed as an integral molding, so that the first primary optical element 231 and the second primary optical element 232 not only have better optical performance, but at the same time, because the heat resistance of silica gel is better than that of PC, making The heat resistance of the first primary optical element 231 and the second primary optical element 232 is better.
  • the interface between the light incident end 233 of the primary optical element and the light channel 234 of the primary optical element corresponding to the light incident end 233 of the primary optical element is set as a front convex curved surface, thereby It can play a better secondary light distribution effect, making the light more concentrated and the light output effect better.
  • the light-emitting surface of the pixelated light-emitting lens 12 is set as a convex curved surface
  • the light-emitting surface of the non-pixelated light-emitting lens 22 is set as an extended curved surface
  • the light-emitting surface of the pixelated light-emitting lens 12 is The surface is connected with the light-emitting surface of the non-pixelated light-emitting lens 22 to form a smooth curved surface with continuous curvature, so that the integrity of the light-emitting surface of the lighting module can be improved, and the shape of the light-emitting surface is better.
  • the pixelated illuminating unit 1 further includes an imaging lens group 13, and the imaging lens group 13 includes a first imaging lens 131 and a The second imaging lens 132, the first imaging lens 131 is set as a double-convex lens whose light incident surface and light exit surface are both convex curved surfaces, and the second imaging lens 132 is set so that the light incident surface is a concave curved surface, and the light exit surface is a curved surface.
  • the pixelated light-emitting lens 12 is set as a biconvex lens with a light-incident surface and a light-emitting surface both of which are convex curved surfaces.
  • the first imaging lens 131 is set as a double-convex lens with positive refractive power whose light-incident surface and light-emitting surface are both convex surfaces, so that the focal length of the first imaging lens 131 can be shortened and the diopter is higher.
  • the second imaging lens 132 is set as a convex-concave lens with a negative refractive power whose light incident surface is an inwardly concave curved surface and whose light output surface is an outwardly convex curved surface , can offset and correct the dispersion phenomenon generated after the light is refracted by the first imaging lens 131, and can also reduce the distance between it and the first imaging lens 131 and the pixelated light-emitting lens 12;
  • the pixelated light-emitting lens 12 is set It is a double-convex lens with positive refractive power whose light-incident surface and light-exit surface are both convex surfaces, which can reduce the distance between it and the second imaging lens 132, thereby effectively reducing the front and rear of the pixelated lighting unit 1.
  • the length dimension makes the lighting module small in size and low in manufacturing cost.
  • the refractive power of the above lens represents the ability of the lens to process light. Positive refractive power means that the lens can converge incoming light, while negative refractive power means that the lens can diverge incoming light.
  • the collocation of the first imaging lens 131, the second imaging lens 132 and the pixelated light-emitting lens 12 can effectively offset the dispersion in the process of light refraction, so that the dispersion range of the pixel light shape is small, so that the imaging is clearer and the light shape effect is improved. it is good.
  • the pixelated light source 11 is a plurality of LED light-emitting units that can be turned on and off independently.
  • the light shape formed by the pixelated light shape 100 can be used as a partial low-beam light shape by using some LED light-emitting units in one or more pixelated lighting parts 1 to emit light.
  • One or more non-pixelated lighting parts 2 are used to form a non-pixelated low-beam light shape 200 , and a part of the low-beam light shape is combined to form a complete light shape for vehicle headlamp low-beam illumination.
  • the pixelated light source 11 is a plurality of LED light emitting units that can be independently controlled to turn on and off.
  • the pixelated light source 11 of the present invention can be set as a plurality of LED light-emitting units that can be independently controlled to turn on and off, and specifically can be LED particles or Micro LEDs arranged in a matrix, preferably a Micro LED light source, that is, a miniature LED light source.
  • each LED unit in the miniature LED light source is micron level, and the miniature LED light source is further preferably a rectangular array LED light source composed of tens of thousands of micron-level LED units; the selection of miniature LED light source can make the pixels smaller and more Dense, so that the definition of the formed pixel image can be made higher, and then the light shape formed after the pixel image is projected can be adjusted with higher precision, and the boundary of the formed dark part and the change of the dark part position are also more fine and smooth , can better avoid dazzling or blinding pedestrians or drivers, and the miniature LED light source is in a rectangular array, which can obtain a wider light shape to illuminate the areas on both sides of the road, which is conducive to the driver's awareness of both sides of the road. Observation of side pedestrians and road signs.
  • the third aspect of the present invention provides a headlamp, including the lighting module described in any one of the technical solutions of the second aspect above. Therefore, at least it has all the beneficial effects brought by the technical solutions of the above-mentioned lighting module embodiments, the formed light shape has high precision and good stability, there is no dark area when the light shape of the low beam lighting and the light shape of the high beam lighting are converted, and the light shape of the lighting The effect is good, and the space occupied by the lamp body is small, and the manufacturing cost is low.
  • the vehicle according to the fourth aspect of the present invention includes the headlamp described in the above third aspect of the present invention, and also has all the beneficial effects brought about by the technical solutions of the above lighting module embodiments.
  • the light shape adjustment method of the lighting module of the present invention adjusts the upper and lower boundaries of the pixelated light shape 100 in the low beam lighting mode and the high beam lighting mode to make the lighting effect better.
  • the pixelated lighting part 1 and the non-pixelated lighting part 2 are arranged in the same module, and the first primary optical element 231 and the second primary optical element 232, or a plurality of first primary optical elements
  • the combination of the optical elements 231 makes it possible to form a light shape that complements the dark area 300 during the vertical adjustment process of the pixelated light shape 100, and optimize the light output effect, so that the illumination of the pixelated light shape 100 with a narrow range of angle difference between the upper and lower boundaries can be achieved.
  • the effect is good, and the lighting module forming the pixelated light shape 100 has a simple structure and low production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种照明模组、前照灯和车辆,照明模组的光形包括像素化光形(100)和非像素化光形(200),像素化光形(100)的上下边界角度差的范围为5°-8°,照明模组的光形调整方法包括调整像素化光形(100)的位置,使得在近光照明模式下,像素化光形(100)的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,像素化光形(100)的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。照明模组的光形调整方法操作简单,照明效果好,且能够降低照明模组的制造成本。

Description

一种照明模组的光形调整方法、照明模组、前照灯和车辆 技术领域
本发明涉及汽车车灯,具体地,涉及一种照明模组的光形调整方法。此外,本发明还涉及一种照明模组、前照灯和车辆。
背景技术
近几年,车灯照明技术领域提出了像素化照明的技术方案,车灯包括像素化照明单元和非像素化照明单元,像素化照明单元投射形成像素化光形100,非像素化照明单元投射形成非像素化光形200,如图1所示,非像素化光形200一般形成为近光展宽光形,即辅助近光光形,像素化光形100可以通过光源的亮灭,形成符合不同照明模式的照明光形,实现自适应远光或防炫目远光功能,以及近光截止线、向路面投射像素化符号等功能,如图20所示,通过灭掉一部分光源,像素化光形100形成为具有近光截止线的主近光光形,与非像素化光形200叠加后用于近光照明。以像素化光形100的上下边界角度差为8°为例,其中一种技术方案是像素化光形100的上边界满足自适应远光或防炫目远光的照明需求,下边界满足形成近光截止线的需求,例如如图1所示,光形上边界位于+5°,下边界位于-3°时,这种技术方案,虽然能够满足远处的自适应远光或防炫目远光的像素化照明以及形成近光截止线的需求,但如图2所示,因为像素化光形100的位置较高,照射在路面上较远,投射到路面的像素化符号显示效果较差,因为距离较远,驾驶员可视度不够好,以及像素化符号在远处大距离产生的畸变也较大,因此形成的路面像素化符号投射效果较差。另外一种技术方案是像素化光形100的上边界满足形成近光截止线的需求,下边界满足路面符号投射的需求,例如如图3所示,光形上边界位于+2°,下边界位于-6°,这种技术方案,如图4所示,虽然能够形成近光截止线以及获得路面的符号投射的良好效果,但实现不了自适应远光或防炫目远光像素化照明 的功能,因为像素化光形100的位置较低,照射在路面上较近,满足不了远光照明范围的要求。而如果通过将像素化光形100的上下边界角度同时做大的措施,既满足自适应远光或防炫目远光功能实现的要求,又满足路面符号投射效果良好的要求,会使得LED光源的成本、透镜组设计难度和成本大大增加,其空间占用也比较大。
发明内容
本发明第一方面要解决的问题是提供一种照明模组的光形调整方法,该照明模组的光形调整方法操作简单,照明效果好,且能够降低照明模组的制造成本。
此外,本发明第二方面所要解决的问题是提供一种照明模组,该照明模组能够实现远光照明和近光照明切换后无暗区,使得光形的照明效果好,且制造成本低。
进一步地,本发明第三方面要解决的问题是提供一种前照灯,该前照灯能够实现远光照明和近光照明切换后无暗区,使得光形的照明效果好,且制造成本低。
更进一步地,本发明第四方面要解决的问题是提供一种车辆,该车辆的前照灯能够实现远光照明和近光照明切换后无暗区,使得光形的照明效果好,且制造成本低。
为了解决上述技术问题,本发明第一方面提供一种照明模组的光形调整方法,所述照明模组的照明光形包括像素化光形和非像素化光形,所述像素化光形的上下边界角度差的范围为5°-8°,所述照明模组的光形调整方法包括调整所述像素化光形的位置,使得在近光照明模式下,所述像素化光形的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,所述像素化光形的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。
另外,本发明第二方面还提供一种照明模组,包括至少一个像素化照明部和至少一个非像素化照明部,所述像素化照明部包括像素化光源和像素化出光透镜,所述非像素化照明部沿出光方向依次包括非像素化光源、非像素化初级光学元件和非像素化出光透镜,所述像素化出光透镜与所述非像素化出光透镜一体成型,所述像素化照明部能够投射形成所述像素化光形,所述非像素化照明部能够投射形成所述非像素化光形,其中所述非像素化初级光学元件包括第一初级光学元件和第二初级光学元件,所述第一初级光学元件和所述第二初级光学元件沿上下方向设置,所述第一初级光学元件适于形成近光展宽光形,所述第二初级光学元件适于形成补充暗区的光形;或者所述非像素化初级光学元件包括两个第一初级光学元件,所述第一初级光学元件设于所述像素化照明部的两侧,其中一侧的所述第一初级光学元件的出光面下边界位于另一侧的所述第一初级光学元件的出光面下边界的下方。
优选地,所述第一初级光学元件和所述第二初级光学元件一体成型。
更优选地,所述第一初级光学元件和所述第二初级光学元件分别包括由后向前且一体成型的初级光学元件入光端、初级光学元件光通道和初级光学元件出光端,所述初级光学元件入光端的成型材料与所述初级光学元件光通道和所述初级光学元件出光端的成型材料不同,所述初级光学元件入光端与所述非像素化光源一一对应设置。
进一步优选地,所述初级光学元件入光端为硅胶成型件,所述初级光学元件光通道和所述初级光学元件出光端为PC成型件。
作为另一个优选实施方式,所述初级光学元件入光端与该初级光学元件入光端对应的所述初级光学元件光通道之间的分界面设置为前凸曲面。
更优选地,所述像素化出光透镜的出光面设置为外凸曲面,所述像素化出光透镜的出光面与所述非像素化出光透镜的出光面连接为曲率连续的顺滑曲面。
作为又一个优选实施方式,所述像素化照明部还包括成像透镜组,所 述成像透镜组包括由后向前依次排列的第一成像透镜和第二成像透镜,所述第一成像透镜设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜,所述像素化出光透镜设置为入光面与出光面均呈外凸曲面的双凸透镜。
具体地,所述像素化光源为多个能够独立控制亮灭的LED发光单元。
此外,本发明第三方面还提供一种前照灯,包括根据第二方面技术方案中任意一项所述的照明模组。
进一步地,本发明第四方面还提供一种车辆,包括上述第三方面技术方案所述的前照灯。
通过上述技术方案,本发明的照明模组的光形调整方法通过控制照明模组的像素化光形的照射角度,使得像素化光形的上下边界角度差的范围为5°-8°,同时通过调整像素化光形的位置,使得在近光照明模式下,像素化光形的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,像素化光形的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。本发明的照明模组的光形调整方法中,通过控制像素化光形区域的上下边界角度范围差以及上下边界角度范围,满足远光ADB和近光截止线以及路面符号投射功能,且使得照明模组的制造成本较低,投射效果好。同时,本发明的照明模组将像素化照明部与非像素化照明部设置于同一个模组中,通过第一初级光学元件和第二初级光学元件、或多个第一初级光学元件间的组合,使得在像素化光形的上下调整过程中,能够形成补充暗区的光形,优化出光效果,使得上下边界角度差范围较窄的像素化光形的照明效果好,形成该像素化光形的照明模组结构简单,生产成本较低。
有关本发明的其他优点以及优选实施方式的技术效果,将在下文的具体实施方式中进一步说明。
附图说明
图1是现有技术中像素化光形和非像素化光形在像素化光形的上边界满足自适应远光或防炫目远光、下边界满足近光截止线要求时的照明区域示意图;
图2是图1的车辆前照灯投射效果图;
图3是现有技术中像素化光形和非像素化光形在像素化光形的上边界满足近光截止线、下边界满足路面符号投射要求时的相对位置示意图;
图4是图3的车辆前照灯投射效果图;
图5是图1所示的像素化光形和非像素化光形在近光照明模式一同下调后的相对位置示意图;
图6是本发明照明模组的一种具体实施方式的结构示意图;
图7是图6所示的照明模组的俯视图;
图8是图7的A-A剖面图;
图9是本发明照明模组的另一种具体实施方式的结构示意图;
图10是图9所示的照明模组的俯视图;
图11是图10的C-C剖面图;
图12是图10的B-B剖面图;
图13是图10所示具体实施方式中假设出光面下边界靠下的第一初级光学元件231对应的光源开启,出光面下边界靠上的第一初级光学元件231对应的光源关闭时像素化光形和非像素化光形的相对位置示意图;
图14是本发明的非像素化初级光学元件的一个具体实施方式的结构示意图;
图15是图14所示的非像素化初级光学元件的俯视图;
图16是图15的D-D剖面图;
图17是图14所示的非像素化初级光学元件的侧视图;
图18是图17的E-E剖面图;
图19是本发明的像素化出光透镜和成像透镜组的一个具体实施方式的 结构示意图;
图20是本发明的像素化光形和非像素化光形在近光照明模式下的照明区域示意图;
图21是本发明的调光机构的一个具体实施方式的结构示意图之一;
图22是本发明的调光机构的一个具体实施方式的结构示意图之二。
附图标记说明
1像素化照明部                 11像素化光源
12像素化出光透镜              13成像透镜组
131第一成像透镜               132第二成像透镜
2非像素化照明部               21非像素化光源
22非像素化出光透镜            23非像素化初级光学元件
231第一初级光学元件           232第二初级光学元件
233初级光学元件入光端         234初级光学元件光通道
235初级光学元件出光端         3光轴
4球头螺杆组件                 41球头螺杆
42球头螺母                    5调光执行器
6散热器
100像素化光形                 200非像素化光形
300暗区
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,本发明的保护范围并不局限于下述的具体实施方式。
在本发明的描述中,需要解释的是,在下文的描述中为清楚地说明本发明的技术方案而涉及的一些方位词,例如“前”、“后”、“上”、“下”等,以像素化照明部1为例,像素化光源11所在的一端为后,像素化出光透镜 12所在的一端为前,而相对于像素化照明部1的前后方向,像素化照明部1的上下两侧所代表的方向即为上下方向。术语为基于附图所示的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或者是一体连接;可以是直接连接,也可以是通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明第一方面提供一种照明模组的光形调整方法,所述照明模组的光形包括像素化光形100和非像素化光形200,所述像素化光形100的上下边界角度差的范围为5°-8°,所述照明模组的光形调整方法包括调整所述像素化光形100的位置,使得在近光照明模式下,所述像素化光形100的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,所述像素化光形100的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。需要说明的是,所述照明模组的光形的上下边界角度是指光形投射在配光屏幕上对应的上下边界角度。
本发明的照明模组的光形调整方法是针对上下边界角度差范围较窄的像素化照明模组的调光方法,利用本发明的照明模组的光形调整方法,既可以同时满足远光ADB和近光截止线以及路面符号投射三个功能要求,还能够有效降低采用本发明的照明模组的光形调整方法的照明模组的生产成本,且光形效果好。
如图6至图12所示,本发明第二方面还提供一种照明模组,包括至少一个像素化照明部1和至少一个非像素化照明部2,所述像素化照明部1包 括像素化光源11和像素化出光透镜12,所述非像素化照明部2沿出光方向依次包括非像素化光源21、非像素化初级光学元件23和非像素化出光透镜22,所述像素化出光透镜12与所述非像素化出光透镜22一体成型,所述像素化照明部1能够投射形成所述像素化光形100,所述非像素化照明部2能够投射形成所述非像素化光形200,该照明模组能够采用上述照明模组的光形调整方法,通过调整像素化光形100的位置,使得在近光照明模式下,所述像素化光形100的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,所述像素化光形100的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。
像素化出光透镜12和非像素化出光透镜22的出光面形成为一体,且优选为曲率连续顺滑的曲面,从而能够使得像素化出光透镜12和非像素化出光透镜22的整体性较好,造型效果较好。
具体地,如图21和图22所示,照明模组上连接有调光机构,该调光机构包括三个球头螺杆组件4,单个球头螺杆组包括球头螺杆41和球头螺母42,其中一个球头螺杆41的一端通过球头螺母42与散热器6连接,另一端连接有固定在灯体或相对灯体固定不动的支撑件上的调光执行器5,另外两个球头螺杆组件4的球头螺杆41一端通过球头螺母42与散热器6连接,另一端固定在灯体或相对灯体固定不动的支撑件上,两个球头螺杆41的球头球心形成水平的调光轴,当设置在上部的调光执行器5驱动与之连接的球头螺杆41前后移动时,照明模组能够围绕水平的调光轴转动,进而对照明模组进行调光,使得照明模组的像素化光形100和非像素化光形200整体上下移动。
由于像素化出光透镜与非像素化出光透镜一体成型,像素化照明部1和非像素化照明部2均集成在一个照明模组内,像素化光形100和非像素化光形200的相对位置固定,使得在图1所示的照明区域的基础上向下调整像素化光形100以满足近光照明模式需求时,非像素化光形200也随像 素化光形100一同移动,当两者同时向下移动时,会形成如图5所示的暗区300,严重影响了近光照明效果。
因此,为了解决上述技术问题,更优选地,所述非像素化初级光学元件23包括第一初级光学元件231和第二初级光学元件232,所述第一初级光学元件231和所述第二初级光学元件232沿上下方向设置,所述第一初级光学元件231适于形成近光展宽光形,所述第二初级光学元件232适于形成补充暗区300的光形。
本发明中,如图6至图8所示,第一初级光学元件231设于第二初级光学元件232的上部,第一初级光学元件231和第二初级光学元件232的出光面一体成型,第一初级光学元件231用于形成近光展宽光形,第二初级光学元件232用于形成补充暗区300的光形。位于上方的第一初级光学元件231所对应的非像素化光源21在近光照明模式和远光照明模式下均被点亮,而位于下方的第二初级光学元件232所对应的非像素化光源21只在近光照明模式下被点亮,远光照明模式下则不被点亮,从而能够使得本发明的照明模组在近光照明模式和远光照明模式切换过程中不会出现图5中所示的暗区300。
可选地,如图9和图10所示,所述非像素化初级光学元件23包括两个第一初级光学元件231,所述第一初级光学元件231设于所述像素化照明部1的两侧,其中一侧的所述第一初级光学元件231的出光面下边界位于另一侧的所述第一初级光学元件231的出光面下边界的下方。
在该具体实施方式中,非像素化初级光学元件23包括两个第一初级光学元件231,分别设于像素化照明部1的两侧,两个第一初级光学元件231均用于形成近光展宽光形,其中一侧的第一初级光学元件231的出光面下边界位于另一侧的所述第一初级光学元件231的出光面下边界的下方。如图12所示,出光面下边界靠上的第一初级光学元件231对应形成的近光展宽光形上边界相对出光面下边界靠下的第一初级光学元件231对应形成的光形上边界靠下,该第一初级光学元件231对应的光源在远光照明模式下 开启,在近光照明模式下关闭,远光照明模式下,照明模组形成的像素化光形100和非像素化光形200的相对位置与图1中所示相同;如图11中所示,出光面下边界靠下的第一初级光学元件231形成的近光展宽光形上边界相对出光面下边界靠上的第一初级光学元件231对应形成的光形上边界靠上,该第一初级光学元件231对应的光源在近光照明模式下开启,在远光照明模式下关闭,近光照明模式下,照明模组形成的像素化光形100和非像素化光形200的相对位置与图3中所示相同,出光效果更好。这种避免在近光照明模式和远光照明模式切换过程中出现暗区300的方式的原理解释如下:远光照明模式下,假设出光面下边界靠下的第一初级光学元件231对应的光源开启,出光面下边界靠上的第一初级光学元件231对应的光源关闭,那么该照明模组形成的像素化光形100和非像素化光形200的相对位置与图13中所示相同,在由远光照明模式切换为近光照明模式时,图13中的非像素化光形200会随像素化光形100一同下移至如图3所示的光形位置,从而满足近光照明模式的照明需求。因此,本发明中,当由远光照明模式切换为近光照明模式时,图12中的第一初级光学元件231对应的光源关闭,图11中的第一初级光学元件231对应的光源开启,就不会有暗区300形成。在远光照明模式和近光照明模式切换过程中,选择开启相对应的非像素化照明部所对应的非像素化光源21,满足照明要求,在切换过程中不会形成暗区300。
需要说明的是,图3中仅示意出像素化光形100和非像素化光形200在近光照明模式下的位置关系,需通过控制像素化光源11的亮灭,形成如图20所示的具有近光截止线的近光光形。
由此可以看出,本发明中的像素化照明部1和非像素化照明部2在远光照明模式和近光照明模式的转换过程中,相较于现有技术的具有像素化照明部1和非像素化照明部2的照明模组,不会出现暗区300,从而使得照明效果更好。
另外,本发明中,像素化照明部1与非像素化照明部2设置在同一模 组内,针对该模组设置的散热装置即可实现对像素化照明部1与非像素化照明部2整体进行散热,散热效果较好。
需要说明的是,本发明的像素化照明部1所形成的像素化光形区域的上下边界角度差范围5°-8°,其目的是,如果像素化照明部1所形成的像素化光形区域大于该范围值,较大范围值的像素化光形区域是可以同时满足远光ADB和近光截止线以及路面符号投射两个功能的,但是,宽范围的像素化照明模组会使得设计难度增加,必然导致其制作成本增高,因此,本发明的像素化光形区域的上下边界角度差范围5°-8°。
作为本发明的另一个优选实施方式,所述第一初级光学元件231和所述第二初级光学元件232为导光元件。
更优选地,如图14至图18所示,所述第一初级光学元件231和所述第二初级光学元件232分别包括由后向前且一体成型的初级光学元件入光端233、初级光学元件光通道234和初级光学元件出光端235,所述初级光学元件入光端233的成型材料与所述初级光学元件光通道234和所述初级光学元件出光端235的成型材料不同,所述初级光学元件入光端233与所述非像素化光源21一一对应设置。
进一步优选地,所述初级光学元件入光端233为硅胶成型件,所述初级光学元件光通道234和所述初级光学元件出光端235为PC成型件。
在这里需要说明的是,初级光学元件入光端233、初级光学元件光通道234和初级光学元件出光端235虽然采用不同材质成型,但是,初级光学元件入光端233、初级光学元件光通道234和初级光学元件出光端235却形成为一体成型件,从而使得第一初级光学元件231和第二初级光学元件232不仅具有较好的光学性能,同时,因硅胶的耐热性比PC好,使得第一初级光学元件231和第二初级光学元件232的耐热性能更好。
作为本发明的又一个优选实施方式,所述初级光学元件入光端233与该初级光学元件入光端233对应的所述初级光学元件光通道234之间的分界面设置为前凸曲面,从而能够起到更好的二次配光作用,使得光线更加 集中,出光效果更好。
作为本发明的一个具体结构形式,所述像素化出光透镜12的出光面设置为外凸曲面,所述非像素化出光透镜22的出光面设置为延伸曲面,所述像素化出光透镜12的出光面与所述非像素化出光透镜22的出光面连接为曲率连续的顺滑曲面,从而能够使得照明模组的出光面整体性好,出光面造型更优。
作为本发明的另一个具体结构形式,如图19所示,所述像素化照明部1还包括成像透镜组13,所述成像透镜组13包括由后向前依次排列的第一成像透镜131和第二成像透镜132,所述第一成像透镜131设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜132设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜,所述像素化出光透镜12设置为入光面与出光面均呈外凸曲面的双凸透镜。
本发明中,将第一成像透镜131设置为入光面与出光面均呈外凸曲面的具有正折射光焦度的双凸透镜,能够使得第一成像透镜131的焦距更短、屈光度更高,从而能够减小第一成像透镜131与像素化光源11间的距离;将第二成像透镜132设置为入光面呈内凹曲面、出光面呈外凸曲面的具有负折射光焦度的凸凹透镜,能够对光线经过第一成像透镜131折射后产生的色散现象进行抵消和修正,还能够减小其与第一成像透镜131和像素化出光透镜12之间的距离;将像素化出光透镜12设置为入光面与出光面均呈外凸曲面的具有正折射光焦度的双凸透镜,能够减小其与第二成像透镜132之间的距离,从而能够有效减小像素化照明部1的前后长度尺寸,使得照明模组体积小、制造成本低。上述透镜的折射光焦度代表透镜处理光线的能力,正折射光焦度代表透镜能够使进入的光线汇聚,而负折射光焦度代表透镜能够使进入的光线发散。第一成像透镜131、第二成像透镜132和像素化出光透镜12的搭配方式,能够有效的抵消光线折射过程中的色散,使得像素光形的色散范围小,从而使得成像更加清晰,光形效果好。
更具体地,所述像素化光源11为多个能够独立控制亮灭的LED发光 单元。
本发明中,像素化光源11设置为多个LED发光单元时,可以利用一个或者多个像素化照明部1中部分LED发光单元发光形成像素化光形100的光形作为部分近光光形,利用一个或者多个非像素化照明部2形成非像素化近光光形200,配合部分近光光形以形成完整的车辆前照灯近光照明用的光形。
另外,所述像素化光源11为多个能够独立控制亮灭的LED发光单元。本发明的像素化光源11可以设置为多个能够独立控制亮灭的LED发光单元,具体可以为矩阵式排布的LED颗粒或者Micro LED,优选为Micro LED光源,即一种微缩LED光源,该微缩LED光源中的各个LED单元的尺寸为微米级别,且该微缩LED光源进一步优选为由上万颗微米级LED单元所组成的矩形阵列式LED光源;选用微缩LED光源能够使得像素点更小更密集,从而能够使得形成的像素图像的清晰度更高,进而能够实现对像素图像投射出去后所形成的光形进行更高精度的调控,形成的暗部的边界以及暗部位置的变化也更加精细流畅,能够更好地避免对行人或驾驶员造成炫目或致盲,而且该微缩LED光源呈矩形阵列,能够获得更宽的光形,以照亮道路两侧的区域,有利于驾驶员对道路两侧的行人以及路标的观察。
在上述照明模组的基础上,本发明第三方面提供了一种前照灯,包括上述第二方面技术方案中任意一项所述的照明模组。因此至少具有上述照明模组实施例的技术方案所带来的所有有益效果,所形成光形的精度高、稳定性好、近光照明光形与远光照明光形转换时无暗区,照明光形效果好,且灯体占用的空间小、制造成本低。
进一步地,本发明第四方面的车辆,包括本发明上述第三方面中所述的前照灯,也具有上述照明模组实施例的技术方案所带来的所有有益效果。
由以上描述可以看出,本发明的照明模组的光形调整方法通过调整像素化光形100在近光照明模式和远光照明模式下的上下边界,以使得照明效果更好。另外,本发明的照明模组将像素化照明部1与非像素化照明部2 设置于同一个模组中,通过第一初级光学元件231和第二初级光学元件232、或多个第一初级光学元件231间的组合,使得在像素化光形100的上下调整过程中,能够形成补充暗区300的光形,优化出光效果,使得上下边界角度差范围较窄的像素化光形100的照明效果好,形成该像素化光形100的照明模组结构简单,生产成本较低。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (11)

  1. 一种照明模组的光形调整方法,所述照明模组的光形包括像素化光形(100)和非像素化光形(200),其特征在于,所述像素化光形(100)的上下边界角度差的范围为5°-8°,所述照明模组的光形调整方法包括调整所述像素化光形(100)的位置,使得在近光照明模式下,所述像素化光形(100)的下边界的角度范围为大于等于-8°、小于等于-4°,上边界的角度范围为大于等于0°、小于等于3°;在远光照明模式下,所述像素化光形(100)的下边界的角度范围为大于等于-3°、小于等于-1°,上边界的角度范围为大于等于4°、小于等于8°。
  2. 一种能够采用根据权利要求1所述的光形调整方法的照明模组,其特征在于,包括至少一个像素化照明部(1)和至少一个非像素化照明部(2),所述像素化照明部(1)包括像素化光源(11)和像素化出光透镜(12),所述非像素化照明部(2)沿出光方向依次包括非像素化光源(21)、非像素化初级光学元件(23)和非像素化出光透镜(22),所述像素化出光透镜(12)与所述非像素化出光透镜(22)一体成型,所述像素化照明部(1)能够投射形成所述像素化光形(100),所述非像素化照明部(2)能够投射形成所述非像素化光形(200),其中
    所述非像素化初级光学元件(23)包括第一初级光学元件(231)和第二初级光学元件(232),所述第一初级光学元件(231)和所述第二初级光学元件(232)沿上下方向设置,所述第一初级光学元件(231)适于形成近光展宽光形,所述第二初级光学元件(232)适于形成补充暗区(300)的光形;或者
    所述非像素化初级光学元件(23)包括两个第一初级光学元件(231),所述第一初级光学元件(231)设于所述像素化照明部(1)的两侧,其中一侧的所述第一初级光学元件(231)的出光面下边界位于另一侧的所述第一初级光学元件(231)的出光面下边界的下方。
  3. 根据权利要求2所述的照明模组,其特征在于,所述第一初级光学元件(231) 和所述第二初级光学元件(232)一体成型。
  4. 根据权利要求3所述的照明模组,其特征在于,所述第一初级光学元件(231)和所述第二初级光学元件(232)分别包括由后向前且一体成型的初级光学元件入光端(233)、初级光学元件光通道(234)和初级光学元件出光端(235),所述初级光学元件入光端(233)的成型材料与所述初级光学元件光通道(234)和所述初级光学元件出光端(235)的成型材料不同,所述初级光学元件入光端(233)与所述非像素化光源(21)一一对应设置。
  5. 根据权利要求4所述的照明模组,其特征在于,所述初级光学元件入光端(233)为硅胶成型件,所述初级光学元件光通道(234)和所述初级光学元件出光端(235)为PC成型件。
  6. 根据权利要求5所述的照明模组,其特征在于,所述初级光学元件入光端(233)与该初级光学元件入光端(233)对应的所述初级光学元件光通道(234)之间的分界面设置为前凸曲面。
  7. 根据权利要求2至6中任一项所述的照明模组,其特征在于,所述像素化出光透镜(12)的出光面设置为外凸曲面,所述像素化出光透镜(12)的出光面与所述非像素化出光透镜(22)的出光面连接为曲率连续的顺滑曲面。
  8. 根据权利要求2至6中任意一项所述的照明模组,其特征在于,所述像素化照明部(1)还包括成像透镜组(13),所述成像透镜组(13)包括由后向前依次排列的第一成像透镜(131)和第二成像透镜(132),所述第一成像透镜(131)设置为入光面与出光面均呈外凸曲面的双凸透镜,所述第二成像透镜(132)设置为入光面呈内凹曲面、出光面呈外凸曲面的凸凹透镜,所述像素化出光透镜(12)设置为入光面与出光面均呈外凸曲面的双凸透镜。
  9. 根据权利要求2至6中任意一项所述的照明模组,其特征在于,所述像素化光源(11)为多个能够独立控制亮灭的LED发光单元。
  10. 一种前照灯,其特征在于,包括根据权利要求2至9中任意一项所述的照明模组。
  11. 一种车辆,其特征在于,包括根据权利要求10所述的前照灯。
PCT/CN2021/098690 2021-06-07 2021-06-07 一种照明模组的光形调整方法、照明模组、前照灯和车辆 WO2022256983A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180086675.0A CN116685802A (zh) 2021-06-07 2021-06-07 一种照明模组的光形调整方法、照明模组、前照灯和车辆
PCT/CN2021/098690 WO2022256983A1 (zh) 2021-06-07 2021-06-07 一种照明模组的光形调整方法、照明模组、前照灯和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098690 WO2022256983A1 (zh) 2021-06-07 2021-06-07 一种照明模组的光形调整方法、照明模组、前照灯和车辆

Publications (1)

Publication Number Publication Date
WO2022256983A1 true WO2022256983A1 (zh) 2022-12-15

Family

ID=84424733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098690 WO2022256983A1 (zh) 2021-06-07 2021-06-07 一种照明模组的光形调整方法、照明模组、前照灯和车辆

Country Status (2)

Country Link
CN (1) CN116685802A (zh)
WO (1) WO2022256983A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266127A (zh) * 2014-10-15 2015-01-07 李丽京 一种远近光led车灯
CN104373895A (zh) * 2014-10-14 2015-02-25 上海小糸车灯有限公司 一种车灯自适应远光照明系统用调光机构及其调光方法
CN105235581A (zh) * 2015-11-13 2016-01-13 傅森 一种多模式切换的自适应调节汽车灯
US20170129391A1 (en) * 2015-04-03 2017-05-11 Magna Electronics Inc. Vehicle control using sensing and communication systems
CN107401716A (zh) * 2017-08-08 2017-11-28 力帆实业(集团)股份有限公司 上反射式led近光射灯总成
CN213089740U (zh) * 2020-08-21 2021-04-30 华域视觉科技(上海)有限公司 像素化远近光一体车灯模组、车灯及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373895A (zh) * 2014-10-14 2015-02-25 上海小糸车灯有限公司 一种车灯自适应远光照明系统用调光机构及其调光方法
CN104266127A (zh) * 2014-10-15 2015-01-07 李丽京 一种远近光led车灯
US20170129391A1 (en) * 2015-04-03 2017-05-11 Magna Electronics Inc. Vehicle control using sensing and communication systems
CN105235581A (zh) * 2015-11-13 2016-01-13 傅森 一种多模式切换的自适应调节汽车灯
CN107401716A (zh) * 2017-08-08 2017-11-28 力帆实业(集团)股份有限公司 上反射式led近光射灯总成
CN213089740U (zh) * 2020-08-21 2021-04-30 华域视觉科技(上海)有限公司 像素化远近光一体车灯模组、车灯及车辆

Also Published As

Publication number Publication date
CN116685802A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US11092304B2 (en) Vehicle adaptable driving beam headlamp
CN210891432U (zh) 车灯光学元件、车灯模组、车辆前照灯及车辆
CN105465715A (zh) 一种远近光车用头灯
WO2020173444A1 (zh) 远近光一体车灯照明装置、车灯及车辆
WO2022037288A1 (zh) 像素化远近光一体车灯模组、车灯及车辆
WO2021147732A1 (zh) 前照灯光学元件、前照灯模组、车灯及车辆
WO2022100058A1 (zh) 远近光一体车灯光学元件、车灯模组、车灯及车辆
CN113958921A (zh) 照明模组、照明装置及车辆
CN110736072A (zh) 前照灯照明模组及车辆
CN210568141U (zh) 一种远近光一体的车灯模组、车灯和车辆
WO2022068267A1 (zh) Adb远光模组及车灯
WO2022256991A1 (zh) 一种照明模组、前照灯和车辆
WO2021103755A1 (zh) 车灯模组、车辆前照灯及车辆
WO2022256983A1 (zh) 一种照明模组的光形调整方法、照明模组、前照灯和车辆
CN210568143U (zh) 前照灯照明模组及车辆
WO2022012634A1 (zh) 车辆远光灯模组、车辆前照灯及车辆
WO2022134456A1 (zh) Adb车灯模组、车灯及车辆
CN212746311U (zh) Adb远光模组及车灯
WO2022001239A1 (zh) 一种车灯光学组件、车灯模组、车灯及车辆
WO2021218826A1 (zh) 透镜单元、光学透镜、照明模组、车灯及车辆
WO2022099956A1 (zh) 一种汽车前照灯系统和车灯
CN215372308U (zh) 远光照明模组、车灯及车辆
WO2022256989A1 (zh) 照明模组、前照灯和车辆
WO2022105202A1 (zh) 车灯模组、车灯和车辆
CN212719552U (zh) 车灯模组、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086675.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE