WO2022255823A1 - 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법 - Google Patents

희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법 Download PDF

Info

Publication number
WO2022255823A1
WO2022255823A1 PCT/KR2022/007860 KR2022007860W WO2022255823A1 WO 2022255823 A1 WO2022255823 A1 WO 2022255823A1 KR 2022007860 W KR2022007860 W KR 2022007860W WO 2022255823 A1 WO2022255823 A1 WO 2022255823A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gene
sequence
strain
mutant
Prior art date
Application number
PCT/KR2022/007860
Other languages
English (en)
French (fr)
Inventor
이동우
주윤혜
성재윤
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210070803A external-priority patent/KR102590888B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority claimed from KR1020220067643A external-priority patent/KR20220168151A/ko
Priority claimed from KR1020220067642A external-priority patent/KR20220168150A/ko
Publication of WO2022255823A1 publication Critical patent/WO2022255823A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose

Definitions

  • the present invention relates to a method for providing a rare saccharide magnetization ability determining gene group of a rare saccharide non-metabolizing strain.
  • the present invention relates to a strain in which a fructose metabolism genome has been mutated.
  • the present invention relates to a method for screening variants with increased activity.
  • D-tagatose is an isomer of D-galactose and is a natural sugar present in fruits, milk, and cheese. Because D-tagatose has various health functional properties and a sweet taste very similar to sugar, it is used as an alternative sweetener that can satisfy both health and taste when applied to various products.
  • directed evolution technology is used as an improvement technology for changing the characteristics of an enzyme to meet a desired purpose, such as enhancing the activity and structural stability of the enzyme or imparting activity to a new substrate.
  • the most commonly used method to prepare a mutant library for performing this technology is an error-prone PCR method, which randomly introduces mutations by controlling the error rate of DNA polymerase during PCR. After expressing proteins using these mutant strains, improved enzymes with excellent activity are obtained by selecting mutant strains with good activity. can do.
  • Korean Patent Publication No. 10-2018-0074550 discloses a recombinant strain having a modified sugar metabolism pathway by introducing enzymes derived from other strains into the strain and the possibility of obtaining D-tagatose through this, but recently As the yield decreases due to the increase, the need to develop a strain capable of obtaining D-tagatose through a new metabolic pathway is increasing.
  • the present inventors completed the present invention by confirming a mutant strain having a modified sugar metabolism pathway and its use through research.
  • the present inventors have completed the present invention as a result of studying a method for selecting strains with improved glucose metabolism.
  • One aspect of the present invention provides an expression cassette comprising a gene encoding a novel fructose-1-phosphate kinase in which the 39th alanine (A) is substituted with serine (S) in the amino acid sequence of SEQ ID NO: 1 aims to
  • Another aspect of the present invention aims to provide a recombinant vector comprising the expression cassette.
  • Another aspect of the present invention aims to provide a mutant strain transformed with the recombinant vector, thereby providing a strain having D-tagatose metabolic ability in a D-tagatose non-metabolizing strain.
  • Another aspect of the present invention is 1) a gene sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; 2) deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; and 3) to provide a mutant strain comprising any one or more of the gene sequences of SEQ ID NO: 4.
  • Another aspect of the present invention comprises culturing the mutant strain in a medium containing D-tagatose; It is an object to provide a method for producing a strain having a D- tagatose metabolic ability comprising a.
  • One aspect of the present invention is a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated;
  • Another aspect of the present invention aims to provide a recombinant vector comprising the expression cassette.
  • Another aspect of the present invention aims to provide a mutant strain transformed with the recombinant vector.
  • Another aspect of the present invention is 1) a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated; 2) a gene encoding a novel phosphotransferase system G in which valine (V) at amino acid 12 of SEQ ID NO: 6 is substituted with phenylalanine (F); and 3) a gene mutated to inactivate the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 7.
  • fbaA fructose-bisphosphate aldolase class 2
  • agaR putative aga operon transcriptional repressor
  • Another aspect of the present invention comprises culturing the mutant strain in a medium containing D-fructose or D-tagatose; It is an object of the present invention to provide a method for producing a strain having both D-fructose non-metabolizing properties and D-tagatose metabolizing properties.
  • an agent capable of confirming a mutation at any one or more of positions 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 and 362 It provides a composition for screening variants with increased activity.
  • kits for screening variants with increased activity comprising the composition is provided.
  • identifying a mutation from a sample to the composition and confirming whether the sample is a mutant with increased activity through the identified mutation.
  • One aspect of the present invention provides an expression cassette comprising a gene encoding a novel fructose-1-phosphate kinase in which the 39th alanine (A) is substituted with serine (S) in the amino acid sequence of SEQ ID NO: 1. .
  • the gene encoding the novel fructose-1-phosphate kinase may be SEQ ID NO: 2.
  • the expression cassette may lack a cra binding site.
  • the deletion of the cra binding site may not include the sequence of SEQ ID NO: 3 in the expression cassette.
  • the expression cassette may further include a mutant sequence between the sequence encoding lacI and the sequence encoding T7 RNAP.
  • the mutant sequence between the sequence encoding lacI and the sequence encoding T7 RNAP may be a mutation in the T7 RNAP core promoter region.
  • the mutant sequence between the sequence encoding lacI and the sequence encoding T7 RNAP may be SEQ ID NO: 4.
  • Another aspect of the present invention provides a recombinant vector comprising the expression cassette.
  • Another aspect of the present invention provides a mutant strain transformed with the recombinant vector.
  • Another aspect of the present invention is 1) a gene mutant sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; 2) deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; and 3) providing a mutant strain comprising any one or more mutations of the genetic mutation sequence of SEQ ID NO: 4.
  • the recombinant strain may be Escherichia coli.
  • the recombinant strain may have D-tagatose metabolic ability.
  • Another aspect of the present invention comprises culturing the mutant strain in a medium containing D-tagatose; It provides a method for producing a strain having D- tagatose metabolic ability comprising a.
  • one aspect of the present invention is a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated;
  • the gene encoding the novel phosphotransferase system G may be SEQ ID NO: 9.
  • the inactivation of the aga operon transcriptional repressor may cause tagatose aldolase (kbaY) to be expressed.
  • the inactivation may be gene deletion.
  • One aspect of the present invention provides a recombinant vector containing the expression cassette and a mutant strain transformed with the recombinant vector.
  • One aspect of the present invention is 1) a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated; 2) a gene encoding a novel phosphotransferase system G in which valine (V) at amino acid 12 of SEQ ID NO: 6 is substituted with phenylalanine (F); and 3) a mutant strain containing at least one of genes mutated to inactivate the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 7.
  • the recombinant strain may be Escherichia coli.
  • the recombinant strain is a mutant strain having lost or reduced D-fructose metabolic ability and D-tagatose metabolic ability.
  • One aspect of the present invention comprises culturing the mutant strain in a medium containing D-fructose or D-tagatose; It provides a method for producing a strain having both the characteristics of D- fructose non-metabolism and D- tagatose metabolism including.
  • One aspect of the present invention is an agent capable of identifying a mutation at any one or more of positions 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 and 362 in the amino acid sequence of SEQ ID NO: 11. It provides a composition for screening variants with increased activity comprising.
  • the mutation may be a mutation at any one or more positions of V16, R92, F95, T105, N129, F148, K193, R236, K324, H341 and H362.
  • the mutation may be any one or more of V16A, R92S, F95I, T105A, N129Y, F148S, K193E, R236S, K324N, H341L and H362I.
  • the agent is polymerase chain reaction, reverse transcription polymerase reaction (RT-PCR), competitive reverse transcription polymerase reaction (Competitive RT-PCR), RNase protection assay (RNase, S1 nuclease assay), in situ It may be characterized in that it is used in any one of hybridization, nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • RT-PCR reverse transcription polymerase reaction
  • Competitive RT-PCR competitive reverse transcription polymerase reaction
  • RNase protection assay RNase, S1 nuclease assay
  • in situ it may be characterized in that it is used in any one of hybridization, nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • Another aspect of the present invention provides a kit for screening variants with increased activity comprising the composition.
  • Another aspect of the present invention is to identify mutations in the composition from a sample; and confirming whether the sample is a mutant with increased activity through the identified mutation.
  • a new sugar metabolism pathway can be constructed through the expression cassette according to the present invention and a vector containing the same, and a mutant strain transformed through this or a mutant strain including a mutated gene has a new sugar metabolism pathway.
  • composition for screening variants with increased activity of the present invention can be usefully used for screening mutants with increased activity by confirming the mutation of SEQ ID NO: 11.
  • FIG. 1 is a view showing a process for preparing a mutant strain of the present invention.
  • FIG. 1A compares three strains capable of using tagatose (S.enterica, K. pneumociae, K.oxytoca, and B.licheniformis), a gene cluster, and E. coli
  • FIG. 1B shows a comparison of the parent strain ( E. coli) .
  • BL12 (DE3)) and the mutant strain pET28a-gatY/ E. coli BL21 (DE3) were compared to confirm the mutation site
  • FIG. 1c is a graph confirming the growth rate according to subculture of the mutant strain. .
  • Figure 2 confirms the activity of the mutant strain
  • Figure 2a is the result of comparing the activity of the kinase WT and mutant strain
  • Figure 2b is the three glycotrophic medium of the mutant strain (Glc (glucose), Fru (fructose), Tag (tagatose)) is a result of mRNA level analysis through qRT-PCR
  • FIG. 2c is a picture showing the metabolic activity of tagatose introduced by mutation.
  • Figure 3 is the result of confirming the growth of the mutant strain of the present invention
  • Figure 3a is the result of confirming the growth curve of the mutant strain in which the fruK A39S and Cra gene binding sites are deleted (two sites are mutated)
  • Figure 3b is This is the result of confirming the growth curve of the mutant strain in the fruK A39S and Cra gene binding sites and the T7RNAP core promoter region (strain with 3 sites mutated).
  • FIG. 4 is a view showing a process for preparing the mutant strain of the present invention.
  • FIG. 5 shows a newly constructed glycolysis pathway through the expression vector or mutations of the present invention.
  • Figure 6 shows the expression mechanism of the operon according to the agaR mutation of the present invention.
  • Figure 8 shows the culture patterns of the strain of the present invention, the left side shows the strain culture patterns according to the carbon source, and the right side shows the culture patterns when the fructose epimerase and the strain are co-cultured.
  • Figure 9 shows the mutant library production process.
  • Figure 10 shows the results of comparing the activity levels according to the variants of the present invention.
  • Figure 11 describes the results of deriving the activity of variants according to the mutations of the present invention by structural prediction.
  • One aspect of the present invention provides an expression cassette comprising a gene encoding a novel fructose-1-phosphate kinase in which the 39th alanine (A) is substituted with serine (S) in the amino acid sequence of SEQ ID NO: 1. .
  • the amino acid sequence of SEQ ID NO: 1 refers to the amino acid sequence of wild-type fructose-1-phosphate kinase (fruK), and in the present invention, the 39th alanine (A) of the amino acid sequence of SEQ ID NO: 1 is converted to serine (S).
  • FruK wild-type fructose-1-phosphate kinase
  • A 39th alanine
  • S serine
  • the fructose-1-phosphate kinase (fruK) is an in vivo enzyme, also called 1-phosphofructokinase, which converts fructose-1-phosphate and ATP into fructose-1,6-phosphate in vivo. It functions to convert to diphosphate and ADP.
  • the gene encoding the fructose-1-phosphate kinase may be SEQ ID NO: 2.
  • the expression cassette may be deficient in the cra binding site, and the deficient cra binding site may be formed by not including the sequence of SEQ ID NO: 3 in the expression cassette.
  • Sequence Cra binding site deleted nucleotide sequence (SEQ ID NO: 3) Tgaaacgatt cagcctctat gagaaaaaa gcgccaacct ggcttagggt taaagacaag atcgcgc
  • the cra (catabolite repressor/activator) is induced by the fructose-1-phosphate and fructose-1,6-biphosphate, and when there is a cra binding site in the expression cassette, the novel fructose- Although the expression of the 1-phosphate kinase gene may be restricted, the expression level of the novel fructose-1-phosphate kinase gene is increased by deleting this binding site.
  • the expression cassette may further include a mutant sequence between the lacI-encoding sequence and the T7 RNAP-encoding sequence, and more specifically, the lacI-encoding sequence and the T7 RNAP
  • the mutant sequence between the coding sequences may be a T7 RNAP core promoter region, and more specifically, the mutant sequence between the lacI coding sequence and the T7 RNAP coding sequence is SEQ ID NO: 4 can
  • the lacI refers to a gene encoding a lac repressor (LacI), a DNA-binding protein that inhibits the expression of a gene encoding a protein participating in lactose metabolism in microorganisms.
  • LacI lac repressor
  • the T7 RNAP refers to an RNA polymerase derived from T7 bacteriophage that catalyzes the formation of RNA from DNA in the 5'->3' direction (EC:2.7.7.).
  • One aspect of the present invention provides a recombinant vector comprising the expression cassette.
  • recombinant vector refers to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences essential for expressing the operably linked coding sequence in a specific host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • operably linked means a functional linkage between a gene expression control sequence and another nucleotide sequence.
  • the gene expression control sequence may be one or more selected from the group consisting of a replication origin, a promoter, and a transcription termination sequence.
  • the transcription termination sequence may be a polyadenylation sequence (pA)
  • the origin of replication may be the f1 origin of replication, the SV40 origin of replication, the pMB1 origin of replication, the adeno origin of replication, the AAV origin of replication, or the BBV origin of replication, but is not limited thereto. .
  • the recombinant vector according to one embodiment of the present invention may be selected from the group consisting of plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors and adeno-associated virus vectors.
  • Vectors that can be used as recombinant expression vectors include plasmids used in the art (eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1 , pHV14, pGEX series, pET series, pUC19, etc.), phage (eg, ⁇ gt4 ⁇ B, ⁇ -Charon, ⁇ z1, M13, etc.) or viral vectors (eg, adeno-associated virus (AAV) vectors, etc.) It may be manufactured based on, but is not limited thereto.
  • plasmids used in the art eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322,
  • the recombinant vector of the present invention may further include one or more selectable markers.
  • the marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes capable of distinguishing transfected cells from non-transfected cells.
  • herbicide resistance genes such as glyphosate, glufosinate ammonium or phosphinothricin, ampicillin, kanamycin, G418, bleomycin ), hygromycin, and antibiotic resistance genes such as chloramphenicol, but are not limited thereto.
  • the construction of the recombinant vector of the present invention can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cutting and linking can be performed using enzymes generally known in the art. .
  • Another aspect of the present invention provides a mutant strain transformed with the recombinant vector.
  • an insertion method widely known in the art may be used.
  • the delivery method for example, when the host cell is a prokaryotic cell, a CaCl2 method or an electroporation method may be used, and when the host cell is a eukaryotic cell, a microinjection method, a calcium phosphate precipitation method, an electroporation method, or a liposome method. -mediated transfection, heat shock and gene bombardment, etc. may be used, but are not limited thereto.
  • another aspect of the present invention is 1) a gene sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; 2) deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; and 3) providing a mutant strain comprising any one or more gene sequences of the gene mutant sequences of SEQ ID NO: 4.
  • the mutant strain in addition to the mutant strain transformed with the above-described recombinant vector, is mutated through various methods: 1) the gene mutant sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; 2) deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; and 3) any one or more of the gene sequences of SEQ ID NO: 4 may be included.
  • Gene sequences included in the mutant strain include: 1) a gene mutant sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; 2) deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; Or 3) may include any one of the genetic sequence of the gene mutation sequence of SEQ ID NO: 4,
  • a gene mutant sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; and 2) a deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site, or 1) a gene mutation sequence encoding the novel fructose-1-phosphate kinase of SEQ ID NO: 2; and 3) a gene mutation sequence of SEQ ID NO: 4, or 2) a deletion of the gene sequence of SEQ ID NO: 3, which is a cra binding site; and 3) may include the genetic mutation sequence of SEQ ID NO: 4,
  • prokaryotic cells include, for example, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli strains of the genus Bacillus, such as B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and enterobacteriaceae and strains such as Salmonella typhimurium, Serratia marcessons, and various Pseudomonas species.
  • yeast Sacharomyce cerevisiae
  • insect cells such as SP2/0, CHO (Chinese hamster ovary) K1, CHO DG44, PER.C6 , W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN and MDCK cell lines
  • the host of the mutant strain may be Escherichia coli.
  • the mutant strain may have D-tagatose metabolic ability.
  • the recombinant strain may have D-tagatose metabolic ability because it contains the aforementioned expression cassette or mutation.
  • the D-tagatose metabolic ability means to utilize D-tagatose as an energy source.
  • Another aspect of the present invention comprises culturing the mutant strain in a medium containing D-tagatose; It provides a method for producing a strain having D- tagatose metabolic ability comprising a.
  • the culturing step is a step of culturing the mutant strain in a medium containing D-tagatose, and the medium may contain known components for culturing the mutant strain.
  • One aspect of the present invention is a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated;
  • the amino acid sequence of SEQ ID NO: 5 refers to the amino acid sequence of fructose-bisphosphate aldolase class 2 (fbaA), and in the present invention, the wild-type fructose-biphosphate of SEQ ID NO: 5 Aldolase (Fructose-bisphosphate aldolase class 2, fbaA) amino acid sequence is mutated to be inactivated to suppress fructose utilization and improve tagatose utilization.
  • the fructose-bisphosphate aldolase class 2 (fbaA) is glyceraldehyde 3 to form fructose 1,5-biphosphate (FBP) in the reverse reaction in gluconeogenesis and glycolysis -It functions to catalyze the aldol condensation of phosphate (G3P) and dihydroxyacetone phosphate (DHAP or glycerone-phosphate).
  • the gene encoding fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 may include SEQ ID NO: 8.
  • the amino acid sequence of SEQ ID NO: 6 refers to the amino acid sequence of the wild-type phosphotransferase system G (PTS system glucose-specific EIICB component, ptsG), and in the present invention, the 12th amino acid valine (V) of SEQ ID NO: 6 is By substituting phenylalanine (F), wild-type ptsG, a glucose transporter, is allowed to introduce non-phosphorylated fructose into cells.
  • PTS system glucose-specific EIICB component ptsG
  • the phosphotransferase system G (PTS system glucose-specific EIICB component, ptsG) is a major carbohydrate activity transport system, and functions to phosphorylate carbohydrates and allow them to cross cell membranes.
  • the gene encoding the novel phosphotransferase system G may include SEQ ID NO: 9.
  • the amino acid sequence of SEQ ID NO: 7 refers to the amino acid sequence of the wild-type aga operon transcriptional repressor (agaR), and in one embodiment of the present invention, the wild-type aga operon transcriptional repressor of SEQ ID NO: 3 (Putative aga operon transcriptional repressor, agaR) transcriptional repressor, agaR) may be mutated so that tagatose aldolase (kbaY) is expressed.
  • agaR wild-type aga operon transcriptional repressor
  • the aga operon transcriptional repressor (agaR) is predicted to have a function of suppressing the aga operon for N-acetyl galactosamine transport and metabolism.
  • the gene encoding the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 3 may include SEQ ID NO: 10.
  • the amino acid or gene sequence means not only the amino acid or gene sequence of SEQ ID NOs: 5 to 10, but also at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95% %, 96%, 97%, 98%, or including those having amino acid or gene sequences having homology or identity of 99% or more, if the function of each amino acid or gene sequence described in the present invention It is included in the scope of the invention.
  • “Inactivation” of the present invention refers to a case in which the expression of a gene encoding a protein such as an enzyme, transcription factor, or transport protein is not expressed at all compared to a natural strain, a wild-type strain, or a strain before modification, or even if expressed, there is no activity means case.
  • the inactivation is truncation of a gene by deletion of a gene and insertion of a heterogenous sequence, nonsense mutation, frameshift mutation, missense mutation ), etc., or the function of the target protein (amino acid) does not occur even if the transcription is performed.
  • a gene mutated to inactivate fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 and/or an agar suppressor gene of SEQ ID NO: 7 may include a gene mutated so that the two enzymes cannot be expressed or functioned when the gene is inactivated, and the two genes are deleted to prevent the expression of the two enzymes it could be
  • One embodiment of the present invention means deleting a gene.
  • One aspect of the present invention provides a recombinant vector comprising the expression cassette.
  • recombinant vector refers to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences essential for expressing the operably linked coding sequence in a specific host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • operably linked means a functional linkage between a gene expression control sequence and another nucleotide sequence.
  • the gene expression control sequence may be one or more selected from the group consisting of a replication origin, a promoter, and a transcription termination sequence.
  • the transcription termination sequence may be a polyadenylation sequence (pA)
  • the origin of replication may be the f1 origin of replication, the SV40 origin of replication, the pMB1 origin of replication, the adeno origin of replication, the AAV origin of replication, or the BBV origin of replication, but is not limited thereto. .
  • the recombinant vector according to one embodiment of the present invention may be selected from the group consisting of plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors and adeno-associated virus vectors.
  • Vectors that can be used as recombinant expression vectors include plasmids used in the art (eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1 , pHV14, pGEX series, pET series, pUC19, etc.), phage (eg, ⁇ gt4 ⁇ B, ⁇ -Charon, ⁇ z1, M13, etc.) or viral vectors (eg, adeno-associated virus (AAV) vectors, etc.) It may be manufactured based on, but is not limited thereto.
  • plasmids used in the art eg, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322,
  • the recombinant vector of the present invention may further include one or more selectable markers.
  • the marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes capable of distinguishing transfected cells from non-transfected cells.
  • herbicide resistance genes such as glyphosate, glufosinate ammonium or phosphinothricin, ampicillin, kanamycin, G418, bleomycin ), hygromycin, and antibiotic resistance genes such as chloramphenicol, but are not limited thereto.
  • the construction of the recombinant vector of the present invention can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cutting and linking can be performed using enzymes generally known in the art. .
  • Another aspect of the present invention provides a mutant strain transformed with the recombinant vector.
  • an insertion method widely known in the art may be used.
  • a CaCl 2 method or an electroporation method may be used, and when the host cell is a eukaryotic cell, a microinjection method, a calcium phosphate precipitation method, an electroporation method, Liposome-mediated transfection, heat shock and gene bombardment, etc. may be used, but are not limited thereto.
  • another aspect of the present invention is 1) a gene mutated so that fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 is inactivated; 2) a gene encoding a novel phosphotransferase system G in which valine (V) at amino acid 12 of SEQ ID NO: 6 is substituted with phenylalanine (F); and 3) a mutant strain containing at least one of genes mutated to inactivate the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 7.
  • fbaA fructose-bisphosphate aldolase class 2
  • agaR putative aga operon transcriptional repressor
  • the mutant strain in addition to the mutant strain transformed with the above-mentioned recombinant vector, is incapable of 1) fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5 through mutation in various ways.
  • genes mutated to be active 2) a gene encoding a novel phosphotransferase system G in which valine (V) at amino acid 12 of SEQ ID NO: 6 is substituted with phenylalanine (F); and 3) a gene mutated to inactivate the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 7.
  • Gene sequences included in the mutant strain include: 1) a gene mutated to inactivate fructose-bisphosphate aldolase class 2 (fbaA) of SEQ ID NO: 5; 2) a gene encoding a novel phosphotransferase system G in which valine (V) at amino acid 12 of SEQ ID NO: 6 is substituted with phenylalanine (F); and 3) a gene sequence mutated to inactivate the putative aga operon transcriptional repressor (agaR) of SEQ ID NO: 7,
  • prokaryotic cells include, for example, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli strains of the genus Bacillus, such as B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and enterobacteriaceae and strains such as Salmonella typhimurium, Serratia marcessons, and various Pseudomonas species.
  • yeast Sacharomyce cerevisiae
  • insect cells such as SP2/0, CHO (Chinese hamster ovary) K1, CHO DG44, PER.C6 , W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN and MDCK cell lines
  • the host of the mutant strain may be Escherichia coli.
  • the mutant strain may have D-tagatose metabolic ability.
  • the recombinant strain may have D-tagatose metabolic ability because it contains the aforementioned expression cassette or mutation.
  • the D-tagatose metabolic ability means to utilize D-tagatose as an energy source.
  • Another aspect of the present invention comprises culturing the mutant strain in a medium containing D-tagatose; It provides a method for producing a strain having D- tagatose metabolic ability comprising a.
  • the culturing step is a step of culturing the mutant strain in a medium containing D-tagatose, and the medium may contain known components for culturing the mutant strain.
  • one aspect of the present invention is at any one or more of positions 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 and 362 in the amino acid sequence of SEQ ID NO: 11.
  • a composition for screening variants with increased activity comprising an agent capable of confirming mutations.
  • the amino acid sequence of SEQ ID NO: 11 is a tagaturonate/fructuronate epimerase (uxaE), which contains D-tagaturonate (D-TagA) and D-fructuronate (D- It is an enzyme that catalyzes the conversion between fructuronate and D-FruA).
  • uxaE tagaturonate/fructuronate epimerase
  • D-TagA D-tagaturonate
  • D-FruA D-fructuronate
  • the agent of the present invention is any one or more of positions 16, 105, 148 and 236 in the amino acid sequence of SEQ ID NO: 11 or positions 92, 95, 129, 193, 324, 341 and 362 It may be to identify a mutation at any one or more of the positions, more specifically, to identify mutations at positions 16, 105, 148 and 236 or positions 92, 95, 129, 193, 324, 341 and 362 it could be
  • the mutations are V16, R92, F95, T105, N129, F148, K193, R236, K324, H341 and H362, more specifically V16A, R92S, F95I, T105A, N129Y, F148S, K193E, R236S, K324N, H341L and H362I.
  • Confirmation of a mutation at the above location may be performed by confirming a protein sequence or a nucleotide sequence encoding the mutation.
  • confirmation method all conventional expression level methods used in the art may be used, and examples of analysis methods include RT-PCR, competitive RT-PCR, real-time RT-PCR, RNase protection assay (RPA:RNase protection assay), northern blotting, DNA microarray chip, etc., but are not limited thereto.
  • the agent is polymerase chain reaction, reverse transcription polymerase reaction (RT-PCR), competitive reverse transcription polymerase reaction (Competitive RT-PCR), RNase protection assay (RNase, S1 nuclease assay), in situ hybridization method, nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • RT-PCR reverse transcription polymerase reaction
  • Competitive RT-PCR competitive reverse transcription polymerase reaction
  • RNase protection assay RNase, S1 nuclease assay
  • in situ hybridization method nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • a primer may be used in the polymerase chain reaction.
  • the “primer” is a short single-stranded oligonucleotide that serves as a starting point for DNA synthesis.
  • a primer specifically binds to a polynucleotide, which is a template, in an appropriate buffer and temperature conditions, and DNA polymerase adds a nucleoside triphosphate having a base complementary to the template DNA to the primer and connects the DNA.
  • Primers generally consist of 15 to 30 nucleotide sequences, and the melting temperature (Tm) of binding to the template strand varies depending on the nucleotide composition and length.
  • the sequence of the primer does not have to have a sequence completely complementary to a part of the base sequence of the template, and it is sufficient to have sufficient complementarity within a range capable of hybridizing with the template and performing the specific function of the primer. Therefore, it is not necessary to have a sequence perfectly complementary to the mutant gene sequence for measuring the expression level of the gene encoding the variant of the present invention, and by amplifying a specific section of the mRNA or cDNA of the variant through DNA synthesis, Any length and complementarity suitable for the purpose of measuring the amount of mRNA is sufficient.
  • the primers for the amplification reaction consist of a set (pair) that binds complementarily to the template (or sense, sense) and the opposite side (antisense, antisense) of both ends of a specific section of the mRNA of the mutant to be amplified.
  • Primers can be easily designed by those skilled in the art by referring to the mRNA or cDNA nucleotide sequence of the variant.
  • the microarray may use as a probe any one selected from the group consisting of gene mRNAs of mutants, mutants, and fragments thereof.
  • the term “probe” refers to RNA or DNA with a length of several to several hundred base pairs that can specifically bind to mRNA or cDNA (complementary DNA) of a specific gene. It refers to a fragment of a polynucleotide, and is labeled so that the presence or absence of target mRNA or cDNA to be bound and the expression level can be confirmed.
  • a probe complementary to the mutant mRNA can be used for diagnosis of an infectious inflammatory disease by performing a hybridization reaction with a sample of a subject to measure the expression level of the mRNA of the mutant. Probe selection and hybridization conditions can be appropriately selected according to techniques known in the art.
  • composition for screening for variants comprising a composition for screening for variants.
  • Another aspect of the present invention is to identify a mutation from a sample to the composition; and confirming whether the sample is a mutant with increased activity through the identified mutation.
  • the method for confirming the mutation is as described above.
  • the method may include identifying a mutation in a sample and selecting a variant with increased activity when the disclosed mutation site is included.
  • B. licheniformis-derived gatY gene was transformed into E. coli and adapted for evolution in tagatose medium. After confirming growth after about 500 hours, whole-length genomic analysis was performed on strains that were continuously subcultured and no longer increased in growth rate, and mutant sites (fruK, Cra binding site, T7RNAP promoter) were identified (Fig. 1b, Fig. 1c) Mutant strains were prepared.
  • Example 2 Preparation of mutant strains characterized by fructose non-metabolism and tagatose metabolism
  • Escherichia coli metabolizes tagatose through a common phosphotransferase system (PTS) with fructose
  • PTS phosphotransferase system
  • selecting the transporter (fruAB) or kinase (fruK) gene included in the main fructose PTS to create a strain that does not metabolize fructose can lead to tagatose
  • toss also becomes unavailable, we tried to select a gene that plays an important role in fructose utilization without overlapping tagatose and fructose metabolism.
  • the gatY gene was cured from the strain adapted for evolution in the tagatose medium. After the cured strain was adapted and evolved again in tagatose medium, it was confirmed that the agaR part was inactivated through whole genome analysis (FIG. 6).
  • fructose metabolic activity was reduced and tagatose utilization was acquired compared to wild-type E. coli.
  • the strain was grown in an enzyme activity-dependent manner when a fructose epimerase was introduced into the strain and grown in a fructose medium.
  • mutation PCR was performed using a PCR random mutation kit (Clontech, USA) to induce mutation of the D-fructose epimerase uxaE gene.
  • 50 ng of mutation-inducible PCR library DNA was transformed into E. coli BL21 (DE3) in which the fructose metabolic genome was mutated, and culture was performed in a restriction (M9) medium containing 0.5% fructose. Thereafter, the formed colonies were collected and plasmids were extracted using a plasmid purification kit. Some of the plasmid sequences were analyzed, and the genetic diversity of the library was confirmed (Table 8).
  • BL21 (DE3), in which the glycosyltransferase library gene variant fructose epimerization gene pET-21a(+)-uxaE library DNA of which the above diversity was confirmed was transformed and the fructose metabolism genome was modified, was mixed with 0.5% D-fructose, and Cell growth was confirmed after culturing in a limited (M9) medium containing 0.2 mM IPTG at a final concentration, and the results are shown in FIG. 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법에 관한 것으로, 본 발명에 따른 발현 카세트, 이를 포함하는 벡터를 통해 새로운 당 대사경로를 구축할 수 있고, 이를 통해 형질 전환된 돌연변이 또는 변이된 유전자를 포함하는 돌연변이 균주는 새로운 당 대사경로가 구축되어 있다. 또한, 본 발명은 본 발명은 활성이 증가된 변이체 선별을 위한 방법에 관한 것으로, 활성이 증가된 변이체 선별용 조성물은 서열번호 11의 돌연변이를 확인하여 활성이 증가된 변이체 선별에 유용하게 사용될 수 있다.

Description

희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법
본 발명은 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법에 관한 것이다.
또한, 본 발명은 프룩토오스 대사 유전체가 돌연변이된 균주에 관한 것이다.
그리고, 본 발명은 활성이 증가된 변이체 선별을 위한 방법에 관한 것이다.
D-타가토스는 D-갈락토오스의 이성질체이며 과일, 우유, 치즈 등에 존재하는 천연 당류이다. D-타가토스는 다양한 건강 기능적 특성과 설탕과 매우 유사한 단맛을 가지고 있기 때문에 여러 제품 적용 시 건강과 맛을 동 시에 만족시킬 수 있는 대체 감미료로 사용된다.
한편, 일반적으로 효소의 활성 및 구조적 안정성을 증진시키거나 새로운 기질에 대한 활성을 부여하는 등 원하는 목적에 부합하도록 효소의 특성을 변환시키는 개량기술로 분자진화 (directed evolution) 기술이 사용되고 있다. 이러한 기술을 수행하기 위한 변이주 라이브러리를 제조하기 위해 가장 일반적인 방법으로 많이 사용되는 것은 error-prone PCR 방법으로 PCR 수행시 DNA 중합효소의 에러발생율을 조절하여 무작위적으로 돌연변이를 도입하는 방법이다. 이렇게 만들어진 변이주들을 이용하여 단백질을 발현시킨 후, 활성이 좋은 변이주를 선별함으로써 우수한 활성을 갖는 개량 효소를 수득하게 되는데 원하는 효소의 특징과 목적에 맞는 효율적인 스크리닝 기술을 개발하는 것이 분자진화의 핵심기술이라 할 수 있다.
대한민국 공개특허 제10-2018-0074550호에서는 균주에 타 균주 유래의 효소를 도입하여 변형된 당 대사 경로를 갖는 재조합 균주 및 이를 통해 D-타가토스를 수득하는 가능성을 개시하고 있으나, 최근 원자재 값의 상승으로 인해 수익률이 떨어지게 되어, 신규한 대사경로를 통해 D-타가토스를 수득할 수 있는 균주의 개발 필요성이 높아지고 있다.
이에, 본 발명자들은 연구를 통해 변형된 당 대사 경로를 갖는 돌연변이 균주 및 이의 용도를 확인하여 본 발명을 완성하였다.
그리고, 이러한 기능성을 가진 타가토스의 생산을 위하여 균주가 가진 효소에 돌연변이를 추가하거나, 다른 균주가 가진 유전자를 도입하는 등 타가토스 생산 경로를 다양하게 재구성하는 시도가 이루어지고 있다. 그러나 이러한 시도는 개별적인 타가토스 생산 가능성만을 확인한 것이어서 실질적으로 다른 균주와의 대사능 비교 또는 대상 균주의 당 대사능 선별의 예측에 있어서는 연구가 이루어지지 않았다.
이에 본 발명자들은 당대사능이 개선된 균주를 선별할 수 있는 방법을 연구한 결과 본 발명을 완성하게 되었다.
본 발명의 일 양상은 서열번호 1의 아미노산 서열에서 39번째 알라닌 (A)이 세린 (S)으로 치환된 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자를 포함하는, 발현 카세트를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공하는 것을 목적으로 하고 이를 통해 D-타가토스 비대사성 균주에서 D-타가토스 대사능을 가진 균주를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 서열; 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및 3) 서열번호 4의 유전자 서열 중 어느 하나 이상의 유전자 서열을 포함하는 돌연변이 균주를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-타가토스 대사능을 갖는 균주를 생산하는 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는, 발현 카세트를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나 이상을 포함하는 돌연변이 균주를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 상기 돌연변이 균주를 D-프룩토오스 혹은 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-프룩토오스 비대사성과 D-타가토스 대사능의 특징을 모두 갖는 균주를 생산하는 방법을 제공하는 것을 목적으로 한다.
일 구체예에 따르면 서열번호 11의 아미노산 서열에서 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 및 362 번째 위치 중 어느 하나 이상 위치에서의 돌연변이를 확인할 수 있는 제제를 포함하는 활성이 증가된 변이체 선별용 조성물을 제공한다.
다른 구체예에 따르면 상기 조성물을 포함하는 활성이 증가된 변이체 선별용 키트를 제공한다.
또 다른 구체예에 따르면 시료로부터 상기 조성물로 돌연변이를 확인하는 단계; 및 상기 확인된 돌연변이를 통해 시료가 활성이 증가된 변이체인지 확인하는 단계를 포함하는 활성이 증가된 변이체 선별 정보를 제공하는 방법을 제공한다.
본 발명의 일 양상은 서열번호 1의 아미노산 서열에서 39번째 알라닌 (A)이 세린 (S)으로 치환된 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자를 포함하는, 발현 카세트를 제공한다.
본 발명의 일 구체예로 상기 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자는 서열번호 2일 수 있다.
본 발명의 일 구체예로 상기 발현 카세트는 cra 결합부위가 결손된 것일 수 있다.
본 발명의 일 구체예로 상기 cra 결합부위의 결손은 상기 발현 카세트에서 서열번호 3의 서열을 포함하지 않을 수 있다.
본 발명의 일 구체예로 상기 발현 카세트는 lacI 를 암호화 하는 서열 및 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열을 더 포함하는 것일 수 있다.
본 발명의 일 구체예로 상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 T7 RNAP 코어 프로모터 영역 (T7 RNAP core promoter region) 의 돌연변이일 수 있다.
본 발명의 일 구체예로 상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 서열번호 4일 수 있다.
본 발명의 다른 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터를 제공한다.
본 발명의 다른 일 양상은 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공한다.
본 발명의 다른 일 양상은 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화하는 유전자 돌연변이 서열; 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및 3) 서열번호 4의 유전자 돌연변이 서열 중 어느 하나 이상의 돌연변이를 포함하는 돌연변이 균주를 제공한다.
본 발명의 일 구체예로 상기 재조합 균주는 대장균일 수 있다.
본 발명의 일 구체예로 상기 재조합 균주는 D-타가토스 대사능을 갖는 것일 수 있다.
본 발명의 다른 일 양상은 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-타가토스 대사능을 갖는 균주를 생산하는 방법을 제공한다.
또한, 본 발명의 일 양상은 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는, 발현 카세트를 제공한다.
본 발명의 일 구체예로 상기 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자는 서열번호 9일 수 있다.
본 발명의 일 구체예로 상기 aga 오페론 전사 억제제의 불활성화는 타가토스 알돌라아제 (kbaY)가 발현되도록 하는 것일 수 있다.
본 발명의 일 구체예로 상기 불활성화는 유전자를 결손하는 것일 수 있다.
본 발명의 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공한다.
본 발명의 일 양상은 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나 이상을 포함하는 돌연변이 균주를 제공한다.
본 발명의 일 구체예로 상기 재조합 균주는 대장균일 수 있다.
본 발명의 일 구체예로 상기 재조합 균주는 D-프룩토오스 대사능을 상실 혹은 감소되고 D-타가토스 대사능을 갖는 돌연변이 균주.
본 발명의 일 양상은 상기 돌연변이 균주를 D-프룩토오스 혹은 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-프룩토오스 비대사성과 D-타가토스 대사능의 특징을 모두 갖는 균주를 생산하는 방법을 제공한다.
본 발명의 일 양상은 서열번호 11의 아미노산 서열에서 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 및 362 번째 위치 중 어느 하나 이상 위치에서의 돌연변이를 확인할 수 있는 제제를 포함하는 활성이 증가된 변이체 선별용 조성물을 제공한다.
본 발명의 일 구체예로 상기 돌연변이는 V16, R92, F95, T105, N129, F148, K193, R236, K324, H341 및 H362 중 어느 하나 이상의 위치의 돌연변이일 수 있다.
본 발명의 일 구체예로 상기 돌연변이는 V16A, R92S, F95I, T105A, N129Y, F148S, K193E, R236S, K324N, H341L 및 H362I 중 어느 하나 이상일 수 있다.
본 발명의 일 구체예로 상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것을 특징으로 하는 것일 수 있다.
본 발명의 다른 일 양상은 상기 조성물을 포함하는 활성이 증가된 변이체 선별용 키트를 제공한다.
본 발명의 다른 일 양상은 시료로부터 상기 조성물로 돌연변이를 확인하는 단계; 및 상기 확인된 돌연변이를 통해 시료가 활성이 증가된 변이체인지 확인하는 단계를 포함하는 활성이 증가된 변이체 선별 정보를 제공하는 방법을 제공한다.
본 발명에 따른 발현 카세트, 이를 포함하는 벡터를 통해 새로운 당 대사경로를 구축할 수 있고, 이를 통해 형질 전환된 돌연변이 균주 또는 변이된 유전자를 포함하는 돌연변이 균주는 새로운 당 대사경로가 구축되어있다.
또한, 본 발명의 활성이 증가된 변이체 선별용 조성물은 서열번호 11의 돌연변이를 확인하여 활성이 증가된 변이체 선별에 유용하게 사용될 수 있다.
도 1은 본 발명의 돌연변이 균주를 제조하는 과정을 나타낸 도면이다. 구체적으로 도 1a는 타가토스 이용이 가능한 세 균주 (S.enterica, K. pneumociae, K.oxytoca, B.licheniformis)와 gene cluster와 E. coli를 비교한 것이고, 도 1b는 모균주 (E. coli BL12(DE3))와 제작한 돌연변이 균주 (pET28a-gatY/E. coli BL21(DE3))를 비교하여 돌연변이 부위를 확인한 것이고, 도 1c는 제작한 돌연변이 균주의 계대배양에 따른 성장속도를 확인한 그래프이다.
도 2는 돌연변이 균주의 활성을 확인한 것으로, 도 2a는 kinase WT과 돌연변이 균주의 활성을 비교한 결과이고, 도 2b는 돌연변이 균주의 세가지 당영양원 배지(Glc(글루코스), Fru(프록토스), Tag(타가토스))에서 유전자 발현 정도를 qRT-PCR을 통해 mRNA level 분석 결과이며, 도 2c는 돌연변이로 도입된 타가토스 대사 활성을 나타내는 그림이다.
도 3은 본 발명의 돌연변이 균주의 성장을 확인한 결과로, 도 3a는 fruK A39S, Cra 유전자 binding 부위가 삭제된 돌연변이 균주(2가지 부위가 돌연변이된 균주)의 성장곡선을 확인한 결과이고, 도 3b는 fruK A39S, Cra 유전자 binding 부위가 삭제되고, T7RNAP 코어 promoter 영역의 돌연변이 균주 (3가지 부위가 돌연변이된 균주)의 성장곡선 확인한 결과이다.
도 4는 본 발명의 돌연변이 균주를 제조하는 과정을 나타낸 도면이다.
도 5는 본 발명의 발현 벡터 또는 변이들을 통해 새로이 구축된 당대사 경로를 표시한 것이다.
도 6은 본 발명의 agaR 변이에 따른 오페론 발현기전을 나타낸 것이다.
도 7은 돌연변이가 포함된 균주의 활성을 확인한 것이다.
도 8은 본 발명의 균주의 배양 양상을 나타낸 것으로, 좌측은 탄소원에 따른 균주 배양 양상을 나타낸 것이고, 우측은 프룩토오스 에피머화 효소와 균주를 함께 배양하였을 때 배양 양상을 나타낸 것이다.
도 9는 변이체 라이브러리 제작 과정을 나타낸 것이다.
도 10은 본 발명의 변이체에 따른 활성 수준을 비교한 결과를 나타낸 것이다.
도 11은 본 발명의 변이에 따른 변이체 활성을 구조 예측으로 도출한 결과를 기재한 것이다.
본 발명의 일 양상은 서열번호 1의 아미노산 서열에서 39번째 알라닌 (A)이 세린 (S)으로 치환된 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자를 포함하는, 발현 카세트를 제공한다.
상기 서열번호 1의 아미노산 서열은 야생형 프룩토오스-1-포스페이트 키나아제(fruK)의 아미노산 서열을 의미하고, 본 발명에서는 상기 서열번호 1의 아미노산 서열의 39번째 알라닌 (A)이 세린 (S)으로 치환된 신규한 프룩토오스-1-포스페이트 키나아제를 통해 D-프룩토오스 대신 D-타가토스를 대사할 수 있게 된다.
상기 프룩토오스-1-포스페이트 키나아제(fruK)는 1-포스포프룩토키나아제로도 불리는 체내 효소로서 생체내 (in vivo)에서 프룩토오스-1-포스페이트 및 ATP를 프룩토오스-1,6-디포스페이트 및 ADP로 변환시키는 기능을 한다.
본 발명의 일 구체예로, 상기 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자는 서열번호 2인 것일 수 있다.
서열명 Sequence
E.coli BL21(DE3) FruK WT amino acid sequence
(서열번호 1)
MSRRVATITLNPAYDLVGFCPEIERGEVNLVKTTGLHA A GKGINVAKVLKDLGIDVTVGGFLGKDNQDGFQQLFSELGIANRFQVVQGRTRINVKLTEKDGEVTDFNFSGFEVTPADWERFVTDSLSWLGQFDMVCVSGSLPSGVSPEAFTDWMTRLRSQCPCIIFDSSREALVAGLKAAPWLVKPNRRELEIWAGRKLPEMKDVIEAAHALREQGIAHVVISLGAEGALWVNASGEWIAKPPSVDVVSTVGAGDSMVGGLIYGLLMRESSEHTLRLATAVAALAVSQSNVGITDRPQLAAMMARVDLQPFN
E.coli BL21(DE3) FruK A39S mutant amino acid sequence MSRRVATITLNPAYDLVGFCPEIERGEVNLVKTTGLHA S GKGINVAKVLKDLGIDVTVGGFLGKDNQDGFQQLFSELGIANRFQVVQGRTRINVKLTEKDGEVTDFNFSGFEVTPADWERFVTDSLSWLGQFDMVCVSGSLPSGVSPEAFTDWMTRLRSQCPCIIFDSSREALVAGLKAAPWLVKPNRRELEIWAGRKLPEMKDVIEAAHALREQGIAHVVISLGAEGALWVNASGEWIAKPPSVDVVSTVGAGDSMVGGLIYGLLMRESSEHTLRLATAVAALAVSQSNVGITDRPQLAAMMARVDLQPFN
FruK wt nucleotide sequence ATGAGCAGACGTGTTGCTACTATCACCCTTAATCCGGCTTATGACCTTGTTGGTTTCTGCCCGGAAATTGAACGCGGCGAAGTGAACCTGGTGAAAACCACCGGTCTGCATGCG G CGGGTAAAGGCATCAACGTGGCCAAAGTATTAAAAGACCTGGGAATTGATGTCACCGTTGGCGGCTTCCTCGGTAAAGACAATCAGGATGGTTTTCAGCAACTGTTCAGCGAGCTGGGCATTGCCAACCGTTTCCAGGTTGTACAGGGGCGCACTCGAATTAACGTTAAGCTGACGGAAAAAGACGGCGAAGTGACCGACTTCAACTTCTCGGGTTTTGAAGTCACCCCCGCCGACTGGGAACGCTTTGTGACTGATTCTCTGAGCTGGCTCGGTCAGTTCGATATGGTCTGTGTCAGCGGAAGCTTACCGTCAGGCGTCAGCCCGGAAGCGTTCACCGACTGGATGACTCGCCTGCGTAGTCAGTGTCCTTGCATTATCTTTGATAGTAGCCGTGAAGCGTTAGTAGCAGGTTTGAAAGCGGCACCGTGGCTGGTGAAACCTAACCGCCGCGAGCTGGAAATCTGGGCAGGCCGTAAACTGCCTGAAATGAAAGATGTGATTGAAGCTGCGCATGCGCTGCGTGAACAAGGTATCGCGCATGTTGTTATTTCACTGGGTGCCGAAGGCGCGCTTTGGGTTAATGCCTCCGGCGAATGGATCGCCAAACCACCGTCAGTCGATGTCGTAAGCACCGTTGGCGCAGGGGATTCTATGGTTGGTGGCCTGATTTATGGCTTGCTGATGCGTGAATCCAGTGAACACACACTGCGTCTGGCGACAGCTGTTGCAGCCCTGGCGGTAAGTCAAAGCAATGTGGGTATTACCGATCGTCCGCAGTTGGCCGCAATGATGGCGCGCGTCGACTTACAACCTTTTAACTGA
mutant FruK A39S nucleotide sequence(서열번호 2) ATGAGCAGACGTGTTGCTACTATCACCCTTAATCCGGCTTATGACCTTGTTGGTTTCTGCCCGGAAATTGAACGCGGCGAAGTGAACCTGGTGAAAACCACCGGTCTGCATGCG T CGGGTAAAGGCATCAACGTGGCCAAAGTATTAAAAGACCTGGGAATTGATGTCACCGTTGGCGGCTTCCTCGGTAAAGACAATCAGGATGGTTTTCAGCAACTGTTCAGCGAGCTGGGCATTGCCAACCGTTTCCAGGTTGTACAGGGGCGCACTCGAATTAACGTTAAGCTGACGGAAAAAGACGGCGAAGTGACCGACTTCAACTTCTCGGGTTTTGAAGTCACCCCCGCCGACTGGGAACGCTTTGTGACTGATTCTCTGAGCTGGCTCGGTCAGTTCGATATGGTCTGTGTCAGCGGAAGCTTACCGTCAGGCGTCAGCCCGGAAGCGTTCACCGACTGGATGACTCGCCTGCGTAGTCAGTGTCCTTGCATTATCTTTGATAGTAGCCGTGAAGCGTTAGTAGCAGGTTTGAAAGCGGCACCGTGGCTGGTGAAACCTAACCGCCGCGAGCTGGAAATCTGGGCAGGCCGTAAACTGCCTGAAATGAAAGATGTGATTGAAGCTGCGCATGCGCTGCGTGAACAAGGTATCGCGCATGTTGTTATTTCACTGGGTGCCGAAGGCGCGCTTTGGGTTAATGCCTCCGGCGAATGGATCGCCAAACCACCGTCAGTCGATGTCGTAAGCACCGTTGGCGCAGGGGATTCTATGGTTGGTGGCCTGATTTATGGCTTGCTGATGCGTGAATCCAGTGAACACACACTGCGTCTGGCGACAGCTGTTGCAGCCCTGGCGGTAAGTCAAAGCAATGTGGGTATTACCGATCGTCCGCAGTTGGCCGCAATGATGGCGCGCGTCGACTTACAACCTTTTAACTGA
본 발명의 일 구체예로, 상기 발현 카세트는 cra 결합부위가 결손된 것일 수 있고, 상기 cra 결합부위의 결손은 상기 발현 카세트에서 서열번호 3의 서열을 포함하지 않음으로 이루어진 것일 수 있다.
서열명 Sequence
Cra binding site deleted nucleotide sequence(서열번호 3) Tgaaacgatt cagcctctat gagaaaaaaa gcgccaacct ggcttagggt taaagacaag atcgcgc
상기 cra (catabolite repressor/activator)는 상기 프룩토오스-1-포스페이트 및 프룩토오스-1,6-바이포스페이트에 의해 유도되는 것으로, 발현 카세트 내 cra 결합 부위가 있는 경우 상기 신규한 프룩토오스-1-포스페이트 키나아제의 유전자의 발현이 제한될 수 있으나, 이러한 결합 부위를 결손시킴으로써 상기 신규한 프룩토오스-1-포스페이트 키나아제의 유전자의 발현량을 증가시킨다.
본 발명의 일 구체예로, 상기 발현 카세트는 lacI 를 암호화 하는 서열 및 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열을 더 포함하는 것일 수 있고, 더욱 구체적으로 상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 T7 RNAP 코어 프로모터 영역 (T7 RNAP core promoter region) 일 수 있으며, 더욱 구체적으로 상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 서열번호 4일 수 있다.
서열명 Sequence
Wt T7RNAP core promoter region gcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtaagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtat aa tgtgtg g aattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacggattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaactt
Mutated T7RNAP core promoter region(서열번호 4) gcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtaagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtat gt tgtgtg a aattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacggattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaactt
상기 lacI은 미생물에서 락토오스의 대사에 참여하는 단백질을 암호화 하는 유전자의 발현을 억제하는 DNA-결합 단백질인 lac repressor (LacI)를 암호화 하는 유전자를 의미한다.
상기 T7 RNAP는 5'->3' 방향으로 DNA로부터 RNA의 형성을 촉매하는 T7 박테리오파지로부터 유래된 RNA 폴리머라아제를 의미한다 (EC:2.7.7.).
본 발명의 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터를 제공한다.
본 발명에서 사용되는 용어, "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.
본 발명에서 사용되는 용어, "작동가능하게 연결된"은 유전자 발현 조절 서열과 다른 뉴클레오티드 서열사이의 기능적인 결합을 의미한다. 상기 유전자 발현 조절 서열은 복제원점(replication origin), 프로모터 및 전사 종결 서열(terminator) 등으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 전사 종결 서열은 폴리아데닐화 서열(pA)일 수 있으며, 복제 원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 또는 BBV 복제원점 등일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따른 재조합 벡터는 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터와 같은 바이러스 벡터로 이루어진 군으로부터 선택되는 것일 수 있다. 재조합 발현벡터로 사용될 수 있는 벡터는 당업계에서 사용되는 플라스미드(예를 들어, pcDNA 시리즈, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등), 파지(예를 들어, λgt4λB, λ-Charon, λΔz1, M13 등) 또는 바이러스 벡터(예를 들어, 아데노-연관 바이러스(AAV) 벡터 등) 등을 기본으로 하여 제작될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 재조합 벡터는 하나 이상의 선택성 마커를 더 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질주입된 세포를 비형질주입 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 예를 들어, 글리포세이트(glyphosate), 글루포시네이트암모늄(glufosinate ammonium) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 암피실린(ampicillin), 카나 마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜 (chloramphenicol)과 같은 항생제 내성 유전자일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 재조합 벡터의 제작은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용하여 수행될 수 있다.
본 발명의 다른 일 양상은 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공한다.
상기 재조합 벡터로 형질전환하는 방법은 당업계에 널리 알려진 삽입 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법, 열충격 및 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정하지는 않는다.
또한, 본 발명의 다른 일 양상은 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 서열; 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및 3) 서열번호 4의 유전자 돌연변이 서열 중 어느 하나 이상의 유전자 서열을 포함하는 돌연변이 균주를 제공한다.
상기 돌연변이 균주는 전술한 재조합 벡터로 형질 전환된 돌연변이 균주외에도 다양한 방법의 돌연변이를 통해 전술한 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 돌연변이 서열; 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및 3) 서열번호 4의 유전자 서열 중 어느 하나 이상의 유전자 돌연변이 서열을 포함하게 된 것일 수 있다.
상기 돌연변이 균주에 포함되는 유전자 서열은 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 돌연변이 서열; 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 또는 3) 서열번호 4의 유전자 돌연변이 서열 중 어느 하나의 유전자 서열을 포함하는 것일 수 있고,
1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 돌연변이 서열; 및 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손을 포함하거나, 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 돌연변이 서열; 및 3) 서열번호 4의 유전자 돌연변이 서열을 포함하거나, 2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및 3) 서열번호 4의 유전자 돌연변이 서열을 포함하는 것일 수 있으며,
1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 서열; 2) 서열번호 3의 cra 결합부위에서 서열번호 4의 서열이 결손된 유전자 서열; 및 3) 서열번호 4의 유전자 돌연변이 서열을 포함하는 것일 수도 있다.
상기 돌연변이 균주의 숙주는 당업계에 공지된 어떠한 숙주를 이용할 수 있으며, 원핵 세포로는, 예를 들어, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있으며, 진핵 세포에 형질 전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, SP2/0, CHO(Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN 및 MDCK 세포주 등이 이용될 수 있고, 구체적으로 상기 돌연변이 균주의 숙주는 대장균일 수 있다.
본 발명의 일 구체예로 상기 돌연변이 균주는 D-타가토스 대사능을 가질 수 있다. 구체적으로, 상기 재조합 균주는 전술한 발현카세트 또는 돌연변이를 포함하고 있기 때문에 D-타가토스 대사능을 가질 수 있다. 상기 D-타가토스 대사능은 D-타가토스를 에너지원으로 활용하는 것을 의미한다.
본 발명의 다른 일 양상은 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-타가토스 대사능을 갖는 균주를 생산하는 방법을 제공한다.
상기 배양하는 단계는 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계로서, 상기 배지는 돌연변이 균주를 배양하기 위해 공지의 성분을 함유할 수 있다.
본 발명의 일 양상은 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는, 발현 카세트를 제공한다.
상기 서열번호 5의 아미노산 서열은 야생형 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)의 아미노산 서열을 의미하고, 본 발명에서는 상기 서열번호 5의 야생형 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA) 아미노산 서열이 불활성화 되도록 변이되어 프룩토오스 이용성을 억제하고 타가토스 이용성을 개선할 수 있다.
상기 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)는 포도당신생합성 및 해당과정에서 역반응에서 프룩토오스 1,5-바이포스페이트 (FBP)를 형성하기 위하여 글리세랄데하이드 3-포스페이트 (G3P)와 디하이드록시아세톤 포스페이트 (DHAP 또는 glycerone-phosphate)의 알돌 축합을 촉매하는 기능을 한다.
본 발명의 일 구체예로, 상기 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)를 암호화하는 유전자는 서열번호 8를 포함하는 것일 수 있다.
서열명 Sequence 서열번호
fbaA WT amino acid MSKIFDFVKP GVITGDDVQK VFQVAKENNF ALPAVNCVGT DSINAVLETA
AKVKAPVIVQ FSNGGASFIA GKGVKSDVPQ GAAILGAISG AHHVHQMAEH
YGVPVILHTD HCAKKLLPWI DGLLDAGEKH FAATGKPLFS SHMIDLSEES
LQENIEICSK YLERMSKIGM TLEIELGCTG GEEDGVDNSH MDASALYTQP
EDVDYAYTEL SKISPRFTIA ASFGNVHGVY KPGNVVLTPT ILRDSQEYVS
KKHNLPHNSL NFVFHGGSGS TAQEIKDSVS YGVVKMNIDT DTQWATWEGV
LNYYKANEAY LQGQLGNPKG EDQPNKKYYD PRVWLRAGQT SMIARLEKAF
QELNAIDVL
5
fbaA WT gene atgtctaaga tttttgattt cgtaaaacct ggcgtaatca ctggtgatga cgtacagaaa gttttccagg tagcaaaaga aaacaacttc gcactgccag cagtaaactg cgtcggtact
gactccatca acgccgtact ggaaaccgct gctaaagtta aagcgccggt tatcgttcag
ttctccaacg gtggtgcttc ctttatcgct ggtaaaggcg tgaaatctga cgttccgcag
ggtgctgcta tcctgggcgc gatctctggt gcgcatcacg ttcaccagat ggctgaacat
tatggtgttc cggttatcct gcacactgac cactgcgcga agaaactgct gccgtggatc
gacggtctgt tggacgcggg tgaaaaacac ttcgcagcta ccggtaagcc gctgttctct
tctcacatga tcgacctgtc tgaagaatct ctgcaagaga acatcgaaat ctgctctaaa
tacctggagc gcatgtccaa aatcggcatg actctggaaa tcgaactggg ttgcaccggt
ggtgaagaag acggcgtgga caacagccac atggacgctt ctgcactgta cacccagccg
gaagacgttg attacgcata caccgaactg agcaaaatca gcccgcgttt caccatcgca
gcgtccttcg gtaacgtaca cggtgtttac aagccgggta acgtggttct gactccgacc
atcctgcgtg attctcagga atatgtttcc aagaaacaca acctgccgca caacagcctg
aacttcgtat tccacggtgg ttccggttct actgctcagg aaatcaaaga ctccgtaagc
tacggcgtag taaaaatgaa catcgatacc gatacccaat gggcaacctg ggaaggcgtt
ctgaactact acaaagcgaa cgaagcttat ctgcagggtc agctgggtaa cccgaaaggc
gaagatcagc cgaacaagaa atactacgat ccgcgcgtat ggctgcgtgc cggtcagact
tcgatgatcg ctcgtctgga gaaagcattc caggaactga acgcgatcga cgttctgtaa
8
상기 서열번호 6의 아미노산 서열은 야생형 포스포트랜스퍼라아제 시스템 G (PTS system glucose-specific EIICB component, ptsG)의 아미노산 서열을 의미하고, 본 발명에서는 상기 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환시켜 글루코오스 트랜스포터인 야생형 ptsG를 비인산화 (non-phosphorylation) 형태인 프룩토오스를 세포내로 유입할 수 있도록 한다.
상기 포스포트랜스퍼라아제 시스템 G (PTS system glucose-specific EIICB component, ptsG)는 주요한 탄수화물 활성 전달 시스템으로, 당기질의 인산화와 함께 세포막을 가로질러 들어오도록 하는 기능을 한다.
본 발명의 일 구체예로, 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자는 서열번호 9를 포함하는 것일 수 있다.
서열명 Sequence 서열번호
ptsG WT amino acid MFKNAFANLQ K V GKSLMLPV SVLPIAGILL GVGSANFSWL PAVVSHVMAE
AGGSVFANMP LIFAIGVALG FTNNDGVSAL AAVVAYGIMV KTMAVVAPLV
LHLPAEEIAS KHLADTGVLG GIISGAIAAY MFNRFYRIKL PEYLGFFAGK
RFVPIISGLA AIFTGVVLSF IWPPIGSAIQ TFSQWAAYQN PVVAFGIYGF
IERCLVPFGL HHIWNVPFQM QIGEYTNAAG QVFHGDIPRY MAGDPTAGKL
SGGFLFKMYG LPAAAIAIWH SAKPENRAKV GGIMISAALT SFLTGITEPI
EFSFMFVAPI LYIIHAILAG LAFPICILLG MRDGTSFSHG LIDFIVLSGN
SSKLWLFPIV GIGYAIVYYT IFRVLIKALD LKTPGREDAT EDAKATGTSE
MAPALVAAFG GKENITNLDA CITRLRVSVA DVSKVDQAGL KKLGAAGVVV
AGSGVQAIFG TKSDNLKTEM DEYIRNH
6
ptsGV12F amino acid MFKNAFANLQ K F GKSLMLPV SVLPIAGILL GVGSANFSWL PAVVSHVMAE
AGGSVFANMP LIFAIGVALG FTNNDGVSAL AAVVAYGIMV KTMAVVAPLV
LHLPAEEIAS KHLADTGVLG GIISGAIAAY MFNRFYRIKL PEYLGFFAGK
RFVPIISGLA AIFTGVVLSF IWPPIGSAIQ TFSQWAAYQN PVVAFGIYGF
IERCLVPFGL HHIWNVPFQM QIGEYTNAAG QVFHGDIPRY MAGDPTAGKL
SGGFLFKMYG LPAAAIAIWH SAKPENRAKV GGIMISAALT SFLTGITEPI
EFSFMFVAPI LYIIHAILAG LAFPICILLG MRDGTSFSHG LIDFIVLSGN
SSKLWLFPIV GIGYAIVYYT IFRVLIKALD LKTPGREDAT EDAKATGTSE
MAPALVAAFG GKENITNLDA CITRLRVSVA DVSKVDQAGL KKLGAAGVVV
AGSGVQAIFG TKSDNLKTEM DEYIRNH
ptsG WT gene atgtttaaga atgcatttgc taacctgcaa aag gtc ggta aatcgctgat gctgccggtatccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg
cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca
ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg
gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta
ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga
gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg
cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct
gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag
accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc
atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg
cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat
atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt
ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg
ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc
gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc
ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt
ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc
ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat
ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa
atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca
tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg
aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt
actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa
ptsGV12F gene atgtttaaga atgcatttgc taacctgcaa aag tty ggta aatcgctgat gctgccggta tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg
cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca
ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg
gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta
ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga
gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg
cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct
gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag
accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc
atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg
cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat
atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt
ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg
ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc
gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc
ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt
ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc
ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat
ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa
atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca
tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg
aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt
actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa
9
상기 서열번호 7의 아미노산 서열은 야생형 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)의 아미노산 서열을 의미하고, 본 발명의 일 구체예로 상기 서열번호 3의 야생형 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이되어 타가토스 알돌라아제 (kbaY)가 발현되도록 하는 것일 수 있다.
상기 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)는 N-아세틸 갈락토사민 이동 및 대사를 위한 aga 오페론의 억제 기전을 하는 기능을 가지는 것으로 예측된다.
본 발명의 일 구체예로, 상기 서열번호 3의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)를 암호화하는 유전자는 서열번호 10을 포함하는 것일 수 있다.
서열명 Sequence 서열번호
agaR WT amino acid MSNTDASGEK RVTGTSERRE QIIQRLRQQG SVQVNDLSAL YGVSTVTIRN DLAFLEKQGI AVRAYGGALI CDSTTPSVEP SVEDKSALNT AMKRSVAKAA VELIQPGHRV ILDSGTTTFE IARLMRKHTD VIAMTNGMNV ANALLEAEGV ELLMTGGHLR RQSQSFYGDQ AEQSLQNYHF DMLFLGVDAI DLERGVSTHN EDEARLNRRM CEVAERIIVV TDSSKFNRSS LHKIIDTQRI DMIIVDEGIP ADSLEGLRKA GVEVILVGE-
7
agaR WT gene atgagtaata ccgacgcttc aggtgagaag cgagtgacag gcaccagcga gcgacgagaa cagatcattc agcgtctgcg acagcaaggg agtgtgcagg ttaacgatct gtcggcattg tatggcgtat ctaccgtgac gatccgcaac gatctggcgt ttctggaaaa gcaggggatc gctgtgcgtg cctatggtgg cgcgttgatc tgcgatagca cgacgccgtc agtcgagcca tcagtggaag ataaaagcgc actgaacacc gcgatgaaac gcagcgttgc gaaagctgcc gttgagttga ttcagccagg tcatcgggtg atcctcgatt ccgggaccac cacttttgag attgctcgtc tgatgcgcaa gcacactgac gtaattgcga tgaccaacgg tatgaacgtg gctaatgctt tgctggaagc ggaaggcgtt gagctgctga tgaccggcgg gcatttgcgc cgtcagtcgc aatcttttta cggcgatcag gctgaacaat cgctgcaaaa ttaccacttc gatatgctgt ttcttggtgt agatgcgatc gatctggagc gcggcgtcag cacgcataat gaagatgaag cccgtttaaa ccgccggatg tgcgaagttg cggaacggat catcgtagtc accgattcca gtaagttcaa ccgctccagt ttacataaga tcattgatac tcaacgtatc gacatgatca ttgttgatga aggcattcct gcggatagtc tggaaggact gcgaaaggct ggggttgaag tgattctggt cggggagtga 10
본 발명에 있어서, 상기 아미노산 또는 유전자 서열은 서열번호 5 내지 10 아미노산 또는 유전자 서열을 의미하는 것 뿐만 아니라, 적어도 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산 또는 유전자 서열을 가지는 것을 포함하는 것으로, 본 발명에 기재되어 있는 각 아미노산 또는 유전자 서열의 기능을 하는 경우라면 본 발명의 범위에 포함되는 것이다.
본 발명의 "불활성화"는 효소, 전사 인자, 수송 단백질 등 단백질을 암호화하는 유전자의 발현이 천연형 균주, 야생형 균주 또는 변형 전의 균주에 비하여 전혀 발현이 되지 않는 경우이거나 발현이 되더라도 그 활성이 없는 경우를 의미한다. 본 발명에 있어서 상기 불활성화는 유전자의 결실 및 이형 서열(heterogenous sequence)의 삽입에 의한 유전자의 절단(truncation), 넌센스 돌연변이(nonsense mutation), 프레임쉬프트 돌연변이(frameshift mutation), 미스센스 돌연변이 (missense mutation) 등 유전자의 전사가 이루어지지 않거나 전사가 이루어지더라도 목적하는 단백질 (아미노산)의 기능을 하지 못하는 것을 의미한다.
본 발명의 일 예시로 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자 및/또는 서열번호 7의 agar 억제 유전자 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는 경우 상기 두 효소가 발현 또는 기능하지 못하도록 변이된 유전자를 포함하는 것일 수 있고, 상기 두 유전자를 결손하여 두 효소의 발현이 이루어지지 않도록 하는 것일 수 있다.
본 발명의 일 구체예로는 유전자를 결손하는 것을 의미한다.
본 발명의 일 양상은 상기 발현 카세트를 포함하는 재조합 벡터를 제공한다.
본 발명에서 사용되는 용어, "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.
본 발명에서 사용되는 용어, "작동가능하게 연결된"은 유전자 발현 조절 서열과 다른 뉴클레오티드 서열사이의 기능적인 결합을 의미한다. 상기 유전자 발현 조절 서열은 복제원점(replication origin), 프로모터 및 전사 종결 서열(terminator) 등으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 전사 종결 서열은 폴리아데닐화 서열(pA)일 수 있으며, 복제 원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 또는 BBV 복제원점 등일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따른 재조합 벡터는 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터와 같은 바이러스 벡터로 이루어진 군으로부터 선택되는 것일 수 있다. 재조합 발현벡터로 사용될 수 있는 벡터는 당업계에서 사용되는 플라스미드(예를 들어, pcDNA 시리즈, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등), 파지(예를 들어, λgt4λB, λ-Charon, λΔz1, M13 등) 또는 바이러스 벡터(예를 들어, 아데노-연관 바이러스(AAV) 벡터 등) 등을 기본으로 하여 제작될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 재조합 벡터는 하나 이상의 선택성 마커를 더 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질주입된 세포를 비형질주입 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 예를 들어, 글리포세이트(glyphosate), 글루포시네이트암모늄(glufosinate ammonium) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 암피실린(ampicillin), 카나 마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜 (chloramphenicol)과 같은 항생제 내성 유전자일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 재조합 벡터의 제작은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용하여 수행될 수 있다.
본 발명의 다른 일 양상은 상기 재조합 벡터로 형질 전환된 돌연변이 균주를 제공한다.
상기 재조합 벡터로 형질전환하는 방법은 당업계에 널리 알려진 삽입 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법, 열충격 및 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정하지는 않는다.
또한, 본 발명의 다른 일 양상은 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나 이상을 포함하는 돌연변이 균주 를 제공한다.
상기 돌연변이 균주는 전술한 재조합 벡터로 형질 전환된 돌연변이 균주외에도 다양한 방법의 돌연변이를 통해 전술한 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나 이상의 유전자 돌연변이 서열을 포함하게 된 것일 수 있다.
상기 돌연변이 균주에 포함되는 유전자 서열은 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나의 유전자 서열을 포함하는 것일 수 있고,
1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 및 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자를 포함하거나, 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하거나, 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 을 포함하는 것일 수 있으며,
1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자; 2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및 3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는 것일 수도 있다.
상기 돌연변이 균주의 숙주는 당업계에 공지된 어떠한 숙주를 이용할 수 있으며, 원핵 세포로는, 예를 들어, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있으며, 진핵 세포에 형질 전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, SP2/0, CHO(Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN 및 MDCK 세포주 등이 이용될 수 있고, 구체적으로 상기 돌연변이 균주의 숙주는 대장균일 수 있다.
본 발명의 일 구체예로 상기 돌연변이 균주는 D-타가토스 대사능을 가질 수 있다. 구체적으로, 상기 재조합 균주는 전술한 발현카세트 또는 돌연변이를 포함하고 있기 때문에 D-타가토스 대사능을 가질 수 있다. 상기 D-타가토스 대사능은 D-타가토스를 에너지원으로 활용하는 것을 의미한다.
본 발명의 다른 일 양상은 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-타가토스 대사능을 갖는 균주를 생산하는 방법을 제공한다.
상기 배양하는 단계는 상기 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계로서, 상기 배지는 돌연변이 균주를 배양하기 위해 공지의 성분을 함유할 수 있다.
상기 목적을 달성하기 위하여, 본 발명의 일 양상은 서열번호 11의 아미노산 서열에서 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 및 362 번째 위치 중 어느 하나 이상 위치에서의 돌연변이를 확인할 수 있는 제제를 포함하는 활성이 증가된 변이체 선별용 조성물을 제공한다.
상기 서열번호 11의 아미노산 서열은 프룩토오스/타가토스 전환효소 (Tagaturonate/fructuronate epimerase, uxaE)로서 D-타가투로네이트 (D-tagaturonate¸D-TagA)와 D-프룩투로네이트 (D-fructuronate, D-FruA) 사이의 변환을 촉매하는 효소이다.
서열명 Sequence 서열번호
uxaE MVLKVFKDHF GRGYEVYEKS YREKDSLSFF LTKGEEGKIL VVAGEKAPEG LSFFKKQRVE GVSFFFCERN HENLEVLRKY FPDLKPVRAG LRASFGTGDR LGITTPAHVR ALKDSGLFPI FAQQSVRENE RTGRTWRDVL DDATWGVFQE GYSEGFGADA DHVKRPEDLV SAAREGFTMF TIDPSDHVRN LSKLSEREKN EMFEEILKKE RIDRIYLGKK YTVLGERLEF DEKNLRDAAL VYYDAIAHVD MMYQILKDET PDFDFEVSVD ETETPTSPLF HIFVVEELRR RGVEFTNLAL RFIGEWEKGI DYKGDLAQFE REIKMHAEIA RMFEGYKISL HSGSDKFSVY PAFASATGGL FHVKTAGTSY LEAVKVISMV NPELFREIYR CALDHFEEDR KSYHISADLS KVPEVEKVKD EDLPGLFEDI NVRQLIHVTY GSVLKDASLK ERLFKTLEQN EELFYETVAK HIKRHVDLLK G 11
한편, 본 발명의 다른 일 구체예로, 본 발명의 제제는 서열번호 11의 아미노산 서열에서 16, 105, 148 및 236 번째 위치 중 어느 하나 이상이거나 92, 95, 129, 193, 324, 341 및 362번째 위치 중 어느 하나 이상의 위치에서 돌연변이를 확인하는 것일 수 있으며, 더욱 구체적으로는 16, 105, 148 및 236번째 위치 또는 92, 95, 129, 193, 324, 341 및 362번째 위치에서 돌연변이를 확인하는 것일 수 있다.
본 발명의 일 구체예로, 상기 돌연변이는 V16, R92, F95, T105, N129, F148, K193, R236, K324, H341 및 H362, 더욱 구체적으로 V16A, R92S, F95I, T105A, N129Y, F148S, K193E, R236S, K324N, H341L 및 H362I일 수 있다.
상기 위치에서의 돌연변이 확인은 단백질 서열 또는 돌연변이를 암호화하는 염기서열을 확인하여 이루어질 수 있다. 확인방법은 당업계에서 이용되는 통상의 발현 수준 방법 모두 사용될 수 있으며, 분석 방법의 예로 RT-PCR, 경쟁적 RT-PCR(competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA:RNase protection assay), 노던 블랏팅(northern blotting), DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다.
일 구체예에 따르면, 상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것일 수 있다.
상기 중합효소연쇄반응에서 프라이머가 사용될 수 있다. 상기 “프라이머(primer)”는 DNA 합성의 개시점(starting point)으로 작용하는 짧은 단일가닥 올리고뉴클레오티드(single strand oligonucleotide)이다. 프라이머는 적합한 완충액(buffer)와 온도 조건에서 주형(template)인 폴리뉴클레오티드에 특이적으로 결합하고, DNA 중합효소가 프라이머에 주형 DNA에 상보적인 염기를 갖는 뉴클레오사이드 트리포스페이트를 추가하여 연결함으로써 DNA가 합성된다. 프라이머는 일반적으로 15 내지 30개의 염기서열로 이루어져 있으며, 염기 구성과 길이에 따라 주형 가닥에 결합하는 온도(melting temperature, Tm)가 달라진다.
프라이머의 서열은 주형의 일부 염기 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명의 변이체를 암호화하는 유전자의 발현 수준을 측정하기 위한 변이체 유전자 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, DNA 합성을 통해 변이체의 mRNA 또는 변이체의 cDNA의 특정 구간을 증폭하여 변이체의 mRNA의 양을 측정하려는 목적에 맞는 길이와 상보성을 갖는 것이면 충분하다. 상기 증폭반응을 위한 프라이머는 증폭하고자 하는 변이체의 mRNA의 특정 구간의 양쪽 끝부분의 주형(또는 센스, sense)과 반대편(안티센스, antisense)에 각각 상보적으로 결합하는 한 세트(쌍)으로 구성된다. 프라이머는 당업자라면 변이체의 mRNA 또는 cDNA 염기서열을 참조하여 용이하게 디자인할 수 있다.
상기 마이크로어레이는 변이체의 유전자 mRNA, 변이체 및 이들의 단편으로 이루어진 군에서 선택된 어느 하나를 프로브로 할 수 있다.
본 명세서에서 사용된 용어 “프로브(probe)”는 특정 유전자의 mRNA나 cDNA(complementary DNA)에 특이적으로 결합할 수 있는 짧게는 수개 내지 길게는 수백 개의 염기(base pair) 길이의 RNA 또는 DNA 등 폴리뉴클레오티드의 단편을 의미하며, 표지(labeling)되어 있어서 결합하는 대상 mRNA나 cDNA의 존재 유무, 발현양 등을 확인할 수 있다. 본 발명의 목적을 위해서는 변이체의 mRNA에 상보적인 프로브를 피검체의 시료와 혼성화 반응(hybridization)을 수행하여 변이체의 mRNA의 발현양을 측정함으로써 감염성 염증 질환의 진단에 이용할 수 있다. 프로브의 선택 및 혼성화 조건은 당업계에 공지된 기술에 따라 적절하게 선택할 수 있다.
본 발명의 다른 양상은 변이체 선별용 조성물을 포함하는 변이체 선별용 조성물을 제공한다.
본 발명의 또 다른 양상은 시료로부터 상기 조성물로 돌연변이를 확인하는 단계; 및 상기 확인된 돌연변이를 통해 시료가 활성이 증가된 변이체인지 확인하는 단계를 포함하는 활성이 증가된 변이체 선별 정보를 제공하는 방법을 제공한다.
돌연변이를 확인하는 방법은 전술한 바와 같다.
상기 방법은 시료에서 돌연변이를 확인하고, 개시된 돌연변이 부위를 포함한 경우 활성이 증가한 변이체로 선별하는 것일 수 있다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 타가토스 대사능을 가진 돌연변이 균주의 제조
실시예 1-1. 돌연변이 균주의 제조
타가토스 이용이 가능한 세 균주 (S.enterica, K. pneumociae, K.oxytoca, B.licheniformis)와 gene cluster 비교를 통해 타가토스 비이용성 균주인 E.coli는 fructose operon (fruBKA포함)에 tagatose 1,6bp aldolase인 gatY 유전자가 결여되어있는 것을 확인하였다 (도 1a).
B.licheniformis 유래 gatY 유전자를 E.coli 에 형질전환시킨 후 타가토스 배지에서 적응진화 시켰다. 약 500시간 후 성장하는 것을 확인, 연속적으로 계대배양해서 더 이상 성장속도가 증가하지않는 균주를 전장유전체 분석을 시행하여 돌연변이 부위(fruK, Cra binding site, T7RNAP promoter)를 확인하여 (도 1b, 도 1c) 돌연변이 균주를 제조하였다.
실험예 1: 돌연변이 균주의 활성 확인
타가토스 이용성 획득 영향인자 확인을 위해 kinase WT과 돌연변이 균주의 활성을 비교한 결과. 돌연변이 균주의 경우 Fru-6p에 대해서는 활성이 감소하고 Tag-6p에 대해서는 활성이 증가한 것을 확인하였다 (도 2a).
적응진화를 유도한 전장유전체분석을 완료한 균주(3가지 부위가 돌연변이 유도된 균주)의 세가지 당영양원 배지(Glc(글루코스), Fru(프록토스), Tag(타가토스))에서 유전자 발현 정도를 qRT-PCR을 통해 mRNA level 분석을 시행하였다. 그 결과, FruK A39S의 발현 정도가 다른 배지에서보다 타가토스에서 증가하는 것을 확인하였고 (도 2b), 이를 통해 타가토스 대사회로의 활성이 있음을 예측하였다 (도 2c).
실험예 2: 돌연변이 균주의 성장 확인
fruK A39S, Cra 유전자 binding 부위가 결손된 돌연변이 균주(2가지 부위가 돌연변이된 균주)의 성장곡선을 확인한 결과, 타가토스를 영양원으로 사용하였을 때 성장이 우수한 것을 확인할 수 있었다 (도 3a).
또한, fruK A39S, Cra 유전자 binding 부위가 결손되고, T7RNAP promoter 부위의 돌연변이 균주 (3가지 부위가 돌연변이된 균주)의 성장곡선 확인한 결과, 타가토스를 영양원으로 사용하였을 때 성장이 우수한 것을 확인할 수 있었다 (도 3b).
실시예 2: 프룩토스 비대사성과 타가토스 대사능의 특징을 가진 돌연변이 균주의 제조
대장균은 타가토스를 프룩토스와 공통된 phosphotransferase system (PTS)을 통해 대사하기 때문에, 프룩토스 비대사 균주를 만들기위해 프룩토스 주요 PTS에 포함되어 있는 transporter (fruAB) 혹은 kinase (fruK) 유전자를 선정하면 타가토스 또한 이용하지 못하게 되기 때문에, 타가토스와 프룩토스 대사가 겹치지 않으면서 프룩토스 이용성에 중요한 역할을 하는 유전자를 선별하고자 하였다. 따라서 transporter와 kinase에 의해 phosphorylation 되고 난 후 대사체를 glycolysis 회로로 진입하게 하는 핵심 유전자인 aldolase fbaA를 삭제하여 프룩토스 이용성이 지연된 균주를 만들고자 하였다 (도 4, 5).
B.licheniformis 유래 gatY 유전자를 E.coli 에 형질전환시킨 후 타가토스 배지에서 적응진화 시킨 균주로부터 gatY 유전자를 curing 시켰다. Curing 시킨 균주를 타가토스 배지에서 다시 적응진화 시킨 후 전장유전체 분석을 통해 agaR 부분이 실활되어있음을 확인하였다 (도 6).
실험예 3: 돌연변이 균주의 활성 확인
fbaA 유전자 삭제와 ptsGV12F 유전자 돌연변이, agaR 유전자 삭제 균주의 경우 야생형 대장균 대비 프룩토스 대사능은 감소하고 타가토스 이용성을 획득하는 것을 확인하였다.
agaR유전자를 삭제시킬 경우 대장과 야생형 균주를 세가지 당영양원 배지(Glc(글루코스), Fru(프록토스), Tag(타가토스))에서 배양하여 유전자 발현 정도를 qRT-PCR을 통해 mRNA level 분석을 시행하였다. 그 결과 도 7와 같이, agaR 유전자가 삭제되는 경유 kbaY tagatose-1,6 bisphosphate aldolase가 과발현되어 타가토스 이용성이 용이해짐을 확인하였다.
실험예 4: 돌연변이 균주의 성장 확인
프룩토스 대사 유전체가 변현된 균주를 프룩토스와 타가토스 배지 내 배양 시킨 결과 프룩토스에 대한 기질 이용성은 감소하고 타가토스 이용성은 획득한 것을 확인 하였다.
그 결과, 도 8에서 확인되는 바와 같이, 본 균주에 프룩토스 에피머화 효소를 도입시키고 프룩토스 배지 내에서 성장시켰을 때 효소 활성 의존적으로 성장하는 것을 확인하였다.
실시예 3: 라이브러리의 제작
도 9과 같이 D-프룩토스 에피머화효소 uxaE 유전자의 변이를 유발하기 위해, PCR 무작위 돌연변이 키트 (Clontech, 미국)로 변이 PCR을 수행하였다. 변이-유발 PCR 라이브러리 DNA 50 ng을 프룩토스 대사 유전체가 변이된 대장균 BL21(DE3)에 형질전환 하였으며, 0.5% 프룩토스가 포함된 제한(M9)배 지에서 배양을 수행하였다. 그 후, 형성된 콜로니를 모아 플라스미드 정제 키트를 이용하여 플라스미드를 추출하였다. 그 중 일부 플라스미드 염기서열을 분석하였으며, 라이브러리의 유전자 다양성을 확인하였다 (표 8).
Lib1 Lib2 Lib3
1 V16A R92S V16A
2 T105A F95I T105A
3 F148S N129Y F148S
4 R236S K193E R236S
5 K324N
6 H341L
7 H362I
실시예 4: 변이체의 선별 및 활성확인
상기 다양성이 확인된 당전환효소 라이브러리 유전자 변이 프룩토스 에피머화 유전자 pET-21a(+)-uxaE library DNA가 형질전환된 프룩토스 대사 유전체가 변형된 BL21(DE3)를 0.5% D-프룩토스, 및 최종 농도 0.2 mM IPTG가 포함 된 제한 (M9)배지에서 배양하고 균체 성장을 확인하였으며, 그 결과를 도 3에 나타 내었다.
도 10에 나타낸 바와 같이, 야상형 보유 균주 대비 변이 라이브러리 유전자가 포함 균주의 균체 성장의 수준은 다르게 나타남을 확인하였으며, 이를 통해 uxaE 유전자의 도입 및 이의 변이에 따라 D-프룩토스를 탄소원으로 이용할 수 있는 능력이 각각 상이하게 나타날 수 있음을 확인하였다.
실시예 3: 구조 예측에 따른 변이체의 활성 확인
상기에서 확인된 돌연변이 11개 부위는 metal binding 부위에 인접해 있어 단백질이 3차 구조를 이루어 활성을 증진시키는데 영향을 미칠것으로 보인다 (도 11).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (29)

  1. 서열번호 1의 아미노산 서열에서 39번째 알라닌 (A)이 세린 (S)으로 치환된 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자를 포함하는, 발현 카세트.
  2. 제 1항에 있어서,
    상기 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자는 서열번호 2인 발현 카세트.
  3. 제 1항에 있어서,
    상기 발현 카세트는 cra 결합부위가 결손된 발현 카세트.
  4. 제 3항에 있어서,
    상기 cra 결합부위의 결손은 상기 발현 카세트에서 서열번호 3의 서열을 포함하지 않음으로 이루어진 것인 발현 카세트.
  5. 제 1항에 있어서,
    상기 발현 카세트는 lacI 를 암호화 하는 서열 및 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열을 더 포함하는 발현 카세트.
  6. 제5항에 있어서,
    상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 T7 RNAP 코어 프로모터 영역 (T7 RNAP core promoter region) 의 돌연변이인 발현 카세트.
  7. 제5항에 있어서,
    상기 lacI 를 암호화 하는 서열 및 상기 T7 RNAP 를 암호화 하는 서열 사이의 돌연변이 서열은 서열번호 4인 발현 카세트.
  8. 제 1항의 발현 카세트를 포함하는 재조합 벡터.
  9. 제 8항의 재조합 벡터로 형질 전환된 돌연변이 균주.
  10. 1) 서열번호 2의 신규한 프룩토오스-1-포스페이트 키나아제를 암호화 하는 유전자 돌연변이 서열;
    2) cra 결합부위인 서열번호 3의 유전자 서열의 결손; 및
    3) 서열번호 4의 유전자 돌연변이 서열 중 어느 하나 이상의 돌연변이를 포함하는 돌연변이 균주.
  11. 제 9항 또는 제10항에 있어서,
    상기 재조합 균주는 대장균인 돌연변이 균주.
  12. 제 9항 또는 제 10항에 있어서,
    상기 재조합 균주는 D-타가토스 대사능을 갖는 돌연변이 균주.
  13. 제9항 또는 제10항의 돌연변이 균주를 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-타가토스 대사능을 갖는 균주를 생산하는 방법.
  14. 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자;
    서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및
    서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자를 포함하는, 발현 카세트.
  15. 제 14항에 있어서,
    상기 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자는 서열번호 9인 발현 카세트.
  16. 제 14항에 있어서,
    상기 aga 오페론 전사 억제제의 불활성화는 타가토스 알돌라아제 (kbaY)가 발현되도록 하는 것인 발현 카세트.
  17. 제 14항에 있어서,
    상기 불활성화는 유전자를 결손하는 것인 발현 카세트.
  18. 제 14항의 발현 카세트를 포함하는 재조합 벡터.
  19. 제18항의 재조합 벡터로 형질 전환된 돌연변이 균주.
  20. 1) 서열번호 5의 프룩토오스-바이포스페이트 알돌라아제 (Fructose-bisphosphate aldolase class 2, fbaA)가 불활성화 되도록 변이된 유전자;
    2) 서열번호 6의 아미노산 12번째 발린 (V)이 페닐알라닌 (F)로 치환된 신규한 포스포트랜스퍼라아제 시스템 G를 암호화하는 유전자; 및
    3) 서열번호 7의 aga 오페론 전사 억제제 (Putative aga operon transcriptional repressor, agaR)가 불활성화 되도록 변이된 유전자 중 어느 하나 이상을 포함하는 돌연변이 균주.
  21. 제19항 또는 제20항에 있어서,
    상기 재조합 균주는 대장균인 돌연변이 균주.
  22. 제19항 또는 제20항에 있어서,
    상기 재조합 균주는 D-프룩토오스 대사능을 상실 혹은 감소되고 D-타가토스 대사능을 갖는 돌연변이 균주.
  23. 제19항 또는 제20항의 돌연변이 균주를 D-프룩토오스 혹은 D-타가토스를 포함하는 배지에서 배양하는 단계; 를 포함하는 D-프룩토오스 비대사성과 D-타가토스 대사능의 특징을 모두 갖는 균주를 생산하는 방법.
  24. 서열번호 11의 아미노산 서열에서 16, 92, 95, 105, 129, 148, 193, 236, 324, 341 및 362 번째 위치 중 어느 하나 이상 위치에서의 돌연변이를 확인할 수 있는 제제를 포함하는 활성이 증가된 변이체 선별용 조성물.
  25. 제24항 있어서,
    상기 돌연변이는 V16, R92, F95, T105, N129, F148, K193, R236, K324, H341 및 H362 중 어느 하나 이상의 위치의 돌연변이인 변이체 선별용 조성물.
  26. 제24항 있어서,
    상기 돌연변이는 V16A, R92S, F95I, T105A, N129Y, F148S, K193E, R236S, K324N, H341L 및 H362I 중 어느 하나 이상인 변이체 선별용 조성물.
  27. 제24항 있어서,
    상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것을 특징으로 하는 변이체 선별용 조성물.
  28. 청구항 24항의 조성물을 포함하는 활성이 증가된 변이체 선별용 키트.
  29. 시료로부터 청구항 24항의 조성물로 돌연변이를 확인하는 단계; 및
    상기 확인된 돌연변이를 통해 시료가 활성이 증가된 변이체인지 확인하는 단계를 포함하는 활성이 증가된 변이체 선별 정보를 제공하는 방법.
PCT/KR2022/007860 2021-06-01 2022-06-02 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법 WO2022255823A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2021-0070803 2021-06-01
KR1020210070803A KR102590888B1 (ko) 2021-06-01 2021-06-01 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법
KR10-2021-0076938 2021-06-14
KR20210076938 2021-06-14
KR10-2021-0076939 2021-06-14
KR20210076939 2021-06-14
KR10-2022-0067642 2022-06-02
KR1020220067643A KR20220168151A (ko) 2021-06-14 2022-06-02 활성이 증가된 변이체 선별을 위한 방법
KR1020220067642A KR20220168150A (ko) 2021-06-14 2022-06-02 프룩토오스 대사 유전체가 돌연변이된 균주
KR10-2022-0067643 2022-06-02

Publications (1)

Publication Number Publication Date
WO2022255823A1 true WO2022255823A1 (ko) 2022-12-08

Family

ID=84324484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007860 WO2022255823A1 (ko) 2021-06-01 2022-06-02 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법

Country Status (1)

Country Link
WO (1) WO2022255823A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074550A (ko) * 2016-12-23 2018-07-03 경북대학교 산학협력단 변형된 당 대사 경로를 갖는 재조합 균주 및 이를 이용한 당이성화 효소의 스크리닝 방법
KR20210019482A (ko) * 2017-03-31 2021-02-22 씨제이제일제당 (주) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074550A (ko) * 2016-12-23 2018-07-03 경북대학교 산학협력단 변형된 당 대사 경로를 갖는 재조합 균주 및 이를 이용한 당이성화 효소의 스크리닝 방법
KR20210019482A (ko) * 2017-03-31 2021-02-22 씨제이제일제당 (주) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 4 December 2020 (2020-12-04), ANONYMOUS: "1-phosphofructokinase [Escherichia coli]", XP093009627, retrieved from GENBANK Database accession no. EGQ7459831 *
SINGH DIPIKA, FAIRLAMB MAX S., HARRISON KELLY S., WEERAMANGE CHAMITHA, MEINHARDT SARAH, TUNGTUR SUDHEER, RAU BENJAMIN F., HEFTY P.: "Protein-protein interactions with fructose-1-kinase alter function of the central Escherichia coli transcription regulator, Cra", BIORXIV, 11 October 2017 (2017-10-11), pages 1 - 38, XP093009623, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/201277v1.full.pdf> [retrieved on 20221220], DOI: 10.1101/201277 *
WANG XIAOJUN, KEMP ROBERT G.: "Reaction Path of Phosphofructo-1-kinase Is Altered by Mutagenesis and Alternative Substrates", BIOCHEMISTRY, vol. 40, no. 13, 1 April 2001 (2001-04-01), pages 3938 - 3942, XP093009631, ISSN: 0006-2960, DOI: 10.1021/bi002709o *

Similar Documents

Publication Publication Date Title
WO2019103442A2 (ko) CRISPR/Cpf1 시스템을 이용한 유전체 편집용 조성물 및 이의 용도
WO2020175735A1 (ko) 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2019117671A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2019117399A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
Skarlatos et al. The glucose kinase of Bacillus subtilis
WO2014208970A1 (ko) 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
EP2665809A2 (en) A microorganism having enhanced l-amino acids productivity and process for producing l-amino acids using the same
WO2019203435A1 (ko) 유기산 내성 효모 유래 신규 프로모터 및 이를 이용한 목적유전자의 발현방법
Bahlawane et al. Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters
WO2020196993A1 (ko) 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
Fiegler et al. Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
Calvio et al. Autoregulation of swrAA and motility in Bacillus subtilis
WO2012046924A1 (ko) 아라비노스 대사경로가 도입된 자일리톨 생산균주 및 이를 이용한 자일리톨 생산방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015133678A1 (ko) 향상된 전환 활성을 가지는 l-아라비노스 이성화효소 변이체 및 이를 이용한 d-타가토스의 생산 방법
WO2022255823A1 (ko) 희귀당 비대사성 균주의 희귀당 자화능 결정 유전자군 제공방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2020032590A1 (en) Nucleic acid molecules comprising a variant rpoc coding sequence
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020085879A1 (ko) 아세틴 화합물의 생물학적 제조 방법
WO2014137148A1 (ko) 향상된 전환 활성을 가지는 l-아라비노스 이성화효소 변이체 및 이를 이용한 d-타가토스의 생산 방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2018208120A2 (ko) 바이오매스에서 유래한 탄소원의 고성능 대사를 위한 신규 미생물 균주

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816482

Country of ref document: EP

Kind code of ref document: A1