WO2022255295A1 - ガラス物品の製造方法 - Google Patents

ガラス物品の製造方法 Download PDF

Info

Publication number
WO2022255295A1
WO2022255295A1 PCT/JP2022/021917 JP2022021917W WO2022255295A1 WO 2022255295 A1 WO2022255295 A1 WO 2022255295A1 JP 2022021917 W JP2022021917 W JP 2022021917W WO 2022255295 A1 WO2022255295 A1 WO 2022255295A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
melting furnace
molten
outflow
Prior art date
Application number
PCT/JP2022/021917
Other languages
English (en)
French (fr)
Inventor
洋大 増田
睦 深田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2023525813A priority Critical patent/JPWO2022255295A1/ja
Publication of WO2022255295A1 publication Critical patent/WO2022255295A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/173Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass

Definitions

  • the present invention relates to a method for manufacturing a glass article by changing the molten glass.
  • the glass melting furnace generates molten glass by heating frit fed into the glass melting furnace (melting tank) from the raw material supply section (input port) with a heating device such as a burner and electrodes.
  • the produced molten glass is discharged from the glass melting furnace and formed into a glass article by being formed by a forming apparatus or the like.
  • the molten glass When changing the type of glass product, the molten glass will be replaced.
  • a substrate punching method and an extrusion method are known (see Patent Document 1, for example).
  • the extrusion method the molten glass of the first type that was previously generated in the glass melting furnace is pushed downstream by the molten glass of the second type that is generated later, and then the molten glass of the second type is used to Manufacture of glass articles will begin.
  • the molten glass in the glass melting furnace is replaced by the extrusion method, the molten glass of the first type is pushed out of the glass melting furnace by the molten glass of the second type, but all of it is discharged from the glass melting furnace. Instead, part of it may remain in the glass melting furnace. Specifically, the molten glass that reaches the stagnant layer existing above the molten glass in the glass melting furnace may remain in the glass melting furnace. The molten glass in the stagnant layer is likely to change in quality due to volatilization of some components or contamination with foreign matter, resulting in foreign glass.
  • the glass article will have bubble defects, etc. There is also a risk of quality deterioration.
  • the present invention has been made in view of the above circumstances, and its technical problem is to prevent deterioration in the quality of glass articles manufactured after the substrate change.
  • the present invention is intended to solve the above problems, and is a method for manufacturing a glass article, which includes a step of changing the molten glass continuously produced in a glass melting furnace from the first type to the second type.
  • the substrate replacement step includes a first outflow step of flowing out the molten glass from the glass melting furnace, and a second outflow step of flowing out the molten glass after the first outflow step, A flow rate of the molten glass in the first outflow step is lower than a flow rate of the molten glass in the second outflow step.
  • the flow rate of the molten glass in the first outflow process is lower than the flow rate of the molten glass in the second outflow process, so that the molten glass of the first type that remains in the glass melting furnace Mixing of the glass and the molten glass of the second variety by thermal convection can be promoted.
  • the molten glass in which the molten glass according to the first type and the molten glass according to the second type are sufficiently mixed is caused to flow out from the glass melting furnace, thereby obtaining the molten glass according to the first type. can be discharged without remaining in the glass melting furnace.
  • the amount of frit supplied to the glass melting furnace and the amount of molten glass produced can be reduced, so it is possible to reduce the costs associated with the material replacement process.
  • the condition Q1 ⁇ 0.5Q2 may be satisfied. good. This makes it possible to suitably mix the molten glass of the first type and the molten glass of the second type in the first outflow step.
  • the substrate replacement step may include a bubbling step of introducing air bubbles into the molten glass in the glass melting furnace.
  • the movement of the bubbles in the molten glass promotes the flow of the molten glass, making it possible to mix the molten glass of the first type and the molten glass of the second type more efficiently.
  • the density of the molten glass of the second type may be higher than the density of the molten glass of the first type. This makes it possible to promote mixing of the molten glass of the first type and the molten glass of the second type, and to efficiently flow the mixed molten glass out of the glass melting furnace.
  • FIG. 1 is a cross-sectional view showing a glass melting furnace during normal operation;
  • FIG. It is a flow chart which shows a manufacturing method of a glass article.
  • It is a flow chart which shows a substrate change process.
  • FIG. 4 is a cross-sectional view showing the glass melting furnace during the process of replacing the material.
  • FIG. 2 is a cross-sectional view of a glass melting furnace in which a conventional substrate replacement step is performed; 2 is a graph showing the relationship between the period, the concentration of glass components involved in the glass replacement, and the cumulative flow rate of molten glass when a conventional glass replacement step is performed.
  • 4 is a graph showing the relationship between the period, the concentration of the glass components involved in the glass replacement, and the cumulative flow rate of the molten glass when the glass replacement step according to the present invention is carried out.
  • FIG. 1 to 5 show an embodiment of the method for manufacturing a glass article according to the present invention.
  • Fig. 1 shows a manufacturing apparatus for glass articles.
  • This manufacturing apparatus includes, in order from the upstream side, a glass melting furnace 1, a clarification tank 2, a homogenization tank (stirring tank) 3, a pot 4, a molded body 5, and these constituent elements 1 to 5. and glass supply paths 6a to 6d.
  • the manufacturing apparatus includes a slow cooling furnace (not shown) that slowly cools the plate glass GR (glass article) formed by the molded body 5 and a cutting device (not shown) that cuts the plate glass GR after slow cooling.
  • the glass melting furnace 1 is a vessel for carrying out a melting process for melting the introduced frit to obtain molten glass GM.
  • the glass melting furnace 1 is connected to the fining tank 2 by a glass supply line 6a.
  • the glass melting furnace 1 is made of, for example, a refractory material.
  • refractories include refractory bricks (for example, zirconia-based electrocast bricks, alumina-based electrocast bricks, alumina-zirconia-based electrocast bricks, AZS (Al--Zr--Si)-based electrocast bricks, and dense sintered bricks). be done.
  • the glass melting furnace 1 includes a raw material supply unit 7 for supplying frit, a heating device (not shown) such as a burner and electrodes for heating frit and molten glass GM, and a molten glass GM. and a gas supply unit 9 for supplying gas to the molten glass GM.
  • the raw material supply unit 7 is provided on the side wall at one end (upstream side) of the glass melting furnace 1 .
  • the raw material supply unit 7 is provided with an extrusion device including a screw.
  • the raw material supply unit 7 can adjust the amount of glass raw material supplied by changing the rotation speed of the screw.
  • the discharge port 8 is provided on the side wall of the other end (downstream side) of the glass melting furnace 1 .
  • the outlet 8 is connected to the glass supply path 6a.
  • the discharge port 8 is provided at a lower position (under the side wall portion) than the raw material supply portion 7 .
  • the gas supply unit 9 is provided at the bottom of the glass melting furnace 1.
  • the gas supply unit 9 is composed of a nozzle fixed to the bottom of the glass melting furnace 1, a pipe for transferring the gas, and the like.
  • the gas supply unit 9 generates air bubbles B in the molten glass GM in the glass melting furnace 1 by discharging gas from a nozzle.
  • the molten glass GM produced by the glass melting furnace 1 has a liquid surface FS.
  • the "liquid surface” refers to the surface of the molten glass GM that comes into contact with the gas phase (the interface with the gas phase).
  • the clarification tank 2 is a container for carrying out a clarification process in which the molten glass GM is transported and defoamed by the action of a clarifier or the like.
  • the fining tank 2 is connected to the homogenizing tank 3 by a glass feed line 6b.
  • the homogenization tank 3 is a tubular container with a bottom for performing the process of stirring and homogenizing the clarified molten glass GM (homogenization process).
  • the homogenization tank 3 is provided with a stirrer 3a having stirring blades.
  • the homogenization vessel 3 is connected to the pot 4 by a glass feed channel 6c.
  • the pot 4 is a container for performing a condition adjustment process for adjusting the molten glass GM to a condition suitable for molding. Pot 4 is exemplified as a volume for viscosity adjustment and flow rate adjustment of molten glass GM. The pot 4 is connected to the molding 5 by a glass feed channel 6d.
  • the molded body 5 is formed by molding the molten glass GM into a plate by the overflow downdraw method. Specifically, the molded body 5 has a substantially wedge-shaped cross-sectional shape (a cross-sectional shape perpendicular to the paper surface of FIG. 1), and an overflow groove (not shown) is formed in the upper part of the molded body 5. It is
  • the molded body 5 causes the molten glass GM to overflow from the overflow groove and flow down along both side wall surfaces of the molded body 5 (side surfaces located on the front and back sides of the paper surface of FIG. 1).
  • the formed body 5 fuses the flowing molten glass GM at the lower end of the side wall surface.
  • a band-shaped plate glass GR (glass ribbon) is continuously formed.
  • the band-shaped plate glass GR is cut by a cutting device after passing through a slow cooling furnace to obtain a desired size of plate glass.
  • the sheet glass thus obtained has a thickness of, for example, 0.01 to 10 mm, and is used for panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, and substrates and protective covers for solar cells. .
  • the molded body 5 may be one that executes other down-draw methods such as the slot down-draw method, or a molding apparatus that uses the float method may be used in place of the molded body 5 .
  • the glass article manufactured by the manufacturing apparatus is not limited to plate glass GR, and includes glass tubes, glass fibers, and other various shapes. For example, when forming a glass tube, instead of the formed body 5, a forming apparatus using the Danner method is provided.
  • the method includes a melting step S1, a clarification step S2, a homogenization step S3, a conditioning step S4, a forming step S5, a slow cooling step S6, and a cutting step S7. .
  • glass raw materials are continuously fed into the glass melting furnace 1 from the raw material supply unit 7.
  • the introduced glass raw material is heated by a heating device.
  • the frit is melted in the glass melting furnace 1 to produce the molten glass GM.
  • gas is introduced into the molten glass GM in the glass melting furnace 1 by the gas supply unit 9. As shown in FIG. 2, the gas becomes bubbles B and moves from the bottom of the glass melting furnace 1 to the liquid surface FS of the molten glass GM. The molten glass GM flows as the bubbles B move.
  • the molten glass GM continuously flows out from the discharge port 8 of the glass melting furnace 1 and is transferred to the clarification tank 2 through the glass supply path 6a.
  • a fining agent is blended in the glass raw material, and gas (bubbles) is generated in the molten glass GM by the action of this fining agent.
  • the molten glass GM is circulated through the clarification tank 2 to remove this gas.
  • the molten glass GM that has been subjected to clarification treatment is transferred to the homogenization tank 3 through the glass supply path 6b.
  • the homogenization step S ⁇ b>3 the molten glass GM is stirred (homogenized) by rotating the stirrer 3 a in the homogenization tank 3 .
  • the homogenized molten glass GM is transferred to the pot 4 through the glass supply path 6c.
  • the pot 4 is used to adjust the viscosity and flow rate of the molten glass GM.
  • the molten glass GM that has passed through the pot 4 flows into the overflow groove of the molding 5 through the glass supply channel 6d.
  • the molten glass GM is overflowed from the overflow groove and flowed down along the side wall surface of the formed body 5 .
  • the formed body 5 forms a belt-like sheet glass GR by fusing the molten glass GM that has flowed down at the lower top.
  • the band-shaped plate glass GR is subjected to a slow cooling step S6 using a slow cooling furnace.
  • a cutting step S7 by a cutting device a plate glass having a desired size is cut out from the band-shaped plate glass GR that has undergone the slow cooling step S6.
  • the lugs of the plate glass are removed.
  • a re-cutting process, an end surface processing process, and a cleaning process may be provided.
  • the sheet glass is cut to the desired size.
  • the edge processing process the edge surface of the sheet glass is ground and polished to remove microcracks. remove dirt.
  • the sheet glass thus obtained is suitable for, for example, glass substrates and cover glasses for displays.
  • both ends in the width direction of the sheet glass GR may be cut and removed without being limited to the above mode.
  • the band-shaped sheet glass GR from which both ends have been removed may be wound into a roll (winding step).
  • a substrate replacement step is performed.
  • the type of molten glass GM produced in the glass melting furnace 1 is changed from the first type to the second type by an extrusion method while continuing the operation of the manufacturing apparatus.
  • the molten glass related to the first type glass article will be referred to as the first molten glass GM1
  • the molten glass related to the second type glass article will be referred to as the second molten glass GM2.
  • the glass raw material of the second type is fed into the glass melting furnace 1 from the raw material supply unit 7. After that, the first molten glass GM1 remaining in the glass melting furnace 1 is pushed out from the outlet 8 by the second molten glass GM2 produced by heating the frit. Thereby, the kind can be changed while the molten glasses GM1 and GM2 are continuously generated.
  • the first molten glass GM1 and the second molten glass GM2 are mixed.
  • bubbles B are introduced from the gas supply unit 9 into the molten glasses GM1 and GM2 in the glass melting furnace 1 (bubbling step).
  • the first molten glass GM1 and the second molten glass GM2 are mixed by the movement of the bubbles B and the thermal convection of the molten glasses GM1 and GM2.
  • the molten glass obtained by mixing the first molten glass GM1 and the second molten glass GM2 is referred to as “mixed molten glass", and the first molten glass GM1, the second molten glass GM2 and the mixed molten glass are collectively referred to simply as "molten called glass.
  • the density ⁇ 2 of the second molten glass GM2 is preferably higher than the density ⁇ 1 of the first molten glass GM1 ( ⁇ 2> ⁇ 1).
  • the difference ⁇ 2 ⁇ 1 between the density ⁇ 1 of the first molten glass GM1 and the density ⁇ 2 of the second molten glass GM2 is preferably 0.5 kg/m 3 or more, more preferably 1 kg/m 3 or more.
  • the substrate replacement step includes a first outflow step S10 in which the molten glass is discharged from the glass melting furnace 1, and a second outflow step S11 in which the molten glass is discharged after the first outflow step S10. .
  • the flow rate of the molten glass in the first outflow step S10 is lower than the flow rate of the molten glass in the second outflow step S11.
  • the flow rate of the molten glass in the second outflow step S11 is higher than the flow rate of the molten glass in the first outflow step S10.
  • the first molten glass GM1 flows out at the beginning of the substrate replacement step, then the mixed molten glass flows out, and finally the second molten glass GM2 flows out.
  • the molten glass is caused to flow out from the discharge port 8 of the glass melting furnace 1 at a flow rate lower than the flow rate of the first molten glass GM1 before the substrate replacement step.
  • the input amount of the frit supplied from the raw material supply unit 7 to the glass melting furnace 1 is reduced.
  • a method of arranging members and the like are included. These methods may be appropriately combined to reduce the flow rate of the molten glass.
  • the flow rate Q1 (kg/h) of the molten glass in the first outflow step S10 is equal to the flow rate Q2 of the molten glass in the second outflow step S11. (kg/h), preferably Q1 ⁇ 0.5Q2, more preferably Q1 ⁇ 0.4Q2.
  • the flow rate Q1 of the molten glass in the first outflow step S10 preferably satisfies 0.2Q2 ⁇ Q1.
  • the cumulative flow rate (total discharge amount) M1 (Kg) in the first outflow step S10 is, for example, 1M ⁇ M1 ⁇ 3M, where M (Kg) is the mass of the molten glass held in the glass melting furnace 1 during operation. Satisfied is preferred.
  • the cumulative flow rate (total discharge amount) M2 (Kg) in the second outflow step S11 is, for example, 1M ⁇ M2 ⁇ 3M, where M (Kg) is the mass of the molten glass held in the glass melting furnace 1 during operation. Satisfied is preferred.
  • the first outflow step S10 it is desirable to check the progress of the substrate replacement by sampling molten glass from the liquid surface FS in the glass melting furnace 1 and measuring its components (measurement step). This measurement step is desirably performed multiple times at regular intervals. It is desirable to continuously perform the measurement step also in the second outflow step S11.
  • the substrate replacement process shifts from the first outflow process S10 to the second outflow process S11.
  • the flow rate of molten glass is increased.
  • the flow rate Q2 of the molten glass in the second outflow step S11 is about the same as the flow rate Q3 of the second molten glass GM2 after the completion of the glass replacement step ( For example, 0.75Q3 ⁇ Q2 ⁇ 1.25Q3), and more preferably equal.
  • the flow rate of the molten glass in the second outflow step S11 may be different from the flow rate of the second molten glass GM2 after the substrate replacement step.
  • a determination step is performed to determine whether or not the substrate replacement step has progressed favorably.
  • the mass % concentration of the specific glass component related to the substrate change measured in the measurement step is compared with a reference value (threshold value). That is, when the mass % concentration of the specific glass component periodically measured in the measuring step exceeds the threshold value, the second outflow step S11 ends.
  • this determination step it is also possible to determine whether or not the second outflow step S11 is progressing normally. For example, when reducing the mass% concentration of a specific glass component related to the substrate change, if a value that greatly deviates from a certain decreasing tendency is measured, it is estimated that an abnormality has occurred in the second outflow step S11. be able to.
  • the second flow-out step S11 When the second flow-out step S11 is completed, the second molten glass GM2 is flowed out from the glass melting furnace 1, and the above-described manufacturing method is carried out to continuously manufacture the glass articles of the second type.
  • the inventors of the present invention as a result of extensive research on the surface replacement process, found problems in the conventional surface replacement process, and found that the surface replacement process according to the present invention is effective in solving these problems. It was confirmed.
  • FIG. 6 the problems of the conventional substrate replacement process and the effects of the present invention will be described with reference to FIGS. 6 to 8.
  • FIG. 6 shows the glass melting furnace 1 when a conventional substrate replacement process is carried out.
  • FIG. 7 shows the results of the measurement process in the conventional substrate replacement process.
  • the extrusion method was carried out without changing the flow rate of molten glass.
  • the first molten glass GM1 remains in the stagnant layer near the liquid surface FS as shown in FIG. There was a case.
  • the foreign glass (first molten glass GM1) remaining near the liquid surface FS in the glass melting furnace 1 is unexpectedly ejected from the discharge port 8 during the execution of the material replacement process or after the completion of the material replacement process.
  • Fig. 7 shows changes in the mass% concentration of glass components and the cumulative flow rate of molten glass, both during and after the conventional substrate replacement process.
  • the horizontal axis indicates the period during and after the substrate replacement step.
  • TE on this horizontal axis indicates the end of the substrate replacement process.
  • the mass % concentration of a specific glass component to be measured is represented by the left vertical axis and circular dots.
  • the cumulative flow rate (Kg) of molten glass is represented by the vertical axis and bar graph on the right side. Note that FIG. 7 shows an example in which the mass % concentration of a specific glass component related to the substrate replacement is decreased, and the substrate replacement step is terminated when this concentration exceeds (falls below) the threshold value CTH. .
  • FIG. 8 is a graph, similar to FIG. 7, showing the mass % concentration of a specific glass component and the cumulative flow rate of molten glass, which are involved in the glass replacement process according to the present invention.
  • TE1 indicates the end of the first outflow step S10
  • TE2 indicates the end of the second outflow step S11 (substrate replacement step).
  • the second outflow step S11 is performed in which the flow rate of the molten glass is increased. It has become possible to carry out the substrate replacement step systematically without causing a sudden change in the mass % concentration of the glass component with the passage of time.
  • the substrate replacement step can be completed in the same period as in the conventional method without prolonging the implementation period of the substrate replacement step. did it. Furthermore, when comparing the cumulative flow rate of the molten glass flowing out of the glass melting furnace 1 during the glass changing process, the cumulative flow rate CQE2 (see FIG. 8) at the end of the glass changing process according to the present invention is compared with that of the conventional glass changing process. (CQE2 ⁇ CQE1).
  • the effect of the present invention as described above is obtained by reducing the flow rate of the molten glass in the first outflow step S10, resulting from thermal convection between the first molten glass GM1 and the second molten glass GM2 remaining in the glass melting furnace 1. This is probably because the mixing was accelerated and the first molten glass GM1 became difficult to remain alone in the glass melting furnace 1.
  • the present invention is not limited to this configuration.
  • the manufacturing apparatus may comprise two or more glass melting furnaces arranged in series or in parallel.
  • the substrate replacement step of the above embodiment is composed of a first outflow step S10 in which the molten glass is discharged from the glass melting furnace 1 and a second outflow step S11 in which the molten glass is discharged.
  • Another outflow step of flowing out the molten glass from the glass melting furnace 1 may be provided as a pre-process of the outflow step S10 or a post-process of the second outflow step S11.
  • another outflow step of flowing out the molten glass from the glass melting furnace 1 may be provided between the first outflow step S10 and the second outflow step S11.
  • the flow rate of the separate outflow process is not particularly limited as long as the molten glass can be continuously produced.
  • (Kg) is preferably M ⁇ M3, more preferably M ⁇ 0.5M3, where M (Kg) is the mass of the molten glass held in the glass melting furnace 1 during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

ガラス物品の製造方法は、ガラス溶融炉内で連続して生成する溶融ガラスを第一品種から第二品種に変更する素地替え工程を含む。素地替え工程は、溶融ガラスをガラス溶融炉から流出させる第一流出工程と、第一流出工程の後に、溶融ガラスを流出させる第二流出工程と、を含む。第一流出工程における溶融ガラスの流量は、第二流出工程における溶融ガラスの流量よりも低い。

Description

ガラス物品の製造方法
 本発明は、溶融ガラスの素地替えを行うことにより、ガラス物品を製造する方法に関する。
 ガラス溶融炉は、原料供給部(投入口)からガラス溶融炉(溶融槽)内に投入されたガラス原料をバーナ、電極等の加熱装置によって加熱することで、溶融ガラスを生成する。生成された溶融ガラスは、ガラス溶融炉から排出され、成形装置等によって成形されることでガラス物品となる。
 ガラス物品の品種を変更する場合、溶融ガラスの素地替えが実施される。素地替えの方法としては、素地抜き法や押し出し法が公知である(例えば特許文献1参照)。例えば押し出し法では、ガラス溶融炉内で先に生成されていた第一品種の溶融ガラスを、後に生成される第二品種の溶融ガラスによって下流側に押し出した後に、当該第二品種の溶融ガラスによるガラス物品の製造が開始されることとなる。
特開平7-157316号公報
 押し出し法によってガラス溶融炉の溶融ガラスの素地替えを行う場合、第一品種に係る溶融ガラスは、第二品種による溶融ガラスによってガラス溶融炉から押し出されるが、その全てがガラス溶融炉から排出されるのではなく、その一部がガラス溶融炉に残留する場合がある。具体的には、ガラス溶融炉内の溶融ガラスの上層に存在する停滞層に到達した溶融ガラスは、ガラス溶融炉に残留する場合がある。停滞層の溶融ガラスは、一部の成分が揮発することや異物が混入すること等によって変質して異質ガラスとなりやすい。
 この場合において、ガラス溶融炉内の停滞層に残留している第一品種に係る溶融ガラスが素地替えの終了後に第二品種に係る溶融ガラスに混入すると、ガラス物品に泡欠陥等が発生し、品質低下を招くおそれもある。
 本発明は上記の事情に鑑みて為されたものであり、素地替え後に製造されるガラス物品の品質低下を防止することを技術的課題とする。
 本発明は上記の課題を解決するためのものであり、ガラス溶融炉内で連続して生成する溶融ガラスを第一品種から第二品種に変更する素地替え工程を含むガラス物品の製造方法であって、前記素地替え工程は、前記溶融ガラスを前記ガラス溶融炉から流出させる第一流出工程と、前記第一流出工程の後に、前記溶融ガラスを流出させる第二流出工程と、を含み、前記第一流出工程における前記溶融ガラスの流量は、前記第二流出工程における前記溶融ガラスの流量よりも低いことを特徴とする。
 かかる構成によれば、第一流出工程において、第二流出工程の溶融ガラスの流量よりも第一流出工程の溶融ガラスの流量を低くすることで、ガラス溶融炉内に留まる第一品種に係る溶融ガラスと第二品種に係る溶融ガラスとの熱対流による混合を促進させることができる。
 これにより、第二流出工程において、第一品種に係る溶融ガラスと第二品種に係る溶融ガラスとが十分に混合された溶融ガラスをガラス溶融炉から流出させることで、第一品種に係る溶融ガラスをガラス溶融炉に残留させることなく流出させることができる。
 したがって、素地替え工程の終了後において、第一品種に係る溶融ガラスが第二品種に係る溶融ガラスに混入することを抑制でき、第二品種に係るガラス物品の品質低下を防止することが可能となる。さらに、第二流出工程において、第一流出工程の溶融ガラスの流量よりも第二流出工程の溶融ガラスの流量を高くすることで、素地替えに係る時間を長期化させることもない。
 加えて、第一流出工程では、ガラス溶融炉に供給されるガラス原料の量、及び溶融ガラスの生成量を低減できることから、素地替え工程に係るコストを抑制することが可能となる。
 本方法において、前記第一流出工程における前記溶融ガラスの流量をQ1とし、前記第二流出工程における前記溶融ガラスの流量をQ2としたとき、Q1≦0.5Q2の条件を充足するようにしてもよい。これにより、第一流出工程において、第一品種に係る溶融ガラスと第二品種に係る溶融ガラスとの混合を好適に行うことが可能となる。
 前記素地替え工程は、前記ガラス溶融炉内の前記溶融ガラスに気泡を導入するバブリング工程を備えてもよい。溶融ガラス内を気泡が移動することにより、溶融ガラスの流動が促進され、第一品種に係る溶融ガラスと第二品種に係る溶融ガラスとの混合をさらに効率よく行うことが可能となる。
 本方法において、前記第二品種に係る前記溶融ガラスの密度は、前記第一品種に係る前記溶融ガラスの密度よりも大きくてもよい。これにより、第一品種に係る溶融ガラスと第二品種に係る溶融ガラスとの混合を促進させ、混合された溶融ガラスをガラス溶融炉から効率よく流出させることが可能となる。
 本発明によれば、素地替え後に製造されるガラス物品の品質低下を防止することができる。
ガラス物品の製造装置を示す側面図である。 通常操業時のガラス溶融炉を示す断面図である。 ガラス物品の製造方法を示すフローチャートである。 素地替え工程を示すフローチャートである。 素地替え工程を実施中のガラス溶融炉を示す断面図である。 従来の素地替え工程を実施した場合におけるガラス溶融炉の断面図である。 従来の素地替え工程を実施した場合における、期間、素地替えに関わるガラス成分の濃度、及び溶融ガラスの累積流量の関係を示すグラフである。 本発明に係る素地替え工程を実施した場合における、期間、素地替えに関わるガラス成分の濃度、及び溶融ガラスの累積流量の関係を示すグラフである。
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図5は、本発明に係るガラス物品の製造方法の一実施形態を示す。
 図1は、ガラス物品の製造装置を示す。この製造装置は、上流側から順に、ガラス溶融炉1と、清澄槽2と、均質化槽(攪拌槽)3と、ポット4と、成形体5と、これらの各構成要素1~5を連結するガラス供給路6a~6dとを備える。この他、製造装置は、成形体5により成形された板ガラスGR(ガラス物品)を徐冷する徐冷炉(図示せず)及び徐冷後に板ガラスGRを切断する切断装置(図示せず)を備える。
 ガラス溶融炉1は、投入されたガラス原料を溶解して溶融ガラスGMを得る溶解工程を行うための容器である。ガラス溶融炉1は、ガラス供給路6aによって清澄槽2に接続されている。
 ガラス溶融炉1は、例えば耐火物により構成される。耐火物としては、耐火煉瓦(例えば、ジルコニア系電鋳煉瓦やアルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、AZS(Al-Zr-Si)系電鋳煉瓦、デンス焼成煉瓦など)が挙げられる。
 図2に示すように、ガラス溶融炉1は、ガラス原料を供給する原料供給部7と、ガラス原料及び溶融ガラスGMを加熱するバーナ、電極等の加熱装置(図示せず)と、溶融ガラスGMを流出させる排出口8と、溶融ガラスGMに気体を供給する気体供給部9と、を主に備える。
 原料供給部7は、ガラス溶融炉1の一端部(上流側)の側壁部に設けられている。原料供給部7は、スクリューを含む押出装置を備える。原料供給部7は、スクリューの回転速度を変更することで、ガラス原料の供給量を調節することができる。
 排出口8は、ガラス溶融炉1の他端部(下流側)の側壁部に設けられている。排出口8は、ガラス供給路6aに接続されている。排出口8は、原料供給部7よりも下方位置(側壁部の下部)に設けられる。
 気体供給部9は、ガラス溶融炉1の底部に設けられている。気体供給部9は、ガラス溶融炉1の底部に固定されるノズル及び気体を移送する配管等により構成される。気体供給部9は、ノズルから気体を吐出することで、ガラス溶融炉1内の溶融ガラスGMに気泡Bを生じさせる。
 図2に示すように、ガラス溶融炉1によって生成される溶融ガラスGMは、液面FSを有する。ここで、「液面」とは、溶融ガラスGMにおいて気相に触れる面(気相との界面)をいう。
 清澄槽2は、溶融ガラスGMを移送しながら清澄剤等の作用により脱泡する清澄工程を行うための容器である。清澄槽2は、ガラス供給路6bによって均質化槽3に接続されている。
 均質化槽3は、清澄された溶融ガラスGMを攪拌し、均一化する工程(均質化工程)を行うための底付きの管状容器である。均質化槽3は、攪拌翼を有するスターラ3aを備える。均質化槽3は、ガラス供給路6cによってポット4に接続されている。
 ポット4は、溶融ガラスGMを成形に適した状態に調整する状態調整工程を行うための容器である。ポット4は、溶融ガラスGMの粘度調整及び流量調整のための容積部として例示される。ポット4は、ガラス供給路6dによって成形体5に接続されている。
 成形体5は、オーバーフローダウンドロー法によって溶融ガラスGMを板状に成形する。詳細には、成形体5は、断面形状(図1の紙面と直交する断面形状)が略楔形状を成しており、この成形体5の上部には、オーバーフロー溝(図示せず)が形成されている。
 成形体5は、溶融ガラスGMをオーバーフロー溝から溢れ出させて、成形体5の両側の側壁面(図1の紙面の表裏面側に位置する側面)に沿って流下させる。成形体5は、流下させた溶融ガラスGMを側壁面の下端部で融合させる。これにより、帯状の板ガラスGR(ガラスリボン)が連続的に成形される。帯状の板ガラスGRは、徐冷炉を通過した後に切断装置によって切断されることで、所望寸法の板ガラスとされる。
 このようにして得られた板ガラスは、例えば、厚みが0.01~10mmであって、液晶ディスプレイや有機ELディスプレイなどのパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。
 成形体5は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよく、成形体5に代えてフロート法を利用する成形装置を用いてもよい。製造装置によって製造されるガラス物品は、板ガラスGRに限定されず、ガラス管やガラス繊維その他の各種形状を有するものを含む。例えば、ガラス管を形成する場合には、成形体5に代えてダンナー法を利用する成形装置が配備される。
 以下、上記構成の製造装置によってガラス物品(板ガラスGR)を製造する方法について説明する。
 図3に示すように、本方法は、溶解工程S1と、清澄工程S2と、均質化工程S3と、状態調整工程S4と、成形工程S5と、徐冷工程S6と、切断工程S7とを備える。
 溶解工程S1では、原料供給部7からガラス溶融炉1内にガラス原料が連続投入される。投入されたガラス原料は、加熱装置によって加熱される。これにより、ガラス溶融炉1内においてガラス原料が溶解し、溶融ガラスGMが生成される。
 溶解工程S1では、気体供給部9によってガラス溶融炉1内の溶融ガラスGMに気体が導入される。図2に示すように、気体は、気泡Bとなってガラス溶融炉1の底部から溶融ガラスGMの液面FSまで移動する。溶融ガラスGMは、この気泡Bの移動に応じて流動する。
 溶融ガラスGMは、ガラス溶融炉1の排出口8から連続的に流出し、ガラス供給路6aを通じて清澄槽2へと移送される。ガラス原料には清澄剤が配合されており、溶融ガラスGMには、この清澄剤の作用によりガス(泡)が発生する。清澄工程S2では、清澄槽2に溶融ガラスGMを流通させることで、このガスを除去する。
 その後、清澄処理(脱泡処理)が実施された溶融ガラスGMを、ガラス供給路6bを通じて均質化槽3に移送する。均質化工程S3では、この均質化槽3においてスターラ3aを回転させることで、溶融ガラスGMが撹拌(均質化)される。
 均質化された溶融ガラスGMは、ガラス供給路6cを通じてポット4に移送される。状態調整工程S4では、このポット4を介して、溶融ガラスGMの粘度及び流量が調整される。
 ポット4を通過した溶融ガラスGMは、ガラス供給路6dを通じて成形体5のオーバーフロー溝に流入する。成形工程S5では、溶融ガラスGMをオーバーフロー溝から溢れ出させ、成形体5の側壁面に沿って流下させる。成形体5は、流下させた溶融ガラスGMを下頂部で融合させることで、帯状の板ガラスGRを成形する。
 その後、帯状の板ガラスGRは、徐冷炉による徐冷工程S6に供される。切断装置による切断工程S7では、徐冷工程S6を経た帯状の板ガラスGRから所望寸法の板ガラスを切り出す。切断工程S7では、板ガラスGRが切断された後、その板ガラスの耳部が除去される。必要に応じ、再切断工程、端面加工工程、洗浄工程を設けてもよい。再切断工程では、板ガラスを切断することで所望の寸法とし、端面加工工程では、板ガラスの端面に研削・研磨加工を施すことでマイクロクラックを除去し、洗浄工程では、板ガラスの主に表面に付着した汚れを除去する。このようにして得られる板ガラスは、例えばディスプレイ用のガラス基板及びカバーガラスに好適である。
 なお、切断工程S7では、上記の態様に限らず、板ガラスGRの幅方向の両端部を切断して除去してもよい。この場合、両端部が除去された帯状の板ガラスGRをロール状に巻き取ってもよい(巻取工程)。
 上記のガラス物品の製造方法において、製造中のガラス物品とは組成の異なるガラス物品を製造する場合に、素地替え工程が実行される。素地替え工程では、製造装置の操業を継続しつつ、押し出し法によって、ガラス溶融炉1で生成する溶融ガラスGMの品種を第一品種から第二品種へと変更する。
 以下、第一品種のガラス物品に係る溶融ガラスを第一溶融ガラスGM1といい、第二品種のガラス物品に係る溶融ガラスを第二溶融ガラスGM2という。
 素地替え工程では、ガラス溶融炉1から成形体5までの第一溶融ガラスGM1の流動を維持しつつ、原料供給部7から第二品種に係るガラス原料をガラス溶融炉1に投入する。その後、このガラス原料を加熱して生成した第二溶融ガラスGM2によってガラス溶融炉1に残存する第一溶融ガラスGM1を排出口8から押し出す。これにより、溶融ガラスGM1,GM2を連続的に生成しながら品種の変更を行うことができる。
 図4に示すように、ガラス溶融炉1内では、第一溶融ガラスGM1と第二溶融ガラスGM2とが混在した状態となる。素地替え工程では、気体供給部9からガラス溶融炉1内の溶融ガラスGM1,GM2に気泡Bを導入する(バブリング工程)。この気泡Bの移動、及び溶融ガラスGM1,GM2の熱対流によって、第一溶融ガラスGM1と第二溶融ガラスGM2とが混合する。以下、第一溶融ガラスGM1と第二溶融ガラスGM2とが混合した溶融ガラスを「混合溶融ガラス」といい、第一溶融ガラスGM1、第二溶融ガラスGM2及び混合溶融ガラスを総称して単に「溶融ガラス」という。
 第二溶融ガラスGM2の密度ρ2は、第一溶融ガラスGM1の密度ρ1よりも大きいことが好ましい(ρ2>ρ1)。第一溶融ガラスGM1の密度ρ1と、第二溶融ガラスGM2の密度ρ2との差ρ2-ρ1は、0.5kg/m3以上が好ましく、1kg/m3以上がより好ましい。
 図5に示すように、素地替え工程は、溶融ガラスをガラス溶融炉1から流出させる第一流出工程S10と、第一流出工程S10の後に、溶融ガラスを流出させる第二流出工程S11とを含む。第一流出工程S10における溶融ガラスの流量は、第二流出工程S11における溶融ガラスの流量よりも低く、低流量である。換言すると、第二流出工程S11の溶融ガラスの流量は、第一流出工程S10の溶融ガラスの流量よりも高く、高流量である。溶融炉1の排出口8からは、素地替え工程の初期は第一溶融ガラスGM1が流出し、続いて混合溶融ガラスが流出し、最終的に第二溶融ガラスGM2が流出する。
 第一流出工程S10では、素地替え工程の前における第一溶融ガラスGM1の流量よりも低い流量で溶融ガラスをガラス溶融炉1の排出口8から流出させる。
 ガラス溶融炉1内の溶融ガラスの液面高さを維持しつつ、溶融ガラスの流量を低下させる方法としては、例えば、原料供給部7からガラス溶融炉1に供給されるガラス原料の投入量を減少させつつ、ガラス溶融炉1内及びガラス供給路6a~6dに設けられる加熱装置による発熱量を減少させる方法、或いはガラス供給路6a~6dに溶融ガラスの流量を低下させる邪魔板等の流量調整部材を配置する方法等が挙げられる。これらの方法を適宜組み合わせて溶融ガラスの流量を低下させてもよい。
 上記のようにガラス原料の投入量を減少させることで、新たに生成される第二溶融ガラスGM2の生成量を少なくすることができる。これにより、溶融ガラスの流量を低下させることができる。また、加熱装置による発熱量を低下させることで、溶融ガラスの加熱に要する時間が増加し、その流量を低下させることができる。
 第一流出工程S10での対流による溶融ガラスの混合をさらに促進する観点から、第一流出工程S10における溶融ガラスの流量Q1(kg/h)は、第二流出工程S11における溶融ガラスの流量をQ2(kg/h)としたとき、Q1≦0.5Q2を満足することが好ましく、Q1≦0.4Q2を満足することがより好ましい。一方、生地替え工程に要する期間を短くする観点から、第一流出工程S10における溶融ガラスの流量Q1は、0.2Q2≦Q1を満足することが好ましい。
 第一流出工程S10の累積流量(合計排出量)M1(Kg)は、操業時にガラス溶融炉1内に保持される溶融ガラスの質量をM(Kg)としたとき、例えば1M≦M1≦3Mを満足することが好ましい。
 第二流出工程S11の累積流量(合計排出量)M2(Kg)は、操業時にガラス溶融炉1内に保持される溶融ガラスの質量をM(Kg)としたとき、例えば1M≦M2≦3Mを満足することが好ましい。
 第一流出工程S10では、ガラス溶融炉1内の液面FSから溶融ガラスを採取し、その成分を測定することにより、素地替えの進捗状況を確認することが望ましい(測定工程)。この測定工程は、一定の期間ごとに複数回にわたり実施することが望ましい。測定工程は、第二流出工程S11においても継続的に行うことが望ましい。
 所定の期間が経過すると、素地替え工程は、第一流出工程S10から第二流出工程S11へと移行する。第二流出工程S11では、溶融ガラスの流量を増加させる。第二流出工程S11における溶融ガラスの流量Q2は、素地替え工程終了後に第二品種のガラス物品を遅滞なく製造できるように、素地替え工程終了後の第二溶融ガラスGM2の流量Q3と同程度(例えば0.75Q3≦Q2≦1.25Q3)とされることが好ましく、等しくされることがより好ましい。これに限らず、第二流出工程S11における溶融ガラスの流量は、素地替え工程終了後の第二溶融ガラスGM2の流量と異なっていてもよい。
 第一流出工程S10において、溶融ガラスの流量を増加させる方法としては、第一流出工程S10の場合とは逆に、例えば、原料供給部7からガラス溶融炉1に供給されるガラス原料の投入量を増加させつつ、ガラス溶融炉1内及びガラス供給路6a~6dに設けられる加熱装置による発熱量を増加させる方法、或いはガラス供給路6a~6dに設けられた邪魔板等の固定部材の位置を変え又は取り除く方法等が挙げられる。
 第二流出工程S11では、素地替え工程が好適に進捗したか否かを判断するための判定工程が実施される。判定工程では、測定工程によって測定された、素地替えに関わる特定のガラス成分の質量%濃度を、基準値(閾値)と比較する。すなわち、測定工程で定期的に測定された特定のガラス成分の質量%濃度が閾値を超えた場合に、第二流出工程S11は終了する。
 この判定工程では、第二流出工程S11が正常に進行しているか否かを判定することもできる。例えば、素地替えに関わる特定のガラス成分の質量%濃度を低下させる場合に、一定の低下傾向から大きく逸脱する値が測定された場合には、第二流出工程S11において異常が発生したと推定することができる。
 第二流出工程S11が終了すると、ガラス溶融炉1から第二溶融ガラスGM2を流出させ、上記の製造方法を実施することで、第二品種に係るガラス物品が連続的に製造される。
 本発明者等は、素地替え工程について鋭意研究を重ねた結果、従来の素地替え工程における問題点を見出し、この問題点を解決するために、本発明に係る素地替え工程が効果的であることを確認した。
 以下、従来の素地替え工程の問題点及び本発明の効果について、図6乃至図8を参照しながら説明する。
 図6は、従来の素地替え工程を実施した場合におけるガラス溶融炉1を示す。図7は、従来の素地替え工程における測定工程の実施結果を示す。
 従来の素地替え工程では、溶融ガラスの流量を変更することなく押し出し法を実施していた。素地替え工程が進行するにつれて、第一溶融ガラスGM1は、ガラス溶融炉1内に残存する量を徐々に減らしながら、図6に示すように液面FS付近の停滞層に残留し、異質ガラスとなる場合があった。このような状態では、素地替え工程の実行中、又は素地替え工程の終了後において、ガラス溶融炉1内の液面FS付近に残存する異質ガラス(第一溶融ガラスGM1)が不測に排出口8から流出する場合があった。
 素地替え工程の実行中にこの事態が発生すると、素地替え工程の進行を阻害し、その計画的な運用に支障を来すという問題があった。さらに、素地替え工程の終了後にこの事態が発生すると、第二溶融ガラスGM2の組成が変わり、製造されるガラス物品の品質が低下するという問題があった。
 図7は、従来の素地替え工程の実施中及び実施後における、素地替えに関わるガラス成分の質量%濃度及び溶融ガラスの累積流量の推移を示す。図7では、素地替え工程の実施中及び実施後の期間を横軸に示す。この横軸におけるTEは、素地替え工程の終了時を示す。
 図7において、測定対象となる特定のガラス成分の質量%濃度を左側の縦軸及び円形のドットによって表している。また、図7において、溶融ガラスの累積流量(Kg)を右側の縦軸及び棒グラフによって表している。なお、この図7では、素地替えに関わる特定のガラス成分の質量%濃度を低下させるとともに、この濃度が閾値CTHを超えた(下回った)ときに、素地替え工程が終了する例を示している。
 図7に示すように、従来の素地替え工程の実施中において、ガラス成分の質量%濃度は、期間T1において極小値C1を示した後、期間T2において極大値C2を示した。このように、濃度が極端に変化した場合には、ガラス溶融炉1中の液面FS近傍に停滞していた異質ガラス(第一溶融ガラスGM1)が排出口8から流出する溶融ガラスに混入したものと推察される。
 本発明では、第一流出工程S10において溶融ガラスを低流量でガラス溶融炉1から排出することで、上記のような従来の問題点を解決するに至った。図8は、本発明に係る素地替え工程の実施した場合において、素地替えに関わる特定のガラス成分の質量%濃度及び溶融ガラスの累積流量を、図7と同様に示すグラフである。
 図8において、TE1は、第一流出工程S10の終了時を示し、TE2は、第二流出工程S11(素地替え工程)の終了時を示す。
 図8に示すように、本方法では、溶融ガラスの流量を低下させた第一流出工程S10を実施した後に、溶融ガラスの流量を増加させた第二流出工程S11を実施することで、時間の経過に伴うガラス成分の質量%濃度の急激な変化を発生させることなく、計画的に素地替え工程を行うことが可能となった。
 また、本発明のように、第一流出工程S10を実施した場合であっても、素地替え工程の実施期間を長期化させることなく、従来と同程度の期間で素地替え工程を終了することができた。さらに、素地替え工程の実施中にガラス溶融炉1から流出した溶融ガラスの累積流量を比較すると、本発明による素地替え工程の終了時の累積流量CQE2(図8参照)を、従来の素地替え工程の終了時の累積流量CQE1(図7参照)よりも小さくすることができた(CQE2<CQE1)。
 上記のような本発明の効果は、第一流出工程S10により溶融ガラスの流量を低下させたことで、ガラス溶融炉1内に留まる第一溶融ガラスGM1と第二溶融ガラスGM2との熱対流による混合が促進され、第一溶融ガラスGM1が単独でガラス溶融炉1内に留まり難くなったことによるものと考えられる。
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上記の実施形態では、一つのガラス溶融炉1を備えるガラス物品の製造装置を示したが、本発明はこの構成に限定されない。製造装置は、直列又は並列に設けられる二つ以上のガラス溶融炉を備えたものであってもよい。
 上記の実施形態の素地替え工程は、溶融ガラスをガラス溶融炉1から流出させる第一流出工程S10と、溶融ガラスを流出させる第二流出工程S11とで構成したが、必要に応じて、第一流出工程S10の前工程として、又は、第二流出工程S11の後工程として、溶融ガラスをガラス溶融炉1から流出させる別の流出工程を設けてもよい。或いは、第一流出工程S10と第二流出工程S11の間に溶融ガラスをガラス溶融炉1から流出させる別の流出工程を設けてもよい。これらの場合、別の流出工程の流量は溶融ガラスを連続生成できる範囲において特に制限はないが、上述の本発明の効果を確保するために、別の流出工程の累積流量(合計排出量)M3(Kg)は、操業時にガラス溶融炉1内に保持される溶融ガラスの質量をM(Kg)としたとき、M≧M3であることが好ましく、M≧0.5M3であることがより好ましい。
 1      ガラス溶融炉
 B      気泡
 GM     溶融ガラス
 GM1    第一溶融ガラス
 GM2    第二溶融ガラス
 GR     板ガラス(ガラス物品)
 S10    第一流出工程
 S11    第二流出工程

Claims (4)

  1.  ガラス溶融炉内で連続して生成する溶融ガラスを第一品種から第二品種に変更する素地替え工程を含むガラス物品の製造方法であって、
     前記素地替え工程は、前記溶融ガラスを前記ガラス溶融炉から流出させる第一流出工程と、前記第一流出工程の後に、前記溶融ガラスを流出させる第二流出工程と、を含み、
     前記第一流出工程における前記溶融ガラスの流量は、前記第二流出工程における前記溶融ガラスの流量よりも低いことを特徴とするガラス物品の製造方法。
  2.  前記第一流出工程における前記溶融ガラスの流量をQ1とし、前記第二流出工程における前記溶融ガラスの流量をQ2としたとき、Q1≦0.5Q2の条件を充足する請求項1に記載のガラス物品の製造方法。
  3.  前記素地替え工程は、前記ガラス溶融炉内の前記溶融ガラスに気泡を導入するバブリング工程を備える請求項1又は2に記載のガラス物品の製造方法。
  4.  前記第二品種に係る前記溶融ガラスの密度は、前記第一品種に係る前記溶融ガラスの密度よりも大きい請求項1又は2に記載のガラス物品の製造方法。
PCT/JP2022/021917 2021-06-01 2022-05-30 ガラス物品の製造方法 WO2022255295A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525813A JPWO2022255295A1 (ja) 2021-06-01 2022-05-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092331 2021-06-01
JP2021092331 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022255295A1 true WO2022255295A1 (ja) 2022-12-08

Family

ID=84323266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021917 WO2022255295A1 (ja) 2021-06-01 2022-05-30 ガラス物品の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022255295A1 (ja)
WO (1) WO2022255295A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157316A (ja) * 1993-12-02 1995-06-20 Ishizuka Glass Co Ltd ガラス溶融窯の素地替え促進方法
JPH0859248A (ja) * 1994-08-19 1996-03-05 Nippon Sheet Glass Co Ltd ガラス溶融炉
WO2012093563A1 (ja) * 2011-01-06 2012-07-12 日東紡績株式会社 ガラス溶融装置、ガラス繊維製造装置及びガラス組成変更方法
JP2012236735A (ja) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd ガラス素地の流出流量の測定装置、およびガラス製品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157316A (ja) * 1993-12-02 1995-06-20 Ishizuka Glass Co Ltd ガラス溶融窯の素地替え促進方法
JPH0859248A (ja) * 1994-08-19 1996-03-05 Nippon Sheet Glass Co Ltd ガラス溶融炉
WO2012093563A1 (ja) * 2011-01-06 2012-07-12 日東紡績株式会社 ガラス溶融装置、ガラス繊維製造装置及びガラス組成変更方法
JP2012236735A (ja) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd ガラス素地の流出流量の測定装置、およびガラス製品の製造方法

Also Published As

Publication number Publication date
JPWO2022255295A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
TWI417256B (zh) Manufacture of glass plates
KR101508050B1 (ko) 유리판의 제조 방법 및 유리판의 제조 장치
KR101486133B1 (ko) 글래스 기판의 제조 방법 및 글래스 기판의 제조 장치
JP5397371B2 (ja) 溶融ガラス製造装置およびそれを用いた溶融ガラス製造方法
KR101141231B1 (ko) 용융유리 공급장치, 유리제품, 및 유리제품 제조방법
JP6082779B2 (ja) ガラス板の製造方法
WO2007077716A1 (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
CN103080026A (zh) 玻璃板的制造方法
KR101971755B1 (ko) 용융 유리 제조 장치, 용융 유리 제조 방법 및 그것들을 사용한 판유리의 제조 방법
WO2022255295A1 (ja) ガラス物品の製造方法
JP2013216532A (ja) ガラス板の製造方法
JP7138843B2 (ja) ガラス物品の製造方法
JP6498933B2 (ja) ディスプレイ用ガラス基板の製造方法および製造装置
JP2019094245A (ja) フロートガラス製造方法、およびフロートガラス
JP6577215B2 (ja) ガラス基板の製造方法
KR101432413B1 (ko) 유리판의 제조 방법
JP7437612B2 (ja) ガラス物品の製造方法
KR20180075696A (ko) 증가된 배치 용해 및 유리 균질성을 위한 유리 용융 시스템 및 방법
JP4793581B2 (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
JP4811791B2 (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
WO2022255040A1 (ja) ガラス物品の製造方法
JP2022112205A (ja) ガラス物品の製造方法
JP2016069226A (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
JP2010235446A (ja) ガラス成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816043

Country of ref document: EP

Kind code of ref document: A1