WO2022254556A1 - 光ファイバケーブル及び光ファイバケーブル製造装置 - Google Patents

光ファイバケーブル及び光ファイバケーブル製造装置 Download PDF

Info

Publication number
WO2022254556A1
WO2022254556A1 PCT/JP2021/020753 JP2021020753W WO2022254556A1 WO 2022254556 A1 WO2022254556 A1 WO 2022254556A1 JP 2021020753 W JP2021020753 W JP 2021020753W WO 2022254556 A1 WO2022254556 A1 WO 2022254556A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable core
tension member
cable
optical fiber
core
Prior art date
Application number
PCT/JP2021/020753
Other languages
English (en)
French (fr)
Inventor
雅 菊池
成且 鉄谷
裕介 山田
信 櫻井
裕明 谷岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN202180098435.2A priority Critical patent/CN117337405A/zh
Priority to EP21944064.1A priority patent/EP4350408A1/en
Priority to JP2023525197A priority patent/JPWO2022254556A1/ja
Priority to PCT/JP2021/020753 priority patent/WO2022254556A1/ja
Publication of WO2022254556A1 publication Critical patent/WO2022254556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Definitions

  • the present disclosure relates to optical fiber cables and optical fiber cable manufacturing equipment.
  • Non-Patent Document 1. In recent years, in optical fiber communication systems, the transmission capacity is limited by nonlinear effects and fiber fuses that occur in the optical fiber. (See, for example, Non-Patent Document 1.).
  • Optical fiber cables are provided with tension members to protect the optical fiber cores from temperature changes and tension applied during installation.
  • the tension member is arranged inside the slot rod, whereas in the non-slot structure optical fiber cable, the tension member is arranged inside the jacket.
  • connection of optical fiber cables involves dismantling the cables.
  • dismantling the cable consideration must be given to avoiding an increase in optical loss due to bending.
  • the risk of an increase in optical loss is reduced by mounting an optical fiber with suppressed bending loss in an optical fiber cable with a non-slot structure.
  • optical fibers such as optical fibers with relaxed transmission capacity restrictions
  • certain types of optical fibers tend to increase optical loss due to bending. Therefore, it is not possible to reduce the risk of increased optical loss when dismantling the optical fiber cable.
  • the optical fiber core wire is taken out, if the sheath is restored due to its rigidity, the optical fiber core wire taken out from the crack may be pinched, resulting in an increase in optical loss due to bending.
  • the clamping force is large, so there is a problem that the risk of optical loss increases further.
  • the present disclosure realizes an optical fiber cable and an optical fiber cable manufacturing apparatus that prevent the optical fiber core from being caught in the sheath and prevent the optical loss from increasing due to the bending of the optical fiber. for the purpose.
  • an optical fiber cable and an optical fiber cable manufacturing apparatus of the present disclosure provide an optical fiber cable having a plurality of tension members inside a jacket, in which each tension member sandwiches the axial center of the cable core. It is arranged in the axial direction of the cable core at the position and warps outward from the axial center of the cable core.
  • the fiber optic cable according to the present disclosure includes: a cable core having a plurality of optical fiber core wires; a jacket covering the cable core; at least two tension members having an outward warp from the axial center of the cable core and arranged inside the jacket along the cable core; Each of the tension members is arranged at a position sandwiching another tension member and the axial center of the cable core.
  • the optical fiber cable manufacturing apparatus includes: a tension member delivery unit for delivering a plurality of tension members each warping outward from the axial center of the cable core to the periphery of the cable core; a jacket forming section that covers the cable core and the plurality of tension members around the cable core with a jacket while suppressing warpage of the plurality of tension members sent out; Equipped with
  • the present disclosure it is possible to realize an optical fiber cable and an optical fiber cable manufacturing apparatus in which the optical fiber core wire is not caught in the jacket and an increase in optical loss due to bending of the optical fiber core wire is prevented.
  • FIG. 1 shows an example of the structure of an optical fiber cable according to Embodiment 1.
  • FIG. 1 shows an example of the structure of an optical fiber cable according to Embodiment 1.
  • FIG. An example of the configuration of an optical fiber cable manufacturing apparatus according to Embodiment 2 is shown.
  • An example of a configuration of an optical fiber cable manufacturing apparatus according to Embodiment 3 is shown.
  • An example of a configuration of an optical fiber cable manufacturing apparatus according to Embodiment 4 is shown.
  • FIG. 1 shows a first embodiment of the invention.
  • FIG. 1a represents a cross-sectional view of the fiber optic cable 10 before the jacket 12 is slit.
  • 1-b represents a cross-sectional view of the fiber optic cable 10 after the jacket 12 has been slit, and
  • FIG. 1-c represents a side view of the fiber optic cable 10 depicted in FIG. 1-b.
  • the optical fiber cable 10 includes a cable core 11 formed by collecting a plurality of optical fiber core wires 16, a jacket 12 covering the cable core 11, and a cable inside the jacket 12. and at least two or more tension members 41 arranged.
  • a plurality of tension members 41 are provided, and pairs of the tension members 41 are arranged at positions sandwiching the axial center of the cable core 11 along the axial direction of the cable core 11 .
  • there are two tension members 41 but the number is not limited to this.
  • Examples of the material of the tension member 41 include steel, FRP (Fiber Reinforced Plastics), aramid fiber, and the like.
  • Each tension member 41 is warped outward from the axial center of the cable core 11 .
  • the jacket 12 includes tension members 41 along the cable core 11 while suppressing this warp.
  • the tension members 41 included in the jacket 12, for example, the pair of tension members 41 facing each other across the axial center of the cable core 11 shown in FIG. is restrained by the outer cover 12, and therefore does not appear in apparent warpage.
  • FIG. 2a and 2b represent cross-sectional views of the fiber optic cable 10.
  • FIG. The tension member 41 may have a square cross-section, as shown in FIG. 2-a.
  • the tension member 41 may have a triangular cross section as shown in FIG. 2B.
  • the tension member 41 may be arranged so that the vertex of the triangle faces the cable core 11 side so that the tension member 41 is easily bent outward from the axial center of the cable core 11 .
  • the cross section of the tension member 41 is arbitrary as long as the tension member 41 can warp outward from the axial center of the cable core 11, and is not limited thereto.
  • the optical fiber cable 10 may have two tear strings 40 on the innermost layer of the jacket 12 in a direction different from the tension member 41 when viewed from the axial center of the cable core 11 in order to tear the jacket 12 .
  • the two tear cords 40 are arranged at positions facing each other across the axis of the cable core 11 .
  • the two tension members 41 are arranged at positions facing each other across the axis of the cable core 11 and in the middle of the circumferential direction where the two tear cords 40 are tied.
  • FIG. 3 shows a second embodiment of the invention.
  • the optical fiber cable manufacturing device 20 is a tension member delivery unit 42 for delivering a plurality of tension members 41 each warping outward from the axial center of the cable core 11 to the periphery of the cable core 11; a jacket forming portion 22 that covers the cable core 11 and the plurality of tension members 41 around the cable core 11 with the jacket 12 while suppressing the warp of the plurality of tension members 41 sent out; Prepare.
  • the tension member feeding section 42 made up of a plurality of bobbins feeds out the wound tension member 41 from the cable core 11 side to the jacket molding section 22, and integrates it with the jacket 12 at the jacket molding section 22. It coats the cable core 11 .
  • the tension member 41 is warped by being wound around the tension member delivery portion 42 .
  • the pair of tension member sending-out portions 42 face each other with the cable core 11 interposed therebetween, and the orientations are adjusted so that the directions of warpage are different from each other.
  • the tension member sending-out part 42 has its own rotation axis positioned at the cable core 11 as shown in FIG. , and the tension member 41 may be sent out to the sheath forming part 22 along the direction of rotation of the tension member sending part 42 on the cable core 11 side.
  • the optical fiber cable manufacturing apparatus 20 capable of manufacturing the optical fiber cable 10 described in the first embodiment can be realized.
  • FIG. 4 shows a third embodiment of the invention.
  • a tension member deforming portion 43 made of a capstan is provided between the tension member delivery portion 42 and the jacket forming portion 22, and the tension member delivered from the tension member delivery portion 42 is provided.
  • 41 passes over at least one or more tension member deforming portions 43, ie capstans.
  • the tension member 41 passes through the tension member deforming portion 43 , the tension member 41 is arranged in a direction that warps outward from the axial center of the cable core 11 .
  • the capstan which is the tension member deforming portion 43
  • the tension member delivery section 42 may deliver the tension member 41 to the jacket forming section 22 along the cable core 11 side of the tension member deformation section 43 .
  • the optical fiber cable manufacturing apparatus 20 according to the second embodiment can be realized, and in addition, it is not necessary to reduce the barrel diameter of the tension member feeding section 42 in order to add necessary warp to the tension member 41. Therefore, the long optical fiber cable 10 can be manufactured at once.
  • Embodiment 4 In the configuration described in Embodiment 3, the tension member 41 is warped only when passing through the tension member deforming portion 43 . Therefore, it is necessary to control the diameter of the tension member deforming portion 43 and the delivery tension of the tension member 41 so as to obtain a sufficient warp. In that case, there arises a problem that the risk of breaking the tension member 41 increases and that the peripheral member supporting the tension member deforming portion 43 needs to be reinforced.
  • FIG. 5 shows a fourth embodiment of the present invention.
  • a plastic deformation promoting portion 44 is provided so that deformation tends to remain when the tension member 41 passes through the tension member deforming portion 43 .
  • the specific configuration of the plastic deformation promoting portion 44 is within the scope of design according to the tension member 41 to be used. A method such as performing annealing can be adopted.
  • the plastic deformation promoting portion 44 may be arranged not only in the tension member deforming portion 43 but also in the tension member sending portion 42 or between the tension member sending portion 42 and the tension member deforming portion 43 .
  • optical fiber cable and optical fiber cable manufacturing device can be applied to the information and communication industry.
  • Optical fiber cable 11 Cable core 12: Jacket 16: Optical fiber core wire 20: Optical fiber cable manufacturing device 22: Jacket molding unit 40: Tear string 41: Tension member 42: Tension member delivery unit 43: Tension member Deformation portion 44: plastic deformation promoting portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Communication Cables (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本開示は、光ファイバ心線(16)が外被(12)に挟み込まれることがなく、光ファイバ心線(16)の曲げによる光損失増加を防ぐ光ファイバケーブル(10)を実現することを目的とする。 本開示に係る光ファイバケーブル(10)は、上記目的を達成するために、複数本の光ファイバ心線(16 )を有するケーブルコア(11)と、前記ケーブルコア(11)を被覆する外被(12)と、ケーブルコア(11)の軸中心から外向きへの反りを有し、前記ケーブルコア(11)に沿って前記外被(12)の内部に配置される少なくとも2本以上のテンションメンバ(41)と、を備え、前記テンションメンバ(41)のそれぞれは、他の一のテンションメンバ(41)と前記ケーブルコア(11)の軸中心を挟んだ位置に配置されることを特徴とする。

Description

光ファイバケーブル及び光ファイバケーブル製造装置
 本開示は、光ファイバケーブル及び光ファイバケーブル製造装置に関する。
 近年、光ファイバ通信システムでは、光ファイバ中で発生する非線形効果やファイバヒューズにより伝送容量が制限されるため、その制限を緩和するため実効断面積(以下、Aeff)を拡大した光ファイバなど開発されている(例えば非特許文献1を参照。)。
 ところで、光ファイバケーブルにおいては、細径軽量化を実現するため、光ファイバを収納するスロットロッド廃したノンスロット構造が開発され、実用化されている(例えば特許文献1を参照。)。光ファイバケーブルは温度変化や布設の際に加わる張力から光ファイバ心線を保護するため、テンションメンバを具備している。従来のケーブルはスロットロッドの内部にテンションメンバを配置するのに対して、ノンスロット構造の光ファイバケーブルでは外被の内部にテンションメンバを配置している。
 また、光ファイバケーブルの接続においては、ケーブルの解体を伴う。ケーブル解体の際には、曲げによる光損失増加を回避するよう配慮する必要がある。その一手段として、ノンスロット構造の光ファイバケーブルでは曲げ損失を抑制した光ファイバを実装することで光損失増加のリスクを低減している。
特許第4774337号(NTT)
T. Kato, M. Hirano, M. Onishi and M. Nishimura, "Ultra low nonlinearity low loss pure silica core fiber for long-haul WDM transmission," Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and Communications Conference on Communications,, Beijing, China, 1999, pp. 1575-1576 vol.2, doi: 10.1109/APCC.1999.820589.
 しかしながら、伝送容量制限を緩和した光ファイバなどの特定の種別の光ファイバでは曲げによる光損失が増加しやすいという特徴がある。したがって、光ファイバケーブルを解体する際の光損失増加のリスクを低減できない。例えば、光ファイバ心線を取り出す作業の際に、外被が剛性により復元すると、裂け目から取り出した光ファイバ心線を挟み込み、曲げによる光損失増加を発生させる恐れがある。特にノンスロット構造の光ファイバケーブルにおいては外被とテンションメンバが一体となっているため挟み込む力が大きいため、一層光損失増加のリスクが高まるという課題があった。
 前記課題を解決するために、本開示は、光ファイバ心線が外被に挟み込まれることがなく、光ファイバ心線の曲げによる光損失増加を防ぐ光ファイバケーブル及び光ファイバケーブル製造装置を実現することを目的とする。
 上記目的を達成するため、本開示の光ファイバケーブル及び光ファイバケーブル製造装置は、複数のテンションメンバを外被の内部に備える光ファイバケーブルにおいて、各テンションメンバは、ケーブルコアの軸中心を挟んだ位置にケーブルコアの軸方向に配置され、ケーブルコアの軸中心から外向きへ反りが加える。
 具体的には、本開示に係る光ファイバケーブルは、
 複数本の光ファイバ心線を有するケーブルコアと、
 前記ケーブルコアを被覆する外被と、
 ケーブルコアの軸中心から外向きへの反りを有し、前記ケーブルコアに沿って前記外被の内部に配置される少なくとも2本以上のテンションメンバと、を備え、
 前記テンションメンバのそれぞれは、他の一のテンションメンバと前記ケーブルコアの軸中心を挟んだ位置に配置されることを特徴とする。
 具体的には、本開示に係る光ファイバケーブル製造装置は、
 ケーブルコアの軸中心から外向きへそれぞれ反る複数のテンションメンバを前記ケーブルコアの周囲に送り出すテンションメンバ送出部と、
 送り出された前記複数のテンションメンバの反りを抑えつつ、前記ケーブルコア及び前記ケーブルコアの周囲にある前記複数のテンションメンバを外被で被覆する外被成形部と、
を具備する。
 本開示によれば、光ファイバ心線が外被に挟み込まれることがなく、光ファイバ心線の曲げによる光損失増加を防ぐ光ファイバケーブル及び光ファイバケーブル製造装置を実現することができる。
実施形態1に係る光ファイバケーブルの構造の一例を示す。 実施形態1に係る光ファイバケーブルの構造の一例を示す。 実施形態2に係る光ファイバケーブル製造装置の構成の一例を示す。 実施形態3に係る光ファイバケーブル製造装置の構成の一例を示す。 実施形態4に係る光ファイバケーブル製造装置の構成の一例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図1に本発明の第一の実施形態を示す。図1-aは、外被12が切り裂かれる前の光ファイバケーブル10の断面図を表す。一方で、図1-bは、外被12が切り裂かれた後の光ファイバケーブル10の断面図を表し、図1-cは、図1-bに表す光ファイバケーブル10の側面図を表す。
 光ファイバケーブル10は、図1-aに示すように、複数本の光ファイバ心線16を集合してなるケーブルコア11と、ケーブルコア11を被覆する外被12と、外被12の内部に配置される少なくとも2本以上のテンションメンバ41と、を具備する。テンションメンバ41は複数であり、それぞれのテンションメンバ41の対はケーブルコア11の軸中心を挟んだ位置に、かつ、ケーブルコア11の軸方向に沿って配置されている。図1-aでは、テンションメンバ41は2本だがこれに限定されない。テンションメンバ41の材質としては、鋼材、FRP(Fiber Reinforced Plastics)又はアラミド繊維等を例示できる。
 各テンションメンバ41はケーブルコア11の軸中心から外向きへ反りが加えられている。外被12は、この反りを抑えつつ、テンションメンバ41がケーブルコア11に沿うようにテンションメンバ41を含んでいる。
 これにより、外被12に含まれるテンションメンバ41、例えば、図1-aに示すケーブルコア11の軸中心を挟んで対向する2本のテンションメンバ41対、の反りは、外被12を切り裂くまでは、外被12により抑えられているため、見かけ上の反りに現れない。
 図1に示すテンションメンバ41の断面は円形だが、これとは異なる断面形状の例を図2に示す。図2-a及び図2-bは、光ファイバケーブル10の断面図を表す。
 テンションメンバ41は、図2-aに示すように、断面が四角形でもよい。
 また、テンションメンバ41は、図2-bに示すように、断面が三角形でもよい。この場合、テンションメンバ41がケーブルコア11の軸中心から外向きへ反りやすいように、三角形の頂点がケーブルコア11側を向くようにテンションメンバ41を配置してもよい。なお、テンションメンバ41の断面は、テンションメンバ41がケーブルコア11の軸中心から外向きへ反ることができれば任意であり、これらに限定されない。
 光ファイバケーブル10は、外被12を切り裂くために、ケーブルコア11の軸中心からみてテンションメンバ41とは異なる方向の外被12の最内層に2つの切り裂き紐40を備えてもよい。2つの切り裂き紐40は、ケーブルコア11の軸を挟んで対向する位置に配置される。この場合、2つのテンションメンバ41は、ケーブルコア11の軸を挟んで対向する位置に、かつ、2つの切り裂き紐40を結んだ周方向の中間に配置される。
 図1に示す位置にある2つの切り裂き紐40を光ファイバケーブル10の外側に向かって引くと、外被12が切り裂かれる。このとき、図1-b及び図1-cのように、テンションメンバ41の反りによって発生する力Fにより、ケーブルコア11の軸中心が遠ざかるように外被12が変形する。図1-bでは、図1-aの外被12の外縁が距離Gだけずれた様子を表す。テンションメンバ41の反りにより、図1-cに示すように、裂け目からケーブルコア11が露出される。したがって、外被12の裂け目に光ファイバ心線16が挟み込まれ、光損失が増加するリスクが低減される。
(実施形態2)
 図3に本発明の第二の実施形態を示す。本実施形態では、光ファイバケーブル製造装置について説明する。
 光ファイバケーブル製造装置20は、
 ケーブルコア11の軸中心から外向きへそれぞれ反る複数のテンションメンバ41をケーブルコア11の周囲に送り出すテンションメンバ送出部42と、
 送り出された複数のテンションメンバ41の反りを抑えつつ、ケーブルコア11及びケーブルコア11の周囲にある複数のテンションメンバ41を外被12で被覆する外被成形部22と、
を備える。
 具体的には、複数のボビンからなるテンションメンバ送出部42は、巻き付けられたテンションメンバ41をケーブルコア11側から外被成形部22に送り出し、外被成形部22において外被12と一体化しながらケーブルコア11を被覆する。この時、テンションメンバ41にはテンションメンバ送出部42に巻き付けられていることで反りが加わっている。その上、テンションメンバ送出部42の対がケーブルコア11を挟んで対向し、かつ反りの方向がそれぞれ異なる方向となるように向きを調整されている。
 ここで、テンションメンバ送出部42は、自身に巻き付けられたテンションメンバ41をケーブルコア11の軸中心から外向きへ反らせながら送り出すために、図3に示すように、自身の回転軸がケーブルコア11の軸と垂直となるように配置され、かつ、テンションメンバ送出部42のケーブルコア11側の回転方向に沿ってテンションメンバ41を外被成形部22に送り出してもよい。
 以上のような構成とすることで、実施形態1に記載の光ファイバケーブル10を製造可能な光ファイバケーブル製造装置20を実現できる。
(実施形態3)
 図4に本発明の第三の実施形態を示す。
 実施形態2に記載の構成に対して、テンションメンバ送出部42と外被成形部22の間にはキャプスタンからなるテンションメンバ変形部43を具備し、テンションメンバ送出部42から送出されたテンションメンバ41が少なくとも1つ以上のテンションメンバ変形部43であるキャプスタン上を通過する構成となっている。その上、テンションメンバ41がテンションメンバ変形部43を通過する際、テンションメンバ41がケーブルコア11の軸中心から外向きに反る方向に配置されている。
 例えば、テンションメンバ変形部43であるキャプスタンは、図4に示すように、テンションメンバ送出部42とケーブルコア11との間に、かつ、キャプスタンの回転軸がケーブルコア11の軸と垂直に配置されてもよい。そして、テンションメンバ送出部42は、テンションメンバ41をテンションメンバ変形部43のケーブルコア11側に沿わせて外被成形部22に送り出してもよい。
 以上のような構成とすることで、実施形態2に記載の光ファイバケーブル製造装置20を実現できる上、テンションメンバ41に必要な反りを加えるためテンションメンバ送出部42の胴径を小さくする必要がなくなるため、長尺の光ファイバケーブル10を一度に製造可能となる。
(実施形態4)
 実施形態3に記載の構成においては、テンションメンバ41はテンションメンバ変形部43を通過する際にのみ、反りが加えられる。したがって、テンションメンバ変形部43の径やテンションメンバ41の送り出し張力を制御し、十分な反りを得られるようにしなければならない。その場合、テンションメンバ41の破断リスクの増加や、テンションメンバ変形部43を支える周辺部材の補強が必要となるという問題が発生する。
 そこで、図5に本発明の第四の実施形態を示す。
 実施形態3に示す構成に加えて、テンションメンバ41がテンションメンバ変形部43を通過する際に変形が残留しやすい状態となるよう、塑性変形促進部44を備えている。
塑性変形促進部44の具体的な構成は使用するテンションメンバ41に応じた設計の範疇であるが、例えばテンションメンバ41がFRPなどの複合材料であれば加熱を行う、鋼材であれば焼き入れ及び焼きなましを行う、といった方法をとることができる。
 以上のような構成とすることで、テンションメンバ41がテンションメンバ変形部43を通過する際に生じた変形が残留しやすくなるため、容易に所望の反りを得ることが可能となる。
 なお、塑性変形促進部44は、テンションメンバ変形部43だけでなく、テンションメンバ送出部42またはテンションメンバ送出部42とテンションメンバ変形部43との間に配置してもよい。
 本開示に係る光ファイバケーブル及び光ファイバケーブル製造装置は、情報通信産業に適用することができる。
10:光ファイバケーブル
11:ケーブルコア
12:外被
16:光ファイバ心線
20:光ファイバケーブル製造装置
22:外被成形部
40:切り裂き紐
41:テンションメンバ
42:テンションメンバ送出部
43:テンションメンバ変形部
44:塑性変形促進部

Claims (7)

  1.  複数本の光ファイバ心線を有するケーブルコアと、
     前記ケーブルコアを被覆する外被と、
     ケーブルコアの軸中心から外向きへの反りを有し、前記ケーブルコアに沿って前記外被の内部に配置される少なくとも2本以上のテンションメンバと、を備え、
     前記テンションメンバのそれぞれは、他の一のテンションメンバと前記ケーブルコアの軸中心を挟んだ位置に配置される
    ことを特徴とする光ファイバケーブル。
  2.  前記テンションメンバは、前記外被が切り裂かれた場合に、前記ケーブルコアの軸中心から外向きへ反り、
     前記ケーブルコアが露出する
    ことを特徴とする請求項1に記載の光ファイバケーブル。
  3.  ケーブルコアの軸中心から外向きへそれぞれ反る複数のテンションメンバを前記ケーブルコアの周囲に送り出すテンションメンバ送出部と、
     送り出された前記複数のテンションメンバの反りを抑えつつ、前記ケーブルコア及び前記ケーブルコアの周囲にある前記複数のテンションメンバを外被で被覆する外被成形部と、
    を具備する光ファイバケーブル製造装置。
  4.  前記テンションメンバ送出部は、前記ケーブルコアの周囲にそれぞれ配置され、自身に巻き付けられた前記テンションメンバを、自身の前記ケーブルコア側から前記外被成形部に送り出す複数のボビンを備える
    ことを特徴とする請求項3に記載の光ファイバケーブル製造装置。
  5.  前記ケーブルコアの軸中心から外向きへの前記テンションメンバの反りを強化するテンションメンバ変形部をさらに備え、
     前記テンションメンバ送出部は、前記テンションメンバを、前記テンションメンバ変形部を経由して前記外被成形部に送り出す
    ことを特徴とする請求項3又は4に記載の光ファイバケーブル製造装置。
  6.  前記テンションメンバ変形部は、回転軸が前記ケーブルコアの軸に垂直であるキャプスタンである
    ことを特徴とする請求項5に記載の光ファイバケーブル製造装置。
  7.  前記ケーブルコアの軸中心から外向きへの前記テンションメンバの反りを残留させる塑性変更促進部をさらに具備する
    ことを特徴とする請求項5又は6に記載の光ファイバケーブル製造装置。
PCT/JP2021/020753 2021-05-31 2021-05-31 光ファイバケーブル及び光ファイバケーブル製造装置 WO2022254556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180098435.2A CN117337405A (zh) 2021-05-31 2021-05-31 光纤线缆以及光纤线缆制造装置
EP21944064.1A EP4350408A1 (en) 2021-05-31 2021-05-31 Fiber-optic cable and fiber-optic cable manufacturing device
JP2023525197A JPWO2022254556A1 (ja) 2021-05-31 2021-05-31
PCT/JP2021/020753 WO2022254556A1 (ja) 2021-05-31 2021-05-31 光ファイバケーブル及び光ファイバケーブル製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020753 WO2022254556A1 (ja) 2021-05-31 2021-05-31 光ファイバケーブル及び光ファイバケーブル製造装置

Publications (1)

Publication Number Publication Date
WO2022254556A1 true WO2022254556A1 (ja) 2022-12-08

Family

ID=84323992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020753 WO2022254556A1 (ja) 2021-05-31 2021-05-31 光ファイバケーブル及び光ファイバケーブル製造装置

Country Status (4)

Country Link
EP (1) EP4350408A1 (ja)
JP (1) JPWO2022254556A1 (ja)
CN (1) CN117337405A (ja)
WO (1) WO2022254556A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241043A (ja) * 2002-02-22 2003-08-27 Sumitomo Electric Ind Ltd 光ケーブルの製造装置及び光ケーブルの製造方法
JP2009145794A (ja) * 2007-12-18 2009-07-02 Sumitomo Electric Ind Ltd 光ケーブル
KR20190088890A (ko) * 2018-01-19 2019-07-29 엘에스전선 주식회사 광케이블
JP2020038326A (ja) * 2018-09-05 2020-03-12 住友電気工業株式会社 光ファイバケーブル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241043A (ja) * 2002-02-22 2003-08-27 Sumitomo Electric Ind Ltd 光ケーブルの製造装置及び光ケーブルの製造方法
JP2009145794A (ja) * 2007-12-18 2009-07-02 Sumitomo Electric Ind Ltd 光ケーブル
KR20190088890A (ko) * 2018-01-19 2019-07-29 엘에스전선 주식회사 광케이블
JP2020038326A (ja) * 2018-09-05 2020-03-12 住友電気工業株式会社 光ファイバケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. KATOM. HIRANOM. ONISHIM. NISHIMURA: "Ultra low nonlinearity low loss pure silica core fiber for long-haul WDM transmission", FIFTH ASIA-PACIFIC CONFERENCE ON ... AND FOURTH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE ON COMMUNICATIONS, BEIJING, CHINA, vol. 2, 1999, pages 1575 - 1576

Also Published As

Publication number Publication date
CN117337405A (zh) 2024-01-02
EP4350408A1 (en) 2024-04-10
JPWO2022254556A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
EP1821124B1 (en) Protective covering for optical fiber cable
WO2015016240A1 (ja) 光ファイバケーブル
JP5290547B2 (ja) 複合ケーブル
EP3819691B1 (en) Optical fiber cable
US7421169B2 (en) Optical fiber cable
WO2022254556A1 (ja) 光ファイバケーブル及び光ファイバケーブル製造装置
JP2006276846A (ja) 堅固な緩衝を備えた光ファイバテープ心線
US10036863B2 (en) Optical fiber cables with flat ribbon fibers
US20200225432A1 (en) Optical fiber cable
US6987916B2 (en) Fiber optic central tube cable with bundled support member
US20070230879A1 (en) Armored fiber optic cable having a centering element and methods of making
JP2004325693A (ja) 光ファイバケーブルおよびその製造方法
JP2004012611A (ja) ノンメタル光ファイバケーブル
JPH10148737A (ja) 架空屋外用光ケーブル
EP0825465B1 (en) Single core power cable with an optical fiber element
JP2008203794A (ja) 光ファイバケーブル
JP2012032831A (ja) 光ファイバコード
KR20220028815A (ko) 광케이블
JP2004212960A (ja) 光ファイバケーブル
AU2007209831B2 (en) Signal Transmitting Cable
JP2016004232A (ja) 光ケーブル
EP2204682A2 (en) Improved fiber guide for fiber optic cables
JP4918058B2 (ja) 光ファイバコード
JP2000249881A (ja) 光ファイバケーブルの構造
JPWO2022050116A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525197

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18289763

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180098435.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021944064

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021944064

Country of ref document: EP

Effective date: 20240102