WO2022252798A1 - 利用激光熔化成形装置加工零件的方法 - Google Patents

利用激光熔化成形装置加工零件的方法 Download PDF

Info

Publication number
WO2022252798A1
WO2022252798A1 PCT/CN2022/084933 CN2022084933W WO2022252798A1 WO 2022252798 A1 WO2022252798 A1 WO 2022252798A1 CN 2022084933 W CN2022084933 W CN 2022084933W WO 2022252798 A1 WO2022252798 A1 WO 2022252798A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
defocus
laser melting
laser
forming device
Prior art date
Application number
PCT/CN2022/084933
Other languages
English (en)
French (fr)
Inventor
付鑫
雷力明
付俊
石磊
焦宗戈
王悦
Original Assignee
中国航发上海商用航空发动机制造有限责任公司
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发上海商用航空发动机制造有限责任公司, 中国航发商用航空发动机有限责任公司 filed Critical 中国航发上海商用航空发动机制造有限责任公司
Priority to EP22814845.8A priority Critical patent/EP4349508A1/en
Publication of WO2022252798A1 publication Critical patent/WO2022252798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for processing parts by using a laser melting forming device.
  • Laser melting deposition technology as one of the typical metal additive manufacturing technologies, is based on the principle of "discrete + accumulation", slices the three-dimensional model of the part, discretizes it into two-dimensional information and performs motion path planning, and uses laser as the heat source to form on the substrate.
  • the melting pool combined with synchronous powder delivery, realizes the rapid melting and solidification of powder in the melting pool, and deposits layer by layer to complete the three-dimensional solid forming of parts.
  • This technology has the characteristics of high flexibility, short cycle time, high performance and near-net shape without dies. It is widely used in the forming of large-scale metal components in aerospace and the repair of high-value parts.
  • the technical problem to be solved by the present invention is to overcome the defect that the parameters of the defocus amount cannot be determined in the process of generating parts by laser melting deposition technology in the prior art, resulting in the inability of the processed parts to achieve the best self-healing effect, and to provide a laser A method of processing parts with a fusion forming device.
  • the invention provides a method for processing parts using a laser melting forming device, comprising the following steps:
  • the convergence point is the convergence point of the laser light emitted by the laser cladding head of the laser melting forming device and the powder ejected, and the defocus amount obtained according to step S5 numerically adjusting the initial distance of the focal point of convergence from the substrate on which the part is formed;
  • step S7 Substituting the defocus value obtained in step S5 into the function of step S2 to obtain the corresponding single-lane height value, and setting the relative displacement between the laser cladding head and the substrate formed by the part according to the obtained single-lane height value, In order to keep the distance between the converging focal point and the adhesion surface of the powder ejected from the laser cladding head constant.
  • the optimal defocus parameters can be quickly obtained, and the local undulations on the surface of parts in the laser melting deposition forming/repair process can be quickly and automatically Healing promotes the consistency of part processing layer thickness and helps to obtain uniform structure and performance.
  • step S1 the value selection of the parameter of the defocus amount needs to cover positive defocus, zero defocus and negative defocus.
  • the value selection of the parameter of the defocus amount covers positive defocus, zero defocus and negative defocus, which can make the data more diverse, so that the obtained function has higher accuracy and ensures the obtained optimal The accuracy of the parameters of the best defocus amount.
  • step S1 a metallographic method is used to measure the height of a single track under different defocus conditions.
  • step S1 it is necessary to ensure that the temperature of the substrate is the same as that of the previous single-channel experiment during each single-channel experiment.
  • the temperature generated in the previous single-channel experiment is prevented from interfering with the subsequent single-channel experiment and affecting the accuracy of the single-channel experiment.
  • step S1 at least 5 groups of parameters of the defocus amount are selected.
  • step S1 when performing the defocus amount single-track test under different parameters, the laser power, laser scanning speed, spot diameter, powder feeding rate, powder-carrying gas flow rate, lens
  • the process parameters of shielding gas flow rate remain unchanged.
  • step S1 when performing a single-track test of the defocus amount under different parameters, the laser power is 2800W, the laser scanning speed is 1000mm/min, the spot diameter is 5mm, the powder feeding rate is 28g/min, and the powder-carrying gas flow rate is 8L/min. min, lens protection gas flow 20L/min.
  • step S2 the functional relationship between the height of the single track and the defocus amount is a quartic function.
  • the use of the quartic function relationship can reduce the workload and improve the work efficiency under the premise of obtaining more accurate defocus parameters.
  • step S2 the functional relationship between the height of the single track and the defocus amount is established by means of polynomial fitting.
  • the correlation coefficient is not less than 0.995.
  • the correlation coefficient is not less than 0.995 when performing polynomial fitting, which ensures the accuracy of the obtained function, so that a more accurate and optimal defocus parameter can be obtained.
  • Defocus amount During the laser melting deposition forming/repair process of the part, the offset of the processing plane of the part relative to the laser (or powder) sink focus point, where: the defocus at the sink focus point is zero defocus, and the self-sink focus point is far away
  • the defocus in the direction of the laser cladding head is positive defocus
  • the defocus in the direction of the self-sink focal point close to the laser cladding head is negative defocus.
  • the positive progress effect of the present invention lies in: the present invention obtains the functional relationship between different defocus amounts and single-track heights by limiting other process parameters, and can quickly obtain the optimal defocus amount parameters to realize laser melting deposition forming/repair process parts
  • the rapid self-healing of the local undulations on the surface promotes the consistency of the part processing layer thickness and helps to obtain a uniform structure and performance.
  • FIG. 1 is a schematic flowchart of a method for processing a part using a laser melting forming device in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the defocus amount during the single-pass experiment of laser melting deposition in a preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the measurement of the height of a single channel when performing a laser melting deposition single channel experiment in a preferred embodiment of the present invention.
  • FIG. 4 is a functional relationship between the defocus amount and the height of a single track in a preferred embodiment of the present invention.
  • substrate 1 substrate 1; laser cladding head 2; laser 3; powder 4; focusing point 5;
  • a method for processing a part using a laser melting forming device disclosed in this embodiment includes the following steps:
  • step S7 Substituting the defocus value obtained in step S5 into the function of step S2 to obtain the corresponding single-lane height value, and setting the relative displacement between the laser cladding head and the substrate formed by the part according to the obtained single-lane height value, In order to keep the distance between the converging focal point and the adhesion surface of the powder ejected from the laser cladding head constant.
  • the above-mentioned method of processing parts by using laser melting and forming equipment is adopted, and the functional relationship between different defocus amounts and single-track heights can be obtained by limiting other process parameters to quickly obtain the optimal defocus amount parameters.
  • the rapid self-healing of the local undulations on the surface of the part during the fused deposition forming/repair process promotes the consistency of the processed layer thickness of the part and helps to obtain a uniform structure and performance.
  • defocus amount The definition of defocus amount is shown in Figure 2.
  • the defocus at the converging focal point 5 of the laser 3 and powder 4 is zero defocus, and the defocus at the direction away from the converging focal point 5 away from the laser cladding head 2 is positive defocus.
  • the defocus in the direction where the converging focal point 5 is close to the laser cladding head 2 is a negative defocus.
  • the value selection of the parameter of the defocus amount covers positive defocus, zero defocus and negative defocus, which can make the data diverse, so that the obtained function can have higher accuracy and ensure the best defocus amount obtained. the accuracy of the parameters.
  • step S1 the value selection of the parameter of the defocus amount needs to cover positive defocus, zero defocus and negative defocus.
  • the single variable method experiment is used to ensure the laser power, laser scanning speed, spot diameter, powder feeding rate, powder-carrying air flow, and lens protection air flow under different defocus parameters. Under the condition of constant process parameters and other process parameters, single-channel experiments under different defocusing conditions were carried out.
  • the laser power when performing a single-track test of defocus under different parameters, set the laser power to 2800W, the laser scanning speed to 1000mm/min, the spot diameter to 5mm, the powder feeding rate to 28g/min, and the powder-carrying gas flow rate to 8L/min , Lens protection gas flow rate 20L/min.
  • the defocus amount x was increased from -9mm to 9mm, with an increment of 3mm, and a total of 7 groups of laser melting deposition single-pass experiments were carried out.
  • the number of experimental groups can be increased and the increment of the defocus amount can be reduced.
  • each single-channel experiment it is necessary to ensure that the temperature of the substrate is the same as that of the substrate in the previous single-channel experiment. Avoid the temperature generated by the previous single-channel experiment from interfering with the subsequent single-channel experiment, and reduce the influence of substrate heat accumulation on the geometry of the single-channel. Therefore, each time a single-scanning is completed, it is necessary to keep the argon gas impacting the substrate to cool for more than 5 minutes, so as to ensure that the substrate is cooled to room temperature before the next single-scanning.
  • the metallographic method when measuring the height h of the single track 6 under different defocus conditions, the metallographic method is preferably used for measurement. Measuring the height of the single track 6 by the metallographic method can obtain a more accurate height of the single track 6 , ensuring the accuracy of the parameters of the best defocus amount obtained subsequently.
  • Table 1 The corresponding relationship between the height h of the single track and the defocus amount x
  • the polynomial fitting can be performed by tools such as Excel and origin, and the functional relationship is established by means of polynomial fitting through auxiliary tools, which is simple and convenient, and reduces the workload of the experimenters.
  • the fitted polynomial is a quartic function, and the use of the quartic function relationship can reduce the workload and improve the work efficiency under the premise of obtaining more accurate defocus parameters.
  • auxiliary tools may be used for polynomial fitting, and the fitted polynomial may be a quintic function, a sextic function, but at least a quartic function.
  • the first-order derivative and the second-order derivative of the obtained function f(x) are obtained to obtain the first-order derivative f'(x) and The second-order derivative f”(x) Substitute the values of different roots obtained by solving the first-order derivative f’(x) equal to zero into the second-order derivative f”(x), and the obtained second-order derivative values are less than zero.
  • the value of the root of the first derivative f'(x) corresponding to the value, the value of the root with the smallest absolute value is recorded as the first value.
  • the first value is also the value of the defocus amount corresponding to the maximum single track height that can be actually obtained.
  • the maximum The defocus value corresponding to the height of the single track is 0.06mm, that is, when the value of the defocus value is 0.06mm, the height h of the single track reaches the maximum, which is 373 ⁇ m.
  • the defocus value of 0.06 is to realize laser melting deposition
  • the local undulation of the surface of the process part can achieve the self-healing effect, that is, the range of the defocus value is x ⁇ [- ⁇ , 0.06].
  • the best self-healing effect can be achieved by using the defocus amount at the maximum slope of the f(x) function.
  • the height of the single track at the maximum slope of the curve is the most sensitive to the change of the defocus amount, and the tiny protrusions or depressions that occur locally on the surface of the part during processing can achieve self-healing at the fastest speed in the subsequent deposition process , resulting in a flat surface.
  • the value of the root of the derivative f"(x) is recorded as the second value.
  • the laser melting forming device is set up and operated to process the required parts.
  • the converging point of the laser melting forming device which is the converging point of the laser emitted by the laser cladding head of the laser melting forming device and the powder ejected. Then adjust the initial distance between the converging focal point and the substrate on which the part is formed according to the obtained defocus value.
  • the substrate 1 of part forming is arranged on the side of converging focal point 5 away from laser cladding head 2 (shown in Fig. 2 is that the numerical value of defocus amount is positive Situation); If the value of the defocus amount is negative, the substrate 1 for part forming is set on the side of the converging focal point 5 close to the laser cladding head 2; if the value of the defocus amount is zero, the forming of the substrate 1 for part forming The surface is set on the plane where the converging focal point 5 is located.
  • the defocus value is -5.2 mm, which means that the substrate 1 is located on the side of the converging focal point 5 close to the laser cladding head 2, and the distance between the forming surface of the substrate 1 and the converging focal point is 5.2 mm.
  • step 5 After the position of the substrate 1 is adjusted, the value of the defocus amount obtained in step 5 is substituted into the function of step S2 to obtain the corresponding height value of the single track.
  • the relative displacement between the laser cladding head 2 and the substrate 1 is set according to the obtained single-track height value, so that the distance between the converging focal point 5 and the adhesion surface of the powder 4 ejected by the laser cladding head 2 remains constant.
  • the relative displacement between the laser cladding head 2 and the substrate 1 during the part processing is because the part will have a certain height during the forming process. If the distance between the substrate 1 and the converging focal point 5 is not adjusted, the adhesion surface of the powder sprayed out will be The distance to the converging focal point 5 will become closer and closer, thereby affecting the best self-healing effect of the laser melting deposition of the part.
  • the relative displacement between the laser cladding head 2 and the substrate 1 can be realized by moving the laser cladding head 2 or the substrate 1 alone, or by moving the laser cladding head 2 and the substrate 1 simultaneously.
  • the laser melting deposition forming of I-shaped TC4 alloy parts is carried out.
  • the laser cladding head 2 moved 274.33 ⁇ m away from the substrate 1 .
  • the surface of the obtained TC4 alloy part is flat and free of depressions.

Abstract

一种利用激光熔化成形装置加工零件的方法,包括以下步骤:建立单道高度与离焦量之间的函数关系;对得到的函数求导,将对一阶导数等于零进行求解得到的不同的根分别代入二阶导数中,得到的二阶导数值中小于零的数值所对应的一阶导数的根的数值,将其中绝对值最小的根的数值记为第一数值;将对二阶导数等于零进行求解得到的不同的根的数值分别代入三阶导数中,得到的三阶导数值中小于零的数值所对应的二阶导数的根的数值记为第二数值;将第二数值减去第一数值,得到的结果中数值小于零且绝对值最小的数值所对应的第二数值,即为可实现最佳自愈合效果的离焦量的取值,以获得最佳的离焦量的参数。

Description

利用激光熔化成形装置加工零件的方法
本申请要求申请日为2021/6/3的中国专利申请202110616613.8的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种利用激光熔化成形装置加工零件的方法。
背景技术
激光熔化沉积技术作为典型金属增材制造技术之一,其基于“离散+堆积”原理,将零件的三维模型进行切片,离散成二维信息并进行运动路径规划,以激光为热源在基体上形成熔池,结合同步粉末输送,实现粉末在熔池内快速熔化并凝固,逐层沉积完成零件三维实体成形。该技术具有高柔性、短周期、高性能及无模具近净成形特点,在航空航天大尺寸金属构件成形及高价值零件修复方面应用广泛。
在零件激光熔化沉积成形/修复过程中,受加工工艺及零件结构影响,零件表面易出现凹凸不平缺陷,在严重情况下,零件成形/修复过程无法继续进行。现有技术中有文献提出在激光熔化沉积过程中存在“自愈合效应”,并解释了激光熔化沉积自愈合效应的原理,指出加工平面在负离焦条件下,表面起伏会随着沉积层数的增加而逐渐减小,最终得到平整表面,并且此过程无需人为干预,而是通过工艺自身调整从不稳定状态恢复到稳定状态。虽然现有技术中有文献推荐采用负离焦工艺进行零件加工,但对如何获得激光熔化沉积过程最佳自愈合的离焦量的参数未做进一步说明。
发明内容
本发明要解决的技术问题是克服现有技术中通过激光熔化沉积技术生 成零件过程中无法确定离焦量的参数,导致加工的零件无法实现最佳自愈合效果的缺陷,提供一种利用激光熔化成形装置加工零件的方法。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供了一种利用激光熔化成形装置加工零件的方法,包括以下步骤:
S1、保证激光熔化成形装置的其他工艺参数相同的条件下,设定不同参数的离焦量进行单道实验,并测量在不同参数下的离焦量对应的单道的高度;
S2、以离焦量为自变量,单道的高度为因变量,建立单道的高度与离焦量之间的函数,其中,函数为至少四次函数;
S3、对得到的函数进行一阶求导和二阶求导得到一阶导数和二阶导数,将对一阶导数等于零进行求解得到的不同的根的数值分别代入二阶导数中,得到的二阶导数值中小于零的数值所对应的一阶导数的根的数值,将其中绝对值最小的根的数值记为第一数值;
S4、对得到的函数进行三阶求导得到三阶导数,将对二阶导数等于零进行求解得到的不同的根的数值分别代入三阶导数中,得到的三阶导数值中小于零的数值所对应的二阶导数的根的数值记为第二数值;
S5、将第二数值减去第一数值,得到的结果中数值小于零且绝对值最小的数值所对应的第二数值,即为可实现最佳自愈合效果的离焦量的取值;
S6、获取所述激光熔化成形装置的汇聚焦点,所述汇聚焦点为所述激光熔化成形装置的激光熔覆头发射的激光和喷出的粉末的汇聚点,根据步骤S5得到的离焦量的数值调节所述汇聚焦点与零件成形的基板的初始距离;
S7、将步骤S5得到的离焦量的数值代入步骤S2的函数中得到对应的单道的高度数值,根据得到的单道的高度数值设置激光熔覆头与零件成形的基板的相对位移量,以使所述汇聚焦点与所述激光熔覆头喷出的粉末的附着面的距离保持不变。
在本方案中,通过限定其他工艺参数获得不同离焦量与单道高度之间的函数关系可以快速获得最佳的离焦量的参数,实现激光熔化沉积成形/修复过程零件表面局部起伏快速自愈合,促进了零件加工层厚的一致性,有助于获得均匀一致的组织及性能。
较佳地,在步骤S1中,离焦量的参数的数值选取需涵盖正离焦、零离焦及负离焦。
在本方案中,离焦量的参数的数值选取涵盖正离焦、零离焦及负离焦可以使数据具有多样性,从而可以使得到的函数具有较高的准确性,保证了得到的最佳的离焦量的参数的准确性。
较佳地,在步骤S1中,采用金相法测量不同离焦量条件下的单道高度。
在本方案中,通过金相法测量单道高度可以得到更加准确的单道高度,保证后续得到的最佳的离焦量的参数的准确性。
较佳地,在步骤S1中,每次单道实验时需要保证基板的温度与前一次单道实验中基板的温度相同。
在本方案中,避免前一次单道实验产生的温度对后一次的单道实验造成干扰,影响单道实验的准确性。
较佳地,在步骤S1中,离焦量的参数至少选取5组。
在本方案中,采用多组参数增加实验的可靠性。
较佳地,在步骤S1中,进行不同参数下的离焦量单道试验时,保证不同离焦量参数下的激光功率、激光扫描速度、光斑直径、送粉率、载粉气流量、镜头保护气流量的工艺参数不变。
较佳地,在步骤S1中,进行不同参数下的离焦量单道试验时,激光功率2800W、激光扫描速度1000mm/min、光斑直径5mm,送粉率28g/min、载粉气流量8L/min、镜头保护气流量20L/min。
较佳地,在步骤S2中,单道高度与离焦量之间函数关系为四次函数。
在本方案中,采用四次函数关系可以在得到较为准确的离焦量参数的前提下降低工作量,提高了工作效率。
较佳地,在步骤S2中,通过多项式拟合的方式建立单道的高度与离焦量之间的函数关系。
在本方案中,通过多项式拟合的方式建立函数关系,简单便捷,降低了实验人员的工作量。
较佳地,进行多项式拟合时,需保证相关系数不小于0.995。
在本方案中,进行多项式拟合时使相关系数不小于0.995,保证了得到的函数的准确性,从而可以得到更为准确的最佳的离焦量的参数。
名词解释:
离焦量:零件在激光熔化沉积成形/修复过程中,零件的加工平面相对于激光(或粉末)汇聚焦点的偏移量,其中:位于汇聚焦点的离焦为零离焦,自汇聚焦点远离激光熔覆头方向的离焦为正离焦,自汇聚焦点靠近激光熔覆头方向的离焦为负离焦。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实施例。
本发明的积极进步效果在于:本发明通过限定其他工艺参数获得不同离焦量与单道高度之间的函数关系可以快速获得最佳的离焦量的参数,实现激光熔化沉积成形/修复过程零件表面局部起伏快速自愈合,促进了零件加工层厚的一致性,有助于获得均匀一致的组织及性能。
附图说明
图1为本发明实施例中利用激光熔化成形装置加工零件的方法的流程示意图。
图2为本发明较佳实施例中进行激光熔化沉积单道实验时离焦量示意图。
图3为本发明较佳实施例中进行激光熔化沉积单道实验时单道的高度的测量示意图。
图4为本发明较佳实施例中离焦量与单道的高度之间的函数关系。
图5为采用离焦量x=-2mm对工字型TC4合金零件进行激光熔化沉积成形后零件表面示意图。
图6为采用本发明较佳实施例中计算得到的离焦量x=-5.2mm对工字型TC4合金零件进行激光熔化沉积成形后零件表面示意图。
附图标记说明:基板1;激光熔覆头2;激光3;粉末4;汇聚焦点5;单道6。
具体实施方式
下面通过实施例的方式并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在该实施例范围之中。
如图1所示,为本实施例公开的一种利用激光熔化成形装置加工零件的方法,包括以下步骤:
S1、保证激光熔化成形装置的其他工艺参数相同的条件下,设定不同参数的离焦量进行单道实验,并测量在不同参数的离焦量对应生成的单道的高度;
S2、以离焦量为自变量,单道的高度为因变量,建立单道的高度与离焦量之间的函数,其中,函数为至少四次函数;
S3、对得到的函数进行一阶求导和二阶求导得到一阶导数和二阶导数,将对一阶导数等于零进行求解得到的不同的根的数值分别代入二阶导数中,得到的二阶导数值中小于零的数值所对应的一阶导数的根的数值,将其中绝对值最小的根的数值记为第一数值;
S4、对得到的函数进行三阶求导得到三阶导数,将对二阶导数等于零进行求解得到的不同的根的数值分别代入三阶导数中,得到的三阶导数值中小 于零的数值所对应的二阶导数的根的数值记为第二数值;
S5、将第二数值减去第一数值,得到的结果中数值小于零且绝对值最小的数值所对应的第二数值,即为可实现最佳自愈合效果的离焦量的取值;
S6、获取激光熔化成形装置的汇聚焦点,汇聚焦点为激光熔化成形装置的激光熔覆头发射的激光和喷出的粉末的汇聚点,根据步骤S5得到的离焦量的数值调节汇聚焦点与零件成形的基板的初始距离;
S7、将步骤S5得到的离焦量的数值代入步骤S2的函数中得到对应的单道的高度数值,根据得到的单道的高度数值设置激光熔覆头与零件成形的基板的相对位移量,以使汇聚焦点与激光熔覆头喷出的粉末的附着面的距离保持不变。
本实施例中,采用上述利用激光熔化成形装置加工零件的方法,通过限定其他工艺参数获得不同离焦量与单道高度之间的函数关系可以快速获得最佳的离焦量的参数,实现激光熔化沉积成形/修复过程零件表面局部起伏快速自愈合,促进了零件加工层厚的一致性,有助于获得均匀一致的组织及性能。
离焦量的定义如图2所示,位于激光3和粉末4的汇聚焦点5的离焦为零离焦,自汇聚焦点5远离激光熔覆头2的方向的离焦为正离焦,自汇聚焦点5靠近激光熔覆头2的方向的离焦为负离焦。离焦量的参数的数值选取涵盖正离焦、零离焦及负离焦可以使数据具有多样性,从而可以使得到的函数具有较高的准确性,保证了得到的最佳的离焦量的参数的准确性。
在本实施例中,在步骤S1中,离焦量的参数的数值选取需涵盖正离焦、零离焦及负离焦。开展不同离焦量条件下单道实验时,采用单一变量法实验,在保证不同离焦量参数下的激光功率、激光扫描速度、光斑直径、送粉率、载粉气流量、镜头保护气流量的工艺参数不变等其他工艺参数恒定的条件下,进行不同离焦量条件下的单道实验。
在本实施例中,进行不同参数下的离焦量单道试验时,设定激光功率2800W、激光扫描速度1000mm/min、光斑直径5mm,送粉率28g/min、载粉气流量8L/min、镜头保护气流量20L/min。将离焦量x由-9mm增大到9mm,增量为3mm,合计开展7组激光熔化沉积单道实验。当然,为了使单道实验更加可靠、准确,可以增加实验的组数以及减小离焦量的增量。
每次单道实验时需要保证基板的温度与前一次单道实验中基板的温度相同。避免前一次单道实验产生的温度对后一次的单道实验造成干扰,降低基板热积累对单道几何形貌的影响。因此,每次完成单道扫描需保持氩气冲击基板冷却5min以上,确保在下一单道扫描前基板冷却到室温。
如图3所示,对不同离焦量条件下的单道6的高度h进行测量时,优选采用金相法测量。通过金相法测量单道6的高度可以得到更加准确的单道6的高度,保证后续得到的最佳的离焦量的参数的准确性。
在本实施例中,不同离焦量条件下的单道6的高度h与离焦量x的数据对应关系如下表1所示:
表1单道的高度h与离焦量x的数据对应关系
Figure PCTCN2022084933-appb-000001
本实施例中,多项式拟合可以采用Excel、origin等工具进行,通过辅助工具进行多项式拟合的方式建立函数关系,简单便捷,降低了实验人员的工作量。拟合的多项式为四次函数,采用四次函数关系可以在得到较为准确的离焦量参数的前提下降低工作量,提高了工作效率。进行多项式拟合时,需保证相关系数不小于0.995,用于保证得到的函数的准确性,从而可以得到 更为准确的最佳的离焦量的参数。
在本实施例中,以离焦量x为自变量,单道的高度h为因变量,建立单道的高度h与离焦量x之间的函数关系h=f(x),基于以上得到的数据,通过多项式拟合的方式得到本实施例中单道的高度h与离焦量x之间的函数关系f(x)=0.0252x 4-0.0076x 3-4.2708x 2+0.5296x+373.07,经计算,相关系数R 2=0.9984>0.995,表明离焦量x与单道高度h之间的相关性很好。
在其他实施例中,可以采用其他辅助工具进行多项式拟合,拟合的多项式可以为五次函数、六次函数,但至少为四次函数。
得到单道的高度h与离焦量x之间的函数关系f(x)后,对得到的函数f(x)进行一阶求导和二阶求导得到一阶导数f'(x)和二阶导数f”(x)将对一阶导数f'(x)等于零进行求解得到的不同的根的数值分别代入二阶导数f″(x)中,得到的二阶导数值中小于零的数值所对应的一阶导数f'(x)的根的数值,将其中绝对值最小的根的数值记为第一数值。第一数值也是实际可获得最大单道高度对应的离焦量的数值。
在本实施例中,对函数f(x)分别求一阶导数和二阶导数得到f'(x)=0.1008x 3-0.0228x 2-8.5416x+0.5296和f”(x)=0.3024x 2-0.0456x-8.5416。
当f'(x)=0时的根分别为x 11=-9.1、x 12=0.06和x 13=9.3,将x 11=-9.1、x 12=0.06和x 13=9.3分别代入f”(x)中,得到f”(x 11)、f”(x 12)和f”(x 13)的数值,将f”(x 11)、f”(x 12)和f”(x 13)的数值与0比较,其中只有f”(x 12)的数值小于零,f”(x 12)所对应的一阶导数f'(x)的根的数值为x 12=0.06。由此可获得最大单道高度对应的离焦量的数值为0.06mm,即离焦量的数值为0.06mm时,单道的高度h达到最大,为373μm。本实施例中,离焦量0.06为实现激光熔化沉积过程零件表面局部起伏能够实现自愈合效果,即离焦量取值范围为x∈[-∞,0.06]。
然后,对得到的函数f(x)进行三阶求导得到三阶导数f”'(x),f”'(x)=0.6048x-0.0456。将对二阶导数f”(x)等于零进行求解得到的不同的根的 数值分别代入三阶导数f″′(x)中,得到的二阶导数值中小于零的数值所对应的一阶导数f'(x)的根的数值,将其中绝对值最小的根的数值记为第一数值。得到函数的一阶导数的极大值点为三阶函数值中小于零的三阶函数值所对应的二阶导数f”(x)的根的数值。再将得到的第二数值减去第一数值,得到的结果中数值小于零且绝对值最小的数值所对应的第二数值,即为可实现最佳自愈合效果的离焦量的取值。
即在粉末负离焦条件下,采用f(x)函数最大斜率处的离焦量可实现最佳自愈合效果。粉末负离焦条件下,曲线最大斜率处单道高度对离焦量的变化最为敏感,加工过程中零件表面局部发生的微小凸起或凹陷在后续沉积过程中能以最快速度实现自愈合,从而得到平整表面。
在本实施例中,f”(x)=0的根分别为x 21=-5.2和x 22=5.4,将x 21=-5.2和x 22=5.4代入三阶导数f”'(x)中,得到f”'(x 21)和f”'(x 22),将f”'(x 21)和f”'(x 22)与0进行比较,将其中小于零的数值所对应的二阶导数f”(x)的根的数值记为第二数值。
在本实施例中,只有f”'(x 21)的数值小于零,因此第二数值只有-5.2。且,-5.2-0.06=-5.26<0,故离焦量为-5.2mm时可获得最佳自愈合效果。如图4所示,在x=-5.2时,A点处粉末负离焦且曲线曲率最大,可实现激光熔化沉积的最佳自愈合效果。
在本实施例中,得到离焦量的数值后开始对激光熔化成形装置进行设置和操作加工所需的零件。在对激光熔化成形装置进行设置时,先获取激光熔化成形装置的汇聚焦点,汇聚焦点为激光熔化成形装置的激光熔覆头发射的激光和喷出的粉末的汇聚点。然后根据得到的离焦量的数值调节汇聚焦点与零件成形的基板的初始距离。
参照图2所示,如果离焦量的数值为正,则零件成形的基板1设在汇聚焦点5远离激光熔覆头2的一侧(图2中示出的是离焦量数值为正的情形); 如果离焦量的数值为负,则零件成形的基板1设在汇聚焦点5靠近激光熔覆头2的一侧;如果离焦量的数值为零,则零件成形的基板1的成形表面设在汇聚焦点5所在的平面。在本实施例中,离焦量的数值为-5.2mm,表示使基板1位于汇聚焦点5靠近激光熔覆头2的一侧,且基板1的成形表面与汇聚焦点的距离为5.2mm。
调节好基板1的位置后,再将步骤5得到离焦量的数值代入步骤S2的函数中得到对应的单道的高度数值。根据得到的单道的高度数值设置激光熔覆头2与基板1的相对位移量,以使汇聚焦点5与激光熔覆头2喷出的粉末4的附着面的距离保持不变。
在零件加工过程中使激光熔覆头2与基板1发生相对位移是因为零件在成形过程中会产生一定的高度,如果不调节基板1与汇聚焦点5的距离,后喷出的粉末的附着面与汇聚焦点5的距离会越来越近,进而影响零件激光熔化沉积的最佳自愈合效果。激光熔覆头2与基板1的相对位移量可以通过单独移动激光熔覆头2或单独移动基板1来实现,也可通过同时移动激光熔覆头2和基板1来实现。
例如,在本实施例中,进行工字型TC4合金零件激光熔化沉积成形,离焦量x=-5.2mm对应的单道的高度h=274.33μm,工字型TC4合金零件加工过程中每次单道成形后激光熔覆头2朝远离基板1的方向移动274.33μm。
在本实施例中,采用离焦量x=-5.2mm进行工字型TC4合金零件激光熔化沉积成形时,如图6所示,得到的TC4合金零件表面平整无凹陷。
作为对比例,同样选择TC4合金零件进行激光熔化沉积成形实验,采用离焦量x=-2mm,其他工艺参数与离焦量x=-5.2mm时的相同,即激光功率2800W、激光扫描速度1000mm/min、光斑直径5mm,送粉率28g/min、载粉气流量8L/min、镜头保护气流量20L/min。如图5所示,得到的TC4合金零件心部表面出现凹陷。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (10)

  1. 一种利用激光熔化成形装置加工零件的方法,其特征在于:包括以下步骤:
    S1、保证激光熔化成形装置的其他工艺参数相同的条件下,设定不同参数的离焦量进行单道实验,并测量在不同参数下的离焦量对应的单道的高度;
    S2、以离焦量为自变量,单道的高度为因变量,建立单道的高度与离焦量之间的函数,其中,函数为至少四次函数;
    S3、对得到的函数进行一阶求导和二阶求导得到一阶导数和二阶导数,将对一阶导数等于零进行求解得到的不同的根的数值分别代入二阶导数中,得到的二阶导数值中小于零的数值所对应的一阶导数的根的数值,将其中绝对值最小的根的数值记为第一数值;
    S4、对得到的函数进行三阶求导得到三阶导数,将对二阶导数等于零进行求解得到的不同的根的数值分别代入三阶导数中,得到的三阶导数值中小于零的数值所对应的二阶导数的根的数值记为第二数值;
    S5、将第二数值减去第一数值,得到的结果中数值小于零且绝对值最小的数值所对应的第二数值,即为可实现最佳自愈合效果的离焦量的取值;
    S6、获取所述激光熔化成形装置的汇聚焦点,所述汇聚焦点为所述激光熔化成形装置的激光熔覆头发射的激光和喷出的粉末的汇聚点,根据步骤S5得到的离焦量的数值调节所述汇聚焦点与零件成形的基板的初始距离;
    S7、将步骤S5得到的离焦量的数值代入步骤S2的函数中得到对应的单道的高度数值,根据得到的单道的高度数值设置激光熔覆头与零件成形的基板的相对位移量,以使所述汇聚焦点与所述激光熔覆头喷出的粉末的附着面的距离保持不变。
  2. 如权利要求1所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,离焦量的参数的数值选取需涵盖正离焦、零离焦及负 离焦。
  3. 如权利要求1或2所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,采用金相法测量不同离焦量条件下的单道的高度。
  4. 如权利要求1-3中至少一项所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,每次单道实验时需要保证基板的温度与前一次单道实验中基板的温度相同。
  5. 如权利要求1-4中至少一项所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,离焦量的参数至少选取5组。
  6. 如权利要求1-5中至少一项所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,进行不同参数下的离焦量单道试验时,保证不同离焦量参数下的激光功率、激光扫描速度、光斑直径、送粉率、载粉气流量、镜头保护气流量的工艺参数不变。
  7. 如权利要求6所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S1中,进行不同参数下的离焦量单道试验时,激光功率2800W、激光扫描速度1000mm/min、光斑直径5mm,送粉率28g/min、载粉气流量8L/min、镜头保护气流量20L/min。
  8. 如权利要求1-7中至少一项所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S2中,单道高度与离焦量之间函数关系为四次函数。
  9. 如权利要求1-8中至少一项所述的利用激光熔化成形装置加工零件的方法,其特征在于,在步骤S2中,通过多项式拟合的方式建立单道高度与离焦量之间的函数关系。
  10. 如权利要求9所述的利用激光熔化成形装置加工零件的方法,其特征在于,进行多项式拟合时,需保证相关系数不小于0.995。
PCT/CN2022/084933 2021-06-03 2022-04-01 利用激光熔化成形装置加工零件的方法 WO2022252798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22814845.8A EP4349508A1 (en) 2021-06-03 2022-04-01 Method for machining part using a laser melting forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110616613.8 2021-06-03
CN202110616613.8A CN113059188B (zh) 2021-06-03 2021-06-03 利用激光熔化成形装置加工零件的方法

Publications (1)

Publication Number Publication Date
WO2022252798A1 true WO2022252798A1 (zh) 2022-12-08

Family

ID=76568550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084933 WO2022252798A1 (zh) 2021-06-03 2022-04-01 利用激光熔化成形装置加工零件的方法

Country Status (3)

Country Link
EP (1) EP4349508A1 (zh)
CN (1) CN113059188B (zh)
WO (1) WO2022252798A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059188B (zh) * 2021-06-03 2021-10-01 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法
DE102021132139A1 (de) * 2021-12-07 2023-06-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers
CN114632945A (zh) * 2022-03-18 2022-06-17 南华大学 激光金属直接成形工艺的形貌误差补偿方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590571A (zh) * 2009-05-22 2009-12-02 西安交通大学 基于自愈合机制的激光金属直接成形实验方法
JP2011092953A (ja) * 2009-10-27 2011-05-12 Fujifilm Corp レーザ加工装置及びレーザ加工方法
CN104923784A (zh) * 2015-05-25 2015-09-23 苏州大学 一种提高激光变斑直接成形不等宽构件精度的方法
CN106424726A (zh) * 2016-09-29 2017-02-22 苏州大学 激光成形均匀变宽零件的方法
CN109487267A (zh) * 2018-12-18 2019-03-19 华侨大学 一种智能激光再制造方法和系统
JP2019178368A (ja) * 2018-03-30 2019-10-17 アイシン・エィ・ダブリュ株式会社 アルミニウム合金製部材及びアルミニウム合金製部材の製造方法
CN110904405A (zh) * 2019-12-31 2020-03-24 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法
CN110976849A (zh) * 2019-12-31 2020-04-10 湖南大学 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法
CN113059188A (zh) * 2021-06-03 2021-07-02 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583955B2 (ja) * 2005-02-08 2010-11-17 三星ダイヤモンド工業株式会社 レーザ加工装置
RU2393056C1 (ru) * 2008-12-18 2010-06-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей из порошков
US11014161B2 (en) * 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
CN105772724B (zh) * 2016-04-30 2018-02-13 苏州柯莱得激光科技有限公司 一种提高激光金属3d成形件质量的方法
JP6749362B2 (ja) * 2018-03-30 2020-09-02 株式会社フジクラ 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法
CN110340529B (zh) * 2019-06-28 2021-01-19 西安交通大学 一种窄间隙激光填丝焊接板的坡口宽度计算方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590571A (zh) * 2009-05-22 2009-12-02 西安交通大学 基于自愈合机制的激光金属直接成形实验方法
JP2011092953A (ja) * 2009-10-27 2011-05-12 Fujifilm Corp レーザ加工装置及びレーザ加工方法
CN104923784A (zh) * 2015-05-25 2015-09-23 苏州大学 一种提高激光变斑直接成形不等宽构件精度的方法
CN106424726A (zh) * 2016-09-29 2017-02-22 苏州大学 激光成形均匀变宽零件的方法
JP2019178368A (ja) * 2018-03-30 2019-10-17 アイシン・エィ・ダブリュ株式会社 アルミニウム合金製部材及びアルミニウム合金製部材の製造方法
CN109487267A (zh) * 2018-12-18 2019-03-19 华侨大学 一种智能激光再制造方法和系统
CN110904405A (zh) * 2019-12-31 2020-03-24 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法
CN110976849A (zh) * 2019-12-31 2020-04-10 湖南大学 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法
CN113059188A (zh) * 2021-06-03 2021-07-02 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIWEI JIANG, FU GEYAN; ZHANG JIPING; JI SHAOSHAN; SHI SHIHONG; LIU FAN: "Prediction of geometrical shape of coaxial wire feeding cladding in three-beam", INFRARED AND LASER ENGINEERING, ZHONGGUO HANGTIAN KE-GONG JITUAN GONSI DI-3 YANJIUYUAN DI-8358 YANJIUSUO, CN, vol. 49, no. 3, 1 March 2020 (2020-03-01), CN , pages 300 - 308, XP093010206, ISSN: 1007-2276, DOI: 10.3788/IRLA202049.0305005 *

Also Published As

Publication number Publication date
CN113059188A (zh) 2021-07-02
CN113059188B (zh) 2021-10-01
EP4349508A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022252798A1 (zh) 利用激光熔化成形装置加工零件的方法
CN109778182B (zh) 一种激光熔覆增材成形高度在线监测装置及闭环控制方法
CN103197420B (zh) 一种激光聚焦装置
CN107262713A (zh) 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
CN106541136B (zh) 一种可调节光斑能量分布的激光直接沉积成形系统及方法
CN110508811A (zh) 一种增减材复合制造过程中的质量检测及自动修正方法
CN113664222A (zh) 一种用于定向能量沉积设备的复合激光装置与方法
CN112743297B (zh) 激光在线预加热辅助加工方法
CN109097797A (zh) 基于激光局部电镀的金属增材制造装置及方法
CN110795886B (zh) 尺寸余量确定方法、成形方法、成形装置及可读存储介质
CN109175689B (zh) 一种基于视觉检测的自适应角焊系统及工作方法
CN206298642U (zh) 一种基于双焦点透镜产生预热和缓冷光的激光熔覆设备
CN111575702B (zh) 一种激光熔覆方法及系统
CN104289806A (zh) 一种薄壁铝合金电子束焊接方法
CN112439971A (zh) 一种自适应非平整面的连续电弧增材制造方法及装置
CN216126556U (zh) 一种用于定向能量沉积设备的复合激光装置
CN112404712A (zh) 一种用于热塑复合材料与金属激光连接的气体冷却装置与方法
CN110538997B (zh) 一种激光预熔覆辅助等离子增材制造设备与方法
CN105772724B (zh) 一种提高激光金属3d成形件质量的方法
CN114985944A (zh) 一种自适应激光刻型方法
CN109014677A (zh) 基于激光测距的焊接机器人焊点位置示教方法
CN108763704B (zh) 基于激光立体成形自愈合效应的宏观热应力场有限元建模方法
CN108481735B (zh) 基于自适应分层切片的结构件外形尺寸控制方法及装置
US11878369B1 (en) Laser scanning welding method for lap joints based on linear energy density regulation
CN112692400A (zh) Tig电弧増材成形时变参数定距自适应控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022814845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022814845

Country of ref document: EP

Effective date: 20240103

ENP Entry into the national phase

Ref document number: 2022814845

Country of ref document: EP

Effective date: 20240103