WO2022252544A1 - 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法 - Google Patents

注入合成后连续lec与vgf结合制备化合物半导体晶体的方法 Download PDF

Info

Publication number
WO2022252544A1
WO2022252544A1 PCT/CN2021/136319 CN2021136319W WO2022252544A1 WO 2022252544 A1 WO2022252544 A1 WO 2022252544A1 CN 2021136319 W CN2021136319 W CN 2021136319W WO 2022252544 A1 WO2022252544 A1 WO 2022252544A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
vgf
synthesis
melt
furnace body
Prior art date
Application number
PCT/CN2021/136319
Other languages
English (en)
French (fr)
Inventor
王书杰
孙聂枫
卜爱民
付莉杰
邵会民
刘峥
徐森锋
史艳磊
李晓岚
王阳
孙同年
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US18/294,938 priority Critical patent/US20240209545A1/en
Publication of WO2022252544A1 publication Critical patent/WO2022252544A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Definitions

  • the invention relates to a method for preparing compound semiconductor crystals by combining continuous LEC and VGF after injection synthesis, and is especially suitable for compound semiconductors with volatile elements, such as indium phosphide, gallium phosphide and other materials.
  • Compound semiconductor materials such as indium phosphide and gallium phosphide. It is widely used in many high-tech fields such as optical fiber communication, microwave and millimeter wave devices, solar cells, etc., and is widely used in military and civilian fields such as aerospace, network communication, and radar.
  • the synthesis methods of compound semiconductors mainly include: direct synthesis, diffusion synthesis and injection synthesis.
  • diffusion synthesis and injection synthesis are usually required.
  • Injection synthesis can greatly shorten the synthesis time, avoid the introduction of impurities, and improve the purity of materials.
  • the direct preparation of crystals after injection synthesis can not only reduce the preparation time of crystals but also reduce the preparation steps, and greatly improve the physical quality of crystals.
  • Bridgman technology is divided into: Vertical Bridgman technology (Vertical Bridgman, VB), horizontal Bridgman technology (Horizontal Bridgman, HB), vertical gradient Freezing technology (Vertical Gradient Freezing, VGF) and horizontal gradient freezing technology (Horizontal Gradient Freezing, HGF), etc.
  • liquid-encapsulated Czochralski technology and vertical gradient solidification technology (VGF) are the most important methods for preparing compound semiconductors such as indium phosphide and gallium phosphide.
  • LEC liquid-encapsulated Czochralski technology
  • VVF vertical gradient solidification technology
  • the technical problem to be solved by the present invention is to provide a method for preparing compound semiconductor crystals by combining continuous LEC and VGF after injection synthesis. Suck back into the VGF crucible.
  • LEC seeding and shouldering under high temperature gradient are carried out to suppress twins, and then VGF growth is carried out in the remaining melt of the VGF crucible to prepare low-defect crystals. Realize the preparation of high-quality low-defect crystals at a higher yield.
  • the technical solution adopted in the present invention is: a method for preparing compound semiconductor crystals by combining continuous LEC and VGF after injection synthesis, based on the system for preparing compounds, the system includes a main furnace body, and is located above the main furnace body.
  • the bottom of the crucible is provided with a pipette, and non-metallic raw materials are housed in the synthetic injection system, and the method of the present invention may further comprise the steps:
  • Step A vacuumize the system for preparing the compound to 10-5Pa-10Pa, and then fill the system with inert gas;
  • Step B heating the synthesis crucible to the synthesis temperature to melt the metal raw material and boron oxide I in the synthesis crucible, and then move the synthesis crucible upward to the synthesis position;
  • Step C Heating the VGF crucible to above the melting point of the compound semiconductor crystal and melting the boron oxide II in the VGF crucible, moving the synthesis injection system downwards so that the end of the injection synthesis tube moves to the metal raw material in the synthesis crucible to synthesize the first melt body, after the synthesis is completed, the synthesis injection system moves upward to make the end of the injection synthesis pipe separate from the first melt;
  • Step D slowly reducing the pressure in the VGF crucible so that the first melt in the synthesis crucible enters the VGF crucible through a pipette to form a second melt;
  • Step E heating the VGF crucible so that the second melt in it obtains a temperature gradient of 20-50K/cm, and boron oxide II obtains a temperature gradient of 100-150K/cm;
  • Step F start the rotation and descent of the seed crystal, lower the seed crystal rod until the seed crystal touches the second melt, then pull the seed crystal rod for crystal growth, and stop the seed crystal rotation when the size of the crystal is close to the crucible wall of the VGF crucible and Tira;
  • Step G after the crystal growth is completed, adjust the heating temperature so that the second melt obtains a temperature gradient of 3-5K/cm, and control the growth of VGF;
  • Step H after the cooling is completed, stop the heating and connect the inside of the system with the atmosphere, and take out the crystals.
  • the beneficial effects of the invention are: the upper part is a VGF growth part, and the lower part is a synthesis part; the VGF growth part is sucked back into the VGF growth part, and at the same time, the VGF growth part is equipped with a seed rod and an observation system, and gas control can also be performed.
  • the VGF growth part is equipped with a seed rod and an observation system, and gas control can also be performed.
  • high-temperature gradient seeding and shouldering are implemented, and then the grown-up crystals are used to grow VGF crystals under low temperature gradients to achieve high-quality low-defect crystals at a high yield;
  • a VGF crucible is designed, which absorbs the synthesized melt through a pipette, and there is a storage tank inside to store the boron oxide required for the growth of VGF and LEC.
  • the boron oxide at this place can cover the inner wall of the VGF tube as the melt rises, so that the crystal can be separated from the crucible as a whole in the later stage;
  • a transfer fixture is designed to connect the upper furnace cover and the VGF crucible, and the interior is upgraded to water cooling, and at the same time, the end face of the VGF crucible is sealed by the snap ring and the rubber ring, and the airflow is blocked by the cooling column and the VGF crucible retaining ring structure, further reducing the airflow near the rubber ring. temperature;
  • the optimal position of the synthesis crucible is such that the bottom of the pipette is inserted into the first melt or boron oxide I inside the synthesis crucible, inject inert gas through the VGF crucible to prevent back suction during the synthesis process.
  • Fig. 1 is the structural representation of the system of preparing compound in the method of the present invention
  • Fig. 2 is a schematic diagram of the main furnace body structure
  • Figure 3 is a schematic diagram of the assembly of the transfer fixture, the upper furnace cover and the VGF crucible;
  • Fig. 4 is the front view of the transfer fixture
  • Fig. 5 is a rear view of the transfer fixture
  • Fig. 6 is the sectional view of A-A direction in Fig. 4;
  • Fig. 7 is a schematic diagram of injection synthesis system
  • Fig. 8 is a schematic diagram of furnace loading
  • Figure 9 is a schematic diagram of synthesis
  • Figure 10 is a schematic diagram of sucking back
  • Figure 11 is a schematic diagram of LEC seeding and shoulder crystal growth
  • Fig. 12 is a schematic diagram of VGF crystal growth.
  • 1 main furnace body; 1-1 main furnace body opening; 2: upper furnace body; 2-1: upper furnace cover; 3: base; 4: main column; 4-1: upper furnace body Driving device; 4-2: first auxiliary rod; 4-3: main furnace body driving device; 4-4: second auxiliary rod; 5: upper furnace body support platform; 5-1: upper furnace body cleaning hole; 5 -2: supporting column of upper furnace body; 6: supporting platform of main furnace body; 6-1: cleaning hole of main furnace body; 6-2: supporting column of main furnace body; 7: loading platform of seed rod driving device; 8: seed Crystal rod driving device; 9: seed crystal rod; 10: upper observation window; 11: transfer fixture; 11-1: balance gas pipe; 11-2: first sealing ring; 11-3: second sealing ring; 11 -4: snap ring; 11-5: screw hole; 11-6: transfer hole; 11-7: center hole; 11-8: sealing groove; 11-9: observation hole; 11-10: crucible slot; 11-11: cooling column; 12: first synthetic driving motor; 13: second synthetic driving motor;
  • the method for preparing compound semiconductor crystals by combining continuous LEC after injection synthesis and VGF according to the present invention is realized based on the system for preparing compounds.
  • the above system includes a frame, a main furnace body 1, an upper furnace body 2 above the main furnace body 1, a synthesis crucible 17 located in the main furnace body 1, a VGF crucible 29 located in the upper furnace body 2, and a seed rod 9 , synthetic injection system 16 and other components.
  • the synthesis crucible 17 is equipped with metal raw materials and boron oxide I 47
  • the VGF crucible 29 is equipped with boron oxide II 47-1
  • the synthesis injection system 16 is equipped with non-metallic raw materials.
  • the frame includes a base 3, a main column 4, an upper furnace body support platform 5, and a main furnace body support platform 6.
  • the main column 4 is provided with an upper furnace body driving device 4-1, a first auxiliary rod 4-2, a main furnace body driving device 4-3, a second auxiliary rod 4-3, and the like.
  • the main furnace body 1 is connected with the main furnace body driving device 4-3 connected on the main column 4 through the second auxiliary rod 4-4.
  • the movement of the main furnace body driving device 4-3 drives the main furnace body 1 to carry out lifting and rotating movements, so that the main furnace body 1 is moved to the base 3 and the main furnace body supporting platform 6 .
  • the upper furnace cover 2-1 in the upper furnace body 2 is connected with the upper furnace body driving device 4-1 connected on the main column 4 through the first auxiliary rod 4-2.
  • the upper furnace cover 2-1 is driven up and down and rotated by the upper furnace body drive device 4-1, so that the upper furnace body 2 can move to the main furnace body 1 and the upper furnace body support platform 5.
  • the main furnace body driving device 4-3 and the upper furnace body driving device 4-1 can be linear driving devices such as oil cylinders driven by a rotary motor.
  • the upper furnace body 2 can move onto the upper furnace body supporting platform 5
  • the main furnace body 1 can move onto the main furnace body supporting platform 6 .
  • the upper furnace body support platform 5 is provided with an upper furnace body cleaning hole 5-1 and an upper furnace body support platform column 5-2.
  • the main furnace body supporting platform 6 is provided with a main furnace body cleaning hole 6-1 and a main furnace body supporting platform column 6-2.
  • the maximum height of the main column 4 is the height at which the lower end of the liquid suction pipe 29-1 can be separated from the highest end of the main furnace body 1 after the upper furnace body 2 is raised.
  • the seed rod 9 with the seed crystal 44 fixed on the bottom is rotated and moved up and down by the seed rod driving device 8 .
  • the seed crystal rod driving device 8 is assembled on the seed crystal rod driving loading platform 7 connected with the upper furnace cover 2-1 to drive the seed crystal rod 9 to move up and down and rotate.
  • the seed rod driving device 8 includes a rotating assembly and a lifting assembly.
  • the rotating assembly includes a rotating motor and an intermediate plate connected to the rotating shaft of the rotating electrical machine; the lifting assembly is fixed on the intermediate plate and includes an electric push rod whose end is connected with the seed rod 9 . It can also be that the lifting assembly includes an electric push rod, and the end of the electric push rod is connected with the middle plate, and the rotating assembly includes a rotating motor fixed on the middle plate and a seed rod 9 connected with the rotating shaft of the rotating motor.
  • the main furnace body 1 is fixed on the base 3 .
  • a crucible support 18 is provided in the main furnace body 1 , and a synthesis crucible 17 is provided inside the crucible support 18 .
  • the main furnace body 1 is also provided with an upper observation window 10 .
  • the base 3 is provided with an inflatable tube 25 and a vacuum tube 26 communicated with the main body of furnace 1.
  • the crucible support driving device that drives the crucible support 18 to rotate and move up and down.
  • the crucible support drive device includes a crucible rod 22 and a crucible rod drive 23 .
  • the crucible rod 22 passes through the base 3 upwards into the interior of the main furnace body 1 and is connected to the crucible support 18 .
  • the crucible rod drive 23 is assembled on the crucible rod drive loading platform 24 to realize up and down movement and rotation.
  • a crucible rod thermocouple 27 is also provided on the crucible rod 22 .
  • the crucible rod drive 23 includes an electric push rod fixed on the crucible rod drive loading platform 24, a connecting plate connected to the electric push rod, a rotating motor fixed on the connecting plate, and the rotating shaft of the rotating motor links to each other with the crucible rod 22.
  • a heating system is provided outside the crucible support 18 .
  • the heating system includes a main heater 19 and an auxiliary heater 19-1.
  • the crucible support 18 and the synthesis crucible 17 are heated by the main heater 19 on the periphery of the crucible support 18 and the auxiliary heater 19 - 1 located at the lower part of the main heater 19 .
  • a first thermal insulation jacket 21 for insulating the heating system is provided outside the main heater 19 .
  • the synthesis injection system 16 includes an injection synthesis heater 16-1, a loader 16-2 and a 16-3 injection synthesis pipe.
  • the upper part of the upper main furnace body 1 is provided with a first synthesis drive motor 12 and a second synthesis drive motor 13, and the first synthesis drive motor 12 and the second synthesis drive motor 13 are connected to the corresponding synthesis injection system 16 through a synthesis rotating rod 15 and driven
  • the synthesis injection system 16 is lifted up and down so that the synthesis injection pipe 16 - 3 is inserted into the synthesis crucible 17 .
  • the synthesis driving motor and the synthesis rotating rod 15 realize driving the synthesis injection system 16 to ascend and descend through a screw nut mechanism or a rack and pinion mechanism.
  • the upper furnace body 2 is arranged at the main furnace body opening 1-1 on the main furnace body 1 .
  • the upper furnace cover 2-1, the upper furnace body 2, the main furnace body 1 and the base 3 constitute a sealed furnace chamber.
  • the inner side of the upper furnace cover 2-1 is provided with a transfer fixture 11, and the VGF crucible 29 is arranged in the upper furnace body 2 through the transfer fixture 11.
  • a screw hole 11-5 is provided on the transfer fixture 11, and the fastening screw 49 passes through the screw hole 11-5 to fix the transfer fixture 11 on the upper furnace cover 2-1.
  • a sealing groove is provided on the contact surface between the upper furnace cover 2-1 and the transfer fixture 11, and a first sealing ring 11-2 is arranged in the sealing groove.
  • the upper part of the transfer fixture 11 is connected with a balance gas pipe 11 - 1 , and the balance gas pipe 11 - 1 passes upward through the upper furnace cover 2 - 1 for adjusting the pressure in the VGF crucible 29 .
  • the upper furnace cover 2-1 is also equipped with a differential pressure pipe 52, and the differential pressure pipe 52 is connected with the balance gas pipe 11-1.
  • a differential pressure gauge 51 is installed on the differential pressure tube 52 for measuring the pressure difference between the VGF crucible 29 and the furnace body.
  • the adapter fixture 11 is provided with a snap ring 11-4 and a cooling column 11-11, and the annular gap between the snap ring 11-4 and the cooling column 11-11 forms a crucible slot 11-10.
  • the inner surface of the snap ring 11-4 is provided with a sealing groove 11-8 for placing the second sealing ring 11-3.
  • the VGF crucible 29 is placed in the crucible slot 11-10, and the sealing between the snap ring 11-4 and the VGF crucible 29 is realized through the second sealing ring 11-3.
  • the thickness of boron oxide II 47-1 is greater than 2.5 cm for establishing a sufficiently high temperature gradient and reducing the temperature above the boron oxide II 47-1.
  • the distance between the surface of boron oxide II 47-1 and the lower end of the snap ring 11-4 and the cooling column 11-11 is more than 15cm.
  • the external water circulation device is connected through the cooling column 11-11 to realize water cooling inside the snap ring 11-4 and the entire adapter fixture 11, so as to reduce the temperature at the second sealing ring 11-3 and increase the boron oxide temperature.
  • the seed rod thermocouple 42 is horizontally located in the clasp 11-4, and is used to detect the ambient temperature of the rubber ring near the clasp 11-4.
  • the distance between the lower end of the cooling column 11 - 11 inserted into the VGF crucible 29 is greater than the distance between the VGF crucible stop ring 29 - 5 and the upper port of the VGF crucible 29 .
  • transfer holes 11 - 6 are provided on the transfer fixture 11 for connecting the thermocouples in the upper insulation layer 30 .
  • the seed crystal hole of the upper furnace cover 2 - 1 and the central hole 11 - 7 of the transfer fixture 11 are concentric holes for passing through the seed crystal rod 9 .
  • the observation hole of the upper furnace cover 2 - 1 and the observation hole 11 - 9 of the transfer fixture 11 are concentric holes for passing through the upper observation window 10 .
  • the upper observation window 10 is hermetically connected with the upper furnace cover 2-1.
  • the bottom of the VGF crucible 29 is provided with a suction pipe 29 - 1 through which the melt is sucked back into the VGF crucible 29 .
  • the lower end surface of the pipette 29-1 is 1-5mm away from the bottom of the synthesis crucible 17.
  • the amount of the first melt 20 after the synthesis is designed in the synthesis crucible 17 is to ensure that after the required amount of the second melt 45 is met, the remaining melt in the synthesis crucible 17 can be submerged for more than 10mm at the bottom of the suction pipe 29-1.
  • VGF crucible 29 is connected to the suction pipe 29-1, there is an extension pipe 29-2 entering the inside of the VGF crucible 29, and the extension pipe 29-2 and the VGF crucible 29 can form a storage tank 29-3.
  • the boron oxide II 47-1 is placed in the storage tank 29-3, and the height of the extension tube 29-2 is such that the volume of the storage tank 29-3, which can be formed with the VGF crucible 29, is greater than the volume of the boron oxide II 47-1 after melting, so that it will not overflow .
  • the inner wall of the VGF crucible 29 is provided with a VGF crucible retaining ring 29-5, which is used to prevent hot air from entering between the VGF crucible 29 and the cooling column 11-11, and reduce the temperature at the second sealing ring 11-3.
  • a VGF crucible support 29-4 is arranged outside the VGF crucible 29 .
  • a heating system is provided outside the VGF crucible support 29 - 4 , and the heating system includes a first heater 31 , a second heater 32 , a third heater 33 , a fourth heater 34 , a fifth heater 35 and a heater 36 .
  • the first heater 31, the second heater 32, the third heater 33, the fourth heater 34, and the fifth heater 35 on the outside of the VGF crucible support 29-4 are heated to the VGF crucible 29; Liquid pipe 29-1 is heated.
  • the first heater 31, the second heater 32, the third heater 33, the fourth heater 34, and the fifth heater 35 are provided with an upper insulation layer 30 on the outer layer, and an upper insulation layer shell 28 is arranged on the outer layer of the upper insulation layer 30.
  • a pipette heat insulating layer 37 is arranged around the pipette heater 36 .
  • the first heater 31 , the second heater 32 , the third heater 33 , and the fourth heater 34 inside the upper insulation layer 30 heat the VGF crucible 29 .
  • a first thermocouple 38, a second thermocouple 39, a third thermocouple 40, and a fourth thermocouple 41 are arranged in sequence near the first heater 31, the second heater 32, the third heater 33, and the fourth heater 34;
  • a seed rod thermocouple 42 is arranged inside the seed rod 9 .
  • the seed rod 9 can enter the VGF crucible 29 through the upper furnace cover 2-1 and the central hole 11-7 on the transfer fixture 11 .
  • the present invention provides a method for preparing compound semiconductor crystals by combining continuous LEC and VGF after injection synthesis.
  • Metal raw materials and boron oxide I 47 are housed in the synthesis crucible 17
  • boron oxide II 47-1 is housed in the VGF crucible 29
  • the bottom of 29 is provided with a liquid suction pipe 29-1, and non-metal raw materials are housed in the synthetic injection system 16, and the method includes the following steps.
  • Step A Vacuumize the compound preparation system to 10 ⁇ 5 Pa-10 Pa through the vacuum tube 26 , and then fill the system with an inert gas through the gas tube 25 .
  • Step B Heat the synthesis crucible 17 to the synthesis temperature through the supporting heating system to melt the metal raw material and boron oxide I47 in the synthesis crucible 17, and then move the synthesis crucible 17 upward to the synthesis position through the crucible supporting drive device.
  • Step C Heat the VGF crucible 29 through the matching heating system to reach the melting point of the compound semiconductor crystal and melt the boron oxide II 47-1 in the VGF crucible 29.
  • the synthesis injection system 16 moves downward to inject the end of the synthesis tube 16-3
  • the first melt 20 is synthesized in the metal raw material that is partially moved to the synthesis crucible 17. After the synthesis is completed, the synthesis injection system 16 moves upward to make the end of the injection synthesis pipe 16-3 break away from the first melt 20.
  • the inert gas While synthesizing, the inert gas is slowly poured into the VGF crucible 29 through the balance gas pipe 11-1, and the inert gas injects bubbles into the first melt 20 through the pipette 29-1, and the rate of the bubbles is 0.5-20 per second; synthesis After completion, stop injecting the inert gas into the VGF crucible 29, and keep 1-5 mm between the suction pipe 29-1 and the bottom of the synthesis crucible 17.
  • Step D Slowly reduce the pressure in the VGF crucible 29 through the balance gas pipe 11-1 so that the first melt 20 in the synthesis crucible 17 enters the VGF crucible 29 through the suction pipe 29-1 to form the second melt 45 .
  • Step E heating the VGF crucible 29 to obtain a temperature gradient of 20-50K/cm for the second melt 45 and 100-150K/cm for the boron oxide II 47-1.
  • the seeding rate is 0.5mm/h-20mm/h, and the corresponding cooling rate is 0.2K/h-25°C/h.
  • Step F start the rotation and descent of the seed crystal, lower the seed crystal rod 9 until the seed crystal 44 touches the second melt 45, then pull the seed crystal rod 9 to carry out crystal growth, when the size of the crystal 46 is close to the crucible of the VGF crucible 29 Stop the rotation and pulling of the seed crystal when the wall is closed.
  • Step G after the crystal growth is completed, adjust the heating temperature so that the second melt 45 obtains a temperature gradient of 3-5 K/cm, and control the growth of VGF.
  • Step H after the cooling is completed, stop the heating and connect the inside of the system with the atmosphere, and take out the crystals.
  • the present invention will be described in detail below by taking the preparation of indium phosphide as an example.
  • the metal raw material in the synthesis crucible 17 is pure indium 48
  • the non-metallic raw material on the loader 16 - 2 of the synthesis injection system 16 is red phosphorus 50 .
  • the synthesis crucible 17 is then fitted to the crucible support 18 which is fitted to the crucible rod 22 .
  • Boron oxide I 47, pure indium 48 and dopant are placed inside the synthesis crucible 17.
  • 2 synthetic injection systems 16 are fitted to the synthetic rotating rod 15 .
  • the first synthetic drive motor 12 and the second synthetic drive motor 13 raise the two synthetic injection systems 16 to the highest position. Bring the synthesis crucible 17 to the lowest position. Then, the main furnace body 1 is placed on the base 3 by passing.
  • the upper furnace body 2 is placed on the main furnace body support platform 6 by the upper furnace body driving device 4-1, then the upper furnace body 2 and the upper furnace cover 2-1 are opened, and then the upper furnace cover 2-1 is lifted to the upper Body of furnace supporting platform 5 tops.
  • the first heater 31, the second heater 32, the third heater 33, the fourth heater 34, and the fifth heater 35 are assembled to the outside of the VGF crucible support 29-4, and then the above five Arrange the upper insulation layer 30 around the heater, and then put the heater and the VGF crucible support 29 - 4 into the upper insulation layer shell 28 .
  • the pipette heater 36 is assembled around the pipette 29 - 1 , and the pipette heater 36 is provided with a pipette insulation layer 37 outside.
  • the adapter fixture 11 connecting the VGF crucible 29, the thermocouple and the upper insulation layer 30 is connected to the upper furnace cover 2-1 through the fastening screw 49, and the first sealing ring 11-2 is used in the middle to prevent air leakage along the gap .
  • the thermocouple wires of the first thermocouple 38, the second thermocouple 39, the third thermocouple 40, and the fourth thermocouple 41 are connected to the outside of the furnace body of the upper furnace cover 2-1, and the thermocouple wires are connected to the upper furnace cover. 2-1 on the seal. Connect the differential pressure pipe 52 and the balance gas pipe 11-1.
  • the upper furnace cover 2-1, the upper furnace body 2 and the entire crystal growth system are hoisted above the main furnace body 1 through the upper furnace body driving device 4-1 to realize the assembly with the main furnace body 1, so that the liquid suction pipe 29-1 Insert into the center of the synthesis crucible 17.
  • the main furnace body 1 and the base 3 and the main furnace body 1 and the upper furnace body 2 are sequentially connected by screws to realize a sealed furnace body.
  • the inert gas is slowly rushed into the VGF crucible 29 through the balance gas pipe 11-1.
  • the liquid pipe 29-1 injects air bubbles into the first melt 20, so that the melt in the pipette 29-1 can be discharged to participate in the synthesis process and prevent the first melt 20 or boron oxide I47 from being sucked back during synthesis.
  • the speed of the bubbles is 0.5-20 per second, and the bubbling situation injected into the synthetic tube 16-3 and the pipette 29-1 is observed through the lower observation window 14.
  • the synthesis injection system 16 is raised so that the injection synthesis pipe 16 - 3 is separated from the first melt 20 . Stop the gas injection into the VGF crucible 29, so that the suction pipe 29-1 and the bottom of the synthesis crucible 17 keep 1-5 mm.
  • the seeding rate is 0.5mm/h-20mm/h, corresponding The cooling rate is 0.2K/h-25°C/h.
  • the seed rod 9 is turned upside down at this time so that the seed rod 9 is separated from the seed clamp 43 so that the subsequent transfer fixture 11 is separated from the seed rod 9 . Then loosen the screw between the upper furnace body 2 and the main furnace body 1, and rise the upper furnace body 2 until the lower end of the liquid suction pipe 29-1 leaves the main furnace body 1. Then the main furnace body 1 is moved onto the main furnace body supporting platform 6 by the main furnace body moving motor 4-3.
  • the dislocation of the LEC growth part of the head is about 10 4 cm -2 ; the dislocation 3 cm below the shoulder is about 1000-3000 cm -2 , and the dislocation of the 6 cm lower part of the VGF growth part below the shoulder is about 10 4 cm -2 .
  • the dislocation is about 100-500 cm -2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,包括步骤A、将制备化合物的系统的抽真空并充入惰性气体;步骤B、加热使合成坩埚内的金属原料和氧化硼Ⅰ熔化;步骤C、加热使氧化硼Ⅱ熔化,合成注入系统向下移动使注入合成管的端部移动至合成坩埚的金属原料内合成第一熔体;步骤D、缓慢降低VGF坩埚内的压力使第一熔体进入VGF坩埚内形成第二熔体等步骤。上部为VGF生长部,下部为合成部;通过倒吸进入VGF生长部,同时VGF生长部配置籽晶杆和观察系统,还能进行气体控制。实施在开始LEC高温度梯度引晶体和放肩,然后利用已经长大的晶体进行低温度梯度下的VGF晶体生长,实现较高成品率下制备高品质低缺陷晶体。

Description

注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法 技术领域
本发明涉及一种注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,尤其适用于具有挥发元素的化合物半导体,例如磷化铟、磷化镓等材料。
背景技术
磷化铟、磷化镓等化合物半导体材料。广泛应用于光纤通信、微波及毫米波器件、太阳能电池等许多高新技术领域,在航空航天、网络通讯、雷达等军用及民用领域应用广泛。
化合物半导体的合成方法主要由:直接合成、扩散合成和注入合成等。对于磷化铟、磷化镓等高饱和蒸气压的物质,通常需要扩散合成和注入合成。注入合成可以大幅缩短合成时间,可以避免杂质的引入,提高材料纯度。而注入合成后直接制备晶体,既可以减少晶体的制备时间又可以减少制备步骤,大幅晶体的物理品质。
最常用的半导体晶体的生长方法有:液封直拉技术(Liquid Encapsulated Czochralski,LEC),蒸气压控制直拉技术(Vapor Pressure-Controled Czochralski,VCZ),热屏直拉技术(Hot Wall Czochralski,HWC),以及全液封直拉技术(Fully Encapsulated Czochralski,FEC);Bridgman技术分为:垂直布里奇曼技术(Vertical Bridgman,VB),水平布里奇曼技术(Horizontal Bridgman,HB),垂直梯度凝固技术(Vertical Gradient Freezing,VGF)以及水平梯度凝固技术(Horizontal Gradient Freezing,HGF)等。
其中,液封直拉技术(LEC)和垂直梯度凝固技术(VGF)是制备磷化铟和磷化镓等化合物半导体最主要的方法。利用液封直拉技术(LEC)可以获得高的生长界面温度梯度,制备晶体的成品率较高,但是缺陷密度高。垂直梯度凝固技术(VGF)由于生长界面的温度低度低且热场稳定等特点,可以制备低缺陷的晶体,但是其成品率较低。
发明内容
本发明要解决的技术问题是提供一种注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,上部实现LEC和VGF联合晶体生长,下部实现熔体注入合成;通过气体压力控制,实现熔体倒吸进入VGF坩埚中。本发明在开始进行高温度梯度下的LEC引晶和放肩来抑制孪晶,然后在VGF坩埚的剩余熔体中进行VGF生长制备低缺陷的晶体。实现较高成品率下制备高品质低缺陷晶体。
为解决上述技术问题,本发明采用的技术方案是:一种注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,基于制备化合物的系统,所述系统包括主炉体、位于主炉体上方的上炉体、位于主炉体内的合成坩埚和合成注入系统、位于上炉体内的VGF坩埚以及籽晶杆,合成坩埚内装有金属原料和氧化硼Ⅰ,VGF坩埚内装有氧化硼Ⅱ,在VGF坩埚的底部设有吸液管,合成注入系统中装有非金属原料,本发明的方法包括以下步骤:
步骤A、将制备化合物的系统抽真空至10-5Pa-10Pa,然后向系统内充入惰性气体;
步骤B、加热合成坩埚至合成温度使合成坩埚内的金属原料和氧化硼Ⅰ熔化,然后将合成坩埚向上移动至合成位置;
步骤C、加热VGF坩埚至达到化合物半导体晶体的熔点以上并使得VGF坩埚内的氧化硼Ⅱ熔化,合成注入系统向下移动使注入合成管的端部移动至合成坩埚的金属原料内合成第一熔体,合成完毕后合成注入系统向上移动使注入合成管的端部脱离第一熔体;
步骤D、缓慢降低VGF坩埚内的压力使得合成坩埚内的第一熔体经吸液管进入VGF坩埚内形成第二熔体;
步骤E、加热VGF坩埚使其内的第二熔体获得20-50K/cm的温度梯度、氧化硼Ⅱ获得100-150K/cm的温度梯度;
步骤F、启动籽晶旋转和下降,下降籽晶杆直至籽晶接触接触第二熔体,然后提拉籽晶杆,进行晶体生长,当晶体的尺寸接近VGF坩埚的坩埚壁时停止籽晶旋转和提拉;
步骤G、晶体生长完成后,调整加热温度使第二熔体获得3-5K/cm的温度梯度,控制进行VGF生长;
步骤H、降温完成后,停止加热并将所述系统的内部与大气连通,取出晶体。
本发明的有益效果是:上部为VGF生长部,下部为合成部;通过倒吸进入VGF生长部,同时VGF生长部配置籽晶杆和观察系统,还能进行气体控制。实施在开始LEC高温度梯度引晶体和放肩,然后利用已经长大的晶体进行低温度梯度下的VGF晶体生长,实现较高成品率下制备高品质低缺陷晶体;
设计了VGF坩埚,其通过吸液管吸入合成后的熔体,存在内部设置储存槽用于储存VGF和LEC生长所需的氧化硼。该处的氧化硼可以随着熔体上升布满VGF管内壁,便于后期晶体整体脱离坩埚;
设计了转接卡具来连接上炉盖和VGF坩埚,内部升至水冷,同时通过卡环和橡皮圈密封VGF坩埚端面,通过冷却柱和VGF坩埚挡环结构阻挡气流,进一步降低橡皮圈附近的温度;
合成过程中,如果最佳合成坩埚的位置使得吸液管底部插入合成坩埚内部第一熔体或者氧化硼Ⅰ中,通过VGF坩埚注入惰性气体,防止合成过程倒吸。
下面结合附图对本发明进行详细说明。
附图说明
图1是本发明的方法中制备化合物的系统的结构示意图;
图2是主炉体结构示意图;
图3是转接卡具与上炉盖及VGF坩埚的装配示意图;
图4是转接卡具的主视图;
图5是转接卡具的后视图;
图6是图4中A-A向的剖视图;
图7是注入合成系统示意图;
图8是装炉示意图;
图9是合成示意图;
图10是倒吸示意图;
图11是LEC引晶及放肩晶体生长示意图;
图12是VGF晶体生长示意图。
在附图中:1:主炉体;1-1主炉体口;2:上炉体;2-1:上炉盖;3:基座;4:主立柱;4-1:上炉体驱动装置;4-2:第一辅助杆;4-3:主炉体驱动装置;4-4:第二辅助杆;5:上炉体支撑台;5-1:上炉体清洗孔;5-2:上炉体支撑台柱;6:主炉体支撑台;6-1:主炉体清洗孔;6-2:主炉体支撑台柱;7:籽晶杆驱动装置装载台;8:籽晶杆驱动装置;9:籽晶杆;10:上观察窗;11:转接卡具;11-1:平衡气管;11-2:第一密封圈;11-3:第二密封圈;11-4:卡环;11-5:螺孔;11-6:转接孔;11-7:中心孔;11-8:密封槽;11-9:观察孔;11-10:坩埚卡槽;11-11:冷却柱;12:第一合成驱动电机;13:第二合成驱动电机;14:下观察窗;15:合成转动杆;16:合成注入系统;16-1:注入合成加热器;16-2:装载器;16-3:注入合成管;17:合成坩埚;18:坩埚支撑;19:主加热器;19-1:辅助加热器;20:第一熔体;21:第一保温套;22:坩埚杆;23:坩埚杆驱动;24:坩埚杆驱动装载台;25:充气管;26:抽真空管;27:坩埚杆热电偶;28:上保温层外壳;29:VGF坩埚;29-1:吸液管;29-2:延伸管;29-3:储存槽;29-4:VGF坩埚支撑;29-5:VGF坩埚挡环;30:上保温层;31:第一加热器;32:第二加热器;33:第三加热器;34:第四加热器;35:第五加热器;36:吸液管加热器;37:吸液管保温层;38:第一热电偶;39:第二 热电偶;40:第三热电偶;41第四热电偶;42:籽晶杆热电偶;43:籽晶夹持;44:籽晶;45:第二熔体;46:晶体;47:氧化硼Ⅰ;47-1:氧化硼Ⅱ;48:纯铟;49:紧固螺钉;50:红磷;51:压差计;52:压差管。
具体实施方式
参见附图1,本发明的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法基于制备化合物的系统实现。
上述的系统包括机架、主炉体1、位于主炉体1上方的上炉体2、位于主炉体1内的合成坩埚17、位于上炉体2内的VGF坩埚29、籽晶杆9、合成注入系统16等部件。合成坩埚17内装有金属原料和氧化硼Ⅰ47,VGF坩埚29内装有氧化硼Ⅱ47-1,合成注入系统16中装有非金属原料。
机架包括基座3、主立柱4、上炉体支撑台5、主炉体支撑台6。在主立柱4上设有上炉体驱动装置4-1、第一辅助杆4-2、主炉体驱动装置4-3和第二辅助杆4-3等。主炉体1通过第二辅助杆4-4与连接在主立柱4上的主炉体驱动装置4-3相连。通过主炉体驱动装置4-3的运动带动主炉体1进行升降和旋转运动,以便于将主炉体1移动至基座3和主炉体支撑台6上。上炉体2中的上炉盖2-1通过第一辅助杆4-2与连接在主立柱4上的上炉体驱动装置4-1相连。通过上炉体驱动装置4-1带动上炉盖2-1升降和旋转运动,使得上炉体2可以移动至主炉体1和上炉体支撑台5上。主炉体驱动装置4-3和上炉体驱动装置4-1可以是旋转电机驱动下的油缸等直线驱动装置。在装配和拆卸炉体过程中,上炉体2可运动至上炉体支撑台5上,主炉体1可运动至主炉体支撑台6上。上炉体支撑台5上设有上炉体清洗孔5-1和上炉体支撑台柱5-2。主炉体支撑台6上设有主炉体清洗孔6-1和主炉体支撑台柱6-2。主立柱4的最大高度为能将上炉体2升起后可以使得吸液管29-1低端脱离主炉体1最高端的高度。
底部固定有籽晶44的籽晶杆9通过籽晶杆驱动装置8进行旋转和上下移动。籽晶杆驱动装置8装配在与上炉盖2-1相连的籽晶杆驱动装载台7上实现驱动籽晶杆9上下移动和旋转。籽晶杆驱动装置8中包括旋转组件和升降组件。旋转组件包括旋转电机和与旋转电机的转轴相连的中间板;升降组件固定在中间板上,包括电动推杆,电动推杆的末端与籽晶杆9相连。还可以是升降组件包括电动推杆,电动推杆的末端与中间板相连,旋转组件包括固定在中间板上的旋转电机和与旋转电机的转轴相连的籽晶杆9。
主炉体1固定在基座3上。在主炉体1内设有坩埚支撑18,坩埚支撑18内部设有合成坩埚17。主炉体1上还设有上观察窗10。基座3上设有与主炉体1相通的充气管25和抽 真空管26。
在主炉体1的下方设有驱动坩埚支撑18进行旋转和上下运动的坩埚支撑驱动装置。坩埚支撑驱动装置包括坩埚杆22和坩埚杆驱动23。坩埚杆22穿过基座3向上进入主炉体1的内部并与坩埚支撑18相连。坩埚杆驱动23装配在坩埚杆驱动装载台24上实现上下运动和旋转。在坩埚杆22上还设有坩埚杆热电偶27。坩埚杆驱动23包括固定在坩埚杆驱动装载台24上的电动推杆、与电动推杆相连的连接板,固定在连接板上的旋转电机,旋转电机的转轴与坩埚杆22相连。
在坩埚支撑18外设有加热系统。加热系统包括主加热器19和辅助加热器19-1。通过在坩埚支撑18外围的主加热器19和位于主加热器19下部的辅助加热器19-1给坩埚支撑18和合成坩埚17加热。此外,在主加热器19外设有用于给加热系统保温的第一保温套21。
参见附图7,合成注入系统16包括注入合成加热器16-1、装载器16-2和16-3注入合成管。上主炉体1上部设置有第一合成驱动电机12和第二合成驱动电机13,第一合成驱动电机12和第二合成驱动电机13均通过合成转动杆15连接对应的合成注入系统16并驱动合成注入系统16升降使合成注入管16-3插入合成坩埚17内部。合成驱动电机和合成转动杆15间通过丝杆丝母机构或者齿轮齿条机构实现驱动合成注入系统16升降。
参见附图1和2,上炉体2设置在主炉体1上的主炉体口1-1处。上炉盖2-1与上炉体2、主炉体1及基座3构成密封炉室。
参见附图1、3-6,上炉盖2-1的内侧设有转接卡具11,通过转接卡具11使VGF坩埚29设置于上炉体2内。具体的,在转接卡具11上设有螺孔11-5,紧固螺钉49穿过螺孔11-5将转接卡具11固定在上炉盖2-1。在上炉盖2-1与转接卡具11的接触面设有密封凹槽,密封凹槽内设有第一密封圈11-2。连接时紧固螺钉49的螺帽朝内,中间通过第一密封圈11-2来防止沿两者接触面间的缝隙漏气。
转接卡具11的上部连接平衡气管11-1,平衡气管11-1向上穿过上炉盖2-1以用于调整VGF坩埚29中的压力。上炉盖2-1上还装配有压差管52,压差管52与平衡气管11-1连接。在压差管52上安装有压差计51以用于测量VGF坩埚29内与炉体内的压力差。
转接卡具11上设置有卡环11-4和冷却柱11-11,卡环11-4和冷却柱11-11间的环形间隙形成坩埚卡槽11-10。卡环11-4的内侧面设置有密封槽11-8,用于放置第二密封圈11-3。VGF坩埚29置于坩埚卡槽11-10中并通过第二密封圈11-3实现卡环11-4与VGF坩埚29间的密封。VGF坩埚29内装有氧化硼Ⅱ47-1时,氧化硼Ⅱ47-1的厚度大于2.5cm用于建 立足够高的温度梯度和降低氧化硼Ⅱ47-1上方的温度。氧化硼Ⅱ47-1表面的距卡环11-4和冷却柱11-11低端的距离为15cm以上。同时通过冷却柱11-11连接外置的水循环装置以实现在卡环11-4和整个转接卡具11内部设置水冷,以降低第二密封圈11-3处的温度,并能提高氧化硼Ⅱ47-1中的温度梯度。籽晶杆热电偶42水平位于卡环11-4内,用于检测卡环11-4附近橡皮圈的气氛温度。冷却柱11-11的低端插入VGF坩埚29的距离大于VGF坩埚挡环29-5距离VGF坩埚29上端口的距离。
转接卡具11上设置4个转接孔11-6以用于连接上保温层30内的热电偶。上炉盖2-1的籽晶孔与转接卡具11的中心孔11-7为同心孔,用于穿过籽晶杆9。上炉盖2-1的观察孔与转接卡具11的观察孔11-9为同心孔,用于穿过上观察窗10。上观察窗10与上炉盖2-1为密封连接。
VGF坩埚29的底部设有吸液管29-1,并通过其将熔体倒吸进入VGF坩埚29中。吸液管29-1的下端面距离合成坩埚17底部1-5mm。合成坩埚17中设计合成后第一熔体20的量为保证满足第二熔体45所需量后,保证合成坩埚17中剩余熔体能够没过吸液管29-1底端10mm以上。在VGF坩埚29与吸液管29-1相连处,存在延伸管29-2进入VGF坩埚29内部,延伸管29-2与VGF坩埚29可以围成储存槽29-3。氧化硼Ⅱ47-1放置于储存槽29-3中,延伸管29-2的高度为可以与VGF坩埚29形成的储存槽29-3体积大于氧化硼Ⅱ47-1熔化后体积,使其不至于溢出。VGF坩埚29内壁设置VGF坩埚挡环29-5,用于阻挡热气流进入VGF坩埚29与冷却柱11-11之间,降低第二密封圈11-3处的温度。
VGF坩埚29外侧设置VGF坩埚支撑29-4。VGF坩埚支撑29-4外侧设有加热系统,加热系统包括第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35和加热器36。通过VGF坩埚支撑29-4外侧的第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35给VGF坩埚29加热;通过加热器36给吸液管29-1加热。第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35外层设置上保温层30,上保温层30外侧设置上保温层外壳28。吸液管加热器36周围设置吸液管保温层37。在上保温层30内侧的第一加热器31、第二加热器32、第三加热器33、第四加热器34给VGF坩埚29加热。第一加热器31、第二加热器32、第三加热器33、第四加热器34附近依次设置第一热电偶38、第二热电偶39、第三热电偶40、第四热电偶41;籽晶杆9内部设置籽晶杆热电偶42。籽晶杆9可穿过上炉盖2-1和转接卡具11上的中心孔11-7进入VGF坩埚29中。
基于上述的系统,本发明一种注入合成后连续LEC与VGF结合制备化合物半导体晶 体的方法,合成坩埚17内装有金属原料和氧化硼Ⅰ47,VGF坩埚29内装有氧化硼Ⅱ47-1,在VGF坩埚29的底部设有吸液管29-1,合成注入系统16中装有非金属原料,本方法包括以下步骤。
步骤A、通过抽真空管26将制备化合物的系统抽真空至10 -5Pa-10Pa,然后通过充气管25向系统内充入惰性气体。
步骤B、通过配套的加热系统加热合成坩埚17至合成温度使合成坩埚17内的金属原料和氧化硼Ⅰ47熔化,然后通过坩埚支撑驱动装置将合成坩埚17向上移动至合成位置。
步骤C、通过配套的加热系统加热VGF坩埚29至达到化合物半导体晶体的熔点以上并使得VGF坩埚29内的氧化硼Ⅱ47-1熔化,合成注入系统16向下移动使注入合成管16-3的端部移动至合成坩埚17的金属原料内合成第一熔体20,合成完毕后合成注入系统16向上移动使注入合成管16-3的端部脱离第一熔体20。
在合成的同时通过平衡气管11-1向VGF坩埚29缓慢冲入惰性气体,惰性气体通过吸液管29-1向第一熔体20注入气泡,气泡的速率为0.5-20个每秒;合成完成后,停止向VGF坩埚29注入惰性气体、吸液管29-1与合成坩埚17底部保持1-5mm。
步骤D、通过平衡气管11-1缓慢降低VGF坩埚29内的压力使得合成坩埚17内的第一熔体20经吸液管29-1进入VGF坩埚29内形成第二熔体45。
步骤E、加热VGF坩埚29使其内的第二熔体45获得20-50K/cm的温度梯度、氧化硼Ⅱ47-1获得100-150K/cm的温度梯度。
在本步骤中引晶速率为0.5mm/h-20mm/h,相应的降温速率为0.2K/h-25℃/h。
步骤F、启动籽晶旋转和下降,下降籽晶杆9直至籽晶44接触接触第二熔体45,然后提拉籽晶杆9,进行晶体生长,当晶体46的尺寸接近VGF坩埚29的坩埚壁时停止籽晶旋转和提拉。
步骤G、晶体生长完成后,调整加热温度使第二熔体45获得3-5K/cm的温度梯度,控制进行VGF生长。
步骤H、降温完成后,停止加热并将所述系统的内部与大气连通,取出晶体。
下面以制备磷化铟为例,详细说明本发明。在本实施例中,合成坩埚17内的金属原料为纯铟48,合成注入系统16的装载器16-2上的非金属原料为红磷50。
1、系统的装配。
分别将上炉体2与上炉盖2-1连接并运动至上炉体支撑台5上,主炉体1运动至主炉体支撑台6上。
然后分别将第一保温套21、主加热器19及辅助加热器19-1装配至基座3上。然后将合成坩埚17装配至坩埚支撑18上,坩埚支撑18装配至坩埚杆22上。在合成坩埚17内部放入氧化硼Ⅰ47和纯铟48和掺杂剂。
同时将2个合成注入系统16装配至合成转动杆15上。第一合成驱动电机12和第二合成驱动电机13将2个合成注入系统16升至最高位置。将合成坩埚17将至最低位置。然后通过,将主炉体1放置至基座3上。
然后通过上炉体驱动装置4-1,将上炉体2放置到主炉体支撑台6上,然后打开上炉体2与上炉盖2-1,然后将上炉盖2-1升至上炉体支撑台5上方。
将氧化硼Ⅱ47-1放置于储存槽29-3中。然后将转接卡具11上的卡环11-4内侧面与VGF坩埚29通过第二密封圈11-3进行连接和密封,通过吸液管29-1抽真空测试密封情况。
完成上述过程之后,第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35装配至VGF坩埚支撑29-4外侧,然后再将上述5个加热器周围布置上保温层30,然后将上述加热器和VGF坩埚支撑29-4装入上保温层外壳28中。将紧固螺钉49插入的转接卡具11的螺孔11-5中,紧固螺钉49螺帽位于上保温层30侧,然后将上保温层外壳28和VGF坩埚支撑29-4与转接卡具11相连。
将吸液管加热器36装配至吸液管29-1周围,吸液管加热器36外侧设置吸液管保温层37。依次将第一热电偶38、第二热电偶39、第三热电偶40、第四热电偶41设置至上保温层30中,并穿过转接卡具11上的转接孔11-6。
然后,将连接VGF坩埚29及热偶和上保温层30的转接卡具11通过紧固螺钉49连接至上炉盖2-1上,中间通过第一密封圈11-2来防止沿缝隙漏气。同时将第一热电偶38、第二热电偶39、第三热电偶40、第四热电偶41的热电偶丝连接至上炉盖2-1的炉体外侧,并实现热偶丝与上炉盖2-1上的密封。连接压差管52与平衡气管11-1。
然后将上炉盖2-1运动至主炉体支撑台6上方,然后缓慢下降,将整个生长系统放入上炉体2中,然后连接上炉盖2-1和上炉体2。
通过上炉体驱动装置4-1将上炉盖2-1和上炉体2及整个晶体生长系统吊装至主炉体1上方,实现与主炉体1的装配,使得吸液管29-1插入合成坩埚17的中心。利用螺钉依次连接主炉体1与基座3及主炉体1与上炉体2,实现密封炉体。
2、磷化铟的制备。
a.参见附图1和8,通过抽真空管26给整个系统抽真空至10 -5Pa-10Pa,然后通过充 气管25给系统充入惰性气体充入气体,气体初始压力为1.5-2.0MPa。
b.启动主加热器19及辅助加热器19-1,给合成坩埚17加热使其达到合成温度(合成坩埚17内的纯铟48和氧化硼Ⅰ47熔化);然后坩埚支撑驱动装置合成坩埚17上升达到合成所需的坩埚位置。
c.参见附图9和10,同时控制第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35及吸液管加热器36使得VGF坩埚29内的温度达到磷化铟的熔点以上同时使得氧化硼Ⅱ47-1熔化。然后依次下降2个合成注入系统16进行合成。
如果此时的最佳合成坩埚位置使得吸液管29-1进入第一熔体20中或者氧化硼Ⅰ47中,边合成同时通过平衡气管11-1向VGF坩埚29缓慢冲入惰性气体,通过吸液管29-1向第一熔体20注入气泡,以使得吸液管29-1中的熔体可以排出参与合成过程并阻止合成时发生第一熔体20或者氧化硼Ⅰ47的倒吸。气泡的速率为0.5-20个每秒,通过下观察窗14观察注入合成管16-3和吸液管29-1的冒泡情况。
合成完毕后升起合成注入系统16使得注入合成管16-3脱离第一熔体20。停止VGF坩埚29向注入气体,使得吸液管29-1与合成坩埚17底部保持1-5mm。
d.通过平衡气管11-1缓慢降低VGF坩埚29内的压力,使得VGF坩埚29内的压力低于主炉体1内的压力值,当压力差达到ρgh时停止压力降低,ρ是熔体的密度,h是VGF坩埚29中第二熔体45上升的最大值与第一熔体20的液面差,通过压差计51测量测量VGF坩埚29内与炉体内的压力差,然后根据压差计51数值的变化,通过平衡气管11-1略调VGF坩埚29中压力,保证压力差恒定。
e.然后控制第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35在第二熔体45中获得20-50K/cm的温度梯度。同时在氧化硼Ⅱ47-1中获得100-150K/cm的温度梯度。
f.参见附图11,启动停止籽晶转和提拉,下降籽晶,直至籽晶44接触第二熔体45,进行晶体生长,引晶速率为0.5mm/h-20mm/h,相应的降温速率为0.2K/h-25℃/h。
当晶体46的尺寸接近VGF坩埚29的坩埚壁5mm时,停止籽晶转和提拉。
g.参见附图12,重新调整第一加热器31、第二加热器32、第三加热器33、第四加热器34、第五加热器35,使得第二熔体45获得3-5K/cm的温度梯度,控制进行VGF生长。在此过程中始终保持VGF坩埚29内和主炉体1内的压力值为ρgh。
h.直至降温完成,后VGF坩埚29内的第二熔体45凝固完毕。然后下降合成坩埚17,使得吸液管29-1与氧化硼Ⅰ47脱离。停止所有的系统加热。
给整个系统放气至大气压力。由于籽晶44余晶体连接在一起,此时籽晶杆9倒转使籽晶杆9脱离籽晶夹持43,以便后续转接卡具11与籽晶杆9脱离。然后松开上炉体2与主炉体1之间的螺钉,上升上炉体2直至吸液管29-1低端离开主炉体1。然后通过主炉体运动电机4-3将主炉体1运动至主炉体支撑台6上。松开第一热电偶38、第二热电偶39、第三热电偶40、第四热电偶41与转接卡具11的连接线,然后松开紧固螺钉49,将整个晶体生长系统,通过上炉体2缓慢取出。
然后在晶体生长系统中转接卡具11和VGF坩埚29,并拆开转接卡具11和上保温层外壳28,取出VGF坩埚29,然后破坏VGF坩埚29取出晶体46,并通过超声清洗等去除晶体46表面的氧化硼和粘连的石英残渣。
对于4英寸的磷化铟晶体,头部LEC生长部分的位错约为10 4cm -2;转肩以下3cm的位错约为1000-3000cm -2,转肩以下VGF生长部分的6cm下部的位错约为100-500cm -2
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (9)

  1. 一种注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,基于制备化合物的系统,所述系统包括主炉体(1)、位于主炉体(1)上方的上炉体(2)、位于主炉体(1)内的合成坩埚(17)和合成注入系统(16)、位于上炉体(2)内的VGF坩埚(29)以及籽晶杆(9),合成坩埚(17)内装有金属原料和氧化硼Ⅰ(47),VGF坩埚(29)内装有氧化硼Ⅱ(47-1),在VGF坩埚(29)的底部设有吸液管(29-1),合成注入系统(16)中装有非金属原料,其特征在于,包括以下步骤:
    步骤A、将制备化合物的系统抽真空至10 -5Pa-10Pa,然后向系统内充入惰性气体;
    步骤B、加热合成坩埚(17)至合成温度使合成坩埚(17)内的金属原料和氧化硼Ⅰ(47)熔化,然后将合成坩埚(17)向上移动至合成位置;
    步骤C、加热VGF坩埚(29)至达到化合物半导体晶体的熔点以上并使得VGF坩埚(29)内的氧化硼Ⅱ(47-1)熔化,合成注入系统(16)向下移动使注入合成管(16-3)的端部移动至合成坩埚(17)的金属原料内合成第一熔体(20),合成完毕后合成注入系统(16)向上移动使注入合成管(16-3)的端部脱离第一熔体(20);
    步骤D、缓慢降低VGF坩埚(29)内的压力使得合成坩埚(17)内的第一熔体(20)经吸液管(29-1)进入VGF坩埚(29)内形成第二熔体(45);
    步骤E、加热VGF坩埚(29)使其内的第二熔体(45)获得20-50K/cm的温度梯度、氧化硼Ⅱ(47-1)获得100-150K/cm的温度梯度;
    步骤F、启动籽晶旋转和下降,下降籽晶杆(9)直至籽晶(44)接触接触第二熔体(45),然后提拉籽晶杆(9),进行晶体生长,当晶体(46)的尺寸接近VGF坩埚(29)的坩埚壁时停止籽晶旋转和提拉;
    步骤G、晶体生长完成后,调整加热温度使第二熔体(45)获得3-5K/cm的温度梯度,控制进行VGF生长;
    步骤H、降温完成后,停止加热并将所述系统的内部与大气连通,取出晶体。
  2. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,在步骤C中,在合成的同时通过平衡气管(11-1)向VGF坩埚(29)缓慢冲入惰性气体,惰性气体通过吸液管(29-1)向第一熔体(20)注入气泡,气泡的速率为0.5-20个每秒;
    合成完成后,停止向VGF坩埚(29)注入惰性气体、吸液管(29-1)与合成坩埚(17)底部保持1-5mm。
  3. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法, 其特征在于,步骤E中,引晶速率为0.5mm/h-20mm/h,相应的降温速率为0.2K/h-25℃/h。
  4. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,氧化硼Ⅱ(47-1)在VGF坩埚(29)内熔化后的厚度大于2.5cm。
  5. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,在吸液管(29-1)的顶部设有延伸管(29-2),延伸管(29-2)与VGF坩埚(29)的内壁配合形成容置氧化硼Ⅱ(47-1)的储存槽(29-3),储存槽(29-3)体积大于氧化硼Ⅱ(47-1)熔化后体积。
  6. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,主炉体(1)固定在基座(3)上,基座(3)上设有充气管(25)和抽真空管(26)。
  7. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,合成坩埚(17)借助坩埚支撑(18)设置在主炉体(1)内,在主炉体(1)的下方设有驱动坩埚支撑(18)进行旋转和上下运动的坩埚支撑驱动装置。
  8. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,VGF坩埚(29)借助转接卡具(11)与上炉体(2)的上炉盖(2-1)相连。
  9. 根据权利要求1所述的注入合成后连续LEC与VGF结合制备化合物半导体晶体的方法,其特征在于,在转接卡具(11)的上部连接用于调整VGF坩埚(29)中压力的平衡气管(11-1),平衡气管(11-1)向上穿过上炉盖(2-1)并与压差管(52)相连。
PCT/CN2021/136319 2021-06-01 2021-12-08 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法 WO2022252544A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/294,938 US20240209545A1 (en) 2021-06-01 2021-12-08 Method for preparing compound semiconductor crystal by combining continuous lec and vgf after injection synthesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110606788.0A CN113308738B (zh) 2021-06-01 2021-06-01 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法
CN202110606788.0 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022252544A1 true WO2022252544A1 (zh) 2022-12-08

Family

ID=77376894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136319 WO2022252544A1 (zh) 2021-06-01 2021-12-08 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法

Country Status (3)

Country Link
US (1) US20240209545A1 (zh)
CN (1) CN113308738B (zh)
WO (1) WO2022252544A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308738B (zh) * 2021-06-01 2022-06-17 中国电子科技集团公司第十三研究所 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法
CN115198369B (zh) * 2022-07-15 2024-06-11 中国电子科技集团公司第十三研究所 一种磷化铟合成与vgf晶体制备的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290395A (en) * 1990-07-26 1994-03-01 Sumitomo Electric Industries, Ltd. Method of and apparatus for preparing single crystal
CN101054723A (zh) * 2007-02-07 2007-10-17 深圳市淼浩高新科技开发有限公司 一种r面蓝宝石晶体的生长方法
CN113308739A (zh) * 2021-06-01 2021-08-27 中国电子科技集团公司第十三研究所 注入合成后连续lec与vgf结合制备化合物半导体晶体的系统
CN113308738A (zh) * 2021-06-01 2021-08-27 中国电子科技集团公司第十三研究所 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283895A (ja) * 1986-06-02 1987-12-09 Mitsubishi Metal Corp 単結晶の引上げ装置
JP2542434B2 (ja) * 1989-02-10 1996-10-09 古河電気工業株式会社 化合物半導体結晶の製造方法および製造装置
CN101555620A (zh) * 2008-04-07 2009-10-14 Axt公司 晶体生长装置及方法
CN109402722B (zh) * 2018-12-14 2020-09-01 中国电子科技集团公司第十三研究所 一种反式注入合成连续vgf晶体生长装置及方法
CN209456611U (zh) * 2018-12-14 2019-10-01 中国电子科技集团公司第十三研究所 一种反式注入合成连续vgf晶体生长坩埚及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290395A (en) * 1990-07-26 1994-03-01 Sumitomo Electric Industries, Ltd. Method of and apparatus for preparing single crystal
CN101054723A (zh) * 2007-02-07 2007-10-17 深圳市淼浩高新科技开发有限公司 一种r面蓝宝石晶体的生长方法
CN113308739A (zh) * 2021-06-01 2021-08-27 中国电子科技集团公司第十三研究所 注入合成后连续lec与vgf结合制备化合物半导体晶体的系统
CN113308738A (zh) * 2021-06-01 2021-08-27 中国电子科技集团公司第十三研究所 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法

Also Published As

Publication number Publication date
CN113308738B (zh) 2022-06-17
US20240209545A1 (en) 2024-06-27
CN113308738A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2022252544A1 (zh) 注入合成后连续lec与vgf结合制备化合物半导体晶体的方法
CN108060454B (zh) 一种vgf法制备砷化镓晶体的装置及方法
CN110760931A (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
WO2019109367A1 (zh) 一种水平注入合成后旋转连续vgf晶体生长的装置及方法
CN113638048B (zh) 一种vgf法生长磷化铟单晶的方法
CN110219046B (zh) 一种用于大尺寸溴铅铯单晶体的可视化定向生长装置及生长方法
CN202989351U (zh) 基于多加热器的铸锭炉热场结构
CN113308739B (zh) 注入合成后连续lec与vgf结合制备化合物半导体晶体的系统
CN116657251A (zh) 一种液相法单炉多次生长碳化硅晶体的装置及方法
CN212895088U (zh) 一种液态磷注入法合成磷化铟的系统
CN206188916U (zh) 直拉单晶冷却装置
CN215828910U (zh) 倒吸式化合物半导体晶体合成系统中vgf坩埚的连接组件
CN211112317U (zh) 一种利用铟磷混合物制备磷化铟晶体的系统
CN115198370B (zh) 一种垂直温度梯度凝固制备磷化铟晶体的装置及方法
CN215713518U (zh) 一种提拉法晶体生长炉
JP2012106870A (ja) 結晶成長方法
CN210856408U (zh) 一种设置有炉体升降机构的晶体生长炉
CN115198369A (zh) 一种磷化铟合成与vgf晶体制备的装置及方法
CN211005717U (zh) 一种晶体生长装置
CN108360060B (zh) 一种化合物晶体合成后旋转垂直温度梯度晶体生长装置
CN205398768U (zh) 一种化合物原位合成连续晶体生长的vgf高压炉
CN207091549U (zh) 一种旋转提拉称重单元与炉腔分离的晶体提拉炉
KR101969648B1 (ko) 잉곳성장용 도가니 내의 잔존 불순물 실리콘용융액 제거방법
CN109208081A (zh) 一种有机非线性晶体拼接式生长方法
US20230069057A1 (en) Growth Device and Method for Low-Stress Crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18294938

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21943896

Country of ref document: EP

Kind code of ref document: A1