WO2022252028A1 - 一种天线、探测装置和终端 - Google Patents

一种天线、探测装置和终端 Download PDF

Info

Publication number
WO2022252028A1
WO2022252028A1 PCT/CN2021/097326 CN2021097326W WO2022252028A1 WO 2022252028 A1 WO2022252028 A1 WO 2022252028A1 CN 2021097326 W CN2021097326 W CN 2021097326W WO 2022252028 A1 WO2022252028 A1 WO 2022252028A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
microstrip
radiating
antenna
units
Prior art date
Application number
PCT/CN2021/097326
Other languages
English (en)
French (fr)
Inventor
陶骏
杨小盼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180001896.3A priority Critical patent/CN113490860A/zh
Priority to PCT/CN2021/097326 priority patent/WO2022252028A1/zh
Priority to EP21943405.7A priority patent/EP4333203A1/en
Priority to CA3220845A priority patent/CA3220845A1/en
Publication of WO2022252028A1 publication Critical patent/WO2022252028A1/zh
Priority to US18/522,931 priority patent/US20240097332A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths

Definitions

  • the present application relates to the technical field of radar, in particular to an antenna, a detection device and a terminal.
  • Wideband radar has high range resolution. High range resolution radar has more accurate target recognition ability and can obtain subtle features of complex targets. Therefore, wideband radar has a wide range of application values in radar detection, imaging, and target recognition.
  • broadband radar has higher and higher requirements on the working frequency band of the antenna.
  • How to design a broadband antenna with low profile, simple structure and easy integration has become an urgent problem to be solved.
  • Embodiments of the present application provide a low-profile, simple-structure, and easy-to-integrate broadband antenna, which can be applied to detection devices or terminals.
  • an antenna in a first aspect, includes a metal floor, a dielectric plate, and a microstrip radiation structure, and the metal floor and the microstrip radiation structure are respectively arranged on two sides of the dielectric plate.
  • the microstrip radiation structure includes a first radiation unit and a second radiation unit.
  • the first radiation unit is a radiation unit formed by a raised structure on the microstrip radiation structure
  • the second radiation unit is a radiation unit formed by a concave structure on the microstrip radiation structure
  • the first radiation unit supports the first frequency band
  • the second radiation unit is a radiation unit formed by a concave structure on the microstrip radiation structure.
  • the radiating unit supports the second frequency band.
  • the linewidth of the microstrip line is greater than or equal to 0.425 times the central working wavelength.
  • the microstrip radiation structure includes multiple first radiation units; and/or the microstrip radiation structure includes multiple second radiation units.
  • the number of the first radiating elements and/or the number of the second radiating elements can be flexibly designed according to needs, so as to realize a broadband antenna.
  • in the first direction there is a second radiation unit between at least one group of two adjacent first radiation units.
  • the relative positions of the first radiating unit and the second radiating unit can be flexibly designed according to needs, so as to realize a broadband antenna.
  • the distance between the centers of adjacent first radiating units can be flexibly designed according to requirements, so as to realize a broadband antenna.
  • the design of the antenna can be simplified.
  • the distance between the centers of adjacent second radiating elements can be flexibly designed according to requirements, so as to realize a broadband antenna.
  • the design of the antenna can be simplified.
  • multiple first radiation units are disposed on the same side of the microstrip radiation structure.
  • the first part of the radiation units in the plurality of first radiation units is arranged on the first side of the microstrip radiation structure
  • the second part of the radiation units in the plurality of first radiation units is arranged on the second side of the microstrip radiation structure, wherein , the first side and the second side are opposite sides in the microstrip radiation structure.
  • the first radiation unit on the second side corresponds to the second radiation unit on the first side.
  • multiple second radiation units may all be disposed on the same side of the microstrip radiation structure.
  • the first part of the radiation units in the plurality of second radiation units is arranged on the first side of the microstrip radiation structure
  • the second part of the radiation units in the plurality of second radiation units is arranged on the second side of the microstrip radiation structure, wherein , the first side and the second side are opposite sides in the microstrip radiation structure.
  • the The second radiation unit on the second side corresponds to the first radiation unit on the first side.
  • the first radiating unit or the second radiating unit can be flexibly designed on both sides of the microstrip radiating structure according to the needs, and the first radiating unit on one side and the second radiating unit on the other side Correspondingly, when the antenna is working, a cavity-like field distribution can be realized to realize a broadband antenna.
  • the shapes of any two radiation units in the multiple first radiation units are the same; the shapes of some radiation units in the multiple first radiation units are the same; or, the shapes of some radiation units in the multiple first radiation units are the same; Any two radiating elements have different shapes.
  • the shapes of any two radiation units in the multiple second radiation units are the same; the shapes of some radiation units in the multiple second radiation units are the same; or, the shapes of some radiation units in the multiple second radiation units are the same; Any two radiating elements have different shapes.
  • the shape of the first radiating element or the shape of the second radiating element can be flexibly designed according to needs, so as to realize a broadband antenna.
  • the shape of the first radiation unit is one of the following shapes or a combination of the following shapes: sector, semicircle, circle, ellipse, triangle, quadrilateral, or polygon (the number of sides is greater than 4).
  • the shape of the second radiation unit is one of the following shapes or a combination of the following shapes:
  • the quadrilateral includes any one of the following: trapezoid, parallelogram or non-parallel west side.
  • the parallelogram includes any one of the following: rectangle, square or rhombus.
  • the microstrip radiating structure further includes an impedance matching structure, the impedance matching structure is arranged at the first end of the microstrip radiating structure, and the impedance matching structure is used for matching the impedance of the antenna.
  • the impedance matching structure is a multi-stage impedance matching structure.
  • the second end of the microstrip radiation structure is an open circuit; or, the second end of the microstrip radiation structure is a short circuit.
  • the second end (non-feed end) of the microstrip radiation structure is short-circuited, it can be grounded better, and the radiation performance of the antenna is more stable.
  • the feeding manner of the antenna may be end-fed, side-fed (or called side-fed), or back-fed.
  • the antenna provided by the present application can flexibly select a feeding mode.
  • the length of the first radiating unit is greater than or equal to 0.5 times the central working wavelength of the antenna.
  • the center distance between two adjacent first radiating elements is greater than or equal to 0.65 times the central working wavelength of the antenna.
  • the length of the first radiation unit is greater than or equal to 0.02 times the central working wavelength of the antenna.
  • the length of the microstrip radiation structure is less than or equal to 0.7 times the central working wavelength of the antenna.
  • the desired broadband antenna can be designed.
  • an antenna array is provided, and the antenna array includes the antenna in the first aspect and any possible implementation manner of the first aspect.
  • the antenna array includes a plurality of antennas and a power splitting and combining structure
  • the multiple antennas include a first antenna and a second antenna
  • the power splitting and combining structure includes a first power splitting terminal, a second power splitting terminal, and a power splitting and combining structure. Two merit points. The first end of the first antenna is electrically connected to the first power sub-end of the power division and combination structure, and the first end of the second antenna is electrically connected to the second power sub-end of the power division and combination structure.
  • the signal received on the first antenna and the signal received on the second antenna can be combined to the combined end.
  • the signals transmitted by the combining end may be split to the first antenna and the second antenna. Thereby, the one-to-two feed from the feed network to the antenna array can be realized.
  • the power splitting and combining structure can also be a multi-dividing or multi-in-one power splitting and combining structure, so as to realize the one-to-many or all-in-one power feeding of the antenna array by the feeding network.
  • the antenna array may further include a radome.
  • the antenna array including the antenna provided by the present application can realize broadband radiation.
  • a detection device in a third aspect, includes the antenna in the first aspect and any possible implementation manner of the first aspect, and/or the detection device includes any one of the second aspect and the second aspect An antenna array in a possible implementation of the item.
  • the detection device may be a radar.
  • the detection device including the antenna and/or antenna array provided by the present application can have higher distance resolution.
  • a terminal in a fourth aspect, includes the detecting device of the third aspect. Further, the terminal may be a smart transportation device, a smart manufacturing device, a smart home device, or a surveying and mapping device.
  • the terminal is a vehicle.
  • a terminal or a vehicle including the detection device provided by the present application may have a higher perception capability.
  • FIG. 1 is a schematic structural diagram of an application system provided by an embodiment of the present application
  • Figure 2a is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Figure 2b is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Figure 2c is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Figure 2d is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • Figure 4a is a schematic diagram of the size of a microstrip radiation provided by the embodiment of the present application.
  • Figure 4b is a schematic diagram of the size of a microstrip radiation provided by the embodiment of the present application.
  • Figure 5a is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Fig. 5b is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Figure 5c is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a microstrip radiation structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a top view of an antenna provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of feeding an antenna provided in an embodiment of the present application.
  • Fig. 9a is a schematic diagram of a microstrip radiation structure provided by an embodiment of the present application.
  • Fig. 9b is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • Fig. 9c is a schematic diagram of a microstrip radiation structure provided by the embodiment of the present application.
  • FIG. 10a is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • Fig. 10b is a schematic diagram of the microstrip radiation structure of the antenna shown in Fig. 10a;
  • Fig. 10c is a simulation effect diagram of the antenna shown in Fig. 10a;
  • FIG. 11 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • ADAS advanced driving assistant system
  • robots robots
  • drones networked vehicles
  • security monitoring and other fields ADAS
  • ADAS can be, for example, autonomous driving.
  • This application is applicable to autonomous vehicles or vehicles integrated with ADAS, for example, it may be an autonomous vehicle with a human machine interaction (HMI) function, or it may be an autonomous vehicle that performs a motion control function on the vehicle.
  • the vehicle may include at least one automatic driving system to support the automatic driving of the self-driving vehicle.
  • vehicle 100 may be configured in a fully or partially autonomous driving mode.
  • components coupled to or included in vehicle 100 may include propulsion system 110 , sensor system 120 , control system 130 , peripherals 140 , power supply 150 , computer system 160 , and user interface 170 .
  • power supply 150 may provide power to all components of vehicle 100 .
  • Computer system 160 may be configured to receive data from and control propulsion system 110 , sensor system 120 , control system 130 , and peripherals 140 .
  • Computer system 160 may also be configured to generate a display of images on user interface 170 and to receive input from user interface 170 .
  • vehicle 100 may include more, fewer or different systems, and each system may include more, fewer or different components.
  • vehicle 100 may include more, fewer or different systems, and each system may include more, fewer or different components.
  • illustrated systems and components may be combined or divided in any manner, which is not specifically limited in the present application.
  • the sensor system 120 may include several sensors for sensing the environment around the vehicle 100 .
  • the sensors of the sensor system 120 include a global positioning system (Global Positioning System, GPS) 126, an inertial measurement unit (Inertial Measurement Unit, IMU) 125, a lidar sensor, a camera sensor 123, a millimeter wave radar sensor, and a Actuator 121 that modifies the position and/or orientation of the sensor.
  • the millimeter wave radar sensor may utilize radio signals to sense objects within the surrounding environment of the vehicle 100 .
  • millimeter wave radar 122 may be used to sense the speed and/or heading of a target in addition to sensing the target.
  • Lidar 124 may utilize laser light to sense objects in the environment in which vehicle 100 is located.
  • lidar 124 may include one or more laser sources, a laser scanner, and one or more detectors, among other system components.
  • the camera sensor 123 may be used to capture multiple images of the surrounding environment of the vehicle 100 .
  • the camera sensor 123 may be a still camera or a video camera.
  • the control system 130 controls the operation of the vehicle 100 and its components.
  • Control system 130 may include various elements including steering unit 136 , accelerator 135 , braking unit 134 , sensor fusion algorithm 133 , computer vision system 132 , route control system 134 , and obstacle avoidance system 137 .
  • the steering system 136 is operable to adjust the heading of the vehicle 100 .
  • the throttle 135 is used to control the operating speed of the engine 114 and thus the speed of the vehicle 100 .
  • Control system 130 may additionally or alternatively include other components than those shown in FIG. 1 . This application does not specifically limit it.
  • Computer vision system 132 is operable to process and analyze images captured by camera sensor 123 in order to identify objects and/or features in the environment surrounding vehicle 100 .
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • the computer vision system 132 may use object recognition algorithms, structure from motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • computer vision system 132 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the route control system 134 is used to determine the travel route of the vehicle 100 .
  • route control system 142 may combine data from sensor system 120, GPS 126, and one or more predetermined maps to determine a travel route for vehicle 100.
  • Obstacle avoidance system 137 is used to identify, evaluate and avoid or otherwise overcome potential obstacles in the environment of vehicle 100 .
  • control system 130 may additionally or alternatively include components other than those shown and described. Alternatively, some of the components shown above may be reduced.
  • Peripherals 140 may be configured to allow vehicle 100 to interact with external sensors, other vehicles, and/or a user.
  • peripherals 140 may include, for example, a wireless communication system 144 , a touch screen 143 , a microphone 142 and/or a speaker 141 .
  • Peripheral device 140 may additionally or alternatively include other components than those shown in FIG. 1 . This application does not specifically limit it.
  • Power supply 150 may be configured to provide power to some or all components of vehicle 100 .
  • Components of vehicle 100 may be configured to function in an interconnected manner with other components within and/or external to their respective systems. To this end, the components and systems of vehicle 100 may be communicatively linked together via a system bus, network, and/or other connection mechanisms.
  • Computer system 160 may include at least one processor 161 executing instructions 1631 stored in a non-transitory computer-readable medium such as memory 163 .
  • Computer system 160 may also be a plurality of computing devices that control individual components or subsystems of vehicle 100 in a distributed manner.
  • Processor 161 may be any conventional processor, such as a commercially available central processing unit (CPU). Alternatively, the processor may be a dedicated device such as an application specific integrated circuit (ASIC) or other hardware-based processor.
  • FIG. 1 functionally illustrates the processor, memory, and other elements of computer system 160 in the same block, those of ordinary skill in the art will appreciate that the processor, computer, or memory may actually include or may include Multiple processors, computers, or memory that are not stored in the same physical enclosure.
  • memory may be a hard drive or other storage medium located in a different housing than computer system 160 . Accordingly, references to a processor or computer are to be understood to include references to collections of processors or computers or memories that may or may not operate in parallel. Instead of using a single processor to perform the steps described herein, some components, such as the steering and deceleration components, may each have their own processor that only performs calculations related to component-specific functions .
  • the processor may be located remotely from the vehicle and be in wireless communication with the vehicle. In other aspects, some of the processes described herein are executed on a processor disposed within the vehicle while others are executed by a remote processor, including taking the necessary steps to perform a single maneuver.
  • memory 163 may contain instructions 1631 (eg, program logic) executable by processor 161 to perform various functions of vehicle 100 , including those described above.
  • Memory 214 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or controlling one or more of propulsion system 110, sensor system 120, control system 130, and peripherals 140 instructions.
  • memory 163 may also store data such as road maps, route information, the vehicle's position, direction, speed, and other such vehicle data, among other information. Such information may be used by the vehicle 100 and the computer system 160 during operation of the vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • user interface 170 may include one or more input/output devices within set of peripheral devices 140 , such as wireless communication system 144 , touch screen 143 , microphone 142 and speaker 141 .
  • Computer system 160 may control functions of vehicle 100 based on input received from various subsystems (eg, propulsion system 110 , sensor system 120 , and control system 130 ), as well as from user interface 170 .
  • computer system 160 may utilize input from control system 130 in order to control steering unit 136 to avoid obstacles detected by sensor system 120 and obstacle avoidance system 137 .
  • the computer system 160 is operable to provide control over many aspects of the vehicle 100 and its subsystems.
  • one or more of these components described above may be installed separately from or associated with the vehicle 100 .
  • the memory 163 may exist partially or completely separately from the vehicle 100 .
  • the components described above may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1 should not be construed as limiting the embodiment of the present application.
  • the vehicles 100 described above may be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, fairground vehicles, construction equipment, streetcars, golf carts, trains, transport vehicles, and carts etc., or can also be replaced by other terminals, such as mobile phones, tablet computers, smart home devices, smart robots, etc., which are not specifically limited in this embodiment of the present application.
  • the present application provides a broadband antenna that can be applied to the vehicle 100 , or it can be said to be applied to the sensor system 120 of the vehicle 100 , so as to improve the perception capability of the vehicle 100 .
  • the present application provides an antenna by forming a convex structure and a concave structure on the side of a wider microstrip line, and by designing the shape and size of the convex structure and the concave structure, the gap between the convex structure and the convex structure.
  • the distance between the concave structure and the concave structure, and/or, the distance between the convex structure and the concave structure can make the convex structure and the concave structure resonate at different frequency points, so that the convex structure and the concave
  • the structure supports signal radiation in different frequency bands, and when the antenna is working, it can realize cavity-like field distribution, thereby realizing broadband radiation of the antenna.
  • the linewidth of the microstrip line is greater than or equal to 0.25 times the central working wavelength.
  • the cavity-like field distribution described in this application can be understood as a field distribution similar to a waveguide antenna.
  • the raised structure 120 and the raised structure 122 can be added (such as welded) on one side of the microstrip line whose line width is W1, and then a raised structure 120 and the raised structure 122 have just formed The recessed structure 130 .
  • the microstrip radiation structure 100 can be a microstrip line with a line width of W1 with a raised structure 120 and a raised structure 122 added on one side, and part of the microstrip line is subtracted from the side.
  • a plurality of recessed structures 130 are formed.
  • the raised portion 1, the raised portion 2 and the raised portion 3 can be added on one side of the microstrip line with a line width of W1, and the height of the raised portion 1 and the raised portion 3 are higher than the raised part 2, then the raised part 1 can be considered as the raised structure 120, the raised part 3 can be regarded as the raised structure 122, and the raised part 2 can be regarded as the depressed structure 130.
  • the implementation manner of the microstrip radiation structure can be flexibly selected according to the line width of the actual microstrip line and the performance requirements of the antenna.
  • the raised structure and the recessed structure described in this application can support different working frequency bands
  • the raised structure supports the signal radiation of the first frequency band and the recessed structure supports the signal radiation of the second frequency band
  • the first frequency band and the second frequency band The two frequency bands are completely different or the frequency bands of the first frequency band and the second frequency band do not overlap at all.
  • the first frequency band is 76GHz to 78GHz
  • the second frequency band is 79GHz to 80GHz. It can be seen that the first frequency band and the second frequency band
  • the frequency bands do not overlap at all.
  • some frequency bands of the first frequency band and the second frequency band overlap, and some frequency bands do not overlap.
  • the first frequency band is 76GHz to 78GHz
  • the second frequency band is 78GHz to 80GHz. It can be seen that the first frequency band and the second frequency band A frequency of 78GHz is overlapped.
  • the first frequency band is 76 GHz to 78 GHz
  • the first frequency band is 77 GHz to 80 GHz. It can be seen that the first frequency band and the second frequency band overlap on the frequency band 77 GHz to 78 GHz.
  • FIG. 3 is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • the antenna 10 includes a metal floor 300, a dielectric plate 200, and a microstrip radiation structure 100.
  • the metal floor 300 and the microstrip radiation structure 100 are respectively arranged on a dielectric Both sides of the board 200; one side of the microstrip radiation structure 100 (side A in the figure) includes a first radiation unit 120 and a second radiation unit (130, or 132), wherein the first radiation unit 120 is formed by a raised structure
  • the radiation unit can support signal radiation in the first frequency band, and the second radiation unit (130, or 132) is a radiation unit formed by a concave structure and can support signal radiation in the second frequency band.
  • the microstrip radiation structure 100 shown in FIG. 3 is an elongated structure, and the sides of the microstrip radiation structure 100 in the length direction can be understood as the sides of the microstrip radiation structure 100, that is, in the x direction as shown in the figure side A and side B of the microstrip radiation structure 100 in the width direction can be understood as the ends of the microstrip radiation structure 100, that is, the a-end and b-end in the y direction as shown in the figure, wherein, A The side is opposite to the B side, and the a end is opposite to the b end.
  • the a terminal is used to feed the antenna 10, and the b terminal is open or short circuited.
  • the b-end is used to feed the antenna 10, and the a-end is open or short-circuited.
  • the number of first radiation units 120 shown in FIG. 3 is four, and the number of second radiation units ( 130 and 132 ) is five.
  • the microstrip radiating structure 100 may also include other numbers of first radiating units, such as 7, and the microstrip radiating structure 100 may also include other numbers of second radiating units, such as 8.
  • the embodiment of the present application does not limit the quantity of the first radiation unit and the quantity of the second radiation unit.
  • Fig. 4a is a schematic plan view of a microstrip radiation structure of an antenna provided by the present application.
  • the microstrip radiation structure shown in Figure 4a is shown in the xoy coordinate system shown in the figure, and the structure parameter of microstrip radiation structure 100 comprises first direction (x direction shown in the figure, hereinafter first direction refers to with x direction ) and the structural parameters in the second direction (the y direction shown in the figure, the second direction is referred to as the y direction below).
  • the structural parameters in the x direction include the length l1 of the first radiating unit (120, 122, 124, or 126), and the length l2 of the second radiating unit (130, 131, 133, 135, or 137).
  • the structural parameters in the y direction include the width W2 of the microstrip radiating structure 100, the width h1 of the first radiating unit (120, 122, 124, or 126) in the y direction and the second radiating unit (130, 131, 133, 135, or 137) the width h2 in the y direction.
  • the width l1 of the first radiating unit (120, 122, 124, or 126) in the x direction is the distance between the two farthest points of the first radiating unit (120, 122, 124, or 126) in the x direction , please refer to l1 shown in Figure 4a.
  • the width l2 of the second radiating unit (130, 131, 133, 135, or 137) in the x direction is the two farthest points of the second radiating unit (130, 131, 133, 135, or 137) in the x direction
  • Width W2 of the microstrip radiating structure 100 is the Width W2 of the microstrip radiating structure 100:
  • the width W2 of the microstrip radiating structure 100 is the length in the y direction. Referring to FIG. 2a or 2c, the width W2 of the microstrip radiating structure 100 is the sum of the width W1 of the microstrip line and the width h1 of the first radiating unit. Alternatively, referring to FIG. 2b, the width W2 of the microstrip radiation structure 100 is equal to the width W1 of the microstrip line.
  • the width W2 of the microstrip radiating structure may be the width W1 of the microstrip line, the width of the first radiating unit on one side of the microstrip radiating structure The sum of h11 and the width h12 of the first radiation unit on the other side of the microstrip radiation structure.
  • the width W2 of the microstrip radiating structure may be the sum of the width W1 of the microstrip line and the width h11 of the first radiating unit on one side of the microstrip radiating structure.
  • the width W2 of the microstrip radiating structure may be the sum of the width W1 of the microstrip line and the width h12 of the first radiating unit on the other side of the microstrip radiating structure.
  • the width W2 of the microstrip radiation structure is equal to the width W1 of the microstrip line.
  • the reference line RL1 is a reference line parallel to the microstrip radiation structure 100 in the x direction (ie, parallel to the x axis), and the reference line RL1 is close to the A side of the microstrip radiation structure 100 .
  • the reference line RL2 is a reference line parallel to the microstrip radiation structure 100 in the x direction (ie parallel to the x axis), and the reference line RL2 is close to the B side of the microstrip radiation structure 100 .
  • the width h1 of the first radiating unit in the y direction is the distance between the highest point of the protrusion of the first radiating unit and the reference line (RL2 or RL1), wherein, if the first radiating unit is located at A of the microstrip radiating structure 100 side, then the width h1 of the first radiating unit in the y direction is the distance between the highest point of the protrusion and the reference line RL1, or, if the first radiating unit is located on the B side of the microstrip radiating structure 100, then the The width h1 of a radiation unit in the y direction is the distance between the highest point of the protrusion and the reference line RL2.
  • the width h1 of the first radiating unit in the y direction refers to the distance between the highest point of the protrusion of the first radiating unit and the reference line on the same side.
  • the width h1 of the first radiating unit in the y direction is shown in Fig. 4a.
  • the width h2 of the second radiating unit in the y direction is the distance between the deepest point of the second radiating unit depression and the reference line (RL2 or RL1), wherein, if the second radiating unit is located on the A side of the microstrip radiating structure 100 , then the width h2 of the second radiating unit in the y direction is the distance between the deepest point of the depression and the reference line RL1, or, if the second radiating unit is located on the side B of the microstrip radiating structure 100, then the second The width h2 of the radiation unit in the y direction is the distance between the deepest point of the depression and the reference line RL2.
  • the width h2 of the second radiating unit in the y direction refers to the distance between the deepest point of the second radiating unit's depression and the reference line on the same side.
  • the width h2 of the second radiating unit in the y direction is shown in Fig. 4a.
  • the reference line RL1 or the reference line RL2 can be determined in any of the following ways:
  • the reference line RL1 or the reference line RL2 is a straight line (L1) passing through the highest point of the first radiating unit and parallel to the x-axis.
  • the reference line RL1 of the largest first radiation unit 126 is a straight line passing through the highest point of the first radiation unit 126 and parallel to the x-axis.
  • the reference line RL1 or the reference line RL2 is a straight line (L2) passing through the deepest point of the second radiating unit depression and parallel to the x-axis.
  • L2 straight line
  • the reference line RL1 or the reference line RL2 is the deepest point of the depression passing through the second radiating unit with the largest h2, and is aligned with the x-axis parallel straight lines.
  • Method 3 Combining the above method 1 and method 2, the reference line RL1 or the reference line RL2 is a straight line passing through any point between the straight line L1 and the straight line L2 and parallel to the x-axis.
  • the specific values of the width h1 of the first radiation unit in the y direction and the width h2 of the second radiation unit in the y direction are directly related to the reference line RL1 or the reference line RL2. As shown in FIG. 4 a , the value of h11 of the first radiating unit 120 is 0, and the value of h12 of the first radiating unit 126 is not 0.
  • the structural parameters of the y-direction of the microstrip radiating structure 100 provided in the present application include the width W2 of the microstrip radiating structure 100, the width h1 of the first radiating unit in the y-direction and the width h2 of the second radiating unit in the y-direction, Wherein, the sizes of the structural parameters W2, h1 and h2 are related to the reference line.
  • the microstrip radiation structure 100 has a width greater than or equal to 0.25 times the antenna center working wavelength to form a convex structure and a concave structure on a wider microstrip line, and can be respectively designed by the following structural parameters: the first radiation The length l1 of the element, the length l2 of the second radiating element, the width W2 of the microstrip radiating structure 100 , the width h1 of the first radiating element in the y direction, and the width h2 of the second radiating element in the y direction. Wherein, l1 and h1 can be equivalent according to the actual shape of the first radiation unit.
  • l1 when the shape of the first radiation unit is a semicircle, l1 can be equivalent to the diameter of the semicircle, and h1 can be equivalent to the radius of the semicircle. l2 and h2 may be equivalent according to the actual shape of the second radiation unit. Therefore, the resonant frequency points of the convex structure and the concave structure can be adjusted, so that different broadband antennas can be realized according to actual needs.
  • l2 when the second radiation unit is a semicircle, l2 may be equivalent to the diameter of the semicircle, and h2 may be equivalent to the radius of the semicircle.
  • the connection and difference between the first radiating unit and the protruding structure, and the connection and difference between the second radiating unit and the concave structure will be described below.
  • the first radiating unit formed by the protruding structure can resonate in the first frequency band
  • the second radiating unit formed by the concave structure can resonate in the second frequency band.
  • the protruding structure may be equivalent to the first radiating unit, that is, the protruding structure and the first radiating unit refer to the same.
  • a part of the raised structure may be equivalent to the first radiating unit, for example, one side Lr of the raised structure is equivalent to the first radiating unit, as shown in FIG.
  • the protruding structure is a rectangle whose length is l1 and width is h1
  • the first radiating unit may be a rectangle whose length is l1 and width is h1', wherein h1' is smaller than h1.
  • a part of the concave structure is equivalent to the second radiation unit.
  • one side Lf of the depression of the concave structure may be equivalent to the second radiation unit.
  • the concave structure is a rectangle with a length of l2 and a width of h2
  • the second radiating unit may be a rectangle with a length of l2 and a width of h2' on the rectangle, wherein h2' is smaller than h2.
  • all of the concave structure is equivalent to the second radiating unit.
  • microstrip radiation structure 100 provided in the embodiment of the present application may be a metal layer of a PCB, and the microstrip radiation structure 100 may be approximately understood as a planar structure.
  • the protruding structure and the first radiating unit have the same designation
  • the concave structure and the second radiating unit have the same designation.
  • the shape of the first radiating unit below may also be expressed as a convex structure
  • the shape of the second radiating unit may also be expressed as a concave structure.
  • the shape of the first radiating unit described in this application and the shape of the first radiating unit can also be flexibly designed according to needs.
  • the shape of the first radiating unit or the shape of the recessed structure in addition to the rectangle shown above, the shape of the first radiating unit or the shape of the second radiating unit can also be a semicircle as shown in Figure 5a, so that the shape shown in Figure 5a
  • the B-side of the radiating structure forms a "wavy line”.
  • the shape of the first radiating unit or the shape of the second radiating unit may also be a triangle as shown in FIG. 5b, so that side A of the radiating structure shown in FIG. 5b forms a “sawtooth line”.
  • the shape of the first radiating unit or the shape of the second radiating unit can also be trapezoidal, and Figures 5a to 5c are only for illustrating the design of the shape of a single first radiating unit, or the shape of a single second radiating unit
  • Figures 5a to 5c are only for illustrating the design of the shape of a single first radiating unit, or the shape of a single second radiating unit
  • the design of the multiple first radiating units whether the shapes are the same, the number of the first radiating units, and the design of the spacing between different first radiating units, please refer to other corresponding embodiments of the present application.
  • the shapes of the multiple second radiating units are the same, the number of the second radiating units, and the design of the spacing between different second radiating units, please refer to other corresponding embodiments of the present application.
  • the shape of the first radiating unit may be one of the following shapes or a combination of the following shapes: sector, semicircle, circle, ellipse, triangle, quadrilateral, or other polygons (the number of sides is greater than 4 ).
  • the quadrilateral includes any one of the following: trapezoid, parallelogram or non-parallel west side.
  • the parallelogram includes any one of the following: rectangle, square or rhombus.
  • the shape of the second radiation unit is one of the following shapes or a combination of the following shapes: sector, semicircle, circle, ellipse, triangle, quadrilateral, or polygon (the number of sides is greater than 4).
  • the quadrilateral includes any one of the following: trapezoid, parallelogram or non-parallel west side.
  • the parallelogram includes any one of the following: rectangle, square or rhombus.
  • an impedance matching structure may be included at the feeding end of the microstrip radiation structure, and the impedance matching structure provided in this application can also be flexibly designed according to needs.
  • the feeding end of the microstrip radiating structure can be any one of the two ends of the microstrip radiating structure, when the a end of the microstrip radiating structure is set as the feeding end, the b end of the microstrip radiating structure is the end; or , when the b-end of the microstrip radiating structure is set as the feeding end, the a-end of the microstrip radiating structure is the end.
  • the microstrip radiating structure 100 further includes an impedance matching structure 101 , and the impedance matching structure 101 is disposed at a first end of the microstrip radiating structure 100 , such as end b shown in FIG. 6 .
  • the impedance matching structure 101 is used to match the impedance of the antenna.
  • the impedance matching structure 101 shown in FIG. 6 is a single-stage matching structure.
  • the microstrip radiation structure 100 feeds the port 102 .
  • the microstrip radiation structure 100 may also include a multi-stage impedance matching structure, and the impedance matching structure included in the microstrip radiation structure is a two-stage impedance matching structure, a three-stage impedance matching structure, or other multi-stage impedance matching structures. structure, this application does not limit the number of stages of the impedance matching structure.
  • the end of the microstrip radiating structure provided by the present application can be the open circuit shown above, in conjunction with the antenna shown in FIG. b end) is an open circuit, as shown in Figure 3 b end.
  • the end of the microstrip radiation structure provided in the present application may also be a short circuit, please refer to FIG. 7 , which is a top view structural diagram of an antenna 30 provided in an embodiment of the present application.
  • the antenna shown has a terminal a shown in FIG.
  • end a of the microstrip radiating structure 100 may be electrically connected to the metal floor 300 of the antenna 10 through a plurality of metallized via holes 103 .
  • the impedance matching structure 101 and the feed port 102 shown in FIG. 7 are the same as the above embodiment shown in FIG. 6 , and will not be repeated here.
  • the feeding mode of the antenna provided in this application can also be flexibly designed.
  • end-feeding such as the a-end or b-end shown above
  • the A side of the microstrip radiating structure 100 leads to the feeding port 102, so that the side feed can be performed on the A side of the microstrip radiating structure 100 or the side feeding can be performed on the A side of the microstrip radiating structure 100.
  • the side feed mentioned in the application can also be called side feed.
  • the microstrip radiation structure 100 may further include an impedance matching structure 101 .
  • the feeder can also be passed through the metal floor and the dielectric substrate, so that the core of the feeder is electrically connected to the feed point of the microstrip radiation structure, and the outer conductor of the feeder is electrically connected to the metal floor of the antenna, so as to realize the The antenna's back feed.
  • the feeding point can be flexibly selected according to the resonance characteristics of the two radiating units, and the antenna can be further flexibly designed way of feeding.
  • microstrip line width greater than or equal to 0.25 times the central operating wavelength
  • the convex structure and the concave structure can resonate at different frequency points to form different frequency bands Radiation, thereby forming antennas for broadband radiation all belong to the protection scope of the present application. That is, microstrip radiation structures with at least one first radiating unit and at least one second radiating unit all belong to the protection scope of the present application.
  • the microstrip radiating structure includes a plurality of first radiating units and a plurality of second radiating units as an example.
  • the shape of each first radiating unit and/or the shape of the second radiating unit can be flexibly designed.
  • the spacing between , and the spacing between the second radiating units can be flexibly designed, and different implementations of the microstrip radiating structure are shown below.
  • the present application does not limit the quantity of the first radiation unit and the quantity of the second radiation unit.
  • the microstrip radiating structure 100 includes 5 first radiating units and 5 second radiating units.
  • the five first radiation units include: a first radiation unit 120 , a first radiation unit 122 , a first radiation unit 124 , a first radiation unit 126 and a first radiation unit 128 .
  • the five second radiation units include: a second radiation unit 130 , a second radiation unit 132 , a second radiation unit 134 , a second radiation unit 136 and a second radiation unit 138 .
  • the center distance d1 between the first radiating unit 120 and the first radiating unit 122 is not equal to the center distance d2 between the first radiating unit 122 and the first radiating unit 124 .
  • the center distance d3 between the first radiation unit 124 and the first radiation unit 126 is equal to the center distance d4 between the first radiation unit 126 and the first radiation unit 128 . It can also be seen from FIG.
  • Figure 9a is an example of the distance between a plurality of first radiation units, or the distance between radiation units of a plurality of second radiation units.
  • the distance between the first radiation unit and the second radiation unit The spacing between them can be flexibly designed.
  • the microstrip radiating structure 100 shown in FIG. 9a can be used in the antenna provided by the present application, the structural parameters of the microstrip radiating structure 100, the feeding mode of the antenna, and other implementations of the microstrip radiating structure 100, such as impedance impedance
  • the matching structure and the like may be combined with the above embodiments shown in FIG. 2 to FIG. 8 , which will not be repeated here.
  • the multiple first radiating units can be flexibly arranged on the same side of the microstrip radiating structure, for example, as shown in FIG. 9a. Or a plurality of first radiating units can be flexibly arranged on different sides of the microstrip radiating structure, please refer to FIG. Four first radiation units 122 are arranged on one side.
  • the first radiating unit on the second side corresponds to the position of the second radiating unit on the first side, and optionally, the center point of the first radiating unit on the second side in the x direction is the same as the first
  • the line connecting the central points of the second radiating units on the side in the x direction is parallel to the y-axis, which means that the first radiating unit on the second side corresponds to the second radiating unit on the first side.
  • the first radiation unit 122 on the B side corresponds to the second radiation unit 130 on the A side.
  • FIG. 9c The shapes of the raised structures on side A and side B of the microstrip radiation structure 100 shown in FIG. Figure 9c.
  • the implementation of the spacing between the first radiating units may be implemented with reference to FIG. 9 b , and details are not repeated here.
  • the microstrip radiating structure 100 shown in FIG. 9b can be used in the antenna provided by the present application, the structural parameters of the microstrip radiating structure 100, the feeding mode of the antenna, and other implementations of the microstrip radiating structure 100, such as may include
  • the impedance matching structure and the like can be combined with the above embodiments shown in FIG. 2 to FIG. 8 , which will not be repeated here.
  • the multiple second radiating units can also be flexibly arranged on the same side of the microstrip radiating structure, as shown in FIG. 9a for example.
  • a plurality of second radiating units can be flexibly arranged on different sides of the microstrip radiating structure, please refer to FIG. , the side B of the microstrip radiation structure 100 is provided with a plurality of second radiation units (131, 133, or 135).
  • the second radiating unit on the second side corresponds to the first radiating unit on the first side
  • the center point of the second radiating unit on the second side in the x direction corresponds to the first radiating unit on the first side
  • the line connecting the central points of a radiating unit in the x direction is parallel to the y axis, which means that the second radiating unit on the second side corresponds to the first radiating unit on the first side.
  • the second radiation unit 133 on the B side corresponds to the first radiation unit 120 on the A side.
  • the implementation of the spacing between the second radiating units may be implemented with reference to FIG. 9a , which will not be repeated here.
  • the microstrip radiating structure 100 shown in FIG. 9b can be used in the antenna provided by the present application, the structural parameters of the microstrip radiating structure 100, the feeding mode of the antenna, and other implementations of the microstrip radiating structure 100, such as may include
  • the impedance matching structure and the like can be combined with the above embodiments shown in FIG. 2 to FIG. 8 , which will not be repeated here.
  • the embodiments of the shape of the first radiating unit and/or the shape of the second radiating unit provided in conjunction with FIGS. 5a to 5c the embodiment of the present application describes the combination of shape designs between multiple first radiating units and/or multiple second radiating units.
  • the shape of the first radiation unit is taken as an example for description.
  • the shapes of the multiple first radiating units may be uniformly designed to be the same shape, as shown in FIGS. 5 a to 5 b , or the shapes of each of the multiple first radiating units may be individually designed.
  • the shapes of each first radiation unit among the plurality of first radiation units are partly the same, as shown in FIG.
  • the shapes of the first radiating units on side A (or side B) of the radiating structure 100 are the same. Or, the shape of a part of the first radiating units on the A side of the microstrip radiation structure 100 is the same or the shape of a part of the first radiating units on the B side is the same, or, the shape of a part of the first radiating units on the A side of the microstrip radiation structure 100
  • the shape of a part of the first radiating units on side B is the same, but the shape of another part of the first radiating units on side A of the microstrip radiating structure 100 or the shape of another part of the first radiating units on side B is different.
  • the shape design of the second radiating unit is the same as that described above for the first radiating unit, and will not be repeated here.
  • FIG. 9 c is a schematic structural diagram of a microstrip radiation structure 100 provided in an embodiment of the present application.
  • the microstrip radiating structure 100 includes a first radiating unit (120, 122, 124) and a second radiating unit (131, 133, 135, 137, 139), wherein the shapes of the first radiating unit (120, 122, 124) are both No, the second radiation unit 133 and the second radiation unit 135 have the same shape. It is different from other second radiation units (131, 137, 139). Also, two second radiation units ( 133 , 135 ) may be included between the first radiation unit 120 and the second radiation unit 122 . Optionally, there may be multiple second radiation units between adjacent first radiation units, or there may be multiple first radiation units between adjacent second radiation units.
  • the microstrip radiating structure 100 shown in FIG. 9c can be used in the antenna provided by the present application, the structural parameters of the microstrip radiating structure 100, the feeding mode of the antenna, and other implementations of the microstrip radiating structure 100, such as may include
  • the impedance matching structure and the like can be combined with the above embodiments shown in FIG. 2 to FIG. 8 , which will not be repeated here.
  • the above embodiments shown in Fig. 9a to Fig. 9c may be implemented in any combination.
  • the embodiments shown in Figure 2 to Figure 9c shown above can be implemented in any combination
  • the microstrip radiation structure of the present application can be flexibly designed, specifically, the number of first radiation units in the microstrip radiation structure can be flexibly designed, and the distance between two adjacent first radiation units It can be designed flexibly, the shapes of different first radiating units can be flexibly designed, and, when the microstrip radiating structure includes multiple first radiating units, the multiple first radiating units can also be designed on the same side of the microstrip radiating structure, Or design on both sides of the microstrip radiation structure.
  • the number of second radiating units in the microstrip radiating structure can be flexibly designed, the spacing between two adjacent second radiating units can be flexibly designed, the shapes of different second radiating units can be flexibly designed, and, when the microstrip When the structure with radiation includes multiple second radiating units, the multiple second radiating units can also be designed on the same side of the microstrip radiating structure, or on both sides of the microstrip radiating structure.
  • the microstrip radiation structure provided by the present application can be flexibly designed according to actual requirements, and has a large degree of design freedom, so that the antenna with the microstrip radiation structure provided by the present application can meet different design requirements.
  • the antenna shown in FIG. 10a includes a microstrip radiation structure 100, a dielectric board 200 and a metal floor 300, and the antenna is a PCB antenna.
  • the microstrip radiating structure 100 includes a feeding port 101, an impedance matching structure 102, a first radiating unit and a second radiating unit, specifically including 3 first radiating units 120, 1 first radiating unit 122, and 3 second radiating units structure 130 and a second radiating structure 132 .
  • the antenna 10 can be fed through the feed port 102 at end a.
  • the reference line RL1 is a straight line passing through the deepest point of the second radiating unit depression and parallel to the x-axis
  • the reference line RL2 is a straight line passing through the side of the microstrip radiation structure 100B side.
  • the length l1 of the first radiating unit is greater than or equal to 0.5 times the central working wavelength of the antenna and less than or equal to 1.5 times the central working wavelength of the antenna.
  • the center distance d1 between two adjacent first radiating elements is less than or equal to 1.5 times the central working wavelength of the antenna.
  • the length l2 of the second radiating unit is the center distance d1 between two adjacent first radiating units minus the length l1 of the first radiating unit 120 .
  • the width W2 of the microstrip radiation structure 100 shown in FIG. 10 b is less than or equal to 0.5 times the central working wavelength of the antenna, and greater than or equal to 0.25 times the central working wavelength of the antenna.
  • the width h1 of the first radiation unit in the y direction is greater than or equal to 0.02 times the central working wavelength of the antenna and less than or equal to 0.5 times the central working wavelength of the antenna.
  • the width W2 of the microstrip radiating structure 100 may be less than or equal to 0.75 times the central working wavelength of the antenna.
  • the width h2 of the second radiating structure is equal to zero.
  • the simulation effect of the antenna 10 is shown in FIG. 10c, and the electrical parameter S11 of the antenna (the ordinate in FIG. 10c ) varies with the frequency (the abscissa in FIG. 10c ).
  • the electrical parameter S11 is the reflection coefficient of the feeding port 102 .
  • the first radiating unit 120 can resonate near 77GHz (the first trough of the curve shown in FIG. two valleys), the frequency range of S11 ⁇ 10dB can be from 75.08GHz to 82.11GHz, and the working bandwidth of the antenna 10 is as high as 7.03GHz, thereby realizing a broadband antenna.
  • the convex structure can resonate at the first frequency point, and the concave structure can resonate at the second frequency.
  • the second frequency resonates, and when the antenna 10 is working, it realizes a cavity-like field distribution, thereby realizing the effect of a broadband antenna.
  • the present application also provides an antenna array, and the antenna array may include the antenna in any of the foregoing embodiments.
  • the antenna array may also include a power dividing and combining structure.
  • FIG. 11 is a schematic structural diagram of an antenna array 20 provided in an embodiment of the present application.
  • the antenna array 20 includes the antenna 10 and the antenna 11, and a power splitting and combining structure 22.
  • the power splitting and combining structure 22 includes a first power Splitting terminal p1, second power splitting terminal p2 and combining terminal p3.
  • the b terminal of the antenna 10 is electrically connected to the first power dividing terminal p1 of the power dividing and combining structure 22
  • the b terminal of the second antenna 11 is electrically connected to the second power dividing terminal p2 of the power dividing and combining structure 22 .
  • the combination of the signal received on the antenna 10 and the signal received on the antenna 11 to the combining terminal p3 can be realized.
  • the signal transmitted by the combiner p3 can be branched to the antenna 10 and the antenna 11 . Therefore, the one-to-two feed from the feed network to the antenna array 20 can be realized.
  • the power splitting and combining structure 22 shown in FIG. 11 is a one-to-two or two-in-one power splitting and combining structure.
  • the power splitting and combining structure 22 can also be one split or multiple Integrating power splitting and combining structure, so as to realize the feed network to drive multiple antenna arrays, or feed multiple in one.
  • the antenna 10 and the antenna 11 can share the same dielectric plate 200 and metal floor 300 .
  • the dielectric plates or metal floors of the antenna 10 and the antenna 11 may also be designed separately, which is not limited in this application.
  • the antenna 10, the antenna 11 and the power splitting and combining structure 22 can be separately designed and then electrically connected, or can also be directly integrally formed.
  • the antenna array 20 further includes a radome, and/or a feeding network.
  • the present application also provides a detection device, including the antenna provided by any of the above embodiments; and/or including the antenna array provided by any of the above embodiments.
  • the detection device may be a radar, and when the antenna or antenna array provided by the present application is applied to the radar, the distance resolution of the radar can be improved.
  • the radar can be a vehicle radar.
  • the present application also provides a terminal, including the antenna in any of the foregoing embodiments; the antenna array provided in any of the foregoing embodiments, and/or including the detecting device provided in the foregoing embodiments.
  • the terminal may be a vehicle, and when the detection device is a radar, the radar of the present application is carried on the vehicle, which can improve the perception capability of the vehicle by increasing the distance resolution of the detection device.
  • the vehicles described in this application can also be self-driving vehicles, or vehicles integrated with ADAS, and the vehicles described in this application can be replaced by other vehicles such as trains, aircraft, robots, slow transport vehicles, or mobile platforms. tool or vehicle.
  • the terminal described in this application may also be user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal device, wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, other vehicle-mounted devices, wearable devices, and smart home devices are not limited in this embodiment of the present application.
  • the antenna or antenna array provided by this application is applied to other terminal equipment, such as a mobile phone, it can provide the bandwidth of the working frequency band of the mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供一种天线,尤其应用于毫米波雷达或者宽带雷达。通过在该天线中较宽的微带线的侧边形成凸起结构和凹陷结构,并通过设计该凸起结构和/或该凹陷结构的形状、大小,凸起结构和凸起结构之间的距离,凹陷结构和凹陷结构之间的距离,和/或,凸起结构和凹陷结构之间的距离,可以使得凸起结构和凹陷结构谐振在不同的频点,以使得凸起结构和凹陷结构支持不同频段的信号的辐射,从而实现所述天线的宽带辐射。

Description

一种天线、探测装置和终端 技术领域
本申请涉及雷达技术领域,具体涉及一种天线、探测装置和终端。
背景技术
宽带技术在雷达方面的应用较早,宽带雷达距离分辨率高,高的距离分辨率雷达具有更精确的目标识别能力,能获得复杂目标的细微特征。因此,宽带雷达在雷达探测、成像、目标识别等方面具有广泛的应用价值。
随着通信频段的提高,宽带雷达对天线的工作频带的要求也越来越高,如何设计出一种剖面低,结构简单,易于集成的宽带天线,成为亟待解决的问题。
发明内容
本申请实施例中提供一种剖面低,结构简单,易于集成的宽带天线,该天线能够应用于探测装置或者终端。
第一方面,提供了一种天线,该天线包括金属地板、介质板以及微带辐射结构,金属地板和微带辐射结构分别设置在介质板两侧。微带辐射结构包括第一辐射单元和第二辐射单元。其中,第一辐射单元为微带辐射结构上的凸起结构形成的辐射单元,第二辐射单元为微带辐射结构上的凹陷结构形成的辐射单元,第一辐射单元支持第一频段,第二辐射单元支持第二频段。
可见,通过在较宽的微带线的侧边形成凸起结构和凹陷结构,通过设计该凸起结构和该凹陷结构的形状、大小,凸起结构和凸起结构之间的距离,凹陷结构和凹陷结构之间的距离,和/或,凸起结构和凹陷结构之间的距离,可以使得凸起结构和凹陷结构谐振在不同的频点,以使得凸起结构和凹陷结构支持不同频段的信号辐射,该天线在工作的时候,可以实现类腔体的场分布,从而实现所述天线的宽带辐射。示例地,该微带线的线宽大于或等于0.425倍的中心工作波长。
在一些可能的实现方式中,微带辐射结构包括多个第一辐射单元;和/或微带辐射结构包括多个第二辐射单元。
可见,本申请提供的天线,第一辐射单元的数量和/或第二辐射单元的数量可以根据需要灵活设计,以实现宽带天线。
在一些可能的实现方式中,在第一方向上,至少一组相邻的两个第一辐射单元之间具有第二辐射单元。
可见,本申请提供的天线,第一辐射单元和第二辐射单元的相对位置可以根据需要灵活设计,以实现宽带天线。
在一些可能的实现方式中,多个第一辐射单元中存在至少两组相邻第一辐射单元,两组相邻第一辐射单元的中心距离相等,或者两组相邻第一辐射单元的中心距离不等。
可见,本申请提供的天线,相邻第一辐射单元的中心距离可以根据需要灵活设计,以实现宽带天线。当相邻第一辐射单元的中心距离都相等时,可以简化天线的设计。
在一些可能的实现方式中,多个第二辐射单元中存在至少两组相邻第二辐射单元,两组相邻第二辐射单元的中心距离相等,或者两组相邻第二辐射单元的中心距离不等。
可见,本申请提供的天线,相邻第二辐射单元的中心距离可以根据需要灵活设计,以实现宽带天线。当相邻第二辐射单元的中心距离都相等时,可以简化天线的设计。
在一些可能的实现方式中,多个第一辐射单元设置在微带辐射结构的同一侧。或者,多个第一辐射单元中的第一部分辐射单元设置在微带辐射结构的第一侧,多个第一辐射单元中的第二部分辐射单元设置在微带辐射结构的第二侧,其中,第一侧与第二侧为微带辐射结构中相对的两侧。当多个第一辐射单元中的第一部分辐射单元设置在微带辐射结构的第一侧,多个第一辐射单元中的第二部分辐射单元设置在微带辐射结构的第二侧时,位于第二侧的第一辐射单元与位于第一侧的第二辐射单元对应。
在一些可能的实现方式中,多个第二辐射单元可以均设置在微带辐射结构的同一侧。或者,多个第二辐射单元中的第一部分辐射单元设置在微带辐射结构的第一侧,多个第二辐射单元中的第二部分辐射单元设置在微带辐射结构的第二侧,其中,第一侧与第二侧为微带辐射结构中相对的两侧。当多个第二辐射单元中的第一部分辐射单元设置在微带辐射结构的第一侧,多个第二辐射单元中的第二部分辐射单元设置在微带辐射结构的第二侧时,位于第二侧的第二辐射单元与位于第一侧的第一辐射单元对应。
可见,本申请提供的天线,微带辐射结构的两侧都可以根据需要灵活设计第一辐射单元或者第二辐射单元,且位于一侧的第一辐射单元与另一侧的第二辐射单元位置对应,从而该天线在工作的时候,可以实现类腔体的场分布,以实现宽带天线。
在一些可能的实现方式中,多个第一辐射单元中的任意两个辐射单元的形状相同;多个第一辐射单元中的部分辐射单元的形状相同;或,多个第一辐射单元中的任意两个辐射单元的形状不同。
在一些可能的实现方式中,多个第二辐射单元中的任意两个辐射单元的形状相同;多个第二辐射单元中的部分辐射单元的形状相同;或,多个第二辐射单元中的任意两个辐射单元的形状不同。
可见,本申请提供的天线,第一辐射单元的形状或者第二辐射单元的形状可以根据需要灵活设计,以实现宽带天线。
可选地,第一辐射单元的形状为以下一种形状或者以下多种形状组合成的形状:扇形,半圆形,圆形,椭圆形,三角形,四边形,或多边形(边数大于4)。
可选地,第二辐射单元的形状为以下一种形状或者以下多种形状组合成的形状:
扇形,半圆形,圆形,椭圆形,三角形,四边形,或多边形(边数大于4)。
其中,所述的四边形包括以下任意一种:梯形,平行四边形或非平行西边形。所述的平行四边形包括以下任意一种:矩形,正方形或菱形。
在一些可能的实现方式中,微带辐射结构还包括阻抗匹配结构,阻抗匹配结构设置在微带辐射结构的第一端,阻抗匹配结构用于匹配天线的阻抗。
可见,通过在微带辐射结构的馈电端设计阻抗匹配结构,能够对本申请提供的天线实现更好的馈电效果,本申请提供的阻抗匹配结构也可以根据需要灵活设计。示例地,阻抗匹配结构为多级阻抗匹配结构。
在一些可能的实现方式中,微带辐射结构的第二端为开路;或者,微带辐射结构的第二端为短路。当微带辐射结构的第二端(非馈电端)为短路时,可以更好地接地,天线的辐射性能更稳定。
在一些可能的实现方式中,天线的馈电方式可以为端馈、侧馈(或者称为边馈)或者背馈。
可见,本申请提供的天线,可以灵活选择馈电方式。
在一些可能的实现方式中,在第一方向上,第一辐射单元的长度大于或者等于0.5倍的所述天线中心工作波长。
在一些可能的实现方式中,在第一方向上,相邻的两个第一辐射单元之间的中心距离大于或者等于0.65倍的天线中心工作波长。
在一些可能的实现方式中,在第二方向上,第一辐射单元的长度为大于或等于0.02倍天线中心工作波长。
在一些可能的实现方式中,在第二方向上,微带辐射结构的长度小于等于0.7倍天线中心工作波长。
可见,通过对以上提供的各个结构参数进行优化设计,便可以设计出所需的宽带天线。
第二方面,提供了一种天线阵列,该天线阵列包括第一方面以及第一方面中任一项可能的实现方式中的天线。
在一些可能的实现方式中,天线阵列包括多个所述天线以及功分合路结构,所述多个天线包括第一天线和第二天线,功分合路结构包括第一功分端、第二功分端。第一天线的第一端与功分合路结构的第一功分端电连接,第二天线的第一端与功分合路结构的第二功分端电连接。
从而,可以实现对第一天线上接收的信号和第二天线上接收的信号的合路至合路端。或者,可以实现对合路端传输的信号分路至第一天线和第二天线上。从而,可以实现馈电网络对天线阵列的一驱二的馈电。
可选地,功分合路结构还可以为一分多或者说是多合一的功分合路结构,从而实现馈电网络对天线阵列的的一驱多,或者多合一的馈电。
在一些可能的实现方式中,天线阵列还可以包括天线罩。
可见,包括本申请提供的天线的天线阵列,可以实现宽带辐射。
第三方面,提供了一种探测装置,该探测装置包括第一方面以及第一方面中任一项可能的实现方式中的天线,和/或探测装置包括第二方面以及第二方面中任一项可能的实现方式中的天线阵列。
在一些可能的实现方式中,该探测装置可以为雷达。
可见,包括本申请提供的天线和/或天线阵列的探测装置,可以具有更高的距离分辨率。
第四方面,提供了一种终端,该终端包括第三方面的探测装置。进一步,该终端可以为智能运输设备、智能制造设备、智能家居设备或者测绘设备等。
在一些可能的实现方式中,该终端为车辆。
可见,包括本申请提供的探测装置的终端或车辆,可以具有更高的感知能力。
附图说明
图1为本申请实施例提供的一种应用系统的结构示意图;
图2a为本申请实施例提供的一种微带辐射结构示意图;
图2b为本申请实施例提供的一种微带辐射结构示意图;
图2c为本申请实施例提供的一种微带辐射结构示意图;
图2d为本申请实施例提供的一种微带辐射结构示意图;
图3为本申请实施例提供的一种天线的结构示意图;
图4a为本申请实施例提供的一种微带辐射尺寸示意图;
图4b为本申请实施例提供的一种微带辐射尺寸示意图;
图5a为本申请实施例提供的一种微带辐射结构示意图;
图5b为本申请实施例提供的一种微带辐射结构示意图;
图5c为本申请实施例提供的一种微带辐射结构示意图;
图6为本申请实施例提供的一种微带辐射结构示意图;
图7为本申请实施例提供的一种天线的俯视的结构示意图;
图8为本申请实施例提供的一种天线的馈电示意图;
图9a为本申请实施例提供的一种微带辐射结构示意图;
图9b为本申请实施例提供的一种微带辐射结构示意图;
图9c为本申请实施例提供的一种微带辐射结构示意图;
图10a为本申请实施例提供的一种天线的结构示意图;
图10b为图10a所示天线的微带辐射结构示意图;
图10c为图10a所示天线的仿真效果图;
图11为本申请实施例提供的一种天线阵列的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请可适用于无线通信系统,或者适用于高级驾驶辅助系统(advanced driving assistant system,ADAS),机器人、无人机、网联车、安防监控等领域。ADAS例如可以是自动驾驶。本申请可适用于自动驾驶车辆或集成了ADAS的车辆,例如可以是具有人机交互(human machine interaction,HMI)功能的自动驾驶车辆,可以是对车辆进行运动控制功能的自动驾驶车辆。可选地,车辆可以包含至少一个自动驾驶系统,以支持自动驾驶车辆进行自动驾驶。
如图1所示,示出了本申请实施例中具有自动驾驶功能车辆的一种功能框图。在一个实施例中,车辆100可以配置为完全或部分地自动驾驶模式。如图1所示,耦合到车辆100或包括在车辆100中的组件可以包括推进系统110、传感器系统120、控制系统130、外围设备140、电源150、计算机系统160以及用户接口170。示例地,电源150可以向车辆100的所有组件提供电力。计算机系统160可以被配置为从推进系统110、传感器系统120、控制系统130和外围设备140接收数据并对它们进行控制。计算机系统160还可以被配置为在用户接口170上生成图像的显示并从用户接口170接收输入。
需要说明的是,在其它示例中,车辆100可以包括更多、更少或不同的系统,并且每个系统可以包括更多、更少或不同的组件。此外,示出的系统和组件可以按任意种的方式进行组合或划分,本申请对此不做具体限定。
传感器系统120可以包括用于感测车辆100周围环境的若干个传感器。如图1所示,传感器系统120的传感器包括全球定位系统(Global PositioningSystem,GPS)126、惯性测量单元(Inertial Measurement Unit,IMU)125、激光雷达传感器、相机传感器123、毫米波雷达传感器以及用于修改传感器的位置和/或朝向的制动器121。毫米波雷达传感器可利用无线电信号来感测车辆100的周边环境内的目标。在一些实施例中,除了感测目标以外,毫米波雷达122还可用于感测目标的速度和/或前进方向。激光雷达124可利用激光来感测车辆100所位于的环境中的目标。在一些实施例中,激光雷达124可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。相机传感器123可用于捕捉车辆100的周边环境的多个图像。相机传感器123可以是静态相机或视频相机。
控制系统130为控制车辆100及其组件的操作。控制系统130可包括各种元件,其中包括转向单元136、油门135、制动单元134、传感器融合算法133、计算机视觉系统132、路线控制系统134以及障碍物避免系统137。转向系统136可操作来调整车辆100的前进方向。例如在一个实施例中可以为方向盘系统。油门135用于控制引擎114的操作速度并进而控制车辆100的速度。控制系统130可以额外地或可替换地包括除了图1所示出的组件以外的其他组件。本申请对此不做具体限定。
计算机视觉系统132可以操作来处理和分析由相机传感器123捕捉的图像以便识别车辆100周边环境中的目标和/或特征。所述目标和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统132可使用目标识别算法、运动中恢复结构(structure from motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统132可以用于为环境绘制地图、跟踪目标、估计目标的速度等等。路线控制系统134用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自传感器系统120、GPS 126和一个或多个预定地图的数据以为车辆100确定行驶路线。障碍物避免系统137用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。当然,在一个实例中,控制系统130可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
外围设备140可以被配置为允许车辆100与外部传感器、其它车辆和/或用户交互。为此,外围设备140可以包括例如无线通信系统144、触摸屏143、麦克风142和/或扬声器141。外围设备140可以额外地或可替换地包括除了图1所示出的组件以外的其他组件。本申请对此不做具体限定。
电源150可以被配置为向车辆100的一些或全部组件提供电力。车辆100的组件可以被配置为以与在其各自的系统内部和/或外部的其它组件互连的方式工作。为此,车辆100的组件和系统可以通过系统总线、网络和/或其它连接机制通信地链接在一起。
车辆100的部分或所有功能受计算机系统160控制。计算机系统160可包括至少一个处理器161,处理器161执行存储在例如存储器163这样的非暂态计算机可读介质中的指令1631。计算机系统160还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
处理器161可以是任何常规的处理器,诸如商业可获得的中央处理器(central  processing unit,CPU)。替选地,该处理器可以是诸如专用集成电路(application specific integrated circuits,ASIC)或其它基于硬件的处理器的专用设备。尽管图1功能性地图示了处理器、存储器、和在相同块中的计算机系统160的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机系统160的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器163可包含指令1631(例如,程序逻辑),指令1631可被处理器161执行来执行车辆100的各种功能,包括以上描述的那些功能。存储器214也可包含额外的指令,包括向推进系统110、传感器系统120、控制系统130和外围设备140中的一个或多个发送数据、从其接收数据、与其交互,和/或对其进行控制的指令。
除了指令1631以外,存储器163还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统160使用。
用户接口170,用于向车辆100的用户提供信息或从其接收信息。可选地,用户接口170可包括在外围设备140的集合内的一个或多个输入/输出设备,例如无线通信系统144、触摸屏143、麦克风142和扬声器141。
计算机系统160可基于从各种子系统(例如,推进系统110、传感器系统120和控制系统130)以及从用户接口170接收的输入来控制车辆100的功能。例如,计算机系统160可利用来自控制系统130的输入以便控制转向单元136来避免由传感器系统120和障碍物避免系统137检测到的障碍物。在一些实施例中,计算机系统160可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器163可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本申请实施例的限制。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、运输车,和手推车等,或者还可以替换为其他终端,如手机,平板电脑,智能家居设备,智能机器人等,本申请实施例不做特别的限定。
示例地,本申请提供一种宽带天线可以应用于车辆100中,或者可以说应用于车辆100的传感器系统120中,以期提高车辆100的感知能力。
本申请提供一种天线,通过在较宽的微带线的侧边形成凸起结构和凹陷结构,通过设 计该凸起结构和该凹陷结构的形状、大小,凸起结构和凸起结构之间的距离,凹陷结构和凹陷结构之间的距离,和/或,凸起结构和凹陷结构之间的距离,可以使得凸起结构和凹陷结构谐振在不同的频点,以使得凸起结构和凹陷结构支持不同频段的信号辐射,该天线在工作的时候,可以实现类腔体的场分布,从而实现所述天线的宽带辐射。示例地,该微带线的线宽大于或等于0.25倍的中心工作波长。
本申请所述的类腔体的场分布可以理解为类似波导天线的场分布。
其中,本申请所述的凸起结构和凹陷结构,可以有以下三种实现方式,请参考图2a至图2c:
如图2a所示,可以在线宽为W1的微带线的一侧边上增加(如焊接)凸起结构120和凸起结构122,则凸起结构120和凸起结构122之间就形成了凹陷结构130。或者,如图2b所示,可以在线宽为W1的微带线的一侧边上减掉(如腐蚀)部分微带线从而形成凹陷结构130和凹陷结构131,则凹陷结构130和凹陷结构131之间就形成了凸起结构120。
或者,如图2c所示,微带辐射结构100可以是线宽为W1的微带线一侧边上增加凸起结构120和凸起结构122,以及在该侧边上减掉部分微带线形成多个凹陷结构130。
或者,如图2d所示,可以在线宽为W1的微带线的一侧边上增加凸起部分1,凸起部分2和凸起部分3,且凸起部分1和凸起部分3的高度都高于凸起部分2,则,凸起部分1可以认为是凸起结构120,凸起部分3可以认为是凸起结构122,凸起部分2就可以认为是凹陷结构130。
从而,可以根据实际微带线的线宽以及天线的性能需求,灵活的选取微带辐射结构的实现方式。
其中,本申请所述的凸起结构和凹陷结构可以支持不同的工作频段,可以理解为,凸起结构支持第一频段的信号辐射和凹陷结构支持第二频段的信号辐射,第一频段和第二频段完全不同或者说是第一频段和第二频段完全频带完全不重叠,示例地,第一频段为76GHz至78GHz,第二频段为79GHz至80GHz,可以看出,第一频段和第二频段的频段完全不重叠。可选地,第一频段和第二频段部分频带重叠,部分频带不重叠,示例地,第一频段为76GHz至78GHz,第二频段为78GHz至80GHz,可以看出,第一频段和第二频段重叠了一个频点78GHz。或者,第一频段为76GHz至78GHz,第一频段为77GHz至80GHz,可以看出,第一频段和第二频段在频段77GHz至78GHz上是重叠的。
下面将结合附图3至附图9c,对本申请提供的天线进行详细描述。
请参考图3,其为本申请实施例提供的一种天线的结构示意图,天线10包括金属地板300、介质板200以及微带辐射结构100,金属地板300和微带辐射结构100分别设置在介质板200两侧;微带辐射结构100一个侧边(图中A侧)包括第一辐射单元120和第二辐射单元(130,或132),其中,第一辐射单元120为凸起结构形成的辐射单元,可以支持第一频段的信号辐射,所述第二辐射单元(130,或132)为凹陷结构形成的辐射单元,可以支持第二频段的信号辐射。
图3所示的微带辐射结构100为一个长条形结构,微带辐射结构100在长度方向上的边可以理解为该微带辐射结构100的侧边,即如图示的在x方向上的A侧和B侧,微带辐射结构100宽度方向上的边可以理解为该微带辐射结构100的端,即如图示所示的在y方 向上的a端和b端,其中,A侧和B侧相对,a端和b端相对。可选地,该a端用于给天线10馈电,b端开路或者短路。或者,该b端用于给天线10馈电,a端开路或者短路。
图3所示的第一辐射单元120和第二辐射单元(130,或132)都设置在微带辐射结构100的A侧,可选地,微带辐射结构100的B侧上也可以设置第一辐射单元120和第二辐射单元(130,或132)。
图3所示的第一辐射单元120的数量为4个,第二辐射单元(130和132)数量为5个。可选地,微带辐射结构100还可以包括其他数量的第一辐射单元,如7个,微带辐射结构100还可以包括其他数量的第二辐射单元,如8个。本申请实施例对第一辐射单元的数量以及第二辐射单元的数量不做限制。
为了便于理解本申请提供的天线,下面结合图4a对本申请的天线尺寸进行说明。图4a为本申请提供的一种天线的微带辐射结构的平面结构示意图。图4a所示的微带辐射结构在图中所示的所xoy坐标系,微带辐射结构100的结构参数包括第一方向(图中所示的x方向,下文第一方向用x方向指代)的结构参数和第二方向(图中所示的y方向,下文第二方向用y方向指代)上的结构参数。其中,x方向的结构参数包括第一辐射单元(120,122,124,或126)的长度l1,第二辐射单元(130,131,133,135,或137)的长度l2。y方向的结构参数包括微带辐射结构100的宽度W2,第一辐射单元(120,122,124,或126)在y方向上的宽度h1以及第二辐射单元(130,131,133,135,或137)在y方向上的宽度h2。
首先,对微带辐射结构100的x方向的结构参数进行说明。
第一辐射单元(120,122,124,或126)在x方向上的长度l1:
第一辐射单元(120,122,124,或126)在x方向上的宽度l1为第一辐射单元(120,122,124,或126)在x方向上最远的两个点之间的距离,请参考图4a所示的l1。
第二辐射单元(130,131,133,135,或137)在x方向上的长度l2:
第二辐射单元(130,131,133,135,或137)在x方向上的宽度l2为第二辐射单元(130,131,133,135,或137)在x方向上最远的两个点之间的距离,请参考图4a所示的l2。
其次,对微带辐射结构100的y方向的结构参数进行说明。
微带辐射结构100的宽度W2:
该微带辐射结构100的宽度W2为y方向上的长度,请结合图2a或者2c,微带辐射结构100的宽度W2为微带线的宽度W1和第一辐射单元的宽度h1之和。或者,结合图2b,微带辐射结构100的宽度W2等于微带线的宽度W1。
可选地,当微带辐射结构的两侧都包括第一辐射单元时,微带辐射结构的宽度W2可以为微带线的宽度W1、微带辐射结构的一侧的第一辐射单元的宽度h11以及微带辐射结构的另一侧的第一辐射单元的宽度h12之和。或者,该微带辐射结构的宽度W2可以为微带线的宽度W1与微带辐射结构的一侧的第一辐射单元的宽度h11之和。或者,微带辐射结构的宽度W2可以为微带线的宽度W1和微带辐射结构的另一侧的第一辐射单元的宽度h12之和。或者,微带辐射结构的宽度W2等于微带线的宽度W1。
第一辐射单元在y方向上的宽度h1:
请参考图4a,参考线RL1为在x方向上与该微带辐射结构100平行的参考线(即平行于x轴),且参考线RL1靠近该微带辐射结构100的A侧。参考线RL2为在x方向上与该微带辐射结构100平行的参考线(即平行于x轴),且参考线RL2靠近该微带辐射结构100的B侧。
第一辐射单元在y方向上的宽度h1为第一辐射单元凸起的最高点与参考线(RL2或者RL1)之间的距离,其中,若第一辐射单元位于该微带辐射结构100的A侧,则,第一辐射单元在y方向上的宽度h1为凸起的最高点与参考线RL1之间的距离,或者,若第一辐射单元位于该微带辐射结构100的B侧,则第一辐射单元在y方向上的宽度h1为凸起的最高点与参考线RL2之间的距离。也即是,第一辐射单元在y方向上的宽度h1指的是该第一辐射单元凸起的最高点与同侧参考线之间的距离。第一辐射单元在y方向上的宽度h1如图4a所示。
第二辐射单元在y方向上的宽度h2:
第二辐射单元在y方向上的宽度h2为第二辐射单元凹陷的最深点与参考线(RL2或者RL1)之间的距离,其中,若第二辐射单元位于该微带辐射结构100的A侧,则,第二辐射单元在y方向上的宽度h2为凹陷的最深点与参考线RL1之间的距离,或者,若第二辐射单元位于该微带辐射结构100的B侧,则,第二辐射单元在y方向上的宽度h2为凹陷的最深点与参考线RL2之间的距离。也即是,第二辐射单元在y方向上的宽度h2指的是该第二辐射单元凹陷的最深点与同侧参考线之间的距离。第二辐射单元在y方向上的宽度h2如图4a所示。
其中,参考线RL1或者参考线RL2可以按照以下任意一种方式确定:
方式一:参考线RL1或者参考线RL2为通过第一辐射单元凸起的最高点,且与x轴平行的直线(L1),当微带辐射结构100包括多个第一辐射单元时,且h1最大的第一辐射单元126,参考线RL1为通过第一辐射单元126凸起的最高点,且与x轴平行的直线。
方式二:参考线RL1或者参考线RL2为通过第二辐射单元凹陷的最深点,且与x轴平行的直线(L2)。当微带辐射结构100包括多个第二辐射单元时,且h2最大的第二辐射单元,参考线RL1或者参考线RL2为通过h2最大的第二辐射单元的凹陷的最深点,且与x轴平行的直线。
方式三:结合以上方式一和方式二,参考线RL1或者参考线RL2为通过直线L1和直线L2之间任意一点,且与x轴平行的直线。
可见,第一辐射单元在y方向上的宽度h1以及第二辐射单元在y方向上的宽度h2的具体数值与参考线RL1或者参考线RL2有直接关系。如图4a所示的参考线的设置,第一辐射单元120的h11的值为0,第一辐射单元126的h12的值不为0。
本申请提供的微带辐射结构100的y方向的结构参数,包括微带辐射结构100的宽度W2,第一辐射单元在y方向上的宽度h1以及第二辐射单元在y方向上的宽度h2,其中,结构参数W2,h1以及h2的大小与参考线有关系。
可见,通过本申请提供的微带辐射结构100宽度大于等于0.25倍天线中心工作波长的较宽的微带线上形成凸起结构和凹陷结构,且可以通过对以下结构参数分别设计:第一辐射单元的长度l1,第二辐射单元的长度l2,微带辐射结构100的宽度W2,第一辐射单元在y方向上的宽度h1以及第二辐射单元在y方向上的宽度h2。其中,l1和h1可以根据 第一辐射单元实际形状进行等效,示例地,当第一辐射单元的形状为半圆时,l1可以等效为该半圆的直径,h1等效为该半圆的半径。l2以及h2可以根据第二辐射单元实际形状进行等效。从而调节凸起结构和凹陷结构的谐振频点,从而可以根据实际需求实现不同的宽带天线。示例地,当第二辐射单元为半圆时,l2可以等效为该半圆的直径,h2等效为该半圆的半径。
下面对第一辐射单元和凸起结构的联系和区别,以及第二辐射单元和凹陷结构的联系和区别进行说明。凸起结构形成的第一辐射单元可以谐振在第一频段,凹陷结构形成的第二辐射单元可以谐振在第二频段。可以将凸起结构等效为第一辐射单元,也即是凸起结构和第一辐射单元指代相同。可选地,请参考图4b,可以将凸起结构的一部分等效为第一辐射单元,如,凸起结构的凸起的一个边Lr等效为第一辐射单元,再如图4b所示,凸起结构是一个长为l1,宽为h1的矩形,第一辐射单元可以为该矩形上长为l1,宽为h1’的矩形,其中,h1’的小于h1。同理,凹陷结构的一部分等效为第二辐射单元,可选地,请参考图4b,可以将凹陷结构的凹陷的一个边Lf等效为第二辐射单元。再如图4b所示,凹陷结构是一个长为l2,宽为h2的矩形,第二辐射单元可以为该矩形上长为l2,宽为h2’的矩形,其中,h2’小于h2。或者,凹陷结构的全部等效为第二辐射单元。
可以理解地,本申请实施例提供的微带辐射结构100可以为PCB的金属层,可以近似将微带辐射结构100理解为平面结构。
以下为了描述方便,凸起结构和第一辐射单元指代相同,凹陷结构和第二辐射单元的指代相同。如,以下第一辐射单元的形状也可以表示为凸起结构的形状,第二辐射单元的形状也可以表示为凹陷结构的形状。本申请所述的第一辐射单元的形状,以及第一辐射单元的形状也可以根据需要灵活设计。
第一辐射单元的形状或者凹陷结构的形状,除了可以是以上图示的矩形,第一辐射单元的形状或者第二辐射单元的形状还可以为图5a所示的半圆形,从而图5a所示辐射结构的B侧形成了“波浪线”。第一辐射单元的形状或者第二辐射单元的形状还可以为图5b所示的三角形,从而图5b所示辐射结构的A侧形成了“锯齿线”。或者请参考图5c,第一辐射单元的形状或者第二辐射单元的形状还可以为梯形,图5a至图5c仅仅为了示意单个第一辐射单元的形状的设计,或者单个第二辐射单元的形状的设计,多个第一辐射单元的形状是否相同,第一辐射单元的数量,以及不同第一辐射单元之间的间距设计请参考本申请其他相应的实施例。同理,多个第二辐射单元的形状是否相同,第二辐射单元的数量,以及不同第二辐射单元之间的间距设计请参考本申请其他相应的实施例。
图5a至图5c仅仅示出了3种第一辐射单元的形状(或第二辐射单元的形状)的实施方式。可选地,第一辐射单元的形状可以为以下一种形状或者以下多种形状组合成的形状:扇形,半圆形,圆形,椭圆形,三角形,四边形,或其他多边形(边数大于4)。可选地,所述的四边形包括以下任意一种:梯形,平行四边形或非平行西边形。所述的平行四边形包括以下任意一种:矩形,正方形或菱形。可选地,第二辐射单元的形状为以下一种形状或者以下多种形状组合成的形状:扇形,半圆形,圆形,椭圆形,三角形,四边形,或多边形(边数大于4)。可选地,所述的四边形包括以下任意一种:梯形,平行四边形或非平行西边形。所述的平行四边形包括以下任意一种:矩形,正方形或菱形。
另外,为了能够对本申请提供的天线实现更好的馈电效果,可以在微带辐射结构的馈电端还可以包括阻抗匹配结构,本申请提供的阻抗匹配结构也可以根据需要灵活设计。其 中,微带辐射结构的馈电端可以为微带辐射结构的两端中的任意一端,当微带辐射结构的a端设置为馈电端时,微带辐射结构的b端为末端;或者,当微带辐射结构的b端设置为馈电端时,微带辐射结构的a端为末端。可选地,请参考图6,所述微带辐射结构100还包括阻抗匹配结构101,阻抗匹配结构101设置在所述微带辐射结构100的第一端,如图6所示的b端。阻抗匹配结构101用于匹配所述天线的阻抗。图6所示的阻抗匹配结构101为单级匹配结构。可选地,所述微带辐射结构100馈电端口102。可选地,所述微带辐射结构100还可以包括多级阻抗匹配结构,所述微带辐射结构包括的阻抗匹配结构为两级阻抗匹配结构,三级阻抗匹配结构,或者其他多级阻抗匹配结构,本申请对阻抗匹配结构的级数不做限定。
本申请提供的微带辐射结构的末端可以为以上图示的开路,结合图3所示的天线,当微带辐射结构100的a端用于馈电时,微带辐射结构100的末端(即b端)为开路,如图3所示b端。本申请提供的微带辐射结构的末端还可以为短路,请参考图7,其为本申请实施例提供的一种天线30的俯视的结构示意图。所示的天线,如图7所示的a端,a端通过金属化过孔103电连接至了天线10的金属地板300。可选地,如图7所示的,微带辐射结构100的a端可以通过多个金属化过孔103电连接至了天线10的金属地板300。图7所示的阻抗匹配结构101和馈电端口102同以上图6所示的实施例,此处不再赘述。
从而,通过将微带辐射结构的末端接地,提高了该天线的稳定性。
本申请提供的天线的馈电方式也可以灵活设计。除了可以在微带辐射结构100的一端馈电,或者称为端馈,如以上图示的a端或者b端,还可以微带辐射结构100的一侧馈电,或者,在穿过金属地板以及介质基板,进行背馈。请参考图8,微带辐射结构100的A侧引出馈电端口102,从而可以在微带辐射结构100的A侧进行侧馈或者说是在微带辐射结构100的A侧进行侧馈,本申请所述的侧馈也可以称为边馈。可选地,如图8所示的天线,微带辐射结构100还可以包括阻抗匹配结构101。
可选地,还可以将馈电线穿过金属地板和介质基板,使得馈电线的线芯与微带辐射结构的馈电点电连接,馈线的外导体与天线的金属地板电连接,从而实现对该天线的背馈。
可见,由于本申请提供的天线的第一辐射单元和第二辐射单元可以分别谐振在不同的频点,从而可以根据两种辐射单元的谐振特性,灵活的选择馈电点,进一步的灵活设计天线的馈电方式。
综上,只要在较宽微带线(微带线宽大于或者等于0.25倍中心工作波长)上形成凸起结构和凹陷结构,且凸起结构和凹陷结构可以谐振在不同频点形成不同频带的辐射,从而形成宽带辐射的天线都属于本申请的保护范围。也即是,具有至少一个第一辐射单元和至少一个第二辐射单元的微带辐射结构,都属于本申请的保护范围。
以下以微带辐射结构包括多个第一辐射单元和多个第二辐射单元为例进行说明,各个第一辐射单元的形状和/或第二辐射单元的形状可以灵活设计,第一辐射单元间的间距可以灵活设计,以及第二辐射单元间的间距可以灵活设计,以下示出微带辐射结构的不同实施方式。本申请对第一辐射单元的数量和第二辐射单元的数量不做限制。
当微带辐射结构包括多个第一辐射单元和多个第二辐射单元时,第一辐射单元之间的间距可以灵活设计,或者第二辐射单元之间的间距可以灵活设计,或者第一辐射单元和第 二辐射单元之间的间距可以灵活设计。请参考图9a,微带辐射结构100包括5个第一辐射单元以及5个第二辐射单元。其中,该5个第一辐射单元包括:第一辐射单元120,第一辐射单元122,第一辐射单元124,第一辐射单元126以及第一辐射单元128。该5个第二辐射单元包括:第二辐射单元130,第二辐射单元132,第二辐射单元134,第二辐射单元136以及第二辐射单元138。图9a可见,第一辐射单元120和第一辐射单元122之间的中心距离d1,与第一辐射单元122,第一辐射单元124之间的中心距离d2不相等。第一辐射单元124和第一辐射单元126之间的中心距离d3,与第一辐射单元126和第一辐射单元128之间的中心距离d4相等。图9a还可以看出,第二辐射单元130和第二辐射单元132之间的中心距离d1’(未标识),与第二辐射单元134和第二辐射单元136之间的中心距离d2’(未标识)不相等。第二辐射单元134和第二辐射单元136之间的中心距离d2’,与第二辐射单元136和第二辐射单元138之间的中心距离d3’(未标识)相等。图9a是以多个第一辐射单元之间的间距,或者多个第二辐射单元的辐射单元之间的间距示例说明的,可选地,还可以以第一辐射单元和第二辐射单元之间的间距进行灵活设计。
图9a所示的微带辐射结构100可以用于本申请提供的天线中,微带辐射结构100的结构参数,天线馈电方式,以及微带辐射结构100的其他实施方式,如可以包括阻抗阻抗匹配结构等,可以结合以上图2至图8所示的实施例,此处不再赘述。
当微带辐射结构包括多个第一辐射单元时,多个第一辐射单元可以灵活地设置在微带辐射结构的同一侧,示例地,如图9a所示。或者多个第一辐射单元可以灵活地设置在微带辐射结构的不同侧,请参考图9b,微带辐射结构100的A侧设置有4个第一辐射单元120,微带辐射结构100的B侧设置有4个第一辐射单元122。可选地,位于第二侧的第一辐射单元与位于第一侧的第二辐射单元的位置相对应,可选地,第二侧的第一辐射单元在x方向上的中心点与第一侧的第二辐射单元在x方向上的中心点的连线平行于y轴,即表示位于第二侧的第一辐射单元与位于第一侧的第二辐射单元对应。示例地,位于B侧的第一辐射单元122与位于A侧的第二辐射单元130对应。图9b所示的微带辐射结构100单侧(A侧或者B侧)的凸起结构的形状都相同,可选地,微带辐射结构100单侧(A侧或者B侧)的凸起结构的形状可以部分相同,或者均不相同。图9b所示的微带辐射结构100的A侧和B侧的凸起结构的形状不相同,可选地,微带辐射结构两侧的凸起结构的形状可以相同或者部分相同,具体请结合图9c。第一辐射单元间的间距的实施可以结合图9b,此处不再赘述。同样,图9b所示的微带辐射结构100可以用于本申请提供的天线中,微带辐射结构100的结构参数,天线馈电方式,以及微带辐射结构100的其他实施方式,如可以包括阻抗阻抗匹配结构等,可以结合以上图2至图8所示的实施例,此处不再赘述。
同理,当微带辐射结构包括多个第二辐射单元时,多个第二辐射单元也可以灵活地设置在微带辐射结构的同一侧,示例地,如图9a所示。或者多个第二辐射单元可以灵活地设置在微带辐射结构的不同侧,请参考图9b,,微带辐射结构100的A侧设置有多个第二辐射单元(130,132,或134),微带辐射结构100的B侧设置有多个第二辐射单元(131,133,或135)。可选地,位于第二侧的第二辐射单元与位于第一侧的第一辐射单元对应,可选地,第二侧的第二辐射单元在x方向上的中心点与第一侧的第一辐射单元在x方向上的中心点的连线平行于y轴,即表示位于第二侧的第二辐射单元与位于第一侧的第一辐射单元对应。示例地,位于B侧的第二辐射单元133与位于A侧的第一辐射单元120对应。图9b所示的微带辐射结构100单侧(A侧或者B侧)的凹陷结构的形状都相同,可选地, 微带辐射结构100单侧(A侧或者B侧)的凹陷结构的形状可以部分相同,或者均不相同。图9b所示的微带辐射结构100的A侧和B侧的凹陷结构的形状不相同,可选地,微带辐射结构两侧的凹陷结构的形状可以相同或者部分相同,具体请结合图9c。第二辐射单元间的间距的实施可以结合图9a,此处不再赘述。同样,图9b所示的微带辐射结构100可以用于本申请提供的天线中,微带辐射结构100的结构参数,天线馈电方式,以及微带辐射结构100的其他实施方式,如可以包括阻抗阻抗匹配结构等,可以结合以上图2至图8所示的实施例,此处不再赘述。
当微带辐射结构包括多个第一辐射单元和/或多个第二辐射单元时,结合图5a至图5c所提供的第一辐射单元的形状和/或第二辐射单元的形状的实施例,本申请实施例对多个第一辐射单元和/或多个第二辐射单元之间的形状设计的组合进行说明。以第一辐射单元的形状为例进行说明。多个第一辐射单元的形状可以统一设计相同的形状,如图5a至图5b所示,也可以多个第一辐射单元中的各个第一辐射单元的形状各自单独设计。多个第一辐射单元中的各个第一辐射单元的形状部分相同,如图9b,微带辐射结构100的A侧的第一辐射单元的形状和B侧的第一辐射单元的形状不同,微带辐射结构100的A侧(或者B侧)上的第一辐射单元的形状相同。或者,微带辐射结构100的A侧的一部分第一辐射单元的形状相同或者B侧的一部分第一辐射单元的形状相同,或者,微带辐射结构100的A侧的一部分第一辐射单元的形状与B侧的一部分第一辐射单元的形状相同,微带辐射结构100的A侧的另一部分第一辐射单元的形状或者B侧的另一部分第一辐射单元的形状不同。同理,第二辐射单元的形状设计同以上第一辐射单元的描述,此处不再赘述。
或者微带辐射结构100的A侧的第一辐射单元的形状和B侧的第一辐射单元的形状均不同。请参考图9c,其为本申请实施例提供的一种微带辐射结构100的结构示意图。微带辐射结构100包括第一辐射单元(120,122,124)和第二辐射单元(131,133,135,137,139),其中,第一辐射单元(120,122,124)的形状都不相同,第二辐射单元133和第二辐射单元135的形状相同。与其他第二辐射单元(131,137,139)均不相同。且,第一辐射单元120和第二辐射单元122之间可以包括两个第二辐射单元(133,135)。可选地,相邻的第一辐射单元之间还可以具有多个第二辐射单元,或者相邻的第二辐射单元之间还可以具有多个第一辐射单元。
同样,图9c所示的微带辐射结构100可以用于本申请提供的天线中,微带辐射结构100的结构参数,天线馈电方式,以及微带辐射结构100的其他实施方式,如可以包括阻抗阻抗匹配结构等,可以结合以上图2至图8所示的实施例,此处不再赘述。可选地,以上图9a至图9c所示的实施例可以任意结合实施。可选地,以上所示的图2至图9c所示的实施例可以任意结合实施
以上图9a至图9c可见,本申请的微带辐射结构可以灵活设计,具体地,微带辐射结构中的第一辐射单元的数量可以灵活设计,相邻的两个第一辐射单元间的间距可以灵活设计,不同的第一辐射单元的形状可以灵活设计,以及,当微带辐射结构包括多个第一辐射单元时,多个第一辐射单元还可以设计在微带辐射结构的同一侧,或者设计在微带辐射结构的两侧。同理,微带辐射结构中的第二辐射单元数量可以灵活设计,相邻的两个第二辐射单元间的间距可以灵活设计,不同的第二辐射单元的形状可以灵活设计,以及,当微带辐射结构包括多个第二辐射单元时,多个第二辐射单元还可以设计在微带辐射结构的同一 侧,或者设计在微带辐射结构的两侧。
可见,本申请提供的微带辐射结构可以根据实际需求灵活设计,设计自由度大,从而可以使得具有本申请提供的微带辐射结构的天线能够满足不同的设计需求。
为了更好地理解本申请提供的宽带天线,下面结合图10a所示的天线10进行说明。可选地,图10a所示的天线,包括微带辐射结构100,介质板200以及金属地板300,天线为PCB天线。微带辐射结构100包括馈电端口101,阻抗匹配结构102,第一辐射单元和第二辐射单元,具体包括了3个第一辐射单元120,1个第一辐射单元122,3个第二辐射结构130和1个第二辐射结构132。可以通过在a端的馈电端口102对天线10进行馈电。
结合图10b对微带辐射结构100的各个结构参数的取值进行介绍。参考线RL1为通过第二辐射单元凹陷最深点且平行于x轴的直线,参考线RL2为通过微带辐射结构100B侧的侧边的直线。可选地,第一辐射单元的长度l1大于或者等于0.5倍的天线中心工作波长,且小于或等于1.5倍的天线中心工作波长。且在x方向上,相邻的两个第一辐射单元之间的中心距离d1小于或者等于1.5倍的所述天线中心工作波长。第二辐射单元的长度l2为相邻的两个第一辐射单元之间的中心距离d1减去第一辐射单元120的长度l1。图10b所示的微带辐射结构100的宽度W2小于等于0.5倍的天线中心工作波长,且大于等于0.25倍天线中心工作波长。第一辐射单元在y方向上的宽度h1大于或等于0.02倍的天线中心工作波长,且小于或者等于0.5倍的天线中心工作波长。可选地,当微带辐射结构100的两侧都有第一辐射单元时,微带辐射结构100的宽度W2可以小于或者等于0.75倍的天线中心工作波长。参照图10b所示的参考线RL1,第二辐射结构的宽度h2等于0。
该天线10的仿真效果如图10c所示,该天线的电参数S11(图10c中纵坐标)随频率(图10c中横坐标)变化。其中,电参数S11为馈电端口102的反射系数。可见,第一辐射单元120可以谐振在77GHz附近(图10c所示曲线的第一个波谷),第二辐射单元130或者第二辐射单元132可以谐振在79.4GHz附近(图10c所示曲线的第二个波谷),实现了S11≤10dB的的频率范围可以从75.08GHz至82.11GHz,天线10的工作带宽高达7.03GHz,从而实现了宽带天线。
本申请实施例提供的天线10可见,通过在较宽的微带线的侧边上形成凸起结构以及凹陷结构,通过该设计,凸起结构可以在第一频点谐振,凹陷结构可以在第二频点谐振,天线10在工作的时候,实现了类腔体的场分布,从而实现了宽带天线的效果。
本申请还提供了一种天线阵列,天线阵列可以包括以上任意实施例的天线。可选地,该天线阵列还可以包括功分合路结构。请参考图11,其为本申请实施例提供的一种天线阵列20的结构示意图,天线阵列20包括天线10和天线11,以及功分合路结构22,功分合路结构22包括第一功分端p1、第二功分端p2以及合路端p3。其中,天线10的b端与功分合路结构22的第一功分端p1电连接,第二天线11的b端与功分合路结构22的第二功分端p2电连接。从而可以实现对天线10上接收的信号和天线11上接收的信号的合路至合路端p3。或者,可以实现对合路端p3传输的信号分路至天线10和天线11上。从而,可以实现馈电网络对天线阵列20的一驱二的馈电。
其中,图11所示的功分合路结构22为一分二或者说是二合一的功分合路结构,可选地,功分合路结构22还可以为一分多或者说是多合一的功分合路结构,从而实现馈电网 络对天线阵列的的一驱多,或者多合一的馈电。
如图11所示,天线10和天线11可以共用同样的介质板200和金属地板300。可选地,天线10和天线11的介质板或者金属地板还可以是分别单独设计,本申请对此不做限制。可选地,天线10,天线11以及功分合路结构22可以分别设计再电连接,或者也可以直接一体化成型。
可选地,天线阵列20还包括天线罩,和/或馈电网络。
本申请还提供了一种探测装置,包括上述任意实施例提供的天线;和/或包括上述任意实施例提供的天线阵列。示例地,该探测装置可以为雷达,当本申请提供的天线或者天线阵列应用于雷达中,可以提高雷达的距离分别率。可选地,该雷达可以为车载雷达。
本申请还提供了一种终端,包括上述任意实施例的天线;上述任意实施例提供的天线阵列,和/或包括上述实施例提供的探测装置。可选地,该终端可以为车辆,探测装置为雷达时,车上载有本申请的雷达,可以通过提高了探测装置的距离分别率,从而提高车辆的感知能力。可选地,本申请所述的车辆还可以为自动驾驶车辆,或者为集成了ADAS的车辆,本申请所述的车辆可以替换为火车、飞行器、机器人、慢速运输车或移动平台等其他载具或交通工具。
本申请所述的终端还可以为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、其他车载设备、可穿戴设备、智能家居设备,本申请实施例对此并不限定。当本申请提供的天线或者天线阵列应用于其他终端设备,如手机,可以提供手机的工作频带的带宽。
以上描述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,例如减少或添加结构件,改变结构件的形状等,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种天线,其特征在于,
    所述天线包括金属地板、介质板以及微带辐射结构,所述金属地板和所述微带辐射结构分别设置在所述介质板两侧;
    所述微带辐射结构包括第一辐射单元和第二辐射单元;
    其中,所述第一辐射单元为所述微带辐射结构上的凸起结构形成的辐射单元,所述第二辐射单元为所述微带辐射结构上的凹陷结构形成的辐射单元,所述第一辐射单元支持第一频段,所述第二辐射单元支持第二频段。
  2. 根据权利要求1所述的天线,其特征在于,
    所述微带辐射结构包括多个第一辐射单元;和/或
    所述微带辐射结构包括多个第二辐射单元。
  3. 根据权利要求2所述的天线,其特征在于,
    至少一组相邻的两个第一辐射单元之间具有第二辐射单元。
  4. 根据权利要求2或3所述的天线,其特征在于,
    所述多个第一辐射单元中存在至少两组相邻第一辐射单元,所述两组相邻第一辐射单元的中心距离相等,或者所述两组相邻第一辐射单元的中心距离不等。
  5. 根据权利要求2至4任一所述的天线,其特征在于,
    所述多个第二辐射单元中存在至少两组相邻第二辐射单元,所述两组相邻第二辐射单元的中心距离相等,或者所述两组相邻第二辐射单元的中心距离不等。
  6. 根据权利要求2至5任一所述的天线,其特征在于,
    所述多个第一辐射单元设置在所述微带辐射结构的同一侧;或
    所述多个第一辐射单元中的第一部分辐射单元设置在所述微带辐射结构的第一侧,所述多个第一辐射单元中的第二部分辐射单元设置在所述微带辐射结构的第二侧,其中,所述第一侧与所述第二侧为所述微带辐射结构中相对的两侧。
  7. 根据权利要求6所述的天线,其特征在于,所述多个第一辐射单元中的第一部分辐射单元设置在所述微带辐射结构的第一侧,所述多个第一辐射单元中的第二部分辐射单元设置在所述微带辐射结构的第二侧,包括:
    位于第二侧的第一辐射单元与位于第一侧的第二辐射单元对应。
  8. 根据权利要求2至5任一所述的天线,其特征在于,
    所述多个第二辐射单元可以均设置在所述微带辐射结构的同一侧;或
    所述多个第二辐射单元中的第一部分辐射单元设置在所述微带辐射结构的第一侧,所述多个第二辐射单元中的第二部分辐射单元设置在所述微带辐射结构的第二侧,其中,所述第一侧与所述第二侧为所述微带辐射结构中相对的两侧。
  9. 根据权利要求8所述的天线,其特征在于,所述多个第二辐射单元中的第一部分辐射单元设置在所述微带辐射结构的第一侧,所述多个第二辐射单元中的第二部分辐射单元设置在所述微带辐射结构的第二侧,包括:
    位于第二侧的第二辐射单元与位于第一侧的第一辐射单元对应。
  10. 根据权利要求2至9任一所述的天线,其特征在于,
    所述多个第一辐射单元中的任意两个辐射单元的形状相同;
    所述多个第一辐射单元中的部分辐射单元的形状相同;或
    所述多个第一辐射单元中的任意两个辐射单元的形状不同。
  11. 根据权利要求2至10任一所述的天线,其特征在于,
    所述多个第二辐射单元中的任意两个辐射单元的形状相同;
    所述多个第二辐射单元中的部分辐射单元的形状相同;或
    所述多个第二辐射单元中的任意两个辐射单元的形状不同。
  12. 根据权利要求1至11任一所述的天线,其特征在于,
    所述第一辐射单元的形状为以下一种形状或者以下多种形状组合成的形状:
    扇形,半圆形,圆形,椭圆形,三角形,四边形,或多边形。
  13. 根据权利要求1至12任一所述的天线,其特征在于,
    所述第二辐射单元的形状为以下一种形状或者以下多种形状组合成的形状:
    扇形,半圆形,圆形,椭圆形,三角形,四边形,或多边形。
  14. 根据权利要求1至13任一所述的天线,其特征在于,
    所述微带辐射结构还包括阻抗匹配结构,所述阻抗匹配结构设置在所述微带辐射结构的第一端,所述阻抗匹配结构用于匹配所述天线的阻抗。
  15. 根据权利要求14所述的天线,其特征在于,所述阻抗匹配结构为多级阻抗匹配结构。
  16. 根据权利要求1至15任一所述的天线,其特征在于,
    所述微带辐射结构的第二端为开路;或者
    所述微带辐射结构的第二端为短路。
  17. 根据权利要求1至16任一所述的天线,其特征在于,
    所述天线的馈电方式可以为端馈、侧馈或者背馈。
  18. 根据权利要求1至17任一所述的天线,其特征在于,
    在第一方向上,所述第一辐射单元的长度大于或者等于0.5倍的所述天线中心工作波长。
  19. 根据权利要求1至17任一所述的天线,其特征在于,
    在第一方向上,所述相邻的两个第一辐射单元之间的中心距离大于或者等于0.65倍的所述天线中心工作波长。
  20. 根据权利要求1至19任一所述的天线,其特征在于,
    在第二方向上,所述第一辐射单元的长度为大于或等于0.02倍所述天线中心工作波长。
  21. 根据权利要求1至20任一所述的天线,其特征在于,
    在第二方向上,所述微带辐射结构的长度小于等于0.7倍所述天线中心工作波长。
  22. 一种天线阵列,其特征在于,所述天线阵列包括如权利要求1至21中任一项所述的天线。
  23. 根据权利要求22所述的天线阵列,其特征在于,所述天线阵列包括多个所述天线以及功分合路结构,其中,所述多个所述天线包括第一天线和第二天线,
    所述功分合路结构包括第一功分端、第二功分端;
    所述第一天线的第一端与所述功分合路结构的所述第一功分端电连接,所述第二天线的第一端与所述功分合路结构的所述第二功分端电连接。
  24. 根据权利要求21或者22所述的天线阵列,其特征在于,所述天线阵列包括天线罩。
  25. 一种探测装置,其特征在于,
    所述探测装置包括如权利要求1至21中任一所述的天线;和/或
    所述探测装置包括如权利要求22至24任一所述的天线阵列。
  26. 一种终端,其特征在于,所述终端包括如权利要求25所述的探测装置。
  27. 根据权利要求26所述的终端,其特征在于,所述终端为车辆。
PCT/CN2021/097326 2021-05-31 2021-05-31 一种天线、探测装置和终端 WO2022252028A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180001896.3A CN113490860A (zh) 2021-05-31 2021-05-31 一种天线、探测装置和终端
PCT/CN2021/097326 WO2022252028A1 (zh) 2021-05-31 2021-05-31 一种天线、探测装置和终端
EP21943405.7A EP4333203A1 (en) 2021-05-31 2021-05-31 Antenna, detection apparatus, and terminal
CA3220845A CA3220845A1 (en) 2021-05-31 2021-05-31 Antenna, detection apparatus, and terminal
US18/522,931 US20240097332A1 (en) 2021-05-31 2023-11-29 Antenna, Detection Apparatus, and Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097326 WO2022252028A1 (zh) 2021-05-31 2021-05-31 一种天线、探测装置和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/522,931 Continuation US20240097332A1 (en) 2021-05-31 2023-11-29 Antenna, Detection Apparatus, and Terminal

Publications (1)

Publication Number Publication Date
WO2022252028A1 true WO2022252028A1 (zh) 2022-12-08

Family

ID=77939954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097326 WO2022252028A1 (zh) 2021-05-31 2021-05-31 一种天线、探测装置和终端

Country Status (5)

Country Link
US (1) US20240097332A1 (zh)
EP (1) EP4333203A1 (zh)
CN (1) CN113490860A (zh)
CA (1) CA3220845A1 (zh)
WO (1) WO2022252028A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038733A1 (en) * 2003-02-10 2006-02-23 Martin Wedel Combined speaker and antenna component
CN103779672A (zh) * 2014-01-27 2014-05-07 镇江中安通信科技有限公司 一种多频段天线
CN106299723A (zh) * 2016-08-08 2017-01-04 上海交通大学 共口径天线
CN110444906A (zh) * 2019-08-27 2019-11-12 南京邮电大学 一种5g频段的八单元mimo手持终端天线
CN112186337A (zh) * 2020-09-14 2021-01-05 南京航空航天大学 一种基于模式正交的双频高隔离度手机mimo天线
US20210013588A1 (en) * 2019-07-09 2021-01-14 Samsung Electronics Co., Ltd. Electronic device including antenna module
US20210036426A1 (en) * 2019-08-02 2021-02-04 Harada Industry Co., Ltd. Stacked patch antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468044B2 (ja) * 1997-08-19 2003-11-17 三菱電機株式会社 平面アンテナ
JP2001111335A (ja) * 1999-10-08 2001-04-20 Toyota Central Res & Dev Lab Inc マイクロストリップアレーアンテナ
KR100444660B1 (ko) * 2001-09-21 2004-08-18 쌍신전자통신주식회사 마이크로스트립 패치 안테나
CN103346391B (zh) * 2013-07-11 2016-08-10 中国计量学院 背面开槽式凹凸枝节形双频微带天线
CN204375947U (zh) * 2015-01-30 2015-06-03 华南理工大学 一种多频宽带平面手机天线
CN105826671B (zh) * 2016-04-24 2019-02-26 林伟 天线阵列单元
CN108847534B (zh) * 2018-05-25 2021-01-05 哈尔滨工程大学 一种多谐振枝节天线
CN108832289A (zh) * 2018-06-22 2018-11-16 湖南纳雷科技有限公司 微带串馈阵列天线、天线面阵及雷达传感器的射频前端
CN212848783U (zh) * 2020-08-28 2021-03-30 加特兰微电子科技(上海)有限公司 天线单元、收发天线、传感器及设有传感器的设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038733A1 (en) * 2003-02-10 2006-02-23 Martin Wedel Combined speaker and antenna component
CN103779672A (zh) * 2014-01-27 2014-05-07 镇江中安通信科技有限公司 一种多频段天线
CN106299723A (zh) * 2016-08-08 2017-01-04 上海交通大学 共口径天线
US20210013588A1 (en) * 2019-07-09 2021-01-14 Samsung Electronics Co., Ltd. Electronic device including antenna module
US20210036426A1 (en) * 2019-08-02 2021-02-04 Harada Industry Co., Ltd. Stacked patch antenna
CN110444906A (zh) * 2019-08-27 2019-11-12 南京邮电大学 一种5g频段的八单元mimo手持终端天线
CN112186337A (zh) * 2020-09-14 2021-01-05 南京航空航天大学 一种基于模式正交的双频高隔离度手机mimo天线

Also Published As

Publication number Publication date
CA3220845A1 (en) 2022-12-08
US20240097332A1 (en) 2024-03-21
CN113490860A (zh) 2021-10-08
EP4333203A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US20160282462A1 (en) Multi-function shared aperture array
US20190348754A1 (en) Smart antenna for in-vehicle applications that can be integrated with tcu and other electronics
KR102033311B1 (ko) 스트립라인 급전 슬롯 배열 안테나 및 이의 제조 방법
US9685714B2 (en) Radar array antenna
JP6447325B2 (ja) 車両用アンテナユニット、方向推定システム
US10405374B2 (en) Antenna system for head mounted display device
CN111989822B (zh) 天线装置
WO2022252028A1 (zh) 一种天线、探测装置和终端
US20230238712A1 (en) Antenna Apparatus, Method for Producing Antenna Apparatus, Radar, and Terminal
US20230344135A1 (en) Slanted polarization antenna
JP5722731B2 (ja) アンテナ装置
CN110612637B (zh) 偶极子天线及无人机
WO2022160974A1 (zh) 天线、探测装置、雷达及终端
JP2024521339A (ja) アンテナ、検出装置、および端末
KR20200131155A (ko) 차량용 레이다
JP2020080527A (ja) アンテナ装置
WO2021208901A1 (zh) 一种串馈天线、通信设备以及制作串馈天线的方法
WO2023004549A1 (zh) 一种吸波结构、天线装置、探测装置及终端设备
WO2023108340A1 (zh) 天线装置、雷达,探测装置及终端
WO2023092474A1 (zh) 一种天线、探测装置和终端
US20240072414A1 (en) Antenna module for vehicle and vehicle including the same
KR102672496B1 (ko) 광시야각을 갖는 mimo 안테나 어레이
US11502420B2 (en) Twin line fed dipole array antenna
US20240170860A1 (en) Antenna and terminal device
JP2005260732A (ja) 高周波アンテナ装置、および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573657

Country of ref document: JP

Ref document number: 3220845

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021943405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021943405

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE